1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
45 #include "target-debug.h"
47 static void target_info (char *, int);
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
51 static void default_terminal_info (struct target_ops *, const char *, int);
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 static int default_follow_fork (struct target_ops *self, int follow_child,
67 static void default_mourn_inferior (struct target_ops *self);
69 static int default_search_memory (struct target_ops *ops,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
74 CORE_ADDR *found_addrp);
76 static int default_verify_memory (struct target_ops *self,
78 CORE_ADDR memaddr, ULONGEST size);
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
85 static int return_zero (struct target_ops *);
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
89 static void target_command (char *, int);
91 static struct target_ops *find_default_run_target (char *);
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
108 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
109 struct gdbarch *gdbarch);
111 static struct target_ops debug_target;
113 #include "target-delegates.c"
115 static void init_dummy_target (void);
117 static void update_current_target (void);
119 /* Vector of existing target structures. */
120 typedef struct target_ops *target_ops_p;
121 DEF_VEC_P (target_ops_p);
122 static VEC (target_ops_p) *target_structs;
124 /* The initial current target, so that there is always a semi-valid
127 static struct target_ops dummy_target;
129 /* Top of target stack. */
131 static struct target_ops *target_stack;
133 /* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
136 struct target_ops current_target;
138 /* Command list for target. */
140 static struct cmd_list_element *targetlist = NULL;
142 /* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
145 static int trust_readonly = 0;
147 /* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
150 static int show_memory_breakpoints = 0;
152 /* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
156 int may_write_registers = 1;
158 int may_write_memory = 1;
160 int may_insert_breakpoints = 1;
162 int may_insert_tracepoints = 1;
164 int may_insert_fast_tracepoints = 1;
168 /* Non-zero if we want to see trace of target level stuff. */
170 static unsigned int targetdebug = 0;
173 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175 update_current_target ();
179 show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
185 static void setup_target_debug (void);
187 /* The user just typed 'target' without the name of a target. */
190 target_command (char *arg, int from_tty)
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
196 /* Default target_has_* methods for process_stratum targets. */
199 default_child_has_all_memory (struct target_ops *ops)
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
209 default_child_has_memory (struct target_ops *ops)
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
219 default_child_has_stack (struct target_ops *ops)
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
229 default_child_has_registers (struct target_ops *ops)
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241 /* If there's no thread selected, then we can't make it run through
243 if (ptid_equal (the_ptid, null_ptid))
251 target_has_all_memory_1 (void)
253 struct target_ops *t;
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
263 target_has_memory_1 (void)
265 struct target_ops *t;
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
275 target_has_stack_1 (void)
277 struct target_ops *t;
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
287 target_has_registers_1 (void)
289 struct target_ops *t;
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
299 target_has_execution_1 (ptid_t the_ptid)
301 struct target_ops *t;
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
304 if (t->to_has_execution (t, the_ptid))
311 target_has_execution_current (void)
313 return target_has_execution_1 (inferior_ptid);
316 /* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
320 complete_target_initialization (struct target_ops *t)
322 /* Provide default values for all "must have" methods. */
324 if (t->to_has_all_memory == NULL)
325 t->to_has_all_memory = return_zero;
327 if (t->to_has_memory == NULL)
328 t->to_has_memory = return_zero;
330 if (t->to_has_stack == NULL)
331 t->to_has_stack = return_zero;
333 if (t->to_has_registers == NULL)
334 t->to_has_registers = return_zero;
336 if (t->to_has_execution == NULL)
337 t->to_has_execution = return_zero_has_execution;
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
345 install_delegators (t);
348 /* This is used to implement the various target commands. */
351 open_target (char *args, int from_tty, struct cmd_list_element *command)
353 struct target_ops *ops = get_cmd_context (command);
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
359 ops->to_open (args, from_tty);
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
366 /* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
371 add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
374 struct cmd_list_element *c;
376 complete_target_initialization (t);
378 VEC_safe_push (target_ops_p, target_structs, t);
380 if (targetlist == NULL)
381 add_prefix_cmd ("target", class_run, target_command, _("\
382 Connect to a target machine or process.\n\
383 The first argument is the type or protocol of the target machine.\n\
384 Remaining arguments are interpreted by the target protocol. For more\n\
385 information on the arguments for a particular protocol, type\n\
386 `help target ' followed by the protocol name."),
387 &targetlist, "target ", 0, &cmdlist);
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
395 /* Add a possible target architecture to the list. */
398 add_target (struct target_ops *t)
400 add_target_with_completer (t, NULL);
406 add_deprecated_target_alias (struct target_ops *t, char *alias)
408 struct cmd_list_element *c;
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
425 current_target.to_kill (¤t_target);
429 target_load (const char *arg, int from_tty)
431 target_dcache_invalidate ();
432 (*current_target.to_load) (¤t_target, arg, from_tty);
435 /* Possible terminal states. */
439 /* The inferior's terminal settings are in effect. */
440 terminal_is_inferior = 0,
442 /* Some of our terminal settings are in effect, enough to get
444 terminal_is_ours_for_output = 1,
446 /* Our terminal settings are in effect, for output and input. */
450 static enum terminal_state terminal_state;
455 target_terminal_init (void)
457 (*current_target.to_terminal_init) (¤t_target);
459 terminal_state = terminal_is_ours;
465 target_terminal_is_inferior (void)
467 return (terminal_state == terminal_is_inferior);
473 target_terminal_inferior (void)
475 /* A background resume (``run&'') should leave GDB in control of the
476 terminal. Use target_can_async_p, not target_is_async_p, since at
477 this point the target is not async yet. However, if sync_execution
478 is not set, we know it will become async prior to resume. */
479 if (target_can_async_p () && !sync_execution)
482 if (terminal_state == terminal_is_inferior)
485 /* If GDB is resuming the inferior in the foreground, install
486 inferior's terminal modes. */
487 (*current_target.to_terminal_inferior) (¤t_target);
488 terminal_state = terminal_is_inferior;
494 target_terminal_ours (void)
496 if (terminal_state == terminal_is_ours)
499 (*current_target.to_terminal_ours) (¤t_target);
500 terminal_state = terminal_is_ours;
506 target_terminal_ours_for_output (void)
508 if (terminal_state != terminal_is_inferior)
510 (*current_target.to_terminal_ours_for_output) (¤t_target);
511 terminal_state = terminal_is_ours_for_output;
517 target_supports_terminal_ours (void)
519 struct target_ops *t;
521 for (t = current_target.beneath; t != NULL; t = t->beneath)
523 if (t->to_terminal_ours != delegate_terminal_ours
524 && t->to_terminal_ours != tdefault_terminal_ours)
531 /* Restore the terminal to its previous state (helper for
532 make_cleanup_restore_target_terminal). */
535 cleanup_restore_target_terminal (void *arg)
537 enum terminal_state *previous_state = arg;
539 switch (*previous_state)
541 case terminal_is_ours:
542 target_terminal_ours ();
544 case terminal_is_ours_for_output:
545 target_terminal_ours_for_output ();
547 case terminal_is_inferior:
548 target_terminal_inferior ();
556 make_cleanup_restore_target_terminal (void)
558 enum terminal_state *ts = xmalloc (sizeof (*ts));
560 *ts = terminal_state;
562 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
568 error (_("You can't do that when your target is `%s'"),
569 current_target.to_shortname);
575 error (_("You can't do that without a process to debug."));
579 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
581 printf_unfiltered (_("No saved terminal information.\n"));
584 /* A default implementation for the to_get_ada_task_ptid target method.
586 This function builds the PTID by using both LWP and TID as part of
587 the PTID lwp and tid elements. The pid used is the pid of the
591 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
593 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
596 static enum exec_direction_kind
597 default_execution_direction (struct target_ops *self)
599 if (!target_can_execute_reverse)
601 else if (!target_can_async_p ())
604 gdb_assert_not_reached ("\
605 to_execution_direction must be implemented for reverse async");
608 /* Go through the target stack from top to bottom, copying over zero
609 entries in current_target, then filling in still empty entries. In
610 effect, we are doing class inheritance through the pushed target
613 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
614 is currently implemented, is that it discards any knowledge of
615 which target an inherited method originally belonged to.
616 Consequently, new new target methods should instead explicitly and
617 locally search the target stack for the target that can handle the
621 update_current_target (void)
623 struct target_ops *t;
625 /* First, reset current's contents. */
626 memset (¤t_target, 0, sizeof (current_target));
628 /* Install the delegators. */
629 install_delegators (¤t_target);
631 current_target.to_stratum = target_stack->to_stratum;
633 #define INHERIT(FIELD, TARGET) \
634 if (!current_target.FIELD) \
635 current_target.FIELD = (TARGET)->FIELD
637 /* Do not add any new INHERITs here. Instead, use the delegation
638 mechanism provided by make-target-delegates. */
639 for (t = target_stack; t; t = t->beneath)
641 INHERIT (to_shortname, t);
642 INHERIT (to_longname, t);
643 INHERIT (to_attach_no_wait, t);
644 INHERIT (to_have_steppable_watchpoint, t);
645 INHERIT (to_have_continuable_watchpoint, t);
646 INHERIT (to_has_thread_control, t);
650 /* Finally, position the target-stack beneath the squashed
651 "current_target". That way code looking for a non-inherited
652 target method can quickly and simply find it. */
653 current_target.beneath = target_stack;
656 setup_target_debug ();
659 /* Push a new target type into the stack of the existing target accessors,
660 possibly superseding some of the existing accessors.
662 Rather than allow an empty stack, we always have the dummy target at
663 the bottom stratum, so we can call the function vectors without
667 push_target (struct target_ops *t)
669 struct target_ops **cur;
671 /* Check magic number. If wrong, it probably means someone changed
672 the struct definition, but not all the places that initialize one. */
673 if (t->to_magic != OPS_MAGIC)
675 fprintf_unfiltered (gdb_stderr,
676 "Magic number of %s target struct wrong\n",
678 internal_error (__FILE__, __LINE__,
679 _("failed internal consistency check"));
682 /* Find the proper stratum to install this target in. */
683 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
685 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
689 /* If there's already targets at this stratum, remove them. */
690 /* FIXME: cagney/2003-10-15: I think this should be popping all
691 targets to CUR, and not just those at this stratum level. */
692 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
694 /* There's already something at this stratum level. Close it,
695 and un-hook it from the stack. */
696 struct target_ops *tmp = (*cur);
698 (*cur) = (*cur)->beneath;
703 /* We have removed all targets in our stratum, now add the new one. */
707 update_current_target ();
710 /* Remove a target_ops vector from the stack, wherever it may be.
711 Return how many times it was removed (0 or 1). */
714 unpush_target (struct target_ops *t)
716 struct target_ops **cur;
717 struct target_ops *tmp;
719 if (t->to_stratum == dummy_stratum)
720 internal_error (__FILE__, __LINE__,
721 _("Attempt to unpush the dummy target"));
723 /* Look for the specified target. Note that we assume that a target
724 can only occur once in the target stack. */
726 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
732 /* If we don't find target_ops, quit. Only open targets should be
737 /* Unchain the target. */
739 (*cur) = (*cur)->beneath;
742 update_current_target ();
744 /* Finally close the target. Note we do this after unchaining, so
745 any target method calls from within the target_close
746 implementation don't end up in T anymore. */
753 pop_all_targets_above (enum strata above_stratum)
755 while ((int) (current_target.to_stratum) > (int) above_stratum)
757 if (!unpush_target (target_stack))
759 fprintf_unfiltered (gdb_stderr,
760 "pop_all_targets couldn't find target %s\n",
761 target_stack->to_shortname);
762 internal_error (__FILE__, __LINE__,
763 _("failed internal consistency check"));
770 pop_all_targets (void)
772 pop_all_targets_above (dummy_stratum);
775 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
778 target_is_pushed (struct target_ops *t)
780 struct target_ops *cur;
782 /* Check magic number. If wrong, it probably means someone changed
783 the struct definition, but not all the places that initialize one. */
784 if (t->to_magic != OPS_MAGIC)
786 fprintf_unfiltered (gdb_stderr,
787 "Magic number of %s target struct wrong\n",
789 internal_error (__FILE__, __LINE__,
790 _("failed internal consistency check"));
793 for (cur = target_stack; cur != NULL; cur = cur->beneath)
800 /* Default implementation of to_get_thread_local_address. */
803 generic_tls_error (void)
805 throw_error (TLS_GENERIC_ERROR,
806 _("Cannot find thread-local variables on this target"));
809 /* Using the objfile specified in OBJFILE, find the address for the
810 current thread's thread-local storage with offset OFFSET. */
812 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
814 volatile CORE_ADDR addr = 0;
815 struct target_ops *target = ¤t_target;
817 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
819 ptid_t ptid = inferior_ptid;
820 volatile struct gdb_exception ex;
822 TRY_CATCH (ex, RETURN_MASK_ALL)
826 /* Fetch the load module address for this objfile. */
827 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
830 addr = target->to_get_thread_local_address (target, ptid,
833 /* If an error occurred, print TLS related messages here. Otherwise,
834 throw the error to some higher catcher. */
837 int objfile_is_library = (objfile->flags & OBJF_SHARED);
841 case TLS_NO_LIBRARY_SUPPORT_ERROR:
842 error (_("Cannot find thread-local variables "
843 "in this thread library."));
845 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
846 if (objfile_is_library)
847 error (_("Cannot find shared library `%s' in dynamic"
848 " linker's load module list"), objfile_name (objfile));
850 error (_("Cannot find executable file `%s' in dynamic"
851 " linker's load module list"), objfile_name (objfile));
853 case TLS_NOT_ALLOCATED_YET_ERROR:
854 if (objfile_is_library)
855 error (_("The inferior has not yet allocated storage for"
856 " thread-local variables in\n"
857 "the shared library `%s'\n"
859 objfile_name (objfile), target_pid_to_str (ptid));
861 error (_("The inferior has not yet allocated storage for"
862 " thread-local variables in\n"
863 "the executable `%s'\n"
865 objfile_name (objfile), target_pid_to_str (ptid));
867 case TLS_GENERIC_ERROR:
868 if (objfile_is_library)
869 error (_("Cannot find thread-local storage for %s, "
870 "shared library %s:\n%s"),
871 target_pid_to_str (ptid),
872 objfile_name (objfile), ex.message);
874 error (_("Cannot find thread-local storage for %s, "
875 "executable file %s:\n%s"),
876 target_pid_to_str (ptid),
877 objfile_name (objfile), ex.message);
880 throw_exception (ex);
885 /* It wouldn't be wrong here to try a gdbarch method, too; finding
886 TLS is an ABI-specific thing. But we don't do that yet. */
888 error (_("Cannot find thread-local variables on this target"));
894 target_xfer_status_to_string (enum target_xfer_status status)
896 #define CASE(X) case X: return #X
899 CASE(TARGET_XFER_E_IO);
900 CASE(TARGET_XFER_UNAVAILABLE);
909 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
911 /* target_read_string -- read a null terminated string, up to LEN bytes,
912 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
913 Set *STRING to a pointer to malloc'd memory containing the data; the caller
914 is responsible for freeing it. Return the number of bytes successfully
918 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
924 int buffer_allocated;
926 unsigned int nbytes_read = 0;
930 /* Small for testing. */
931 buffer_allocated = 4;
932 buffer = xmalloc (buffer_allocated);
937 tlen = MIN (len, 4 - (memaddr & 3));
938 offset = memaddr & 3;
940 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
943 /* The transfer request might have crossed the boundary to an
944 unallocated region of memory. Retry the transfer, requesting
948 errcode = target_read_memory (memaddr, buf, 1);
953 if (bufptr - buffer + tlen > buffer_allocated)
957 bytes = bufptr - buffer;
958 buffer_allocated *= 2;
959 buffer = xrealloc (buffer, buffer_allocated);
960 bufptr = buffer + bytes;
963 for (i = 0; i < tlen; i++)
965 *bufptr++ = buf[i + offset];
966 if (buf[i + offset] == '\000')
968 nbytes_read += i + 1;
984 struct target_section_table *
985 target_get_section_table (struct target_ops *target)
987 return (*target->to_get_section_table) (target);
990 /* Find a section containing ADDR. */
992 struct target_section *
993 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
995 struct target_section_table *table = target_get_section_table (target);
996 struct target_section *secp;
1001 for (secp = table->sections; secp < table->sections_end; secp++)
1003 if (addr >= secp->addr && addr < secp->endaddr)
1010 /* Helper for the memory xfer routines. Checks the attributes of the
1011 memory region of MEMADDR against the read or write being attempted.
1012 If the access is permitted returns true, otherwise returns false.
1013 REGION_P is an optional output parameter. If not-NULL, it is
1014 filled with a pointer to the memory region of MEMADDR. REG_LEN
1015 returns LEN trimmed to the end of the region. This is how much the
1016 caller can continue requesting, if the access is permitted. A
1017 single xfer request must not straddle memory region boundaries. */
1020 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1021 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1022 struct mem_region **region_p)
1024 struct mem_region *region;
1026 region = lookup_mem_region (memaddr);
1028 if (region_p != NULL)
1031 switch (region->attrib.mode)
1034 if (writebuf != NULL)
1039 if (readbuf != NULL)
1044 /* We only support writing to flash during "load" for now. */
1045 if (writebuf != NULL)
1046 error (_("Writing to flash memory forbidden in this context"));
1053 /* region->hi == 0 means there's no upper bound. */
1054 if (memaddr + len < region->hi || region->hi == 0)
1057 *reg_len = region->hi - memaddr;
1062 /* Read memory from more than one valid target. A core file, for
1063 instance, could have some of memory but delegate other bits to
1064 the target below it. So, we must manually try all targets. */
1066 static enum target_xfer_status
1067 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1068 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1069 ULONGEST *xfered_len)
1071 enum target_xfer_status res;
1075 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1076 readbuf, writebuf, memaddr, len,
1078 if (res == TARGET_XFER_OK)
1081 /* Stop if the target reports that the memory is not available. */
1082 if (res == TARGET_XFER_UNAVAILABLE)
1085 /* We want to continue past core files to executables, but not
1086 past a running target's memory. */
1087 if (ops->to_has_all_memory (ops))
1092 while (ops != NULL);
1094 /* The cache works at the raw memory level. Make sure the cache
1095 gets updated with raw contents no matter what kind of memory
1096 object was originally being written. Note we do write-through
1097 first, so that if it fails, we don't write to the cache contents
1098 that never made it to the target. */
1099 if (writebuf != NULL
1100 && !ptid_equal (inferior_ptid, null_ptid)
1101 && target_dcache_init_p ()
1102 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1104 DCACHE *dcache = target_dcache_get ();
1106 /* Note that writing to an area of memory which wasn't present
1107 in the cache doesn't cause it to be loaded in. */
1108 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1114 /* Perform a partial memory transfer.
1115 For docs see target.h, to_xfer_partial. */
1117 static enum target_xfer_status
1118 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1119 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1120 ULONGEST len, ULONGEST *xfered_len)
1122 enum target_xfer_status res;
1124 struct mem_region *region;
1125 struct inferior *inf;
1127 /* For accesses to unmapped overlay sections, read directly from
1128 files. Must do this first, as MEMADDR may need adjustment. */
1129 if (readbuf != NULL && overlay_debugging)
1131 struct obj_section *section = find_pc_overlay (memaddr);
1133 if (pc_in_unmapped_range (memaddr, section))
1135 struct target_section_table *table
1136 = target_get_section_table (ops);
1137 const char *section_name = section->the_bfd_section->name;
1139 memaddr = overlay_mapped_address (memaddr, section);
1140 return section_table_xfer_memory_partial (readbuf, writebuf,
1141 memaddr, len, xfered_len,
1143 table->sections_end,
1148 /* Try the executable files, if "trust-readonly-sections" is set. */
1149 if (readbuf != NULL && trust_readonly)
1151 struct target_section *secp;
1152 struct target_section_table *table;
1154 secp = target_section_by_addr (ops, memaddr);
1156 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1157 secp->the_bfd_section)
1160 table = target_get_section_table (ops);
1161 return section_table_xfer_memory_partial (readbuf, writebuf,
1162 memaddr, len, xfered_len,
1164 table->sections_end,
1169 /* Try GDB's internal data cache. */
1171 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1173 return TARGET_XFER_E_IO;
1175 if (!ptid_equal (inferior_ptid, null_ptid))
1176 inf = find_inferior_ptid (inferior_ptid);
1182 /* The dcache reads whole cache lines; that doesn't play well
1183 with reading from a trace buffer, because reading outside of
1184 the collected memory range fails. */
1185 && get_traceframe_number () == -1
1186 && (region->attrib.cache
1187 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1188 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1190 DCACHE *dcache = target_dcache_get_or_init ();
1192 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1193 reg_len, xfered_len);
1196 /* If none of those methods found the memory we wanted, fall back
1197 to a target partial transfer. Normally a single call to
1198 to_xfer_partial is enough; if it doesn't recognize an object
1199 it will call the to_xfer_partial of the next target down.
1200 But for memory this won't do. Memory is the only target
1201 object which can be read from more than one valid target.
1202 A core file, for instance, could have some of memory but
1203 delegate other bits to the target below it. So, we must
1204 manually try all targets. */
1206 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1209 /* If we still haven't got anything, return the last error. We
1214 /* Perform a partial memory transfer. For docs see target.h,
1217 static enum target_xfer_status
1218 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1219 gdb_byte *readbuf, const gdb_byte *writebuf,
1220 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1222 enum target_xfer_status res;
1224 /* Zero length requests are ok and require no work. */
1226 return TARGET_XFER_EOF;
1228 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1229 breakpoint insns, thus hiding out from higher layers whether
1230 there are software breakpoints inserted in the code stream. */
1231 if (readbuf != NULL)
1233 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1236 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1237 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1242 struct cleanup *old_chain;
1244 /* A large write request is likely to be partially satisfied
1245 by memory_xfer_partial_1. We will continually malloc
1246 and free a copy of the entire write request for breakpoint
1247 shadow handling even though we only end up writing a small
1248 subset of it. Cap writes to 4KB to mitigate this. */
1249 len = min (4096, len);
1251 buf = xmalloc (len);
1252 old_chain = make_cleanup (xfree, buf);
1253 memcpy (buf, writebuf, len);
1255 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1256 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1259 do_cleanups (old_chain);
1266 restore_show_memory_breakpoints (void *arg)
1268 show_memory_breakpoints = (uintptr_t) arg;
1272 make_show_memory_breakpoints_cleanup (int show)
1274 int current = show_memory_breakpoints;
1276 show_memory_breakpoints = show;
1277 return make_cleanup (restore_show_memory_breakpoints,
1278 (void *) (uintptr_t) current);
1281 /* For docs see target.h, to_xfer_partial. */
1283 enum target_xfer_status
1284 target_xfer_partial (struct target_ops *ops,
1285 enum target_object object, const char *annex,
1286 gdb_byte *readbuf, const gdb_byte *writebuf,
1287 ULONGEST offset, ULONGEST len,
1288 ULONGEST *xfered_len)
1290 enum target_xfer_status retval;
1292 gdb_assert (ops->to_xfer_partial != NULL);
1294 /* Transfer is done when LEN is zero. */
1296 return TARGET_XFER_EOF;
1298 if (writebuf && !may_write_memory)
1299 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1300 core_addr_to_string_nz (offset), plongest (len));
1304 /* If this is a memory transfer, let the memory-specific code
1305 have a look at it instead. Memory transfers are more
1307 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1308 || object == TARGET_OBJECT_CODE_MEMORY)
1309 retval = memory_xfer_partial (ops, object, readbuf,
1310 writebuf, offset, len, xfered_len);
1311 else if (object == TARGET_OBJECT_RAW_MEMORY)
1313 /* Skip/avoid accessing the target if the memory region
1314 attributes block the access. Check this here instead of in
1315 raw_memory_xfer_partial as otherwise we'd end up checking
1316 this twice in the case of the memory_xfer_partial path is
1317 taken; once before checking the dcache, and another in the
1318 tail call to raw_memory_xfer_partial. */
1319 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1321 return TARGET_XFER_E_IO;
1323 /* Request the normal memory object from other layers. */
1324 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1328 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1329 writebuf, offset, len, xfered_len);
1333 const unsigned char *myaddr = NULL;
1335 fprintf_unfiltered (gdb_stdlog,
1336 "%s:target_xfer_partial "
1337 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1340 (annex ? annex : "(null)"),
1341 host_address_to_string (readbuf),
1342 host_address_to_string (writebuf),
1343 core_addr_to_string_nz (offset),
1344 pulongest (len), retval,
1345 pulongest (*xfered_len));
1351 if (retval == TARGET_XFER_OK && myaddr != NULL)
1355 fputs_unfiltered (", bytes =", gdb_stdlog);
1356 for (i = 0; i < *xfered_len; i++)
1358 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1360 if (targetdebug < 2 && i > 0)
1362 fprintf_unfiltered (gdb_stdlog, " ...");
1365 fprintf_unfiltered (gdb_stdlog, "\n");
1368 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1372 fputc_unfiltered ('\n', gdb_stdlog);
1375 /* Check implementations of to_xfer_partial update *XFERED_LEN
1376 properly. Do assertion after printing debug messages, so that we
1377 can find more clues on assertion failure from debugging messages. */
1378 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1379 gdb_assert (*xfered_len > 0);
1384 /* Read LEN bytes of target memory at address MEMADDR, placing the
1385 results in GDB's memory at MYADDR. Returns either 0 for success or
1386 TARGET_XFER_E_IO if any error occurs.
1388 If an error occurs, no guarantee is made about the contents of the data at
1389 MYADDR. In particular, the caller should not depend upon partial reads
1390 filling the buffer with good data. There is no way for the caller to know
1391 how much good data might have been transfered anyway. Callers that can
1392 deal with partial reads should call target_read (which will retry until
1393 it makes no progress, and then return how much was transferred). */
1396 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1398 /* Dispatch to the topmost target, not the flattened current_target.
1399 Memory accesses check target->to_has_(all_)memory, and the
1400 flattened target doesn't inherit those. */
1401 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1402 myaddr, memaddr, len) == len)
1405 return TARGET_XFER_E_IO;
1408 /* See target/target.h. */
1411 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1416 r = target_read_memory (memaddr, buf, sizeof buf);
1419 *result = extract_unsigned_integer (buf, sizeof buf,
1420 gdbarch_byte_order (target_gdbarch ()));
1424 /* Like target_read_memory, but specify explicitly that this is a read
1425 from the target's raw memory. That is, this read bypasses the
1426 dcache, breakpoint shadowing, etc. */
1429 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1431 /* See comment in target_read_memory about why the request starts at
1432 current_target.beneath. */
1433 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1434 myaddr, memaddr, len) == len)
1437 return TARGET_XFER_E_IO;
1440 /* Like target_read_memory, but specify explicitly that this is a read from
1441 the target's stack. This may trigger different cache behavior. */
1444 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1446 /* See comment in target_read_memory about why the request starts at
1447 current_target.beneath. */
1448 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1449 myaddr, memaddr, len) == len)
1452 return TARGET_XFER_E_IO;
1455 /* Like target_read_memory, but specify explicitly that this is a read from
1456 the target's code. This may trigger different cache behavior. */
1459 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1461 /* See comment in target_read_memory about why the request starts at
1462 current_target.beneath. */
1463 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1464 myaddr, memaddr, len) == len)
1467 return TARGET_XFER_E_IO;
1470 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1471 Returns either 0 for success or TARGET_XFER_E_IO if any
1472 error occurs. If an error occurs, no guarantee is made about how
1473 much data got written. Callers that can deal with partial writes
1474 should call target_write. */
1477 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1479 /* See comment in target_read_memory about why the request starts at
1480 current_target.beneath. */
1481 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1482 myaddr, memaddr, len) == len)
1485 return TARGET_XFER_E_IO;
1488 /* Write LEN bytes from MYADDR to target raw memory at address
1489 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1490 if any error occurs. If an error occurs, no guarantee is made
1491 about how much data got written. Callers that can deal with
1492 partial writes should call target_write. */
1495 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1497 /* See comment in target_read_memory about why the request starts at
1498 current_target.beneath. */
1499 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1500 myaddr, memaddr, len) == len)
1503 return TARGET_XFER_E_IO;
1506 /* Fetch the target's memory map. */
1509 target_memory_map (void)
1511 VEC(mem_region_s) *result;
1512 struct mem_region *last_one, *this_one;
1514 struct target_ops *t;
1516 result = current_target.to_memory_map (¤t_target);
1520 qsort (VEC_address (mem_region_s, result),
1521 VEC_length (mem_region_s, result),
1522 sizeof (struct mem_region), mem_region_cmp);
1524 /* Check that regions do not overlap. Simultaneously assign
1525 a numbering for the "mem" commands to use to refer to
1528 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1530 this_one->number = ix;
1532 if (last_one && last_one->hi > this_one->lo)
1534 warning (_("Overlapping regions in memory map: ignoring"));
1535 VEC_free (mem_region_s, result);
1538 last_one = this_one;
1545 target_flash_erase (ULONGEST address, LONGEST length)
1547 current_target.to_flash_erase (¤t_target, address, length);
1551 target_flash_done (void)
1553 current_target.to_flash_done (¤t_target);
1557 show_trust_readonly (struct ui_file *file, int from_tty,
1558 struct cmd_list_element *c, const char *value)
1560 fprintf_filtered (file,
1561 _("Mode for reading from readonly sections is %s.\n"),
1565 /* Target vector read/write partial wrapper functions. */
1567 static enum target_xfer_status
1568 target_read_partial (struct target_ops *ops,
1569 enum target_object object,
1570 const char *annex, gdb_byte *buf,
1571 ULONGEST offset, ULONGEST len,
1572 ULONGEST *xfered_len)
1574 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1578 static enum target_xfer_status
1579 target_write_partial (struct target_ops *ops,
1580 enum target_object object,
1581 const char *annex, const gdb_byte *buf,
1582 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1584 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1588 /* Wrappers to perform the full transfer. */
1590 /* For docs on target_read see target.h. */
1593 target_read (struct target_ops *ops,
1594 enum target_object object,
1595 const char *annex, gdb_byte *buf,
1596 ULONGEST offset, LONGEST len)
1600 while (xfered < len)
1602 ULONGEST xfered_len;
1603 enum target_xfer_status status;
1605 status = target_read_partial (ops, object, annex,
1606 (gdb_byte *) buf + xfered,
1607 offset + xfered, len - xfered,
1610 /* Call an observer, notifying them of the xfer progress? */
1611 if (status == TARGET_XFER_EOF)
1613 else if (status == TARGET_XFER_OK)
1615 xfered += xfered_len;
1625 /* Assuming that the entire [begin, end) range of memory cannot be
1626 read, try to read whatever subrange is possible to read.
1628 The function returns, in RESULT, either zero or one memory block.
1629 If there's a readable subrange at the beginning, it is completely
1630 read and returned. Any further readable subrange will not be read.
1631 Otherwise, if there's a readable subrange at the end, it will be
1632 completely read and returned. Any readable subranges before it
1633 (obviously, not starting at the beginning), will be ignored. In
1634 other cases -- either no readable subrange, or readable subrange(s)
1635 that is neither at the beginning, or end, nothing is returned.
1637 The purpose of this function is to handle a read across a boundary
1638 of accessible memory in a case when memory map is not available.
1639 The above restrictions are fine for this case, but will give
1640 incorrect results if the memory is 'patchy'. However, supporting
1641 'patchy' memory would require trying to read every single byte,
1642 and it seems unacceptable solution. Explicit memory map is
1643 recommended for this case -- and target_read_memory_robust will
1644 take care of reading multiple ranges then. */
1647 read_whatever_is_readable (struct target_ops *ops,
1648 ULONGEST begin, ULONGEST end,
1649 VEC(memory_read_result_s) **result)
1651 gdb_byte *buf = xmalloc (end - begin);
1652 ULONGEST current_begin = begin;
1653 ULONGEST current_end = end;
1655 memory_read_result_s r;
1656 ULONGEST xfered_len;
1658 /* If we previously failed to read 1 byte, nothing can be done here. */
1659 if (end - begin <= 1)
1665 /* Check that either first or the last byte is readable, and give up
1666 if not. This heuristic is meant to permit reading accessible memory
1667 at the boundary of accessible region. */
1668 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1669 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1674 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1675 buf + (end-begin) - 1, end - 1, 1,
1676 &xfered_len) == TARGET_XFER_OK)
1687 /* Loop invariant is that the [current_begin, current_end) was previously
1688 found to be not readable as a whole.
1690 Note loop condition -- if the range has 1 byte, we can't divide the range
1691 so there's no point trying further. */
1692 while (current_end - current_begin > 1)
1694 ULONGEST first_half_begin, first_half_end;
1695 ULONGEST second_half_begin, second_half_end;
1697 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1701 first_half_begin = current_begin;
1702 first_half_end = middle;
1703 second_half_begin = middle;
1704 second_half_end = current_end;
1708 first_half_begin = middle;
1709 first_half_end = current_end;
1710 second_half_begin = current_begin;
1711 second_half_end = middle;
1714 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1715 buf + (first_half_begin - begin),
1717 first_half_end - first_half_begin);
1719 if (xfer == first_half_end - first_half_begin)
1721 /* This half reads up fine. So, the error must be in the
1723 current_begin = second_half_begin;
1724 current_end = second_half_end;
1728 /* This half is not readable. Because we've tried one byte, we
1729 know some part of this half if actually redable. Go to the next
1730 iteration to divide again and try to read.
1732 We don't handle the other half, because this function only tries
1733 to read a single readable subrange. */
1734 current_begin = first_half_begin;
1735 current_end = first_half_end;
1741 /* The [begin, current_begin) range has been read. */
1743 r.end = current_begin;
1748 /* The [current_end, end) range has been read. */
1749 LONGEST rlen = end - current_end;
1751 r.data = xmalloc (rlen);
1752 memcpy (r.data, buf + current_end - begin, rlen);
1753 r.begin = current_end;
1757 VEC_safe_push(memory_read_result_s, (*result), &r);
1761 free_memory_read_result_vector (void *x)
1763 VEC(memory_read_result_s) *v = x;
1764 memory_read_result_s *current;
1767 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1769 xfree (current->data);
1771 VEC_free (memory_read_result_s, v);
1774 VEC(memory_read_result_s) *
1775 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1777 VEC(memory_read_result_s) *result = 0;
1780 while (xfered < len)
1782 struct mem_region *region = lookup_mem_region (offset + xfered);
1785 /* If there is no explicit region, a fake one should be created. */
1786 gdb_assert (region);
1788 if (region->hi == 0)
1789 rlen = len - xfered;
1791 rlen = region->hi - offset;
1793 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1795 /* Cannot read this region. Note that we can end up here only
1796 if the region is explicitly marked inaccessible, or
1797 'inaccessible-by-default' is in effect. */
1802 LONGEST to_read = min (len - xfered, rlen);
1803 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1805 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1806 (gdb_byte *) buffer,
1807 offset + xfered, to_read);
1808 /* Call an observer, notifying them of the xfer progress? */
1811 /* Got an error reading full chunk. See if maybe we can read
1814 read_whatever_is_readable (ops, offset + xfered,
1815 offset + xfered + to_read, &result);
1820 struct memory_read_result r;
1822 r.begin = offset + xfered;
1823 r.end = r.begin + xfer;
1824 VEC_safe_push (memory_read_result_s, result, &r);
1834 /* An alternative to target_write with progress callbacks. */
1837 target_write_with_progress (struct target_ops *ops,
1838 enum target_object object,
1839 const char *annex, const gdb_byte *buf,
1840 ULONGEST offset, LONGEST len,
1841 void (*progress) (ULONGEST, void *), void *baton)
1845 /* Give the progress callback a chance to set up. */
1847 (*progress) (0, baton);
1849 while (xfered < len)
1851 ULONGEST xfered_len;
1852 enum target_xfer_status status;
1854 status = target_write_partial (ops, object, annex,
1855 (gdb_byte *) buf + xfered,
1856 offset + xfered, len - xfered,
1859 if (status != TARGET_XFER_OK)
1860 return status == TARGET_XFER_EOF ? xfered : -1;
1863 (*progress) (xfered_len, baton);
1865 xfered += xfered_len;
1871 /* For docs on target_write see target.h. */
1874 target_write (struct target_ops *ops,
1875 enum target_object object,
1876 const char *annex, const gdb_byte *buf,
1877 ULONGEST offset, LONGEST len)
1879 return target_write_with_progress (ops, object, annex, buf, offset, len,
1883 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1884 the size of the transferred data. PADDING additional bytes are
1885 available in *BUF_P. This is a helper function for
1886 target_read_alloc; see the declaration of that function for more
1890 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1891 const char *annex, gdb_byte **buf_p, int padding)
1893 size_t buf_alloc, buf_pos;
1896 /* This function does not have a length parameter; it reads the
1897 entire OBJECT). Also, it doesn't support objects fetched partly
1898 from one target and partly from another (in a different stratum,
1899 e.g. a core file and an executable). Both reasons make it
1900 unsuitable for reading memory. */
1901 gdb_assert (object != TARGET_OBJECT_MEMORY);
1903 /* Start by reading up to 4K at a time. The target will throttle
1904 this number down if necessary. */
1906 buf = xmalloc (buf_alloc);
1910 ULONGEST xfered_len;
1911 enum target_xfer_status status;
1913 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1914 buf_pos, buf_alloc - buf_pos - padding,
1917 if (status == TARGET_XFER_EOF)
1919 /* Read all there was. */
1926 else if (status != TARGET_XFER_OK)
1928 /* An error occurred. */
1930 return TARGET_XFER_E_IO;
1933 buf_pos += xfered_len;
1935 /* If the buffer is filling up, expand it. */
1936 if (buf_alloc < buf_pos * 2)
1939 buf = xrealloc (buf, buf_alloc);
1946 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1947 the size of the transferred data. See the declaration in "target.h"
1948 function for more information about the return value. */
1951 target_read_alloc (struct target_ops *ops, enum target_object object,
1952 const char *annex, gdb_byte **buf_p)
1954 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1957 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1958 returned as a string, allocated using xmalloc. If an error occurs
1959 or the transfer is unsupported, NULL is returned. Empty objects
1960 are returned as allocated but empty strings. A warning is issued
1961 if the result contains any embedded NUL bytes. */
1964 target_read_stralloc (struct target_ops *ops, enum target_object object,
1969 LONGEST i, transferred;
1971 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1972 bufstr = (char *) buffer;
1974 if (transferred < 0)
1977 if (transferred == 0)
1978 return xstrdup ("");
1980 bufstr[transferred] = 0;
1982 /* Check for embedded NUL bytes; but allow trailing NULs. */
1983 for (i = strlen (bufstr); i < transferred; i++)
1986 warning (_("target object %d, annex %s, "
1987 "contained unexpected null characters"),
1988 (int) object, annex ? annex : "(none)");
1995 /* Memory transfer methods. */
1998 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2001 /* This method is used to read from an alternate, non-current
2002 target. This read must bypass the overlay support (as symbols
2003 don't match this target), and GDB's internal cache (wrong cache
2004 for this target). */
2005 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2007 memory_error (TARGET_XFER_E_IO, addr);
2011 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2012 int len, enum bfd_endian byte_order)
2014 gdb_byte buf[sizeof (ULONGEST)];
2016 gdb_assert (len <= sizeof (buf));
2017 get_target_memory (ops, addr, buf, len);
2018 return extract_unsigned_integer (buf, len, byte_order);
2024 target_insert_breakpoint (struct gdbarch *gdbarch,
2025 struct bp_target_info *bp_tgt)
2027 if (!may_insert_breakpoints)
2029 warning (_("May not insert breakpoints"));
2033 return current_target.to_insert_breakpoint (¤t_target,
2040 target_remove_breakpoint (struct gdbarch *gdbarch,
2041 struct bp_target_info *bp_tgt)
2043 /* This is kind of a weird case to handle, but the permission might
2044 have been changed after breakpoints were inserted - in which case
2045 we should just take the user literally and assume that any
2046 breakpoints should be left in place. */
2047 if (!may_insert_breakpoints)
2049 warning (_("May not remove breakpoints"));
2053 return current_target.to_remove_breakpoint (¤t_target,
2058 target_info (char *args, int from_tty)
2060 struct target_ops *t;
2061 int has_all_mem = 0;
2063 if (symfile_objfile != NULL)
2064 printf_unfiltered (_("Symbols from \"%s\".\n"),
2065 objfile_name (symfile_objfile));
2067 for (t = target_stack; t != NULL; t = t->beneath)
2069 if (!(*t->to_has_memory) (t))
2072 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2075 printf_unfiltered (_("\tWhile running this, "
2076 "GDB does not access memory from...\n"));
2077 printf_unfiltered ("%s:\n", t->to_longname);
2078 (t->to_files_info) (t);
2079 has_all_mem = (*t->to_has_all_memory) (t);
2083 /* This function is called before any new inferior is created, e.g.
2084 by running a program, attaching, or connecting to a target.
2085 It cleans up any state from previous invocations which might
2086 change between runs. This is a subset of what target_preopen
2087 resets (things which might change between targets). */
2090 target_pre_inferior (int from_tty)
2092 /* Clear out solib state. Otherwise the solib state of the previous
2093 inferior might have survived and is entirely wrong for the new
2094 target. This has been observed on GNU/Linux using glibc 2.3. How
2106 Cannot access memory at address 0xdeadbeef
2109 /* In some OSs, the shared library list is the same/global/shared
2110 across inferiors. If code is shared between processes, so are
2111 memory regions and features. */
2112 if (!gdbarch_has_global_solist (target_gdbarch ()))
2114 no_shared_libraries (NULL, from_tty);
2116 invalidate_target_mem_regions ();
2118 target_clear_description ();
2121 agent_capability_invalidate ();
2124 /* Callback for iterate_over_inferiors. Gets rid of the given
2128 dispose_inferior (struct inferior *inf, void *args)
2130 struct thread_info *thread;
2132 thread = any_thread_of_process (inf->pid);
2135 switch_to_thread (thread->ptid);
2137 /* Core inferiors actually should be detached, not killed. */
2138 if (target_has_execution)
2141 target_detach (NULL, 0);
2147 /* This is to be called by the open routine before it does
2151 target_preopen (int from_tty)
2155 if (have_inferiors ())
2158 || !have_live_inferiors ()
2159 || query (_("A program is being debugged already. Kill it? ")))
2160 iterate_over_inferiors (dispose_inferior, NULL);
2162 error (_("Program not killed."));
2165 /* Calling target_kill may remove the target from the stack. But if
2166 it doesn't (which seems like a win for UDI), remove it now. */
2167 /* Leave the exec target, though. The user may be switching from a
2168 live process to a core of the same program. */
2169 pop_all_targets_above (file_stratum);
2171 target_pre_inferior (from_tty);
2174 /* Detach a target after doing deferred register stores. */
2177 target_detach (const char *args, int from_tty)
2179 struct target_ops* t;
2181 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2182 /* Don't remove global breakpoints here. They're removed on
2183 disconnection from the target. */
2186 /* If we're in breakpoints-always-inserted mode, have to remove
2187 them before detaching. */
2188 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2190 prepare_for_detach ();
2192 current_target.to_detach (¤t_target, args, from_tty);
2196 target_disconnect (const char *args, int from_tty)
2198 /* If we're in breakpoints-always-inserted mode or if breakpoints
2199 are global across processes, we have to remove them before
2201 remove_breakpoints ();
2203 current_target.to_disconnect (¤t_target, args, from_tty);
2207 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2209 return (current_target.to_wait) (¤t_target, ptid, status, options);
2213 target_pid_to_str (ptid_t ptid)
2215 return (*current_target.to_pid_to_str) (¤t_target, ptid);
2219 target_thread_name (struct thread_info *info)
2221 return current_target.to_thread_name (¤t_target, info);
2225 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2227 struct target_ops *t;
2229 target_dcache_invalidate ();
2231 current_target.to_resume (¤t_target, ptid, step, signal);
2233 registers_changed_ptid (ptid);
2234 /* We only set the internal executing state here. The user/frontend
2235 running state is set at a higher level. */
2236 set_executing (ptid, 1);
2237 clear_inline_frame_state (ptid);
2241 target_pass_signals (int numsigs, unsigned char *pass_signals)
2243 (*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals);
2247 target_program_signals (int numsigs, unsigned char *program_signals)
2249 (*current_target.to_program_signals) (¤t_target,
2250 numsigs, program_signals);
2254 default_follow_fork (struct target_ops *self, int follow_child,
2257 /* Some target returned a fork event, but did not know how to follow it. */
2258 internal_error (__FILE__, __LINE__,
2259 _("could not find a target to follow fork"));
2262 /* Look through the list of possible targets for a target that can
2266 target_follow_fork (int follow_child, int detach_fork)
2268 return current_target.to_follow_fork (¤t_target,
2269 follow_child, detach_fork);
2273 default_mourn_inferior (struct target_ops *self)
2275 internal_error (__FILE__, __LINE__,
2276 _("could not find a target to follow mourn inferior"));
2280 target_mourn_inferior (void)
2282 current_target.to_mourn_inferior (¤t_target);
2284 /* We no longer need to keep handles on any of the object files.
2285 Make sure to release them to avoid unnecessarily locking any
2286 of them while we're not actually debugging. */
2287 bfd_cache_close_all ();
2290 /* Look for a target which can describe architectural features, starting
2291 from TARGET. If we find one, return its description. */
2293 const struct target_desc *
2294 target_read_description (struct target_ops *target)
2296 return target->to_read_description (target);
2299 /* This implements a basic search of memory, reading target memory and
2300 performing the search here (as opposed to performing the search in on the
2301 target side with, for example, gdbserver). */
2304 simple_search_memory (struct target_ops *ops,
2305 CORE_ADDR start_addr, ULONGEST search_space_len,
2306 const gdb_byte *pattern, ULONGEST pattern_len,
2307 CORE_ADDR *found_addrp)
2309 /* NOTE: also defined in find.c testcase. */
2310 #define SEARCH_CHUNK_SIZE 16000
2311 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2312 /* Buffer to hold memory contents for searching. */
2313 gdb_byte *search_buf;
2314 unsigned search_buf_size;
2315 struct cleanup *old_cleanups;
2317 search_buf_size = chunk_size + pattern_len - 1;
2319 /* No point in trying to allocate a buffer larger than the search space. */
2320 if (search_space_len < search_buf_size)
2321 search_buf_size = search_space_len;
2323 search_buf = malloc (search_buf_size);
2324 if (search_buf == NULL)
2325 error (_("Unable to allocate memory to perform the search."));
2326 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2328 /* Prime the search buffer. */
2330 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2331 search_buf, start_addr, search_buf_size) != search_buf_size)
2333 warning (_("Unable to access %s bytes of target "
2334 "memory at %s, halting search."),
2335 pulongest (search_buf_size), hex_string (start_addr));
2336 do_cleanups (old_cleanups);
2340 /* Perform the search.
2342 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2343 When we've scanned N bytes we copy the trailing bytes to the start and
2344 read in another N bytes. */
2346 while (search_space_len >= pattern_len)
2348 gdb_byte *found_ptr;
2349 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2351 found_ptr = memmem (search_buf, nr_search_bytes,
2352 pattern, pattern_len);
2354 if (found_ptr != NULL)
2356 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2358 *found_addrp = found_addr;
2359 do_cleanups (old_cleanups);
2363 /* Not found in this chunk, skip to next chunk. */
2365 /* Don't let search_space_len wrap here, it's unsigned. */
2366 if (search_space_len >= chunk_size)
2367 search_space_len -= chunk_size;
2369 search_space_len = 0;
2371 if (search_space_len >= pattern_len)
2373 unsigned keep_len = search_buf_size - chunk_size;
2374 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2377 /* Copy the trailing part of the previous iteration to the front
2378 of the buffer for the next iteration. */
2379 gdb_assert (keep_len == pattern_len - 1);
2380 memcpy (search_buf, search_buf + chunk_size, keep_len);
2382 nr_to_read = min (search_space_len - keep_len, chunk_size);
2384 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2385 search_buf + keep_len, read_addr,
2386 nr_to_read) != nr_to_read)
2388 warning (_("Unable to access %s bytes of target "
2389 "memory at %s, halting search."),
2390 plongest (nr_to_read),
2391 hex_string (read_addr));
2392 do_cleanups (old_cleanups);
2396 start_addr += chunk_size;
2402 do_cleanups (old_cleanups);
2406 /* Default implementation of memory-searching. */
2409 default_search_memory (struct target_ops *self,
2410 CORE_ADDR start_addr, ULONGEST search_space_len,
2411 const gdb_byte *pattern, ULONGEST pattern_len,
2412 CORE_ADDR *found_addrp)
2414 /* Start over from the top of the target stack. */
2415 return simple_search_memory (current_target.beneath,
2416 start_addr, search_space_len,
2417 pattern, pattern_len, found_addrp);
2420 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2421 sequence of bytes in PATTERN with length PATTERN_LEN.
2423 The result is 1 if found, 0 if not found, and -1 if there was an error
2424 requiring halting of the search (e.g. memory read error).
2425 If the pattern is found the address is recorded in FOUND_ADDRP. */
2428 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2429 const gdb_byte *pattern, ULONGEST pattern_len,
2430 CORE_ADDR *found_addrp)
2432 return current_target.to_search_memory (¤t_target, start_addr,
2434 pattern, pattern_len, found_addrp);
2437 /* Look through the currently pushed targets. If none of them will
2438 be able to restart the currently running process, issue an error
2442 target_require_runnable (void)
2444 struct target_ops *t;
2446 for (t = target_stack; t != NULL; t = t->beneath)
2448 /* If this target knows how to create a new program, then
2449 assume we will still be able to after killing the current
2450 one. Either killing and mourning will not pop T, or else
2451 find_default_run_target will find it again. */
2452 if (t->to_create_inferior != NULL)
2455 /* Do not worry about targets at certain strata that can not
2456 create inferiors. Assume they will be pushed again if
2457 necessary, and continue to the process_stratum. */
2458 if (t->to_stratum == thread_stratum
2459 || t->to_stratum == record_stratum
2460 || t->to_stratum == arch_stratum)
2463 error (_("The \"%s\" target does not support \"run\". "
2464 "Try \"help target\" or \"continue\"."),
2468 /* This function is only called if the target is running. In that
2469 case there should have been a process_stratum target and it
2470 should either know how to create inferiors, or not... */
2471 internal_error (__FILE__, __LINE__, _("No targets found"));
2474 /* Whether GDB is allowed to fall back to the default run target for
2475 "run", "attach", etc. when no target is connected yet. */
2476 static int auto_connect_native_target = 1;
2479 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2480 struct cmd_list_element *c, const char *value)
2482 fprintf_filtered (file,
2483 _("Whether GDB may automatically connect to the "
2484 "native target is %s.\n"),
2488 /* Look through the list of possible targets for a target that can
2489 execute a run or attach command without any other data. This is
2490 used to locate the default process stratum.
2492 If DO_MESG is not NULL, the result is always valid (error() is
2493 called for errors); else, return NULL on error. */
2495 static struct target_ops *
2496 find_default_run_target (char *do_mesg)
2498 struct target_ops *runable = NULL;
2500 if (auto_connect_native_target)
2502 struct target_ops *t;
2506 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2508 if (t->to_can_run != delegate_can_run && target_can_run (t))
2519 if (runable == NULL)
2522 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2533 find_attach_target (void)
2535 struct target_ops *t;
2537 /* If a target on the current stack can attach, use it. */
2538 for (t = current_target.beneath; t != NULL; t = t->beneath)
2540 if (t->to_attach != NULL)
2544 /* Otherwise, use the default run target for attaching. */
2546 t = find_default_run_target ("attach");
2554 find_run_target (void)
2556 struct target_ops *t;
2558 /* If a target on the current stack can attach, use it. */
2559 for (t = current_target.beneath; t != NULL; t = t->beneath)
2561 if (t->to_create_inferior != NULL)
2565 /* Otherwise, use the default run target. */
2567 t = find_default_run_target ("run");
2572 /* Implement the "info proc" command. */
2575 target_info_proc (const char *args, enum info_proc_what what)
2577 struct target_ops *t;
2579 /* If we're already connected to something that can get us OS
2580 related data, use it. Otherwise, try using the native
2582 if (current_target.to_stratum >= process_stratum)
2583 t = current_target.beneath;
2585 t = find_default_run_target (NULL);
2587 for (; t != NULL; t = t->beneath)
2589 if (t->to_info_proc != NULL)
2591 t->to_info_proc (t, args, what);
2594 fprintf_unfiltered (gdb_stdlog,
2595 "target_info_proc (\"%s\", %d)\n", args, what);
2605 find_default_supports_disable_randomization (struct target_ops *self)
2607 struct target_ops *t;
2609 t = find_default_run_target (NULL);
2610 if (t && t->to_supports_disable_randomization)
2611 return (t->to_supports_disable_randomization) (t);
2616 target_supports_disable_randomization (void)
2618 struct target_ops *t;
2620 for (t = ¤t_target; t != NULL; t = t->beneath)
2621 if (t->to_supports_disable_randomization)
2622 return t->to_supports_disable_randomization (t);
2628 target_get_osdata (const char *type)
2630 struct target_ops *t;
2632 /* If we're already connected to something that can get us OS
2633 related data, use it. Otherwise, try using the native
2635 if (current_target.to_stratum >= process_stratum)
2636 t = current_target.beneath;
2638 t = find_default_run_target ("get OS data");
2643 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2646 static struct address_space *
2647 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2649 struct inferior *inf;
2651 /* Fall-back to the "main" address space of the inferior. */
2652 inf = find_inferior_ptid (ptid);
2654 if (inf == NULL || inf->aspace == NULL)
2655 internal_error (__FILE__, __LINE__,
2656 _("Can't determine the current "
2657 "address space of thread %s\n"),
2658 target_pid_to_str (ptid));
2663 /* Determine the current address space of thread PTID. */
2665 struct address_space *
2666 target_thread_address_space (ptid_t ptid)
2668 struct address_space *aspace;
2670 aspace = current_target.to_thread_address_space (¤t_target, ptid);
2671 gdb_assert (aspace != NULL);
2677 /* Target file operations. */
2679 static struct target_ops *
2680 default_fileio_target (void)
2682 /* If we're already connected to something that can perform
2683 file I/O, use it. Otherwise, try using the native target. */
2684 if (current_target.to_stratum >= process_stratum)
2685 return current_target.beneath;
2687 return find_default_run_target ("file I/O");
2690 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2691 target file descriptor, or -1 if an error occurs (and set
2694 target_fileio_open (const char *filename, int flags, int mode,
2697 struct target_ops *t;
2699 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2701 if (t->to_fileio_open != NULL)
2703 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2706 fprintf_unfiltered (gdb_stdlog,
2707 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2708 filename, flags, mode,
2709 fd, fd != -1 ? 0 : *target_errno);
2714 *target_errno = FILEIO_ENOSYS;
2718 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2719 Return the number of bytes written, or -1 if an error occurs
2720 (and set *TARGET_ERRNO). */
2722 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2723 ULONGEST offset, int *target_errno)
2725 struct target_ops *t;
2727 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2729 if (t->to_fileio_pwrite != NULL)
2731 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2735 fprintf_unfiltered (gdb_stdlog,
2736 "target_fileio_pwrite (%d,...,%d,%s) "
2738 fd, len, pulongest (offset),
2739 ret, ret != -1 ? 0 : *target_errno);
2744 *target_errno = FILEIO_ENOSYS;
2748 /* Read up to LEN bytes FD on the target into READ_BUF.
2749 Return the number of bytes read, or -1 if an error occurs
2750 (and set *TARGET_ERRNO). */
2752 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2753 ULONGEST offset, int *target_errno)
2755 struct target_ops *t;
2757 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2759 if (t->to_fileio_pread != NULL)
2761 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2765 fprintf_unfiltered (gdb_stdlog,
2766 "target_fileio_pread (%d,...,%d,%s) "
2768 fd, len, pulongest (offset),
2769 ret, ret != -1 ? 0 : *target_errno);
2774 *target_errno = FILEIO_ENOSYS;
2778 /* Close FD on the target. Return 0, or -1 if an error occurs
2779 (and set *TARGET_ERRNO). */
2781 target_fileio_close (int fd, int *target_errno)
2783 struct target_ops *t;
2785 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2787 if (t->to_fileio_close != NULL)
2789 int ret = t->to_fileio_close (t, fd, target_errno);
2792 fprintf_unfiltered (gdb_stdlog,
2793 "target_fileio_close (%d) = %d (%d)\n",
2794 fd, ret, ret != -1 ? 0 : *target_errno);
2799 *target_errno = FILEIO_ENOSYS;
2803 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2804 occurs (and set *TARGET_ERRNO). */
2806 target_fileio_unlink (const char *filename, int *target_errno)
2808 struct target_ops *t;
2810 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2812 if (t->to_fileio_unlink != NULL)
2814 int ret = t->to_fileio_unlink (t, filename, target_errno);
2817 fprintf_unfiltered (gdb_stdlog,
2818 "target_fileio_unlink (%s) = %d (%d)\n",
2819 filename, ret, ret != -1 ? 0 : *target_errno);
2824 *target_errno = FILEIO_ENOSYS;
2828 /* Read value of symbolic link FILENAME on the target. Return a
2829 null-terminated string allocated via xmalloc, or NULL if an error
2830 occurs (and set *TARGET_ERRNO). */
2832 target_fileio_readlink (const char *filename, int *target_errno)
2834 struct target_ops *t;
2836 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2838 if (t->to_fileio_readlink != NULL)
2840 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2843 fprintf_unfiltered (gdb_stdlog,
2844 "target_fileio_readlink (%s) = %s (%d)\n",
2845 filename, ret? ret : "(nil)",
2846 ret? 0 : *target_errno);
2851 *target_errno = FILEIO_ENOSYS;
2856 target_fileio_close_cleanup (void *opaque)
2858 int fd = *(int *) opaque;
2861 target_fileio_close (fd, &target_errno);
2864 /* Read target file FILENAME. Store the result in *BUF_P and
2865 return the size of the transferred data. PADDING additional bytes are
2866 available in *BUF_P. This is a helper function for
2867 target_fileio_read_alloc; see the declaration of that function for more
2871 target_fileio_read_alloc_1 (const char *filename,
2872 gdb_byte **buf_p, int padding)
2874 struct cleanup *close_cleanup;
2875 size_t buf_alloc, buf_pos;
2881 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2885 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2887 /* Start by reading up to 4K at a time. The target will throttle
2888 this number down if necessary. */
2890 buf = xmalloc (buf_alloc);
2894 n = target_fileio_pread (fd, &buf[buf_pos],
2895 buf_alloc - buf_pos - padding, buf_pos,
2899 /* An error occurred. */
2900 do_cleanups (close_cleanup);
2906 /* Read all there was. */
2907 do_cleanups (close_cleanup);
2917 /* If the buffer is filling up, expand it. */
2918 if (buf_alloc < buf_pos * 2)
2921 buf = xrealloc (buf, buf_alloc);
2928 /* Read target file FILENAME. Store the result in *BUF_P and return
2929 the size of the transferred data. See the declaration in "target.h"
2930 function for more information about the return value. */
2933 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2935 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2938 /* Read target file FILENAME. The result is NUL-terminated and
2939 returned as a string, allocated using xmalloc. If an error occurs
2940 or the transfer is unsupported, NULL is returned. Empty objects
2941 are returned as allocated but empty strings. A warning is issued
2942 if the result contains any embedded NUL bytes. */
2945 target_fileio_read_stralloc (const char *filename)
2949 LONGEST i, transferred;
2951 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2952 bufstr = (char *) buffer;
2954 if (transferred < 0)
2957 if (transferred == 0)
2958 return xstrdup ("");
2960 bufstr[transferred] = 0;
2962 /* Check for embedded NUL bytes; but allow trailing NULs. */
2963 for (i = strlen (bufstr); i < transferred; i++)
2966 warning (_("target file %s "
2967 "contained unexpected null characters"),
2977 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2978 CORE_ADDR addr, int len)
2980 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2984 default_watchpoint_addr_within_range (struct target_ops *target,
2986 CORE_ADDR start, int length)
2988 return addr >= start && addr < start + length;
2991 static struct gdbarch *
2992 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2994 return target_gdbarch ();
2998 return_zero (struct target_ops *ignore)
3004 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3010 * Find the next target down the stack from the specified target.
3014 find_target_beneath (struct target_ops *t)
3022 find_target_at (enum strata stratum)
3024 struct target_ops *t;
3026 for (t = current_target.beneath; t != NULL; t = t->beneath)
3027 if (t->to_stratum == stratum)
3034 /* The inferior process has died. Long live the inferior! */
3037 generic_mourn_inferior (void)
3041 ptid = inferior_ptid;
3042 inferior_ptid = null_ptid;
3044 /* Mark breakpoints uninserted in case something tries to delete a
3045 breakpoint while we delete the inferior's threads (which would
3046 fail, since the inferior is long gone). */
3047 mark_breakpoints_out ();
3049 if (!ptid_equal (ptid, null_ptid))
3051 int pid = ptid_get_pid (ptid);
3052 exit_inferior (pid);
3055 /* Note this wipes step-resume breakpoints, so needs to be done
3056 after exit_inferior, which ends up referencing the step-resume
3057 breakpoints through clear_thread_inferior_resources. */
3058 breakpoint_init_inferior (inf_exited);
3060 registers_changed ();
3062 reopen_exec_file ();
3063 reinit_frame_cache ();
3065 if (deprecated_detach_hook)
3066 deprecated_detach_hook ();
3069 /* Convert a normal process ID to a string. Returns the string in a
3073 normal_pid_to_str (ptid_t ptid)
3075 static char buf[32];
3077 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3082 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3084 return normal_pid_to_str (ptid);
3087 /* Error-catcher for target_find_memory_regions. */
3089 dummy_find_memory_regions (struct target_ops *self,
3090 find_memory_region_ftype ignore1, void *ignore2)
3092 error (_("Command not implemented for this target."));
3096 /* Error-catcher for target_make_corefile_notes. */
3098 dummy_make_corefile_notes (struct target_ops *self,
3099 bfd *ignore1, int *ignore2)
3101 error (_("Command not implemented for this target."));
3105 /* Set up the handful of non-empty slots needed by the dummy target
3109 init_dummy_target (void)
3111 dummy_target.to_shortname = "None";
3112 dummy_target.to_longname = "None";
3113 dummy_target.to_doc = "";
3114 dummy_target.to_supports_disable_randomization
3115 = find_default_supports_disable_randomization;
3116 dummy_target.to_stratum = dummy_stratum;
3117 dummy_target.to_has_all_memory = return_zero;
3118 dummy_target.to_has_memory = return_zero;
3119 dummy_target.to_has_stack = return_zero;
3120 dummy_target.to_has_registers = return_zero;
3121 dummy_target.to_has_execution = return_zero_has_execution;
3122 dummy_target.to_magic = OPS_MAGIC;
3124 install_dummy_methods (&dummy_target);
3129 target_close (struct target_ops *targ)
3131 gdb_assert (!target_is_pushed (targ));
3133 if (targ->to_xclose != NULL)
3134 targ->to_xclose (targ);
3135 else if (targ->to_close != NULL)
3136 targ->to_close (targ);
3139 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3143 target_thread_alive (ptid_t ptid)
3145 return current_target.to_thread_alive (¤t_target, ptid);
3149 target_update_thread_list (void)
3151 current_target.to_update_thread_list (¤t_target);
3155 target_stop (ptid_t ptid)
3159 warning (_("May not interrupt or stop the target, ignoring attempt"));
3163 (*current_target.to_stop) (¤t_target, ptid);
3166 /* See target/target.h. */
3169 target_stop_and_wait (ptid_t ptid)
3171 struct target_waitstatus status;
3172 int was_non_stop = non_stop;
3177 memset (&status, 0, sizeof (status));
3178 target_wait (ptid, &status, 0);
3180 non_stop = was_non_stop;
3183 /* See target/target.h. */
3186 target_continue_no_signal (ptid_t ptid)
3188 target_resume (ptid, 0, GDB_SIGNAL_0);
3191 /* Concatenate ELEM to LIST, a comma separate list, and return the
3192 result. The LIST incoming argument is released. */
3195 str_comma_list_concat_elem (char *list, const char *elem)
3198 return xstrdup (elem);
3200 return reconcat (list, list, ", ", elem, (char *) NULL);
3203 /* Helper for target_options_to_string. If OPT is present in
3204 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3205 Returns the new resulting string. OPT is removed from
3209 do_option (int *target_options, char *ret,
3210 int opt, char *opt_str)
3212 if ((*target_options & opt) != 0)
3214 ret = str_comma_list_concat_elem (ret, opt_str);
3215 *target_options &= ~opt;
3222 target_options_to_string (int target_options)
3226 #define DO_TARG_OPTION(OPT) \
3227 ret = do_option (&target_options, ret, OPT, #OPT)
3229 DO_TARG_OPTION (TARGET_WNOHANG);
3231 if (target_options != 0)
3232 ret = str_comma_list_concat_elem (ret, "unknown???");
3240 debug_print_register (const char * func,
3241 struct regcache *regcache, int regno)
3243 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3245 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3246 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3247 && gdbarch_register_name (gdbarch, regno) != NULL
3248 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3249 fprintf_unfiltered (gdb_stdlog, "(%s)",
3250 gdbarch_register_name (gdbarch, regno));
3252 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3253 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3256 int i, size = register_size (gdbarch, regno);
3257 gdb_byte buf[MAX_REGISTER_SIZE];
3259 regcache_raw_collect (regcache, regno, buf);
3260 fprintf_unfiltered (gdb_stdlog, " = ");
3261 for (i = 0; i < size; i++)
3263 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3265 if (size <= sizeof (LONGEST))
3267 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3269 fprintf_unfiltered (gdb_stdlog, " %s %s",
3270 core_addr_to_string_nz (val), plongest (val));
3273 fprintf_unfiltered (gdb_stdlog, "\n");
3277 target_fetch_registers (struct regcache *regcache, int regno)
3279 current_target.to_fetch_registers (¤t_target, regcache, regno);
3281 debug_print_register ("target_fetch_registers", regcache, regno);
3285 target_store_registers (struct regcache *regcache, int regno)
3287 struct target_ops *t;
3289 if (!may_write_registers)
3290 error (_("Writing to registers is not allowed (regno %d)"), regno);
3292 current_target.to_store_registers (¤t_target, regcache, regno);
3295 debug_print_register ("target_store_registers", regcache, regno);
3300 target_core_of_thread (ptid_t ptid)
3302 return current_target.to_core_of_thread (¤t_target, ptid);
3306 simple_verify_memory (struct target_ops *ops,
3307 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3309 LONGEST total_xfered = 0;
3311 while (total_xfered < size)
3313 ULONGEST xfered_len;
3314 enum target_xfer_status status;
3316 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3318 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3319 buf, NULL, lma + total_xfered, howmuch,
3321 if (status == TARGET_XFER_OK
3322 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3324 total_xfered += xfered_len;
3333 /* Default implementation of memory verification. */
3336 default_verify_memory (struct target_ops *self,
3337 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3339 /* Start over from the top of the target stack. */
3340 return simple_verify_memory (current_target.beneath,
3341 data, memaddr, size);
3345 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3347 return current_target.to_verify_memory (¤t_target,
3348 data, memaddr, size);
3351 /* The documentation for this function is in its prototype declaration in
3355 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3357 return current_target.to_insert_mask_watchpoint (¤t_target,
3361 /* The documentation for this function is in its prototype declaration in
3365 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3367 return current_target.to_remove_mask_watchpoint (¤t_target,
3371 /* The documentation for this function is in its prototype declaration
3375 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3377 return current_target.to_masked_watch_num_registers (¤t_target,
3381 /* The documentation for this function is in its prototype declaration
3385 target_ranged_break_num_registers (void)
3387 return current_target.to_ranged_break_num_registers (¤t_target);
3393 target_supports_btrace (enum btrace_format format)
3395 return current_target.to_supports_btrace (¤t_target, format);
3400 struct btrace_target_info *
3401 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3403 return current_target.to_enable_btrace (¤t_target, ptid, conf);
3409 target_disable_btrace (struct btrace_target_info *btinfo)
3411 current_target.to_disable_btrace (¤t_target, btinfo);
3417 target_teardown_btrace (struct btrace_target_info *btinfo)
3419 current_target.to_teardown_btrace (¤t_target, btinfo);
3425 target_read_btrace (struct btrace_data *btrace,
3426 struct btrace_target_info *btinfo,
3427 enum btrace_read_type type)
3429 return current_target.to_read_btrace (¤t_target, btrace, btinfo, type);
3434 const struct btrace_config *
3435 target_btrace_conf (const struct btrace_target_info *btinfo)
3437 return current_target.to_btrace_conf (¤t_target, btinfo);
3443 target_stop_recording (void)
3445 current_target.to_stop_recording (¤t_target);
3451 target_save_record (const char *filename)
3453 current_target.to_save_record (¤t_target, filename);
3459 target_supports_delete_record (void)
3461 struct target_ops *t;
3463 for (t = current_target.beneath; t != NULL; t = t->beneath)
3464 if (t->to_delete_record != delegate_delete_record
3465 && t->to_delete_record != tdefault_delete_record)
3474 target_delete_record (void)
3476 current_target.to_delete_record (¤t_target);
3482 target_record_is_replaying (void)
3484 return current_target.to_record_is_replaying (¤t_target);
3490 target_goto_record_begin (void)
3492 current_target.to_goto_record_begin (¤t_target);
3498 target_goto_record_end (void)
3500 current_target.to_goto_record_end (¤t_target);
3506 target_goto_record (ULONGEST insn)
3508 current_target.to_goto_record (¤t_target, insn);
3514 target_insn_history (int size, int flags)
3516 current_target.to_insn_history (¤t_target, size, flags);
3522 target_insn_history_from (ULONGEST from, int size, int flags)
3524 current_target.to_insn_history_from (¤t_target, from, size, flags);
3530 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3532 current_target.to_insn_history_range (¤t_target, begin, end, flags);
3538 target_call_history (int size, int flags)
3540 current_target.to_call_history (¤t_target, size, flags);
3546 target_call_history_from (ULONGEST begin, int size, int flags)
3548 current_target.to_call_history_from (¤t_target, begin, size, flags);
3554 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3556 current_target.to_call_history_range (¤t_target, begin, end, flags);
3561 const struct frame_unwind *
3562 target_get_unwinder (void)
3564 return current_target.to_get_unwinder (¤t_target);
3569 const struct frame_unwind *
3570 target_get_tailcall_unwinder (void)
3572 return current_target.to_get_tailcall_unwinder (¤t_target);
3575 /* Default implementation of to_decr_pc_after_break. */
3578 default_target_decr_pc_after_break (struct target_ops *ops,
3579 struct gdbarch *gdbarch)
3581 return gdbarch_decr_pc_after_break (gdbarch);
3587 target_decr_pc_after_break (struct gdbarch *gdbarch)
3589 return current_target.to_decr_pc_after_break (¤t_target, gdbarch);
3595 target_prepare_to_generate_core (void)
3597 current_target.to_prepare_to_generate_core (¤t_target);
3603 target_done_generating_core (void)
3605 current_target.to_done_generating_core (¤t_target);
3609 setup_target_debug (void)
3611 memcpy (&debug_target, ¤t_target, sizeof debug_target);
3613 init_debug_target (¤t_target);
3617 static char targ_desc[] =
3618 "Names of targets and files being debugged.\nShows the entire \
3619 stack of targets currently in use (including the exec-file,\n\
3620 core-file, and process, if any), as well as the symbol file name.";
3623 default_rcmd (struct target_ops *self, const char *command,
3624 struct ui_file *output)
3626 error (_("\"monitor\" command not supported by this target."));
3630 do_monitor_command (char *cmd,
3633 target_rcmd (cmd, gdb_stdtarg);
3636 /* Print the name of each layers of our target stack. */
3639 maintenance_print_target_stack (char *cmd, int from_tty)
3641 struct target_ops *t;
3643 printf_filtered (_("The current target stack is:\n"));
3645 for (t = target_stack; t != NULL; t = t->beneath)
3647 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3651 /* Controls if targets can report that they can/are async. This is
3652 just for maintainers to use when debugging gdb. */
3653 int target_async_permitted = 1;
3655 /* The set command writes to this variable. If the inferior is
3656 executing, target_async_permitted is *not* updated. */
3657 static int target_async_permitted_1 = 1;
3660 maint_set_target_async_command (char *args, int from_tty,
3661 struct cmd_list_element *c)
3663 if (have_live_inferiors ())
3665 target_async_permitted_1 = target_async_permitted;
3666 error (_("Cannot change this setting while the inferior is running."));
3669 target_async_permitted = target_async_permitted_1;
3673 maint_show_target_async_command (struct ui_file *file, int from_tty,
3674 struct cmd_list_element *c,
3677 fprintf_filtered (file,
3678 _("Controlling the inferior in "
3679 "asynchronous mode is %s.\n"), value);
3682 /* Temporary copies of permission settings. */
3684 static int may_write_registers_1 = 1;
3685 static int may_write_memory_1 = 1;
3686 static int may_insert_breakpoints_1 = 1;
3687 static int may_insert_tracepoints_1 = 1;
3688 static int may_insert_fast_tracepoints_1 = 1;
3689 static int may_stop_1 = 1;
3691 /* Make the user-set values match the real values again. */
3694 update_target_permissions (void)
3696 may_write_registers_1 = may_write_registers;
3697 may_write_memory_1 = may_write_memory;
3698 may_insert_breakpoints_1 = may_insert_breakpoints;
3699 may_insert_tracepoints_1 = may_insert_tracepoints;
3700 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3701 may_stop_1 = may_stop;
3704 /* The one function handles (most of) the permission flags in the same
3708 set_target_permissions (char *args, int from_tty,
3709 struct cmd_list_element *c)
3711 if (target_has_execution)
3713 update_target_permissions ();
3714 error (_("Cannot change this setting while the inferior is running."));
3717 /* Make the real values match the user-changed values. */
3718 may_write_registers = may_write_registers_1;
3719 may_insert_breakpoints = may_insert_breakpoints_1;
3720 may_insert_tracepoints = may_insert_tracepoints_1;
3721 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3722 may_stop = may_stop_1;
3723 update_observer_mode ();
3726 /* Set memory write permission independently of observer mode. */
3729 set_write_memory_permission (char *args, int from_tty,
3730 struct cmd_list_element *c)
3732 /* Make the real values match the user-changed values. */
3733 may_write_memory = may_write_memory_1;
3734 update_observer_mode ();
3739 initialize_targets (void)
3741 init_dummy_target ();
3742 push_target (&dummy_target);
3744 add_info ("target", target_info, targ_desc);
3745 add_info ("files", target_info, targ_desc);
3747 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3748 Set target debugging."), _("\
3749 Show target debugging."), _("\
3750 When non-zero, target debugging is enabled. Higher numbers are more\n\
3754 &setdebuglist, &showdebuglist);
3756 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3757 &trust_readonly, _("\
3758 Set mode for reading from readonly sections."), _("\
3759 Show mode for reading from readonly sections."), _("\
3760 When this mode is on, memory reads from readonly sections (such as .text)\n\
3761 will be read from the object file instead of from the target. This will\n\
3762 result in significant performance improvement for remote targets."),
3764 show_trust_readonly,
3765 &setlist, &showlist);
3767 add_com ("monitor", class_obscure, do_monitor_command,
3768 _("Send a command to the remote monitor (remote targets only)."));
3770 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3771 _("Print the name of each layer of the internal target stack."),
3772 &maintenanceprintlist);
3774 add_setshow_boolean_cmd ("target-async", no_class,
3775 &target_async_permitted_1, _("\
3776 Set whether gdb controls the inferior in asynchronous mode."), _("\
3777 Show whether gdb controls the inferior in asynchronous mode."), _("\
3778 Tells gdb whether to control the inferior in asynchronous mode."),
3779 maint_set_target_async_command,
3780 maint_show_target_async_command,
3781 &maintenance_set_cmdlist,
3782 &maintenance_show_cmdlist);
3784 add_setshow_boolean_cmd ("may-write-registers", class_support,
3785 &may_write_registers_1, _("\
3786 Set permission to write into registers."), _("\
3787 Show permission to write into registers."), _("\
3788 When this permission is on, GDB may write into the target's registers.\n\
3789 Otherwise, any sort of write attempt will result in an error."),
3790 set_target_permissions, NULL,
3791 &setlist, &showlist);
3793 add_setshow_boolean_cmd ("may-write-memory", class_support,
3794 &may_write_memory_1, _("\
3795 Set permission to write into target memory."), _("\
3796 Show permission to write into target memory."), _("\
3797 When this permission is on, GDB may write into the target's memory.\n\
3798 Otherwise, any sort of write attempt will result in an error."),
3799 set_write_memory_permission, NULL,
3800 &setlist, &showlist);
3802 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3803 &may_insert_breakpoints_1, _("\
3804 Set permission to insert breakpoints in the target."), _("\
3805 Show permission to insert breakpoints in the target."), _("\
3806 When this permission is on, GDB may insert breakpoints in the program.\n\
3807 Otherwise, any sort of insertion attempt will result in an error."),
3808 set_target_permissions, NULL,
3809 &setlist, &showlist);
3811 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3812 &may_insert_tracepoints_1, _("\
3813 Set permission to insert tracepoints in the target."), _("\
3814 Show permission to insert tracepoints in the target."), _("\
3815 When this permission is on, GDB may insert tracepoints in the program.\n\
3816 Otherwise, any sort of insertion attempt will result in an error."),
3817 set_target_permissions, NULL,
3818 &setlist, &showlist);
3820 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3821 &may_insert_fast_tracepoints_1, _("\
3822 Set permission to insert fast tracepoints in the target."), _("\
3823 Show permission to insert fast tracepoints in the target."), _("\
3824 When this permission is on, GDB may insert fast tracepoints.\n\
3825 Otherwise, any sort of insertion attempt will result in an error."),
3826 set_target_permissions, NULL,
3827 &setlist, &showlist);
3829 add_setshow_boolean_cmd ("may-interrupt", class_support,
3831 Set permission to interrupt or signal the target."), _("\
3832 Show permission to interrupt or signal the target."), _("\
3833 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3834 Otherwise, any attempt to interrupt or stop will be ignored."),
3835 set_target_permissions, NULL,
3836 &setlist, &showlist);
3838 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3839 &auto_connect_native_target, _("\
3840 Set whether GDB may automatically connect to the native target."), _("\
3841 Show whether GDB may automatically connect to the native target."), _("\
3842 When on, and GDB is not connected to a target yet, GDB\n\
3843 attempts \"run\" and other commands with the native target."),
3844 NULL, show_auto_connect_native_target,
3845 &setlist, &showlist);