1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "gdb_string.h"
33 #include "exceptions.h"
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
50 struct ext_elf32_fdpic_loadseg
52 /* Core address to which the segment is mapped. */
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
74 /* Core address to which the segment is mapped. */
76 /* VMA recorded in the program header. */
78 /* Size of this segment in memory. */
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
85 /* Number of segments in this map. */
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
110 /* Problem reading the target's memory. */
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version);
119 /* We only handle version 0. */
123 /* Extract the number of segments. */
124 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
125 sizeof ext_ldmbuf_partial.nsegs);
127 /* Allocate space for the complete (external) loadmap. */
128 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
129 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
130 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
132 /* Copy over the portion of the loadmap that's already been read. */
133 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
135 /* Read the rest of the loadmap from the target. */
136 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
137 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
138 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
140 /* Couldn't read rest of the loadmap. */
145 /* Allocate space into which to put information extract from the
146 external loadsegs. I.e, allocate the internal loadsegs. */
147 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
148 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
149 int_ldmbuf = xmalloc (int_ldmbuf_size);
151 /* Place extracted information in internal structs. */
152 int_ldmbuf->version = version;
153 int_ldmbuf->nsegs = nsegs;
154 for (seg = 0; seg < nsegs; seg++)
156 int_ldmbuf->segs[seg].addr
157 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
158 sizeof (ext_ldmbuf->segs[seg].addr));
159 int_ldmbuf->segs[seg].p_vaddr
160 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
161 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
162 int_ldmbuf->segs[seg].p_memsz
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
164 sizeof (ext_ldmbuf->segs[seg].p_memsz));
171 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
173 typedef gdb_byte ext_ptr[4];
175 struct ext_elf32_fdpic_loadaddr
177 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
178 ext_ptr got_value; /* void *got_value; */
183 struct ext_elf32_fdpic_loadaddr l_addr;
185 /* Absolute file name object was found in. */
186 ext_ptr l_name; /* char *l_name; */
188 /* Dynamic section of the shared object. */
189 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
191 /* Chain of loaded objects. */
192 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
195 /* Link map info to include in an allocated so_list entry */
199 /* The loadmap, digested into an easier to use form. */
200 struct int_elf32_fdpic_loadmap *map;
201 /* The GOT address for this link map entry. */
203 /* The link map address, needed for frv_fetch_objfile_link_map(). */
206 /* Cached dynamic symbol table and dynamic relocs initialized and
207 used only by find_canonical_descriptor_in_load_object().
209 Note: kevinb/2004-02-26: It appears that calls to
210 bfd_canonicalize_dynamic_reloc() will use the same symbols as
211 those supplied to the first call to this function. Therefore,
212 it's important to NOT free the asymbol ** data structure
213 supplied to the first call. Thus the caching of the dynamic
214 symbols (dyn_syms) is critical for correct operation. The
215 caching of the dynamic relocations could be dispensed with. */
217 arelent **dyn_relocs;
218 int dyn_reloc_count; /* number of dynamic relocs. */
222 /* The load map, got value, etc. are not available from the chain
223 of loaded shared objects. ``main_executable_lm_info'' provides
224 a way to get at this information so that it doesn't need to be
225 frequently recomputed. Initialized by frv_relocate_main_executable(). */
226 static struct lm_info *main_executable_lm_info;
228 static void frv_relocate_main_executable (void);
229 static CORE_ADDR main_got (void);
230 static int enable_break2 (void);
236 bfd_lookup_symbol -- lookup the value for a specific symbol
240 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
244 An expensive way to lookup the value of a single symbol for
245 bfd's that are only temporary anyway. This is used by the
246 shared library support to find the address of the debugger
247 interface structures in the shared library.
249 Note that 0 is specifically allowed as an error return (no
254 bfd_lookup_symbol (bfd *abfd, char *symname)
258 asymbol **symbol_table;
259 unsigned int number_of_symbols;
261 struct cleanup *back_to;
262 CORE_ADDR symaddr = 0;
264 storage_needed = bfd_get_symtab_upper_bound (abfd);
266 if (storage_needed > 0)
268 symbol_table = (asymbol **) xmalloc (storage_needed);
269 back_to = make_cleanup (xfree, symbol_table);
270 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
272 for (i = 0; i < number_of_symbols; i++)
274 sym = *symbol_table++;
275 if (strcmp (sym->name, symname) == 0)
277 /* Bfd symbols are section relative. */
278 symaddr = sym->value + sym->section->vma;
282 do_cleanups (back_to);
288 /* Look for the symbol in the dynamic string table too. */
290 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
292 if (storage_needed > 0)
294 symbol_table = (asymbol **) xmalloc (storage_needed);
295 back_to = make_cleanup (xfree, symbol_table);
296 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
298 for (i = 0; i < number_of_symbols; i++)
300 sym = *symbol_table++;
301 if (strcmp (sym->name, symname) == 0)
303 /* Bfd symbols are section relative. */
304 symaddr = sym->value + sym->section->vma;
308 do_cleanups (back_to);
319 open_symbol_file_object
323 void open_symbol_file_object (void *from_tty)
327 If no open symbol file, attempt to locate and open the main symbol
330 If FROM_TTYP dereferences to a non-zero integer, allow messages to
331 be printed. This parameter is a pointer rather than an int because
332 open_symbol_file_object() is called via catch_errors() and
333 catch_errors() requires a pointer argument. */
336 open_symbol_file_object (void *from_ttyp)
342 /* Cached value for lm_base(), below. */
343 static CORE_ADDR lm_base_cache = 0;
345 /* Link map address for main module. */
346 static CORE_ADDR main_lm_addr = 0;
348 /* Return the address from which the link map chain may be found. On
349 the FR-V, this may be found in a number of ways. Assuming that the
350 main executable has already been relocated, the easiest way to find
351 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
352 pointer to the start of the link map will be located at the word found
353 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
354 reserve area mandated by the ABI.) */
359 struct minimal_symbol *got_sym;
361 gdb_byte buf[FRV_PTR_SIZE];
363 /* One of our assumptions is that the main executable has been relocated.
364 Bail out if this has not happened. (Note that post_create_inferior()
365 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
366 If we allow this to happen, lm_base_cache will be initialized with
368 if (main_executable_lm_info == 0)
371 /* If we already have a cached value, return it. */
373 return lm_base_cache;
375 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
380 fprintf_unfiltered (gdb_stdlog,
381 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
385 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
388 fprintf_unfiltered (gdb_stdlog,
389 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
390 hex_string_custom (addr, 8));
392 if (target_read_memory (addr, buf, sizeof buf) != 0)
394 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
397 fprintf_unfiltered (gdb_stdlog,
398 "lm_base: lm_base_cache = %s\n",
399 hex_string_custom (lm_base_cache, 8));
401 return lm_base_cache;
407 frv_current_sos -- build a list of currently loaded shared objects
411 struct so_list *frv_current_sos ()
415 Build a list of `struct so_list' objects describing the shared
416 objects currently loaded in the inferior. This list does not
417 include an entry for the main executable file.
419 Note that we only gather information directly available from the
420 inferior --- we don't examine any of the shared library files
421 themselves. The declaration of `struct so_list' says which fields
422 we provide values for. */
424 static struct so_list *
425 frv_current_sos (void)
427 CORE_ADDR lm_addr, mgot;
428 struct so_list *sos_head = NULL;
429 struct so_list **sos_next_ptr = &sos_head;
431 /* Make sure that the main executable has been relocated. This is
432 required in order to find the address of the global offset table,
433 which in turn is used to find the link map info. (See lm_base()
436 Note that the relocation of the main executable is also performed
437 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
438 files, this hook is called too late in order to be of benefit to
439 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
440 frv_current_sos, and also precedes the call to
441 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
443 if (main_executable_lm_info == 0 && core_bfd != NULL)
444 frv_relocate_main_executable ();
446 /* Fetch the GOT corresponding to the main executable. */
449 /* Locate the address of the first link map struct. */
450 lm_addr = lm_base ();
452 /* We have at least one link map entry. Fetch the the lot of them,
453 building the solist chain. */
456 struct ext_link_map lm_buf;
460 fprintf_unfiltered (gdb_stdlog,
461 "current_sos: reading link_map entry at %s\n",
462 hex_string_custom (lm_addr, 8));
464 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
466 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
471 = extract_unsigned_integer (lm_buf.l_addr.got_value,
472 sizeof (lm_buf.l_addr.got_value));
473 /* If the got_addr is the same as mgotr, then we're looking at the
474 entry for the main executable. By convention, we don't include
475 this in the list of shared objects. */
476 if (got_addr != mgot)
480 struct int_elf32_fdpic_loadmap *loadmap;
484 /* Fetch the load map address. */
485 addr = extract_unsigned_integer (lm_buf.l_addr.map,
486 sizeof lm_buf.l_addr.map);
487 loadmap = fetch_loadmap (addr);
490 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
494 sop = xcalloc (1, sizeof (struct so_list));
495 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
496 sop->lm_info->map = loadmap;
497 sop->lm_info->got_value = got_addr;
498 sop->lm_info->lm_addr = lm_addr;
499 /* Fetch the name. */
500 addr = extract_unsigned_integer (lm_buf.l_name,
501 sizeof (lm_buf.l_name));
502 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
506 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
510 warning (_("Can't read pathname for link map entry: %s."),
511 safe_strerror (errcode));
514 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
515 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
517 strcpy (sop->so_original_name, sop->so_name);
521 sos_next_ptr = &sop->next;
525 main_lm_addr = lm_addr;
528 lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
537 /* Return 1 if PC lies in the dynamic symbol resolution code of the
540 static CORE_ADDR interp_text_sect_low;
541 static CORE_ADDR interp_text_sect_high;
542 static CORE_ADDR interp_plt_sect_low;
543 static CORE_ADDR interp_plt_sect_high;
546 frv_in_dynsym_resolve_code (CORE_ADDR pc)
548 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
549 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
550 || in_plt_section (pc, NULL));
553 /* Given a loadmap and an address, return the displacement needed
554 to relocate the address. */
557 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
562 for (seg = 0; seg < map->nsegs; seg++)
564 if (map->segs[seg].p_vaddr <= addr
565 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
567 return map->segs[seg].addr - map->segs[seg].p_vaddr;
574 /* Print a warning about being unable to set the dynamic linker
578 enable_break_failure_warning (void)
580 warning (_("Unable to find dynamic linker breakpoint function.\n"
581 "GDB will be unable to debug shared library initializers\n"
582 "and track explicitly loaded dynamic code."));
589 enable_break -- arrange for dynamic linker to hit breakpoint
593 int enable_break (void)
597 The dynamic linkers has, as part of its debugger interface, support
598 for arranging for the inferior to hit a breakpoint after mapping in
599 the shared libraries. This function enables that breakpoint.
601 On the FR-V, using the shared library (FDPIC) ABI, the symbol
602 _dl_debug_addr points to the r_debug struct which contains
603 a field called r_brk. r_brk is the address of the function
604 descriptor upon which a breakpoint must be placed. Being a
605 function descriptor, we must extract the entry point in order
606 to set the breakpoint.
608 Our strategy will be to get the .interp section from the
609 executable. This section will provide us with the name of the
610 interpreter. We'll open the interpreter and then look up
611 the address of _dl_debug_addr. We then relocate this address
612 using the interpreter's loadmap. Once the relocated address
613 is known, we fetch the value (address) corresponding to r_brk
614 and then use that value to fetch the entry point of the function
619 static int enable_break1_done = 0;
620 static int enable_break2_done = 0;
627 asection *interp_sect;
629 if (!enable_break1_done || enable_break2_done)
632 enable_break2_done = 1;
634 /* First, remove all the solib event breakpoints. Their addresses
635 may have changed since the last time we ran the program. */
636 remove_solib_event_breakpoints ();
638 interp_text_sect_low = interp_text_sect_high = 0;
639 interp_plt_sect_low = interp_plt_sect_high = 0;
641 /* Find the .interp section; if not found, warn the user and drop
642 into the old breakpoint at symbol code. */
643 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
646 unsigned int interp_sect_size;
650 CORE_ADDR addr, interp_loadmap_addr;
651 gdb_byte addr_buf[FRV_PTR_SIZE];
652 struct int_elf32_fdpic_loadmap *ldm;
653 volatile struct gdb_exception ex;
655 /* Read the contents of the .interp section into a local buffer;
656 the contents specify the dynamic linker this program uses. */
657 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
658 buf = alloca (interp_sect_size);
659 bfd_get_section_contents (exec_bfd, interp_sect,
660 buf, 0, interp_sect_size);
662 /* Now we need to figure out where the dynamic linker was
663 loaded so that we can load its symbols and place a breakpoint
664 in the dynamic linker itself.
666 This address is stored on the stack. However, I've been unable
667 to find any magic formula to find it for Solaris (appears to
668 be trivial on GNU/Linux). Therefore, we have to try an alternate
669 mechanism to find the dynamic linker's base address. */
671 TRY_CATCH (ex, RETURN_MASK_ALL)
673 tmp_bfd = solib_bfd_open (buf);
677 enable_break_failure_warning ();
681 status = frv_fdpic_loadmap_addresses (target_gdbarch,
682 &interp_loadmap_addr, 0);
685 warning (_("Unable to determine dynamic linker loadmap address."));
686 enable_break_failure_warning ();
692 fprintf_unfiltered (gdb_stdlog,
693 "enable_break: interp_loadmap_addr = %s\n",
694 hex_string_custom (interp_loadmap_addr, 8));
696 ldm = fetch_loadmap (interp_loadmap_addr);
699 warning (_("Unable to load dynamic linker loadmap at address %s."),
700 hex_string_custom (interp_loadmap_addr, 8));
701 enable_break_failure_warning ();
706 /* Record the relocated start and end address of the dynamic linker
707 text and plt section for svr4_in_dynsym_resolve_code. */
708 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
712 = bfd_section_vma (tmp_bfd, interp_sect);
714 += displacement_from_map (ldm, interp_text_sect_low);
715 interp_text_sect_high
716 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
718 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
721 interp_plt_sect_low =
722 bfd_section_vma (tmp_bfd, interp_sect);
724 += displacement_from_map (ldm, interp_plt_sect_low);
725 interp_plt_sect_high =
726 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
729 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
732 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
733 enable_break_failure_warning ();
739 fprintf_unfiltered (gdb_stdlog,
740 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
741 hex_string_custom (addr, 8));
743 addr += displacement_from_map (ldm, addr);
746 fprintf_unfiltered (gdb_stdlog,
747 "enable_break: _dl_debug_addr (after relocation) = %s\n",
748 hex_string_custom (addr, 8));
750 /* Fetch the address of the r_debug struct. */
751 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
753 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
754 hex_string_custom (addr, 8));
756 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
758 /* Fetch the r_brk field. It's 8 bytes from the start of
760 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
762 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
763 hex_string_custom (addr + 8, 8));
764 enable_break_failure_warning ();
768 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
770 /* Now fetch the function entry point. */
771 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
773 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
774 hex_string_custom (addr, 8));
775 enable_break_failure_warning ();
779 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
781 /* We're done with the temporary bfd. */
784 /* We're also done with the loadmap. */
787 /* Now (finally!) create the solib breakpoint. */
788 create_solib_event_breakpoint (addr);
793 /* Tell the user we couldn't set a dynamic linker breakpoint. */
794 enable_break_failure_warning ();
796 /* Failure return. */
803 asection *interp_sect;
805 /* Remove all the solib event breakpoints. Their addresses
806 may have changed since the last time we ran the program. */
807 remove_solib_event_breakpoints ();
809 /* Check for the presence of a .interp section. If there is no
810 such section, the executable is statically linked. */
812 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
816 enable_break1_done = 1;
817 create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
820 fprintf_unfiltered (gdb_stdlog,
821 "enable_break: solib event breakpoint placed at entry point: %s\n",
823 (symfile_objfile->ei.entry_point, 8));
828 fprintf_unfiltered (gdb_stdlog,
829 "enable_break: No .interp section found.\n");
839 special_symbol_handling -- additional shared library symbol handling
843 void special_symbol_handling ()
847 Once the symbols from a shared object have been loaded in the usual
848 way, we are called to do any system specific symbol handling that
854 frv_special_symbol_handling (void)
856 /* Nothing needed (yet) for FRV. */
860 frv_relocate_main_executable (void)
864 struct int_elf32_fdpic_loadmap *ldm;
865 struct cleanup *old_chain;
866 struct section_offsets *new_offsets;
868 struct obj_section *osect;
870 status = frv_fdpic_loadmap_addresses (target_gdbarch, 0, &exec_addr);
874 /* Not using FDPIC ABI, so do nothing. */
878 /* Fetch the loadmap located at ``exec_addr''. */
879 ldm = fetch_loadmap (exec_addr);
881 error (_("Unable to load the executable's loadmap."));
883 if (main_executable_lm_info)
884 xfree (main_executable_lm_info);
885 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
886 main_executable_lm_info->map = ldm;
888 new_offsets = xcalloc (symfile_objfile->num_sections,
889 sizeof (struct section_offsets));
890 old_chain = make_cleanup (xfree, new_offsets);
893 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
895 CORE_ADDR orig_addr, addr, offset;
899 osect_idx = osect->the_bfd_section->index;
901 /* Current address of section. */
902 addr = obj_section_addr (osect);
903 /* Offset from where this section started. */
904 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
905 /* Original address prior to any past relocations. */
906 orig_addr = addr - offset;
908 for (seg = 0; seg < ldm->nsegs; seg++)
910 if (ldm->segs[seg].p_vaddr <= orig_addr
911 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
913 new_offsets->offsets[osect_idx]
914 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
916 if (new_offsets->offsets[osect_idx] != offset)
924 objfile_relocate (symfile_objfile, new_offsets);
926 do_cleanups (old_chain);
928 /* Now that symfile_objfile has been relocated, we can compute the
929 GOT value and stash it away. */
930 main_executable_lm_info->got_value = main_got ();
937 frv_solib_create_inferior_hook -- shared library startup support
941 void frv_solib_create_inferior_hook ()
945 When gdb starts up the inferior, it nurses it along (through the
946 shell) until it is ready to execute it's first instruction. At this
947 point, this function gets called via expansion of the macro
948 SOLIB_CREATE_INFERIOR_HOOK.
950 For the FR-V shared library ABI (FDPIC), the main executable
951 needs to be relocated. The shared library breakpoints also need
956 frv_solib_create_inferior_hook (void)
958 /* Relocate main executable. */
959 frv_relocate_main_executable ();
961 /* Enable shared library breakpoints. */
962 if (!enable_break ())
964 warning (_("shared library handler failed to enable breakpoint"));
970 frv_clear_solib (void)
973 enable_break1_done = 0;
974 enable_break2_done = 0;
976 if (main_executable_lm_info != 0)
978 xfree (main_executable_lm_info->map);
979 xfree (main_executable_lm_info->dyn_syms);
980 xfree (main_executable_lm_info->dyn_relocs);
981 xfree (main_executable_lm_info);
982 main_executable_lm_info = 0;
987 frv_free_so (struct so_list *so)
989 xfree (so->lm_info->map);
990 xfree (so->lm_info->dyn_syms);
991 xfree (so->lm_info->dyn_relocs);
996 frv_relocate_section_addresses (struct so_list *so,
997 struct section_table *sec)
1000 struct int_elf32_fdpic_loadmap *map;
1002 map = so->lm_info->map;
1004 for (seg = 0; seg < map->nsegs; seg++)
1006 if (map->segs[seg].p_vaddr <= sec->addr
1007 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1009 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1011 sec->endaddr += displ;
1017 /* Return the GOT address associated with the main executable. Return
1018 0 if it can't be found. */
1023 struct minimal_symbol *got_sym;
1025 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1029 return SYMBOL_VALUE_ADDRESS (got_sym);
1032 /* Find the global pointer for the given function address ADDR. */
1035 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1039 so = master_so_list ();
1043 struct int_elf32_fdpic_loadmap *map;
1045 map = so->lm_info->map;
1047 for (seg = 0; seg < map->nsegs; seg++)
1049 if (map->segs[seg].addr <= addr
1050 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1051 return so->lm_info->got_value;
1057 /* Didn't find it it any of the shared objects. So assume it's in the
1062 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1063 static CORE_ADDR find_canonical_descriptor_in_load_object
1064 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1066 /* Given a function entry point, attempt to find the canonical descriptor
1067 associated with that entry point. Return 0 if no canonical descriptor
1071 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1075 CORE_ADDR got_value;
1076 struct int_elf32_fdpic_loadmap *ldm = 0;
1079 CORE_ADDR exec_loadmap_addr;
1081 /* Fetch the corresponding global pointer for the entry point. */
1082 got_value = frv_fdpic_find_global_pointer (entry_point);
1084 /* Attempt to find the name of the function. If the name is available,
1085 it'll be used as an aid in finding matching functions in the dynamic
1087 sym = find_pc_function (entry_point);
1091 name = SYMBOL_LINKAGE_NAME (sym);
1093 /* Check the main executable. */
1094 addr = find_canonical_descriptor_in_load_object
1095 (entry_point, got_value, name, symfile_objfile->obfd,
1096 main_executable_lm_info);
1098 /* If descriptor not found via main executable, check each load object
1099 in list of shared objects. */
1104 so = master_so_list ();
1107 addr = find_canonical_descriptor_in_load_object
1108 (entry_point, got_value, name, so->abfd, so->lm_info);
1121 find_canonical_descriptor_in_load_object
1122 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1129 /* Nothing to do if no bfd. */
1133 /* Nothing to do if no link map. */
1137 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1138 (More about this later.) But in order to fetch the relocs, we
1139 need to first fetch the dynamic symbols. These symbols need to
1140 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1141 works. (See the comments in the declaration of struct lm_info
1142 for more information.) */
1143 if (lm->dyn_syms == NULL)
1145 long storage_needed;
1146 unsigned int number_of_symbols;
1148 /* Determine amount of space needed to hold the dynamic symbol table. */
1149 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1151 /* If there are no dynamic symbols, there's nothing to do. */
1152 if (storage_needed <= 0)
1155 /* Allocate space for the dynamic symbol table. */
1156 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1158 /* Fetch the dynamic symbol table. */
1159 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1161 if (number_of_symbols == 0)
1165 /* Fetch the dynamic relocations if not already cached. */
1166 if (lm->dyn_relocs == NULL)
1168 long storage_needed;
1170 /* Determine amount of space needed to hold the dynamic relocs. */
1171 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1173 /* Bail out if there are no dynamic relocs. */
1174 if (storage_needed <= 0)
1177 /* Allocate space for the relocs. */
1178 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1180 /* Fetch the dynamic relocs. */
1182 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1185 /* Search the dynamic relocs. */
1186 for (i = 0; i < lm->dyn_reloc_count; i++)
1188 rel = lm->dyn_relocs[i];
1190 /* Relocs of interest are those which meet the following
1193 - the names match (assuming the caller could provide
1194 a name which matches ``entry_point'').
1195 - the relocation type must be R_FRV_FUNCDESC. Relocs
1196 of this type are used (by the dynamic linker) to
1197 look up the address of a canonical descriptor (allocating
1198 it if need be) and initializing the GOT entry referred
1199 to by the offset to the address of the descriptor.
1201 These relocs of interest may be used to obtain a
1202 candidate descriptor by first adjusting the reloc's
1203 address according to the link map and then dereferencing
1204 this address (which is a GOT entry) to obtain a descriptor
1206 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1207 && rel->howto->type == R_FRV_FUNCDESC)
1209 gdb_byte buf [FRV_PTR_SIZE];
1211 /* Compute address of address of candidate descriptor. */
1212 addr = rel->address + displacement_from_map (lm->map, rel->address);
1214 /* Fetch address of candidate descriptor. */
1215 if (target_read_memory (addr, buf, sizeof buf) != 0)
1217 addr = extract_unsigned_integer (buf, sizeof buf);
1219 /* Check for matching entry point. */
1220 if (target_read_memory (addr, buf, sizeof buf) != 0)
1222 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1225 /* Check for matching got value. */
1226 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1228 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1231 /* Match was successful! Exit loop. */
1239 /* Given an objfile, return the address of its link map. This value is
1240 needed for TLS support. */
1242 frv_fetch_objfile_link_map (struct objfile *objfile)
1246 /* Cause frv_current_sos() to be run if it hasn't been already. */
1247 if (main_lm_addr == 0)
1248 solib_add (0, 0, 0, 1);
1250 /* frv_current_sos() will set main_lm_addr for the main executable. */
1251 if (objfile == symfile_objfile)
1252 return main_lm_addr;
1254 /* The other link map addresses may be found by examining the list
1255 of shared libraries. */
1256 for (so = master_so_list (); so; so = so->next)
1258 if (so->objfile == objfile)
1259 return so->lm_info->lm_addr;
1266 struct target_so_ops frv_so_ops;
1269 _initialize_frv_solib (void)
1271 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1272 frv_so_ops.free_so = frv_free_so;
1273 frv_so_ops.clear_solib = frv_clear_solib;
1274 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1275 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1276 frv_so_ops.current_sos = frv_current_sos;
1277 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1278 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1280 /* Debug this file's internals. */
1281 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1282 &solib_frv_debug, _("\
1283 Set internal debugging of shared library code for FR-V."), _("\
1284 Show internal debugging of shared library code for FR-V."), _("\
1285 When non-zero, FR-V solib specific internal debugging is enabled."),
1287 NULL, /* FIXME: i18n: */
1288 &setdebuglist, &showdebuglist);