1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_; }
193 // Return the instruction sequence type of this.
196 { return this->type_; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_; }
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
275 arm_stub_type_last = arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type, const Insn_template*, size_t);
294 { return this->type_; }
296 // Return an array of instruction templates.
299 { return this->insns_; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_; }
306 // Return size of template in bytes.
309 { return this->size_; }
311 // Return alignment of the stub template.
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian>
451 do_fixed_endian_write(unsigned char*, section_size_type);
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
576 // Functors for STL associative containers.
580 operator()(const Key& k) const
581 { return k.hash_value(); }
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol* symbol;
610 const Relobj* relobj;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
634 return this->destination_address_;
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
755 // Return the associated register.
758 { return this->reg_; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
785 // A template to implement do_write.
786 template<bool big_endian>
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory&
815 static Stub_factory singleton;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
882 { return this->owner_; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
981 // Write out section contents.
983 do_write(Output_file*);
985 // Return the required alignment.
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_; }
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1064 this->do_fixed_endian_write<false>(of);
1067 // Write to a map file.
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1076 do_fixed_endian_write(Output_file*);
1078 // The object containing the section pointed by this.
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1107 // Build output contents.
1109 build_contents(const unsigned char*, section_size_type);
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1122 // Write merged section into file OF.
1124 do_write(Output_file* of);
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
1141 // A class to wrap an ordinary input section containing executable code.
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_; }
1160 // Whether this is a stub table owner.
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1168 { return this->stub_table_; }
1170 // Set the stub_table.
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1181 // Return the original size of the section.
1183 original_size() const
1184 { return this->original_size_; }
1187 // Write data to output file.
1189 do_write(Output_file*);
1191 // Return required alignment of this.
1193 do_addralign() const
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_));
1199 return this->original_addralign_;
1202 // Finalize data size.
1204 set_final_data_size();
1206 // Reset address and file offset.
1208 do_reset_address_and_file_offset();
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
1214 section_offset_type* poutput) const
1216 if ((object == this->relobj())
1217 && (shndx == this->shndx())
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_;
1236 // Section size of the original input section.
1237 uint32_t original_size_;
1239 Stub_table<big_endian>* stub_table_;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1243 unsigned char* original_contents_;
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1249 class Arm_exidx_fixup
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
1261 { delete this->section_offset_map_; }
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian>
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
1274 Arm_exidx_section_offset_map** psection_offset_map);
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1279 add_exidx_cantunwind_as_needed();
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1292 // Type of EXIDX unwind entry.
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1308 process_exidx_entry(uint32_t second_word);
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section* last_input_section_;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
1329 // Output section for the text section which is linked to the first exidx
1331 Output_section* first_output_text_section_;
1333 bool merge_exidx_entries_;
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1357 ~Arm_output_section()
1360 // Group input sections for stub generation.
1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1370 // Append all input text sections in this into LIST.
1372 append_text_sections_to_list(Text_section_list* list);
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
1380 Symbol_table* symtab,
1381 bool merge_exidx_entries,
1384 // Link an EXIDX section into its corresponding text section.
1386 set_exidx_section_link();
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
1398 std::vector<Output_relaxed_input_section*>*,
1402 // Arm_exidx_input_section class. This represents an EXIDX input section.
1404 class Arm_exidx_input_section
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
1417 ~Arm_exidx_input_section()
1420 // Accessors: This is a read-only class.
1422 // Return the object containing this EXIDX input section.
1425 { return this->relobj_; }
1427 // Return the section index of this EXIDX input section.
1430 { return this->shndx_; }
1432 // Return the section index of linked text section in the same object.
1435 { return this->link_; }
1437 // Return size of the EXIDX input section.
1440 { return this->size_; }
1442 // Return address alignment of EXIDX input section.
1445 { return this->addralign_; }
1447 // Return size of the associated text input section.
1450 { return this->text_size_; }
1452 // Whether there are any errors in the EXIDX input section.
1455 { return this->has_errors_; }
1457 // Set has-errors flag.
1460 { this->has_errors_ = true; }
1463 // Object containing this.
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1469 // Size of this. For ARM 32-bit is sufficient.
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
1473 // Size of associated text section.
1474 uint32_t text_size_;
1475 // Whether this has any errors.
1479 // Arm_relobj class.
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490 stub_tables_(), local_symbol_is_thumb_function_(),
1491 attributes_section_data_(NULL), mapping_symbols_info_(),
1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
1498 { delete this->attributes_section_data_; }
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
1502 stub_table(unsigned int shndx) const
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1525 // Scan all relocation sections for stub generation.
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1530 // Convert regular input section with index SHNDX to a relaxed section.
1532 convert_input_section_to_relaxed_section(unsigned shndx)
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
1536 this->set_section_offset(shndx, -1ULL);
1537 this->set_relocs_must_follow_section_writes();
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1546 // Processor-specific flags in ELF file header. This is valid only after
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1552 // Attribute section data This is the contents of the .ARM.attribute section
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1578 // Whether a section contains any Cortex-A8 workaround.
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1586 // Mark a section that has Cortex-A8 workaround.
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1619 // Whether output local symbol count needs updating.
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1624 // Set output_local_symbol_count_needs_update flag to be true.
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1629 // Update output local symbol count at the end of relaxation.
1631 update_output_local_symbol_count();
1633 // Whether we want to merge processor-specific flags and attributes.
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1638 // Export list of EXIDX section indices.
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1655 // Post constructor setup.
1659 // Call parent's setup method.
1660 Sized_relobj_file<32, big_endian>::do_setup();
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1667 // Count the local symbols.
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1678 // Read the symbol information.
1680 do_read_symbols(Read_symbols_data* sd);
1682 // Process relocs for garbage collection.
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1688 // Whether a section needs to be scanned for relocation stubs.
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
1692 const Symbol_table*, const unsigned char*);
1694 // Whether a section is a scannable text section.
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697 const Output_section*, const Symbol_table*);
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
1703 const Symbol_table*);
1705 // Scan a section for the Cortex-A8 erratum.
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1711 // Find the linked text section of an EXIDX section by looking at the
1712 // first relocation of the EXIDX section. PSHDR points to the section
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1721 // Make a new Arm_exidx_input_section object for EXIDX section with
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
1725 make_exidx_input_section(unsigned int shndx,
1726 const elfcpp::Shdr<32, big_endian>& shdr,
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1733 simple_input_section_output_address(unsigned int, Output_section*);
1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1739 // List of stub tables.
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
1756 // Whether we merge processor flags and attributes of this object to
1758 bool merge_flags_and_attributes_;
1761 // Arm_dynobj class.
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
1774 { delete this->attributes_section_data_; }
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1782 // Processor-specific flags in ELF file header. This is valid only after
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1794 // Read the symbol information.
1796 do_read_symbols(Read_symbols_data* sd);
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
1805 // Functor to read reloc addends during stub generation.
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
1818 32, big_endian>::Reloc& /* reloc */) const;
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1826 elfcpp::Elf_types<32>::Elf_Swxword
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader. This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1841 elfcpp::Elf_types<32>::Elf_Swxword
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
1850 // Cortex_a8_reloc class. We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1853 class Cortex_a8_reloc
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1864 // Accessors: This is a read-only class.
1866 // Return the relocation stub associated with this relocation if there is
1870 { return this->reloc_stub_; }
1872 // Return the relocation type.
1875 { return this->r_type_; }
1877 // Return the destination address of the relocation. LSB stores the THUMB
1881 { return this->destination_; }
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1890 Arm_address destination_;
1893 // Arm_output_data_got class. We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj_file<32, big_endian>* relobj,
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
1934 Sized_relobj_file<32, big_endian>* object,
1935 unsigned int index);
1938 // Write out the GOT table.
1940 do_write(Output_file*);
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1960 // Return the GOT offset.
1963 { return this->got_offset_; }
1968 { return this->r_type_; }
1970 // Whether the symbol is global or not.
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1975 // For a relocation against a global symbol, the global symbol.
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1983 // For a relocation against a local symbol, the defining object.
1984 Sized_relobj_file<32, big_endian>*
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1991 // For a relocation against a local symbol, the local symbol index.
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2011 // For a global symbol, the symbol itself.
2016 // For a local symbol, the object defining object.
2017 Sized_relobj_file<32, big_endian>* relobj;
2018 // For a local symbol, the symbol index.
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits. The default handling of relocatable relocation cannot process these
2034 // relocations. So we have to extend the default code.
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2078 // Relocations that write full 32 bits and
2079 // have alignment of 1.
2080 case elfcpp::R_ARM_ABS32:
2081 case elfcpp::R_ARM_REL32:
2082 case elfcpp::R_ARM_SBREL32:
2083 case elfcpp::R_ARM_GOTOFF32:
2084 case elfcpp::R_ARM_BASE_PREL:
2085 case elfcpp::R_ARM_GOT_BREL:
2086 case elfcpp::R_ARM_BASE_ABS:
2087 case elfcpp::R_ARM_ABS32_NOI:
2088 case elfcpp::R_ARM_REL32_NOI:
2089 case elfcpp::R_ARM_PLT32_ABS:
2090 case elfcpp::R_ARM_GOT_ABS:
2091 case elfcpp::R_ARM_GOT_PREL:
2092 case elfcpp::R_ARM_TLS_GD32:
2093 case elfcpp::R_ARM_TLS_LDM32:
2094 case elfcpp::R_ARM_TLS_LDO32:
2095 case elfcpp::R_ARM_TLS_IE32:
2096 case elfcpp::R_ARM_TLS_LE32:
2097 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2099 // For all other static relocations, return RELOC_SPECIAL.
2100 return Relocatable_relocs::RELOC_SPECIAL;
2106 // Utilities for manipulating integers of up to 32-bits
2110 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2111 // an int32_t. NO_BITS must be between 1 to 32.
2112 template<int no_bits>
2113 static inline int32_t
2114 sign_extend(uint32_t bits)
2116 gold_assert(no_bits >= 0 && no_bits <= 32);
2118 return static_cast<int32_t>(bits);
2119 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2121 uint32_t top_bit = 1U << (no_bits - 1);
2122 int32_t as_signed = static_cast<int32_t>(bits);
2123 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2126 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2127 template<int no_bits>
2129 has_overflow(uint32_t bits)
2131 gold_assert(no_bits >= 0 && no_bits <= 32);
2134 int32_t max = (1 << (no_bits - 1)) - 1;
2135 int32_t min = -(1 << (no_bits - 1));
2136 int32_t as_signed = static_cast<int32_t>(bits);
2137 return as_signed > max || as_signed < min;
2140 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2141 // fits in the given number of bits as either a signed or unsigned value.
2142 // For example, has_signed_unsigned_overflow<8> would check
2143 // -128 <= bits <= 255
2144 template<int no_bits>
2146 has_signed_unsigned_overflow(uint32_t bits)
2148 gold_assert(no_bits >= 2 && no_bits <= 32);
2151 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2152 int32_t min = -(1 << (no_bits - 1));
2153 int32_t as_signed = static_cast<int32_t>(bits);
2154 return as_signed > max || as_signed < min;
2157 // Select bits from A and B using bits in MASK. For each n in [0..31],
2158 // the n-th bit in the result is chosen from the n-th bits of A and B.
2159 // A zero selects A and a one selects B.
2160 static inline uint32_t
2161 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2162 { return (a & ~mask) | (b & mask); }
2165 template<bool big_endian>
2166 class Target_arm : public Sized_target<32, big_endian>
2169 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2172 // When were are relocating a stub, we pass this as the relocation number.
2173 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2176 : Sized_target<32, big_endian>(&arm_info),
2177 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2178 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2179 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2180 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2181 should_force_pic_veneer_(false),
2182 arm_input_section_map_(), attributes_section_data_(NULL),
2183 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2186 // Whether we force PCI branch veneers.
2188 should_force_pic_veneer() const
2189 { return this->should_force_pic_veneer_; }
2191 // Set PIC veneer flag.
2193 set_should_force_pic_veneer(bool value)
2194 { this->should_force_pic_veneer_ = value; }
2196 // Whether we use THUMB-2 instructions.
2198 using_thumb2() const
2200 Object_attribute* attr =
2201 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2202 int arch = attr->int_value();
2203 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2206 // Whether we use THUMB/THUMB-2 instructions only.
2208 using_thumb_only() const
2210 Object_attribute* attr =
2211 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2213 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2214 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2216 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2217 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2219 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2220 return attr->int_value() == 'M';
2223 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2225 may_use_arm_nop() const
2227 Object_attribute* attr =
2228 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2229 int arch = attr->int_value();
2230 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2231 || arch == elfcpp::TAG_CPU_ARCH_V6K
2232 || arch == elfcpp::TAG_CPU_ARCH_V7
2233 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2236 // Whether we have THUMB-2 NOP.W instruction.
2238 may_use_thumb2_nop() const
2240 Object_attribute* attr =
2241 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2242 int arch = attr->int_value();
2243 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2244 || arch == elfcpp::TAG_CPU_ARCH_V7
2245 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2248 // Whether we have v4T interworking instructions available.
2250 may_use_v4t_interworking() const
2252 Object_attribute* attr =
2253 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2254 int arch = attr->int_value();
2255 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2256 && arch != elfcpp::TAG_CPU_ARCH_V4);
2259 // Whether we have v5T interworking instructions available.
2261 may_use_v5t_interworking() const
2263 Object_attribute* attr =
2264 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2265 int arch = attr->int_value();
2266 if (parameters->options().fix_arm1176())
2267 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2268 || arch == elfcpp::TAG_CPU_ARCH_V7
2269 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2270 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2271 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2273 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2274 && arch != elfcpp::TAG_CPU_ARCH_V4
2275 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2278 // Process the relocations to determine unreferenced sections for
2279 // garbage collection.
2281 gc_process_relocs(Symbol_table* symtab,
2283 Sized_relobj_file<32, big_endian>* object,
2284 unsigned int data_shndx,
2285 unsigned int sh_type,
2286 const unsigned char* prelocs,
2288 Output_section* output_section,
2289 bool needs_special_offset_handling,
2290 size_t local_symbol_count,
2291 const unsigned char* plocal_symbols);
2293 // Scan the relocations to look for symbol adjustments.
2295 scan_relocs(Symbol_table* symtab,
2297 Sized_relobj_file<32, big_endian>* object,
2298 unsigned int data_shndx,
2299 unsigned int sh_type,
2300 const unsigned char* prelocs,
2302 Output_section* output_section,
2303 bool needs_special_offset_handling,
2304 size_t local_symbol_count,
2305 const unsigned char* plocal_symbols);
2307 // Finalize the sections.
2309 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2311 // Return the value to use for a dynamic symbol which requires special
2314 do_dynsym_value(const Symbol*) const;
2316 // Relocate a section.
2318 relocate_section(const Relocate_info<32, big_endian>*,
2319 unsigned int sh_type,
2320 const unsigned char* prelocs,
2322 Output_section* output_section,
2323 bool needs_special_offset_handling,
2324 unsigned char* view,
2325 Arm_address view_address,
2326 section_size_type view_size,
2327 const Reloc_symbol_changes*);
2329 // Scan the relocs during a relocatable link.
2331 scan_relocatable_relocs(Symbol_table* symtab,
2333 Sized_relobj_file<32, big_endian>* object,
2334 unsigned int data_shndx,
2335 unsigned int sh_type,
2336 const unsigned char* prelocs,
2338 Output_section* output_section,
2339 bool needs_special_offset_handling,
2340 size_t local_symbol_count,
2341 const unsigned char* plocal_symbols,
2342 Relocatable_relocs*);
2344 // Relocate a section during a relocatable link.
2346 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2347 unsigned int sh_type,
2348 const unsigned char* prelocs,
2350 Output_section* output_section,
2351 off_t offset_in_output_section,
2352 const Relocatable_relocs*,
2353 unsigned char* view,
2354 Arm_address view_address,
2355 section_size_type view_size,
2356 unsigned char* reloc_view,
2357 section_size_type reloc_view_size);
2359 // Perform target-specific processing in a relocatable link. This is
2360 // only used if we use the relocation strategy RELOC_SPECIAL.
2362 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2363 unsigned int sh_type,
2364 const unsigned char* preloc_in,
2366 Output_section* output_section,
2367 off_t offset_in_output_section,
2368 unsigned char* view,
2369 typename elfcpp::Elf_types<32>::Elf_Addr
2371 section_size_type view_size,
2372 unsigned char* preloc_out);
2374 // Return whether SYM is defined by the ABI.
2376 do_is_defined_by_abi(Symbol* sym) const
2377 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2379 // Return whether there is a GOT section.
2381 has_got_section() const
2382 { return this->got_ != NULL; }
2384 // Return the size of the GOT section.
2388 gold_assert(this->got_ != NULL);
2389 return this->got_->data_size();
2392 // Return the number of entries in the GOT.
2394 got_entry_count() const
2396 if (!this->has_got_section())
2398 return this->got_size() / 4;
2401 // Return the number of entries in the PLT.
2403 plt_entry_count() const;
2405 // Return the offset of the first non-reserved PLT entry.
2407 first_plt_entry_offset() const;
2409 // Return the size of each PLT entry.
2411 plt_entry_size() const;
2413 // Map platform-specific reloc types
2415 get_real_reloc_type(unsigned int r_type);
2418 // Methods to support stub-generations.
2421 // Return the stub factory
2423 stub_factory() const
2424 { return this->stub_factory_; }
2426 // Make a new Arm_input_section object.
2427 Arm_input_section<big_endian>*
2428 new_arm_input_section(Relobj*, unsigned int);
2430 // Find the Arm_input_section object corresponding to the SHNDX-th input
2431 // section of RELOBJ.
2432 Arm_input_section<big_endian>*
2433 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2435 // Make a new Stub_table
2436 Stub_table<big_endian>*
2437 new_stub_table(Arm_input_section<big_endian>*);
2439 // Scan a section for stub generation.
2441 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2442 const unsigned char*, size_t, Output_section*,
2443 bool, const unsigned char*, Arm_address,
2448 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2449 Output_section*, unsigned char*, Arm_address,
2452 // Get the default ARM target.
2453 static Target_arm<big_endian>*
2456 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2457 && parameters->target().is_big_endian() == big_endian);
2458 return static_cast<Target_arm<big_endian>*>(
2459 parameters->sized_target<32, big_endian>());
2462 // Whether NAME belongs to a mapping symbol.
2464 is_mapping_symbol_name(const char* name)
2468 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2469 && (name[2] == '\0' || name[2] == '.'));
2472 // Whether we work around the Cortex-A8 erratum.
2474 fix_cortex_a8() const
2475 { return this->fix_cortex_a8_; }
2477 // Whether we merge exidx entries in debuginfo.
2479 merge_exidx_entries() const
2480 { return parameters->options().merge_exidx_entries(); }
2482 // Whether we fix R_ARM_V4BX relocation.
2484 // 1 - replace with MOV instruction (armv4 target)
2485 // 2 - make interworking veneer (>= armv4t targets only)
2486 General_options::Fix_v4bx
2488 { return parameters->options().fix_v4bx(); }
2490 // Scan a span of THUMB code section for Cortex-A8 erratum.
2492 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2493 section_size_type, section_size_type,
2494 const unsigned char*, Arm_address);
2496 // Apply Cortex-A8 workaround to a branch.
2498 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2499 unsigned char*, Arm_address);
2502 // Make an ELF object.
2504 do_make_elf_object(const std::string&, Input_file*, off_t,
2505 const elfcpp::Ehdr<32, big_endian>& ehdr);
2508 do_make_elf_object(const std::string&, Input_file*, off_t,
2509 const elfcpp::Ehdr<32, !big_endian>&)
2510 { gold_unreachable(); }
2513 do_make_elf_object(const std::string&, Input_file*, off_t,
2514 const elfcpp::Ehdr<64, false>&)
2515 { gold_unreachable(); }
2518 do_make_elf_object(const std::string&, Input_file*, off_t,
2519 const elfcpp::Ehdr<64, true>&)
2520 { gold_unreachable(); }
2522 // Make an output section.
2524 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2525 elfcpp::Elf_Xword flags)
2526 { return new Arm_output_section<big_endian>(name, type, flags); }
2529 do_adjust_elf_header(unsigned char* view, int len) const;
2531 // We only need to generate stubs, and hence perform relaxation if we are
2532 // not doing relocatable linking.
2534 do_may_relax() const
2535 { return !parameters->options().relocatable(); }
2538 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2540 // Determine whether an object attribute tag takes an integer, a
2543 do_attribute_arg_type(int tag) const;
2545 // Reorder tags during output.
2547 do_attributes_order(int num) const;
2549 // This is called when the target is selected as the default.
2551 do_select_as_default_target()
2553 // No locking is required since there should only be one default target.
2554 // We cannot have both the big-endian and little-endian ARM targets
2556 gold_assert(arm_reloc_property_table == NULL);
2557 arm_reloc_property_table = new Arm_reloc_property_table();
2560 // Virtual function which is set to return true by a target if
2561 // it can use relocation types to determine if a function's
2562 // pointer is taken.
2564 do_can_check_for_function_pointers() const
2567 // Whether a section called SECTION_NAME may have function pointers to
2568 // sections not eligible for safe ICF folding.
2570 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2572 return (!is_prefix_of(".ARM.exidx", section_name)
2573 && !is_prefix_of(".ARM.extab", section_name)
2574 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2578 // The class which scans relocations.
2583 : issued_non_pic_error_(false)
2587 get_reference_flags(unsigned int r_type);
2590 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2591 Sized_relobj_file<32, big_endian>* object,
2592 unsigned int data_shndx,
2593 Output_section* output_section,
2594 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2595 const elfcpp::Sym<32, big_endian>& lsym);
2598 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2599 Sized_relobj_file<32, big_endian>* object,
2600 unsigned int data_shndx,
2601 Output_section* output_section,
2602 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2606 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2607 Sized_relobj_file<32, big_endian>* ,
2610 const elfcpp::Rel<32, big_endian>& ,
2612 const elfcpp::Sym<32, big_endian>&);
2615 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2616 Sized_relobj_file<32, big_endian>* ,
2619 const elfcpp::Rel<32, big_endian>& ,
2620 unsigned int , Symbol*);
2624 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2625 unsigned int r_type);
2628 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2629 unsigned int r_type, Symbol*);
2632 check_non_pic(Relobj*, unsigned int r_type);
2634 // Almost identical to Symbol::needs_plt_entry except that it also
2635 // handles STT_ARM_TFUNC.
2637 symbol_needs_plt_entry(const Symbol* sym)
2639 // An undefined symbol from an executable does not need a PLT entry.
2640 if (sym->is_undefined() && !parameters->options().shared())
2643 return (!parameters->doing_static_link()
2644 && (sym->type() == elfcpp::STT_FUNC
2645 || sym->type() == elfcpp::STT_ARM_TFUNC)
2646 && (sym->is_from_dynobj()
2647 || sym->is_undefined()
2648 || sym->is_preemptible()));
2652 possible_function_pointer_reloc(unsigned int r_type);
2654 // Whether we have issued an error about a non-PIC compilation.
2655 bool issued_non_pic_error_;
2658 // The class which implements relocation.
2668 // Return whether the static relocation needs to be applied.
2670 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2671 unsigned int r_type,
2673 Output_section* output_section);
2675 // Do a relocation. Return false if the caller should not issue
2676 // any warnings about this relocation.
2678 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2679 Output_section*, size_t relnum,
2680 const elfcpp::Rel<32, big_endian>&,
2681 unsigned int r_type, const Sized_symbol<32>*,
2682 const Symbol_value<32>*,
2683 unsigned char*, Arm_address,
2686 // Return whether we want to pass flag NON_PIC_REF for this
2687 // reloc. This means the relocation type accesses a symbol not via
2690 reloc_is_non_pic(unsigned int r_type)
2694 // These relocation types reference GOT or PLT entries explicitly.
2695 case elfcpp::R_ARM_GOT_BREL:
2696 case elfcpp::R_ARM_GOT_ABS:
2697 case elfcpp::R_ARM_GOT_PREL:
2698 case elfcpp::R_ARM_GOT_BREL12:
2699 case elfcpp::R_ARM_PLT32_ABS:
2700 case elfcpp::R_ARM_TLS_GD32:
2701 case elfcpp::R_ARM_TLS_LDM32:
2702 case elfcpp::R_ARM_TLS_IE32:
2703 case elfcpp::R_ARM_TLS_IE12GP:
2705 // These relocate types may use PLT entries.
2706 case elfcpp::R_ARM_CALL:
2707 case elfcpp::R_ARM_THM_CALL:
2708 case elfcpp::R_ARM_JUMP24:
2709 case elfcpp::R_ARM_THM_JUMP24:
2710 case elfcpp::R_ARM_THM_JUMP19:
2711 case elfcpp::R_ARM_PLT32:
2712 case elfcpp::R_ARM_THM_XPC22:
2713 case elfcpp::R_ARM_PREL31:
2714 case elfcpp::R_ARM_SBREL31:
2723 // Do a TLS relocation.
2724 inline typename Arm_relocate_functions<big_endian>::Status
2725 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2726 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2727 const Sized_symbol<32>*, const Symbol_value<32>*,
2728 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2733 // A class which returns the size required for a relocation type,
2734 // used while scanning relocs during a relocatable link.
2735 class Relocatable_size_for_reloc
2739 get_size_for_reloc(unsigned int, Relobj*);
2742 // Adjust TLS relocation type based on the options and whether this
2743 // is a local symbol.
2744 static tls::Tls_optimization
2745 optimize_tls_reloc(bool is_final, int r_type);
2747 // Get the GOT section, creating it if necessary.
2748 Arm_output_data_got<big_endian>*
2749 got_section(Symbol_table*, Layout*);
2751 // Get the GOT PLT section.
2753 got_plt_section() const
2755 gold_assert(this->got_plt_ != NULL);
2756 return this->got_plt_;
2759 // Create a PLT entry for a global symbol.
2761 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2763 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2765 define_tls_base_symbol(Symbol_table*, Layout*);
2767 // Create a GOT entry for the TLS module index.
2769 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2770 Sized_relobj_file<32, big_endian>* object);
2772 // Get the PLT section.
2773 const Output_data_plt_arm<big_endian>*
2776 gold_assert(this->plt_ != NULL);
2780 // Get the dynamic reloc section, creating it if necessary.
2782 rel_dyn_section(Layout*);
2784 // Get the section to use for TLS_DESC relocations.
2786 rel_tls_desc_section(Layout*) const;
2788 // Return true if the symbol may need a COPY relocation.
2789 // References from an executable object to non-function symbols
2790 // defined in a dynamic object may need a COPY relocation.
2792 may_need_copy_reloc(Symbol* gsym)
2794 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2795 && gsym->may_need_copy_reloc());
2798 // Add a potential copy relocation.
2800 copy_reloc(Symbol_table* symtab, Layout* layout,
2801 Sized_relobj_file<32, big_endian>* object,
2802 unsigned int shndx, Output_section* output_section,
2803 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2805 this->copy_relocs_.copy_reloc(symtab, layout,
2806 symtab->get_sized_symbol<32>(sym),
2807 object, shndx, output_section, reloc,
2808 this->rel_dyn_section(layout));
2811 // Whether two EABI versions are compatible.
2813 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2815 // Merge processor-specific flags from input object and those in the ELF
2816 // header of the output.
2818 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2820 // Get the secondary compatible architecture.
2822 get_secondary_compatible_arch(const Attributes_section_data*);
2824 // Set the secondary compatible architecture.
2826 set_secondary_compatible_arch(Attributes_section_data*, int);
2829 tag_cpu_arch_combine(const char*, int, int*, int, int);
2831 // Helper to print AEABI enum tag value.
2833 aeabi_enum_name(unsigned int);
2835 // Return string value for TAG_CPU_name.
2837 tag_cpu_name_value(unsigned int);
2839 // Merge object attributes from input object and those in the output.
2841 merge_object_attributes(const char*, const Attributes_section_data*);
2843 // Helper to get an AEABI object attribute
2845 get_aeabi_object_attribute(int tag) const
2847 Attributes_section_data* pasd = this->attributes_section_data_;
2848 gold_assert(pasd != NULL);
2849 Object_attribute* attr =
2850 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2851 gold_assert(attr != NULL);
2856 // Methods to support stub-generations.
2859 // Group input sections for stub generation.
2861 group_sections(Layout*, section_size_type, bool, const Task*);
2863 // Scan a relocation for stub generation.
2865 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2866 const Sized_symbol<32>*, unsigned int,
2867 const Symbol_value<32>*,
2868 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2870 // Scan a relocation section for stub.
2871 template<int sh_type>
2873 scan_reloc_section_for_stubs(
2874 const Relocate_info<32, big_endian>* relinfo,
2875 const unsigned char* prelocs,
2877 Output_section* output_section,
2878 bool needs_special_offset_handling,
2879 const unsigned char* view,
2880 elfcpp::Elf_types<32>::Elf_Addr view_address,
2883 // Fix .ARM.exidx section coverage.
2885 fix_exidx_coverage(Layout*, const Input_objects*,
2886 Arm_output_section<big_endian>*, Symbol_table*,
2889 // Functors for STL set.
2890 struct output_section_address_less_than
2893 operator()(const Output_section* s1, const Output_section* s2) const
2894 { return s1->address() < s2->address(); }
2897 // Information about this specific target which we pass to the
2898 // general Target structure.
2899 static const Target::Target_info arm_info;
2901 // The types of GOT entries needed for this platform.
2902 // These values are exposed to the ABI in an incremental link.
2903 // Do not renumber existing values without changing the version
2904 // number of the .gnu_incremental_inputs section.
2907 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2908 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2909 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2910 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2911 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2914 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2916 // Map input section to Arm_input_section.
2917 typedef Unordered_map<Section_id,
2918 Arm_input_section<big_endian>*,
2920 Arm_input_section_map;
2922 // Map output addresses to relocs for Cortex-A8 erratum.
2923 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2924 Cortex_a8_relocs_info;
2927 Arm_output_data_got<big_endian>* got_;
2929 Output_data_plt_arm<big_endian>* plt_;
2930 // The GOT PLT section.
2931 Output_data_space* got_plt_;
2932 // The dynamic reloc section.
2933 Reloc_section* rel_dyn_;
2934 // Relocs saved to avoid a COPY reloc.
2935 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2936 // Space for variables copied with a COPY reloc.
2937 Output_data_space* dynbss_;
2938 // Offset of the GOT entry for the TLS module index.
2939 unsigned int got_mod_index_offset_;
2940 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2941 bool tls_base_symbol_defined_;
2942 // Vector of Stub_tables created.
2943 Stub_table_list stub_tables_;
2945 const Stub_factory &stub_factory_;
2946 // Whether we force PIC branch veneers.
2947 bool should_force_pic_veneer_;
2948 // Map for locating Arm_input_sections.
2949 Arm_input_section_map arm_input_section_map_;
2950 // Attributes section data in output.
2951 Attributes_section_data* attributes_section_data_;
2952 // Whether we want to fix code for Cortex-A8 erratum.
2953 bool fix_cortex_a8_;
2954 // Map addresses to relocs for Cortex-A8 erratum.
2955 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2958 template<bool big_endian>
2959 const Target::Target_info Target_arm<big_endian>::arm_info =
2962 big_endian, // is_big_endian
2963 elfcpp::EM_ARM, // machine_code
2964 false, // has_make_symbol
2965 false, // has_resolve
2966 false, // has_code_fill
2967 true, // is_default_stack_executable
2968 false, // can_icf_inline_merge_sections
2970 "/usr/lib/libc.so.1", // dynamic_linker
2971 0x8000, // default_text_segment_address
2972 0x1000, // abi_pagesize (overridable by -z max-page-size)
2973 0x1000, // common_pagesize (overridable by -z common-page-size)
2974 elfcpp::SHN_UNDEF, // small_common_shndx
2975 elfcpp::SHN_UNDEF, // large_common_shndx
2976 0, // small_common_section_flags
2977 0, // large_common_section_flags
2978 ".ARM.attributes", // attributes_section
2979 "aeabi" // attributes_vendor
2982 // Arm relocate functions class
2985 template<bool big_endian>
2986 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2991 STATUS_OKAY, // No error during relocation.
2992 STATUS_OVERFLOW, // Relocation overflow.
2993 STATUS_BAD_RELOC // Relocation cannot be applied.
2997 typedef Relocate_functions<32, big_endian> Base;
2998 typedef Arm_relocate_functions<big_endian> This;
3000 // Encoding of imm16 argument for movt and movw ARM instructions
3003 // imm16 := imm4 | imm12
3005 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3006 // +-------+---------------+-------+-------+-----------------------+
3007 // | | |imm4 | |imm12 |
3008 // +-------+---------------+-------+-------+-----------------------+
3010 // Extract the relocation addend from VAL based on the ARM
3011 // instruction encoding described above.
3012 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3013 extract_arm_movw_movt_addend(
3014 typename elfcpp::Swap<32, big_endian>::Valtype val)
3016 // According to the Elf ABI for ARM Architecture the immediate
3017 // field is sign-extended to form the addend.
3018 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
3021 // Insert X into VAL based on the ARM instruction encoding described
3023 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3024 insert_val_arm_movw_movt(
3025 typename elfcpp::Swap<32, big_endian>::Valtype val,
3026 typename elfcpp::Swap<32, big_endian>::Valtype x)
3030 val |= (x & 0xf000) << 4;
3034 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3037 // imm16 := imm4 | i | imm3 | imm8
3039 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3040 // +---------+-+-----------+-------++-+-----+-------+---------------+
3041 // | |i| |imm4 || |imm3 | |imm8 |
3042 // +---------+-+-----------+-------++-+-----+-------+---------------+
3044 // Extract the relocation addend from VAL based on the Thumb2
3045 // instruction encoding described above.
3046 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3047 extract_thumb_movw_movt_addend(
3048 typename elfcpp::Swap<32, big_endian>::Valtype val)
3050 // According to the Elf ABI for ARM Architecture the immediate
3051 // field is sign-extended to form the addend.
3052 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3053 | ((val >> 15) & 0x0800)
3054 | ((val >> 4) & 0x0700)
3058 // Insert X into VAL based on the Thumb2 instruction encoding
3060 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3061 insert_val_thumb_movw_movt(
3062 typename elfcpp::Swap<32, big_endian>::Valtype val,
3063 typename elfcpp::Swap<32, big_endian>::Valtype x)
3066 val |= (x & 0xf000) << 4;
3067 val |= (x & 0x0800) << 15;
3068 val |= (x & 0x0700) << 4;
3069 val |= (x & 0x00ff);
3073 // Calculate the smallest constant Kn for the specified residual.
3074 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3076 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3082 // Determine the most significant bit in the residual and
3083 // align the resulting value to a 2-bit boundary.
3084 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3086 // The desired shift is now (msb - 6), or zero, whichever
3088 return (((msb - 6) < 0) ? 0 : (msb - 6));
3091 // Calculate the final residual for the specified group index.
3092 // If the passed group index is less than zero, the method will return
3093 // the value of the specified residual without any change.
3094 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3095 static typename elfcpp::Swap<32, big_endian>::Valtype
3096 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3099 for (int n = 0; n <= group; n++)
3101 // Calculate which part of the value to mask.
3102 uint32_t shift = calc_grp_kn(residual);
3103 // Calculate the residual for the next time around.
3104 residual &= ~(residual & (0xff << shift));
3110 // Calculate the value of Gn for the specified group index.
3111 // We return it in the form of an encoded constant-and-rotation.
3112 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3113 static typename elfcpp::Swap<32, big_endian>::Valtype
3114 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3117 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3120 for (int n = 0; n <= group; n++)
3122 // Calculate which part of the value to mask.
3123 shift = calc_grp_kn(residual);
3124 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3125 gn = residual & (0xff << shift);
3126 // Calculate the residual for the next time around.
3129 // Return Gn in the form of an encoded constant-and-rotation.
3130 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3134 // Handle ARM long branches.
3135 static typename This::Status
3136 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3137 unsigned char*, const Sized_symbol<32>*,
3138 const Arm_relobj<big_endian>*, unsigned int,
3139 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3141 // Handle THUMB long branches.
3142 static typename This::Status
3143 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3144 unsigned char*, const Sized_symbol<32>*,
3145 const Arm_relobj<big_endian>*, unsigned int,
3146 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3149 // Return the branch offset of a 32-bit THUMB branch.
3150 static inline int32_t
3151 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3153 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3154 // involving the J1 and J2 bits.
3155 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3156 uint32_t upper = upper_insn & 0x3ffU;
3157 uint32_t lower = lower_insn & 0x7ffU;
3158 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3159 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3160 uint32_t i1 = j1 ^ s ? 0 : 1;
3161 uint32_t i2 = j2 ^ s ? 0 : 1;
3163 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3164 | (upper << 12) | (lower << 1));
3167 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3168 // UPPER_INSN is the original upper instruction of the branch. Caller is
3169 // responsible for overflow checking and BLX offset adjustment.
3170 static inline uint16_t
3171 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3173 uint32_t s = offset < 0 ? 1 : 0;
3174 uint32_t bits = static_cast<uint32_t>(offset);
3175 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3178 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3179 // LOWER_INSN is the original lower instruction of the branch. Caller is
3180 // responsible for overflow checking and BLX offset adjustment.
3181 static inline uint16_t
3182 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3184 uint32_t s = offset < 0 ? 1 : 0;
3185 uint32_t bits = static_cast<uint32_t>(offset);
3186 return ((lower_insn & ~0x2fffU)
3187 | ((((bits >> 23) & 1) ^ !s) << 13)
3188 | ((((bits >> 22) & 1) ^ !s) << 11)
3189 | ((bits >> 1) & 0x7ffU));
3192 // Return the branch offset of a 32-bit THUMB conditional branch.
3193 static inline int32_t
3194 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3196 uint32_t s = (upper_insn & 0x0400U) >> 10;
3197 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3198 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3199 uint32_t lower = (lower_insn & 0x07ffU);
3200 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3202 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3205 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3206 // instruction. UPPER_INSN is the original upper instruction of the branch.
3207 // Caller is responsible for overflow checking.
3208 static inline uint16_t
3209 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3211 uint32_t s = offset < 0 ? 1 : 0;
3212 uint32_t bits = static_cast<uint32_t>(offset);
3213 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3216 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3217 // instruction. LOWER_INSN is the original lower instruction of the branch.
3218 // The caller is responsible for overflow checking.
3219 static inline uint16_t
3220 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3222 uint32_t bits = static_cast<uint32_t>(offset);
3223 uint32_t j2 = (bits & 0x00080000U) >> 19;
3224 uint32_t j1 = (bits & 0x00040000U) >> 18;
3225 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3227 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3230 // R_ARM_ABS8: S + A
3231 static inline typename This::Status
3232 abs8(unsigned char* view,
3233 const Sized_relobj_file<32, big_endian>* object,
3234 const Symbol_value<32>* psymval)
3236 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3237 Valtype* wv = reinterpret_cast<Valtype*>(view);
3238 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3239 int32_t addend = utils::sign_extend<8>(val);
3240 Arm_address x = psymval->value(object, addend);
3241 val = utils::bit_select(val, x, 0xffU);
3242 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3244 // R_ARM_ABS8 permits signed or unsigned results.
3245 int signed_x = static_cast<int32_t>(x);
3246 return ((signed_x < -128 || signed_x > 255)
3247 ? This::STATUS_OVERFLOW
3248 : This::STATUS_OKAY);
3251 // R_ARM_THM_ABS5: S + A
3252 static inline typename This::Status
3253 thm_abs5(unsigned char* view,
3254 const Sized_relobj_file<32, big_endian>* object,
3255 const Symbol_value<32>* psymval)
3257 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3258 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3259 Valtype* wv = reinterpret_cast<Valtype*>(view);
3260 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3261 Reltype addend = (val & 0x7e0U) >> 6;
3262 Reltype x = psymval->value(object, addend);
3263 val = utils::bit_select(val, x << 6, 0x7e0U);
3264 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3266 // R_ARM_ABS16 permits signed or unsigned results.
3267 int signed_x = static_cast<int32_t>(x);
3268 return ((signed_x < -32768 || signed_x > 65535)
3269 ? This::STATUS_OVERFLOW
3270 : This::STATUS_OKAY);
3273 // R_ARM_ABS12: S + A
3274 static inline typename This::Status
3275 abs12(unsigned char* view,
3276 const Sized_relobj_file<32, big_endian>* object,
3277 const Symbol_value<32>* psymval)
3279 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3280 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3281 Valtype* wv = reinterpret_cast<Valtype*>(view);
3282 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3283 Reltype addend = val & 0x0fffU;
3284 Reltype x = psymval->value(object, addend);
3285 val = utils::bit_select(val, x, 0x0fffU);
3286 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3287 return (utils::has_overflow<12>(x)
3288 ? This::STATUS_OVERFLOW
3289 : This::STATUS_OKAY);
3292 // R_ARM_ABS16: S + A
3293 static inline typename This::Status
3294 abs16(unsigned char* view,
3295 const Sized_relobj_file<32, big_endian>* object,
3296 const Symbol_value<32>* psymval)
3298 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3299 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3300 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3301 int32_t addend = utils::sign_extend<16>(val);
3302 Arm_address x = psymval->value(object, addend);
3303 val = utils::bit_select(val, x, 0xffffU);
3304 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3306 // R_ARM_ABS16 permits signed or unsigned results.
3307 int signed_x = static_cast<int32_t>(x);
3308 return ((signed_x < -32768 || signed_x > 65536)
3309 ? This::STATUS_OVERFLOW
3310 : This::STATUS_OKAY);
3313 // R_ARM_ABS32: (S + A) | T
3314 static inline typename This::Status
3315 abs32(unsigned char* view,
3316 const Sized_relobj_file<32, big_endian>* object,
3317 const Symbol_value<32>* psymval,
3318 Arm_address thumb_bit)
3320 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3321 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3322 Valtype x = psymval->value(object, addend) | thumb_bit;
3323 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3324 return This::STATUS_OKAY;
3327 // R_ARM_REL32: (S + A) | T - P
3328 static inline typename This::Status
3329 rel32(unsigned char* view,
3330 const Sized_relobj_file<32, big_endian>* object,
3331 const Symbol_value<32>* psymval,
3332 Arm_address address,
3333 Arm_address thumb_bit)
3335 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3336 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3337 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3338 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3339 return This::STATUS_OKAY;
3342 // R_ARM_THM_JUMP24: (S + A) | T - P
3343 static typename This::Status
3344 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3345 const Symbol_value<32>* psymval, Arm_address address,
3346 Arm_address thumb_bit);
3348 // R_ARM_THM_JUMP6: S + A – P
3349 static inline typename This::Status
3350 thm_jump6(unsigned char* view,
3351 const Sized_relobj_file<32, big_endian>* object,
3352 const Symbol_value<32>* psymval,
3353 Arm_address address)
3355 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3356 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3357 Valtype* wv = reinterpret_cast<Valtype*>(view);
3358 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3359 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3360 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3361 Reltype x = (psymval->value(object, addend) - address);
3362 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3363 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3364 // CZB does only forward jumps.
3365 return ((x > 0x007e)
3366 ? This::STATUS_OVERFLOW
3367 : This::STATUS_OKAY);
3370 // R_ARM_THM_JUMP8: S + A – P
3371 static inline typename This::Status
3372 thm_jump8(unsigned char* view,
3373 const Sized_relobj_file<32, big_endian>* object,
3374 const Symbol_value<32>* psymval,
3375 Arm_address address)
3377 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3378 Valtype* wv = reinterpret_cast<Valtype*>(view);
3379 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3380 int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3381 int32_t x = (psymval->value(object, addend) - address);
3382 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3383 | ((x & 0x01fe) >> 1)));
3384 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3385 return (utils::has_overflow<9>(x)
3386 ? This::STATUS_OVERFLOW
3387 : This::STATUS_OKAY);
3390 // R_ARM_THM_JUMP11: S + A – P
3391 static inline typename This::Status
3392 thm_jump11(unsigned char* view,
3393 const Sized_relobj_file<32, big_endian>* object,
3394 const Symbol_value<32>* psymval,
3395 Arm_address address)
3397 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3398 Valtype* wv = reinterpret_cast<Valtype*>(view);
3399 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3400 int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3401 int32_t x = (psymval->value(object, addend) - address);
3402 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3403 | ((x & 0x0ffe) >> 1)));
3404 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3405 return (utils::has_overflow<12>(x)
3406 ? This::STATUS_OVERFLOW
3407 : This::STATUS_OKAY);
3410 // R_ARM_BASE_PREL: B(S) + A - P
3411 static inline typename This::Status
3412 base_prel(unsigned char* view,
3414 Arm_address address)
3416 Base::rel32(view, origin - address);
3420 // R_ARM_BASE_ABS: B(S) + A
3421 static inline typename This::Status
3422 base_abs(unsigned char* view,
3425 Base::rel32(view, origin);
3429 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3430 static inline typename This::Status
3431 got_brel(unsigned char* view,
3432 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3434 Base::rel32(view, got_offset);
3435 return This::STATUS_OKAY;
3438 // R_ARM_GOT_PREL: GOT(S) + A - P
3439 static inline typename This::Status
3440 got_prel(unsigned char* view,
3441 Arm_address got_entry,
3442 Arm_address address)
3444 Base::rel32(view, got_entry - address);
3445 return This::STATUS_OKAY;
3448 // R_ARM_PREL: (S + A) | T - P
3449 static inline typename This::Status
3450 prel31(unsigned char* view,
3451 const Sized_relobj_file<32, big_endian>* object,
3452 const Symbol_value<32>* psymval,
3453 Arm_address address,
3454 Arm_address thumb_bit)
3456 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3457 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3458 Valtype addend = utils::sign_extend<31>(val);
3459 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3460 val = utils::bit_select(val, x, 0x7fffffffU);
3461 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3462 return (utils::has_overflow<31>(x) ?
3463 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3466 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3467 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3468 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3469 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3470 static inline typename This::Status
3471 movw(unsigned char* view,
3472 const Sized_relobj_file<32, big_endian>* object,
3473 const Symbol_value<32>* psymval,
3474 Arm_address relative_address_base,
3475 Arm_address thumb_bit,
3476 bool check_overflow)
3478 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3479 Valtype* wv = reinterpret_cast<Valtype*>(view);
3480 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3481 Valtype addend = This::extract_arm_movw_movt_addend(val);
3482 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3483 - relative_address_base);
3484 val = This::insert_val_arm_movw_movt(val, x);
3485 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3486 return ((check_overflow && utils::has_overflow<16>(x))
3487 ? This::STATUS_OVERFLOW
3488 : This::STATUS_OKAY);
3491 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3492 // R_ARM_MOVT_PREL: S + A - P
3493 // R_ARM_MOVT_BREL: S + A - B(S)
3494 static inline typename This::Status
3495 movt(unsigned char* view,
3496 const Sized_relobj_file<32, big_endian>* object,
3497 const Symbol_value<32>* psymval,
3498 Arm_address relative_address_base)
3500 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3501 Valtype* wv = reinterpret_cast<Valtype*>(view);
3502 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3503 Valtype addend = This::extract_arm_movw_movt_addend(val);
3504 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3505 val = This::insert_val_arm_movw_movt(val, x);
3506 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3507 // FIXME: IHI0044D says that we should check for overflow.
3508 return This::STATUS_OKAY;
3511 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3512 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3513 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3514 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3515 static inline typename This::Status
3516 thm_movw(unsigned char* view,
3517 const Sized_relobj_file<32, big_endian>* object,
3518 const Symbol_value<32>* psymval,
3519 Arm_address relative_address_base,
3520 Arm_address thumb_bit,
3521 bool check_overflow)
3523 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3524 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3525 Valtype* wv = reinterpret_cast<Valtype*>(view);
3526 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3527 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3528 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3530 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3531 val = This::insert_val_thumb_movw_movt(val, x);
3532 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3533 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3534 return ((check_overflow && utils::has_overflow<16>(x))
3535 ? This::STATUS_OVERFLOW
3536 : This::STATUS_OKAY);
3539 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3540 // R_ARM_THM_MOVT_PREL: S + A - P
3541 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3542 static inline typename This::Status
3543 thm_movt(unsigned char* view,
3544 const Sized_relobj_file<32, big_endian>* object,
3545 const Symbol_value<32>* psymval,
3546 Arm_address relative_address_base)
3548 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3549 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3550 Valtype* wv = reinterpret_cast<Valtype*>(view);
3551 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3552 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3553 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3554 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3555 val = This::insert_val_thumb_movw_movt(val, x);
3556 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3557 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3558 return This::STATUS_OKAY;
3561 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3562 static inline typename This::Status
3563 thm_alu11(unsigned char* view,
3564 const Sized_relobj_file<32, big_endian>* object,
3565 const Symbol_value<32>* psymval,
3566 Arm_address address,
3567 Arm_address thumb_bit)
3569 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3570 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3571 Valtype* wv = reinterpret_cast<Valtype*>(view);
3572 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3573 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3575 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3576 // -----------------------------------------------------------------------
3577 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3578 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3579 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3580 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3581 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3582 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3584 // Determine a sign for the addend.
3585 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3586 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3587 // Thumb2 addend encoding:
3588 // imm12 := i | imm3 | imm8
3589 int32_t addend = (insn & 0xff)
3590 | ((insn & 0x00007000) >> 4)
3591 | ((insn & 0x04000000) >> 15);
3592 // Apply a sign to the added.
3595 int32_t x = (psymval->value(object, addend) | thumb_bit)
3596 - (address & 0xfffffffc);
3597 Reltype val = abs(x);
3598 // Mask out the value and a distinct part of the ADD/SUB opcode
3599 // (bits 7:5 of opword).
3600 insn = (insn & 0xfb0f8f00)
3602 | ((val & 0x700) << 4)
3603 | ((val & 0x800) << 15);
3604 // Set the opcode according to whether the value to go in the
3605 // place is negative.
3609 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3610 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3611 return ((val > 0xfff) ?
3612 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3615 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3616 static inline typename This::Status
3617 thm_pc8(unsigned char* view,
3618 const Sized_relobj_file<32, big_endian>* object,
3619 const Symbol_value<32>* psymval,
3620 Arm_address address)
3622 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3623 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3624 Valtype* wv = reinterpret_cast<Valtype*>(view);
3625 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3626 Reltype addend = ((insn & 0x00ff) << 2);
3627 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3628 Reltype val = abs(x);
3629 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3631 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3632 return ((val > 0x03fc)
3633 ? This::STATUS_OVERFLOW
3634 : This::STATUS_OKAY);
3637 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3638 static inline typename This::Status
3639 thm_pc12(unsigned char* view,
3640 const Sized_relobj_file<32, big_endian>* object,
3641 const Symbol_value<32>* psymval,
3642 Arm_address address)
3644 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3645 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3646 Valtype* wv = reinterpret_cast<Valtype*>(view);
3647 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3648 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3649 // Determine a sign for the addend (positive if the U bit is 1).
3650 const int sign = (insn & 0x00800000) ? 1 : -1;
3651 int32_t addend = (insn & 0xfff);
3652 // Apply a sign to the added.
3655 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3656 Reltype val = abs(x);
3657 // Mask out and apply the value and the U bit.
3658 insn = (insn & 0xff7ff000) | (val & 0xfff);
3659 // Set the U bit according to whether the value to go in the
3660 // place is positive.
3664 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3665 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3666 return ((val > 0xfff) ?
3667 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3671 static inline typename This::Status
3672 v4bx(const Relocate_info<32, big_endian>* relinfo,
3673 unsigned char* view,
3674 const Arm_relobj<big_endian>* object,
3675 const Arm_address address,
3676 const bool is_interworking)
3679 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3680 Valtype* wv = reinterpret_cast<Valtype*>(view);
3681 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3683 // Ensure that we have a BX instruction.
3684 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3685 const uint32_t reg = (val & 0xf);
3686 if (is_interworking && reg != 0xf)
3688 Stub_table<big_endian>* stub_table =
3689 object->stub_table(relinfo->data_shndx);
3690 gold_assert(stub_table != NULL);
3692 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3693 gold_assert(stub != NULL);
3695 int32_t veneer_address =
3696 stub_table->address() + stub->offset() - 8 - address;
3697 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3698 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3699 // Replace with a branch to veneer (B <addr>)
3700 val = (val & 0xf0000000) | 0x0a000000
3701 | ((veneer_address >> 2) & 0x00ffffff);
3705 // Preserve Rm (lowest four bits) and the condition code
3706 // (highest four bits). Other bits encode MOV PC,Rm.
3707 val = (val & 0xf000000f) | 0x01a0f000;
3709 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3710 return This::STATUS_OKAY;
3713 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3714 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3715 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3716 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3717 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3718 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3719 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3720 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3721 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3722 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3723 static inline typename This::Status
3724 arm_grp_alu(unsigned char* view,
3725 const Sized_relobj_file<32, big_endian>* object,
3726 const Symbol_value<32>* psymval,
3728 Arm_address address,
3729 Arm_address thumb_bit,
3730 bool check_overflow)
3732 gold_assert(group >= 0 && group < 3);
3733 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3734 Valtype* wv = reinterpret_cast<Valtype*>(view);
3735 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3737 // ALU group relocations are allowed only for the ADD/SUB instructions.
3738 // (0x00800000 - ADD, 0x00400000 - SUB)
3739 const Valtype opcode = insn & 0x01e00000;
3740 if (opcode != 0x00800000 && opcode != 0x00400000)
3741 return This::STATUS_BAD_RELOC;
3743 // Determine a sign for the addend.
3744 const int sign = (opcode == 0x00800000) ? 1 : -1;
3745 // shifter = rotate_imm * 2
3746 const uint32_t shifter = (insn & 0xf00) >> 7;
3747 // Initial addend value.
3748 int32_t addend = insn & 0xff;
3749 // Rotate addend right by shifter.
3750 addend = (addend >> shifter) | (addend << (32 - shifter));
3751 // Apply a sign to the added.
3754 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3755 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3756 // Check for overflow if required
3758 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3759 return This::STATUS_OVERFLOW;
3761 // Mask out the value and the ADD/SUB part of the opcode; take care
3762 // not to destroy the S bit.
3764 // Set the opcode according to whether the value to go in the
3765 // place is negative.
3766 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3767 // Encode the offset (encoded Gn).
3770 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3771 return This::STATUS_OKAY;
3774 // R_ARM_LDR_PC_G0: S + A - P
3775 // R_ARM_LDR_PC_G1: S + A - P
3776 // R_ARM_LDR_PC_G2: S + A - P
3777 // R_ARM_LDR_SB_G0: S + A - B(S)
3778 // R_ARM_LDR_SB_G1: S + A - B(S)
3779 // R_ARM_LDR_SB_G2: S + A - B(S)
3780 static inline typename This::Status
3781 arm_grp_ldr(unsigned char* view,
3782 const Sized_relobj_file<32, big_endian>* object,
3783 const Symbol_value<32>* psymval,
3785 Arm_address address)
3787 gold_assert(group >= 0 && group < 3);
3788 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3789 Valtype* wv = reinterpret_cast<Valtype*>(view);
3790 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3792 const int sign = (insn & 0x00800000) ? 1 : -1;
3793 int32_t addend = (insn & 0xfff) * sign;
3794 int32_t x = (psymval->value(object, addend) - address);
3795 // Calculate the relevant G(n-1) value to obtain this stage residual.
3797 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3798 if (residual >= 0x1000)
3799 return This::STATUS_OVERFLOW;
3801 // Mask out the value and U bit.
3803 // Set the U bit for non-negative values.
3808 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3809 return This::STATUS_OKAY;
3812 // R_ARM_LDRS_PC_G0: S + A - P
3813 // R_ARM_LDRS_PC_G1: S + A - P
3814 // R_ARM_LDRS_PC_G2: S + A - P
3815 // R_ARM_LDRS_SB_G0: S + A - B(S)
3816 // R_ARM_LDRS_SB_G1: S + A - B(S)
3817 // R_ARM_LDRS_SB_G2: S + A - B(S)
3818 static inline typename This::Status
3819 arm_grp_ldrs(unsigned char* view,
3820 const Sized_relobj_file<32, big_endian>* object,
3821 const Symbol_value<32>* psymval,
3823 Arm_address address)
3825 gold_assert(group >= 0 && group < 3);
3826 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3827 Valtype* wv = reinterpret_cast<Valtype*>(view);
3828 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3830 const int sign = (insn & 0x00800000) ? 1 : -1;
3831 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3832 int32_t x = (psymval->value(object, addend) - address);
3833 // Calculate the relevant G(n-1) value to obtain this stage residual.
3835 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3836 if (residual >= 0x100)
3837 return This::STATUS_OVERFLOW;
3839 // Mask out the value and U bit.
3841 // Set the U bit for non-negative values.
3844 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3846 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3847 return This::STATUS_OKAY;
3850 // R_ARM_LDC_PC_G0: S + A - P
3851 // R_ARM_LDC_PC_G1: S + A - P
3852 // R_ARM_LDC_PC_G2: S + A - P
3853 // R_ARM_LDC_SB_G0: S + A - B(S)
3854 // R_ARM_LDC_SB_G1: S + A - B(S)
3855 // R_ARM_LDC_SB_G2: S + A - B(S)
3856 static inline typename This::Status
3857 arm_grp_ldc(unsigned char* view,
3858 const Sized_relobj_file<32, big_endian>* object,
3859 const Symbol_value<32>* psymval,
3861 Arm_address address)
3863 gold_assert(group >= 0 && group < 3);
3864 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3865 Valtype* wv = reinterpret_cast<Valtype*>(view);
3866 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3868 const int sign = (insn & 0x00800000) ? 1 : -1;
3869 int32_t addend = ((insn & 0xff) << 2) * sign;
3870 int32_t x = (psymval->value(object, addend) - address);
3871 // Calculate the relevant G(n-1) value to obtain this stage residual.
3873 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3874 if ((residual & 0x3) != 0 || residual >= 0x400)
3875 return This::STATUS_OVERFLOW;
3877 // Mask out the value and U bit.
3879 // Set the U bit for non-negative values.
3882 insn |= (residual >> 2);
3884 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3885 return This::STATUS_OKAY;
3889 // Relocate ARM long branches. This handles relocation types
3890 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3891 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3892 // undefined and we do not use PLT in this relocation. In such a case,
3893 // the branch is converted into an NOP.
3895 template<bool big_endian>
3896 typename Arm_relocate_functions<big_endian>::Status
3897 Arm_relocate_functions<big_endian>::arm_branch_common(
3898 unsigned int r_type,
3899 const Relocate_info<32, big_endian>* relinfo,
3900 unsigned char* view,
3901 const Sized_symbol<32>* gsym,
3902 const Arm_relobj<big_endian>* object,
3904 const Symbol_value<32>* psymval,
3905 Arm_address address,
3906 Arm_address thumb_bit,
3907 bool is_weakly_undefined_without_plt)
3909 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3910 Valtype* wv = reinterpret_cast<Valtype*>(view);
3911 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3913 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3914 && ((val & 0x0f000000UL) == 0x0a000000UL);
3915 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3916 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3917 && ((val & 0x0f000000UL) == 0x0b000000UL);
3918 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3919 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3921 // Check that the instruction is valid.
3922 if (r_type == elfcpp::R_ARM_CALL)
3924 if (!insn_is_uncond_bl && !insn_is_blx)
3925 return This::STATUS_BAD_RELOC;
3927 else if (r_type == elfcpp::R_ARM_JUMP24)
3929 if (!insn_is_b && !insn_is_cond_bl)
3930 return This::STATUS_BAD_RELOC;
3932 else if (r_type == elfcpp::R_ARM_PLT32)
3934 if (!insn_is_any_branch)
3935 return This::STATUS_BAD_RELOC;
3937 else if (r_type == elfcpp::R_ARM_XPC25)
3939 // FIXME: AAELF document IH0044C does not say much about it other
3940 // than it being obsolete.
3941 if (!insn_is_any_branch)
3942 return This::STATUS_BAD_RELOC;
3947 // A branch to an undefined weak symbol is turned into a jump to
3948 // the next instruction unless a PLT entry will be created.
3949 // Do the same for local undefined symbols.
3950 // The jump to the next instruction is optimized as a NOP depending
3951 // on the architecture.
3952 const Target_arm<big_endian>* arm_target =
3953 Target_arm<big_endian>::default_target();
3954 if (is_weakly_undefined_without_plt)
3956 gold_assert(!parameters->options().relocatable());
3957 Valtype cond = val & 0xf0000000U;
3958 if (arm_target->may_use_arm_nop())
3959 val = cond | 0x0320f000;
3961 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3962 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3963 return This::STATUS_OKAY;
3966 Valtype addend = utils::sign_extend<26>(val << 2);
3967 Valtype branch_target = psymval->value(object, addend);
3968 int32_t branch_offset = branch_target - address;
3970 // We need a stub if the branch offset is too large or if we need
3972 bool may_use_blx = arm_target->may_use_v5t_interworking();
3973 Reloc_stub* stub = NULL;
3975 if (!parameters->options().relocatable()
3976 && (utils::has_overflow<26>(branch_offset)
3977 || ((thumb_bit != 0)
3978 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3980 Valtype unadjusted_branch_target = psymval->value(object, 0);
3982 Stub_type stub_type =
3983 Reloc_stub::stub_type_for_reloc(r_type, address,
3984 unadjusted_branch_target,
3986 if (stub_type != arm_stub_none)
3988 Stub_table<big_endian>* stub_table =
3989 object->stub_table(relinfo->data_shndx);
3990 gold_assert(stub_table != NULL);
3992 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3993 stub = stub_table->find_reloc_stub(stub_key);
3994 gold_assert(stub != NULL);
3995 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3996 branch_target = stub_table->address() + stub->offset() + addend;
3997 branch_offset = branch_target - address;
3998 gold_assert(!utils::has_overflow<26>(branch_offset));
4002 // At this point, if we still need to switch mode, the instruction
4003 // must either be a BLX or a BL that can be converted to a BLX.
4007 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4008 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4011 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
4012 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4013 return (utils::has_overflow<26>(branch_offset)
4014 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
4017 // Relocate THUMB long branches. This handles relocation types
4018 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4019 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4020 // undefined and we do not use PLT in this relocation. In such a case,
4021 // the branch is converted into an NOP.
4023 template<bool big_endian>
4024 typename Arm_relocate_functions<big_endian>::Status
4025 Arm_relocate_functions<big_endian>::thumb_branch_common(
4026 unsigned int r_type,
4027 const Relocate_info<32, big_endian>* relinfo,
4028 unsigned char* view,
4029 const Sized_symbol<32>* gsym,
4030 const Arm_relobj<big_endian>* object,
4032 const Symbol_value<32>* psymval,
4033 Arm_address address,
4034 Arm_address thumb_bit,
4035 bool is_weakly_undefined_without_plt)
4037 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4038 Valtype* wv = reinterpret_cast<Valtype*>(view);
4039 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4040 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4042 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4044 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4045 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4047 // Check that the instruction is valid.
4048 if (r_type == elfcpp::R_ARM_THM_CALL)
4050 if (!is_bl_insn && !is_blx_insn)
4051 return This::STATUS_BAD_RELOC;
4053 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4055 // This cannot be a BLX.
4057 return This::STATUS_BAD_RELOC;
4059 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4061 // Check for Thumb to Thumb call.
4063 return This::STATUS_BAD_RELOC;
4066 gold_warning(_("%s: Thumb BLX instruction targets "
4067 "thumb function '%s'."),
4068 object->name().c_str(),
4069 (gsym ? gsym->name() : "(local)"));
4070 // Convert BLX to BL.
4071 lower_insn |= 0x1000U;
4077 // A branch to an undefined weak symbol is turned into a jump to
4078 // the next instruction unless a PLT entry will be created.
4079 // The jump to the next instruction is optimized as a NOP.W for
4080 // Thumb-2 enabled architectures.
4081 const Target_arm<big_endian>* arm_target =
4082 Target_arm<big_endian>::default_target();
4083 if (is_weakly_undefined_without_plt)
4085 gold_assert(!parameters->options().relocatable());
4086 if (arm_target->may_use_thumb2_nop())
4088 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4089 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4093 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4094 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4096 return This::STATUS_OKAY;
4099 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4100 Arm_address branch_target = psymval->value(object, addend);
4102 // For BLX, bit 1 of target address comes from bit 1 of base address.
4103 bool may_use_blx = arm_target->may_use_v5t_interworking();
4104 if (thumb_bit == 0 && may_use_blx)
4105 branch_target = utils::bit_select(branch_target, address, 0x2);
4107 int32_t branch_offset = branch_target - address;
4109 // We need a stub if the branch offset is too large or if we need
4111 bool thumb2 = arm_target->using_thumb2();
4112 if (!parameters->options().relocatable()
4113 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4114 || (thumb2 && utils::has_overflow<25>(branch_offset))
4115 || ((thumb_bit == 0)
4116 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4117 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4119 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4121 Stub_type stub_type =
4122 Reloc_stub::stub_type_for_reloc(r_type, address,
4123 unadjusted_branch_target,
4126 if (stub_type != arm_stub_none)
4128 Stub_table<big_endian>* stub_table =
4129 object->stub_table(relinfo->data_shndx);
4130 gold_assert(stub_table != NULL);
4132 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4133 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4134 gold_assert(stub != NULL);
4135 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4136 branch_target = stub_table->address() + stub->offset() + addend;
4137 if (thumb_bit == 0 && may_use_blx)
4138 branch_target = utils::bit_select(branch_target, address, 0x2);
4139 branch_offset = branch_target - address;
4143 // At this point, if we still need to switch mode, the instruction
4144 // must either be a BLX or a BL that can be converted to a BLX.
4147 gold_assert(may_use_blx
4148 && (r_type == elfcpp::R_ARM_THM_CALL
4149 || r_type == elfcpp::R_ARM_THM_XPC22));
4150 // Make sure this is a BLX.
4151 lower_insn &= ~0x1000U;
4155 // Make sure this is a BL.
4156 lower_insn |= 0x1000U;
4159 // For a BLX instruction, make sure that the relocation is rounded up
4160 // to a word boundary. This follows the semantics of the instruction
4161 // which specifies that bit 1 of the target address will come from bit
4162 // 1 of the base address.
4163 if ((lower_insn & 0x5000U) == 0x4000U)
4164 gold_assert((branch_offset & 3) == 0);
4166 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4167 // We use the Thumb-2 encoding, which is safe even if dealing with
4168 // a Thumb-1 instruction by virtue of our overflow check above. */
4169 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4170 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4172 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4173 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4175 gold_assert(!utils::has_overflow<25>(branch_offset));
4178 ? utils::has_overflow<25>(branch_offset)
4179 : utils::has_overflow<23>(branch_offset))
4180 ? This::STATUS_OVERFLOW
4181 : This::STATUS_OKAY);
4184 // Relocate THUMB-2 long conditional branches.
4185 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4186 // undefined and we do not use PLT in this relocation. In such a case,
4187 // the branch is converted into an NOP.
4189 template<bool big_endian>
4190 typename Arm_relocate_functions<big_endian>::Status
4191 Arm_relocate_functions<big_endian>::thm_jump19(
4192 unsigned char* view,
4193 const Arm_relobj<big_endian>* object,
4194 const Symbol_value<32>* psymval,
4195 Arm_address address,
4196 Arm_address thumb_bit)
4198 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4199 Valtype* wv = reinterpret_cast<Valtype*>(view);
4200 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4201 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4202 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4204 Arm_address branch_target = psymval->value(object, addend);
4205 int32_t branch_offset = branch_target - address;
4207 // ??? Should handle interworking? GCC might someday try to
4208 // use this for tail calls.
4209 // FIXME: We do support thumb entry to PLT yet.
4212 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4213 return This::STATUS_BAD_RELOC;
4216 // Put RELOCATION back into the insn.
4217 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4218 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4220 // Put the relocated value back in the object file:
4221 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4222 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4224 return (utils::has_overflow<21>(branch_offset)
4225 ? This::STATUS_OVERFLOW
4226 : This::STATUS_OKAY);
4229 // Get the GOT section, creating it if necessary.
4231 template<bool big_endian>
4232 Arm_output_data_got<big_endian>*
4233 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4235 if (this->got_ == NULL)
4237 gold_assert(symtab != NULL && layout != NULL);
4239 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4241 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4242 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4243 this->got_, ORDER_DATA, false);
4245 // The old GNU linker creates a .got.plt section. We just
4246 // create another set of data in the .got section. Note that we
4247 // always create a PLT if we create a GOT, although the PLT
4249 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4250 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4251 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4252 this->got_plt_, ORDER_DATA, false);
4254 // The first three entries are reserved.
4255 this->got_plt_->set_current_data_size(3 * 4);
4257 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4258 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4259 Symbol_table::PREDEFINED,
4261 0, 0, elfcpp::STT_OBJECT,
4263 elfcpp::STV_HIDDEN, 0,
4269 // Get the dynamic reloc section, creating it if necessary.
4271 template<bool big_endian>
4272 typename Target_arm<big_endian>::Reloc_section*
4273 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4275 if (this->rel_dyn_ == NULL)
4277 gold_assert(layout != NULL);
4278 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4279 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4280 elfcpp::SHF_ALLOC, this->rel_dyn_,
4281 ORDER_DYNAMIC_RELOCS, false);
4283 return this->rel_dyn_;
4286 // Insn_template methods.
4288 // Return byte size of an instruction template.
4291 Insn_template::size() const
4293 switch (this->type())
4296 case THUMB16_SPECIAL_TYPE:
4307 // Return alignment of an instruction template.
4310 Insn_template::alignment() const
4312 switch (this->type())
4315 case THUMB16_SPECIAL_TYPE:
4326 // Stub_template methods.
4328 Stub_template::Stub_template(
4329 Stub_type type, const Insn_template* insns,
4331 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4332 entry_in_thumb_mode_(false), relocs_()
4336 // Compute byte size and alignment of stub template.
4337 for (size_t i = 0; i < insn_count; i++)
4339 unsigned insn_alignment = insns[i].alignment();
4340 size_t insn_size = insns[i].size();
4341 gold_assert((offset & (insn_alignment - 1)) == 0);
4342 this->alignment_ = std::max(this->alignment_, insn_alignment);
4343 switch (insns[i].type())
4345 case Insn_template::THUMB16_TYPE:
4346 case Insn_template::THUMB16_SPECIAL_TYPE:
4348 this->entry_in_thumb_mode_ = true;
4351 case Insn_template::THUMB32_TYPE:
4352 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4353 this->relocs_.push_back(Reloc(i, offset));
4355 this->entry_in_thumb_mode_ = true;
4358 case Insn_template::ARM_TYPE:
4359 // Handle cases where the target is encoded within the
4361 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4362 this->relocs_.push_back(Reloc(i, offset));
4365 case Insn_template::DATA_TYPE:
4366 // Entry point cannot be data.
4367 gold_assert(i != 0);
4368 this->relocs_.push_back(Reloc(i, offset));
4374 offset += insn_size;
4376 this->size_ = offset;
4381 // Template to implement do_write for a specific target endianness.
4383 template<bool big_endian>
4385 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4387 const Stub_template* stub_template = this->stub_template();
4388 const Insn_template* insns = stub_template->insns();
4390 // FIXME: We do not handle BE8 encoding yet.
4391 unsigned char* pov = view;
4392 for (size_t i = 0; i < stub_template->insn_count(); i++)
4394 switch (insns[i].type())
4396 case Insn_template::THUMB16_TYPE:
4397 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4399 case Insn_template::THUMB16_SPECIAL_TYPE:
4400 elfcpp::Swap<16, big_endian>::writeval(
4402 this->thumb16_special(i));
4404 case Insn_template::THUMB32_TYPE:
4406 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4407 uint32_t lo = insns[i].data() & 0xffff;
4408 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4409 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4412 case Insn_template::ARM_TYPE:
4413 case Insn_template::DATA_TYPE:
4414 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4419 pov += insns[i].size();
4421 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4424 // Reloc_stub::Key methods.
4426 // Dump a Key as a string for debugging.
4429 Reloc_stub::Key::name() const
4431 if (this->r_sym_ == invalid_index)
4433 // Global symbol key name
4434 // <stub-type>:<symbol name>:<addend>.
4435 const std::string sym_name = this->u_.symbol->name();
4436 // We need to print two hex number and two colons. So just add 100 bytes
4437 // to the symbol name size.
4438 size_t len = sym_name.size() + 100;
4439 char* buffer = new char[len];
4440 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4441 sym_name.c_str(), this->addend_);
4442 gold_assert(c > 0 && c < static_cast<int>(len));
4444 return std::string(buffer);
4448 // local symbol key name
4449 // <stub-type>:<object>:<r_sym>:<addend>.
4450 const size_t len = 200;
4452 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4453 this->u_.relobj, this->r_sym_, this->addend_);
4454 gold_assert(c > 0 && c < static_cast<int>(len));
4455 return std::string(buffer);
4459 // Reloc_stub methods.
4461 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4462 // LOCATION to DESTINATION.
4463 // This code is based on the arm_type_of_stub function in
4464 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4468 Reloc_stub::stub_type_for_reloc(
4469 unsigned int r_type,
4470 Arm_address location,
4471 Arm_address destination,
4472 bool target_is_thumb)
4474 Stub_type stub_type = arm_stub_none;
4476 // This is a bit ugly but we want to avoid using a templated class for
4477 // big and little endianities.
4479 bool should_force_pic_veneer;
4482 if (parameters->target().is_big_endian())
4484 const Target_arm<true>* big_endian_target =
4485 Target_arm<true>::default_target();
4486 may_use_blx = big_endian_target->may_use_v5t_interworking();
4487 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4488 thumb2 = big_endian_target->using_thumb2();
4489 thumb_only = big_endian_target->using_thumb_only();
4493 const Target_arm<false>* little_endian_target =
4494 Target_arm<false>::default_target();
4495 may_use_blx = little_endian_target->may_use_v5t_interworking();
4496 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4497 thumb2 = little_endian_target->using_thumb2();
4498 thumb_only = little_endian_target->using_thumb_only();
4501 int64_t branch_offset;
4502 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4504 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4505 // base address (instruction address + 4).
4506 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4507 destination = utils::bit_select(destination, location, 0x2);
4508 branch_offset = static_cast<int64_t>(destination) - location;
4510 // Handle cases where:
4511 // - this call goes too far (different Thumb/Thumb2 max
4513 // - it's a Thumb->Arm call and blx is not available, or it's a
4514 // Thumb->Arm branch (not bl). A stub is needed in this case.
4516 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4517 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4519 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4520 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4521 || ((!target_is_thumb)
4522 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4523 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4525 if (target_is_thumb)
4530 stub_type = (parameters->options().shared()
4531 || should_force_pic_veneer)
4534 && (r_type == elfcpp::R_ARM_THM_CALL))
4535 // V5T and above. Stub starts with ARM code, so
4536 // we must be able to switch mode before
4537 // reaching it, which is only possible for 'bl'
4538 // (ie R_ARM_THM_CALL relocation).
4539 ? arm_stub_long_branch_any_thumb_pic
4540 // On V4T, use Thumb code only.
4541 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4545 && (r_type == elfcpp::R_ARM_THM_CALL))
4546 ? arm_stub_long_branch_any_any // V5T and above.
4547 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4551 stub_type = (parameters->options().shared()
4552 || should_force_pic_veneer)
4553 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4554 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4561 // FIXME: We should check that the input section is from an
4562 // object that has interwork enabled.
4564 stub_type = (parameters->options().shared()
4565 || should_force_pic_veneer)
4568 && (r_type == elfcpp::R_ARM_THM_CALL))
4569 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4570 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4574 && (r_type == elfcpp::R_ARM_THM_CALL))
4575 ? arm_stub_long_branch_any_any // V5T and above.
4576 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4578 // Handle v4t short branches.
4579 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4580 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4581 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4582 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4586 else if (r_type == elfcpp::R_ARM_CALL
4587 || r_type == elfcpp::R_ARM_JUMP24
4588 || r_type == elfcpp::R_ARM_PLT32)
4590 branch_offset = static_cast<int64_t>(destination) - location;
4591 if (target_is_thumb)
4595 // FIXME: We should check that the input section is from an
4596 // object that has interwork enabled.
4598 // We have an extra 2-bytes reach because of
4599 // the mode change (bit 24 (H) of BLX encoding).
4600 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4601 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4602 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4603 || (r_type == elfcpp::R_ARM_JUMP24)
4604 || (r_type == elfcpp::R_ARM_PLT32))
4606 stub_type = (parameters->options().shared()
4607 || should_force_pic_veneer)
4610 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4611 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4615 ? arm_stub_long_branch_any_any // V5T and above.
4616 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4622 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4623 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4625 stub_type = (parameters->options().shared()
4626 || should_force_pic_veneer)
4627 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4628 : arm_stub_long_branch_any_any; /// non-PIC.
4636 // Cortex_a8_stub methods.
4638 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4639 // I is the position of the instruction template in the stub template.
4642 Cortex_a8_stub::do_thumb16_special(size_t i)
4644 // The only use of this is to copy condition code from a conditional
4645 // branch being worked around to the corresponding conditional branch in
4647 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4649 uint16_t data = this->stub_template()->insns()[i].data();
4650 gold_assert((data & 0xff00U) == 0xd000U);
4651 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4655 // Stub_factory methods.
4657 Stub_factory::Stub_factory()
4659 // The instruction template sequences are declared as static
4660 // objects and initialized first time the constructor runs.
4662 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4663 // to reach the stub if necessary.
4664 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4666 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4667 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4668 // dcd R_ARM_ABS32(X)
4671 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4673 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4675 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4676 Insn_template::arm_insn(0xe12fff1c), // bx ip
4677 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4678 // dcd R_ARM_ABS32(X)
4681 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4682 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4684 Insn_template::thumb16_insn(0xb401), // push {r0}
4685 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4686 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4687 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4688 Insn_template::thumb16_insn(0x4760), // bx ip
4689 Insn_template::thumb16_insn(0xbf00), // nop
4690 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4691 // dcd R_ARM_ABS32(X)
4694 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4696 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4698 Insn_template::thumb16_insn(0x4778), // bx pc
4699 Insn_template::thumb16_insn(0x46c0), // nop
4700 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4701 Insn_template::arm_insn(0xe12fff1c), // bx ip
4702 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4703 // dcd R_ARM_ABS32(X)
4706 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4708 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4710 Insn_template::thumb16_insn(0x4778), // bx pc
4711 Insn_template::thumb16_insn(0x46c0), // nop
4712 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4713 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4714 // dcd R_ARM_ABS32(X)
4717 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4718 // one, when the destination is close enough.
4719 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4721 Insn_template::thumb16_insn(0x4778), // bx pc
4722 Insn_template::thumb16_insn(0x46c0), // nop
4723 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4726 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4727 // blx to reach the stub if necessary.
4728 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4730 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4731 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4732 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4733 // dcd R_ARM_REL32(X-4)
4736 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4737 // blx to reach the stub if necessary. We can not add into pc;
4738 // it is not guaranteed to mode switch (different in ARMv6 and
4740 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4742 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4743 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4744 Insn_template::arm_insn(0xe12fff1c), // bx ip
4745 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4746 // dcd R_ARM_REL32(X)
4749 // V4T ARM -> ARM long branch stub, PIC.
4750 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4752 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4753 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4754 Insn_template::arm_insn(0xe12fff1c), // bx ip
4755 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4756 // dcd R_ARM_REL32(X)
4759 // V4T Thumb -> ARM long branch stub, PIC.
4760 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4762 Insn_template::thumb16_insn(0x4778), // bx pc
4763 Insn_template::thumb16_insn(0x46c0), // nop
4764 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4765 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4766 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4767 // dcd R_ARM_REL32(X)
4770 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4772 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4774 Insn_template::thumb16_insn(0xb401), // push {r0}
4775 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4776 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4777 Insn_template::thumb16_insn(0x4484), // add ip, r0
4778 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4779 Insn_template::thumb16_insn(0x4760), // bx ip
4780 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4781 // dcd R_ARM_REL32(X)
4784 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4786 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4788 Insn_template::thumb16_insn(0x4778), // bx pc
4789 Insn_template::thumb16_insn(0x46c0), // nop
4790 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4791 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4792 Insn_template::arm_insn(0xe12fff1c), // bx ip
4793 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4794 // dcd R_ARM_REL32(X)
4797 // Cortex-A8 erratum-workaround stubs.
4799 // Stub used for conditional branches (which may be beyond +/-1MB away,
4800 // so we can't use a conditional branch to reach this stub).
4807 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4809 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4810 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4811 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4815 // Stub used for b.w and bl.w instructions.
4817 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4819 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4822 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4824 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4827 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4828 // instruction (which switches to ARM mode) to point to this stub. Jump to
4829 // the real destination using an ARM-mode branch.
4830 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4832 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4835 // Stub used to provide an interworking for R_ARM_V4BX relocation
4836 // (bx r[n] instruction).
4837 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4839 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4840 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4841 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4844 // Fill in the stub template look-up table. Stub templates are constructed
4845 // per instance of Stub_factory for fast look-up without locking
4846 // in a thread-enabled environment.
4848 this->stub_templates_[arm_stub_none] =
4849 new Stub_template(arm_stub_none, NULL, 0);
4851 #define DEF_STUB(x) \
4855 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4856 Stub_type type = arm_stub_##x; \
4857 this->stub_templates_[type] = \
4858 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4866 // Stub_table methods.
4868 // Remove all Cortex-A8 stub.
4870 template<bool big_endian>
4872 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4874 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4875 p != this->cortex_a8_stubs_.end();
4878 this->cortex_a8_stubs_.clear();
4881 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4883 template<bool big_endian>
4885 Stub_table<big_endian>::relocate_stub(
4887 const Relocate_info<32, big_endian>* relinfo,
4888 Target_arm<big_endian>* arm_target,
4889 Output_section* output_section,
4890 unsigned char* view,
4891 Arm_address address,
4892 section_size_type view_size)
4894 const Stub_template* stub_template = stub->stub_template();
4895 if (stub_template->reloc_count() != 0)
4897 // Adjust view to cover the stub only.
4898 section_size_type offset = stub->offset();
4899 section_size_type stub_size = stub_template->size();
4900 gold_assert(offset + stub_size <= view_size);
4902 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4903 address + offset, stub_size);
4907 // Relocate all stubs in this stub table.
4909 template<bool big_endian>
4911 Stub_table<big_endian>::relocate_stubs(
4912 const Relocate_info<32, big_endian>* relinfo,
4913 Target_arm<big_endian>* arm_target,
4914 Output_section* output_section,
4915 unsigned char* view,
4916 Arm_address address,
4917 section_size_type view_size)
4919 // If we are passed a view bigger than the stub table's. we need to
4921 gold_assert(address == this->address()
4923 == static_cast<section_size_type>(this->data_size())));
4925 // Relocate all relocation stubs.
4926 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4927 p != this->reloc_stubs_.end();
4929 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4930 address, view_size);
4932 // Relocate all Cortex-A8 stubs.
4933 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4934 p != this->cortex_a8_stubs_.end();
4936 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4937 address, view_size);
4939 // Relocate all ARM V4BX stubs.
4940 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4941 p != this->arm_v4bx_stubs_.end();
4945 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4946 address, view_size);
4950 // Write out the stubs to file.
4952 template<bool big_endian>
4954 Stub_table<big_endian>::do_write(Output_file* of)
4956 off_t offset = this->offset();
4957 const section_size_type oview_size =
4958 convert_to_section_size_type(this->data_size());
4959 unsigned char* const oview = of->get_output_view(offset, oview_size);
4961 // Write relocation stubs.
4962 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4963 p != this->reloc_stubs_.end();
4966 Reloc_stub* stub = p->second;
4967 Arm_address address = this->address() + stub->offset();
4969 == align_address(address,
4970 stub->stub_template()->alignment()));
4971 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4975 // Write Cortex-A8 stubs.
4976 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4977 p != this->cortex_a8_stubs_.end();
4980 Cortex_a8_stub* stub = p->second;
4981 Arm_address address = this->address() + stub->offset();
4983 == align_address(address,
4984 stub->stub_template()->alignment()));
4985 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4989 // Write ARM V4BX relocation stubs.
4990 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4991 p != this->arm_v4bx_stubs_.end();
4997 Arm_address address = this->address() + (*p)->offset();
4999 == align_address(address,
5000 (*p)->stub_template()->alignment()));
5001 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5005 of->write_output_view(this->offset(), oview_size, oview);
5008 // Update the data size and address alignment of the stub table at the end
5009 // of a relaxation pass. Return true if either the data size or the
5010 // alignment changed in this relaxation pass.
5012 template<bool big_endian>
5014 Stub_table<big_endian>::update_data_size_and_addralign()
5016 // Go over all stubs in table to compute data size and address alignment.
5017 off_t size = this->reloc_stubs_size_;
5018 unsigned addralign = this->reloc_stubs_addralign_;
5020 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5021 p != this->cortex_a8_stubs_.end();
5024 const Stub_template* stub_template = p->second->stub_template();
5025 addralign = std::max(addralign, stub_template->alignment());
5026 size = (align_address(size, stub_template->alignment())
5027 + stub_template->size());
5030 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5031 p != this->arm_v4bx_stubs_.end();
5037 const Stub_template* stub_template = (*p)->stub_template();
5038 addralign = std::max(addralign, stub_template->alignment());
5039 size = (align_address(size, stub_template->alignment())
5040 + stub_template->size());
5043 // Check if either data size or alignment changed in this pass.
5044 // Update prev_data_size_ and prev_addralign_. These will be used
5045 // as the current data size and address alignment for the next pass.
5046 bool changed = size != this->prev_data_size_;
5047 this->prev_data_size_ = size;
5049 if (addralign != this->prev_addralign_)
5051 this->prev_addralign_ = addralign;
5056 // Finalize the stubs. This sets the offsets of the stubs within the stub
5057 // table. It also marks all input sections needing Cortex-A8 workaround.
5059 template<bool big_endian>
5061 Stub_table<big_endian>::finalize_stubs()
5063 off_t off = this->reloc_stubs_size_;
5064 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5065 p != this->cortex_a8_stubs_.end();
5068 Cortex_a8_stub* stub = p->second;
5069 const Stub_template* stub_template = stub->stub_template();
5070 uint64_t stub_addralign = stub_template->alignment();
5071 off = align_address(off, stub_addralign);
5072 stub->set_offset(off);
5073 off += stub_template->size();
5075 // Mark input section so that we can determine later if a code section
5076 // needs the Cortex-A8 workaround quickly.
5077 Arm_relobj<big_endian>* arm_relobj =
5078 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5079 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5082 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5083 p != this->arm_v4bx_stubs_.end();
5089 const Stub_template* stub_template = (*p)->stub_template();
5090 uint64_t stub_addralign = stub_template->alignment();
5091 off = align_address(off, stub_addralign);
5092 (*p)->set_offset(off);
5093 off += stub_template->size();
5096 gold_assert(off <= this->prev_data_size_);
5099 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5100 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5101 // of the address range seen by the linker.
5103 template<bool big_endian>
5105 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5106 Target_arm<big_endian>* arm_target,
5107 unsigned char* view,
5108 Arm_address view_address,
5109 section_size_type view_size)
5111 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5112 for (Cortex_a8_stub_list::const_iterator p =
5113 this->cortex_a8_stubs_.lower_bound(view_address);
5114 ((p != this->cortex_a8_stubs_.end())
5115 && (p->first < (view_address + view_size)));
5118 // We do not store the THUMB bit in the LSB of either the branch address
5119 // or the stub offset. There is no need to strip the LSB.
5120 Arm_address branch_address = p->first;
5121 const Cortex_a8_stub* stub = p->second;
5122 Arm_address stub_address = this->address() + stub->offset();
5124 // Offset of the branch instruction relative to this view.
5125 section_size_type offset =
5126 convert_to_section_size_type(branch_address - view_address);
5127 gold_assert((offset + 4) <= view_size);
5129 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5130 view + offset, branch_address);
5134 // Arm_input_section methods.
5136 // Initialize an Arm_input_section.
5138 template<bool big_endian>
5140 Arm_input_section<big_endian>::init()
5142 Relobj* relobj = this->relobj();
5143 unsigned int shndx = this->shndx();
5145 // We have to cache original size, alignment and contents to avoid locking
5146 // the original file.
5147 this->original_addralign_ =
5148 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5150 // This is not efficient but we expect only a small number of relaxed
5151 // input sections for stubs.
5152 section_size_type section_size;
5153 const unsigned char* section_contents =
5154 relobj->section_contents(shndx, §ion_size, false);
5155 this->original_size_ =
5156 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5158 gold_assert(this->original_contents_ == NULL);
5159 this->original_contents_ = new unsigned char[section_size];
5160 memcpy(this->original_contents_, section_contents, section_size);
5162 // We want to make this look like the original input section after
5163 // output sections are finalized.
5164 Output_section* os = relobj->output_section(shndx);
5165 off_t offset = relobj->output_section_offset(shndx);
5166 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5167 this->set_address(os->address() + offset);
5168 this->set_file_offset(os->offset() + offset);
5170 this->set_current_data_size(this->original_size_);
5171 this->finalize_data_size();
5174 template<bool big_endian>
5176 Arm_input_section<big_endian>::do_write(Output_file* of)
5178 // We have to write out the original section content.
5179 gold_assert(this->original_contents_ != NULL);
5180 of->write(this->offset(), this->original_contents_,
5181 this->original_size_);
5183 // If this owns a stub table and it is not empty, write it.
5184 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5185 this->stub_table_->write(of);
5188 // Finalize data size.
5190 template<bool big_endian>
5192 Arm_input_section<big_endian>::set_final_data_size()
5194 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5196 if (this->is_stub_table_owner())
5198 this->stub_table_->finalize_data_size();
5199 off = align_address(off, this->stub_table_->addralign());
5200 off += this->stub_table_->data_size();
5202 this->set_data_size(off);
5205 // Reset address and file offset.
5207 template<bool big_endian>
5209 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5211 // Size of the original input section contents.
5212 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5214 // If this is a stub table owner, account for the stub table size.
5215 if (this->is_stub_table_owner())
5217 Stub_table<big_endian>* stub_table = this->stub_table_;
5219 // Reset the stub table's address and file offset. The
5220 // current data size for child will be updated after that.
5221 stub_table_->reset_address_and_file_offset();
5222 off = align_address(off, stub_table_->addralign());
5223 off += stub_table->current_data_size();
5226 this->set_current_data_size(off);
5229 // Arm_exidx_cantunwind methods.
5231 // Write this to Output file OF for a fixed endianness.
5233 template<bool big_endian>
5235 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5237 off_t offset = this->offset();
5238 const section_size_type oview_size = 8;
5239 unsigned char* const oview = of->get_output_view(offset, oview_size);
5241 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
5243 Output_section* os = this->relobj_->output_section(this->shndx_);
5244 gold_assert(os != NULL);
5246 Arm_relobj<big_endian>* arm_relobj =
5247 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5248 Arm_address output_offset =
5249 arm_relobj->get_output_section_offset(this->shndx_);
5250 Arm_address section_start;
5251 section_size_type section_size;
5253 // Find out the end of the text section referred by this.
5254 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5256 section_start = os->address() + output_offset;
5257 const Arm_exidx_input_section* exidx_input_section =
5258 arm_relobj->exidx_input_section_by_link(this->shndx_);
5259 gold_assert(exidx_input_section != NULL);
5261 convert_to_section_size_type(exidx_input_section->text_size());
5265 // Currently this only happens for a relaxed section.
5266 const Output_relaxed_input_section* poris =
5267 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5268 gold_assert(poris != NULL);
5269 section_start = poris->address();
5270 section_size = convert_to_section_size_type(poris->data_size());
5273 // We always append this to the end of an EXIDX section.
5274 Arm_address output_address = section_start + section_size;
5276 // Write out the entry. The first word either points to the beginning
5277 // or after the end of a text section. The second word is the special
5278 // EXIDX_CANTUNWIND value.
5279 uint32_t prel31_offset = output_address - this->address();
5280 if (utils::has_overflow<31>(offset))
5281 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5282 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5283 prel31_offset & 0x7fffffffU);
5284 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5285 elfcpp::EXIDX_CANTUNWIND);
5287 of->write_output_view(this->offset(), oview_size, oview);
5290 // Arm_exidx_merged_section methods.
5292 // Constructor for Arm_exidx_merged_section.
5293 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5294 // SECTION_OFFSET_MAP points to a section offset map describing how
5295 // parts of the input section are mapped to output. DELETED_BYTES is
5296 // the number of bytes deleted from the EXIDX input section.
5298 Arm_exidx_merged_section::Arm_exidx_merged_section(
5299 const Arm_exidx_input_section& exidx_input_section,
5300 const Arm_exidx_section_offset_map& section_offset_map,
5301 uint32_t deleted_bytes)
5302 : Output_relaxed_input_section(exidx_input_section.relobj(),
5303 exidx_input_section.shndx(),
5304 exidx_input_section.addralign()),
5305 exidx_input_section_(exidx_input_section),
5306 section_offset_map_(section_offset_map)
5308 // If we retain or discard the whole EXIDX input section, we would
5310 gold_assert(deleted_bytes != 0
5311 && deleted_bytes != this->exidx_input_section_.size());
5313 // Fix size here so that we do not need to implement set_final_data_size.
5314 uint32_t size = exidx_input_section.size() - deleted_bytes;
5315 this->set_data_size(size);
5316 this->fix_data_size();
5318 // Allocate buffer for section contents and build contents.
5319 this->section_contents_ = new unsigned char[size];
5322 // Build the contents of a merged EXIDX output section.
5325 Arm_exidx_merged_section::build_contents(
5326 const unsigned char* original_contents,
5327 section_size_type original_size)
5329 // Go over spans of input offsets and write only those that are not
5331 section_offset_type in_start = 0;
5332 section_offset_type out_start = 0;
5333 section_offset_type in_max =
5334 convert_types<section_offset_type>(original_size);
5335 section_offset_type out_max =
5336 convert_types<section_offset_type>(this->data_size());
5337 for (Arm_exidx_section_offset_map::const_iterator p =
5338 this->section_offset_map_.begin();
5339 p != this->section_offset_map_.end();
5342 section_offset_type in_end = p->first;
5343 gold_assert(in_end >= in_start);
5344 section_offset_type out_end = p->second;
5345 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5348 size_t out_chunk_size =
5349 convert_types<size_t>(out_end - out_start + 1);
5351 gold_assert(out_chunk_size == in_chunk_size
5352 && in_end < in_max && out_end < out_max);
5354 memcpy(this->section_contents_ + out_start,
5355 original_contents + in_start,
5357 out_start += out_chunk_size;
5359 in_start += in_chunk_size;
5363 // Given an input OBJECT, an input section index SHNDX within that
5364 // object, and an OFFSET relative to the start of that input
5365 // section, return whether or not the corresponding offset within
5366 // the output section is known. If this function returns true, it
5367 // sets *POUTPUT to the output offset. The value -1 indicates that
5368 // this input offset is being discarded.
5371 Arm_exidx_merged_section::do_output_offset(
5372 const Relobj* relobj,
5374 section_offset_type offset,
5375 section_offset_type* poutput) const
5377 // We only handle offsets for the original EXIDX input section.
5378 if (relobj != this->exidx_input_section_.relobj()
5379 || shndx != this->exidx_input_section_.shndx())
5382 section_offset_type section_size =
5383 convert_types<section_offset_type>(this->exidx_input_section_.size());
5384 if (offset < 0 || offset >= section_size)
5385 // Input offset is out of valid range.
5389 // We need to look up the section offset map to determine the output
5390 // offset. Find the reference point in map that is first offset
5391 // bigger than or equal to this offset.
5392 Arm_exidx_section_offset_map::const_iterator p =
5393 this->section_offset_map_.lower_bound(offset);
5395 // The section offset maps are build such that this should not happen if
5396 // input offset is in the valid range.
5397 gold_assert(p != this->section_offset_map_.end());
5399 // We need to check if this is dropped.
5400 section_offset_type ref = p->first;
5401 section_offset_type mapped_ref = p->second;
5403 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5404 // Offset is present in output.
5405 *poutput = mapped_ref + (offset - ref);
5407 // Offset is discarded owing to EXIDX entry merging.
5414 // Write this to output file OF.
5417 Arm_exidx_merged_section::do_write(Output_file* of)
5419 off_t offset = this->offset();
5420 const section_size_type oview_size = this->data_size();
5421 unsigned char* const oview = of->get_output_view(offset, oview_size);
5423 Output_section* os = this->relobj()->output_section(this->shndx());
5424 gold_assert(os != NULL);
5426 memcpy(oview, this->section_contents_, oview_size);
5427 of->write_output_view(this->offset(), oview_size, oview);
5430 // Arm_exidx_fixup methods.
5432 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5433 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5434 // points to the end of the last seen EXIDX section.
5437 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5439 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5440 && this->last_input_section_ != NULL)
5442 Relobj* relobj = this->last_input_section_->relobj();
5443 unsigned int text_shndx = this->last_input_section_->link();
5444 Arm_exidx_cantunwind* cantunwind =
5445 new Arm_exidx_cantunwind(relobj, text_shndx);
5446 this->exidx_output_section_->add_output_section_data(cantunwind);
5447 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5451 // Process an EXIDX section entry in input. Return whether this entry
5452 // can be deleted in the output. SECOND_WORD in the second word of the
5456 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5459 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5461 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5462 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5463 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5465 else if ((second_word & 0x80000000) != 0)
5467 // Inlined unwinding data. Merge if equal to previous.
5468 delete_entry = (merge_exidx_entries_
5469 && this->last_unwind_type_ == UT_INLINED_ENTRY
5470 && this->last_inlined_entry_ == second_word);
5471 this->last_unwind_type_ = UT_INLINED_ENTRY;
5472 this->last_inlined_entry_ = second_word;
5476 // Normal table entry. In theory we could merge these too,
5477 // but duplicate entries are likely to be much less common.
5478 delete_entry = false;
5479 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5481 return delete_entry;
5484 // Update the current section offset map during EXIDX section fix-up.
5485 // If there is no map, create one. INPUT_OFFSET is the offset of a
5486 // reference point, DELETED_BYTES is the number of deleted by in the
5487 // section so far. If DELETE_ENTRY is true, the reference point and
5488 // all offsets after the previous reference point are discarded.
5491 Arm_exidx_fixup::update_offset_map(
5492 section_offset_type input_offset,
5493 section_size_type deleted_bytes,
5496 if (this->section_offset_map_ == NULL)
5497 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5498 section_offset_type output_offset;
5500 output_offset = Arm_exidx_input_section::invalid_offset;
5502 output_offset = input_offset - deleted_bytes;
5503 (*this->section_offset_map_)[input_offset] = output_offset;
5506 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5507 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5508 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5509 // If some entries are merged, also store a pointer to a newly created
5510 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5511 // owns the map and is responsible for releasing it after use.
5513 template<bool big_endian>
5515 Arm_exidx_fixup::process_exidx_section(
5516 const Arm_exidx_input_section* exidx_input_section,
5517 const unsigned char* section_contents,
5518 section_size_type section_size,
5519 Arm_exidx_section_offset_map** psection_offset_map)
5521 Relobj* relobj = exidx_input_section->relobj();
5522 unsigned shndx = exidx_input_section->shndx();
5524 if ((section_size % 8) != 0)
5526 // Something is wrong with this section. Better not touch it.
5527 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5528 relobj->name().c_str(), shndx);
5529 this->last_input_section_ = exidx_input_section;
5530 this->last_unwind_type_ = UT_NONE;
5534 uint32_t deleted_bytes = 0;
5535 bool prev_delete_entry = false;
5536 gold_assert(this->section_offset_map_ == NULL);
5538 for (section_size_type i = 0; i < section_size; i += 8)
5540 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5542 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5543 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5545 bool delete_entry = this->process_exidx_entry(second_word);
5547 // Entry deletion causes changes in output offsets. We use a std::map
5548 // to record these. And entry (x, y) means input offset x
5549 // is mapped to output offset y. If y is invalid_offset, then x is
5550 // dropped in the output. Because of the way std::map::lower_bound
5551 // works, we record the last offset in a region w.r.t to keeping or
5552 // dropping. If there is no entry (x0, y0) for an input offset x0,
5553 // the output offset y0 of it is determined by the output offset y1 of
5554 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5555 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5557 if (delete_entry != prev_delete_entry && i != 0)
5558 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5560 // Update total deleted bytes for this entry.
5564 prev_delete_entry = delete_entry;
5567 // If section offset map is not NULL, make an entry for the end of
5569 if (this->section_offset_map_ != NULL)
5570 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5572 *psection_offset_map = this->section_offset_map_;
5573 this->section_offset_map_ = NULL;
5574 this->last_input_section_ = exidx_input_section;
5576 // Set the first output text section so that we can link the EXIDX output
5577 // section to it. Ignore any EXIDX input section that is completely merged.
5578 if (this->first_output_text_section_ == NULL
5579 && deleted_bytes != section_size)
5581 unsigned int link = exidx_input_section->link();
5582 Output_section* os = relobj->output_section(link);
5583 gold_assert(os != NULL);
5584 this->first_output_text_section_ = os;
5587 return deleted_bytes;
5590 // Arm_output_section methods.
5592 // Create a stub group for input sections from BEGIN to END. OWNER
5593 // points to the input section to be the owner a new stub table.
5595 template<bool big_endian>
5597 Arm_output_section<big_endian>::create_stub_group(
5598 Input_section_list::const_iterator begin,
5599 Input_section_list::const_iterator end,
5600 Input_section_list::const_iterator owner,
5601 Target_arm<big_endian>* target,
5602 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5605 // We use a different kind of relaxed section in an EXIDX section.
5606 // The static casting from Output_relaxed_input_section to
5607 // Arm_input_section is invalid in an EXIDX section. We are okay
5608 // because we should not be calling this for an EXIDX section.
5609 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5611 // Currently we convert ordinary input sections into relaxed sections only
5612 // at this point but we may want to support creating relaxed input section
5613 // very early. So we check here to see if owner is already a relaxed
5616 Arm_input_section<big_endian>* arm_input_section;
5617 if (owner->is_relaxed_input_section())
5620 Arm_input_section<big_endian>::as_arm_input_section(
5621 owner->relaxed_input_section());
5625 gold_assert(owner->is_input_section());
5626 // Create a new relaxed input section. We need to lock the original
5628 Task_lock_obj<Object> tl(task, owner->relobj());
5630 target->new_arm_input_section(owner->relobj(), owner->shndx());
5631 new_relaxed_sections->push_back(arm_input_section);
5634 // Create a stub table.
5635 Stub_table<big_endian>* stub_table =
5636 target->new_stub_table(arm_input_section);
5638 arm_input_section->set_stub_table(stub_table);
5640 Input_section_list::const_iterator p = begin;
5641 Input_section_list::const_iterator prev_p;
5643 // Look for input sections or relaxed input sections in [begin ... end].
5646 if (p->is_input_section() || p->is_relaxed_input_section())
5648 // The stub table information for input sections live
5649 // in their objects.
5650 Arm_relobj<big_endian>* arm_relobj =
5651 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5652 arm_relobj->set_stub_table(p->shndx(), stub_table);
5656 while (prev_p != end);
5659 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5660 // of stub groups. We grow a stub group by adding input section until the
5661 // size is just below GROUP_SIZE. The last input section will be converted
5662 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5663 // input section after the stub table, effectively double the group size.
5665 // This is similar to the group_sections() function in elf32-arm.c but is
5666 // implemented differently.
5668 template<bool big_endian>
5670 Arm_output_section<big_endian>::group_sections(
5671 section_size_type group_size,
5672 bool stubs_always_after_branch,
5673 Target_arm<big_endian>* target,
5676 // We only care about sections containing code.
5677 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5680 // States for grouping.
5683 // No group is being built.
5685 // A group is being built but the stub table is not found yet.
5686 // We keep group a stub group until the size is just under GROUP_SIZE.
5687 // The last input section in the group will be used as the stub table.
5688 FINDING_STUB_SECTION,
5689 // A group is being built and we have already found a stub table.
5690 // We enter this state to grow a stub group by adding input section
5691 // after the stub table. This effectively doubles the group size.
5695 // Any newly created relaxed sections are stored here.
5696 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5698 State state = NO_GROUP;
5699 section_size_type off = 0;
5700 section_size_type group_begin_offset = 0;
5701 section_size_type group_end_offset = 0;
5702 section_size_type stub_table_end_offset = 0;
5703 Input_section_list::const_iterator group_begin =
5704 this->input_sections().end();
5705 Input_section_list::const_iterator stub_table =
5706 this->input_sections().end();
5707 Input_section_list::const_iterator group_end = this->input_sections().end();
5708 for (Input_section_list::const_iterator p = this->input_sections().begin();
5709 p != this->input_sections().end();
5712 section_size_type section_begin_offset =
5713 align_address(off, p->addralign());
5714 section_size_type section_end_offset =
5715 section_begin_offset + p->data_size();
5717 // Check to see if we should group the previously seen sections.
5723 case FINDING_STUB_SECTION:
5724 // Adding this section makes the group larger than GROUP_SIZE.
5725 if (section_end_offset - group_begin_offset >= group_size)
5727 if (stubs_always_after_branch)
5729 gold_assert(group_end != this->input_sections().end());
5730 this->create_stub_group(group_begin, group_end, group_end,
5731 target, &new_relaxed_sections,
5737 // But wait, there's more! Input sections up to
5738 // stub_group_size bytes after the stub table can be
5739 // handled by it too.
5740 state = HAS_STUB_SECTION;
5741 stub_table = group_end;
5742 stub_table_end_offset = group_end_offset;
5747 case HAS_STUB_SECTION:
5748 // Adding this section makes the post stub-section group larger
5750 if (section_end_offset - stub_table_end_offset >= group_size)
5752 gold_assert(group_end != this->input_sections().end());
5753 this->create_stub_group(group_begin, group_end, stub_table,
5754 target, &new_relaxed_sections, task);
5763 // If we see an input section and currently there is no group, start
5764 // a new one. Skip any empty sections. We look at the data size
5765 // instead of calling p->relobj()->section_size() to avoid locking.
5766 if ((p->is_input_section() || p->is_relaxed_input_section())
5767 && (p->data_size() != 0))
5769 if (state == NO_GROUP)
5771 state = FINDING_STUB_SECTION;
5773 group_begin_offset = section_begin_offset;
5776 // Keep track of the last input section seen.
5778 group_end_offset = section_end_offset;
5781 off = section_end_offset;
5784 // Create a stub group for any ungrouped sections.
5785 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5787 gold_assert(group_end != this->input_sections().end());
5788 this->create_stub_group(group_begin, group_end,
5789 (state == FINDING_STUB_SECTION
5792 target, &new_relaxed_sections, task);
5795 // Convert input section into relaxed input section in a batch.
5796 if (!new_relaxed_sections.empty())
5797 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5799 // Update the section offsets
5800 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5802 Arm_relobj<big_endian>* arm_relobj =
5803 Arm_relobj<big_endian>::as_arm_relobj(
5804 new_relaxed_sections[i]->relobj());
5805 unsigned int shndx = new_relaxed_sections[i]->shndx();
5806 // Tell Arm_relobj that this input section is converted.
5807 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5811 // Append non empty text sections in this to LIST in ascending
5812 // order of their position in this.
5814 template<bool big_endian>
5816 Arm_output_section<big_endian>::append_text_sections_to_list(
5817 Text_section_list* list)
5819 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5821 for (Input_section_list::const_iterator p = this->input_sections().begin();
5822 p != this->input_sections().end();
5825 // We only care about plain or relaxed input sections. We also
5826 // ignore any merged sections.
5827 if (p->is_input_section() || p->is_relaxed_input_section())
5828 list->push_back(Text_section_list::value_type(p->relobj(),
5833 template<bool big_endian>
5835 Arm_output_section<big_endian>::fix_exidx_coverage(
5837 const Text_section_list& sorted_text_sections,
5838 Symbol_table* symtab,
5839 bool merge_exidx_entries,
5842 // We should only do this for the EXIDX output section.
5843 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5845 // We don't want the relaxation loop to undo these changes, so we discard
5846 // the current saved states and take another one after the fix-up.
5847 this->discard_states();
5849 // Remove all input sections.
5850 uint64_t address = this->address();
5851 typedef std::list<Output_section::Input_section> Input_section_list;
5852 Input_section_list input_sections;
5853 this->reset_address_and_file_offset();
5854 this->get_input_sections(address, std::string(""), &input_sections);
5856 if (!this->input_sections().empty())
5857 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5859 // Go through all the known input sections and record them.
5860 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5861 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5862 Section_id_hash> Text_to_exidx_map;
5863 Text_to_exidx_map text_to_exidx_map;
5864 for (Input_section_list::const_iterator p = input_sections.begin();
5865 p != input_sections.end();
5868 // This should never happen. At this point, we should only see
5869 // plain EXIDX input sections.
5870 gold_assert(!p->is_relaxed_input_section());
5871 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5874 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5876 // Go over the sorted text sections.
5877 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5878 Section_id_set processed_input_sections;
5879 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5880 p != sorted_text_sections.end();
5883 Relobj* relobj = p->first;
5884 unsigned int shndx = p->second;
5886 Arm_relobj<big_endian>* arm_relobj =
5887 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5888 const Arm_exidx_input_section* exidx_input_section =
5889 arm_relobj->exidx_input_section_by_link(shndx);
5891 // If this text section has no EXIDX section or if the EXIDX section
5892 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5893 // of the last seen EXIDX section.
5894 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5896 exidx_fixup.add_exidx_cantunwind_as_needed();
5900 Relobj* exidx_relobj = exidx_input_section->relobj();
5901 unsigned int exidx_shndx = exidx_input_section->shndx();
5902 Section_id sid(exidx_relobj, exidx_shndx);
5903 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5904 if (iter == text_to_exidx_map.end())
5906 // This is odd. We have not seen this EXIDX input section before.
5907 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5908 // issue a warning instead. We assume the user knows what he
5909 // or she is doing. Otherwise, this is an error.
5910 if (layout->script_options()->saw_sections_clause())
5911 gold_warning(_("unwinding may not work because EXIDX input section"
5912 " %u of %s is not in EXIDX output section"),
5913 exidx_shndx, exidx_relobj->name().c_str());
5915 gold_error(_("unwinding may not work because EXIDX input section"
5916 " %u of %s is not in EXIDX output section"),
5917 exidx_shndx, exidx_relobj->name().c_str());
5919 exidx_fixup.add_exidx_cantunwind_as_needed();
5923 // We need to access the contents of the EXIDX section, lock the
5925 Task_lock_obj<Object> tl(task, exidx_relobj);
5926 section_size_type exidx_size;
5927 const unsigned char* exidx_contents =
5928 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5930 // Fix up coverage and append input section to output data list.
5931 Arm_exidx_section_offset_map* section_offset_map = NULL;
5932 uint32_t deleted_bytes =
5933 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5936 §ion_offset_map);
5938 if (deleted_bytes == exidx_input_section->size())
5940 // The whole EXIDX section got merged. Remove it from output.
5941 gold_assert(section_offset_map == NULL);
5942 exidx_relobj->set_output_section(exidx_shndx, NULL);
5944 // All local symbols defined in this input section will be dropped.
5945 // We need to adjust output local symbol count.
5946 arm_relobj->set_output_local_symbol_count_needs_update();
5948 else if (deleted_bytes > 0)
5950 // Some entries are merged. We need to convert this EXIDX input
5951 // section into a relaxed section.
5952 gold_assert(section_offset_map != NULL);
5954 Arm_exidx_merged_section* merged_section =
5955 new Arm_exidx_merged_section(*exidx_input_section,
5956 *section_offset_map, deleted_bytes);
5957 merged_section->build_contents(exidx_contents, exidx_size);
5959 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5960 this->add_relaxed_input_section(layout, merged_section, secname);
5961 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5963 // All local symbols defined in discarded portions of this input
5964 // section will be dropped. We need to adjust output local symbol
5966 arm_relobj->set_output_local_symbol_count_needs_update();
5970 // Just add back the EXIDX input section.
5971 gold_assert(section_offset_map == NULL);
5972 const Output_section::Input_section* pis = iter->second;
5973 gold_assert(pis->is_input_section());
5974 this->add_script_input_section(*pis);
5977 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5980 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5981 exidx_fixup.add_exidx_cantunwind_as_needed();
5983 // Remove any known EXIDX input sections that are not processed.
5984 for (Input_section_list::const_iterator p = input_sections.begin();
5985 p != input_sections.end();
5988 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5989 == processed_input_sections.end())
5991 // We discard a known EXIDX section because its linked
5992 // text section has been folded by ICF. We also discard an
5993 // EXIDX section with error, the output does not matter in this
5994 // case. We do this to avoid triggering asserts.
5995 Arm_relobj<big_endian>* arm_relobj =
5996 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5997 const Arm_exidx_input_section* exidx_input_section =
5998 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5999 gold_assert(exidx_input_section != NULL);
6000 if (!exidx_input_section->has_errors())
6002 unsigned int text_shndx = exidx_input_section->link();
6003 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6006 // Remove this from link. We also need to recount the
6008 p->relobj()->set_output_section(p->shndx(), NULL);
6009 arm_relobj->set_output_local_symbol_count_needs_update();
6013 // Link exidx output section to the first seen output section and
6014 // set correct entry size.
6015 this->set_link_section(exidx_fixup.first_output_text_section());
6016 this->set_entsize(8);
6018 // Make changes permanent.
6019 this->save_states();
6020 this->set_section_offsets_need_adjustment();
6023 // Link EXIDX output sections to text output sections.
6025 template<bool big_endian>
6027 Arm_output_section<big_endian>::set_exidx_section_link()
6029 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6030 if (!this->input_sections().empty())
6032 Input_section_list::const_iterator p = this->input_sections().begin();
6033 Arm_relobj<big_endian>* arm_relobj =
6034 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6035 unsigned exidx_shndx = p->shndx();
6036 const Arm_exidx_input_section* exidx_input_section =
6037 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6038 gold_assert(exidx_input_section != NULL);
6039 unsigned int text_shndx = exidx_input_section->link();
6040 Output_section* os = arm_relobj->output_section(text_shndx);
6041 this->set_link_section(os);
6045 // Arm_relobj methods.
6047 // Determine if an input section is scannable for stub processing. SHDR is
6048 // the header of the section and SHNDX is the section index. OS is the output
6049 // section for the input section and SYMTAB is the global symbol table used to
6050 // look up ICF information.
6052 template<bool big_endian>
6054 Arm_relobj<big_endian>::section_is_scannable(
6055 const elfcpp::Shdr<32, big_endian>& shdr,
6057 const Output_section* os,
6058 const Symbol_table* symtab)
6060 // Skip any empty sections, unallocated sections or sections whose
6061 // type are not SHT_PROGBITS.
6062 if (shdr.get_sh_size() == 0
6063 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6064 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6067 // Skip any discarded or ICF'ed sections.
6068 if (os == NULL || symtab->is_section_folded(this, shndx))
6071 // If this requires special offset handling, check to see if it is
6072 // a relaxed section. If this is not, then it is a merged section that
6073 // we cannot handle.
6074 if (this->is_output_section_offset_invalid(shndx))
6076 const Output_relaxed_input_section* poris =
6077 os->find_relaxed_input_section(this, shndx);
6085 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6086 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6088 template<bool big_endian>
6090 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6091 const elfcpp::Shdr<32, big_endian>& shdr,
6092 const Relobj::Output_sections& out_sections,
6093 const Symbol_table* symtab,
6094 const unsigned char* pshdrs)
6096 unsigned int sh_type = shdr.get_sh_type();
6097 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6100 // Ignore empty section.
6101 off_t sh_size = shdr.get_sh_size();
6105 // Ignore reloc section with unexpected symbol table. The
6106 // error will be reported in the final link.
6107 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6110 unsigned int reloc_size;
6111 if (sh_type == elfcpp::SHT_REL)
6112 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6114 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6116 // Ignore reloc section with unexpected entsize or uneven size.
6117 // The error will be reported in the final link.
6118 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6121 // Ignore reloc section with bad info. This error will be
6122 // reported in the final link.
6123 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6124 if (index >= this->shnum())
6127 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6128 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6129 return this->section_is_scannable(text_shdr, index,
6130 out_sections[index], symtab);
6133 // Return the output address of either a plain input section or a relaxed
6134 // input section. SHNDX is the section index. We define and use this
6135 // instead of calling Output_section::output_address because that is slow
6136 // for large output.
6138 template<bool big_endian>
6140 Arm_relobj<big_endian>::simple_input_section_output_address(
6144 if (this->is_output_section_offset_invalid(shndx))
6146 const Output_relaxed_input_section* poris =
6147 os->find_relaxed_input_section(this, shndx);
6148 // We do not handle merged sections here.
6149 gold_assert(poris != NULL);
6150 return poris->address();
6153 return os->address() + this->get_output_section_offset(shndx);
6156 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6157 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6159 template<bool big_endian>
6161 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6162 const elfcpp::Shdr<32, big_endian>& shdr,
6165 const Symbol_table* symtab)
6167 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6170 // If the section does not cross any 4K-boundaries, it does not need to
6172 Arm_address address = this->simple_input_section_output_address(shndx, os);
6173 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6179 // Scan a section for Cortex-A8 workaround.
6181 template<bool big_endian>
6183 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6184 const elfcpp::Shdr<32, big_endian>& shdr,
6187 Target_arm<big_endian>* arm_target)
6189 // Look for the first mapping symbol in this section. It should be
6191 Mapping_symbol_position section_start(shndx, 0);
6192 typename Mapping_symbols_info::const_iterator p =
6193 this->mapping_symbols_info_.lower_bound(section_start);
6195 // There are no mapping symbols for this section. Treat it as a data-only
6196 // section. Issue a warning if section is marked as containing
6198 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6200 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6201 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6202 "erratum because it has no mapping symbols."),
6203 shndx, this->name().c_str());
6207 Arm_address output_address =
6208 this->simple_input_section_output_address(shndx, os);
6210 // Get the section contents.
6211 section_size_type input_view_size = 0;
6212 const unsigned char* input_view =
6213 this->section_contents(shndx, &input_view_size, false);
6215 // We need to go through the mapping symbols to determine what to
6216 // scan. There are two reasons. First, we should look at THUMB code and
6217 // THUMB code only. Second, we only want to look at the 4K-page boundary
6218 // to speed up the scanning.
6220 while (p != this->mapping_symbols_info_.end()
6221 && p->first.first == shndx)
6223 typename Mapping_symbols_info::const_iterator next =
6224 this->mapping_symbols_info_.upper_bound(p->first);
6226 // Only scan part of a section with THUMB code.
6227 if (p->second == 't')
6229 // Determine the end of this range.
6230 section_size_type span_start =
6231 convert_to_section_size_type(p->first.second);
6232 section_size_type span_end;
6233 if (next != this->mapping_symbols_info_.end()
6234 && next->first.first == shndx)
6235 span_end = convert_to_section_size_type(next->first.second);
6237 span_end = convert_to_section_size_type(shdr.get_sh_size());
6239 if (((span_start + output_address) & ~0xfffUL)
6240 != ((span_end + output_address - 1) & ~0xfffUL))
6242 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6243 span_start, span_end,
6253 // Scan relocations for stub generation.
6255 template<bool big_endian>
6257 Arm_relobj<big_endian>::scan_sections_for_stubs(
6258 Target_arm<big_endian>* arm_target,
6259 const Symbol_table* symtab,
6260 const Layout* layout)
6262 unsigned int shnum = this->shnum();
6263 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6265 // Read the section headers.
6266 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6270 // To speed up processing, we set up hash tables for fast lookup of
6271 // input offsets to output addresses.
6272 this->initialize_input_to_output_maps();
6274 const Relobj::Output_sections& out_sections(this->output_sections());
6276 Relocate_info<32, big_endian> relinfo;
6277 relinfo.symtab = symtab;
6278 relinfo.layout = layout;
6279 relinfo.object = this;
6281 // Do relocation stubs scanning.
6282 const unsigned char* p = pshdrs + shdr_size;
6283 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6285 const elfcpp::Shdr<32, big_endian> shdr(p);
6286 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6289 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6290 Arm_address output_offset = this->get_output_section_offset(index);
6291 Arm_address output_address;
6292 if (output_offset != invalid_address)
6293 output_address = out_sections[index]->address() + output_offset;
6296 // Currently this only happens for a relaxed section.
6297 const Output_relaxed_input_section* poris =
6298 out_sections[index]->find_relaxed_input_section(this, index);
6299 gold_assert(poris != NULL);
6300 output_address = poris->address();
6303 // Get the relocations.
6304 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6308 // Get the section contents. This does work for the case in which
6309 // we modify the contents of an input section. We need to pass the
6310 // output view under such circumstances.
6311 section_size_type input_view_size = 0;
6312 const unsigned char* input_view =
6313 this->section_contents(index, &input_view_size, false);
6315 relinfo.reloc_shndx = i;
6316 relinfo.data_shndx = index;
6317 unsigned int sh_type = shdr.get_sh_type();
6318 unsigned int reloc_size;
6319 if (sh_type == elfcpp::SHT_REL)
6320 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6322 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6324 Output_section* os = out_sections[index];
6325 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6326 shdr.get_sh_size() / reloc_size,
6328 output_offset == invalid_address,
6329 input_view, output_address,
6334 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6335 // after its relocation section, if there is one, is processed for
6336 // relocation stubs. Merging this loop with the one above would have been
6337 // complicated since we would have had to make sure that relocation stub
6338 // scanning is done first.
6339 if (arm_target->fix_cortex_a8())
6341 const unsigned char* p = pshdrs + shdr_size;
6342 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6344 const elfcpp::Shdr<32, big_endian> shdr(p);
6345 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6348 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6353 // After we've done the relocations, we release the hash tables,
6354 // since we no longer need them.
6355 this->free_input_to_output_maps();
6358 // Count the local symbols. The ARM backend needs to know if a symbol
6359 // is a THUMB function or not. For global symbols, it is easy because
6360 // the Symbol object keeps the ELF symbol type. For local symbol it is
6361 // harder because we cannot access this information. So we override the
6362 // do_count_local_symbol in parent and scan local symbols to mark
6363 // THUMB functions. This is not the most efficient way but I do not want to
6364 // slow down other ports by calling a per symbol target hook inside
6365 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6367 template<bool big_endian>
6369 Arm_relobj<big_endian>::do_count_local_symbols(
6370 Stringpool_template<char>* pool,
6371 Stringpool_template<char>* dynpool)
6373 // We need to fix-up the values of any local symbols whose type are
6376 // Ask parent to count the local symbols.
6377 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6378 const unsigned int loccount = this->local_symbol_count();
6382 // Initialize the thumb function bit-vector.
6383 std::vector<bool> empty_vector(loccount, false);
6384 this->local_symbol_is_thumb_function_.swap(empty_vector);
6386 // Read the symbol table section header.
6387 const unsigned int symtab_shndx = this->symtab_shndx();
6388 elfcpp::Shdr<32, big_endian>
6389 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6390 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6392 // Read the local symbols.
6393 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6394 gold_assert(loccount == symtabshdr.get_sh_info());
6395 off_t locsize = loccount * sym_size;
6396 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6397 locsize, true, true);
6399 // For mapping symbol processing, we need to read the symbol names.
6400 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6401 if (strtab_shndx >= this->shnum())
6403 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6407 elfcpp::Shdr<32, big_endian>
6408 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6409 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6411 this->error(_("symbol table name section has wrong type: %u"),
6412 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6415 const char* pnames =
6416 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6417 strtabshdr.get_sh_size(),
6420 // Loop over the local symbols and mark any local symbols pointing
6421 // to THUMB functions.
6423 // Skip the first dummy symbol.
6425 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6426 this->local_values();
6427 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6429 elfcpp::Sym<32, big_endian> sym(psyms);
6430 elfcpp::STT st_type = sym.get_st_type();
6431 Symbol_value<32>& lv((*plocal_values)[i]);
6432 Arm_address input_value = lv.input_value();
6434 // Check to see if this is a mapping symbol.
6435 const char* sym_name = pnames + sym.get_st_name();
6436 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6439 unsigned int input_shndx =
6440 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6441 gold_assert(is_ordinary);
6443 // Strip of LSB in case this is a THUMB symbol.
6444 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6445 this->mapping_symbols_info_[msp] = sym_name[1];
6448 if (st_type == elfcpp::STT_ARM_TFUNC
6449 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6451 // This is a THUMB function. Mark this and canonicalize the
6452 // symbol value by setting LSB.
6453 this->local_symbol_is_thumb_function_[i] = true;
6454 if ((input_value & 1) == 0)
6455 lv.set_input_value(input_value | 1);
6460 // Relocate sections.
6461 template<bool big_endian>
6463 Arm_relobj<big_endian>::do_relocate_sections(
6464 const Symbol_table* symtab,
6465 const Layout* layout,
6466 const unsigned char* pshdrs,
6468 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6470 // Call parent to relocate sections.
6471 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6472 pshdrs, of, pviews);
6474 // We do not generate stubs if doing a relocatable link.
6475 if (parameters->options().relocatable())
6478 // Relocate stub tables.
6479 unsigned int shnum = this->shnum();
6481 Target_arm<big_endian>* arm_target =
6482 Target_arm<big_endian>::default_target();
6484 Relocate_info<32, big_endian> relinfo;
6485 relinfo.symtab = symtab;
6486 relinfo.layout = layout;
6487 relinfo.object = this;
6489 for (unsigned int i = 1; i < shnum; ++i)
6491 Arm_input_section<big_endian>* arm_input_section =
6492 arm_target->find_arm_input_section(this, i);
6494 if (arm_input_section != NULL
6495 && arm_input_section->is_stub_table_owner()
6496 && !arm_input_section->stub_table()->empty())
6498 // We cannot discard a section if it owns a stub table.
6499 Output_section* os = this->output_section(i);
6500 gold_assert(os != NULL);
6502 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6503 relinfo.reloc_shdr = NULL;
6504 relinfo.data_shndx = i;
6505 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6507 gold_assert((*pviews)[i].view != NULL);
6509 // We are passed the output section view. Adjust it to cover the
6511 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6512 gold_assert((stub_table->address() >= (*pviews)[i].address)
6513 && ((stub_table->address() + stub_table->data_size())
6514 <= (*pviews)[i].address + (*pviews)[i].view_size));
6516 off_t offset = stub_table->address() - (*pviews)[i].address;
6517 unsigned char* view = (*pviews)[i].view + offset;
6518 Arm_address address = stub_table->address();
6519 section_size_type view_size = stub_table->data_size();
6521 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6525 // Apply Cortex A8 workaround if applicable.
6526 if (this->section_has_cortex_a8_workaround(i))
6528 unsigned char* view = (*pviews)[i].view;
6529 Arm_address view_address = (*pviews)[i].address;
6530 section_size_type view_size = (*pviews)[i].view_size;
6531 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6533 // Adjust view to cover section.
6534 Output_section* os = this->output_section(i);
6535 gold_assert(os != NULL);
6536 Arm_address section_address =
6537 this->simple_input_section_output_address(i, os);
6538 uint64_t section_size = this->section_size(i);
6540 gold_assert(section_address >= view_address
6541 && ((section_address + section_size)
6542 <= (view_address + view_size)));
6544 unsigned char* section_view = view + (section_address - view_address);
6546 // Apply the Cortex-A8 workaround to the output address range
6547 // corresponding to this input section.
6548 stub_table->apply_cortex_a8_workaround_to_address_range(
6557 // Find the linked text section of an EXIDX section by looking at the first
6558 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6559 // must be linked to its associated code section via the sh_link field of
6560 // its section header. However, some tools are broken and the link is not
6561 // always set. LD just drops such an EXIDX section silently, causing the
6562 // associated code not unwindabled. Here we try a little bit harder to
6563 // discover the linked code section.
6565 // PSHDR points to the section header of a relocation section of an EXIDX
6566 // section. If we can find a linked text section, return true and
6567 // store the text section index in the location PSHNDX. Otherwise
6570 template<bool big_endian>
6572 Arm_relobj<big_endian>::find_linked_text_section(
6573 const unsigned char* pshdr,
6574 const unsigned char* psyms,
6575 unsigned int* pshndx)
6577 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6579 // If there is no relocation, we cannot find the linked text section.
6581 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6582 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6584 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6585 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6587 // Get the relocations.
6588 const unsigned char* prelocs =
6589 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6591 // Find the REL31 relocation for the first word of the first EXIDX entry.
6592 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6594 Arm_address r_offset;
6595 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6596 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6598 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6599 r_info = reloc.get_r_info();
6600 r_offset = reloc.get_r_offset();
6604 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6605 r_info = reloc.get_r_info();
6606 r_offset = reloc.get_r_offset();
6609 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6610 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6613 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6615 || r_sym >= this->local_symbol_count()
6619 // This is the relocation for the first word of the first EXIDX entry.
6620 // We expect to see a local section symbol.
6621 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6622 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6623 if (sym.get_st_type() == elfcpp::STT_SECTION)
6627 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6628 gold_assert(is_ordinary);
6638 // Make an EXIDX input section object for an EXIDX section whose index is
6639 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6640 // is the section index of the linked text section.
6642 template<bool big_endian>
6644 Arm_relobj<big_endian>::make_exidx_input_section(
6646 const elfcpp::Shdr<32, big_endian>& shdr,
6647 unsigned int text_shndx,
6648 const elfcpp::Shdr<32, big_endian>& text_shdr)
6650 // Create an Arm_exidx_input_section object for this EXIDX section.
6651 Arm_exidx_input_section* exidx_input_section =
6652 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6653 shdr.get_sh_addralign(),
6654 text_shdr.get_sh_size());
6656 gold_assert(this->exidx_section_map_[shndx] == NULL);
6657 this->exidx_section_map_[shndx] = exidx_input_section;
6659 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6661 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6662 this->section_name(shndx).c_str(), shndx, text_shndx,
6663 this->name().c_str());
6664 exidx_input_section->set_has_errors();
6666 else if (this->exidx_section_map_[text_shndx] != NULL)
6668 unsigned other_exidx_shndx =
6669 this->exidx_section_map_[text_shndx]->shndx();
6670 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6672 this->section_name(shndx).c_str(), shndx,
6673 this->section_name(other_exidx_shndx).c_str(),
6674 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6675 text_shndx, this->name().c_str());
6676 exidx_input_section->set_has_errors();
6679 this->exidx_section_map_[text_shndx] = exidx_input_section;
6681 // Check section flags of text section.
6682 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6684 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6686 this->section_name(shndx).c_str(), shndx,
6687 this->section_name(text_shndx).c_str(), text_shndx,
6688 this->name().c_str());
6689 exidx_input_section->set_has_errors();
6691 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6692 // I would like to make this an error but currently ld just ignores
6694 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6696 this->section_name(shndx).c_str(), shndx,
6697 this->section_name(text_shndx).c_str(), text_shndx,
6698 this->name().c_str());
6701 // Read the symbol information.
6703 template<bool big_endian>
6705 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6707 // Call parent class to read symbol information.
6708 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6710 // If this input file is a binary file, it has no processor
6711 // specific flags and attributes section.
6712 Input_file::Format format = this->input_file()->format();
6713 if (format != Input_file::FORMAT_ELF)
6715 gold_assert(format == Input_file::FORMAT_BINARY);
6716 this->merge_flags_and_attributes_ = false;
6720 // Read processor-specific flags in ELF file header.
6721 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6722 elfcpp::Elf_sizes<32>::ehdr_size,
6724 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6725 this->processor_specific_flags_ = ehdr.get_e_flags();
6727 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6729 std::vector<unsigned int> deferred_exidx_sections;
6730 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6731 const unsigned char* pshdrs = sd->section_headers->data();
6732 const unsigned char* ps = pshdrs + shdr_size;
6733 bool must_merge_flags_and_attributes = false;
6734 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6736 elfcpp::Shdr<32, big_endian> shdr(ps);
6738 // Sometimes an object has no contents except the section name string
6739 // table and an empty symbol table with the undefined symbol. We
6740 // don't want to merge processor-specific flags from such an object.
6741 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6743 // Symbol table is not empty.
6744 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6745 elfcpp::Elf_sizes<32>::sym_size;
6746 if (shdr.get_sh_size() > sym_size)
6747 must_merge_flags_and_attributes = true;
6749 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6750 // If this is neither an empty symbol table nor a string table,
6752 must_merge_flags_and_attributes = true;
6754 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6756 gold_assert(this->attributes_section_data_ == NULL);
6757 section_offset_type section_offset = shdr.get_sh_offset();
6758 section_size_type section_size =
6759 convert_to_section_size_type(shdr.get_sh_size());
6760 const unsigned char* view =
6761 this->get_view(section_offset, section_size, true, false);
6762 this->attributes_section_data_ =
6763 new Attributes_section_data(view, section_size);
6765 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6767 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6768 if (text_shndx == elfcpp::SHN_UNDEF)
6769 deferred_exidx_sections.push_back(i);
6772 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6773 + text_shndx * shdr_size);
6774 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6776 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6777 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6778 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6779 this->section_name(i).c_str(), this->name().c_str());
6784 if (!must_merge_flags_and_attributes)
6786 gold_assert(deferred_exidx_sections.empty());
6787 this->merge_flags_and_attributes_ = false;
6791 // Some tools are broken and they do not set the link of EXIDX sections.
6792 // We look at the first relocation to figure out the linked sections.
6793 if (!deferred_exidx_sections.empty())
6795 // We need to go over the section headers again to find the mapping
6796 // from sections being relocated to their relocation sections. This is
6797 // a bit inefficient as we could do that in the loop above. However,
6798 // we do not expect any deferred EXIDX sections normally. So we do not
6799 // want to slow down the most common path.
6800 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6801 Reloc_map reloc_map;
6802 ps = pshdrs + shdr_size;
6803 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6805 elfcpp::Shdr<32, big_endian> shdr(ps);
6806 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6807 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6809 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6810 if (info_shndx >= this->shnum())
6811 gold_error(_("relocation section %u has invalid info %u"),
6813 Reloc_map::value_type value(info_shndx, i);
6814 std::pair<Reloc_map::iterator, bool> result =
6815 reloc_map.insert(value);
6817 gold_error(_("section %u has multiple relocation sections "
6819 info_shndx, i, reloc_map[info_shndx]);
6823 // Read the symbol table section header.
6824 const unsigned int symtab_shndx = this->symtab_shndx();
6825 elfcpp::Shdr<32, big_endian>
6826 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6827 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6829 // Read the local symbols.
6830 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6831 const unsigned int loccount = this->local_symbol_count();
6832 gold_assert(loccount == symtabshdr.get_sh_info());
6833 off_t locsize = loccount * sym_size;
6834 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6835 locsize, true, true);
6837 // Process the deferred EXIDX sections.
6838 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6840 unsigned int shndx = deferred_exidx_sections[i];
6841 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6842 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6843 Reloc_map::const_iterator it = reloc_map.find(shndx);
6844 if (it != reloc_map.end())
6845 find_linked_text_section(pshdrs + it->second * shdr_size,
6846 psyms, &text_shndx);
6847 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6848 + text_shndx * shdr_size);
6849 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6854 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6855 // sections for unwinding. These sections are referenced implicitly by
6856 // text sections linked in the section headers. If we ignore these implicit
6857 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6858 // will be garbage-collected incorrectly. Hence we override the same function
6859 // in the base class to handle these implicit references.
6861 template<bool big_endian>
6863 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6865 Read_relocs_data* rd)
6867 // First, call base class method to process relocations in this object.
6868 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6870 // If --gc-sections is not specified, there is nothing more to do.
6871 // This happens when --icf is used but --gc-sections is not.
6872 if (!parameters->options().gc_sections())
6875 unsigned int shnum = this->shnum();
6876 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6877 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6881 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6882 // to these from the linked text sections.
6883 const unsigned char* ps = pshdrs + shdr_size;
6884 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6886 elfcpp::Shdr<32, big_endian> shdr(ps);
6887 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6889 // Found an .ARM.exidx section, add it to the set of reachable
6890 // sections from its linked text section.
6891 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6892 symtab->gc()->add_reference(this, text_shndx, this, i);
6897 // Update output local symbol count. Owing to EXIDX entry merging, some local
6898 // symbols will be removed in output. Adjust output local symbol count
6899 // accordingly. We can only changed the static output local symbol count. It
6900 // is too late to change the dynamic symbols.
6902 template<bool big_endian>
6904 Arm_relobj<big_endian>::update_output_local_symbol_count()
6906 // Caller should check that this needs updating. We want caller checking
6907 // because output_local_symbol_count_needs_update() is most likely inlined.
6908 gold_assert(this->output_local_symbol_count_needs_update_);
6910 gold_assert(this->symtab_shndx() != -1U);
6911 if (this->symtab_shndx() == 0)
6913 // This object has no symbols. Weird but legal.
6917 // Read the symbol table section header.
6918 const unsigned int symtab_shndx = this->symtab_shndx();
6919 elfcpp::Shdr<32, big_endian>
6920 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6921 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6923 // Read the local symbols.
6924 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6925 const unsigned int loccount = this->local_symbol_count();
6926 gold_assert(loccount == symtabshdr.get_sh_info());
6927 off_t locsize = loccount * sym_size;
6928 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6929 locsize, true, true);
6931 // Loop over the local symbols.
6933 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6935 const Output_sections& out_sections(this->output_sections());
6936 unsigned int shnum = this->shnum();
6937 unsigned int count = 0;
6938 // Skip the first, dummy, symbol.
6940 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6942 elfcpp::Sym<32, big_endian> sym(psyms);
6944 Symbol_value<32>& lv((*this->local_values())[i]);
6946 // This local symbol was already discarded by do_count_local_symbols.
6947 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6951 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6956 Output_section* os = out_sections[shndx];
6958 // This local symbol no longer has an output section. Discard it.
6961 lv.set_no_output_symtab_entry();
6965 // Currently we only discard parts of EXIDX input sections.
6966 // We explicitly check for a merged EXIDX input section to avoid
6967 // calling Output_section_data::output_offset unless necessary.
6968 if ((this->get_output_section_offset(shndx) == invalid_address)
6969 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6971 section_offset_type output_offset =
6972 os->output_offset(this, shndx, lv.input_value());
6973 if (output_offset == -1)
6975 // This symbol is defined in a part of an EXIDX input section
6976 // that is discarded due to entry merging.
6977 lv.set_no_output_symtab_entry();
6986 this->set_output_local_symbol_count(count);
6987 this->output_local_symbol_count_needs_update_ = false;
6990 // Arm_dynobj methods.
6992 // Read the symbol information.
6994 template<bool big_endian>
6996 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6998 // Call parent class to read symbol information.
6999 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
7001 // Read processor-specific flags in ELF file header.
7002 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7003 elfcpp::Elf_sizes<32>::ehdr_size,
7005 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7006 this->processor_specific_flags_ = ehdr.get_e_flags();
7008 // Read the attributes section if there is one.
7009 // We read from the end because gas seems to put it near the end of
7010 // the section headers.
7011 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7012 const unsigned char* ps =
7013 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7014 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7016 elfcpp::Shdr<32, big_endian> shdr(ps);
7017 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7019 section_offset_type section_offset = shdr.get_sh_offset();
7020 section_size_type section_size =
7021 convert_to_section_size_type(shdr.get_sh_size());
7022 const unsigned char* view =
7023 this->get_view(section_offset, section_size, true, false);
7024 this->attributes_section_data_ =
7025 new Attributes_section_data(view, section_size);
7031 // Stub_addend_reader methods.
7033 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7035 template<bool big_endian>
7036 elfcpp::Elf_types<32>::Elf_Swxword
7037 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7038 unsigned int r_type,
7039 const unsigned char* view,
7040 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7042 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7046 case elfcpp::R_ARM_CALL:
7047 case elfcpp::R_ARM_JUMP24:
7048 case elfcpp::R_ARM_PLT32:
7050 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7051 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7052 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7053 return utils::sign_extend<26>(val << 2);
7056 case elfcpp::R_ARM_THM_CALL:
7057 case elfcpp::R_ARM_THM_JUMP24:
7058 case elfcpp::R_ARM_THM_XPC22:
7060 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7061 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7062 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7063 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7064 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7067 case elfcpp::R_ARM_THM_JUMP19:
7069 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7070 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7071 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7072 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7073 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7081 // Arm_output_data_got methods.
7083 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7084 // The first one is initialized to be 1, which is the module index for
7085 // the main executable and the second one 0. A reloc of the type
7086 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7087 // be applied by gold. GSYM is a global symbol.
7089 template<bool big_endian>
7091 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7092 unsigned int got_type,
7095 if (gsym->has_got_offset(got_type))
7098 // We are doing a static link. Just mark it as belong to module 1,
7100 unsigned int got_offset = this->add_constant(1);
7101 gsym->set_got_offset(got_type, got_offset);
7102 got_offset = this->add_constant(0);
7103 this->static_relocs_.push_back(Static_reloc(got_offset,
7104 elfcpp::R_ARM_TLS_DTPOFF32,
7108 // Same as the above but for a local symbol.
7110 template<bool big_endian>
7112 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7113 unsigned int got_type,
7114 Sized_relobj_file<32, big_endian>* object,
7117 if (object->local_has_got_offset(index, got_type))
7120 // We are doing a static link. Just mark it as belong to module 1,
7122 unsigned int got_offset = this->add_constant(1);
7123 object->set_local_got_offset(index, got_type, got_offset);
7124 got_offset = this->add_constant(0);
7125 this->static_relocs_.push_back(Static_reloc(got_offset,
7126 elfcpp::R_ARM_TLS_DTPOFF32,
7130 template<bool big_endian>
7132 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7134 // Call parent to write out GOT.
7135 Output_data_got<32, big_endian>::do_write(of);
7137 // We are done if there is no fix up.
7138 if (this->static_relocs_.empty())
7141 gold_assert(parameters->doing_static_link());
7143 const off_t offset = this->offset();
7144 const section_size_type oview_size =
7145 convert_to_section_size_type(this->data_size());
7146 unsigned char* const oview = of->get_output_view(offset, oview_size);
7148 Output_segment* tls_segment = this->layout_->tls_segment();
7149 gold_assert(tls_segment != NULL);
7151 // The thread pointer $tp points to the TCB, which is followed by the
7152 // TLS. So we need to adjust $tp relative addressing by this amount.
7153 Arm_address aligned_tcb_size =
7154 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7156 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7158 Static_reloc& reloc(this->static_relocs_[i]);
7161 if (!reloc.symbol_is_global())
7163 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7164 const Symbol_value<32>* psymval =
7165 reloc.relobj()->local_symbol(reloc.index());
7167 // We are doing static linking. Issue an error and skip this
7168 // relocation if the symbol is undefined or in a discarded_section.
7170 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7171 if ((shndx == elfcpp::SHN_UNDEF)
7173 && shndx != elfcpp::SHN_UNDEF
7174 && !object->is_section_included(shndx)
7175 && !this->symbol_table_->is_section_folded(object, shndx)))
7177 gold_error(_("undefined or discarded local symbol %u from "
7178 " object %s in GOT"),
7179 reloc.index(), reloc.relobj()->name().c_str());
7183 value = psymval->value(object, 0);
7187 const Symbol* gsym = reloc.symbol();
7188 gold_assert(gsym != NULL);
7189 if (gsym->is_forwarder())
7190 gsym = this->symbol_table_->resolve_forwards(gsym);
7192 // We are doing static linking. Issue an error and skip this
7193 // relocation if the symbol is undefined or in a discarded_section
7194 // unless it is a weakly_undefined symbol.
7195 if ((gsym->is_defined_in_discarded_section()
7196 || gsym->is_undefined())
7197 && !gsym->is_weak_undefined())
7199 gold_error(_("undefined or discarded symbol %s in GOT"),
7204 if (!gsym->is_weak_undefined())
7206 const Sized_symbol<32>* sym =
7207 static_cast<const Sized_symbol<32>*>(gsym);
7208 value = sym->value();
7214 unsigned got_offset = reloc.got_offset();
7215 gold_assert(got_offset < oview_size);
7217 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7218 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7220 switch (reloc.r_type())
7222 case elfcpp::R_ARM_TLS_DTPOFF32:
7225 case elfcpp::R_ARM_TLS_TPOFF32:
7226 x = value + aligned_tcb_size;
7231 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7234 of->write_output_view(offset, oview_size, oview);
7237 // A class to handle the PLT data.
7239 template<bool big_endian>
7240 class Output_data_plt_arm : public Output_section_data
7243 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7246 Output_data_plt_arm(Layout*, Output_data_space*);
7248 // Add an entry to the PLT.
7250 add_entry(Symbol* gsym);
7252 // Return the .rel.plt section data.
7253 const Reloc_section*
7255 { return this->rel_; }
7257 // Return the number of PLT entries.
7260 { return this->count_; }
7262 // Return the offset of the first non-reserved PLT entry.
7264 first_plt_entry_offset()
7265 { return sizeof(first_plt_entry); }
7267 // Return the size of a PLT entry.
7269 get_plt_entry_size()
7270 { return sizeof(plt_entry); }
7274 do_adjust_output_section(Output_section* os);
7276 // Write to a map file.
7278 do_print_to_mapfile(Mapfile* mapfile) const
7279 { mapfile->print_output_data(this, _("** PLT")); }
7282 // Template for the first PLT entry.
7283 static const uint32_t first_plt_entry[5];
7285 // Template for subsequent PLT entries.
7286 static const uint32_t plt_entry[3];
7288 // Set the final size.
7290 set_final_data_size()
7292 this->set_data_size(sizeof(first_plt_entry)
7293 + this->count_ * sizeof(plt_entry));
7296 // Write out the PLT data.
7298 do_write(Output_file*);
7300 // The reloc section.
7301 Reloc_section* rel_;
7302 // The .got.plt section.
7303 Output_data_space* got_plt_;
7304 // The number of PLT entries.
7305 unsigned int count_;
7308 // Create the PLT section. The ordinary .got section is an argument,
7309 // since we need to refer to the start. We also create our own .got
7310 // section just for PLT entries.
7312 template<bool big_endian>
7313 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7314 Output_data_space* got_plt)
7315 : Output_section_data(4), got_plt_(got_plt), count_(0)
7317 this->rel_ = new Reloc_section(false);
7318 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7319 elfcpp::SHF_ALLOC, this->rel_,
7320 ORDER_DYNAMIC_PLT_RELOCS, false);
7323 template<bool big_endian>
7325 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7330 // Add an entry to the PLT.
7332 template<bool big_endian>
7334 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7336 gold_assert(!gsym->has_plt_offset());
7338 // Note that when setting the PLT offset we skip the initial
7339 // reserved PLT entry.
7340 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7341 + sizeof(first_plt_entry));
7345 section_offset_type got_offset = this->got_plt_->current_data_size();
7347 // Every PLT entry needs a GOT entry which points back to the PLT
7348 // entry (this will be changed by the dynamic linker, normally
7349 // lazily when the function is called).
7350 this->got_plt_->set_current_data_size(got_offset + 4);
7352 // Every PLT entry needs a reloc.
7353 gsym->set_needs_dynsym_entry();
7354 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7357 // Note that we don't need to save the symbol. The contents of the
7358 // PLT are independent of which symbols are used. The symbols only
7359 // appear in the relocations.
7363 // FIXME: This is not very flexible. Right now this has only been tested
7364 // on armv5te. If we are to support additional architecture features like
7365 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7367 // The first entry in the PLT.
7368 template<bool big_endian>
7369 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7371 0xe52de004, // str lr, [sp, #-4]!
7372 0xe59fe004, // ldr lr, [pc, #4]
7373 0xe08fe00e, // add lr, pc, lr
7374 0xe5bef008, // ldr pc, [lr, #8]!
7375 0x00000000, // &GOT[0] - .
7378 // Subsequent entries in the PLT.
7380 template<bool big_endian>
7381 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7383 0xe28fc600, // add ip, pc, #0xNN00000
7384 0xe28cca00, // add ip, ip, #0xNN000
7385 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7388 // Write out the PLT. This uses the hand-coded instructions above,
7389 // and adjusts them as needed. This is all specified by the arm ELF
7390 // Processor Supplement.
7392 template<bool big_endian>
7394 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7396 const off_t offset = this->offset();
7397 const section_size_type oview_size =
7398 convert_to_section_size_type(this->data_size());
7399 unsigned char* const oview = of->get_output_view(offset, oview_size);
7401 const off_t got_file_offset = this->got_plt_->offset();
7402 const section_size_type got_size =
7403 convert_to_section_size_type(this->got_plt_->data_size());
7404 unsigned char* const got_view = of->get_output_view(got_file_offset,
7406 unsigned char* pov = oview;
7408 Arm_address plt_address = this->address();
7409 Arm_address got_address = this->got_plt_->address();
7411 // Write first PLT entry. All but the last word are constants.
7412 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7413 / sizeof(plt_entry[0]));
7414 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7415 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7416 // Last word in first PLT entry is &GOT[0] - .
7417 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7418 got_address - (plt_address + 16));
7419 pov += sizeof(first_plt_entry);
7421 unsigned char* got_pov = got_view;
7423 memset(got_pov, 0, 12);
7426 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7427 unsigned int plt_offset = sizeof(first_plt_entry);
7428 unsigned int plt_rel_offset = 0;
7429 unsigned int got_offset = 12;
7430 const unsigned int count = this->count_;
7431 for (unsigned int i = 0;
7434 pov += sizeof(plt_entry),
7436 plt_offset += sizeof(plt_entry),
7437 plt_rel_offset += rel_size,
7440 // Set and adjust the PLT entry itself.
7441 int32_t offset = ((got_address + got_offset)
7442 - (plt_address + plt_offset + 8));
7444 gold_assert(offset >= 0 && offset < 0x0fffffff);
7445 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7446 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7447 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7448 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7449 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7450 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7452 // Set the entry in the GOT.
7453 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7456 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7457 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7459 of->write_output_view(offset, oview_size, oview);
7460 of->write_output_view(got_file_offset, got_size, got_view);
7463 // Create a PLT entry for a global symbol.
7465 template<bool big_endian>
7467 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7470 if (gsym->has_plt_offset())
7473 if (this->plt_ == NULL)
7475 // Create the GOT sections first.
7476 this->got_section(symtab, layout);
7478 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7479 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7481 | elfcpp::SHF_EXECINSTR),
7482 this->plt_, ORDER_PLT, false);
7484 this->plt_->add_entry(gsym);
7487 // Return the number of entries in the PLT.
7489 template<bool big_endian>
7491 Target_arm<big_endian>::plt_entry_count() const
7493 if (this->plt_ == NULL)
7495 return this->plt_->entry_count();
7498 // Return the offset of the first non-reserved PLT entry.
7500 template<bool big_endian>
7502 Target_arm<big_endian>::first_plt_entry_offset() const
7504 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7507 // Return the size of each PLT entry.
7509 template<bool big_endian>
7511 Target_arm<big_endian>::plt_entry_size() const
7513 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7516 // Get the section to use for TLS_DESC relocations.
7518 template<bool big_endian>
7519 typename Target_arm<big_endian>::Reloc_section*
7520 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7522 return this->plt_section()->rel_tls_desc(layout);
7525 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7527 template<bool big_endian>
7529 Target_arm<big_endian>::define_tls_base_symbol(
7530 Symbol_table* symtab,
7533 if (this->tls_base_symbol_defined_)
7536 Output_segment* tls_segment = layout->tls_segment();
7537 if (tls_segment != NULL)
7539 bool is_exec = parameters->options().output_is_executable();
7540 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7541 Symbol_table::PREDEFINED,
7545 elfcpp::STV_HIDDEN, 0,
7547 ? Symbol::SEGMENT_END
7548 : Symbol::SEGMENT_START),
7551 this->tls_base_symbol_defined_ = true;
7554 // Create a GOT entry for the TLS module index.
7556 template<bool big_endian>
7558 Target_arm<big_endian>::got_mod_index_entry(
7559 Symbol_table* symtab,
7561 Sized_relobj_file<32, big_endian>* object)
7563 if (this->got_mod_index_offset_ == -1U)
7565 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7566 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7567 unsigned int got_offset;
7568 if (!parameters->doing_static_link())
7570 got_offset = got->add_constant(0);
7571 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7572 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7577 // We are doing a static link. Just mark it as belong to module 1,
7579 got_offset = got->add_constant(1);
7582 got->add_constant(0);
7583 this->got_mod_index_offset_ = got_offset;
7585 return this->got_mod_index_offset_;
7588 // Optimize the TLS relocation type based on what we know about the
7589 // symbol. IS_FINAL is true if the final address of this symbol is
7590 // known at link time.
7592 template<bool big_endian>
7593 tls::Tls_optimization
7594 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7596 // FIXME: Currently we do not do any TLS optimization.
7597 return tls::TLSOPT_NONE;
7600 // Get the Reference_flags for a particular relocation.
7602 template<bool big_endian>
7604 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7608 case elfcpp::R_ARM_NONE:
7609 case elfcpp::R_ARM_V4BX:
7610 case elfcpp::R_ARM_GNU_VTENTRY:
7611 case elfcpp::R_ARM_GNU_VTINHERIT:
7612 // No symbol reference.
7615 case elfcpp::R_ARM_ABS32:
7616 case elfcpp::R_ARM_ABS16:
7617 case elfcpp::R_ARM_ABS12:
7618 case elfcpp::R_ARM_THM_ABS5:
7619 case elfcpp::R_ARM_ABS8:
7620 case elfcpp::R_ARM_BASE_ABS:
7621 case elfcpp::R_ARM_MOVW_ABS_NC:
7622 case elfcpp::R_ARM_MOVT_ABS:
7623 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7624 case elfcpp::R_ARM_THM_MOVT_ABS:
7625 case elfcpp::R_ARM_ABS32_NOI:
7626 return Symbol::ABSOLUTE_REF;
7628 case elfcpp::R_ARM_REL32:
7629 case elfcpp::R_ARM_LDR_PC_G0:
7630 case elfcpp::R_ARM_SBREL32:
7631 case elfcpp::R_ARM_THM_PC8:
7632 case elfcpp::R_ARM_BASE_PREL:
7633 case elfcpp::R_ARM_MOVW_PREL_NC:
7634 case elfcpp::R_ARM_MOVT_PREL:
7635 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7636 case elfcpp::R_ARM_THM_MOVT_PREL:
7637 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7638 case elfcpp::R_ARM_THM_PC12:
7639 case elfcpp::R_ARM_REL32_NOI:
7640 case elfcpp::R_ARM_ALU_PC_G0_NC:
7641 case elfcpp::R_ARM_ALU_PC_G0:
7642 case elfcpp::R_ARM_ALU_PC_G1_NC:
7643 case elfcpp::R_ARM_ALU_PC_G1:
7644 case elfcpp::R_ARM_ALU_PC_G2:
7645 case elfcpp::R_ARM_LDR_PC_G1:
7646 case elfcpp::R_ARM_LDR_PC_G2:
7647 case elfcpp::R_ARM_LDRS_PC_G0:
7648 case elfcpp::R_ARM_LDRS_PC_G1:
7649 case elfcpp::R_ARM_LDRS_PC_G2:
7650 case elfcpp::R_ARM_LDC_PC_G0:
7651 case elfcpp::R_ARM_LDC_PC_G1:
7652 case elfcpp::R_ARM_LDC_PC_G2:
7653 case elfcpp::R_ARM_ALU_SB_G0_NC:
7654 case elfcpp::R_ARM_ALU_SB_G0:
7655 case elfcpp::R_ARM_ALU_SB_G1_NC:
7656 case elfcpp::R_ARM_ALU_SB_G1:
7657 case elfcpp::R_ARM_ALU_SB_G2:
7658 case elfcpp::R_ARM_LDR_SB_G0:
7659 case elfcpp::R_ARM_LDR_SB_G1:
7660 case elfcpp::R_ARM_LDR_SB_G2:
7661 case elfcpp::R_ARM_LDRS_SB_G0:
7662 case elfcpp::R_ARM_LDRS_SB_G1:
7663 case elfcpp::R_ARM_LDRS_SB_G2:
7664 case elfcpp::R_ARM_LDC_SB_G0:
7665 case elfcpp::R_ARM_LDC_SB_G1:
7666 case elfcpp::R_ARM_LDC_SB_G2:
7667 case elfcpp::R_ARM_MOVW_BREL_NC:
7668 case elfcpp::R_ARM_MOVT_BREL:
7669 case elfcpp::R_ARM_MOVW_BREL:
7670 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7671 case elfcpp::R_ARM_THM_MOVT_BREL:
7672 case elfcpp::R_ARM_THM_MOVW_BREL:
7673 case elfcpp::R_ARM_GOTOFF32:
7674 case elfcpp::R_ARM_GOTOFF12:
7675 case elfcpp::R_ARM_SBREL31:
7676 return Symbol::RELATIVE_REF;
7678 case elfcpp::R_ARM_PLT32:
7679 case elfcpp::R_ARM_CALL:
7680 case elfcpp::R_ARM_JUMP24:
7681 case elfcpp::R_ARM_THM_CALL:
7682 case elfcpp::R_ARM_THM_JUMP24:
7683 case elfcpp::R_ARM_THM_JUMP19:
7684 case elfcpp::R_ARM_THM_JUMP6:
7685 case elfcpp::R_ARM_THM_JUMP11:
7686 case elfcpp::R_ARM_THM_JUMP8:
7687 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7688 // in unwind tables. It may point to functions via PLTs.
7689 // So we treat it like call/jump relocations above.
7690 case elfcpp::R_ARM_PREL31:
7691 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7693 case elfcpp::R_ARM_GOT_BREL:
7694 case elfcpp::R_ARM_GOT_ABS:
7695 case elfcpp::R_ARM_GOT_PREL:
7697 return Symbol::ABSOLUTE_REF;
7699 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7700 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7701 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7702 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7703 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7704 return Symbol::TLS_REF;
7706 case elfcpp::R_ARM_TARGET1:
7707 case elfcpp::R_ARM_TARGET2:
7708 case elfcpp::R_ARM_COPY:
7709 case elfcpp::R_ARM_GLOB_DAT:
7710 case elfcpp::R_ARM_JUMP_SLOT:
7711 case elfcpp::R_ARM_RELATIVE:
7712 case elfcpp::R_ARM_PC24:
7713 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7714 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7715 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7717 // Not expected. We will give an error later.
7722 // Report an unsupported relocation against a local symbol.
7724 template<bool big_endian>
7726 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7727 Sized_relobj_file<32, big_endian>* object,
7728 unsigned int r_type)
7730 gold_error(_("%s: unsupported reloc %u against local symbol"),
7731 object->name().c_str(), r_type);
7734 // We are about to emit a dynamic relocation of type R_TYPE. If the
7735 // dynamic linker does not support it, issue an error. The GNU linker
7736 // only issues a non-PIC error for an allocated read-only section.
7737 // Here we know the section is allocated, but we don't know that it is
7738 // read-only. But we check for all the relocation types which the
7739 // glibc dynamic linker supports, so it seems appropriate to issue an
7740 // error even if the section is not read-only.
7742 template<bool big_endian>
7744 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7745 unsigned int r_type)
7749 // These are the relocation types supported by glibc for ARM.
7750 case elfcpp::R_ARM_RELATIVE:
7751 case elfcpp::R_ARM_COPY:
7752 case elfcpp::R_ARM_GLOB_DAT:
7753 case elfcpp::R_ARM_JUMP_SLOT:
7754 case elfcpp::R_ARM_ABS32:
7755 case elfcpp::R_ARM_ABS32_NOI:
7756 case elfcpp::R_ARM_PC24:
7757 // FIXME: The following 3 types are not supported by Android's dynamic
7759 case elfcpp::R_ARM_TLS_DTPMOD32:
7760 case elfcpp::R_ARM_TLS_DTPOFF32:
7761 case elfcpp::R_ARM_TLS_TPOFF32:
7766 // This prevents us from issuing more than one error per reloc
7767 // section. But we can still wind up issuing more than one
7768 // error per object file.
7769 if (this->issued_non_pic_error_)
7771 const Arm_reloc_property* reloc_property =
7772 arm_reloc_property_table->get_reloc_property(r_type);
7773 gold_assert(reloc_property != NULL);
7774 object->error(_("requires unsupported dynamic reloc %s; "
7775 "recompile with -fPIC"),
7776 reloc_property->name().c_str());
7777 this->issued_non_pic_error_ = true;
7781 case elfcpp::R_ARM_NONE:
7786 // Scan a relocation for a local symbol.
7787 // FIXME: This only handles a subset of relocation types used by Android
7788 // on ARM v5te devices.
7790 template<bool big_endian>
7792 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7795 Sized_relobj_file<32, big_endian>* object,
7796 unsigned int data_shndx,
7797 Output_section* output_section,
7798 const elfcpp::Rel<32, big_endian>& reloc,
7799 unsigned int r_type,
7800 const elfcpp::Sym<32, big_endian>& lsym)
7802 r_type = get_real_reloc_type(r_type);
7805 case elfcpp::R_ARM_NONE:
7806 case elfcpp::R_ARM_V4BX:
7807 case elfcpp::R_ARM_GNU_VTENTRY:
7808 case elfcpp::R_ARM_GNU_VTINHERIT:
7811 case elfcpp::R_ARM_ABS32:
7812 case elfcpp::R_ARM_ABS32_NOI:
7813 // If building a shared library (or a position-independent
7814 // executable), we need to create a dynamic relocation for
7815 // this location. The relocation applied at link time will
7816 // apply the link-time value, so we flag the location with
7817 // an R_ARM_RELATIVE relocation so the dynamic loader can
7818 // relocate it easily.
7819 if (parameters->options().output_is_position_independent())
7821 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7822 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7823 // If we are to add more other reloc types than R_ARM_ABS32,
7824 // we need to add check_non_pic(object, r_type) here.
7825 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7826 output_section, data_shndx,
7827 reloc.get_r_offset());
7831 case elfcpp::R_ARM_ABS16:
7832 case elfcpp::R_ARM_ABS12:
7833 case elfcpp::R_ARM_THM_ABS5:
7834 case elfcpp::R_ARM_ABS8:
7835 case elfcpp::R_ARM_BASE_ABS:
7836 case elfcpp::R_ARM_MOVW_ABS_NC:
7837 case elfcpp::R_ARM_MOVT_ABS:
7838 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7839 case elfcpp::R_ARM_THM_MOVT_ABS:
7840 // If building a shared library (or a position-independent
7841 // executable), we need to create a dynamic relocation for
7842 // this location. Because the addend needs to remain in the
7843 // data section, we need to be careful not to apply this
7844 // relocation statically.
7845 if (parameters->options().output_is_position_independent())
7847 check_non_pic(object, r_type);
7848 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7849 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7850 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7851 rel_dyn->add_local(object, r_sym, r_type, output_section,
7852 data_shndx, reloc.get_r_offset());
7855 gold_assert(lsym.get_st_value() == 0);
7856 unsigned int shndx = lsym.get_st_shndx();
7858 shndx = object->adjust_sym_shndx(r_sym, shndx,
7861 object->error(_("section symbol %u has bad shndx %u"),
7864 rel_dyn->add_local_section(object, shndx,
7865 r_type, output_section,
7866 data_shndx, reloc.get_r_offset());
7871 case elfcpp::R_ARM_REL32:
7872 case elfcpp::R_ARM_LDR_PC_G0:
7873 case elfcpp::R_ARM_SBREL32:
7874 case elfcpp::R_ARM_THM_CALL:
7875 case elfcpp::R_ARM_THM_PC8:
7876 case elfcpp::R_ARM_BASE_PREL:
7877 case elfcpp::R_ARM_PLT32:
7878 case elfcpp::R_ARM_CALL:
7879 case elfcpp::R_ARM_JUMP24:
7880 case elfcpp::R_ARM_THM_JUMP24:
7881 case elfcpp::R_ARM_SBREL31:
7882 case elfcpp::R_ARM_PREL31:
7883 case elfcpp::R_ARM_MOVW_PREL_NC:
7884 case elfcpp::R_ARM_MOVT_PREL:
7885 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7886 case elfcpp::R_ARM_THM_MOVT_PREL:
7887 case elfcpp::R_ARM_THM_JUMP19:
7888 case elfcpp::R_ARM_THM_JUMP6:
7889 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7890 case elfcpp::R_ARM_THM_PC12:
7891 case elfcpp::R_ARM_REL32_NOI:
7892 case elfcpp::R_ARM_ALU_PC_G0_NC:
7893 case elfcpp::R_ARM_ALU_PC_G0:
7894 case elfcpp::R_ARM_ALU_PC_G1_NC:
7895 case elfcpp::R_ARM_ALU_PC_G1:
7896 case elfcpp::R_ARM_ALU_PC_G2:
7897 case elfcpp::R_ARM_LDR_PC_G1:
7898 case elfcpp::R_ARM_LDR_PC_G2:
7899 case elfcpp::R_ARM_LDRS_PC_G0:
7900 case elfcpp::R_ARM_LDRS_PC_G1:
7901 case elfcpp::R_ARM_LDRS_PC_G2:
7902 case elfcpp::R_ARM_LDC_PC_G0:
7903 case elfcpp::R_ARM_LDC_PC_G1:
7904 case elfcpp::R_ARM_LDC_PC_G2:
7905 case elfcpp::R_ARM_ALU_SB_G0_NC:
7906 case elfcpp::R_ARM_ALU_SB_G0:
7907 case elfcpp::R_ARM_ALU_SB_G1_NC:
7908 case elfcpp::R_ARM_ALU_SB_G1:
7909 case elfcpp::R_ARM_ALU_SB_G2:
7910 case elfcpp::R_ARM_LDR_SB_G0:
7911 case elfcpp::R_ARM_LDR_SB_G1:
7912 case elfcpp::R_ARM_LDR_SB_G2:
7913 case elfcpp::R_ARM_LDRS_SB_G0:
7914 case elfcpp::R_ARM_LDRS_SB_G1:
7915 case elfcpp::R_ARM_LDRS_SB_G2:
7916 case elfcpp::R_ARM_LDC_SB_G0:
7917 case elfcpp::R_ARM_LDC_SB_G1:
7918 case elfcpp::R_ARM_LDC_SB_G2:
7919 case elfcpp::R_ARM_MOVW_BREL_NC:
7920 case elfcpp::R_ARM_MOVT_BREL:
7921 case elfcpp::R_ARM_MOVW_BREL:
7922 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7923 case elfcpp::R_ARM_THM_MOVT_BREL:
7924 case elfcpp::R_ARM_THM_MOVW_BREL:
7925 case elfcpp::R_ARM_THM_JUMP11:
7926 case elfcpp::R_ARM_THM_JUMP8:
7927 // We don't need to do anything for a relative addressing relocation
7928 // against a local symbol if it does not reference the GOT.
7931 case elfcpp::R_ARM_GOTOFF32:
7932 case elfcpp::R_ARM_GOTOFF12:
7933 // We need a GOT section:
7934 target->got_section(symtab, layout);
7937 case elfcpp::R_ARM_GOT_BREL:
7938 case elfcpp::R_ARM_GOT_PREL:
7940 // The symbol requires a GOT entry.
7941 Arm_output_data_got<big_endian>* got =
7942 target->got_section(symtab, layout);
7943 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7944 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7946 // If we are generating a shared object, we need to add a
7947 // dynamic RELATIVE relocation for this symbol's GOT entry.
7948 if (parameters->options().output_is_position_independent())
7950 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7951 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7952 rel_dyn->add_local_relative(
7953 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7954 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7960 case elfcpp::R_ARM_TARGET1:
7961 case elfcpp::R_ARM_TARGET2:
7962 // This should have been mapped to another type already.
7964 case elfcpp::R_ARM_COPY:
7965 case elfcpp::R_ARM_GLOB_DAT:
7966 case elfcpp::R_ARM_JUMP_SLOT:
7967 case elfcpp::R_ARM_RELATIVE:
7968 // These are relocations which should only be seen by the
7969 // dynamic linker, and should never be seen here.
7970 gold_error(_("%s: unexpected reloc %u in object file"),
7971 object->name().c_str(), r_type);
7975 // These are initial TLS relocs, which are expected when
7977 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7978 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7979 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7980 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7981 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7983 bool output_is_shared = parameters->options().shared();
7984 const tls::Tls_optimization optimized_type
7985 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7989 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7990 if (optimized_type == tls::TLSOPT_NONE)
7992 // Create a pair of GOT entries for the module index and
7993 // dtv-relative offset.
7994 Arm_output_data_got<big_endian>* got
7995 = target->got_section(symtab, layout);
7996 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7997 unsigned int shndx = lsym.get_st_shndx();
7999 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8002 object->error(_("local symbol %u has bad shndx %u"),
8007 if (!parameters->doing_static_link())
8008 got->add_local_pair_with_rel(object, r_sym, shndx,
8010 target->rel_dyn_section(layout),
8011 elfcpp::R_ARM_TLS_DTPMOD32, 0);
8013 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8017 // FIXME: TLS optimization not supported yet.
8021 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8022 if (optimized_type == tls::TLSOPT_NONE)
8024 // Create a GOT entry for the module index.
8025 target->got_mod_index_entry(symtab, layout, object);
8028 // FIXME: TLS optimization not supported yet.
8032 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8035 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8036 layout->set_has_static_tls();
8037 if (optimized_type == tls::TLSOPT_NONE)
8039 // Create a GOT entry for the tp-relative offset.
8040 Arm_output_data_got<big_endian>* got
8041 = target->got_section(symtab, layout);
8042 unsigned int r_sym =
8043 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8044 if (!parameters->doing_static_link())
8045 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8046 target->rel_dyn_section(layout),
8047 elfcpp::R_ARM_TLS_TPOFF32);
8048 else if (!object->local_has_got_offset(r_sym,
8049 GOT_TYPE_TLS_OFFSET))
8051 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8052 unsigned int got_offset =
8053 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8054 got->add_static_reloc(got_offset,
8055 elfcpp::R_ARM_TLS_TPOFF32, object,
8060 // FIXME: TLS optimization not supported yet.
8064 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8065 layout->set_has_static_tls();
8066 if (output_is_shared)
8068 // We need to create a dynamic relocation.
8069 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8070 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8071 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8072 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8073 output_section, data_shndx,
8074 reloc.get_r_offset());
8084 case elfcpp::R_ARM_PC24:
8085 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8086 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8087 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8089 unsupported_reloc_local(object, r_type);
8094 // Report an unsupported relocation against a global symbol.
8096 template<bool big_endian>
8098 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8099 Sized_relobj_file<32, big_endian>* object,
8100 unsigned int r_type,
8103 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8104 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8107 template<bool big_endian>
8109 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8110 unsigned int r_type)
8114 case elfcpp::R_ARM_PC24:
8115 case elfcpp::R_ARM_THM_CALL:
8116 case elfcpp::R_ARM_PLT32:
8117 case elfcpp::R_ARM_CALL:
8118 case elfcpp::R_ARM_JUMP24:
8119 case elfcpp::R_ARM_THM_JUMP24:
8120 case elfcpp::R_ARM_SBREL31:
8121 case elfcpp::R_ARM_PREL31:
8122 case elfcpp::R_ARM_THM_JUMP19:
8123 case elfcpp::R_ARM_THM_JUMP6:
8124 case elfcpp::R_ARM_THM_JUMP11:
8125 case elfcpp::R_ARM_THM_JUMP8:
8126 // All the relocations above are branches except SBREL31 and PREL31.
8130 // Be conservative and assume this is a function pointer.
8135 template<bool big_endian>
8137 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8140 Target_arm<big_endian>* target,
8141 Sized_relobj_file<32, big_endian>*,
8144 const elfcpp::Rel<32, big_endian>&,
8145 unsigned int r_type,
8146 const elfcpp::Sym<32, big_endian>&)
8148 r_type = target->get_real_reloc_type(r_type);
8149 return possible_function_pointer_reloc(r_type);
8152 template<bool big_endian>
8154 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8157 Target_arm<big_endian>* target,
8158 Sized_relobj_file<32, big_endian>*,
8161 const elfcpp::Rel<32, big_endian>&,
8162 unsigned int r_type,
8165 // GOT is not a function.
8166 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8169 r_type = target->get_real_reloc_type(r_type);
8170 return possible_function_pointer_reloc(r_type);
8173 // Scan a relocation for a global symbol.
8175 template<bool big_endian>
8177 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8180 Sized_relobj_file<32, big_endian>* object,
8181 unsigned int data_shndx,
8182 Output_section* output_section,
8183 const elfcpp::Rel<32, big_endian>& reloc,
8184 unsigned int r_type,
8187 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8188 // section. We check here to avoid creating a dynamic reloc against
8189 // _GLOBAL_OFFSET_TABLE_.
8190 if (!target->has_got_section()
8191 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8192 target->got_section(symtab, layout);
8194 r_type = get_real_reloc_type(r_type);
8197 case elfcpp::R_ARM_NONE:
8198 case elfcpp::R_ARM_V4BX:
8199 case elfcpp::R_ARM_GNU_VTENTRY:
8200 case elfcpp::R_ARM_GNU_VTINHERIT:
8203 case elfcpp::R_ARM_ABS32:
8204 case elfcpp::R_ARM_ABS16:
8205 case elfcpp::R_ARM_ABS12:
8206 case elfcpp::R_ARM_THM_ABS5:
8207 case elfcpp::R_ARM_ABS8:
8208 case elfcpp::R_ARM_BASE_ABS:
8209 case elfcpp::R_ARM_MOVW_ABS_NC:
8210 case elfcpp::R_ARM_MOVT_ABS:
8211 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8212 case elfcpp::R_ARM_THM_MOVT_ABS:
8213 case elfcpp::R_ARM_ABS32_NOI:
8214 // Absolute addressing relocations.
8216 // Make a PLT entry if necessary.
8217 if (this->symbol_needs_plt_entry(gsym))
8219 target->make_plt_entry(symtab, layout, gsym);
8220 // Since this is not a PC-relative relocation, we may be
8221 // taking the address of a function. In that case we need to
8222 // set the entry in the dynamic symbol table to the address of
8224 if (gsym->is_from_dynobj() && !parameters->options().shared())
8225 gsym->set_needs_dynsym_value();
8227 // Make a dynamic relocation if necessary.
8228 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8230 if (gsym->may_need_copy_reloc())
8232 target->copy_reloc(symtab, layout, object,
8233 data_shndx, output_section, gsym, reloc);
8235 else if ((r_type == elfcpp::R_ARM_ABS32
8236 || r_type == elfcpp::R_ARM_ABS32_NOI)
8237 && gsym->can_use_relative_reloc(false))
8239 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8240 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8241 output_section, object,
8242 data_shndx, reloc.get_r_offset());
8246 check_non_pic(object, r_type);
8247 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8248 rel_dyn->add_global(gsym, r_type, output_section, object,
8249 data_shndx, reloc.get_r_offset());
8255 case elfcpp::R_ARM_GOTOFF32:
8256 case elfcpp::R_ARM_GOTOFF12:
8257 // We need a GOT section.
8258 target->got_section(symtab, layout);
8261 case elfcpp::R_ARM_REL32:
8262 case elfcpp::R_ARM_LDR_PC_G0:
8263 case elfcpp::R_ARM_SBREL32:
8264 case elfcpp::R_ARM_THM_PC8:
8265 case elfcpp::R_ARM_BASE_PREL:
8266 case elfcpp::R_ARM_MOVW_PREL_NC:
8267 case elfcpp::R_ARM_MOVT_PREL:
8268 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8269 case elfcpp::R_ARM_THM_MOVT_PREL:
8270 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8271 case elfcpp::R_ARM_THM_PC12:
8272 case elfcpp::R_ARM_REL32_NOI:
8273 case elfcpp::R_ARM_ALU_PC_G0_NC:
8274 case elfcpp::R_ARM_ALU_PC_G0:
8275 case elfcpp::R_ARM_ALU_PC_G1_NC:
8276 case elfcpp::R_ARM_ALU_PC_G1:
8277 case elfcpp::R_ARM_ALU_PC_G2:
8278 case elfcpp::R_ARM_LDR_PC_G1:
8279 case elfcpp::R_ARM_LDR_PC_G2:
8280 case elfcpp::R_ARM_LDRS_PC_G0:
8281 case elfcpp::R_ARM_LDRS_PC_G1:
8282 case elfcpp::R_ARM_LDRS_PC_G2:
8283 case elfcpp::R_ARM_LDC_PC_G0:
8284 case elfcpp::R_ARM_LDC_PC_G1:
8285 case elfcpp::R_ARM_LDC_PC_G2:
8286 case elfcpp::R_ARM_ALU_SB_G0_NC:
8287 case elfcpp::R_ARM_ALU_SB_G0:
8288 case elfcpp::R_ARM_ALU_SB_G1_NC:
8289 case elfcpp::R_ARM_ALU_SB_G1:
8290 case elfcpp::R_ARM_ALU_SB_G2:
8291 case elfcpp::R_ARM_LDR_SB_G0:
8292 case elfcpp::R_ARM_LDR_SB_G1:
8293 case elfcpp::R_ARM_LDR_SB_G2:
8294 case elfcpp::R_ARM_LDRS_SB_G0:
8295 case elfcpp::R_ARM_LDRS_SB_G1:
8296 case elfcpp::R_ARM_LDRS_SB_G2:
8297 case elfcpp::R_ARM_LDC_SB_G0:
8298 case elfcpp::R_ARM_LDC_SB_G1:
8299 case elfcpp::R_ARM_LDC_SB_G2:
8300 case elfcpp::R_ARM_MOVW_BREL_NC:
8301 case elfcpp::R_ARM_MOVT_BREL:
8302 case elfcpp::R_ARM_MOVW_BREL:
8303 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8304 case elfcpp::R_ARM_THM_MOVT_BREL:
8305 case elfcpp::R_ARM_THM_MOVW_BREL:
8306 // Relative addressing relocations.
8308 // Make a dynamic relocation if necessary.
8309 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8311 if (target->may_need_copy_reloc(gsym))
8313 target->copy_reloc(symtab, layout, object,
8314 data_shndx, output_section, gsym, reloc);
8318 check_non_pic(object, r_type);
8319 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8320 rel_dyn->add_global(gsym, r_type, output_section, object,
8321 data_shndx, reloc.get_r_offset());
8327 case elfcpp::R_ARM_THM_CALL:
8328 case elfcpp::R_ARM_PLT32:
8329 case elfcpp::R_ARM_CALL:
8330 case elfcpp::R_ARM_JUMP24:
8331 case elfcpp::R_ARM_THM_JUMP24:
8332 case elfcpp::R_ARM_SBREL31:
8333 case elfcpp::R_ARM_PREL31:
8334 case elfcpp::R_ARM_THM_JUMP19:
8335 case elfcpp::R_ARM_THM_JUMP6:
8336 case elfcpp::R_ARM_THM_JUMP11:
8337 case elfcpp::R_ARM_THM_JUMP8:
8338 // All the relocation above are branches except for the PREL31 ones.
8339 // A PREL31 relocation can point to a personality function in a shared
8340 // library. In that case we want to use a PLT because we want to
8341 // call the personality routine and the dynamic linkers we care about
8342 // do not support dynamic PREL31 relocations. An REL31 relocation may
8343 // point to a function whose unwinding behaviour is being described but
8344 // we will not mistakenly generate a PLT for that because we should use
8345 // a local section symbol.
8347 // If the symbol is fully resolved, this is just a relative
8348 // local reloc. Otherwise we need a PLT entry.
8349 if (gsym->final_value_is_known())
8351 // If building a shared library, we can also skip the PLT entry
8352 // if the symbol is defined in the output file and is protected
8354 if (gsym->is_defined()
8355 && !gsym->is_from_dynobj()
8356 && !gsym->is_preemptible())
8358 target->make_plt_entry(symtab, layout, gsym);
8361 case elfcpp::R_ARM_GOT_BREL:
8362 case elfcpp::R_ARM_GOT_ABS:
8363 case elfcpp::R_ARM_GOT_PREL:
8365 // The symbol requires a GOT entry.
8366 Arm_output_data_got<big_endian>* got =
8367 target->got_section(symtab, layout);
8368 if (gsym->final_value_is_known())
8369 got->add_global(gsym, GOT_TYPE_STANDARD);
8372 // If this symbol is not fully resolved, we need to add a
8373 // GOT entry with a dynamic relocation.
8374 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8375 if (gsym->is_from_dynobj()
8376 || gsym->is_undefined()
8377 || gsym->is_preemptible())
8378 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8379 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8382 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8383 rel_dyn->add_global_relative(
8384 gsym, elfcpp::R_ARM_RELATIVE, got,
8385 gsym->got_offset(GOT_TYPE_STANDARD));
8391 case elfcpp::R_ARM_TARGET1:
8392 case elfcpp::R_ARM_TARGET2:
8393 // These should have been mapped to other types already.
8395 case elfcpp::R_ARM_COPY:
8396 case elfcpp::R_ARM_GLOB_DAT:
8397 case elfcpp::R_ARM_JUMP_SLOT:
8398 case elfcpp::R_ARM_RELATIVE:
8399 // These are relocations which should only be seen by the
8400 // dynamic linker, and should never be seen here.
8401 gold_error(_("%s: unexpected reloc %u in object file"),
8402 object->name().c_str(), r_type);
8405 // These are initial tls relocs, which are expected when
8407 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8408 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8409 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8410 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8411 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8413 const bool is_final = gsym->final_value_is_known();
8414 const tls::Tls_optimization optimized_type
8415 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8418 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8419 if (optimized_type == tls::TLSOPT_NONE)
8421 // Create a pair of GOT entries for the module index and
8422 // dtv-relative offset.
8423 Arm_output_data_got<big_endian>* got
8424 = target->got_section(symtab, layout);
8425 if (!parameters->doing_static_link())
8426 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8427 target->rel_dyn_section(layout),
8428 elfcpp::R_ARM_TLS_DTPMOD32,
8429 elfcpp::R_ARM_TLS_DTPOFF32);
8431 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8434 // FIXME: TLS optimization not supported yet.
8438 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8439 if (optimized_type == tls::TLSOPT_NONE)
8441 // Create a GOT entry for the module index.
8442 target->got_mod_index_entry(symtab, layout, object);
8445 // FIXME: TLS optimization not supported yet.
8449 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8452 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8453 layout->set_has_static_tls();
8454 if (optimized_type == tls::TLSOPT_NONE)
8456 // Create a GOT entry for the tp-relative offset.
8457 Arm_output_data_got<big_endian>* got
8458 = target->got_section(symtab, layout);
8459 if (!parameters->doing_static_link())
8460 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8461 target->rel_dyn_section(layout),
8462 elfcpp::R_ARM_TLS_TPOFF32);
8463 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8465 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8466 unsigned int got_offset =
8467 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8468 got->add_static_reloc(got_offset,
8469 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8473 // FIXME: TLS optimization not supported yet.
8477 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8478 layout->set_has_static_tls();
8479 if (parameters->options().shared())
8481 // We need to create a dynamic relocation.
8482 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8483 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8484 output_section, object,
8485 data_shndx, reloc.get_r_offset());
8495 case elfcpp::R_ARM_PC24:
8496 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8497 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8498 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8500 unsupported_reloc_global(object, r_type, gsym);
8505 // Process relocations for gc.
8507 template<bool big_endian>
8509 Target_arm<big_endian>::gc_process_relocs(
8510 Symbol_table* symtab,
8512 Sized_relobj_file<32, big_endian>* object,
8513 unsigned int data_shndx,
8515 const unsigned char* prelocs,
8517 Output_section* output_section,
8518 bool needs_special_offset_handling,
8519 size_t local_symbol_count,
8520 const unsigned char* plocal_symbols)
8522 typedef Target_arm<big_endian> Arm;
8523 typedef typename Target_arm<big_endian>::Scan Scan;
8525 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8526 typename Target_arm::Relocatable_size_for_reloc>(
8535 needs_special_offset_handling,
8540 // Scan relocations for a section.
8542 template<bool big_endian>
8544 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8546 Sized_relobj_file<32, big_endian>* object,
8547 unsigned int data_shndx,
8548 unsigned int sh_type,
8549 const unsigned char* prelocs,
8551 Output_section* output_section,
8552 bool needs_special_offset_handling,
8553 size_t local_symbol_count,
8554 const unsigned char* plocal_symbols)
8556 typedef typename Target_arm<big_endian>::Scan Scan;
8557 if (sh_type == elfcpp::SHT_RELA)
8559 gold_error(_("%s: unsupported RELA reloc section"),
8560 object->name().c_str());
8564 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8573 needs_special_offset_handling,
8578 // Finalize the sections.
8580 template<bool big_endian>
8582 Target_arm<big_endian>::do_finalize_sections(
8584 const Input_objects* input_objects,
8585 Symbol_table* symtab)
8587 bool merged_any_attributes = false;
8588 // Merge processor-specific flags.
8589 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8590 p != input_objects->relobj_end();
8593 Arm_relobj<big_endian>* arm_relobj =
8594 Arm_relobj<big_endian>::as_arm_relobj(*p);
8595 if (arm_relobj->merge_flags_and_attributes())
8597 this->merge_processor_specific_flags(
8599 arm_relobj->processor_specific_flags());
8600 this->merge_object_attributes(arm_relobj->name().c_str(),
8601 arm_relobj->attributes_section_data());
8602 merged_any_attributes = true;
8606 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8607 p != input_objects->dynobj_end();
8610 Arm_dynobj<big_endian>* arm_dynobj =
8611 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8612 this->merge_processor_specific_flags(
8614 arm_dynobj->processor_specific_flags());
8615 this->merge_object_attributes(arm_dynobj->name().c_str(),
8616 arm_dynobj->attributes_section_data());
8617 merged_any_attributes = true;
8620 // Create an empty uninitialized attribute section if we still don't have it
8621 // at this moment. This happens if there is no attributes sections in all
8623 if (this->attributes_section_data_ == NULL)
8624 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8626 const Object_attribute* cpu_arch_attr =
8627 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8628 // Check if we need to use Cortex-A8 workaround.
8629 if (parameters->options().user_set_fix_cortex_a8())
8630 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8633 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8634 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8636 const Object_attribute* cpu_arch_profile_attr =
8637 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8638 this->fix_cortex_a8_ =
8639 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8640 && (cpu_arch_profile_attr->int_value() == 'A'
8641 || cpu_arch_profile_attr->int_value() == 0));
8644 // Check if we can use V4BX interworking.
8645 // The V4BX interworking stub contains BX instruction,
8646 // which is not specified for some profiles.
8647 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8648 && !this->may_use_v4t_interworking())
8649 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8650 "the target profile does not support BX instruction"));
8652 // Fill in some more dynamic tags.
8653 const Reloc_section* rel_plt = (this->plt_ == NULL
8655 : this->plt_->rel_plt());
8656 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8657 this->rel_dyn_, true, false);
8659 // Emit any relocs we saved in an attempt to avoid generating COPY
8661 if (this->copy_relocs_.any_saved_relocs())
8662 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8664 // Handle the .ARM.exidx section.
8665 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8667 if (!parameters->options().relocatable())
8669 if (exidx_section != NULL
8670 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8672 // Create __exidx_start and __exidx_end symbols.
8673 symtab->define_in_output_data("__exidx_start", NULL,
8674 Symbol_table::PREDEFINED,
8675 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8676 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8678 symtab->define_in_output_data("__exidx_end", NULL,
8679 Symbol_table::PREDEFINED,
8680 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8681 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8684 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8685 // the .ARM.exidx section.
8686 if (!layout->script_options()->saw_phdrs_clause())
8688 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8691 Output_segment* exidx_segment =
8692 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8693 exidx_segment->add_output_section_to_nonload(exidx_section,
8699 symtab->define_as_constant("__exidx_start", NULL,
8700 Symbol_table::PREDEFINED,
8701 0, 0, elfcpp::STT_OBJECT,
8702 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8704 symtab->define_as_constant("__exidx_end", NULL,
8705 Symbol_table::PREDEFINED,
8706 0, 0, elfcpp::STT_OBJECT,
8707 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8712 // Create an .ARM.attributes section if we have merged any attributes
8714 if (merged_any_attributes)
8716 Output_attributes_section_data* attributes_section =
8717 new Output_attributes_section_data(*this->attributes_section_data_);
8718 layout->add_output_section_data(".ARM.attributes",
8719 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8720 attributes_section, ORDER_INVALID,
8724 // Fix up links in section EXIDX headers.
8725 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8726 p != layout->section_list().end();
8728 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8730 Arm_output_section<big_endian>* os =
8731 Arm_output_section<big_endian>::as_arm_output_section(*p);
8732 os->set_exidx_section_link();
8736 // Return whether a direct absolute static relocation needs to be applied.
8737 // In cases where Scan::local() or Scan::global() has created
8738 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8739 // of the relocation is carried in the data, and we must not
8740 // apply the static relocation.
8742 template<bool big_endian>
8744 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8745 const Sized_symbol<32>* gsym,
8746 unsigned int r_type,
8748 Output_section* output_section)
8750 // If the output section is not allocated, then we didn't call
8751 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8753 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8756 int ref_flags = Scan::get_reference_flags(r_type);
8758 // For local symbols, we will have created a non-RELATIVE dynamic
8759 // relocation only if (a) the output is position independent,
8760 // (b) the relocation is absolute (not pc- or segment-relative), and
8761 // (c) the relocation is not 32 bits wide.
8763 return !(parameters->options().output_is_position_independent()
8764 && (ref_flags & Symbol::ABSOLUTE_REF)
8767 // For global symbols, we use the same helper routines used in the
8768 // scan pass. If we did not create a dynamic relocation, or if we
8769 // created a RELATIVE dynamic relocation, we should apply the static
8771 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8772 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8773 && gsym->can_use_relative_reloc(ref_flags
8774 & Symbol::FUNCTION_CALL);
8775 return !has_dyn || is_rel;
8778 // Perform a relocation.
8780 template<bool big_endian>
8782 Target_arm<big_endian>::Relocate::relocate(
8783 const Relocate_info<32, big_endian>* relinfo,
8785 Output_section* output_section,
8787 const elfcpp::Rel<32, big_endian>& rel,
8788 unsigned int r_type,
8789 const Sized_symbol<32>* gsym,
8790 const Symbol_value<32>* psymval,
8791 unsigned char* view,
8792 Arm_address address,
8793 section_size_type view_size)
8795 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8797 r_type = get_real_reloc_type(r_type);
8798 const Arm_reloc_property* reloc_property =
8799 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8800 if (reloc_property == NULL)
8802 std::string reloc_name =
8803 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8804 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8805 _("cannot relocate %s in object file"),
8806 reloc_name.c_str());
8810 const Arm_relobj<big_endian>* object =
8811 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8813 // If the final branch target of a relocation is THUMB instruction, this
8814 // is 1. Otherwise it is 0.
8815 Arm_address thumb_bit = 0;
8816 Symbol_value<32> symval;
8817 bool is_weakly_undefined_without_plt = false;
8818 bool have_got_offset = false;
8819 unsigned int got_offset = 0;
8821 // If the relocation uses the GOT entry of a symbol instead of the symbol
8822 // itself, we don't care about whether the symbol is defined or what kind
8824 if (reloc_property->uses_got_entry())
8826 // Get the GOT offset.
8827 // The GOT pointer points to the end of the GOT section.
8828 // We need to subtract the size of the GOT section to get
8829 // the actual offset to use in the relocation.
8830 // TODO: We should move GOT offset computing code in TLS relocations
8834 case elfcpp::R_ARM_GOT_BREL:
8835 case elfcpp::R_ARM_GOT_PREL:
8838 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8839 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8840 - target->got_size());
8844 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8845 gold_assert(object->local_has_got_offset(r_sym,
8846 GOT_TYPE_STANDARD));
8847 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8848 - target->got_size());
8850 have_got_offset = true;
8857 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8861 // This is a global symbol. Determine if we use PLT and if the
8862 // final target is THUMB.
8863 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8865 // This uses a PLT, change the symbol value.
8866 symval.set_output_value(target->plt_section()->address()
8867 + gsym->plt_offset());
8870 else if (gsym->is_weak_undefined())
8872 // This is a weakly undefined symbol and we do not use PLT
8873 // for this relocation. A branch targeting this symbol will
8874 // be converted into an NOP.
8875 is_weakly_undefined_without_plt = true;
8877 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8879 // This relocation uses the symbol value but the symbol is
8880 // undefined. Exit early and have the caller reporting an
8886 // Set thumb bit if symbol:
8887 // -Has type STT_ARM_TFUNC or
8888 // -Has type STT_FUNC, is defined and with LSB in value set.
8890 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8891 || (gsym->type() == elfcpp::STT_FUNC
8892 && !gsym->is_undefined()
8893 && ((psymval->value(object, 0) & 1) != 0)))
8900 // This is a local symbol. Determine if the final target is THUMB.
8901 // We saved this information when all the local symbols were read.
8902 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8903 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8904 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8909 // This is a fake relocation synthesized for a stub. It does not have
8910 // a real symbol. We just look at the LSB of the symbol value to
8911 // determine if the target is THUMB or not.
8912 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8915 // Strip LSB if this points to a THUMB target.
8917 && reloc_property->uses_thumb_bit()
8918 && ((psymval->value(object, 0) & 1) != 0))
8920 Arm_address stripped_value =
8921 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8922 symval.set_output_value(stripped_value);
8926 // To look up relocation stubs, we need to pass the symbol table index of
8928 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8930 // Get the addressing origin of the output segment defining the
8931 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8932 Arm_address sym_origin = 0;
8933 if (reloc_property->uses_symbol_base())
8935 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8936 // R_ARM_BASE_ABS with the NULL symbol will give the
8937 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8938 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8939 sym_origin = target->got_plt_section()->address();
8940 else if (gsym == NULL)
8942 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8943 sym_origin = gsym->output_segment()->vaddr();
8944 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8945 sym_origin = gsym->output_data()->address();
8947 // TODO: Assumes the segment base to be zero for the global symbols
8948 // till the proper support for the segment-base-relative addressing
8949 // will be implemented. This is consistent with GNU ld.
8952 // For relative addressing relocation, find out the relative address base.
8953 Arm_address relative_address_base = 0;
8954 switch(reloc_property->relative_address_base())
8956 case Arm_reloc_property::RAB_NONE:
8957 // Relocations with relative address bases RAB_TLS and RAB_tp are
8958 // handled by relocate_tls. So we do not need to do anything here.
8959 case Arm_reloc_property::RAB_TLS:
8960 case Arm_reloc_property::RAB_tp:
8962 case Arm_reloc_property::RAB_B_S:
8963 relative_address_base = sym_origin;
8965 case Arm_reloc_property::RAB_GOT_ORG:
8966 relative_address_base = target->got_plt_section()->address();
8968 case Arm_reloc_property::RAB_P:
8969 relative_address_base = address;
8971 case Arm_reloc_property::RAB_Pa:
8972 relative_address_base = address & 0xfffffffcU;
8978 typename Arm_relocate_functions::Status reloc_status =
8979 Arm_relocate_functions::STATUS_OKAY;
8980 bool check_overflow = reloc_property->checks_overflow();
8983 case elfcpp::R_ARM_NONE:
8986 case elfcpp::R_ARM_ABS8:
8987 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8988 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8991 case elfcpp::R_ARM_ABS12:
8992 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8993 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8996 case elfcpp::R_ARM_ABS16:
8997 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8998 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9001 case elfcpp::R_ARM_ABS32:
9002 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9003 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9007 case elfcpp::R_ARM_ABS32_NOI:
9008 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9009 // No thumb bit for this relocation: (S + A)
9010 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9014 case elfcpp::R_ARM_MOVW_ABS_NC:
9015 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9016 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9021 case elfcpp::R_ARM_MOVT_ABS:
9022 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9023 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9026 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9027 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9028 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9029 0, thumb_bit, false);
9032 case elfcpp::R_ARM_THM_MOVT_ABS:
9033 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9034 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9038 case elfcpp::R_ARM_MOVW_PREL_NC:
9039 case elfcpp::R_ARM_MOVW_BREL_NC:
9040 case elfcpp::R_ARM_MOVW_BREL:
9042 Arm_relocate_functions::movw(view, object, psymval,
9043 relative_address_base, thumb_bit,
9047 case elfcpp::R_ARM_MOVT_PREL:
9048 case elfcpp::R_ARM_MOVT_BREL:
9050 Arm_relocate_functions::movt(view, object, psymval,
9051 relative_address_base);
9054 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9055 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9056 case elfcpp::R_ARM_THM_MOVW_BREL:
9058 Arm_relocate_functions::thm_movw(view, object, psymval,
9059 relative_address_base,
9060 thumb_bit, check_overflow);
9063 case elfcpp::R_ARM_THM_MOVT_PREL:
9064 case elfcpp::R_ARM_THM_MOVT_BREL:
9066 Arm_relocate_functions::thm_movt(view, object, psymval,
9067 relative_address_base);
9070 case elfcpp::R_ARM_REL32:
9071 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9072 address, thumb_bit);
9075 case elfcpp::R_ARM_THM_ABS5:
9076 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9077 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9080 // Thumb long branches.
9081 case elfcpp::R_ARM_THM_CALL:
9082 case elfcpp::R_ARM_THM_XPC22:
9083 case elfcpp::R_ARM_THM_JUMP24:
9085 Arm_relocate_functions::thumb_branch_common(
9086 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9087 thumb_bit, is_weakly_undefined_without_plt);
9090 case elfcpp::R_ARM_GOTOFF32:
9092 Arm_address got_origin;
9093 got_origin = target->got_plt_section()->address();
9094 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9095 got_origin, thumb_bit);
9099 case elfcpp::R_ARM_BASE_PREL:
9100 gold_assert(gsym != NULL);
9102 Arm_relocate_functions::base_prel(view, sym_origin, address);
9105 case elfcpp::R_ARM_BASE_ABS:
9106 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9107 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9110 case elfcpp::R_ARM_GOT_BREL:
9111 gold_assert(have_got_offset);
9112 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9115 case elfcpp::R_ARM_GOT_PREL:
9116 gold_assert(have_got_offset);
9117 // Get the address origin for GOT PLT, which is allocated right
9118 // after the GOT section, to calculate an absolute address of
9119 // the symbol GOT entry (got_origin + got_offset).
9120 Arm_address got_origin;
9121 got_origin = target->got_plt_section()->address();
9122 reloc_status = Arm_relocate_functions::got_prel(view,
9123 got_origin + got_offset,
9127 case elfcpp::R_ARM_PLT32:
9128 case elfcpp::R_ARM_CALL:
9129 case elfcpp::R_ARM_JUMP24:
9130 case elfcpp::R_ARM_XPC25:
9131 gold_assert(gsym == NULL
9132 || gsym->has_plt_offset()
9133 || gsym->final_value_is_known()
9134 || (gsym->is_defined()
9135 && !gsym->is_from_dynobj()
9136 && !gsym->is_preemptible()));
9138 Arm_relocate_functions::arm_branch_common(
9139 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9140 thumb_bit, is_weakly_undefined_without_plt);
9143 case elfcpp::R_ARM_THM_JUMP19:
9145 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9149 case elfcpp::R_ARM_THM_JUMP6:
9151 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9154 case elfcpp::R_ARM_THM_JUMP8:
9156 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9159 case elfcpp::R_ARM_THM_JUMP11:
9161 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9164 case elfcpp::R_ARM_PREL31:
9165 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9166 address, thumb_bit);
9169 case elfcpp::R_ARM_V4BX:
9170 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9172 const bool is_v4bx_interworking =
9173 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9175 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9176 is_v4bx_interworking);
9180 case elfcpp::R_ARM_THM_PC8:
9182 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9185 case elfcpp::R_ARM_THM_PC12:
9187 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9190 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9192 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9196 case elfcpp::R_ARM_ALU_PC_G0_NC:
9197 case elfcpp::R_ARM_ALU_PC_G0:
9198 case elfcpp::R_ARM_ALU_PC_G1_NC:
9199 case elfcpp::R_ARM_ALU_PC_G1:
9200 case elfcpp::R_ARM_ALU_PC_G2:
9201 case elfcpp::R_ARM_ALU_SB_G0_NC:
9202 case elfcpp::R_ARM_ALU_SB_G0:
9203 case elfcpp::R_ARM_ALU_SB_G1_NC:
9204 case elfcpp::R_ARM_ALU_SB_G1:
9205 case elfcpp::R_ARM_ALU_SB_G2:
9207 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9208 reloc_property->group_index(),
9209 relative_address_base,
9210 thumb_bit, check_overflow);
9213 case elfcpp::R_ARM_LDR_PC_G0:
9214 case elfcpp::R_ARM_LDR_PC_G1:
9215 case elfcpp::R_ARM_LDR_PC_G2:
9216 case elfcpp::R_ARM_LDR_SB_G0:
9217 case elfcpp::R_ARM_LDR_SB_G1:
9218 case elfcpp::R_ARM_LDR_SB_G2:
9220 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9221 reloc_property->group_index(),
9222 relative_address_base);
9225 case elfcpp::R_ARM_LDRS_PC_G0:
9226 case elfcpp::R_ARM_LDRS_PC_G1:
9227 case elfcpp::R_ARM_LDRS_PC_G2:
9228 case elfcpp::R_ARM_LDRS_SB_G0:
9229 case elfcpp::R_ARM_LDRS_SB_G1:
9230 case elfcpp::R_ARM_LDRS_SB_G2:
9232 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9233 reloc_property->group_index(),
9234 relative_address_base);
9237 case elfcpp::R_ARM_LDC_PC_G0:
9238 case elfcpp::R_ARM_LDC_PC_G1:
9239 case elfcpp::R_ARM_LDC_PC_G2:
9240 case elfcpp::R_ARM_LDC_SB_G0:
9241 case elfcpp::R_ARM_LDC_SB_G1:
9242 case elfcpp::R_ARM_LDC_SB_G2:
9244 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9245 reloc_property->group_index(),
9246 relative_address_base);
9249 // These are initial tls relocs, which are expected when
9251 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9252 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9253 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9254 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9255 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9257 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9258 view, address, view_size);
9261 // The known and unknown unsupported and/or deprecated relocations.
9262 case elfcpp::R_ARM_PC24:
9263 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9264 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9265 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9267 // Just silently leave the method. We should get an appropriate error
9268 // message in the scan methods.
9272 // Report any errors.
9273 switch (reloc_status)
9275 case Arm_relocate_functions::STATUS_OKAY:
9277 case Arm_relocate_functions::STATUS_OVERFLOW:
9278 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9279 _("relocation overflow in %s"),
9280 reloc_property->name().c_str());
9282 case Arm_relocate_functions::STATUS_BAD_RELOC:
9283 gold_error_at_location(
9287 _("unexpected opcode while processing relocation %s"),
9288 reloc_property->name().c_str());
9297 // Perform a TLS relocation.
9299 template<bool big_endian>
9300 inline typename Arm_relocate_functions<big_endian>::Status
9301 Target_arm<big_endian>::Relocate::relocate_tls(
9302 const Relocate_info<32, big_endian>* relinfo,
9303 Target_arm<big_endian>* target,
9305 const elfcpp::Rel<32, big_endian>& rel,
9306 unsigned int r_type,
9307 const Sized_symbol<32>* gsym,
9308 const Symbol_value<32>* psymval,
9309 unsigned char* view,
9310 elfcpp::Elf_types<32>::Elf_Addr address,
9311 section_size_type /*view_size*/ )
9313 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9314 typedef Relocate_functions<32, big_endian> RelocFuncs;
9315 Output_segment* tls_segment = relinfo->layout->tls_segment();
9317 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9319 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9321 const bool is_final = (gsym == NULL
9322 ? !parameters->options().shared()
9323 : gsym->final_value_is_known());
9324 const tls::Tls_optimization optimized_type
9325 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9328 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9330 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9331 unsigned int got_offset;
9334 gold_assert(gsym->has_got_offset(got_type));
9335 got_offset = gsym->got_offset(got_type) - target->got_size();
9339 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9340 gold_assert(object->local_has_got_offset(r_sym, got_type));
9341 got_offset = (object->local_got_offset(r_sym, got_type)
9342 - target->got_size());
9344 if (optimized_type == tls::TLSOPT_NONE)
9346 Arm_address got_entry =
9347 target->got_plt_section()->address() + got_offset;
9349 // Relocate the field with the PC relative offset of the pair of
9351 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9352 return ArmRelocFuncs::STATUS_OKAY;
9357 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9358 if (optimized_type == tls::TLSOPT_NONE)
9360 // Relocate the field with the offset of the GOT entry for
9361 // the module index.
9362 unsigned int got_offset;
9363 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9364 - target->got_size());
9365 Arm_address got_entry =
9366 target->got_plt_section()->address() + got_offset;
9368 // Relocate the field with the PC relative offset of the pair of
9370 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9371 return ArmRelocFuncs::STATUS_OKAY;
9375 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9376 RelocFuncs::rel32_unaligned(view, value);
9377 return ArmRelocFuncs::STATUS_OKAY;
9379 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9380 if (optimized_type == tls::TLSOPT_NONE)
9382 // Relocate the field with the offset of the GOT entry for
9383 // the tp-relative offset of the symbol.
9384 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9385 unsigned int got_offset;
9388 gold_assert(gsym->has_got_offset(got_type));
9389 got_offset = gsym->got_offset(got_type);
9393 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9394 gold_assert(object->local_has_got_offset(r_sym, got_type));
9395 got_offset = object->local_got_offset(r_sym, got_type);
9398 // All GOT offsets are relative to the end of the GOT.
9399 got_offset -= target->got_size();
9401 Arm_address got_entry =
9402 target->got_plt_section()->address() + got_offset;
9404 // Relocate the field with the PC relative offset of the GOT entry.
9405 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9406 return ArmRelocFuncs::STATUS_OKAY;
9410 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9411 // If we're creating a shared library, a dynamic relocation will
9412 // have been created for this location, so do not apply it now.
9413 if (!parameters->options().shared())
9415 gold_assert(tls_segment != NULL);
9417 // $tp points to the TCB, which is followed by the TLS, so we
9418 // need to add TCB size to the offset.
9419 Arm_address aligned_tcb_size =
9420 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9421 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9424 return ArmRelocFuncs::STATUS_OKAY;
9430 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9431 _("unsupported reloc %u"),
9433 return ArmRelocFuncs::STATUS_BAD_RELOC;
9436 // Relocate section data.
9438 template<bool big_endian>
9440 Target_arm<big_endian>::relocate_section(
9441 const Relocate_info<32, big_endian>* relinfo,
9442 unsigned int sh_type,
9443 const unsigned char* prelocs,
9445 Output_section* output_section,
9446 bool needs_special_offset_handling,
9447 unsigned char* view,
9448 Arm_address address,
9449 section_size_type view_size,
9450 const Reloc_symbol_changes* reloc_symbol_changes)
9452 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9453 gold_assert(sh_type == elfcpp::SHT_REL);
9455 // See if we are relocating a relaxed input section. If so, the view
9456 // covers the whole output section and we need to adjust accordingly.
9457 if (needs_special_offset_handling)
9459 const Output_relaxed_input_section* poris =
9460 output_section->find_relaxed_input_section(relinfo->object,
9461 relinfo->data_shndx);
9464 Arm_address section_address = poris->address();
9465 section_size_type section_size = poris->data_size();
9467 gold_assert((section_address >= address)
9468 && ((section_address + section_size)
9469 <= (address + view_size)));
9471 off_t offset = section_address - address;
9474 view_size = section_size;
9478 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9485 needs_special_offset_handling,
9489 reloc_symbol_changes);
9492 // Return the size of a relocation while scanning during a relocatable
9495 template<bool big_endian>
9497 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9498 unsigned int r_type,
9501 r_type = get_real_reloc_type(r_type);
9502 const Arm_reloc_property* arp =
9503 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9508 std::string reloc_name =
9509 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9510 gold_error(_("%s: unexpected %s in object file"),
9511 object->name().c_str(), reloc_name.c_str());
9516 // Scan the relocs during a relocatable link.
9518 template<bool big_endian>
9520 Target_arm<big_endian>::scan_relocatable_relocs(
9521 Symbol_table* symtab,
9523 Sized_relobj_file<32, big_endian>* object,
9524 unsigned int data_shndx,
9525 unsigned int sh_type,
9526 const unsigned char* prelocs,
9528 Output_section* output_section,
9529 bool needs_special_offset_handling,
9530 size_t local_symbol_count,
9531 const unsigned char* plocal_symbols,
9532 Relocatable_relocs* rr)
9534 gold_assert(sh_type == elfcpp::SHT_REL);
9536 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9537 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9539 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9540 Scan_relocatable_relocs>(
9548 needs_special_offset_handling,
9554 // Relocate a section during a relocatable link.
9556 template<bool big_endian>
9558 Target_arm<big_endian>::relocate_for_relocatable(
9559 const Relocate_info<32, big_endian>* relinfo,
9560 unsigned int sh_type,
9561 const unsigned char* prelocs,
9563 Output_section* output_section,
9564 off_t offset_in_output_section,
9565 const Relocatable_relocs* rr,
9566 unsigned char* view,
9567 Arm_address view_address,
9568 section_size_type view_size,
9569 unsigned char* reloc_view,
9570 section_size_type reloc_view_size)
9572 gold_assert(sh_type == elfcpp::SHT_REL);
9574 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9579 offset_in_output_section,
9588 // Perform target-specific processing in a relocatable link. This is
9589 // only used if we use the relocation strategy RELOC_SPECIAL.
9591 template<bool big_endian>
9593 Target_arm<big_endian>::relocate_special_relocatable(
9594 const Relocate_info<32, big_endian>* relinfo,
9595 unsigned int sh_type,
9596 const unsigned char* preloc_in,
9598 Output_section* output_section,
9599 off_t offset_in_output_section,
9600 unsigned char* view,
9601 elfcpp::Elf_types<32>::Elf_Addr view_address,
9603 unsigned char* preloc_out)
9605 // We can only handle REL type relocation sections.
9606 gold_assert(sh_type == elfcpp::SHT_REL);
9608 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9609 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9611 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9613 const Arm_relobj<big_endian>* object =
9614 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9615 const unsigned int local_count = object->local_symbol_count();
9617 Reltype reloc(preloc_in);
9618 Reltype_write reloc_write(preloc_out);
9620 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9621 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9622 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9624 const Arm_reloc_property* arp =
9625 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9626 gold_assert(arp != NULL);
9628 // Get the new symbol index.
9629 // We only use RELOC_SPECIAL strategy in local relocations.
9630 gold_assert(r_sym < local_count);
9632 // We are adjusting a section symbol. We need to find
9633 // the symbol table index of the section symbol for
9634 // the output section corresponding to input section
9635 // in which this symbol is defined.
9637 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9638 gold_assert(is_ordinary);
9639 Output_section* os = object->output_section(shndx);
9640 gold_assert(os != NULL);
9641 gold_assert(os->needs_symtab_index());
9642 unsigned int new_symndx = os->symtab_index();
9644 // Get the new offset--the location in the output section where
9645 // this relocation should be applied.
9647 Arm_address offset = reloc.get_r_offset();
9648 Arm_address new_offset;
9649 if (offset_in_output_section != invalid_address)
9650 new_offset = offset + offset_in_output_section;
9653 section_offset_type sot_offset =
9654 convert_types<section_offset_type, Arm_address>(offset);
9655 section_offset_type new_sot_offset =
9656 output_section->output_offset(object, relinfo->data_shndx,
9658 gold_assert(new_sot_offset != -1);
9659 new_offset = new_sot_offset;
9662 // In an object file, r_offset is an offset within the section.
9663 // In an executable or dynamic object, generated by
9664 // --emit-relocs, r_offset is an absolute address.
9665 if (!parameters->options().relocatable())
9667 new_offset += view_address;
9668 if (offset_in_output_section != invalid_address)
9669 new_offset -= offset_in_output_section;
9672 reloc_write.put_r_offset(new_offset);
9673 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9675 // Handle the reloc addend.
9676 // The relocation uses a section symbol in the input file.
9677 // We are adjusting it to use a section symbol in the output
9678 // file. The input section symbol refers to some address in
9679 // the input section. We need the relocation in the output
9680 // file to refer to that same address. This adjustment to
9681 // the addend is the same calculation we use for a simple
9682 // absolute relocation for the input section symbol.
9684 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9686 // Handle THUMB bit.
9687 Symbol_value<32> symval;
9688 Arm_address thumb_bit =
9689 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9691 && arp->uses_thumb_bit()
9692 && ((psymval->value(object, 0) & 1) != 0))
9694 Arm_address stripped_value =
9695 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9696 symval.set_output_value(stripped_value);
9700 unsigned char* paddend = view + offset;
9701 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9702 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9705 case elfcpp::R_ARM_ABS8:
9706 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9710 case elfcpp::R_ARM_ABS12:
9711 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9715 case elfcpp::R_ARM_ABS16:
9716 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9720 case elfcpp::R_ARM_THM_ABS5:
9721 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9726 case elfcpp::R_ARM_MOVW_ABS_NC:
9727 case elfcpp::R_ARM_MOVW_PREL_NC:
9728 case elfcpp::R_ARM_MOVW_BREL_NC:
9729 case elfcpp::R_ARM_MOVW_BREL:
9730 reloc_status = Arm_relocate_functions<big_endian>::movw(
9731 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9734 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9735 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9736 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9737 case elfcpp::R_ARM_THM_MOVW_BREL:
9738 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9739 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9742 case elfcpp::R_ARM_THM_CALL:
9743 case elfcpp::R_ARM_THM_XPC22:
9744 case elfcpp::R_ARM_THM_JUMP24:
9746 Arm_relocate_functions<big_endian>::thumb_branch_common(
9747 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9751 case elfcpp::R_ARM_PLT32:
9752 case elfcpp::R_ARM_CALL:
9753 case elfcpp::R_ARM_JUMP24:
9754 case elfcpp::R_ARM_XPC25:
9756 Arm_relocate_functions<big_endian>::arm_branch_common(
9757 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9761 case elfcpp::R_ARM_THM_JUMP19:
9763 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9764 psymval, 0, thumb_bit);
9767 case elfcpp::R_ARM_THM_JUMP6:
9769 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9773 case elfcpp::R_ARM_THM_JUMP8:
9775 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9779 case elfcpp::R_ARM_THM_JUMP11:
9781 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9785 case elfcpp::R_ARM_PREL31:
9787 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9791 case elfcpp::R_ARM_THM_PC8:
9793 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9797 case elfcpp::R_ARM_THM_PC12:
9799 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9803 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9805 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9809 // These relocation truncate relocation results so we cannot handle them
9810 // in a relocatable link.
9811 case elfcpp::R_ARM_MOVT_ABS:
9812 case elfcpp::R_ARM_THM_MOVT_ABS:
9813 case elfcpp::R_ARM_MOVT_PREL:
9814 case elfcpp::R_ARM_MOVT_BREL:
9815 case elfcpp::R_ARM_THM_MOVT_PREL:
9816 case elfcpp::R_ARM_THM_MOVT_BREL:
9817 case elfcpp::R_ARM_ALU_PC_G0_NC:
9818 case elfcpp::R_ARM_ALU_PC_G0:
9819 case elfcpp::R_ARM_ALU_PC_G1_NC:
9820 case elfcpp::R_ARM_ALU_PC_G1:
9821 case elfcpp::R_ARM_ALU_PC_G2:
9822 case elfcpp::R_ARM_ALU_SB_G0_NC:
9823 case elfcpp::R_ARM_ALU_SB_G0:
9824 case elfcpp::R_ARM_ALU_SB_G1_NC:
9825 case elfcpp::R_ARM_ALU_SB_G1:
9826 case elfcpp::R_ARM_ALU_SB_G2:
9827 case elfcpp::R_ARM_LDR_PC_G0:
9828 case elfcpp::R_ARM_LDR_PC_G1:
9829 case elfcpp::R_ARM_LDR_PC_G2:
9830 case elfcpp::R_ARM_LDR_SB_G0:
9831 case elfcpp::R_ARM_LDR_SB_G1:
9832 case elfcpp::R_ARM_LDR_SB_G2:
9833 case elfcpp::R_ARM_LDRS_PC_G0:
9834 case elfcpp::R_ARM_LDRS_PC_G1:
9835 case elfcpp::R_ARM_LDRS_PC_G2:
9836 case elfcpp::R_ARM_LDRS_SB_G0:
9837 case elfcpp::R_ARM_LDRS_SB_G1:
9838 case elfcpp::R_ARM_LDRS_SB_G2:
9839 case elfcpp::R_ARM_LDC_PC_G0:
9840 case elfcpp::R_ARM_LDC_PC_G1:
9841 case elfcpp::R_ARM_LDC_PC_G2:
9842 case elfcpp::R_ARM_LDC_SB_G0:
9843 case elfcpp::R_ARM_LDC_SB_G1:
9844 case elfcpp::R_ARM_LDC_SB_G2:
9845 gold_error(_("cannot handle %s in a relocatable link"),
9846 arp->name().c_str());
9853 // Report any errors.
9854 switch (reloc_status)
9856 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9858 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9859 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9860 _("relocation overflow in %s"),
9861 arp->name().c_str());
9863 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9864 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9865 _("unexpected opcode while processing relocation %s"),
9866 arp->name().c_str());
9873 // Return the value to use for a dynamic symbol which requires special
9874 // treatment. This is how we support equality comparisons of function
9875 // pointers across shared library boundaries, as described in the
9876 // processor specific ABI supplement.
9878 template<bool big_endian>
9880 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9882 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9883 return this->plt_section()->address() + gsym->plt_offset();
9886 // Map platform-specific relocs to real relocs
9888 template<bool big_endian>
9890 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9894 case elfcpp::R_ARM_TARGET1:
9895 // This is either R_ARM_ABS32 or R_ARM_REL32;
9896 return elfcpp::R_ARM_ABS32;
9898 case elfcpp::R_ARM_TARGET2:
9899 // This can be any reloc type but usually is R_ARM_GOT_PREL
9900 return elfcpp::R_ARM_GOT_PREL;
9907 // Whether if two EABI versions V1 and V2 are compatible.
9909 template<bool big_endian>
9911 Target_arm<big_endian>::are_eabi_versions_compatible(
9912 elfcpp::Elf_Word v1,
9913 elfcpp::Elf_Word v2)
9915 // v4 and v5 are the same spec before and after it was released,
9916 // so allow mixing them.
9917 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9918 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9919 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9925 // Combine FLAGS from an input object called NAME and the processor-specific
9926 // flags in the ELF header of the output. Much of this is adapted from the
9927 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9928 // in bfd/elf32-arm.c.
9930 template<bool big_endian>
9932 Target_arm<big_endian>::merge_processor_specific_flags(
9933 const std::string& name,
9934 elfcpp::Elf_Word flags)
9936 if (this->are_processor_specific_flags_set())
9938 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9940 // Nothing to merge if flags equal to those in output.
9941 if (flags == out_flags)
9944 // Complain about various flag mismatches.
9945 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9946 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9947 if (!this->are_eabi_versions_compatible(version1, version2)
9948 && parameters->options().warn_mismatch())
9949 gold_error(_("Source object %s has EABI version %d but output has "
9950 "EABI version %d."),
9952 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9953 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9957 // If the input is the default architecture and had the default
9958 // flags then do not bother setting the flags for the output
9959 // architecture, instead allow future merges to do this. If no
9960 // future merges ever set these flags then they will retain their
9961 // uninitialised values, which surprise surprise, correspond
9962 // to the default values.
9966 // This is the first time, just copy the flags.
9967 // We only copy the EABI version for now.
9968 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9972 // Adjust ELF file header.
9973 template<bool big_endian>
9975 Target_arm<big_endian>::do_adjust_elf_header(
9976 unsigned char* view,
9979 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9981 elfcpp::Ehdr<32, big_endian> ehdr(view);
9982 unsigned char e_ident[elfcpp::EI_NIDENT];
9983 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9985 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9986 == elfcpp::EF_ARM_EABI_UNKNOWN)
9987 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9989 e_ident[elfcpp::EI_OSABI] = 0;
9990 e_ident[elfcpp::EI_ABIVERSION] = 0;
9992 // FIXME: Do EF_ARM_BE8 adjustment.
9994 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9995 oehdr.put_e_ident(e_ident);
9998 // do_make_elf_object to override the same function in the base class.
9999 // We need to use a target-specific sub-class of
10000 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10001 // Hence we need to have our own ELF object creation.
10003 template<bool big_endian>
10005 Target_arm<big_endian>::do_make_elf_object(
10006 const std::string& name,
10007 Input_file* input_file,
10008 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10010 int et = ehdr.get_e_type();
10011 // ET_EXEC files are valid input for --just-symbols/-R,
10012 // and we treat them as relocatable objects.
10013 if (et == elfcpp::ET_REL
10014 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10016 Arm_relobj<big_endian>* obj =
10017 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10021 else if (et == elfcpp::ET_DYN)
10023 Sized_dynobj<32, big_endian>* obj =
10024 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10030 gold_error(_("%s: unsupported ELF file type %d"),
10036 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10037 // Returns -1 if no architecture could be read.
10038 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10040 template<bool big_endian>
10042 Target_arm<big_endian>::get_secondary_compatible_arch(
10043 const Attributes_section_data* pasd)
10045 const Object_attribute* known_attributes =
10046 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10048 // Note: the tag and its argument below are uleb128 values, though
10049 // currently-defined values fit in one byte for each.
10050 const std::string& sv =
10051 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10053 && sv.data()[0] == elfcpp::Tag_CPU_arch
10054 && (sv.data()[1] & 128) != 128)
10055 return sv.data()[1];
10057 // This tag is "safely ignorable", so don't complain if it looks funny.
10061 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10062 // The tag is removed if ARCH is -1.
10063 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10065 template<bool big_endian>
10067 Target_arm<big_endian>::set_secondary_compatible_arch(
10068 Attributes_section_data* pasd,
10071 Object_attribute* known_attributes =
10072 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10076 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10080 // Note: the tag and its argument below are uleb128 values, though
10081 // currently-defined values fit in one byte for each.
10083 sv[0] = elfcpp::Tag_CPU_arch;
10084 gold_assert(arch != 0);
10088 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10091 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10093 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10095 template<bool big_endian>
10097 Target_arm<big_endian>::tag_cpu_arch_combine(
10100 int* secondary_compat_out,
10102 int secondary_compat)
10104 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10105 static const int v6t2[] =
10107 T(V6T2), // PRE_V4.
10117 static const int v6k[] =
10130 static const int v7[] =
10144 static const int v6_m[] =
10159 static const int v6s_m[] =
10175 static const int v7e_m[] =
10182 T(V7E_M), // V5TEJ.
10189 T(V7E_M), // V6S_M.
10192 static const int v4t_plus_v6_m[] =
10199 T(V5TEJ), // V5TEJ.
10206 T(V6S_M), // V6S_M.
10207 T(V7E_M), // V7E_M.
10208 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10210 static const int* comb[] =
10218 // Pseudo-architecture.
10222 // Check we've not got a higher architecture than we know about.
10224 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10226 gold_error(_("%s: unknown CPU architecture"), name);
10230 // Override old tag if we have a Tag_also_compatible_with on the output.
10232 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10233 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10234 oldtag = T(V4T_PLUS_V6_M);
10236 // And override the new tag if we have a Tag_also_compatible_with on the
10239 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10240 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10241 newtag = T(V4T_PLUS_V6_M);
10243 // Architectures before V6KZ add features monotonically.
10244 int tagh = std::max(oldtag, newtag);
10245 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10248 int tagl = std::min(oldtag, newtag);
10249 int result = comb[tagh - T(V6T2)][tagl];
10251 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10252 // as the canonical version.
10253 if (result == T(V4T_PLUS_V6_M))
10256 *secondary_compat_out = T(V6_M);
10259 *secondary_compat_out = -1;
10263 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10264 name, oldtag, newtag);
10272 // Helper to print AEABI enum tag value.
10274 template<bool big_endian>
10276 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10278 static const char* aeabi_enum_names[] =
10279 { "", "variable-size", "32-bit", "" };
10280 const size_t aeabi_enum_names_size =
10281 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10283 if (value < aeabi_enum_names_size)
10284 return std::string(aeabi_enum_names[value]);
10288 sprintf(buffer, "<unknown value %u>", value);
10289 return std::string(buffer);
10293 // Return the string value to store in TAG_CPU_name.
10295 template<bool big_endian>
10297 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10299 static const char* name_table[] = {
10300 // These aren't real CPU names, but we can't guess
10301 // that from the architecture version alone.
10317 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10319 if (value < name_table_size)
10320 return std::string(name_table[value]);
10324 sprintf(buffer, "<unknown CPU value %u>", value);
10325 return std::string(buffer);
10329 // Merge object attributes from input file called NAME with those of the
10330 // output. The input object attributes are in the object pointed by PASD.
10332 template<bool big_endian>
10334 Target_arm<big_endian>::merge_object_attributes(
10336 const Attributes_section_data* pasd)
10338 // Return if there is no attributes section data.
10342 // If output has no object attributes, just copy.
10343 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10344 if (this->attributes_section_data_ == NULL)
10346 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10347 Object_attribute* out_attr =
10348 this->attributes_section_data_->known_attributes(vendor);
10350 // We do not output objects with Tag_MPextension_use_legacy - we move
10351 // the attribute's value to Tag_MPextension_use. */
10352 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10354 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10355 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10356 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10358 gold_error(_("%s has both the current and legacy "
10359 "Tag_MPextension_use attributes"),
10363 out_attr[elfcpp::Tag_MPextension_use] =
10364 out_attr[elfcpp::Tag_MPextension_use_legacy];
10365 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10366 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10372 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10373 Object_attribute* out_attr =
10374 this->attributes_section_data_->known_attributes(vendor);
10376 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10377 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10378 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10380 // Ignore mismatches if the object doesn't use floating point. */
10381 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10382 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10383 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10384 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10385 && parameters->options().warn_mismatch())
10386 gold_error(_("%s uses VFP register arguments, output does not"),
10390 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10392 // Merge this attribute with existing attributes.
10395 case elfcpp::Tag_CPU_raw_name:
10396 case elfcpp::Tag_CPU_name:
10397 // These are merged after Tag_CPU_arch.
10400 case elfcpp::Tag_ABI_optimization_goals:
10401 case elfcpp::Tag_ABI_FP_optimization_goals:
10402 // Use the first value seen.
10405 case elfcpp::Tag_CPU_arch:
10407 unsigned int saved_out_attr = out_attr->int_value();
10408 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10409 int secondary_compat =
10410 this->get_secondary_compatible_arch(pasd);
10411 int secondary_compat_out =
10412 this->get_secondary_compatible_arch(
10413 this->attributes_section_data_);
10414 out_attr[i].set_int_value(
10415 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10416 &secondary_compat_out,
10417 in_attr[i].int_value(),
10418 secondary_compat));
10419 this->set_secondary_compatible_arch(this->attributes_section_data_,
10420 secondary_compat_out);
10422 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10423 if (out_attr[i].int_value() == saved_out_attr)
10424 ; // Leave the names alone.
10425 else if (out_attr[i].int_value() == in_attr[i].int_value())
10427 // The output architecture has been changed to match the
10428 // input architecture. Use the input names.
10429 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10430 in_attr[elfcpp::Tag_CPU_name].string_value());
10431 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10432 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10436 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10437 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10440 // If we still don't have a value for Tag_CPU_name,
10441 // make one up now. Tag_CPU_raw_name remains blank.
10442 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10444 const std::string cpu_name =
10445 this->tag_cpu_name_value(out_attr[i].int_value());
10446 // FIXME: If we see an unknown CPU, this will be set
10447 // to "<unknown CPU n>", where n is the attribute value.
10448 // This is different from BFD, which leaves the name alone.
10449 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10454 case elfcpp::Tag_ARM_ISA_use:
10455 case elfcpp::Tag_THUMB_ISA_use:
10456 case elfcpp::Tag_WMMX_arch:
10457 case elfcpp::Tag_Advanced_SIMD_arch:
10458 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10459 case elfcpp::Tag_ABI_FP_rounding:
10460 case elfcpp::Tag_ABI_FP_exceptions:
10461 case elfcpp::Tag_ABI_FP_user_exceptions:
10462 case elfcpp::Tag_ABI_FP_number_model:
10463 case elfcpp::Tag_VFP_HP_extension:
10464 case elfcpp::Tag_CPU_unaligned_access:
10465 case elfcpp::Tag_T2EE_use:
10466 case elfcpp::Tag_Virtualization_use:
10467 case elfcpp::Tag_MPextension_use:
10468 // Use the largest value specified.
10469 if (in_attr[i].int_value() > out_attr[i].int_value())
10470 out_attr[i].set_int_value(in_attr[i].int_value());
10473 case elfcpp::Tag_ABI_align8_preserved:
10474 case elfcpp::Tag_ABI_PCS_RO_data:
10475 // Use the smallest value specified.
10476 if (in_attr[i].int_value() < out_attr[i].int_value())
10477 out_attr[i].set_int_value(in_attr[i].int_value());
10480 case elfcpp::Tag_ABI_align8_needed:
10481 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10482 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10483 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10486 // This error message should be enabled once all non-conforming
10487 // binaries in the toolchain have had the attributes set
10489 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10493 case elfcpp::Tag_ABI_FP_denormal:
10494 case elfcpp::Tag_ABI_PCS_GOT_use:
10496 // These tags have 0 = don't care, 1 = strong requirement,
10497 // 2 = weak requirement.
10498 static const int order_021[3] = {0, 2, 1};
10500 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10501 // value if greater than 2 (for future-proofing).
10502 if ((in_attr[i].int_value() > 2
10503 && in_attr[i].int_value() > out_attr[i].int_value())
10504 || (in_attr[i].int_value() <= 2
10505 && out_attr[i].int_value() <= 2
10506 && (order_021[in_attr[i].int_value()]
10507 > order_021[out_attr[i].int_value()])))
10508 out_attr[i].set_int_value(in_attr[i].int_value());
10512 case elfcpp::Tag_CPU_arch_profile:
10513 if (out_attr[i].int_value() != in_attr[i].int_value())
10515 // 0 will merge with anything.
10516 // 'A' and 'S' merge to 'A'.
10517 // 'R' and 'S' merge to 'R'.
10518 // 'M' and 'A|R|S' is an error.
10519 if (out_attr[i].int_value() == 0
10520 || (out_attr[i].int_value() == 'S'
10521 && (in_attr[i].int_value() == 'A'
10522 || in_attr[i].int_value() == 'R')))
10523 out_attr[i].set_int_value(in_attr[i].int_value());
10524 else if (in_attr[i].int_value() == 0
10525 || (in_attr[i].int_value() == 'S'
10526 && (out_attr[i].int_value() == 'A'
10527 || out_attr[i].int_value() == 'R')))
10529 else if (parameters->options().warn_mismatch())
10532 (_("conflicting architecture profiles %c/%c"),
10533 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10534 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10538 case elfcpp::Tag_VFP_arch:
10540 static const struct
10544 } vfp_versions[7] =
10555 // Values greater than 6 aren't defined, so just pick the
10557 if (in_attr[i].int_value() > 6
10558 && in_attr[i].int_value() > out_attr[i].int_value())
10560 *out_attr = *in_attr;
10563 // The output uses the superset of input features
10564 // (ISA version) and registers.
10565 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10566 vfp_versions[out_attr[i].int_value()].ver);
10567 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10568 vfp_versions[out_attr[i].int_value()].regs);
10569 // This assumes all possible supersets are also a valid
10572 for (newval = 6; newval > 0; newval--)
10574 if (regs == vfp_versions[newval].regs
10575 && ver == vfp_versions[newval].ver)
10578 out_attr[i].set_int_value(newval);
10581 case elfcpp::Tag_PCS_config:
10582 if (out_attr[i].int_value() == 0)
10583 out_attr[i].set_int_value(in_attr[i].int_value());
10584 else if (in_attr[i].int_value() != 0
10585 && out_attr[i].int_value() != 0
10586 && parameters->options().warn_mismatch())
10588 // It's sometimes ok to mix different configs, so this is only
10590 gold_warning(_("%s: conflicting platform configuration"), name);
10593 case elfcpp::Tag_ABI_PCS_R9_use:
10594 if (in_attr[i].int_value() != out_attr[i].int_value()
10595 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10596 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10597 && parameters->options().warn_mismatch())
10599 gold_error(_("%s: conflicting use of R9"), name);
10601 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10602 out_attr[i].set_int_value(in_attr[i].int_value());
10604 case elfcpp::Tag_ABI_PCS_RW_data:
10605 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10606 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10607 != elfcpp::AEABI_R9_SB)
10608 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10609 != elfcpp::AEABI_R9_unused)
10610 && parameters->options().warn_mismatch())
10612 gold_error(_("%s: SB relative addressing conflicts with use "
10616 // Use the smallest value specified.
10617 if (in_attr[i].int_value() < out_attr[i].int_value())
10618 out_attr[i].set_int_value(in_attr[i].int_value());
10620 case elfcpp::Tag_ABI_PCS_wchar_t:
10621 if (out_attr[i].int_value()
10622 && in_attr[i].int_value()
10623 && out_attr[i].int_value() != in_attr[i].int_value()
10624 && parameters->options().warn_mismatch()
10625 && parameters->options().wchar_size_warning())
10627 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10628 "use %u-byte wchar_t; use of wchar_t values "
10629 "across objects may fail"),
10630 name, in_attr[i].int_value(),
10631 out_attr[i].int_value());
10633 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10634 out_attr[i].set_int_value(in_attr[i].int_value());
10636 case elfcpp::Tag_ABI_enum_size:
10637 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10639 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10640 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10642 // The existing object is compatible with anything.
10643 // Use whatever requirements the new object has.
10644 out_attr[i].set_int_value(in_attr[i].int_value());
10646 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10647 && out_attr[i].int_value() != in_attr[i].int_value()
10648 && parameters->options().warn_mismatch()
10649 && parameters->options().enum_size_warning())
10651 unsigned int in_value = in_attr[i].int_value();
10652 unsigned int out_value = out_attr[i].int_value();
10653 gold_warning(_("%s uses %s enums yet the output is to use "
10654 "%s enums; use of enum values across objects "
10657 this->aeabi_enum_name(in_value).c_str(),
10658 this->aeabi_enum_name(out_value).c_str());
10662 case elfcpp::Tag_ABI_VFP_args:
10665 case elfcpp::Tag_ABI_WMMX_args:
10666 if (in_attr[i].int_value() != out_attr[i].int_value()
10667 && parameters->options().warn_mismatch())
10669 gold_error(_("%s uses iWMMXt register arguments, output does "
10674 case Object_attribute::Tag_compatibility:
10675 // Merged in target-independent code.
10677 case elfcpp::Tag_ABI_HardFP_use:
10678 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10679 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10680 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10681 out_attr[i].set_int_value(3);
10682 else if (in_attr[i].int_value() > out_attr[i].int_value())
10683 out_attr[i].set_int_value(in_attr[i].int_value());
10685 case elfcpp::Tag_ABI_FP_16bit_format:
10686 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10688 if (in_attr[i].int_value() != out_attr[i].int_value()
10689 && parameters->options().warn_mismatch())
10690 gold_error(_("fp16 format mismatch between %s and output"),
10693 if (in_attr[i].int_value() != 0)
10694 out_attr[i].set_int_value(in_attr[i].int_value());
10697 case elfcpp::Tag_DIV_use:
10698 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10699 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10700 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10701 // CPU. We will merge as follows: If the input attribute's value
10702 // is one then the output attribute's value remains unchanged. If
10703 // the input attribute's value is zero or two then if the output
10704 // attribute's value is one the output value is set to the input
10705 // value, otherwise the output value must be the same as the
10707 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10709 if (in_attr[i].int_value() != out_attr[i].int_value())
10711 gold_error(_("DIV usage mismatch between %s and output"),
10716 if (in_attr[i].int_value() != 1)
10717 out_attr[i].set_int_value(in_attr[i].int_value());
10721 case elfcpp::Tag_MPextension_use_legacy:
10722 // We don't output objects with Tag_MPextension_use_legacy - we
10723 // move the value to Tag_MPextension_use.
10724 if (in_attr[i].int_value() != 0
10725 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10727 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10728 != in_attr[i].int_value())
10730 gold_error(_("%s has has both the current and legacy "
10731 "Tag_MPextension_use attributes"),
10736 if (in_attr[i].int_value()
10737 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10738 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10742 case elfcpp::Tag_nodefaults:
10743 // This tag is set if it exists, but the value is unused (and is
10744 // typically zero). We don't actually need to do anything here -
10745 // the merge happens automatically when the type flags are merged
10748 case elfcpp::Tag_also_compatible_with:
10749 // Already done in Tag_CPU_arch.
10751 case elfcpp::Tag_conformance:
10752 // Keep the attribute if it matches. Throw it away otherwise.
10753 // No attribute means no claim to conform.
10754 if (in_attr[i].string_value() != out_attr[i].string_value())
10755 out_attr[i].set_string_value("");
10760 const char* err_object = NULL;
10762 // The "known_obj_attributes" table does contain some undefined
10763 // attributes. Ensure that there are unused.
10764 if (out_attr[i].int_value() != 0
10765 || out_attr[i].string_value() != "")
10766 err_object = "output";
10767 else if (in_attr[i].int_value() != 0
10768 || in_attr[i].string_value() != "")
10771 if (err_object != NULL
10772 && parameters->options().warn_mismatch())
10774 // Attribute numbers >=64 (mod 128) can be safely ignored.
10775 if ((i & 127) < 64)
10776 gold_error(_("%s: unknown mandatory EABI object attribute "
10780 gold_warning(_("%s: unknown EABI object attribute %d"),
10784 // Only pass on attributes that match in both inputs.
10785 if (!in_attr[i].matches(out_attr[i]))
10787 out_attr[i].set_int_value(0);
10788 out_attr[i].set_string_value("");
10793 // If out_attr was copied from in_attr then it won't have a type yet.
10794 if (in_attr[i].type() && !out_attr[i].type())
10795 out_attr[i].set_type(in_attr[i].type());
10798 // Merge Tag_compatibility attributes and any common GNU ones.
10799 this->attributes_section_data_->merge(name, pasd);
10801 // Check for any attributes not known on ARM.
10802 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10803 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10804 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10805 Other_attributes* out_other_attributes =
10806 this->attributes_section_data_->other_attributes(vendor);
10807 Other_attributes::iterator out_iter = out_other_attributes->begin();
10809 while (in_iter != in_other_attributes->end()
10810 || out_iter != out_other_attributes->end())
10812 const char* err_object = NULL;
10815 // The tags for each list are in numerical order.
10816 // If the tags are equal, then merge.
10817 if (out_iter != out_other_attributes->end()
10818 && (in_iter == in_other_attributes->end()
10819 || in_iter->first > out_iter->first))
10821 // This attribute only exists in output. We can't merge, and we
10822 // don't know what the tag means, so delete it.
10823 err_object = "output";
10824 err_tag = out_iter->first;
10825 int saved_tag = out_iter->first;
10826 delete out_iter->second;
10827 out_other_attributes->erase(out_iter);
10828 out_iter = out_other_attributes->upper_bound(saved_tag);
10830 else if (in_iter != in_other_attributes->end()
10831 && (out_iter != out_other_attributes->end()
10832 || in_iter->first < out_iter->first))
10834 // This attribute only exists in input. We can't merge, and we
10835 // don't know what the tag means, so ignore it.
10837 err_tag = in_iter->first;
10840 else // The tags are equal.
10842 // As present, all attributes in the list are unknown, and
10843 // therefore can't be merged meaningfully.
10844 err_object = "output";
10845 err_tag = out_iter->first;
10847 // Only pass on attributes that match in both inputs.
10848 if (!in_iter->second->matches(*(out_iter->second)))
10850 // No match. Delete the attribute.
10851 int saved_tag = out_iter->first;
10852 delete out_iter->second;
10853 out_other_attributes->erase(out_iter);
10854 out_iter = out_other_attributes->upper_bound(saved_tag);
10858 // Matched. Keep the attribute and move to the next.
10864 if (err_object && parameters->options().warn_mismatch())
10866 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10867 if ((err_tag & 127) < 64)
10869 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10870 err_object, err_tag);
10874 gold_warning(_("%s: unknown EABI object attribute %d"),
10875 err_object, err_tag);
10881 // Stub-generation methods for Target_arm.
10883 // Make a new Arm_input_section object.
10885 template<bool big_endian>
10886 Arm_input_section<big_endian>*
10887 Target_arm<big_endian>::new_arm_input_section(
10889 unsigned int shndx)
10891 Section_id sid(relobj, shndx);
10893 Arm_input_section<big_endian>* arm_input_section =
10894 new Arm_input_section<big_endian>(relobj, shndx);
10895 arm_input_section->init();
10897 // Register new Arm_input_section in map for look-up.
10898 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10899 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10901 // Make sure that it we have not created another Arm_input_section
10902 // for this input section already.
10903 gold_assert(ins.second);
10905 return arm_input_section;
10908 // Find the Arm_input_section object corresponding to the SHNDX-th input
10909 // section of RELOBJ.
10911 template<bool big_endian>
10912 Arm_input_section<big_endian>*
10913 Target_arm<big_endian>::find_arm_input_section(
10915 unsigned int shndx) const
10917 Section_id sid(relobj, shndx);
10918 typename Arm_input_section_map::const_iterator p =
10919 this->arm_input_section_map_.find(sid);
10920 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10923 // Make a new stub table.
10925 template<bool big_endian>
10926 Stub_table<big_endian>*
10927 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10929 Stub_table<big_endian>* stub_table =
10930 new Stub_table<big_endian>(owner);
10931 this->stub_tables_.push_back(stub_table);
10933 stub_table->set_address(owner->address() + owner->data_size());
10934 stub_table->set_file_offset(owner->offset() + owner->data_size());
10935 stub_table->finalize_data_size();
10940 // Scan a relocation for stub generation.
10942 template<bool big_endian>
10944 Target_arm<big_endian>::scan_reloc_for_stub(
10945 const Relocate_info<32, big_endian>* relinfo,
10946 unsigned int r_type,
10947 const Sized_symbol<32>* gsym,
10948 unsigned int r_sym,
10949 const Symbol_value<32>* psymval,
10950 elfcpp::Elf_types<32>::Elf_Swxword addend,
10951 Arm_address address)
10953 typedef typename Target_arm<big_endian>::Relocate Relocate;
10955 const Arm_relobj<big_endian>* arm_relobj =
10956 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10958 bool target_is_thumb;
10959 Symbol_value<32> symval;
10962 // This is a global symbol. Determine if we use PLT and if the
10963 // final target is THUMB.
10964 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10966 // This uses a PLT, change the symbol value.
10967 symval.set_output_value(this->plt_section()->address()
10968 + gsym->plt_offset());
10970 target_is_thumb = false;
10972 else if (gsym->is_undefined())
10973 // There is no need to generate a stub symbol is undefined.
10978 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10979 || (gsym->type() == elfcpp::STT_FUNC
10980 && !gsym->is_undefined()
10981 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10986 // This is a local symbol. Determine if the final target is THUMB.
10987 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10990 // Strip LSB if this points to a THUMB target.
10991 const Arm_reloc_property* reloc_property =
10992 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10993 gold_assert(reloc_property != NULL);
10994 if (target_is_thumb
10995 && reloc_property->uses_thumb_bit()
10996 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10998 Arm_address stripped_value =
10999 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11000 symval.set_output_value(stripped_value);
11004 // Get the symbol value.
11005 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11007 // Owing to pipelining, the PC relative branches below actually skip
11008 // two instructions when the branch offset is 0.
11009 Arm_address destination;
11012 case elfcpp::R_ARM_CALL:
11013 case elfcpp::R_ARM_JUMP24:
11014 case elfcpp::R_ARM_PLT32:
11016 destination = value + addend + 8;
11018 case elfcpp::R_ARM_THM_CALL:
11019 case elfcpp::R_ARM_THM_XPC22:
11020 case elfcpp::R_ARM_THM_JUMP24:
11021 case elfcpp::R_ARM_THM_JUMP19:
11023 destination = value + addend + 4;
11026 gold_unreachable();
11029 Reloc_stub* stub = NULL;
11030 Stub_type stub_type =
11031 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11033 if (stub_type != arm_stub_none)
11035 // Try looking up an existing stub from a stub table.
11036 Stub_table<big_endian>* stub_table =
11037 arm_relobj->stub_table(relinfo->data_shndx);
11038 gold_assert(stub_table != NULL);
11040 // Locate stub by destination.
11041 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11043 // Create a stub if there is not one already
11044 stub = stub_table->find_reloc_stub(stub_key);
11047 // create a new stub and add it to stub table.
11048 stub = this->stub_factory().make_reloc_stub(stub_type);
11049 stub_table->add_reloc_stub(stub, stub_key);
11052 // Record the destination address.
11053 stub->set_destination_address(destination
11054 | (target_is_thumb ? 1 : 0));
11057 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11058 if (this->fix_cortex_a8_
11059 && (r_type == elfcpp::R_ARM_THM_JUMP24
11060 || r_type == elfcpp::R_ARM_THM_JUMP19
11061 || r_type == elfcpp::R_ARM_THM_CALL
11062 || r_type == elfcpp::R_ARM_THM_XPC22)
11063 && (address & 0xfffU) == 0xffeU)
11065 // Found a candidate. Note we haven't checked the destination is
11066 // within 4K here: if we do so (and don't create a record) we can't
11067 // tell that a branch should have been relocated when scanning later.
11068 this->cortex_a8_relocs_info_[address] =
11069 new Cortex_a8_reloc(stub, r_type,
11070 destination | (target_is_thumb ? 1 : 0));
11074 // This function scans a relocation sections for stub generation.
11075 // The template parameter Relocate must be a class type which provides
11076 // a single function, relocate(), which implements the machine
11077 // specific part of a relocation.
11079 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11080 // SHT_REL or SHT_RELA.
11082 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11083 // of relocs. OUTPUT_SECTION is the output section.
11084 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11085 // mapped to output offsets.
11087 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11088 // VIEW_SIZE is the size. These refer to the input section, unless
11089 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11090 // the output section.
11092 template<bool big_endian>
11093 template<int sh_type>
11095 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11096 const Relocate_info<32, big_endian>* relinfo,
11097 const unsigned char* prelocs,
11098 size_t reloc_count,
11099 Output_section* output_section,
11100 bool needs_special_offset_handling,
11101 const unsigned char* view,
11102 elfcpp::Elf_types<32>::Elf_Addr view_address,
11105 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11106 const int reloc_size =
11107 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11109 Arm_relobj<big_endian>* arm_object =
11110 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11111 unsigned int local_count = arm_object->local_symbol_count();
11113 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11115 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11117 Reltype reloc(prelocs);
11119 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11120 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11121 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11123 r_type = this->get_real_reloc_type(r_type);
11125 // Only a few relocation types need stubs.
11126 if ((r_type != elfcpp::R_ARM_CALL)
11127 && (r_type != elfcpp::R_ARM_JUMP24)
11128 && (r_type != elfcpp::R_ARM_PLT32)
11129 && (r_type != elfcpp::R_ARM_THM_CALL)
11130 && (r_type != elfcpp::R_ARM_THM_XPC22)
11131 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11132 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11133 && (r_type != elfcpp::R_ARM_V4BX))
11136 section_offset_type offset =
11137 convert_to_section_size_type(reloc.get_r_offset());
11139 if (needs_special_offset_handling)
11141 offset = output_section->output_offset(relinfo->object,
11142 relinfo->data_shndx,
11148 // Create a v4bx stub if --fix-v4bx-interworking is used.
11149 if (r_type == elfcpp::R_ARM_V4BX)
11151 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11153 // Get the BX instruction.
11154 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11155 const Valtype* wv =
11156 reinterpret_cast<const Valtype*>(view + offset);
11157 elfcpp::Elf_types<32>::Elf_Swxword insn =
11158 elfcpp::Swap<32, big_endian>::readval(wv);
11159 const uint32_t reg = (insn & 0xf);
11163 // Try looking up an existing stub from a stub table.
11164 Stub_table<big_endian>* stub_table =
11165 arm_object->stub_table(relinfo->data_shndx);
11166 gold_assert(stub_table != NULL);
11168 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11170 // create a new stub and add it to stub table.
11171 Arm_v4bx_stub* stub =
11172 this->stub_factory().make_arm_v4bx_stub(reg);
11173 gold_assert(stub != NULL);
11174 stub_table->add_arm_v4bx_stub(stub);
11182 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11183 elfcpp::Elf_types<32>::Elf_Swxword addend =
11184 stub_addend_reader(r_type, view + offset, reloc);
11186 const Sized_symbol<32>* sym;
11188 Symbol_value<32> symval;
11189 const Symbol_value<32> *psymval;
11190 bool is_defined_in_discarded_section;
11191 unsigned int shndx;
11192 if (r_sym < local_count)
11195 psymval = arm_object->local_symbol(r_sym);
11197 // If the local symbol belongs to a section we are discarding,
11198 // and that section is a debug section, try to find the
11199 // corresponding kept section and map this symbol to its
11200 // counterpart in the kept section. The symbol must not
11201 // correspond to a section we are folding.
11203 shndx = psymval->input_shndx(&is_ordinary);
11204 is_defined_in_discarded_section =
11206 && shndx != elfcpp::SHN_UNDEF
11207 && !arm_object->is_section_included(shndx)
11208 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11210 // We need to compute the would-be final value of this local
11212 if (!is_defined_in_discarded_section)
11214 typedef Sized_relobj_file<32, big_endian> ObjType;
11215 typename ObjType::Compute_final_local_value_status status =
11216 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11218 if (status == ObjType::CFLV_OK)
11220 // Currently we cannot handle a branch to a target in
11221 // a merged section. If this is the case, issue an error
11222 // and also free the merge symbol value.
11223 if (!symval.has_output_value())
11225 const std::string& section_name =
11226 arm_object->section_name(shndx);
11227 arm_object->error(_("cannot handle branch to local %u "
11228 "in a merged section %s"),
11229 r_sym, section_name.c_str());
11235 // We cannot determine the final value.
11242 const Symbol* gsym;
11243 gsym = arm_object->global_symbol(r_sym);
11244 gold_assert(gsym != NULL);
11245 if (gsym->is_forwarder())
11246 gsym = relinfo->symtab->resolve_forwards(gsym);
11248 sym = static_cast<const Sized_symbol<32>*>(gsym);
11249 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11250 symval.set_output_symtab_index(sym->symtab_index());
11252 symval.set_no_output_symtab_entry();
11254 // We need to compute the would-be final value of this global
11256 const Symbol_table* symtab = relinfo->symtab;
11257 const Sized_symbol<32>* sized_symbol =
11258 symtab->get_sized_symbol<32>(gsym);
11259 Symbol_table::Compute_final_value_status status;
11260 Arm_address value =
11261 symtab->compute_final_value<32>(sized_symbol, &status);
11263 // Skip this if the symbol has not output section.
11264 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11266 symval.set_output_value(value);
11268 if (gsym->type() == elfcpp::STT_TLS)
11269 symval.set_is_tls_symbol();
11270 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11271 symval.set_is_ifunc_symbol();
11274 is_defined_in_discarded_section =
11275 (gsym->is_defined_in_discarded_section()
11276 && gsym->is_undefined());
11280 Symbol_value<32> symval2;
11281 if (is_defined_in_discarded_section)
11283 if (comdat_behavior == CB_UNDETERMINED)
11285 std::string name = arm_object->section_name(relinfo->data_shndx);
11286 comdat_behavior = get_comdat_behavior(name.c_str());
11288 if (comdat_behavior == CB_PRETEND)
11290 // FIXME: This case does not work for global symbols.
11291 // We have no place to store the original section index.
11292 // Fortunately this does not matter for comdat sections,
11293 // only for sections explicitly discarded by a linker
11296 typename elfcpp::Elf_types<32>::Elf_Addr value =
11297 arm_object->map_to_kept_section(shndx, &found);
11299 symval2.set_output_value(value + psymval->input_value());
11301 symval2.set_output_value(0);
11305 if (comdat_behavior == CB_WARNING)
11306 gold_warning_at_location(relinfo, i, offset,
11307 _("relocation refers to discarded "
11309 symval2.set_output_value(0);
11311 symval2.set_no_output_symtab_entry();
11312 psymval = &symval2;
11315 // If symbol is a section symbol, we don't know the actual type of
11316 // destination. Give up.
11317 if (psymval->is_section_symbol())
11320 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11321 addend, view_address + offset);
11325 // Scan an input section for stub generation.
11327 template<bool big_endian>
11329 Target_arm<big_endian>::scan_section_for_stubs(
11330 const Relocate_info<32, big_endian>* relinfo,
11331 unsigned int sh_type,
11332 const unsigned char* prelocs,
11333 size_t reloc_count,
11334 Output_section* output_section,
11335 bool needs_special_offset_handling,
11336 const unsigned char* view,
11337 Arm_address view_address,
11338 section_size_type view_size)
11340 if (sh_type == elfcpp::SHT_REL)
11341 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11346 needs_special_offset_handling,
11350 else if (sh_type == elfcpp::SHT_RELA)
11351 // We do not support RELA type relocations yet. This is provided for
11353 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11358 needs_special_offset_handling,
11363 gold_unreachable();
11366 // Group input sections for stub generation.
11368 // We group input sections in an output section so that the total size,
11369 // including any padding space due to alignment is smaller than GROUP_SIZE
11370 // unless the only input section in group is bigger than GROUP_SIZE already.
11371 // Then an ARM stub table is created to follow the last input section
11372 // in group. For each group an ARM stub table is created an is placed
11373 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11374 // extend the group after the stub table.
11376 template<bool big_endian>
11378 Target_arm<big_endian>::group_sections(
11380 section_size_type group_size,
11381 bool stubs_always_after_branch,
11384 // Group input sections and insert stub table
11385 Layout::Section_list section_list;
11386 layout->get_allocated_sections(§ion_list);
11387 for (Layout::Section_list::const_iterator p = section_list.begin();
11388 p != section_list.end();
11391 Arm_output_section<big_endian>* output_section =
11392 Arm_output_section<big_endian>::as_arm_output_section(*p);
11393 output_section->group_sections(group_size, stubs_always_after_branch,
11398 // Relaxation hook. This is where we do stub generation.
11400 template<bool big_endian>
11402 Target_arm<big_endian>::do_relax(
11404 const Input_objects* input_objects,
11405 Symbol_table* symtab,
11409 // No need to generate stubs if this is a relocatable link.
11410 gold_assert(!parameters->options().relocatable());
11412 // If this is the first pass, we need to group input sections into
11414 bool done_exidx_fixup = false;
11415 typedef typename Stub_table_list::iterator Stub_table_iterator;
11418 // Determine the stub group size. The group size is the absolute
11419 // value of the parameter --stub-group-size. If --stub-group-size
11420 // is passed a negative value, we restrict stubs to be always after
11421 // the stubbed branches.
11422 int32_t stub_group_size_param =
11423 parameters->options().stub_group_size();
11424 bool stubs_always_after_branch = stub_group_size_param < 0;
11425 section_size_type stub_group_size = abs(stub_group_size_param);
11427 if (stub_group_size == 1)
11430 // Thumb branch range is +-4MB has to be used as the default
11431 // maximum size (a given section can contain both ARM and Thumb
11432 // code, so the worst case has to be taken into account). If we are
11433 // fixing cortex-a8 errata, the branch range has to be even smaller,
11434 // since wide conditional branch has a range of +-1MB only.
11436 // This value is 48K less than that, which allows for 4096
11437 // 12-byte stubs. If we exceed that, then we will fail to link.
11438 // The user will have to relink with an explicit group size
11440 stub_group_size = 4145152;
11443 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11444 // page as the first half of a 32-bit branch straddling two 4K pages.
11445 // This is a crude way of enforcing that. In addition, long conditional
11446 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11447 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11448 // cortex-A8 stubs from long conditional branches.
11449 if (this->fix_cortex_a8_)
11451 stubs_always_after_branch = true;
11452 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11453 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11456 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11458 // Also fix .ARM.exidx section coverage.
11459 Arm_output_section<big_endian>* exidx_output_section = NULL;
11460 for (Layout::Section_list::const_iterator p =
11461 layout->section_list().begin();
11462 p != layout->section_list().end();
11464 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11466 if (exidx_output_section == NULL)
11467 exidx_output_section =
11468 Arm_output_section<big_endian>::as_arm_output_section(*p);
11470 // We cannot handle this now.
11471 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11472 "non-relocatable link"),
11473 exidx_output_section->name(),
11477 if (exidx_output_section != NULL)
11479 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11481 done_exidx_fixup = true;
11486 // If this is not the first pass, addresses and file offsets have
11487 // been reset at this point, set them here.
11488 for (Stub_table_iterator sp = this->stub_tables_.begin();
11489 sp != this->stub_tables_.end();
11492 Arm_input_section<big_endian>* owner = (*sp)->owner();
11493 off_t off = align_address(owner->original_size(),
11494 (*sp)->addralign());
11495 (*sp)->set_address_and_file_offset(owner->address() + off,
11496 owner->offset() + off);
11500 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11501 // beginning of each relaxation pass, just blow away all the stubs.
11502 // Alternatively, we could selectively remove only the stubs and reloc
11503 // information for code sections that have moved since the last pass.
11504 // That would require more book-keeping.
11505 if (this->fix_cortex_a8_)
11507 // Clear all Cortex-A8 reloc information.
11508 for (typename Cortex_a8_relocs_info::const_iterator p =
11509 this->cortex_a8_relocs_info_.begin();
11510 p != this->cortex_a8_relocs_info_.end();
11513 this->cortex_a8_relocs_info_.clear();
11515 // Remove all Cortex-A8 stubs.
11516 for (Stub_table_iterator sp = this->stub_tables_.begin();
11517 sp != this->stub_tables_.end();
11519 (*sp)->remove_all_cortex_a8_stubs();
11522 // Scan relocs for relocation stubs
11523 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11524 op != input_objects->relobj_end();
11527 Arm_relobj<big_endian>* arm_relobj =
11528 Arm_relobj<big_endian>::as_arm_relobj(*op);
11529 // Lock the object so we can read from it. This is only called
11530 // single-threaded from Layout::finalize, so it is OK to lock.
11531 Task_lock_obj<Object> tl(task, arm_relobj);
11532 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11535 // Check all stub tables to see if any of them have their data sizes
11536 // or addresses alignments changed. These are the only things that
11538 bool any_stub_table_changed = false;
11539 Unordered_set<const Output_section*> sections_needing_adjustment;
11540 for (Stub_table_iterator sp = this->stub_tables_.begin();
11541 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11544 if ((*sp)->update_data_size_and_addralign())
11546 // Update data size of stub table owner.
11547 Arm_input_section<big_endian>* owner = (*sp)->owner();
11548 uint64_t address = owner->address();
11549 off_t offset = owner->offset();
11550 owner->reset_address_and_file_offset();
11551 owner->set_address_and_file_offset(address, offset);
11553 sections_needing_adjustment.insert(owner->output_section());
11554 any_stub_table_changed = true;
11558 // Output_section_data::output_section() returns a const pointer but we
11559 // need to update output sections, so we record all output sections needing
11560 // update above and scan the sections here to find out what sections need
11562 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11563 p != layout->section_list().end();
11566 if (sections_needing_adjustment.find(*p)
11567 != sections_needing_adjustment.end())
11568 (*p)->set_section_offsets_need_adjustment();
11571 // Stop relaxation if no EXIDX fix-up and no stub table change.
11572 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11574 // Finalize the stubs in the last relaxation pass.
11575 if (!continue_relaxation)
11577 for (Stub_table_iterator sp = this->stub_tables_.begin();
11578 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11580 (*sp)->finalize_stubs();
11582 // Update output local symbol counts of objects if necessary.
11583 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11584 op != input_objects->relobj_end();
11587 Arm_relobj<big_endian>* arm_relobj =
11588 Arm_relobj<big_endian>::as_arm_relobj(*op);
11590 // Update output local symbol counts. We need to discard local
11591 // symbols defined in parts of input sections that are discarded by
11593 if (arm_relobj->output_local_symbol_count_needs_update())
11595 // We need to lock the object's file to update it.
11596 Task_lock_obj<Object> tl(task, arm_relobj);
11597 arm_relobj->update_output_local_symbol_count();
11602 return continue_relaxation;
11605 // Relocate a stub.
11607 template<bool big_endian>
11609 Target_arm<big_endian>::relocate_stub(
11611 const Relocate_info<32, big_endian>* relinfo,
11612 Output_section* output_section,
11613 unsigned char* view,
11614 Arm_address address,
11615 section_size_type view_size)
11618 const Stub_template* stub_template = stub->stub_template();
11619 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11621 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11622 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11624 unsigned int r_type = insn->r_type();
11625 section_size_type reloc_offset = stub_template->reloc_offset(i);
11626 section_size_type reloc_size = insn->size();
11627 gold_assert(reloc_offset + reloc_size <= view_size);
11629 // This is the address of the stub destination.
11630 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11631 Symbol_value<32> symval;
11632 symval.set_output_value(target);
11634 // Synthesize a fake reloc just in case. We don't have a symbol so
11636 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11637 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11638 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11639 reloc_write.put_r_offset(reloc_offset);
11640 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11641 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11643 relocate.relocate(relinfo, this, output_section,
11644 this->fake_relnum_for_stubs, rel, r_type,
11645 NULL, &symval, view + reloc_offset,
11646 address + reloc_offset, reloc_size);
11650 // Determine whether an object attribute tag takes an integer, a
11653 template<bool big_endian>
11655 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11657 if (tag == Object_attribute::Tag_compatibility)
11658 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11659 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11660 else if (tag == elfcpp::Tag_nodefaults)
11661 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11662 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11663 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11664 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11666 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11668 return ((tag & 1) != 0
11669 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11670 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11673 // Reorder attributes.
11675 // The ABI defines that Tag_conformance should be emitted first, and that
11676 // Tag_nodefaults should be second (if either is defined). This sets those
11677 // two positions, and bumps up the position of all the remaining tags to
11680 template<bool big_endian>
11682 Target_arm<big_endian>::do_attributes_order(int num) const
11684 // Reorder the known object attributes in output. We want to move
11685 // Tag_conformance to position 4 and Tag_conformance to position 5
11686 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11688 return elfcpp::Tag_conformance;
11690 return elfcpp::Tag_nodefaults;
11691 if ((num - 2) < elfcpp::Tag_nodefaults)
11693 if ((num - 1) < elfcpp::Tag_conformance)
11698 // Scan a span of THUMB code for Cortex-A8 erratum.
11700 template<bool big_endian>
11702 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11703 Arm_relobj<big_endian>* arm_relobj,
11704 unsigned int shndx,
11705 section_size_type span_start,
11706 section_size_type span_end,
11707 const unsigned char* view,
11708 Arm_address address)
11710 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11712 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11713 // The branch target is in the same 4KB region as the
11714 // first half of the branch.
11715 // The instruction before the branch is a 32-bit
11716 // length non-branch instruction.
11717 section_size_type i = span_start;
11718 bool last_was_32bit = false;
11719 bool last_was_branch = false;
11720 while (i < span_end)
11722 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11723 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11724 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11725 bool is_blx = false, is_b = false;
11726 bool is_bl = false, is_bcc = false;
11728 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11731 // Load the rest of the insn (in manual-friendly order).
11732 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11734 // Encoding T4: B<c>.W.
11735 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11736 // Encoding T1: BL<c>.W.
11737 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11738 // Encoding T2: BLX<c>.W.
11739 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11740 // Encoding T3: B<c>.W (not permitted in IT block).
11741 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11742 && (insn & 0x07f00000U) != 0x03800000U);
11745 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11747 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11748 // page boundary and it follows 32-bit non-branch instruction,
11749 // we need to work around.
11750 if (is_32bit_branch
11751 && ((address + i) & 0xfffU) == 0xffeU
11753 && !last_was_branch)
11755 // Check to see if there is a relocation stub for this branch.
11756 bool force_target_arm = false;
11757 bool force_target_thumb = false;
11758 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11759 Cortex_a8_relocs_info::const_iterator p =
11760 this->cortex_a8_relocs_info_.find(address + i);
11762 if (p != this->cortex_a8_relocs_info_.end())
11764 cortex_a8_reloc = p->second;
11765 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11767 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11768 && !target_is_thumb)
11769 force_target_arm = true;
11770 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11771 && target_is_thumb)
11772 force_target_thumb = true;
11776 Stub_type stub_type = arm_stub_none;
11778 // Check if we have an offending branch instruction.
11779 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11780 uint16_t lower_insn = insn & 0xffffU;
11781 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11783 if (cortex_a8_reloc != NULL
11784 && cortex_a8_reloc->reloc_stub() != NULL)
11785 // We've already made a stub for this instruction, e.g.
11786 // it's a long branch or a Thumb->ARM stub. Assume that
11787 // stub will suffice to work around the A8 erratum (see
11788 // setting of always_after_branch above).
11792 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11794 stub_type = arm_stub_a8_veneer_b_cond;
11796 else if (is_b || is_bl || is_blx)
11798 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11803 stub_type = (is_blx
11804 ? arm_stub_a8_veneer_blx
11806 ? arm_stub_a8_veneer_bl
11807 : arm_stub_a8_veneer_b));
11810 if (stub_type != arm_stub_none)
11812 Arm_address pc_for_insn = address + i + 4;
11814 // The original instruction is a BL, but the target is
11815 // an ARM instruction. If we were not making a stub,
11816 // the BL would have been converted to a BLX. Use the
11817 // BLX stub instead in that case.
11818 if (this->may_use_v5t_interworking() && force_target_arm
11819 && stub_type == arm_stub_a8_veneer_bl)
11821 stub_type = arm_stub_a8_veneer_blx;
11825 // Conversely, if the original instruction was
11826 // BLX but the target is Thumb mode, use the BL stub.
11827 else if (force_target_thumb
11828 && stub_type == arm_stub_a8_veneer_blx)
11830 stub_type = arm_stub_a8_veneer_bl;
11838 // If we found a relocation, use the proper destination,
11839 // not the offset in the (unrelocated) instruction.
11840 // Note this is always done if we switched the stub type above.
11841 if (cortex_a8_reloc != NULL)
11842 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11844 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11846 // Add a new stub if destination address in in the same page.
11847 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11849 Cortex_a8_stub* stub =
11850 this->stub_factory_.make_cortex_a8_stub(stub_type,
11854 Stub_table<big_endian>* stub_table =
11855 arm_relobj->stub_table(shndx);
11856 gold_assert(stub_table != NULL);
11857 stub_table->add_cortex_a8_stub(address + i, stub);
11862 i += insn_32bit ? 4 : 2;
11863 last_was_32bit = insn_32bit;
11864 last_was_branch = is_32bit_branch;
11868 // Apply the Cortex-A8 workaround.
11870 template<bool big_endian>
11872 Target_arm<big_endian>::apply_cortex_a8_workaround(
11873 const Cortex_a8_stub* stub,
11874 Arm_address stub_address,
11875 unsigned char* insn_view,
11876 Arm_address insn_address)
11878 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11879 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11880 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11881 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11882 off_t branch_offset = stub_address - (insn_address + 4);
11884 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11885 switch (stub->stub_template()->type())
11887 case arm_stub_a8_veneer_b_cond:
11888 // For a conditional branch, we re-write it to be an unconditional
11889 // branch to the stub. We use the THUMB-2 encoding here.
11890 upper_insn = 0xf000U;
11891 lower_insn = 0xb800U;
11893 case arm_stub_a8_veneer_b:
11894 case arm_stub_a8_veneer_bl:
11895 case arm_stub_a8_veneer_blx:
11896 if ((lower_insn & 0x5000U) == 0x4000U)
11897 // For a BLX instruction, make sure that the relocation is
11898 // rounded up to a word boundary. This follows the semantics of
11899 // the instruction which specifies that bit 1 of the target
11900 // address will come from bit 1 of the base address.
11901 branch_offset = (branch_offset + 2) & ~3;
11903 // Put BRANCH_OFFSET back into the insn.
11904 gold_assert(!utils::has_overflow<25>(branch_offset));
11905 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11906 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11910 gold_unreachable();
11913 // Put the relocated value back in the object file:
11914 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11915 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11918 template<bool big_endian>
11919 class Target_selector_arm : public Target_selector
11922 Target_selector_arm()
11923 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11924 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11925 (big_endian ? "armelfb" : "armelf"))
11929 do_instantiate_target()
11930 { return new Target_arm<big_endian>(); }
11933 // Fix .ARM.exidx section coverage.
11935 template<bool big_endian>
11937 Target_arm<big_endian>::fix_exidx_coverage(
11939 const Input_objects* input_objects,
11940 Arm_output_section<big_endian>* exidx_section,
11941 Symbol_table* symtab,
11944 // We need to look at all the input sections in output in ascending
11945 // order of of output address. We do that by building a sorted list
11946 // of output sections by addresses. Then we looks at the output sections
11947 // in order. The input sections in an output section are already sorted
11948 // by addresses within the output section.
11950 typedef std::set<Output_section*, output_section_address_less_than>
11951 Sorted_output_section_list;
11952 Sorted_output_section_list sorted_output_sections;
11954 // Find out all the output sections of input sections pointed by
11955 // EXIDX input sections.
11956 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11957 p != input_objects->relobj_end();
11960 Arm_relobj<big_endian>* arm_relobj =
11961 Arm_relobj<big_endian>::as_arm_relobj(*p);
11962 std::vector<unsigned int> shndx_list;
11963 arm_relobj->get_exidx_shndx_list(&shndx_list);
11964 for (size_t i = 0; i < shndx_list.size(); ++i)
11966 const Arm_exidx_input_section* exidx_input_section =
11967 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11968 gold_assert(exidx_input_section != NULL);
11969 if (!exidx_input_section->has_errors())
11971 unsigned int text_shndx = exidx_input_section->link();
11972 Output_section* os = arm_relobj->output_section(text_shndx);
11973 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11974 sorted_output_sections.insert(os);
11979 // Go over the output sections in ascending order of output addresses.
11980 typedef typename Arm_output_section<big_endian>::Text_section_list
11982 Text_section_list sorted_text_sections;
11983 for (typename Sorted_output_section_list::iterator p =
11984 sorted_output_sections.begin();
11985 p != sorted_output_sections.end();
11988 Arm_output_section<big_endian>* arm_output_section =
11989 Arm_output_section<big_endian>::as_arm_output_section(*p);
11990 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11993 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11994 merge_exidx_entries(), task);
11997 Target_selector_arm<false> target_selector_arm;
11998 Target_selector_arm<true> target_selector_armbe;
12000 } // End anonymous namespace.