1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "dwarf_reader.h"
38 #include "workqueue.h"
46 // Initialize fields in Symbol. This initializes everything except u_
50 Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
55 this->version_ = version;
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
58 this->got_offsets_.init();
59 this->plt_offset_ = 0;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
67 this->has_alias_ = false;
68 this->needs_dynsym_entry_ = false;
69 this->in_reg_ = false;
70 this->in_dyn_ = false;
71 this->has_plt_offset_ = false;
72 this->has_warning_ = false;
73 this->is_copied_from_dynobj_ = false;
74 this->is_forced_local_ = false;
77 // Return the demangled version of the symbol's name, but only
78 // if the --demangle flag was set.
81 demangle(const char* name)
83 if (!parameters->options().do_demangle())
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
92 std::string retval(demangled_name);
98 Symbol::demangled_name() const
100 return demangle(this->name());
103 // Initialize the fields in the base class Symbol for SYM in OBJECT.
105 template<int size, bool big_endian>
107 Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
114 this->u_.from_object.shndx = sym.get_st_shndx();
115 this->source_ = FROM_OBJECT;
116 this->in_reg_ = !object->is_dynamic();
117 this->in_dyn_ = object->is_dynamic();
120 // Initialize the fields in the base class Symbol for a symbol defined
121 // in an Output_data.
124 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
132 this->in_reg_ = true;
135 // Initialize the fields in the base class Symbol for a symbol defined
136 // in an Output_segment.
139 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
147 this->in_reg_ = true;
150 // Initialize the fields in the base class Symbol for a symbol defined
154 Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
160 this->in_reg_ = true;
163 // Allocate a common symbol in the base.
166 Symbol::allocate_base_common(Output_data* od)
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
174 // Initialize the fields in Sized_symbol for SYM in OBJECT.
177 template<bool big_endian>
179 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
184 this->symsize_ = sym.get_st_size();
187 // Initialize the fields in Sized_symbol for a symbol defined in an
192 Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
198 this->init_base(name, od, type, binding, visibility, nonvis,
200 this->value_ = value;
201 this->symsize_ = symsize;
204 // Initialize the fields in Sized_symbol for a symbol defined in an
209 Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
220 // Initialize the fields in Sized_symbol for a symbol defined as a
225 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
234 // Allocate a common symbol.
238 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
240 this->allocate_base_common(od);
241 this->value_ = value;
244 // Return true if this symbol should be added to the dynamic symbol
248 Symbol::should_add_dynsym_entry() const
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
261 if ((parameters->options().export_dynamic() || parameters->options().shared())
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
269 // Return true if the final value of this symbol is known at link
273 Symbol::final_value_is_known() const
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
277 if (parameters->options().shared() || parameters->options().relocatable())
280 // If the symbol is not from an object file, then it is defined, and
282 if (this->source_ != FROM_OBJECT)
285 // If the symbol is from a dynamic object, then the final value is
287 if (this->object()->is_dynamic())
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
302 // Return the output section where this symbol is defined.
305 Symbol::output_section() const
307 switch (this->source_)
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
323 return this->u_.in_output_data.output_data->output_section();
325 case IN_OUTPUT_SEGMENT:
334 // Set the symbol's output section. This is used for symbols defined
335 // in scripts. This should only be called after the symbol table has
339 Symbol::set_output_section(Output_section* os)
341 switch (this->source_)
345 gold_assert(this->output_section() == os);
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
352 case IN_OUTPUT_SEGMENT:
358 // Class Symbol_table.
360 Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
366 namepool_.reserve(count);
369 Symbol_table::~Symbol_table()
373 // The hash function. The key values are Stringpool keys.
376 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
378 return key.first ^ key.second;
381 // The symbol table key equality function. This is called with
385 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
388 return k1.first == k2.first && k1.second == k2.second;
391 // Make TO a symbol which forwards to FROM.
394 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
398 this->forwarders_[from] = to;
399 from->set_forwarder();
402 // Resolve the forwards from FROM, returning the real symbol.
405 Symbol_table::resolve_forwards(const Symbol* from) const
407 gold_assert(from->is_forwarder());
408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
409 this->forwarders_.find(from);
410 gold_assert(p != this->forwarders_.end());
414 // Look up a symbol by name.
417 Symbol_table::lookup(const char* name, const char* version) const
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
424 Stringpool::Key version_key = 0;
427 version = this->namepool_.find(version, &version_key);
432 Symbol_table_key key(name_key, version_key);
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
439 // Resolve a Symbol with another Symbol. This is only used in the
440 // unusual case where there are references to both an unversioned
441 // symbol and a symbol with a version, and we then discover that that
442 // version is the default version. Because this is unusual, we do
443 // this the slow way, by converting back to an ELF symbol.
445 template<int size, bool big_endian>
447 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
456 esym.put_st_other(from->visibility(), from->nonvis());
457 esym.put_st_shndx(from->shndx());
458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
465 // Record that a symbol is forced to be local by a version script.
468 Symbol_table::force_local(Symbol* sym)
470 if (!sym->is_defined() && !sym->is_common())
472 if (sym->is_forced_local())
474 // We already got this one.
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
481 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
482 // is only called for undefined symbols, when at least one --wrap
486 Symbol_table::wrap_symbol(Object* object, const char* name,
487 Stringpool::Key* name_key)
489 // For some targets, we need to ignore a specific character when
490 // wrapping, and add it back later.
492 if (name[0] == object->target()->wrap_char())
498 if (parameters->options().is_wrap_symbol(name))
500 // Turn NAME into __wrap_NAME.
507 // This will give us both the old and new name in NAMEPOOL_, but
508 // that is OK. Only the versions we need will wind up in the
509 // real string table in the output file.
510 return this->namepool_.add(s.c_str(), true, name_key);
513 const char* const real_prefix = "__real_";
514 const size_t real_prefix_length = strlen(real_prefix);
515 if (strncmp(name, real_prefix, real_prefix_length) == 0
516 && parameters->options().is_wrap_symbol(name + real_prefix_length))
518 // Turn __real_NAME into NAME.
522 s += name + real_prefix_length;
523 return this->namepool_.add(s.c_str(), true, name_key);
529 // Add one symbol from OBJECT to the symbol table. NAME is symbol
530 // name and VERSION is the version; both are canonicalized. DEF is
531 // whether this is the default version.
533 // If DEF is true, then this is the definition of a default version of
534 // a symbol. That means that any lookup of NAME/NULL and any lookup
535 // of NAME/VERSION should always return the same symbol. This is
536 // obvious for references, but in particular we want to do this for
537 // definitions: overriding NAME/NULL should also override
538 // NAME/VERSION. If we don't do that, it would be very hard to
539 // override functions in a shared library which uses versioning.
541 // We implement this by simply making both entries in the hash table
542 // point to the same Symbol structure. That is easy enough if this is
543 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
544 // that we have seen both already, in which case they will both have
545 // independent entries in the symbol table. We can't simply change
546 // the symbol table entry, because we have pointers to the entries
547 // attached to the object files. So we mark the entry attached to the
548 // object file as a forwarder, and record it in the forwarders_ map.
549 // Note that entries in the hash table will never be marked as
552 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
553 // symbol exactly as it existed in the input file. SYM is usually
554 // that as well, but can be modified, for instance if we determine
555 // it's in a to-be-discarded section.
557 template<int size, bool big_endian>
559 Symbol_table::add_from_object(Object* object,
561 Stringpool::Key name_key,
563 Stringpool::Key version_key,
565 const elfcpp::Sym<size, big_endian>& sym,
566 const elfcpp::Sym<size, big_endian>& orig_sym)
568 // For an undefined symbol, we may need to adjust the name using
570 if (orig_sym.get_st_shndx() == elfcpp::SHN_UNDEF
571 && parameters->options().any_wrap_symbols())
573 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
574 if (wrap_name != name)
576 // If we see a reference to malloc with version GLIBC_2.0,
577 // and we turn it into a reference to __wrap_malloc, then we
578 // discard the version number. Otherwise the user would be
579 // required to specify the correct version for
587 Symbol* const snull = NULL;
588 std::pair<typename Symbol_table_type::iterator, bool> ins =
589 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
592 std::pair<typename Symbol_table_type::iterator, bool> insdef =
593 std::make_pair(this->table_.end(), false);
596 const Stringpool::Key vnull_key = 0;
597 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
602 // ins.first: an iterator, which is a pointer to a pair.
603 // ins.first->first: the key (a pair of name and version).
604 // ins.first->second: the value (Symbol*).
605 // ins.second: true if new entry was inserted, false if not.
607 Sized_symbol<size>* ret;
612 // We already have an entry for NAME/VERSION.
613 ret = this->get_sized_symbol<size>(ins.first->second);
614 gold_assert(ret != NULL);
616 was_undefined = ret->is_undefined();
617 was_common = ret->is_common();
619 this->resolve(ret, sym, orig_sym, object, version);
625 // This is the first time we have seen NAME/NULL. Make
626 // NAME/NULL point to NAME/VERSION.
627 insdef.first->second = ret;
629 else if (insdef.first->second != ret
630 && insdef.first->second->is_undefined())
632 // This is the unfortunate case where we already have
633 // entries for both NAME/VERSION and NAME/NULL. Note
634 // that we don't want to combine them if the existing
635 // symbol is going to override the new one. FIXME: We
636 // currently just test is_undefined, but this may not do
637 // the right thing if the existing symbol is from a
638 // shared library and the new one is from a regular
641 const Sized_symbol<size>* sym2;
642 sym2 = this->get_sized_symbol<size>(insdef.first->second);
643 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
644 this->make_forwarder(insdef.first->second, ret);
645 insdef.first->second = ret;
653 // This is the first time we have seen NAME/VERSION.
654 gold_assert(ins.first->second == NULL);
656 if (def && !insdef.second)
658 // We already have an entry for NAME/NULL. If we override
659 // it, then change it to NAME/VERSION.
660 ret = this->get_sized_symbol<size>(insdef.first->second);
662 was_undefined = ret->is_undefined();
663 was_common = ret->is_common();
665 this->resolve(ret, sym, orig_sym, object, version);
666 ins.first->second = ret;
670 was_undefined = false;
673 Sized_target<size, big_endian>* target =
674 object->sized_target<size, big_endian>();
675 if (!target->has_make_symbol())
676 ret = new Sized_symbol<size>();
679 ret = target->make_symbol();
682 // This means that we don't want a symbol table
685 this->table_.erase(ins.first);
688 this->table_.erase(insdef.first);
689 // Inserting insdef invalidated ins.
690 this->table_.erase(std::make_pair(name_key,
697 ret->init(name, version, object, sym);
699 ins.first->second = ret;
702 // This is the first time we have seen NAME/NULL. Point
703 // it at the new entry for NAME/VERSION.
704 gold_assert(insdef.second);
705 insdef.first->second = ret;
710 // Record every time we see a new undefined symbol, to speed up
712 if (!was_undefined && ret->is_undefined())
713 ++this->saw_undefined_;
715 // Keep track of common symbols, to speed up common symbol
717 if (!was_common && ret->is_common())
718 this->commons_.push_back(ret);
721 ret->set_is_default();
725 // Add all the symbols in a relocatable object to the hash table.
727 template<int size, bool big_endian>
729 Symbol_table::add_from_relobj(
730 Sized_relobj<size, big_endian>* relobj,
731 const unsigned char* syms,
733 const char* sym_names,
734 size_t sym_name_size,
735 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
737 gold_assert(size == relobj->target()->get_size());
738 gold_assert(size == parameters->target().get_size());
740 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
742 const bool just_symbols = relobj->just_symbols();
744 const unsigned char* p = syms;
745 for (size_t i = 0; i < count; ++i, p += sym_size)
747 elfcpp::Sym<size, big_endian> sym(p);
748 elfcpp::Sym<size, big_endian>* psym = &sym;
750 unsigned int st_name = psym->get_st_name();
751 if (st_name >= sym_name_size)
753 relobj->error(_("bad global symbol name offset %u at %zu"),
758 const char* name = sym_names + st_name;
760 // A symbol defined in a section which we are not including must
761 // be treated as an undefined symbol.
762 unsigned char symbuf[sym_size];
763 elfcpp::Sym<size, big_endian> sym2(symbuf);
764 unsigned int st_shndx = psym->get_st_shndx();
765 if (st_shndx != elfcpp::SHN_UNDEF
766 && st_shndx < elfcpp::SHN_LORESERVE
767 && !relobj->is_section_included(st_shndx))
769 memcpy(symbuf, p, sym_size);
770 elfcpp::Sym_write<size, big_endian> sw(symbuf);
771 sw.put_st_shndx(elfcpp::SHN_UNDEF);
775 // In an object file, an '@' in the name separates the symbol
776 // name from the version name. If there are two '@' characters,
777 // this is the default version.
778 const char* ver = strchr(name, '@');
780 // DEF: is the version default? LOCAL: is the symbol forced local?
786 // The symbol name is of the form foo@VERSION or foo@@VERSION
787 namelen = ver - name;
795 // We don't want to assign a version to an undefined symbol,
796 // even if it is listed in the version script. FIXME: What
797 // about a common symbol?
798 else if (!version_script_.empty()
799 && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
801 // The symbol name did not have a version, but
802 // the version script may assign a version anyway.
803 namelen = strlen(name);
805 // Check the global: entries from the version script.
806 const std::string& version =
807 version_script_.get_symbol_version(name);
808 if (!version.empty())
809 ver = version.c_str();
810 // Check the local: entries from the version script
811 if (version_script_.symbol_is_local(name))
818 memcpy(symbuf, p, sym_size);
819 elfcpp::Sym_write<size, big_endian> sw(symbuf);
820 sw.put_st_shndx(elfcpp::SHN_ABS);
821 if (st_shndx != elfcpp::SHN_UNDEF
822 && st_shndx < elfcpp::SHN_LORESERVE)
824 // Symbol values in object files are section relative.
825 // This is normally what we want, but since here we are
826 // converting the symbol to absolute we need to add the
827 // section address. The section address in an object
828 // file is normally zero, but people can use a linker
829 // script to change it.
830 sw.put_st_value(sym2.get_st_value()
831 + relobj->section_address(st_shndx));
836 Sized_symbol<size>* res;
839 Stringpool::Key name_key;
840 name = this->namepool_.add(name, true, &name_key);
841 res = this->add_from_object(relobj, name, name_key, NULL, 0,
844 this->force_local(res);
848 Stringpool::Key name_key;
849 name = this->namepool_.add_with_length(name, namelen, true,
851 Stringpool::Key ver_key;
852 ver = this->namepool_.add(ver, true, &ver_key);
854 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
858 (*sympointers)[i] = res;
862 // Add all the symbols in a dynamic object to the hash table.
864 template<int size, bool big_endian>
866 Symbol_table::add_from_dynobj(
867 Sized_dynobj<size, big_endian>* dynobj,
868 const unsigned char* syms,
870 const char* sym_names,
871 size_t sym_name_size,
872 const unsigned char* versym,
874 const std::vector<const char*>* version_map)
876 gold_assert(size == dynobj->target()->get_size());
877 gold_assert(size == parameters->target().get_size());
879 if (dynobj->just_symbols())
881 gold_error(_("--just-symbols does not make sense with a shared object"));
885 if (versym != NULL && versym_size / 2 < count)
887 dynobj->error(_("too few symbol versions"));
891 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
893 // We keep a list of all STT_OBJECT symbols, so that we can resolve
894 // weak aliases. This is necessary because if the dynamic object
895 // provides the same variable under two names, one of which is a
896 // weak definition, and the regular object refers to the weak
897 // definition, we have to put both the weak definition and the
898 // strong definition into the dynamic symbol table. Given a weak
899 // definition, the only way that we can find the corresponding
900 // strong definition, if any, is to search the symbol table.
901 std::vector<Sized_symbol<size>*> object_symbols;
903 const unsigned char* p = syms;
904 const unsigned char* vs = versym;
905 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
907 elfcpp::Sym<size, big_endian> sym(p);
909 // Ignore symbols with local binding or that have
910 // internal or hidden visibility.
911 if (sym.get_st_bind() == elfcpp::STB_LOCAL
912 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
913 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
916 unsigned int st_name = sym.get_st_name();
917 if (st_name >= sym_name_size)
919 dynobj->error(_("bad symbol name offset %u at %zu"),
924 const char* name = sym_names + st_name;
926 Sized_symbol<size>* res;
930 Stringpool::Key name_key;
931 name = this->namepool_.add(name, true, &name_key);
932 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
937 // Read the version information.
939 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
941 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
942 v &= elfcpp::VERSYM_VERSION;
944 // The Sun documentation says that V can be VER_NDX_LOCAL,
945 // or VER_NDX_GLOBAL, or a version index. The meaning of
946 // VER_NDX_LOCAL is defined as "Symbol has local scope."
947 // The old GNU linker will happily generate VER_NDX_LOCAL
948 // for an undefined symbol. I don't know what the Sun
949 // linker will generate.
951 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
952 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
954 // This symbol should not be visible outside the object.
958 // At this point we are definitely going to add this symbol.
959 Stringpool::Key name_key;
960 name = this->namepool_.add(name, true, &name_key);
962 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
963 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
965 // This symbol does not have a version.
966 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
971 if (v >= version_map->size())
973 dynobj->error(_("versym for symbol %zu out of range: %u"),
978 const char* version = (*version_map)[v];
981 dynobj->error(_("versym for symbol %zu has no name: %u"),
986 Stringpool::Key version_key;
987 version = this->namepool_.add(version, true, &version_key);
989 // If this is an absolute symbol, and the version name
990 // and symbol name are the same, then this is the
991 // version definition symbol. These symbols exist to
992 // support using -u to pull in particular versions. We
993 // do not want to record a version for them.
994 if (sym.get_st_shndx() == elfcpp::SHN_ABS
995 && name_key == version_key)
996 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1000 const bool def = (!hidden
1001 && (sym.get_st_shndx()
1002 != elfcpp::SHN_UNDEF));
1003 res = this->add_from_object(dynobj, name, name_key, version,
1004 version_key, def, sym, sym);
1009 // Note that it is possible that RES was overridden by an
1010 // earlier object, in which case it can't be aliased here.
1011 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
1012 && sym.get_st_type() == elfcpp::STT_OBJECT
1013 && res->source() == Symbol::FROM_OBJECT
1014 && res->object() == dynobj)
1015 object_symbols.push_back(res);
1018 this->record_weak_aliases(&object_symbols);
1021 // This is used to sort weak aliases. We sort them first by section
1022 // index, then by offset, then by weak ahead of strong.
1025 class Weak_alias_sorter
1028 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1033 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1034 const Sized_symbol<size>* s2) const
1036 if (s1->shndx() != s2->shndx())
1037 return s1->shndx() < s2->shndx();
1038 if (s1->value() != s2->value())
1039 return s1->value() < s2->value();
1040 if (s1->binding() != s2->binding())
1042 if (s1->binding() == elfcpp::STB_WEAK)
1044 if (s2->binding() == elfcpp::STB_WEAK)
1047 return std::string(s1->name()) < std::string(s2->name());
1050 // SYMBOLS is a list of object symbols from a dynamic object. Look
1051 // for any weak aliases, and record them so that if we add the weak
1052 // alias to the dynamic symbol table, we also add the corresponding
1057 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1059 // Sort the vector by section index, then by offset, then by weak
1061 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1063 // Walk through the vector. For each weak definition, record
1065 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1067 p != symbols->end();
1070 if ((*p)->binding() != elfcpp::STB_WEAK)
1073 // Build a circular list of weak aliases. Each symbol points to
1074 // the next one in the circular list.
1076 Sized_symbol<size>* from_sym = *p;
1077 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1078 for (q = p + 1; q != symbols->end(); ++q)
1080 if ((*q)->shndx() != from_sym->shndx()
1081 || (*q)->value() != from_sym->value())
1084 this->weak_aliases_[from_sym] = *q;
1085 from_sym->set_has_alias();
1091 this->weak_aliases_[from_sym] = *p;
1092 from_sym->set_has_alias();
1099 // Create and return a specially defined symbol. If ONLY_IF_REF is
1100 // true, then only create the symbol if there is a reference to it.
1101 // If this does not return NULL, it sets *POLDSYM to the existing
1102 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1104 template<int size, bool big_endian>
1106 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1108 Sized_symbol<size>** poldsym)
1111 Sized_symbol<size>* sym;
1112 bool add_to_table = false;
1113 typename Symbol_table_type::iterator add_loc = this->table_.end();
1115 // If the caller didn't give us a version, see if we get one from
1116 // the version script.
1117 if (*pversion == NULL)
1119 const std::string& v(this->version_script_.get_symbol_version(*pname));
1121 *pversion = v.c_str();
1126 oldsym = this->lookup(*pname, *pversion);
1127 if (oldsym == NULL || !oldsym->is_undefined())
1130 *pname = oldsym->name();
1131 *pversion = oldsym->version();
1135 // Canonicalize NAME and VERSION.
1136 Stringpool::Key name_key;
1137 *pname = this->namepool_.add(*pname, true, &name_key);
1139 Stringpool::Key version_key = 0;
1140 if (*pversion != NULL)
1141 *pversion = this->namepool_.add(*pversion, true, &version_key);
1143 Symbol* const snull = NULL;
1144 std::pair<typename Symbol_table_type::iterator, bool> ins =
1145 this->table_.insert(std::make_pair(std::make_pair(name_key,
1151 // We already have a symbol table entry for NAME/VERSION.
1152 oldsym = ins.first->second;
1153 gold_assert(oldsym != NULL);
1157 // We haven't seen this symbol before.
1158 gold_assert(ins.first->second == NULL);
1159 add_to_table = true;
1160 add_loc = ins.first;
1165 const Target& target = parameters->target();
1166 if (!target.has_make_symbol())
1167 sym = new Sized_symbol<size>();
1170 gold_assert(target.get_size() == size);
1171 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1172 typedef Sized_target<size, big_endian> My_target;
1173 const My_target* sized_target =
1174 static_cast<const My_target*>(&target);
1175 sym = sized_target->make_symbol();
1181 add_loc->second = sym;
1183 gold_assert(oldsym != NULL);
1185 *poldsym = this->get_sized_symbol<size>(oldsym);
1190 // Define a symbol based on an Output_data.
1193 Symbol_table::define_in_output_data(const char* name,
1194 const char* version,
1199 elfcpp::STB binding,
1200 elfcpp::STV visibility,
1201 unsigned char nonvis,
1202 bool offset_is_from_end,
1205 if (parameters->target().get_size() == 32)
1207 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1208 return this->do_define_in_output_data<32>(name, version, od,
1209 value, symsize, type, binding,
1217 else if (parameters->target().get_size() == 64)
1219 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1220 return this->do_define_in_output_data<64>(name, version, od,
1221 value, symsize, type, binding,
1233 // Define a symbol in an Output_data, sized version.
1237 Symbol_table::do_define_in_output_data(
1239 const char* version,
1241 typename elfcpp::Elf_types<size>::Elf_Addr value,
1242 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1244 elfcpp::STB binding,
1245 elfcpp::STV visibility,
1246 unsigned char nonvis,
1247 bool offset_is_from_end,
1250 Sized_symbol<size>* sym;
1251 Sized_symbol<size>* oldsym;
1253 if (parameters->target().is_big_endian())
1255 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1256 sym = this->define_special_symbol<size, true>(&name, &version,
1257 only_if_ref, &oldsym);
1264 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1265 sym = this->define_special_symbol<size, false>(&name, &version,
1266 only_if_ref, &oldsym);
1275 gold_assert(version == NULL || oldsym != NULL);
1276 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1277 offset_is_from_end);
1281 if (binding == elfcpp::STB_LOCAL
1282 || this->version_script_.symbol_is_local(name))
1283 this->force_local(sym);
1287 if (Symbol_table::should_override_with_special(oldsym))
1288 this->override_with_special(oldsym, sym);
1293 // Define a symbol based on an Output_segment.
1296 Symbol_table::define_in_output_segment(const char* name,
1297 const char* version, Output_segment* os,
1301 elfcpp::STB binding,
1302 elfcpp::STV visibility,
1303 unsigned char nonvis,
1304 Symbol::Segment_offset_base offset_base,
1307 if (parameters->target().get_size() == 32)
1309 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1310 return this->do_define_in_output_segment<32>(name, version, os,
1311 value, symsize, type,
1312 binding, visibility, nonvis,
1313 offset_base, only_if_ref);
1318 else if (parameters->target().get_size() == 64)
1320 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1321 return this->do_define_in_output_segment<64>(name, version, os,
1322 value, symsize, type,
1323 binding, visibility, nonvis,
1324 offset_base, only_if_ref);
1333 // Define a symbol in an Output_segment, sized version.
1337 Symbol_table::do_define_in_output_segment(
1339 const char* version,
1341 typename elfcpp::Elf_types<size>::Elf_Addr value,
1342 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1344 elfcpp::STB binding,
1345 elfcpp::STV visibility,
1346 unsigned char nonvis,
1347 Symbol::Segment_offset_base offset_base,
1350 Sized_symbol<size>* sym;
1351 Sized_symbol<size>* oldsym;
1353 if (parameters->target().is_big_endian())
1355 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1356 sym = this->define_special_symbol<size, true>(&name, &version,
1357 only_if_ref, &oldsym);
1364 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1365 sym = this->define_special_symbol<size, false>(&name, &version,
1366 only_if_ref, &oldsym);
1375 gold_assert(version == NULL || oldsym != NULL);
1376 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1381 if (binding == elfcpp::STB_LOCAL
1382 || this->version_script_.symbol_is_local(name))
1383 this->force_local(sym);
1387 if (Symbol_table::should_override_with_special(oldsym))
1388 this->override_with_special(oldsym, sym);
1393 // Define a special symbol with a constant value. It is a multiple
1394 // definition error if this symbol is already defined.
1397 Symbol_table::define_as_constant(const char* name,
1398 const char* version,
1402 elfcpp::STB binding,
1403 elfcpp::STV visibility,
1404 unsigned char nonvis,
1406 bool force_override)
1408 if (parameters->target().get_size() == 32)
1410 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1411 return this->do_define_as_constant<32>(name, version, value,
1412 symsize, type, binding,
1413 visibility, nonvis, only_if_ref,
1419 else if (parameters->target().get_size() == 64)
1421 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1422 return this->do_define_as_constant<64>(name, version, value,
1423 symsize, type, binding,
1424 visibility, nonvis, only_if_ref,
1434 // Define a symbol as a constant, sized version.
1438 Symbol_table::do_define_as_constant(
1440 const char* version,
1441 typename elfcpp::Elf_types<size>::Elf_Addr value,
1442 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1444 elfcpp::STB binding,
1445 elfcpp::STV visibility,
1446 unsigned char nonvis,
1448 bool force_override)
1450 Sized_symbol<size>* sym;
1451 Sized_symbol<size>* oldsym;
1453 if (parameters->target().is_big_endian())
1455 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1456 sym = this->define_special_symbol<size, true>(&name, &version,
1457 only_if_ref, &oldsym);
1464 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1465 sym = this->define_special_symbol<size, false>(&name, &version,
1466 only_if_ref, &oldsym);
1475 gold_assert(version == NULL || version == name || oldsym != NULL);
1476 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1480 // Version symbols are absolute symbols with name == version.
1481 // We don't want to force them to be local.
1482 if ((version == NULL
1485 && (binding == elfcpp::STB_LOCAL
1486 || this->version_script_.symbol_is_local(name)))
1487 this->force_local(sym);
1491 if (force_override || Symbol_table::should_override_with_special(oldsym))
1492 this->override_with_special(oldsym, sym);
1497 // Define a set of symbols in output sections.
1500 Symbol_table::define_symbols(const Layout* layout, int count,
1501 const Define_symbol_in_section* p,
1504 for (int i = 0; i < count; ++i, ++p)
1506 Output_section* os = layout->find_output_section(p->output_section);
1508 this->define_in_output_data(p->name, NULL, os, p->value,
1509 p->size, p->type, p->binding,
1510 p->visibility, p->nonvis,
1511 p->offset_is_from_end,
1512 only_if_ref || p->only_if_ref);
1514 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1515 p->binding, p->visibility, p->nonvis,
1516 only_if_ref || p->only_if_ref,
1521 // Define a set of symbols in output segments.
1524 Symbol_table::define_symbols(const Layout* layout, int count,
1525 const Define_symbol_in_segment* p,
1528 for (int i = 0; i < count; ++i, ++p)
1530 Output_segment* os = layout->find_output_segment(p->segment_type,
1531 p->segment_flags_set,
1532 p->segment_flags_clear);
1534 this->define_in_output_segment(p->name, NULL, os, p->value,
1535 p->size, p->type, p->binding,
1536 p->visibility, p->nonvis,
1538 only_if_ref || p->only_if_ref);
1540 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1541 p->binding, p->visibility, p->nonvis,
1542 only_if_ref || p->only_if_ref,
1547 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1548 // symbol should be defined--typically a .dyn.bss section. VALUE is
1549 // the offset within POSD.
1553 Symbol_table::define_with_copy_reloc(
1554 Sized_symbol<size>* csym,
1556 typename elfcpp::Elf_types<size>::Elf_Addr value)
1558 gold_assert(csym->is_from_dynobj());
1559 gold_assert(!csym->is_copied_from_dynobj());
1560 Object* object = csym->object();
1561 gold_assert(object->is_dynamic());
1562 Dynobj* dynobj = static_cast<Dynobj*>(object);
1564 // Our copied variable has to override any variable in a shared
1566 elfcpp::STB binding = csym->binding();
1567 if (binding == elfcpp::STB_WEAK)
1568 binding = elfcpp::STB_GLOBAL;
1570 this->define_in_output_data(csym->name(), csym->version(),
1571 posd, value, csym->symsize(),
1572 csym->type(), binding,
1573 csym->visibility(), csym->nonvis(),
1576 csym->set_is_copied_from_dynobj();
1577 csym->set_needs_dynsym_entry();
1579 this->copied_symbol_dynobjs_[csym] = dynobj;
1581 // We have now defined all aliases, but we have not entered them all
1582 // in the copied_symbol_dynobjs_ map.
1583 if (csym->has_alias())
1588 sym = this->weak_aliases_[sym];
1591 gold_assert(sym->output_data() == posd);
1593 sym->set_is_copied_from_dynobj();
1594 this->copied_symbol_dynobjs_[sym] = dynobj;
1599 // SYM is defined using a COPY reloc. Return the dynamic object where
1600 // the original definition was found.
1603 Symbol_table::get_copy_source(const Symbol* sym) const
1605 gold_assert(sym->is_copied_from_dynobj());
1606 Copied_symbol_dynobjs::const_iterator p =
1607 this->copied_symbol_dynobjs_.find(sym);
1608 gold_assert(p != this->copied_symbol_dynobjs_.end());
1612 // Set the dynamic symbol indexes. INDEX is the index of the first
1613 // global dynamic symbol. Pointers to the symbols are stored into the
1614 // vector SYMS. The names are added to DYNPOOL. This returns an
1615 // updated dynamic symbol index.
1618 Symbol_table::set_dynsym_indexes(unsigned int index,
1619 std::vector<Symbol*>* syms,
1620 Stringpool* dynpool,
1623 for (Symbol_table_type::iterator p = this->table_.begin();
1624 p != this->table_.end();
1627 Symbol* sym = p->second;
1629 // Note that SYM may already have a dynamic symbol index, since
1630 // some symbols appear more than once in the symbol table, with
1631 // and without a version.
1633 if (!sym->should_add_dynsym_entry())
1634 sym->set_dynsym_index(-1U);
1635 else if (!sym->has_dynsym_index())
1637 sym->set_dynsym_index(index);
1639 syms->push_back(sym);
1640 dynpool->add(sym->name(), false, NULL);
1642 // Record any version information.
1643 if (sym->version() != NULL)
1644 versions->record_version(this, dynpool, sym);
1648 // Finish up the versions. In some cases this may add new dynamic
1650 index = versions->finalize(this, index, syms);
1655 // Set the final values for all the symbols. The index of the first
1656 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1657 // file offset OFF. Add their names to POOL. Return the new file
1658 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1661 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1662 size_t dyncount, Stringpool* pool,
1663 unsigned int *plocal_symcount)
1667 gold_assert(*plocal_symcount != 0);
1668 this->first_global_index_ = *plocal_symcount;
1670 this->dynamic_offset_ = dynoff;
1671 this->first_dynamic_global_index_ = dyn_global_index;
1672 this->dynamic_count_ = dyncount;
1674 if (parameters->target().get_size() == 32)
1676 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1677 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1682 else if (parameters->target().get_size() == 64)
1684 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1685 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1693 // Now that we have the final symbol table, we can reliably note
1694 // which symbols should get warnings.
1695 this->warnings_.note_warnings(this);
1700 // SYM is going into the symbol table at *PINDEX. Add the name to
1701 // POOL, update *PINDEX and *POFF.
1705 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1706 unsigned int* pindex, off_t* poff)
1708 sym->set_symtab_index(*pindex);
1709 pool->add(sym->name(), false, NULL);
1711 *poff += elfcpp::Elf_sizes<size>::sym_size;
1714 // Set the final value for all the symbols. This is called after
1715 // Layout::finalize, so all the output sections have their final
1720 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1721 unsigned int* plocal_symcount)
1723 off = align_address(off, size >> 3);
1724 this->offset_ = off;
1726 unsigned int index = *plocal_symcount;
1727 const unsigned int orig_index = index;
1729 // First do all the symbols which have been forced to be local, as
1730 // they must appear before all global symbols.
1731 for (Forced_locals::iterator p = this->forced_locals_.begin();
1732 p != this->forced_locals_.end();
1736 gold_assert(sym->is_forced_local());
1737 if (this->sized_finalize_symbol<size>(sym))
1739 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1744 // Now do all the remaining symbols.
1745 for (Symbol_table_type::iterator p = this->table_.begin();
1746 p != this->table_.end();
1749 Symbol* sym = p->second;
1750 if (this->sized_finalize_symbol<size>(sym))
1751 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1754 this->output_count_ = index - orig_index;
1759 // Finalize the symbol SYM. This returns true if the symbol should be
1760 // added to the symbol table, false otherwise.
1764 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1766 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1768 // The default version of a symbol may appear twice in the symbol
1769 // table. We only need to finalize it once.
1770 if (sym->has_symtab_index())
1775 gold_assert(!sym->has_symtab_index());
1776 sym->set_symtab_index(-1U);
1777 gold_assert(sym->dynsym_index() == -1U);
1781 typename Sized_symbol<size>::Value_type value;
1783 switch (sym->source())
1785 case Symbol::FROM_OBJECT:
1787 unsigned int shndx = sym->shndx();
1789 // FIXME: We need some target specific support here.
1790 if (shndx >= elfcpp::SHN_LORESERVE
1791 && shndx != elfcpp::SHN_ABS
1792 && shndx != elfcpp::SHN_COMMON)
1794 gold_error(_("%s: unsupported symbol section 0x%x"),
1795 sym->demangled_name().c_str(), shndx);
1796 shndx = elfcpp::SHN_UNDEF;
1799 Object* symobj = sym->object();
1800 if (symobj->is_dynamic())
1803 shndx = elfcpp::SHN_UNDEF;
1805 else if (shndx == elfcpp::SHN_UNDEF)
1807 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1808 value = sym->value();
1811 Relobj* relobj = static_cast<Relobj*>(symobj);
1812 section_offset_type secoff;
1813 Output_section* os = relobj->output_section(shndx, &secoff);
1817 sym->set_symtab_index(-1U);
1818 gold_assert(sym->dynsym_index() == -1U);
1822 if (sym->type() == elfcpp::STT_TLS)
1823 value = sym->value() + os->tls_offset() + secoff;
1825 value = sym->value() + os->address() + secoff;
1830 case Symbol::IN_OUTPUT_DATA:
1832 Output_data* od = sym->output_data();
1833 value = sym->value() + od->address();
1834 if (sym->offset_is_from_end())
1835 value += od->data_size();
1839 case Symbol::IN_OUTPUT_SEGMENT:
1841 Output_segment* os = sym->output_segment();
1842 value = sym->value();
1843 if (sym->type() != elfcpp::STT_TLS)
1844 value += os->vaddr();
1845 switch (sym->offset_base())
1847 case Symbol::SEGMENT_START:
1849 case Symbol::SEGMENT_END:
1850 value += os->memsz();
1852 case Symbol::SEGMENT_BSS:
1853 value += os->filesz();
1861 case Symbol::CONSTANT:
1862 value = sym->value();
1869 sym->set_value(value);
1871 if (parameters->options().strip_all())
1873 sym->set_symtab_index(-1U);
1880 // Write out the global symbols.
1883 Symbol_table::write_globals(const Input_objects* input_objects,
1884 const Stringpool* sympool,
1885 const Stringpool* dynpool, Output_file* of) const
1887 switch (parameters->size_and_endianness())
1889 #ifdef HAVE_TARGET_32_LITTLE
1890 case Parameters::TARGET_32_LITTLE:
1891 this->sized_write_globals<32, false>(input_objects, sympool,
1895 #ifdef HAVE_TARGET_32_BIG
1896 case Parameters::TARGET_32_BIG:
1897 this->sized_write_globals<32, true>(input_objects, sympool,
1901 #ifdef HAVE_TARGET_64_LITTLE
1902 case Parameters::TARGET_64_LITTLE:
1903 this->sized_write_globals<64, false>(input_objects, sympool,
1907 #ifdef HAVE_TARGET_64_BIG
1908 case Parameters::TARGET_64_BIG:
1909 this->sized_write_globals<64, true>(input_objects, sympool,
1918 // Write out the global symbols.
1920 template<int size, bool big_endian>
1922 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1923 const Stringpool* sympool,
1924 const Stringpool* dynpool,
1925 Output_file* of) const
1927 const Target& target = parameters->target();
1929 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1931 const unsigned int output_count = this->output_count_;
1932 const section_size_type oview_size = output_count * sym_size;
1933 const unsigned int first_global_index = this->first_global_index_;
1934 unsigned char* psyms;
1935 if (this->offset_ == 0 || output_count == 0)
1938 psyms = of->get_output_view(this->offset_, oview_size);
1940 const unsigned int dynamic_count = this->dynamic_count_;
1941 const section_size_type dynamic_size = dynamic_count * sym_size;
1942 const unsigned int first_dynamic_global_index =
1943 this->first_dynamic_global_index_;
1944 unsigned char* dynamic_view;
1945 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1946 dynamic_view = NULL;
1948 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1950 for (Symbol_table_type::const_iterator p = this->table_.begin();
1951 p != this->table_.end();
1954 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1956 // Possibly warn about unresolved symbols in shared libraries.
1957 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1959 unsigned int sym_index = sym->symtab_index();
1960 unsigned int dynsym_index;
1961 if (dynamic_view == NULL)
1964 dynsym_index = sym->dynsym_index();
1966 if (sym_index == -1U && dynsym_index == -1U)
1968 // This symbol is not included in the output file.
1973 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1974 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1975 switch (sym->source())
1977 case Symbol::FROM_OBJECT:
1979 unsigned int in_shndx = sym->shndx();
1981 // FIXME: We need some target specific support here.
1982 if (in_shndx >= elfcpp::SHN_LORESERVE
1983 && in_shndx != elfcpp::SHN_ABS
1984 && in_shndx != elfcpp::SHN_COMMON)
1986 gold_error(_("%s: unsupported symbol section 0x%x"),
1987 sym->demangled_name().c_str(), in_shndx);
1992 Object* symobj = sym->object();
1993 if (symobj->is_dynamic())
1995 if (sym->needs_dynsym_value())
1996 dynsym_value = target.dynsym_value(sym);
1997 shndx = elfcpp::SHN_UNDEF;
1999 else if (in_shndx == elfcpp::SHN_UNDEF
2000 || in_shndx == elfcpp::SHN_ABS
2001 || in_shndx == elfcpp::SHN_COMMON)
2005 Relobj* relobj = static_cast<Relobj*>(symobj);
2006 section_offset_type secoff;
2007 Output_section* os = relobj->output_section(in_shndx,
2009 gold_assert(os != NULL);
2010 shndx = os->out_shndx();
2012 // In object files symbol values are section
2014 if (parameters->options().relocatable())
2015 sym_value -= os->address();
2021 case Symbol::IN_OUTPUT_DATA:
2022 shndx = sym->output_data()->out_shndx();
2025 case Symbol::IN_OUTPUT_SEGMENT:
2026 shndx = elfcpp::SHN_ABS;
2029 case Symbol::CONSTANT:
2030 shndx = elfcpp::SHN_ABS;
2037 if (sym_index != -1U)
2039 sym_index -= first_global_index;
2040 gold_assert(sym_index < output_count);
2041 unsigned char* ps = psyms + (sym_index * sym_size);
2042 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2046 if (dynsym_index != -1U)
2048 dynsym_index -= first_dynamic_global_index;
2049 gold_assert(dynsym_index < dynamic_count);
2050 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2051 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2056 of->write_output_view(this->offset_, oview_size, psyms);
2057 if (dynamic_view != NULL)
2058 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2061 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2062 // strtab holding the name.
2064 template<int size, bool big_endian>
2066 Symbol_table::sized_write_symbol(
2067 Sized_symbol<size>* sym,
2068 typename elfcpp::Elf_types<size>::Elf_Addr value,
2070 const Stringpool* pool,
2071 unsigned char* p) const
2073 elfcpp::Sym_write<size, big_endian> osym(p);
2074 osym.put_st_name(pool->get_offset(sym->name()));
2075 osym.put_st_value(value);
2076 osym.put_st_size(sym->symsize());
2077 // A version script may have overridden the default binding.
2078 if (sym->is_forced_local())
2079 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2081 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2082 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2083 osym.put_st_shndx(shndx);
2086 // Check for unresolved symbols in shared libraries. This is
2087 // controlled by the --allow-shlib-undefined option.
2089 // We only warn about libraries for which we have seen all the
2090 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2091 // which were not seen in this link. If we didn't see a DT_NEEDED
2092 // entry, we aren't going to be able to reliably report whether the
2093 // symbol is undefined.
2095 // We also don't warn about libraries found in the system library
2096 // directory (the directory were we find libc.so); we assume that
2097 // those libraries are OK. This heuristic avoids problems in
2098 // GNU/Linux, in which -ldl can have undefined references satisfied by
2102 Symbol_table::warn_about_undefined_dynobj_symbol(
2103 const Input_objects* input_objects,
2106 if (sym->source() == Symbol::FROM_OBJECT
2107 && sym->object()->is_dynamic()
2108 && sym->shndx() == elfcpp::SHN_UNDEF
2109 && sym->binding() != elfcpp::STB_WEAK
2110 && !parameters->options().allow_shlib_undefined()
2111 && !parameters->target().is_defined_by_abi(sym)
2112 && !input_objects->found_in_system_library_directory(sym->object()))
2114 // A very ugly cast.
2115 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2116 if (!dynobj->has_unknown_needed_entries())
2117 gold_error(_("%s: undefined reference to '%s'"),
2118 sym->object()->name().c_str(),
2119 sym->demangled_name().c_str());
2123 // Write out a section symbol. Return the update offset.
2126 Symbol_table::write_section_symbol(const Output_section *os,
2130 switch (parameters->size_and_endianness())
2132 #ifdef HAVE_TARGET_32_LITTLE
2133 case Parameters::TARGET_32_LITTLE:
2134 this->sized_write_section_symbol<32, false>(os, of, offset);
2137 #ifdef HAVE_TARGET_32_BIG
2138 case Parameters::TARGET_32_BIG:
2139 this->sized_write_section_symbol<32, true>(os, of, offset);
2142 #ifdef HAVE_TARGET_64_LITTLE
2143 case Parameters::TARGET_64_LITTLE:
2144 this->sized_write_section_symbol<64, false>(os, of, offset);
2147 #ifdef HAVE_TARGET_64_BIG
2148 case Parameters::TARGET_64_BIG:
2149 this->sized_write_section_symbol<64, true>(os, of, offset);
2157 // Write out a section symbol, specialized for size and endianness.
2159 template<int size, bool big_endian>
2161 Symbol_table::sized_write_section_symbol(const Output_section* os,
2165 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2167 unsigned char* pov = of->get_output_view(offset, sym_size);
2169 elfcpp::Sym_write<size, big_endian> osym(pov);
2170 osym.put_st_name(0);
2171 osym.put_st_value(os->address());
2172 osym.put_st_size(0);
2173 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2174 elfcpp::STT_SECTION));
2175 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2176 osym.put_st_shndx(os->out_shndx());
2178 of->write_output_view(offset, sym_size, pov);
2181 // Print statistical information to stderr. This is used for --stats.
2184 Symbol_table::print_stats() const
2186 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2187 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2188 program_name, this->table_.size(), this->table_.bucket_count());
2190 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2191 program_name, this->table_.size());
2193 this->namepool_.print_stats("symbol table stringpool");
2196 // We check for ODR violations by looking for symbols with the same
2197 // name for which the debugging information reports that they were
2198 // defined in different source locations. When comparing the source
2199 // location, we consider instances with the same base filename and
2200 // line number to be the same. This is because different object
2201 // files/shared libraries can include the same header file using
2202 // different paths, and we don't want to report an ODR violation in
2205 // This struct is used to compare line information, as returned by
2206 // Dwarf_line_info::one_addr2line. It implements a < comparison
2207 // operator used with std::set.
2209 struct Odr_violation_compare
2212 operator()(const std::string& s1, const std::string& s2) const
2214 std::string::size_type pos1 = s1.rfind('/');
2215 std::string::size_type pos2 = s2.rfind('/');
2216 if (pos1 == std::string::npos
2217 || pos2 == std::string::npos)
2219 return s1.compare(pos1, std::string::npos,
2220 s2, pos2, std::string::npos) < 0;
2224 // Check candidate_odr_violations_ to find symbols with the same name
2225 // but apparently different definitions (different source-file/line-no).
2228 Symbol_table::detect_odr_violations(const Task* task,
2229 const char* output_file_name) const
2231 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2232 it != candidate_odr_violations_.end();
2235 const char* symbol_name = it->first;
2236 // We use a sorted set so the output is deterministic.
2237 std::set<std::string, Odr_violation_compare> line_nums;
2239 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2240 locs = it->second.begin();
2241 locs != it->second.end();
2244 // We need to lock the object in order to read it. This
2245 // means that we have to run in a singleton Task. If we
2246 // want to run this in a general Task for better
2247 // performance, we will need one Task for object, plus
2248 // appropriate locking to ensure that we don't conflict with
2249 // other uses of the object.
2250 Task_lock_obj<Object> tl(task, locs->object);
2251 std::string lineno = Dwarf_line_info::one_addr2line(
2252 locs->object, locs->shndx, locs->offset);
2253 if (!lineno.empty())
2254 line_nums.insert(lineno);
2257 if (line_nums.size() > 1)
2259 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2260 "places (possible ODR violation):"),
2261 output_file_name, demangle(symbol_name).c_str());
2262 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2263 it2 != line_nums.end();
2265 fprintf(stderr, " %s\n", it2->c_str());
2270 // Warnings functions.
2272 // Add a new warning.
2275 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2276 const std::string& warning)
2278 name = symtab->canonicalize_name(name);
2279 this->warnings_[name].set(obj, warning);
2282 // Look through the warnings and mark the symbols for which we should
2283 // warn. This is called during Layout::finalize when we know the
2284 // sources for all the symbols.
2287 Warnings::note_warnings(Symbol_table* symtab)
2289 for (Warning_table::iterator p = this->warnings_.begin();
2290 p != this->warnings_.end();
2293 Symbol* sym = symtab->lookup(p->first, NULL);
2295 && sym->source() == Symbol::FROM_OBJECT
2296 && sym->object() == p->second.object)
2297 sym->set_has_warning();
2301 // Issue a warning. This is called when we see a relocation against a
2302 // symbol for which has a warning.
2304 template<int size, bool big_endian>
2306 Warnings::issue_warning(const Symbol* sym,
2307 const Relocate_info<size, big_endian>* relinfo,
2308 size_t relnum, off_t reloffset) const
2310 gold_assert(sym->has_warning());
2311 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2312 gold_assert(p != this->warnings_.end());
2313 gold_warning_at_location(relinfo, relnum, reloffset,
2314 "%s", p->second.text.c_str());
2317 // Instantiate the templates we need. We could use the configure
2318 // script to restrict this to only the ones needed for implemented
2321 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2324 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2327 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2330 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2333 #ifdef HAVE_TARGET_32_LITTLE
2336 Symbol_table::add_from_relobj<32, false>(
2337 Sized_relobj<32, false>* relobj,
2338 const unsigned char* syms,
2340 const char* sym_names,
2341 size_t sym_name_size,
2342 Sized_relobj<32, true>::Symbols* sympointers);
2345 #ifdef HAVE_TARGET_32_BIG
2348 Symbol_table::add_from_relobj<32, true>(
2349 Sized_relobj<32, true>* relobj,
2350 const unsigned char* syms,
2352 const char* sym_names,
2353 size_t sym_name_size,
2354 Sized_relobj<32, false>::Symbols* sympointers);
2357 #ifdef HAVE_TARGET_64_LITTLE
2360 Symbol_table::add_from_relobj<64, false>(
2361 Sized_relobj<64, false>* relobj,
2362 const unsigned char* syms,
2364 const char* sym_names,
2365 size_t sym_name_size,
2366 Sized_relobj<64, true>::Symbols* sympointers);
2369 #ifdef HAVE_TARGET_64_BIG
2372 Symbol_table::add_from_relobj<64, true>(
2373 Sized_relobj<64, true>* relobj,
2374 const unsigned char* syms,
2376 const char* sym_names,
2377 size_t sym_name_size,
2378 Sized_relobj<64, false>::Symbols* sympointers);
2381 #ifdef HAVE_TARGET_32_LITTLE
2384 Symbol_table::add_from_dynobj<32, false>(
2385 Sized_dynobj<32, false>* dynobj,
2386 const unsigned char* syms,
2388 const char* sym_names,
2389 size_t sym_name_size,
2390 const unsigned char* versym,
2392 const std::vector<const char*>* version_map);
2395 #ifdef HAVE_TARGET_32_BIG
2398 Symbol_table::add_from_dynobj<32, true>(
2399 Sized_dynobj<32, true>* dynobj,
2400 const unsigned char* syms,
2402 const char* sym_names,
2403 size_t sym_name_size,
2404 const unsigned char* versym,
2406 const std::vector<const char*>* version_map);
2409 #ifdef HAVE_TARGET_64_LITTLE
2412 Symbol_table::add_from_dynobj<64, false>(
2413 Sized_dynobj<64, false>* dynobj,
2414 const unsigned char* syms,
2416 const char* sym_names,
2417 size_t sym_name_size,
2418 const unsigned char* versym,
2420 const std::vector<const char*>* version_map);
2423 #ifdef HAVE_TARGET_64_BIG
2426 Symbol_table::add_from_dynobj<64, true>(
2427 Sized_dynobj<64, true>* dynobj,
2428 const unsigned char* syms,
2430 const char* sym_names,
2431 size_t sym_name_size,
2432 const unsigned char* versym,
2434 const std::vector<const char*>* version_map);
2437 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2440 Symbol_table::define_with_copy_reloc<32>(
2441 Sized_symbol<32>* sym,
2443 elfcpp::Elf_types<32>::Elf_Addr value);
2446 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2449 Symbol_table::define_with_copy_reloc<64>(
2450 Sized_symbol<64>* sym,
2452 elfcpp::Elf_types<64>::Elf_Addr value);
2455 #ifdef HAVE_TARGET_32_LITTLE
2458 Warnings::issue_warning<32, false>(const Symbol* sym,
2459 const Relocate_info<32, false>* relinfo,
2460 size_t relnum, off_t reloffset) const;
2463 #ifdef HAVE_TARGET_32_BIG
2466 Warnings::issue_warning<32, true>(const Symbol* sym,
2467 const Relocate_info<32, true>* relinfo,
2468 size_t relnum, off_t reloffset) const;
2471 #ifdef HAVE_TARGET_64_LITTLE
2474 Warnings::issue_warning<64, false>(const Symbol* sym,
2475 const Relocate_info<64, false>* relinfo,
2476 size_t relnum, off_t reloffset) const;
2479 #ifdef HAVE_TARGET_64_BIG
2482 Warnings::issue_warning<64, true>(const Symbol* sym,
2483 const Relocate_info<64, true>* relinfo,
2484 size_t relnum, off_t reloffset) const;
2487 } // End namespace gold.