3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 # Make certain that the script is running in an internationalized
25 LC_ALL=c ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
79 if eval test \"\${${r}}\" = \"\ \"
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
104 if [ "${returntype}" = int ]
108 elif [ "${returntype}" = long ]
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
118 case "${invalid_p}" in
121 if [ -n "${predefault}" ]
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
130 * ) valid_p="!(${invalid_p})"
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
140 if [ -n "${postdefault}" ]
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
145 fallbackdefault="${predefault}"
150 #NOT YET: See gdbarch.log for basic verification of
165 fallback_default_p ()
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
171 class_is_variable_p ()
179 class_is_function_p ()
182 *f* | *F* | *m* | *M* ) true ;;
187 class_is_multiarch_p ()
195 class_is_predicate_p ()
198 *F* | *V* | *M* ) true ;;
212 # dump out/verify the doco
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
243 # The name of the MACRO that this method is to be accessed by.
247 # For functions, the return type; for variables, the data type
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
280 # If STATICDEFAULT is empty, zero is used.
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
289 # If PREDEFAULT is empty, zero is used.
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
295 # A zero PREDEFAULT function will force the fallback to call
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
307 # If POSTDEFAULT is empty, no post update is performed.
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
338 # See also PREDEFAULT and POSTDEFAULT.
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
346 # If FMT is empty, ``%ld'' is used.
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
353 # If PRINT is empty, ``(long)'' is used.
357 # An optional indicator for any predicte to wrap around the
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
364 # If PRINT_P is empty, ``1'' is always used.
371 echo "Bad field ${field}"
379 # See below (DOCO) for description of each field
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
471 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
484 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485 # much better but at least they are vaguely consistent). The headers
486 # and body contain convoluted #if/#else sequences for determine how
487 # things should be compiled. Instead of trying to mimic that
488 # behaviour here (and hence entrench it further) gdbarch simply
489 # reqires that these methods be set up from the word go. This also
490 # avoids any potential problems with moving beyond multi-arch partial.
491 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
508 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
517 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
521 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
525 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
533 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
539 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
576 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
577 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
578 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
579 v:2:PARM_BOUNDARY:int:parm_boundary
581 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
582 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
583 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
584 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
585 # On some machines there are bits in addresses which are not really
586 # part of the address, but are used by the kernel, the hardware, etc.
587 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
588 # we get a "real" address such as one would find in a symbol table.
589 # This is used only for addresses of instructions, and even then I'm
590 # not sure it's used in all contexts. It exists to deal with there
591 # being a few stray bits in the PC which would mislead us, not as some
592 # sort of generic thing to handle alignment or segmentation (it's
593 # possible it should be in TARGET_READ_PC instead).
594 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
595 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
597 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
599 # the target needs software single step. An ISA method to implement it.
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
602 # using the breakpoint system instead of blatting memory directly (as with rs6000).
604 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
605 # single step. If not, then implement single step using breakpoints.
606 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
607 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
608 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
611 # For SVR4 shared libraries, each call goes through a small piece of
612 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
613 # to nonzero if we are currently stopped in one of these.
614 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
616 # Some systems also have trampoline code for returning from shared libs.
617 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
619 # Sigtramp is a routine that the kernel calls (which then calls the
620 # signal handler). On most machines it is a library routine that is
621 # linked into the executable.
623 # This macro, given a program counter value and the name of the
624 # function in which that PC resides (which can be null if the name is
625 # not known), returns nonzero if the PC and name show that we are in
628 # On most machines just see if the name is sigtramp (and if we have
629 # no name, assume we are not in sigtramp).
631 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
632 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
633 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
634 # own local NAME lookup.
636 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
637 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
639 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
640 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
641 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
642 # A target might have problems with watchpoints as soon as the stack
643 # frame of the current function has been destroyed. This mostly happens
644 # as the first action in a funtion's epilogue. in_function_epilogue_p()
645 # is defined to return a non-zero value if either the given addr is one
646 # instruction after the stack destroying instruction up to the trailing
647 # return instruction or if we can figure out that the stack frame has
648 # already been invalidated regardless of the value of addr. Targets
649 # which don't suffer from that problem could just let this functionality
651 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
652 # Given a vector of command-line arguments, return a newly allocated
653 # string which, when passed to the create_inferior function, will be
654 # parsed (on Unix systems, by the shell) to yield the same vector.
655 # This function should call error() if the argument vector is not
656 # representable for this target or if this target does not support
657 # command-line arguments.
658 # ARGC is the number of elements in the vector.
659 # ARGV is an array of strings, one per argument.
660 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
661 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
662 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
663 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
664 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0
665 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
666 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
667 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
668 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:char *:address_class_type_flags_to_name:int type_flags:type_flags:
669 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:char *name, int *type_flags_ptr:name, type_flags_ptr
670 # Is a register in a group
671 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
678 exec > new-gdbarch.log
679 function_list | while do_read
682 ${class} ${macro}(${actual})
683 ${returntype} ${function} ($formal)${attrib}
687 eval echo \"\ \ \ \ ${r}=\${${r}}\"
689 # #fallbackdefault=${fallbackdefault}
690 # #valid_p=${valid_p}
692 if class_is_predicate_p && fallback_default_p
694 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
698 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
700 echo "Error: postdefault is useless when invalid_p=0" 1>&2
704 if class_is_multiarch_p
706 if class_is_predicate_p ; then :
707 elif test "x${predefault}" = "x"
709 echo "Error: pure multi-arch function must have a predefault" 1>&2
718 compare_new gdbarch.log
724 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
726 /* Dynamic architecture support for GDB, the GNU debugger.
727 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
729 This file is part of GDB.
731 This program is free software; you can redistribute it and/or modify
732 it under the terms of the GNU General Public License as published by
733 the Free Software Foundation; either version 2 of the License, or
734 (at your option) any later version.
736 This program is distributed in the hope that it will be useful,
737 but WITHOUT ANY WARRANTY; without even the implied warranty of
738 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
739 GNU General Public License for more details.
741 You should have received a copy of the GNU General Public License
742 along with this program; if not, write to the Free Software
743 Foundation, Inc., 59 Temple Place - Suite 330,
744 Boston, MA 02111-1307, USA. */
746 /* This file was created with the aid of \`\`gdbarch.sh''.
748 The Bourne shell script \`\`gdbarch.sh'' creates the files
749 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
750 against the existing \`\`gdbarch.[hc]''. Any differences found
753 If editing this file, please also run gdbarch.sh and merge any
754 changes into that script. Conversely, when making sweeping changes
755 to this file, modifying gdbarch.sh and using its output may prove
771 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
773 /* Pull in function declarations refered to, indirectly, via macros. */
774 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
775 #include "inferior.h" /* For unsigned_address_to_pointer(). */
781 struct minimal_symbol;
785 extern struct gdbarch *current_gdbarch;
788 /* If any of the following are defined, the target wasn't correctly
792 #if defined (EXTRA_FRAME_INFO)
793 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
798 #if defined (FRAME_FIND_SAVED_REGS)
799 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
803 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
804 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
811 printf "/* The following are pre-initialized by GDBARCH. */\n"
812 function_list | while do_read
817 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
818 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
819 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
820 printf "#error \"Non multi-arch definition of ${macro}\"\n"
822 printf "#if GDB_MULTI_ARCH\n"
823 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
824 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
833 printf "/* The following are initialized by the target dependent code. */\n"
834 function_list | while do_read
836 if [ -n "${comment}" ]
838 echo "${comment}" | sed \
843 if class_is_multiarch_p
845 if class_is_predicate_p
848 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
851 if class_is_predicate_p
854 printf "#if defined (${macro})\n"
855 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
856 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
857 printf "#if !defined (${macro}_P)\n"
858 printf "#define ${macro}_P() (1)\n"
862 printf "/* Default predicate for non- multi-arch targets. */\n"
863 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
864 printf "#define ${macro}_P() (0)\n"
867 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
868 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
869 printf "#error \"Non multi-arch definition of ${macro}\"\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
872 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
876 if class_is_variable_p
878 if fallback_default_p || class_is_predicate_p
881 printf "/* Default (value) for non- multi-arch platforms. */\n"
882 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
883 echo "#define ${macro} (${fallbackdefault})" \
884 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
888 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
889 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
890 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
893 printf "#if GDB_MULTI_ARCH\n"
894 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
895 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
899 if class_is_function_p
901 if class_is_multiarch_p ; then :
902 elif fallback_default_p || class_is_predicate_p
905 printf "/* Default (function) for non- multi-arch platforms. */\n"
906 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
907 if [ "x${fallbackdefault}" = "x0" ]
909 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
911 # FIXME: Should be passing current_gdbarch through!
912 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
913 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
918 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
920 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
921 elif class_is_multiarch_p
923 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
925 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
927 if [ "x${formal}" = "xvoid" ]
929 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
931 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
933 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
934 if class_is_multiarch_p ; then :
936 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
937 printf "#error \"Non multi-arch definition of ${macro}\"\n"
939 printf "#if GDB_MULTI_ARCH\n"
940 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
941 if [ "x${actual}" = "x" ]
943 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
944 elif [ "x${actual}" = "x-" ]
946 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
948 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
959 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
962 /* Mechanism for co-ordinating the selection of a specific
965 GDB targets (*-tdep.c) can register an interest in a specific
966 architecture. Other GDB components can register a need to maintain
967 per-architecture data.
969 The mechanisms below ensures that there is only a loose connection
970 between the set-architecture command and the various GDB
971 components. Each component can independently register their need
972 to maintain architecture specific data with gdbarch.
976 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
979 The more traditional mega-struct containing architecture specific
980 data for all the various GDB components was also considered. Since
981 GDB is built from a variable number of (fairly independent)
982 components it was determined that the global aproach was not
986 /* Register a new architectural family with GDB.
988 Register support for the specified ARCHITECTURE with GDB. When
989 gdbarch determines that the specified architecture has been
990 selected, the corresponding INIT function is called.
994 The INIT function takes two parameters: INFO which contains the
995 information available to gdbarch about the (possibly new)
996 architecture; ARCHES which is a list of the previously created
997 \`\`struct gdbarch'' for this architecture.
999 The INFO parameter is, as far as possible, be pre-initialized with
1000 information obtained from INFO.ABFD or the previously selected
1003 The ARCHES parameter is a linked list (sorted most recently used)
1004 of all the previously created architures for this architecture
1005 family. The (possibly NULL) ARCHES->gdbarch can used to access
1006 values from the previously selected architecture for this
1007 architecture family. The global \`\`current_gdbarch'' shall not be
1010 The INIT function shall return any of: NULL - indicating that it
1011 doesn't recognize the selected architecture; an existing \`\`struct
1012 gdbarch'' from the ARCHES list - indicating that the new
1013 architecture is just a synonym for an earlier architecture (see
1014 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1015 - that describes the selected architecture (see gdbarch_alloc()).
1017 The DUMP_TDEP function shall print out all target specific values.
1018 Care should be taken to ensure that the function works in both the
1019 multi-arch and non- multi-arch cases. */
1023 struct gdbarch *gdbarch;
1024 struct gdbarch_list *next;
1029 /* Use default: NULL (ZERO). */
1030 const struct bfd_arch_info *bfd_arch_info;
1032 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1035 /* Use default: NULL (ZERO). */
1038 /* Use default: NULL (ZERO). */
1039 struct gdbarch_tdep_info *tdep_info;
1042 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1043 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1045 /* DEPRECATED - use gdbarch_register() */
1046 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1048 extern void gdbarch_register (enum bfd_architecture architecture,
1049 gdbarch_init_ftype *,
1050 gdbarch_dump_tdep_ftype *);
1053 /* Return a freshly allocated, NULL terminated, array of the valid
1054 architecture names. Since architectures are registered during the
1055 _initialize phase this function only returns useful information
1056 once initialization has been completed. */
1058 extern const char **gdbarch_printable_names (void);
1061 /* Helper function. Search the list of ARCHES for a GDBARCH that
1062 matches the information provided by INFO. */
1064 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1067 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1068 basic initialization using values obtained from the INFO andTDEP
1069 parameters. set_gdbarch_*() functions are called to complete the
1070 initialization of the object. */
1072 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1075 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1076 It is assumed that the caller freeds the \`\`struct
1079 extern void gdbarch_free (struct gdbarch *);
1082 /* Helper function. Force an update of the current architecture.
1084 The actual architecture selected is determined by INFO, \`\`(gdb) set
1085 architecture'' et.al., the existing architecture and BFD's default
1086 architecture. INFO should be initialized to zero and then selected
1087 fields should be updated.
1089 Returns non-zero if the update succeeds */
1091 extern int gdbarch_update_p (struct gdbarch_info info);
1095 /* Register per-architecture data-pointer.
1097 Reserve space for a per-architecture data-pointer. An identifier
1098 for the reserved data-pointer is returned. That identifer should
1099 be saved in a local static variable.
1101 The per-architecture data-pointer is either initialized explicitly
1102 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1103 gdbarch_data()). FREE() is called to delete either an existing
1104 data-pointer overridden by set_gdbarch_data() or when the
1105 architecture object is being deleted.
1107 When a previously created architecture is re-selected, the
1108 per-architecture data-pointer for that previous architecture is
1109 restored. INIT() is not re-called.
1111 Multiple registrarants for any architecture are allowed (and
1112 strongly encouraged). */
1114 struct gdbarch_data;
1116 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1117 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1119 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1120 gdbarch_data_free_ftype *free);
1121 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1122 struct gdbarch_data *data,
1125 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1128 /* Register per-architecture memory region.
1130 Provide a memory-region swap mechanism. Per-architecture memory
1131 region are created. These memory regions are swapped whenever the
1132 architecture is changed. For a new architecture, the memory region
1133 is initialized with zero (0) and the INIT function is called.
1135 Memory regions are swapped / initialized in the order that they are
1136 registered. NULL DATA and/or INIT values can be specified.
1138 New code should use register_gdbarch_data(). */
1140 typedef void (gdbarch_swap_ftype) (void);
1141 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1142 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1146 /* The target-system-dependent byte order is dynamic */
1148 extern int target_byte_order;
1149 #ifndef TARGET_BYTE_ORDER
1150 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1153 extern int target_byte_order_auto;
1154 #ifndef TARGET_BYTE_ORDER_AUTO
1155 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1160 /* The target-system-dependent BFD architecture is dynamic */
1162 extern int target_architecture_auto;
1163 #ifndef TARGET_ARCHITECTURE_AUTO
1164 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1167 extern const struct bfd_arch_info *target_architecture;
1168 #ifndef TARGET_ARCHITECTURE
1169 #define TARGET_ARCHITECTURE (target_architecture + 0)
1173 /* The target-system-dependent disassembler is semi-dynamic */
1175 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1176 unsigned int len, disassemble_info *info);
1178 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1179 disassemble_info *info);
1181 extern void dis_asm_print_address (bfd_vma addr,
1182 disassemble_info *info);
1184 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1185 extern disassemble_info tm_print_insn_info;
1186 #ifndef TARGET_PRINT_INSN_INFO
1187 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1192 /* Set the dynamic target-system-dependent parameters (architecture,
1193 byte-order, ...) using information found in the BFD */
1195 extern void set_gdbarch_from_file (bfd *);
1198 /* Initialize the current architecture to the "first" one we find on
1201 extern void initialize_current_architecture (void);
1203 /* For non-multiarched targets, do any initialization of the default
1204 gdbarch object necessary after the _initialize_MODULE functions
1206 extern void initialize_non_multiarch (void);
1208 /* gdbarch trace variable */
1209 extern int gdbarch_debug;
1211 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1216 #../move-if-change new-gdbarch.h gdbarch.h
1217 compare_new gdbarch.h
1224 exec > new-gdbarch.c
1229 #include "arch-utils.h"
1233 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1235 /* Just include everything in sight so that the every old definition
1236 of macro is visible. */
1237 #include "gdb_string.h"
1241 #include "inferior.h"
1242 #include "breakpoint.h"
1243 #include "gdb_wait.h"
1244 #include "gdbcore.h"
1247 #include "gdbthread.h"
1248 #include "annotate.h"
1249 #include "symfile.h" /* for overlay functions */
1250 #include "value.h" /* For old tm.h/nm.h macros. */
1254 #include "floatformat.h"
1256 #include "gdb_assert.h"
1257 #include "gdb_string.h"
1258 #include "gdb-events.h"
1259 #include "reggroups.h"
1261 /* Static function declarations */
1263 static void verify_gdbarch (struct gdbarch *gdbarch);
1264 static void alloc_gdbarch_data (struct gdbarch *);
1265 static void free_gdbarch_data (struct gdbarch *);
1266 static void init_gdbarch_swap (struct gdbarch *);
1267 static void clear_gdbarch_swap (struct gdbarch *);
1268 static void swapout_gdbarch_swap (struct gdbarch *);
1269 static void swapin_gdbarch_swap (struct gdbarch *);
1271 /* Non-zero if we want to trace architecture code. */
1273 #ifndef GDBARCH_DEBUG
1274 #define GDBARCH_DEBUG 0
1276 int gdbarch_debug = GDBARCH_DEBUG;
1280 # gdbarch open the gdbarch object
1282 printf "/* Maintain the struct gdbarch object */\n"
1284 printf "struct gdbarch\n"
1286 printf " /* Has this architecture been fully initialized? */\n"
1287 printf " int initialized_p;\n"
1288 printf " /* basic architectural information */\n"
1289 function_list | while do_read
1293 printf " ${returntype} ${function};\n"
1297 printf " /* target specific vector. */\n"
1298 printf " struct gdbarch_tdep *tdep;\n"
1299 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1301 printf " /* per-architecture data-pointers */\n"
1302 printf " unsigned nr_data;\n"
1303 printf " void **data;\n"
1305 printf " /* per-architecture swap-regions */\n"
1306 printf " struct gdbarch_swap *swap;\n"
1309 /* Multi-arch values.
1311 When extending this structure you must:
1313 Add the field below.
1315 Declare set/get functions and define the corresponding
1318 gdbarch_alloc(): If zero/NULL is not a suitable default,
1319 initialize the new field.
1321 verify_gdbarch(): Confirm that the target updated the field
1324 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1327 \`\`startup_gdbarch()'': Append an initial value to the static
1328 variable (base values on the host's c-type system).
1330 get_gdbarch(): Implement the set/get functions (probably using
1331 the macro's as shortcuts).
1336 function_list | while do_read
1338 if class_is_variable_p
1340 printf " ${returntype} ${function};\n"
1341 elif class_is_function_p
1343 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1348 # A pre-initialized vector
1352 /* The default architecture uses host values (for want of a better
1356 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1358 printf "struct gdbarch startup_gdbarch =\n"
1360 printf " 1, /* Always initialized. */\n"
1361 printf " /* basic architecture information */\n"
1362 function_list | while do_read
1366 printf " ${staticdefault},\n"
1370 /* target specific vector and its dump routine */
1372 /*per-architecture data-pointers and swap regions */
1374 /* Multi-arch values */
1376 function_list | while do_read
1378 if class_is_function_p || class_is_variable_p
1380 printf " ${staticdefault},\n"
1384 /* startup_gdbarch() */
1387 struct gdbarch *current_gdbarch = &startup_gdbarch;
1389 /* Do any initialization needed for a non-multiarch configuration
1390 after the _initialize_MODULE functions have been run. */
1392 initialize_non_multiarch (void)
1394 alloc_gdbarch_data (&startup_gdbarch);
1395 /* Ensure that all swap areas are zeroed so that they again think
1396 they are starting from scratch. */
1397 clear_gdbarch_swap (&startup_gdbarch);
1398 init_gdbarch_swap (&startup_gdbarch);
1402 # Create a new gdbarch struct
1406 /* Create a new \`\`struct gdbarch'' based on information provided by
1407 \`\`struct gdbarch_info''. */
1412 gdbarch_alloc (const struct gdbarch_info *info,
1413 struct gdbarch_tdep *tdep)
1415 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1416 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1417 the current local architecture and not the previous global
1418 architecture. This ensures that the new architectures initial
1419 values are not influenced by the previous architecture. Once
1420 everything is parameterised with gdbarch, this will go away. */
1421 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1422 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1424 alloc_gdbarch_data (current_gdbarch);
1426 current_gdbarch->tdep = tdep;
1429 function_list | while do_read
1433 printf " current_gdbarch->${function} = info->${function};\n"
1437 printf " /* Force the explicit initialization of these. */\n"
1438 function_list | while do_read
1440 if class_is_function_p || class_is_variable_p
1442 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1444 printf " current_gdbarch->${function} = ${predefault};\n"
1449 /* gdbarch_alloc() */
1451 return current_gdbarch;
1455 # Free a gdbarch struct.
1459 /* Free a gdbarch struct. This should never happen in normal
1460 operation --- once you've created a gdbarch, you keep it around.
1461 However, if an architecture's init function encounters an error
1462 building the structure, it may need to clean up a partially
1463 constructed gdbarch. */
1466 gdbarch_free (struct gdbarch *arch)
1468 gdb_assert (arch != NULL);
1469 free_gdbarch_data (arch);
1474 # verify a new architecture
1477 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1481 verify_gdbarch (struct gdbarch *gdbarch)
1483 struct ui_file *log;
1484 struct cleanup *cleanups;
1487 /* Only perform sanity checks on a multi-arch target. */
1488 if (!GDB_MULTI_ARCH)
1490 log = mem_fileopen ();
1491 cleanups = make_cleanup_ui_file_delete (log);
1493 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1494 fprintf_unfiltered (log, "\n\tbyte-order");
1495 if (gdbarch->bfd_arch_info == NULL)
1496 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1497 /* Check those that need to be defined for the given multi-arch level. */
1499 function_list | while do_read
1501 if class_is_function_p || class_is_variable_p
1503 if [ "x${invalid_p}" = "x0" ]
1505 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1506 elif class_is_predicate_p
1508 printf " /* Skip verify of ${function}, has predicate */\n"
1509 # FIXME: See do_read for potential simplification
1510 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1512 printf " if (${invalid_p})\n"
1513 printf " gdbarch->${function} = ${postdefault};\n"
1514 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1516 printf " if (gdbarch->${function} == ${predefault})\n"
1517 printf " gdbarch->${function} = ${postdefault};\n"
1518 elif [ -n "${postdefault}" ]
1520 printf " if (gdbarch->${function} == 0)\n"
1521 printf " gdbarch->${function} = ${postdefault};\n"
1522 elif [ -n "${invalid_p}" ]
1524 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1525 printf " && (${invalid_p}))\n"
1526 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1527 elif [ -n "${predefault}" ]
1529 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1530 printf " && (gdbarch->${function} == ${predefault}))\n"
1531 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1536 buf = ui_file_xstrdup (log, &dummy);
1537 make_cleanup (xfree, buf);
1538 if (strlen (buf) > 0)
1539 internal_error (__FILE__, __LINE__,
1540 "verify_gdbarch: the following are invalid ...%s",
1542 do_cleanups (cleanups);
1546 # dump the structure
1550 /* Print out the details of the current architecture. */
1552 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1553 just happens to match the global variable \`\`current_gdbarch''. That
1554 way macros refering to that variable get the local and not the global
1555 version - ulgh. Once everything is parameterised with gdbarch, this
1559 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1561 fprintf_unfiltered (file,
1562 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1565 function_list | sort -t: +2 | while do_read
1567 # multiarch functions don't have macros.
1568 if class_is_multiarch_p
1570 printf " if (GDB_MULTI_ARCH)\n"
1571 printf " fprintf_unfiltered (file,\n"
1572 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1573 printf " (long) current_gdbarch->${function});\n"
1576 # Print the macro definition.
1577 printf "#ifdef ${macro}\n"
1578 if [ "x${returntype}" = "xvoid" ]
1580 printf "#if GDB_MULTI_ARCH\n"
1581 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1583 if class_is_function_p
1585 printf " fprintf_unfiltered (file,\n"
1586 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1587 printf " \"${macro}(${actual})\",\n"
1588 printf " XSTRING (${macro} (${actual})));\n"
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1592 printf " XSTRING (${macro}));\n"
1594 # Print the architecture vector value
1595 if [ "x${returntype}" = "xvoid" ]
1599 if [ "x${print_p}" = "x()" ]
1601 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1602 elif [ "x${print_p}" = "x0" ]
1604 printf " /* skip print of ${macro}, print_p == 0. */\n"
1605 elif [ -n "${print_p}" ]
1607 printf " if (${print_p})\n"
1608 printf " fprintf_unfiltered (file,\n"
1609 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1610 printf " ${print});\n"
1611 elif class_is_function_p
1613 printf " if (GDB_MULTI_ARCH)\n"
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1616 printf " (long) current_gdbarch->${function}\n"
1617 printf " /*${macro} ()*/);\n"
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1621 printf " ${print});\n"
1626 if (current_gdbarch->dump_tdep != NULL)
1627 current_gdbarch->dump_tdep (current_gdbarch, file);
1635 struct gdbarch_tdep *
1636 gdbarch_tdep (struct gdbarch *gdbarch)
1638 if (gdbarch_debug >= 2)
1639 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1640 return gdbarch->tdep;
1644 function_list | while do_read
1646 if class_is_predicate_p
1650 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1652 printf " gdb_assert (gdbarch != NULL);\n"
1653 if [ -n "${valid_p}" ]
1655 printf " return ${valid_p};\n"
1657 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1661 if class_is_function_p
1664 printf "${returntype}\n"
1665 if [ "x${formal}" = "xvoid" ]
1667 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1669 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1672 printf " gdb_assert (gdbarch != NULL);\n"
1673 printf " if (gdbarch->${function} == 0)\n"
1674 printf " internal_error (__FILE__, __LINE__,\n"
1675 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1676 printf " if (gdbarch_debug >= 2)\n"
1677 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1678 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1680 if class_is_multiarch_p
1687 if class_is_multiarch_p
1689 params="gdbarch, ${actual}"
1694 if [ "x${returntype}" = "xvoid" ]
1696 printf " gdbarch->${function} (${params});\n"
1698 printf " return gdbarch->${function} (${params});\n"
1703 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1704 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1706 printf " gdbarch->${function} = ${function};\n"
1708 elif class_is_variable_p
1711 printf "${returntype}\n"
1712 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1714 printf " gdb_assert (gdbarch != NULL);\n"
1715 if [ "x${invalid_p}" = "x0" ]
1717 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1718 elif [ -n "${invalid_p}" ]
1720 printf " if (${invalid_p})\n"
1721 printf " internal_error (__FILE__, __LINE__,\n"
1722 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1723 elif [ -n "${predefault}" ]
1725 printf " if (gdbarch->${function} == ${predefault})\n"
1726 printf " internal_error (__FILE__, __LINE__,\n"
1727 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1729 printf " if (gdbarch_debug >= 2)\n"
1730 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1731 printf " return gdbarch->${function};\n"
1735 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1736 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1738 printf " gdbarch->${function} = ${function};\n"
1740 elif class_is_info_p
1743 printf "${returntype}\n"
1744 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1746 printf " gdb_assert (gdbarch != NULL);\n"
1747 printf " if (gdbarch_debug >= 2)\n"
1748 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1749 printf " return gdbarch->${function};\n"
1754 # All the trailing guff
1758 /* Keep a registry of per-architecture data-pointers required by GDB
1765 gdbarch_data_init_ftype *init;
1766 gdbarch_data_free_ftype *free;
1769 struct gdbarch_data_registration
1771 struct gdbarch_data *data;
1772 struct gdbarch_data_registration *next;
1775 struct gdbarch_data_registry
1778 struct gdbarch_data_registration *registrations;
1781 struct gdbarch_data_registry gdbarch_data_registry =
1786 struct gdbarch_data *
1787 register_gdbarch_data (gdbarch_data_init_ftype *init,
1788 gdbarch_data_free_ftype *free)
1790 struct gdbarch_data_registration **curr;
1791 /* Append the new registraration. */
1792 for (curr = &gdbarch_data_registry.registrations;
1794 curr = &(*curr)->next);
1795 (*curr) = XMALLOC (struct gdbarch_data_registration);
1796 (*curr)->next = NULL;
1797 (*curr)->data = XMALLOC (struct gdbarch_data);
1798 (*curr)->data->index = gdbarch_data_registry.nr++;
1799 (*curr)->data->init = init;
1800 (*curr)->data->init_p = 1;
1801 (*curr)->data->free = free;
1802 return (*curr)->data;
1806 /* Create/delete the gdbarch data vector. */
1809 alloc_gdbarch_data (struct gdbarch *gdbarch)
1811 gdb_assert (gdbarch->data == NULL);
1812 gdbarch->nr_data = gdbarch_data_registry.nr;
1813 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1817 free_gdbarch_data (struct gdbarch *gdbarch)
1819 struct gdbarch_data_registration *rego;
1820 gdb_assert (gdbarch->data != NULL);
1821 for (rego = gdbarch_data_registry.registrations;
1825 struct gdbarch_data *data = rego->data;
1826 gdb_assert (data->index < gdbarch->nr_data);
1827 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1829 data->free (gdbarch, gdbarch->data[data->index]);
1830 gdbarch->data[data->index] = NULL;
1833 xfree (gdbarch->data);
1834 gdbarch->data = NULL;
1838 /* Initialize the current value of the specified per-architecture
1842 set_gdbarch_data (struct gdbarch *gdbarch,
1843 struct gdbarch_data *data,
1846 gdb_assert (data->index < gdbarch->nr_data);
1847 if (gdbarch->data[data->index] != NULL)
1849 gdb_assert (data->free != NULL);
1850 data->free (gdbarch, gdbarch->data[data->index]);
1852 gdbarch->data[data->index] = pointer;
1855 /* Return the current value of the specified per-architecture
1859 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1861 gdb_assert (data->index < gdbarch->nr_data);
1862 /* The data-pointer isn't initialized, call init() to get a value but
1863 only if the architecture initializaiton has completed. Otherwise
1864 punt - hope that the caller knows what they are doing. */
1865 if (gdbarch->data[data->index] == NULL
1866 && gdbarch->initialized_p)
1868 /* Be careful to detect an initialization cycle. */
1869 gdb_assert (data->init_p);
1871 gdb_assert (data->init != NULL);
1872 gdbarch->data[data->index] = data->init (gdbarch);
1874 gdb_assert (gdbarch->data[data->index] != NULL);
1876 return gdbarch->data[data->index];
1881 /* Keep a registry of swapped data required by GDB modules. */
1886 struct gdbarch_swap_registration *source;
1887 struct gdbarch_swap *next;
1890 struct gdbarch_swap_registration
1893 unsigned long sizeof_data;
1894 gdbarch_swap_ftype *init;
1895 struct gdbarch_swap_registration *next;
1898 struct gdbarch_swap_registry
1901 struct gdbarch_swap_registration *registrations;
1904 struct gdbarch_swap_registry gdbarch_swap_registry =
1910 register_gdbarch_swap (void *data,
1911 unsigned long sizeof_data,
1912 gdbarch_swap_ftype *init)
1914 struct gdbarch_swap_registration **rego;
1915 for (rego = &gdbarch_swap_registry.registrations;
1917 rego = &(*rego)->next);
1918 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1919 (*rego)->next = NULL;
1920 (*rego)->init = init;
1921 (*rego)->data = data;
1922 (*rego)->sizeof_data = sizeof_data;
1926 clear_gdbarch_swap (struct gdbarch *gdbarch)
1928 struct gdbarch_swap *curr;
1929 for (curr = gdbarch->swap;
1933 memset (curr->source->data, 0, curr->source->sizeof_data);
1938 init_gdbarch_swap (struct gdbarch *gdbarch)
1940 struct gdbarch_swap_registration *rego;
1941 struct gdbarch_swap **curr = &gdbarch->swap;
1942 for (rego = gdbarch_swap_registry.registrations;
1946 if (rego->data != NULL)
1948 (*curr) = XMALLOC (struct gdbarch_swap);
1949 (*curr)->source = rego;
1950 (*curr)->swap = xmalloc (rego->sizeof_data);
1951 (*curr)->next = NULL;
1952 curr = &(*curr)->next;
1954 if (rego->init != NULL)
1960 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1962 struct gdbarch_swap *curr;
1963 for (curr = gdbarch->swap;
1966 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1970 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1972 struct gdbarch_swap *curr;
1973 for (curr = gdbarch->swap;
1976 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1980 /* Keep a registry of the architectures known by GDB. */
1982 struct gdbarch_registration
1984 enum bfd_architecture bfd_architecture;
1985 gdbarch_init_ftype *init;
1986 gdbarch_dump_tdep_ftype *dump_tdep;
1987 struct gdbarch_list *arches;
1988 struct gdbarch_registration *next;
1991 static struct gdbarch_registration *gdbarch_registry = NULL;
1994 append_name (const char ***buf, int *nr, const char *name)
1996 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2002 gdbarch_printable_names (void)
2006 /* Accumulate a list of names based on the registed list of
2008 enum bfd_architecture a;
2010 const char **arches = NULL;
2011 struct gdbarch_registration *rego;
2012 for (rego = gdbarch_registry;
2016 const struct bfd_arch_info *ap;
2017 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2019 internal_error (__FILE__, __LINE__,
2020 "gdbarch_architecture_names: multi-arch unknown");
2023 append_name (&arches, &nr_arches, ap->printable_name);
2028 append_name (&arches, &nr_arches, NULL);
2032 /* Just return all the architectures that BFD knows. Assume that
2033 the legacy architecture framework supports them. */
2034 return bfd_arch_list ();
2039 gdbarch_register (enum bfd_architecture bfd_architecture,
2040 gdbarch_init_ftype *init,
2041 gdbarch_dump_tdep_ftype *dump_tdep)
2043 struct gdbarch_registration **curr;
2044 const struct bfd_arch_info *bfd_arch_info;
2045 /* Check that BFD recognizes this architecture */
2046 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2047 if (bfd_arch_info == NULL)
2049 internal_error (__FILE__, __LINE__,
2050 "gdbarch: Attempt to register unknown architecture (%d)",
2053 /* Check that we haven't seen this architecture before */
2054 for (curr = &gdbarch_registry;
2056 curr = &(*curr)->next)
2058 if (bfd_architecture == (*curr)->bfd_architecture)
2059 internal_error (__FILE__, __LINE__,
2060 "gdbarch: Duplicate registraration of architecture (%s)",
2061 bfd_arch_info->printable_name);
2065 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2066 bfd_arch_info->printable_name,
2069 (*curr) = XMALLOC (struct gdbarch_registration);
2070 (*curr)->bfd_architecture = bfd_architecture;
2071 (*curr)->init = init;
2072 (*curr)->dump_tdep = dump_tdep;
2073 (*curr)->arches = NULL;
2074 (*curr)->next = NULL;
2075 /* When non- multi-arch, install whatever target dump routine we've
2076 been provided - hopefully that routine has been written correctly
2077 and works regardless of multi-arch. */
2078 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2079 && startup_gdbarch.dump_tdep == NULL)
2080 startup_gdbarch.dump_tdep = dump_tdep;
2084 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2085 gdbarch_init_ftype *init)
2087 gdbarch_register (bfd_architecture, init, NULL);
2091 /* Look for an architecture using gdbarch_info. Base search on only
2092 BFD_ARCH_INFO and BYTE_ORDER. */
2094 struct gdbarch_list *
2095 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2096 const struct gdbarch_info *info)
2098 for (; arches != NULL; arches = arches->next)
2100 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2102 if (info->byte_order != arches->gdbarch->byte_order)
2110 /* Update the current architecture. Return ZERO if the update request
2114 gdbarch_update_p (struct gdbarch_info info)
2116 struct gdbarch *new_gdbarch;
2117 struct gdbarch *old_gdbarch;
2118 struct gdbarch_registration *rego;
2120 /* Fill in missing parts of the INFO struct using a number of
2121 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2123 /* \`\`(gdb) set architecture ...'' */
2124 if (info.bfd_arch_info == NULL
2125 && !TARGET_ARCHITECTURE_AUTO)
2126 info.bfd_arch_info = TARGET_ARCHITECTURE;
2127 if (info.bfd_arch_info == NULL
2128 && info.abfd != NULL
2129 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2130 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2131 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2132 if (info.bfd_arch_info == NULL)
2133 info.bfd_arch_info = TARGET_ARCHITECTURE;
2135 /* \`\`(gdb) set byte-order ...'' */
2136 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2137 && !TARGET_BYTE_ORDER_AUTO)
2138 info.byte_order = TARGET_BYTE_ORDER;
2139 /* From the INFO struct. */
2140 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2141 && info.abfd != NULL)
2142 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2143 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2144 : BFD_ENDIAN_UNKNOWN);
2145 /* From the current target. */
2146 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2147 info.byte_order = TARGET_BYTE_ORDER;
2149 /* Must have found some sort of architecture. */
2150 gdb_assert (info.bfd_arch_info != NULL);
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_update: info.bfd_arch_info %s\n",
2156 (info.bfd_arch_info != NULL
2157 ? info.bfd_arch_info->printable_name
2159 fprintf_unfiltered (gdb_stdlog,
2160 "gdbarch_update: info.byte_order %d (%s)\n",
2162 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2163 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2165 fprintf_unfiltered (gdb_stdlog,
2166 "gdbarch_update: info.abfd 0x%lx\n",
2168 fprintf_unfiltered (gdb_stdlog,
2169 "gdbarch_update: info.tdep_info 0x%lx\n",
2170 (long) info.tdep_info);
2173 /* Find the target that knows about this architecture. */
2174 for (rego = gdbarch_registry;
2177 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2182 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2186 /* Swap the data belonging to the old target out setting the
2187 installed data to zero. This stops the ->init() function trying
2188 to refer to the previous architecture's global data structures. */
2189 swapout_gdbarch_swap (current_gdbarch);
2190 clear_gdbarch_swap (current_gdbarch);
2192 /* Save the previously selected architecture, setting the global to
2193 NULL. This stops ->init() trying to use the previous
2194 architecture's configuration. The previous architecture may not
2195 even be of the same architecture family. The most recent
2196 architecture of the same family is found at the head of the
2197 rego->arches list. */
2198 old_gdbarch = current_gdbarch;
2199 current_gdbarch = NULL;
2201 /* Ask the target for a replacement architecture. */
2202 new_gdbarch = rego->init (info, rego->arches);
2204 /* Did the target like it? No. Reject the change and revert to the
2205 old architecture. */
2206 if (new_gdbarch == NULL)
2209 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2210 swapin_gdbarch_swap (old_gdbarch);
2211 current_gdbarch = old_gdbarch;
2215 /* Did the architecture change? No. Oops, put the old architecture
2217 if (old_gdbarch == new_gdbarch)
2220 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2222 new_gdbarch->bfd_arch_info->printable_name);
2223 swapin_gdbarch_swap (old_gdbarch);
2224 current_gdbarch = old_gdbarch;
2228 /* Is this a pre-existing architecture? Yes. Move it to the front
2229 of the list of architectures (keeping the list sorted Most
2230 Recently Used) and then copy it in. */
2232 struct gdbarch_list **list;
2233 for (list = ®o->arches;
2235 list = &(*list)->next)
2237 if ((*list)->gdbarch == new_gdbarch)
2239 struct gdbarch_list *this;
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2244 new_gdbarch->bfd_arch_info->printable_name);
2247 (*list) = this->next;
2248 /* Insert in the front. */
2249 this->next = rego->arches;
2250 rego->arches = this;
2251 /* Copy the new architecture in. */
2252 current_gdbarch = new_gdbarch;
2253 swapin_gdbarch_swap (new_gdbarch);
2254 architecture_changed_event ();
2260 /* Prepend this new architecture to the architecture list (keep the
2261 list sorted Most Recently Used). */
2263 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2264 this->next = rego->arches;
2265 this->gdbarch = new_gdbarch;
2266 rego->arches = this;
2269 /* Switch to this new architecture marking it initialized. */
2270 current_gdbarch = new_gdbarch;
2271 current_gdbarch->initialized_p = 1;
2274 fprintf_unfiltered (gdb_stdlog,
2275 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2277 new_gdbarch->bfd_arch_info->printable_name);
2280 /* Check that the newly installed architecture is valid. Plug in
2281 any post init values. */
2282 new_gdbarch->dump_tdep = rego->dump_tdep;
2283 verify_gdbarch (new_gdbarch);
2285 /* Initialize the per-architecture memory (swap) areas.
2286 CURRENT_GDBARCH must be update before these modules are
2288 init_gdbarch_swap (new_gdbarch);
2290 /* Initialize the per-architecture data. CURRENT_GDBARCH
2291 must be updated before these modules are called. */
2292 architecture_changed_event ();
2295 gdbarch_dump (current_gdbarch, gdb_stdlog);
2303 /* Pointer to the target-dependent disassembly function. */
2304 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2305 disassemble_info tm_print_insn_info;
2308 extern void _initialize_gdbarch (void);
2311 _initialize_gdbarch (void)
2313 struct cmd_list_element *c;
2315 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2316 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2317 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2318 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2319 tm_print_insn_info.print_address_func = dis_asm_print_address;
2321 add_show_from_set (add_set_cmd ("arch",
2324 (char *)&gdbarch_debug,
2325 "Set architecture debugging.\\n\\
2326 When non-zero, architecture debugging is enabled.", &setdebuglist),
2328 c = add_set_cmd ("archdebug",
2331 (char *)&gdbarch_debug,
2332 "Set architecture debugging.\\n\\
2333 When non-zero, architecture debugging is enabled.", &setlist);
2335 deprecate_cmd (c, "set debug arch");
2336 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2342 #../move-if-change new-gdbarch.c gdbarch.c
2343 compare_new gdbarch.c