1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
32 #include "gdb_string.h"
36 #include "arch-utils.h"
40 #include "alpha-tdep.h"
42 static gdbarch_init_ftype alpha_gdbarch_init;
44 static gdbarch_register_name_ftype alpha_register_name;
45 static gdbarch_register_raw_size_ftype alpha_register_raw_size;
46 static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
47 static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
48 static gdbarch_register_byte_ftype alpha_register_byte;
49 static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
50 static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
51 static gdbarch_register_convertible_ftype alpha_register_convertible;
52 static gdbarch_register_convert_to_virtual_ftype
53 alpha_register_convert_to_virtual;
54 static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
55 static gdbarch_store_struct_return_ftype alpha_store_struct_return;
56 static gdbarch_deprecated_extract_return_value_ftype alpha_extract_return_value;
57 static gdbarch_deprecated_extract_struct_value_address_ftype
58 alpha_extract_struct_value_address;
59 static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
61 static gdbarch_breakpoint_from_pc_ftype alpha_breakpoint_from_pc;
63 static gdbarch_frame_args_address_ftype alpha_frame_args_address;
64 static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
66 static gdbarch_skip_prologue_ftype alpha_skip_prologue;
67 static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
68 static gdbarch_frame_chain_ftype alpha_frame_chain;
69 static gdbarch_frame_saved_pc_ftype alpha_frame_saved_pc;
70 static gdbarch_frame_init_saved_regs_ftype alpha_frame_init_saved_regs;
72 static gdbarch_push_arguments_ftype alpha_push_arguments;
73 static gdbarch_push_dummy_frame_ftype alpha_push_dummy_frame;
74 static gdbarch_pop_frame_ftype alpha_pop_frame;
75 static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
76 static gdbarch_init_frame_pc_first_ftype alpha_init_frame_pc_first;
77 static gdbarch_init_extra_frame_info_ftype alpha_init_extra_frame_info;
79 static gdbarch_get_longjmp_target_ftype alpha_get_longjmp_target;
81 struct frame_extra_info
83 alpha_extra_func_info_t proc_desc;
88 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
90 /* Prototypes for local functions. */
92 static void alpha_find_saved_regs (struct frame_info *);
94 static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
96 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
98 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
100 static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
102 struct frame_info *);
104 static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
105 struct frame_info *);
108 static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
111 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
113 static CORE_ADDR after_prologue (CORE_ADDR pc,
114 alpha_extra_func_info_t proc_desc);
116 static int alpha_in_prologue (CORE_ADDR pc,
117 alpha_extra_func_info_t proc_desc);
119 static int alpha_about_to_return (CORE_ADDR pc);
121 void _initialize_alpha_tdep (void);
123 /* Heuristic_proc_start may hunt through the text section for a long
124 time across a 2400 baud serial line. Allows the user to limit this
126 static unsigned int heuristic_fence_post = 0;
128 /* Layout of a stack frame on the alpha:
131 pdr members: | 7th ... nth arg, |
132 | `pushed' by caller. |
134 ----------------|-------------------------------|<-- old_sp == vfp
137 | |localoff | Copies of 1st .. 6th |
138 | | | | | argument if necessary. |
140 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
142 | | | | Locals and temporaries. |
144 | | | |-------------------------------|
146 |-fregoffset | Saved float registers. |
152 | | -------|-------------------------------|
154 | | | Saved registers. |
161 | ----------|-------------------------------|
163 frameoffset | Argument build area, gets |
164 | | 7th ... nth arg for any |
165 | | called procedure. |
167 -------------|-------------------------------|<-- sp
172 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
173 /* These next two fields are kind of being hijacked. I wonder if
174 iline is too small for the values it needs to hold, if GDB is
175 running on a 32-bit host. */
176 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
177 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
178 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
179 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
180 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
181 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
182 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
183 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
184 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
185 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
186 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
187 #define _PROC_MAGIC_ 0x0F0F0F0F
188 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
189 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
191 struct linked_proc_info
193 struct alpha_extra_func_info info;
194 struct linked_proc_info *next;
196 *linked_proc_desc_table = NULL;
199 alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
201 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
203 if (tdep->skip_sigtramp_frame != NULL)
204 return (tdep->skip_sigtramp_frame (frame, pc));
210 alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
212 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
214 /* Must be provided by OS/ABI variant code if supported. */
215 if (tdep->dynamic_sigtramp_offset != NULL)
216 return (tdep->dynamic_sigtramp_offset (pc));
221 #define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
223 /* Return TRUE if the procedure descriptor PROC is a procedure
224 descriptor that refers to a dynamically generated signal
225 trampoline routine. */
227 alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
229 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
231 if (tdep->dynamic_sigtramp_offset != NULL)
232 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
238 alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
240 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
242 if (tdep->dynamic_sigtramp_offset != NULL)
243 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
246 /* Dynamically create a signal-handler caller procedure descriptor for
247 the signal-handler return code starting at address LOW_ADDR. The
248 descriptor is added to the linked_proc_desc_table. */
250 static alpha_extra_func_info_t
251 push_sigtramp_desc (CORE_ADDR low_addr)
253 struct linked_proc_info *link;
254 alpha_extra_func_info_t proc_desc;
256 link = (struct linked_proc_info *)
257 xmalloc (sizeof (struct linked_proc_info));
258 link->next = linked_proc_desc_table;
259 linked_proc_desc_table = link;
261 proc_desc = &link->info;
263 proc_desc->numargs = 0;
264 PROC_LOW_ADDR (proc_desc) = low_addr;
265 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
266 PROC_DUMMY_FRAME (proc_desc) = 0;
267 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
268 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
269 PROC_REG_MASK (proc_desc) = 0xffff;
270 PROC_FREG_MASK (proc_desc) = 0xffff;
271 PROC_PC_REG (proc_desc) = 26;
272 PROC_LOCALOFF (proc_desc) = 0;
273 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
279 alpha_register_name (int regno)
281 static char *register_names[] =
283 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
284 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
285 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
286 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
287 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
288 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
289 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
290 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
296 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
298 return (register_names[regno]);
302 alpha_cannot_fetch_register (int regno)
304 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
308 alpha_cannot_store_register (int regno)
310 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
314 alpha_register_convertible (int regno)
316 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
320 alpha_register_virtual_type (int regno)
322 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
323 ? builtin_type_double : builtin_type_long);
327 alpha_register_byte (int regno)
333 alpha_register_raw_size (int regno)
339 alpha_register_virtual_size (int regno)
346 alpha_sigcontext_addr (struct frame_info *fi)
348 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
350 if (tdep->sigcontext_addr)
351 return (tdep->sigcontext_addr (fi));
356 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
360 alpha_find_saved_regs (struct frame_info *frame)
363 CORE_ADDR reg_position;
365 alpha_extra_func_info_t proc_desc;
368 frame_saved_regs_zalloc (frame);
370 /* If it is the frame for __sigtramp, the saved registers are located
371 in a sigcontext structure somewhere on the stack. __sigtramp
372 passes a pointer to the sigcontext structure on the stack.
373 If the stack layout for __sigtramp changes, or if sigcontext offsets
374 change, we might have to update this code. */
375 #ifndef SIGFRAME_PC_OFF
376 #define SIGFRAME_PC_OFF (2 * 8)
377 #define SIGFRAME_REGSAVE_OFF (4 * 8)
378 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
380 if (frame->signal_handler_caller)
382 CORE_ADDR sigcontext_addr;
384 sigcontext_addr = alpha_sigcontext_addr (frame);
385 if (sigcontext_addr == 0)
387 /* Don't know where the sigcontext is; just bail. */
390 for (ireg = 0; ireg < 32; ireg++)
392 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
393 frame->saved_regs[ireg] = reg_position;
395 for (ireg = 0; ireg < 32; ireg++)
397 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
398 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
400 frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
404 proc_desc = frame->extra_info->proc_desc;
405 if (proc_desc == NULL)
406 /* I'm not sure how/whether this can happen. Normally when we can't
407 find a proc_desc, we "synthesize" one using heuristic_proc_desc
408 and set the saved_regs right away. */
411 /* Fill in the offsets for the registers which gen_mask says
414 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
415 mask = PROC_REG_MASK (proc_desc);
417 returnreg = PROC_PC_REG (proc_desc);
419 /* Note that RA is always saved first, regardless of its actual
421 if (mask & (1 << returnreg))
423 frame->saved_regs[returnreg] = reg_position;
425 mask &= ~(1 << returnreg); /* Clear bit for RA so we
426 don't save again later. */
429 for (ireg = 0; ireg <= 31; ++ireg)
430 if (mask & (1 << ireg))
432 frame->saved_regs[ireg] = reg_position;
436 /* Fill in the offsets for the registers which float_mask says
439 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
440 mask = PROC_FREG_MASK (proc_desc);
442 for (ireg = 0; ireg <= 31; ++ireg)
443 if (mask & (1 << ireg))
445 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
449 frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
453 alpha_frame_init_saved_regs (struct frame_info *fi)
455 if (fi->saved_regs == NULL)
456 alpha_find_saved_regs (fi);
457 fi->saved_regs[SP_REGNUM] = fi->frame;
461 alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
463 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) :
464 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
468 read_next_frame_reg (struct frame_info *fi, int regno)
470 for (; fi; fi = fi->next)
472 /* We have to get the saved sp from the sigcontext
473 if it is a signal handler frame. */
474 if (regno == SP_REGNUM && !fi->signal_handler_caller)
478 if (fi->saved_regs == NULL)
479 alpha_find_saved_regs (fi);
480 if (fi->saved_regs[regno])
481 return read_memory_integer (fi->saved_regs[regno], 8);
484 return read_register (regno);
488 alpha_frame_saved_pc (struct frame_info *frame)
490 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
491 /* We have to get the saved pc from the sigcontext
492 if it is a signal handler frame. */
493 int pcreg = frame->signal_handler_caller ? PC_REGNUM
494 : frame->extra_info->pc_reg;
496 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
497 return read_memory_integer (frame->frame - 8, 8);
499 return read_next_frame_reg (frame, pcreg);
503 alpha_saved_pc_after_call (struct frame_info *frame)
505 CORE_ADDR pc = frame->pc;
507 alpha_extra_func_info_t proc_desc;
510 /* Skip over shared library trampoline if necessary. */
511 tmp = SKIP_TRAMPOLINE_CODE (pc);
515 proc_desc = find_proc_desc (pc, frame->next);
516 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
518 if (frame->signal_handler_caller)
519 return alpha_frame_saved_pc (frame);
521 return read_register (pcreg);
525 static struct alpha_extra_func_info temp_proc_desc;
526 static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
528 /* Nonzero if instruction at PC is a return instruction. "ret
529 $zero,($ra),1" on alpha. */
532 alpha_about_to_return (CORE_ADDR pc)
534 return read_memory_integer (pc, 4) == 0x6bfa8001;
539 /* This fencepost looks highly suspicious to me. Removing it also
540 seems suspicious as it could affect remote debugging across serial
544 heuristic_proc_start (CORE_ADDR pc)
546 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
547 CORE_ADDR start_pc = pc;
548 CORE_ADDR fence = start_pc - heuristic_fence_post;
553 if (heuristic_fence_post == UINT_MAX
554 || fence < tdep->vm_min_address)
555 fence = tdep->vm_min_address;
557 /* search back for previous return */
558 for (start_pc -= 4;; start_pc -= 4)
559 if (start_pc < fence)
561 /* It's not clear to me why we reach this point when
562 stop_soon_quietly, but with this test, at least we
563 don't print out warnings for every child forked (eg, on
565 if (!stop_soon_quietly)
567 static int blurb_printed = 0;
569 if (fence == tdep->vm_min_address)
570 warning ("Hit beginning of text section without finding");
572 warning ("Hit heuristic-fence-post without finding");
574 warning ("enclosing function for address 0x%s", paddr_nz (pc));
578 This warning occurs if you are debugging a function without any symbols\n\
579 (for example, in a stripped executable). In that case, you may wish to\n\
580 increase the size of the search with the `set heuristic-fence-post' command.\n\
582 Otherwise, you told GDB there was a function where there isn't one, or\n\
583 (more likely) you have encountered a bug in GDB.\n");
590 else if (alpha_about_to_return (start_pc))
593 start_pc += 4; /* skip return */
597 static alpha_extra_func_info_t
598 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
599 struct frame_info *next_frame)
601 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
605 int has_frame_reg = 0;
606 unsigned long reg_mask = 0;
612 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
613 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
614 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
616 if (start_pc + 200 < limit_pc)
617 limit_pc = start_pc + 200;
619 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
625 status = read_memory_nobpt (cur_pc, buf, 4);
627 memory_error (status, cur_pc);
628 word = extract_unsigned_integer (buf, 4);
630 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
634 /* Consider only the first stack allocation instruction
635 to contain the static size of the frame. */
637 frame_size += (-word) & 0xffff;
640 /* Exit loop if a positive stack adjustment is found, which
641 usually means that the stack cleanup code in the function
642 epilogue is reached. */
645 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
646 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
648 int reg = (word & 0x03e00000) >> 21;
649 reg_mask |= 1 << reg;
651 /* Do not compute the address where the register was saved yet,
652 because we don't know yet if the offset will need to be
653 relative to $sp or $fp (we can not compute the address relative
654 to $sp if $sp is updated during the execution of the current
655 subroutine, for instance when doing some alloca). So just store
656 the offset for the moment, and compute the address later
657 when we know whether this frame has a frame pointer or not.
659 temp_saved_regs[reg] = (short) word;
661 /* Starting with OSF/1-3.2C, the system libraries are shipped
662 without local symbols, but they still contain procedure
663 descriptors without a symbol reference. GDB is currently
664 unable to find these procedure descriptors and uses
665 heuristic_proc_desc instead.
666 As some low level compiler support routines (__div*, __add*)
667 use a non-standard return address register, we have to
668 add some heuristics to determine the return address register,
669 or stepping over these routines will fail.
670 Usually the return address register is the first register
671 saved on the stack, but assembler optimization might
672 rearrange the register saves.
673 So we recognize only a few registers (t7, t9, ra) within
674 the procedure prologue as valid return address registers.
675 If we encounter a return instruction, we extract the
676 the return address register from it.
678 FIXME: Rewriting GDB to access the procedure descriptors,
679 e.g. via the minimal symbol table, might obviate this hack. */
681 && cur_pc < (start_pc + 80)
682 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
683 || reg == ALPHA_RA_REGNUM))
686 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
687 pcreg = (word >> 16) & 0x1f;
688 else if (word == 0x47de040f || word == 0x47fe040f) /* bis sp,sp fp */
690 /* ??? I am not sure what instruction is 0x47fe040f, and I
691 am suspecting that there was a typo and should have been
692 0x47fe040f. I'm keeping it in the test above until further
695 vfp = read_next_frame_reg (next_frame, ALPHA_GCC_FP_REGNUM);
700 /* If we haven't found a valid return address register yet,
701 keep searching in the procedure prologue. */
702 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
707 if (read_memory_nobpt (cur_pc, buf, 4))
710 word = extract_unsigned_integer (buf, 4);
712 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
713 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
715 int reg = (word & 0x03e00000) >> 21;
716 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
717 || reg == ALPHA_RA_REGNUM)
723 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
725 pcreg = (word >> 16) & 0x1f;
732 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
734 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
736 /* At this point, we know which of the Stack Pointer or the Frame Pointer
737 to use as the reference address to compute the saved registers address.
738 But in both cases, the processing above has set vfp to this reference
739 address, so just need to increment the offset of each saved register
741 for (regno = 0; regno < NUM_REGS; regno++)
743 if (reg_mask & 1 << regno)
744 temp_saved_regs[regno] += vfp;
747 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
748 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
749 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
750 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
751 return &temp_proc_desc;
754 /* This returns the PC of the first inst after the prologue. If we can't
755 find the prologue, then return 0. */
758 after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
760 struct symtab_and_line sal;
761 CORE_ADDR func_addr, func_end;
764 proc_desc = find_proc_desc (pc, NULL);
768 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
769 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
771 /* If function is frameless, then we need to do it the hard way. I
772 strongly suspect that frameless always means prologueless... */
773 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
774 && PROC_FRAME_OFFSET (proc_desc) == 0)
778 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
779 return 0; /* Unknown */
781 sal = find_pc_line (func_addr, 0);
783 if (sal.end < func_end)
786 /* The line after the prologue is after the end of the function. In this
787 case, tell the caller to find the prologue the hard way. */
792 /* Return non-zero if we *might* be in a function prologue. Return zero if we
793 are definitively *not* in a function prologue. */
796 alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
798 CORE_ADDR after_prologue_pc;
800 after_prologue_pc = after_prologue (pc, proc_desc);
802 if (after_prologue_pc == 0
803 || pc < after_prologue_pc)
809 static alpha_extra_func_info_t
810 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
812 alpha_extra_func_info_t proc_desc;
817 /* Try to get the proc_desc from the linked call dummy proc_descs
818 if the pc is in the call dummy.
819 This is hairy. In the case of nested dummy calls we have to find the
820 right proc_desc, but we might not yet know the frame for the dummy
821 as it will be contained in the proc_desc we are searching for.
822 So we have to find the proc_desc whose frame is closest to the current
825 if (PC_IN_CALL_DUMMY (pc, 0, 0))
827 struct linked_proc_info *link;
828 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
829 alpha_extra_func_info_t found_proc_desc = NULL;
830 long min_distance = LONG_MAX;
832 for (link = linked_proc_desc_table; link; link = link->next)
834 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
835 if (distance > 0 && distance < min_distance)
837 min_distance = distance;
838 found_proc_desc = &link->info;
841 if (found_proc_desc != NULL)
842 return found_proc_desc;
845 b = block_for_pc (pc);
847 find_pc_partial_function (pc, NULL, &startaddr, NULL);
852 if (startaddr > BLOCK_START (b))
853 /* This is the "pathological" case referred to in a comment in
854 print_frame_info. It might be better to move this check into
858 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
862 /* If we never found a PDR for this function in symbol reading, then
863 examine prologues to find the information. */
864 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
869 /* IF this is the topmost frame AND
870 * (this proc does not have debugging information OR
871 * the PC is in the procedure prologue)
872 * THEN create a "heuristic" proc_desc (by analyzing
873 * the actual code) to replace the "official" proc_desc.
875 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
876 if (next_frame == NULL)
878 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
880 alpha_extra_func_info_t found_heuristic =
881 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
885 PROC_LOCALOFF (found_heuristic) =
886 PROC_LOCALOFF (proc_desc);
887 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
888 proc_desc = found_heuristic;
897 /* Is linked_proc_desc_table really necessary? It only seems to be used
898 by procedure call dummys. However, the procedures being called ought
899 to have their own proc_descs, and even if they don't,
900 heuristic_proc_desc knows how to create them! */
902 register struct linked_proc_info *link;
903 for (link = linked_proc_desc_table; link; link = link->next)
904 if (PROC_LOW_ADDR (&link->info) <= pc
905 && PROC_HIGH_ADDR (&link->info) > pc)
908 /* If PC is inside a dynamically generated sigtramp handler,
909 create and push a procedure descriptor for that code: */
910 offset = alpha_dynamic_sigtramp_offset (pc);
912 return push_sigtramp_desc (pc - offset);
914 /* If heuristic_fence_post is non-zero, determine the procedure
915 start address by examining the instructions.
916 This allows us to find the start address of static functions which
917 have no symbolic information, as startaddr would have been set to
918 the preceding global function start address by the
919 find_pc_partial_function call above. */
920 if (startaddr == 0 || heuristic_fence_post != 0)
921 startaddr = heuristic_proc_start (pc);
924 heuristic_proc_desc (startaddr, pc, next_frame);
929 alpha_extra_func_info_t cached_proc_desc;
932 alpha_frame_chain (struct frame_info *frame)
934 alpha_extra_func_info_t proc_desc;
935 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
937 if (saved_pc == 0 || inside_entry_file (saved_pc))
940 proc_desc = find_proc_desc (saved_pc, frame);
944 cached_proc_desc = proc_desc;
946 /* Fetch the frame pointer for a dummy frame from the procedure
948 if (PROC_DESC_IS_DUMMY (proc_desc))
949 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
951 /* If no frame pointer and frame size is zero, we must be at end
952 of stack (or otherwise hosed). If we don't check frame size,
953 we loop forever if we see a zero size frame. */
954 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
955 && PROC_FRAME_OFFSET (proc_desc) == 0
956 /* The previous frame from a sigtramp frame might be frameless
957 and have frame size zero. */
958 && !frame->signal_handler_caller)
959 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
961 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
962 + PROC_FRAME_OFFSET (proc_desc);
966 alpha_print_extra_frame_info (struct frame_info *fi)
970 && fi->extra_info->proc_desc
971 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
972 printf_filtered (" frame pointer is at %s+%s\n",
973 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
974 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
978 alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
980 /* Use proc_desc calculated in frame_chain */
981 alpha_extra_func_info_t proc_desc =
982 frame->next ? cached_proc_desc : find_proc_desc (frame->pc, frame->next);
984 frame->extra_info = (struct frame_extra_info *)
985 frame_obstack_alloc (sizeof (struct frame_extra_info));
987 frame->saved_regs = NULL;
988 frame->extra_info->localoff = 0;
989 frame->extra_info->pc_reg = ALPHA_RA_REGNUM;
990 frame->extra_info->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
993 /* Get the locals offset and the saved pc register from the
994 procedure descriptor, they are valid even if we are in the
995 middle of the prologue. */
996 frame->extra_info->localoff = PROC_LOCALOFF (proc_desc);
997 frame->extra_info->pc_reg = PROC_PC_REG (proc_desc);
999 /* Fixup frame-pointer - only needed for top frame */
1001 /* Fetch the frame pointer for a dummy frame from the procedure
1003 if (PROC_DESC_IS_DUMMY (proc_desc))
1004 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
1006 /* This may not be quite right, if proc has a real frame register.
1007 Get the value of the frame relative sp, procedure might have been
1008 interrupted by a signal at it's very start. */
1009 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
1010 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
1011 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
1013 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
1014 + PROC_FRAME_OFFSET (proc_desc);
1016 if (proc_desc == &temp_proc_desc)
1020 /* Do not set the saved registers for a sigtramp frame,
1021 alpha_find_saved_registers will do that for us.
1022 We can't use frame->signal_handler_caller, it is not yet set. */
1023 find_pc_partial_function (frame->pc, &name,
1024 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1025 if (!PC_IN_SIGTRAMP (frame->pc, name))
1027 frame->saved_regs = (CORE_ADDR *)
1028 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
1029 memcpy (frame->saved_regs, temp_saved_regs,
1030 SIZEOF_FRAME_SAVED_REGS);
1031 frame->saved_regs[PC_REGNUM]
1032 = frame->saved_regs[ALPHA_RA_REGNUM];
1039 alpha_frame_locals_address (struct frame_info *fi)
1041 return (fi->frame - fi->extra_info->localoff);
1045 alpha_frame_args_address (struct frame_info *fi)
1047 return (fi->frame - (ALPHA_NUM_ARG_REGS * 8));
1050 /* ALPHA stack frames are almost impenetrable. When execution stops,
1051 we basically have to look at symbol information for the function
1052 that we stopped in, which tells us *which* register (if any) is
1053 the base of the frame pointer, and what offset from that register
1054 the frame itself is at.
1056 This presents a problem when trying to examine a stack in memory
1057 (that isn't executing at the moment), using the "frame" command. We
1058 don't have a PC, nor do we have any registers except SP.
1060 This routine takes two arguments, SP and PC, and tries to make the
1061 cached frames look as if these two arguments defined a frame on the
1062 cache. This allows the rest of info frame to extract the important
1063 arguments without difficulty. */
1066 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1069 error ("ALPHA frame specifications require two arguments: sp and pc");
1071 return create_new_frame (argv[0], argv[1]);
1074 /* The alpha passes the first six arguments in the registers, the rest on
1075 the stack. The register arguments are eventually transferred to the
1076 argument transfer area immediately below the stack by the called function
1077 anyway. So we `push' at least six arguments on the stack, `reload' the
1078 argument registers and then adjust the stack pointer to point past the
1079 sixth argument. This algorithm simplifies the passing of a large struct
1080 which extends from the registers to the stack.
1081 If the called function is returning a structure, the address of the
1082 structure to be returned is passed as a hidden first argument. */
1085 alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1086 int struct_return, CORE_ADDR struct_addr)
1089 int accumulate_size = struct_return ? 8 : 0;
1090 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
1097 struct alpha_arg *alpha_args =
1098 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
1099 register struct alpha_arg *m_arg;
1100 char raw_buffer[sizeof (CORE_ADDR)];
1101 int required_arg_regs;
1103 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1105 struct value *arg = args[i];
1106 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1107 /* Cast argument to long if necessary as the compiler does it too. */
1108 switch (TYPE_CODE (arg_type))
1111 case TYPE_CODE_BOOL:
1112 case TYPE_CODE_CHAR:
1113 case TYPE_CODE_RANGE:
1114 case TYPE_CODE_ENUM:
1115 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1117 arg_type = builtin_type_long;
1118 arg = value_cast (arg_type, arg);
1124 m_arg->len = TYPE_LENGTH (arg_type);
1125 m_arg->offset = accumulate_size;
1126 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
1127 m_arg->contents = VALUE_CONTENTS (arg);
1130 /* Determine required argument register loads, loading an argument register
1131 is expensive as it uses three ptrace calls. */
1132 required_arg_regs = accumulate_size / 8;
1133 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1134 required_arg_regs = ALPHA_NUM_ARG_REGS;
1136 /* Make room for the arguments on the stack. */
1137 if (accumulate_size < arg_regs_size)
1138 accumulate_size = arg_regs_size;
1139 sp -= accumulate_size;
1141 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1144 /* `Push' arguments on the stack. */
1145 for (i = nargs; m_arg--, --i >= 0;)
1146 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
1149 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1150 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1153 /* Load the argument registers. */
1154 for (i = 0; i < required_arg_regs; i++)
1158 val = read_memory_integer (sp + i * 8, 8);
1159 write_register (ALPHA_A0_REGNUM + i, val);
1160 write_register (ALPHA_FPA0_REGNUM + i, val);
1163 return sp + arg_regs_size;
1167 alpha_push_dummy_frame (void)
1170 struct linked_proc_info *link;
1171 alpha_extra_func_info_t proc_desc;
1172 CORE_ADDR sp = read_register (SP_REGNUM);
1173 CORE_ADDR save_address;
1174 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1177 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
1178 link->next = linked_proc_desc_table;
1179 linked_proc_desc_table = link;
1181 proc_desc = &link->info;
1184 * The registers we must save are all those not preserved across
1186 * In addition, we must save the PC and RA.
1188 * Dummy frame layout:
1198 * Parameter build area
1202 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1203 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1204 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1205 #define GEN_REG_SAVE_COUNT 24
1206 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1207 #define FLOAT_REG_SAVE_COUNT 23
1208 /* The special register is the PC as we have no bit for it in the save masks.
1209 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1210 #define SPECIAL_REG_SAVE_COUNT 1
1212 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1213 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
1214 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1215 but keep SP aligned to a multiple of 16. */
1216 PROC_REG_OFFSET (proc_desc) =
1217 -((8 * (SPECIAL_REG_SAVE_COUNT
1218 + GEN_REG_SAVE_COUNT
1219 + FLOAT_REG_SAVE_COUNT)
1221 PROC_FREG_OFFSET (proc_desc) =
1222 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1224 /* Save general registers.
1225 The return address register is the first saved register, all other
1226 registers follow in ascending order.
1227 The PC is saved immediately below the SP. */
1228 save_address = sp + PROC_REG_OFFSET (proc_desc);
1229 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
1230 write_memory (save_address, raw_buffer, 8);
1232 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
1233 for (ireg = 0; mask; ireg++, mask >>= 1)
1236 if (ireg == ALPHA_RA_REGNUM)
1238 store_address (raw_buffer, 8, read_register (ireg));
1239 write_memory (save_address, raw_buffer, 8);
1243 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1244 write_memory (sp - 8, raw_buffer, 8);
1246 /* Save floating point registers. */
1247 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1248 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
1249 for (ireg = 0; mask; ireg++, mask >>= 1)
1252 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1253 write_memory (save_address, raw_buffer, 8);
1257 /* Set and save the frame address for the dummy.
1258 This is tricky. The only registers that are suitable for a frame save
1259 are those that are preserved across procedure calls (s0-s6). But if
1260 a read system call is interrupted and then a dummy call is made
1261 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1262 is satisfied. Then it returns with the s0-s6 registers set to the values
1263 on entry to the read system call and our dummy frame pointer would be
1264 destroyed. So we save the dummy frame in the proc_desc and handle the
1265 retrieval of the frame pointer of a dummy specifically. The frame register
1266 is set to the virtual frame (pseudo) register, it's value will always
1267 be read as zero and will help us to catch any errors in the dummy frame
1269 PROC_DUMMY_FRAME (proc_desc) = sp;
1270 PROC_FRAME_REG (proc_desc) = FP_REGNUM;
1271 PROC_FRAME_OFFSET (proc_desc) = 0;
1272 sp += PROC_REG_OFFSET (proc_desc);
1273 write_register (SP_REGNUM, sp);
1275 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1276 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
1278 SET_PROC_DESC_IS_DUMMY (proc_desc);
1279 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
1283 alpha_pop_frame (void)
1285 register int regnum;
1286 struct frame_info *frame = get_current_frame ();
1287 CORE_ADDR new_sp = frame->frame;
1289 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1291 /* we need proc_desc to know how to restore the registers;
1292 if it is NULL, construct (a temporary) one */
1293 if (proc_desc == NULL)
1294 proc_desc = find_proc_desc (frame->pc, frame->next);
1296 /* Question: should we copy this proc_desc and save it in
1297 frame->proc_desc? If we do, who will free it?
1298 For now, we don't save a copy... */
1300 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1301 if (frame->saved_regs == NULL)
1302 alpha_find_saved_regs (frame);
1305 for (regnum = 32; --regnum >= 0;)
1306 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
1307 write_register (regnum,
1308 read_memory_integer (frame->saved_regs[regnum],
1310 for (regnum = 32; --regnum >= 0;)
1311 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
1312 write_register (regnum + FP0_REGNUM,
1313 read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
1315 write_register (SP_REGNUM, new_sp);
1316 flush_cached_frames ();
1318 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
1319 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
1321 struct linked_proc_info *pi_ptr, *prev_ptr;
1323 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1325 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1327 if (&pi_ptr->info == proc_desc)
1332 error ("Can't locate dummy extra frame info\n");
1334 if (prev_ptr != NULL)
1335 prev_ptr->next = pi_ptr->next;
1337 linked_proc_desc_table = pi_ptr->next;
1343 /* To skip prologues, I use this predicate. Returns either PC itself
1344 if the code at PC does not look like a function prologue; otherwise
1345 returns an address that (if we're lucky) follows the prologue. If
1346 LENIENT, then we must skip everything which is involved in setting
1347 up the frame (it's OK to skip more, just so long as we don't skip
1348 anything which might clobber the registers which are being saved.
1349 Currently we must not skip more on the alpha, but we might need the
1350 lenient stuff some day. */
1353 alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
1357 CORE_ADDR post_prologue_pc;
1360 /* Silently return the unaltered pc upon memory errors.
1361 This could happen on OSF/1 if decode_line_1 tries to skip the
1362 prologue for quickstarted shared library functions when the
1363 shared library is not yet mapped in.
1364 Reading target memory is slow over serial lines, so we perform
1365 this check only if the target has shared libraries (which all
1366 Alpha targets do). */
1367 if (target_read_memory (pc, buf, 4))
1370 /* See if we can determine the end of the prologue via the symbol table.
1371 If so, then return either PC, or the PC after the prologue, whichever
1374 post_prologue_pc = after_prologue (pc, NULL);
1376 if (post_prologue_pc != 0)
1377 return max (pc, post_prologue_pc);
1379 /* Can't determine prologue from the symbol table, need to examine
1382 /* Skip the typical prologue instructions. These are the stack adjustment
1383 instruction and the instructions that save registers on the stack
1384 or in the gcc frame. */
1385 for (offset = 0; offset < 100; offset += 4)
1389 status = read_memory_nobpt (pc + offset, buf, 4);
1391 memory_error (status, pc + offset);
1392 inst = extract_unsigned_integer (buf, 4);
1394 /* The alpha has no delay slots. But let's keep the lenient stuff,
1395 we might need it for something else in the future. */
1399 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1401 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1403 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1405 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1408 if ((inst & 0xfc1f0000) == 0xb41e0000
1409 && (inst & 0xffff0000) != 0xb7fe0000)
1410 continue; /* stq reg,n($sp) */
1412 if ((inst & 0xfc1f0000) == 0x9c1e0000
1413 && (inst & 0xffff0000) != 0x9ffe0000)
1414 continue; /* stt reg,n($sp) */
1416 if (inst == 0x47de040f) /* bis sp,sp,fp */
1425 alpha_skip_prologue (CORE_ADDR addr)
1427 return (alpha_skip_prologue_internal (addr, 0));
1431 /* Is address PC in the prologue (loosely defined) for function at
1435 alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
1437 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
1438 return pc >= startaddr && pc < end_prologue;
1442 /* The alpha needs a conversion between register and memory format if
1443 the register is a floating point register and
1444 memory format is float, as the register format must be double
1446 memory format is an integer with 4 bytes or less, as the representation
1447 of integers in floating point registers is different. */
1449 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1450 char *raw_buffer, char *virtual_buffer)
1452 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1454 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1458 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1460 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1461 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1463 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1466 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1467 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1468 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1471 error ("Cannot retrieve value from floating point register");
1475 alpha_register_convert_to_raw (struct type *valtype, int regnum,
1476 char *virtual_buffer, char *raw_buffer)
1478 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1480 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1484 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1486 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1487 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1489 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1492 if (TYPE_UNSIGNED (valtype))
1493 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1495 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1496 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1497 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1500 error ("Cannot store value in floating point register");
1503 static const unsigned char *
1504 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1506 static const unsigned char alpha_breakpoint[] =
1507 { 0x80, 0, 0, 0 }; /* call_pal bpt */
1509 *lenptr = sizeof(alpha_breakpoint);
1510 return (alpha_breakpoint);
1513 /* Given a return value in `regbuf' with a type `valtype',
1514 extract and copy its value into `valbuf'. */
1517 alpha_extract_return_value (struct type *valtype,
1518 char regbuf[ALPHA_REGISTER_BYTES], char *valbuf)
1520 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1521 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1522 regbuf + REGISTER_BYTE (FP0_REGNUM),
1525 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1526 TYPE_LENGTH (valtype));
1529 /* Given a return value in `regbuf' with a type `valtype',
1530 write its value into the appropriate register. */
1533 alpha_store_return_value (struct type *valtype, char *valbuf)
1535 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1536 int regnum = ALPHA_V0_REGNUM;
1537 int length = TYPE_LENGTH (valtype);
1539 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1541 regnum = FP0_REGNUM;
1542 length = REGISTER_RAW_SIZE (regnum);
1543 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1546 memcpy (raw_buffer, valbuf, length);
1548 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1551 /* Just like reinit_frame_cache, but with the right arguments to be
1552 callable as an sfunc. */
1555 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1557 reinit_frame_cache ();
1560 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1561 to find a convenient place in the text segment to stick a breakpoint to
1562 detect the completion of a target function call (ala call_function_by_hand).
1566 alpha_call_dummy_address (void)
1569 struct minimal_symbol *sym;
1571 entry = entry_point_address ();
1576 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1578 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1581 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1585 alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1586 struct value **args, struct type *type, int gcc_p)
1588 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1590 if (bp_address == 0)
1591 error ("no place to put call");
1592 write_register (ALPHA_RA_REGNUM, bp_address);
1593 write_register (ALPHA_T12_REGNUM, fun);
1596 /* On the Alpha, the call dummy code is nevery copied to user space
1597 (see alpha_fix_call_dummy() above). The contents of this do not
1599 LONGEST alpha_call_dummy_words[] = { 0 };
1602 alpha_use_struct_convention (int gcc_p, struct type *type)
1604 /* Structures are returned by ref in extra arg0. */
1609 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1611 /* Store the address of the place in which to copy the structure the
1612 subroutine will return. Handled by alpha_push_arguments. */
1616 alpha_extract_struct_value_address (char *regbuf)
1618 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1619 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
1622 /* Figure out where the longjmp will land.
1623 We expect the first arg to be a pointer to the jmp_buf structure from
1624 which we extract the PC (JB_PC) that we will land at. The PC is copied
1625 into the "pc". This routine returns true on success. */
1628 alpha_get_longjmp_target (CORE_ADDR *pc)
1630 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1632 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1634 jb_addr = read_register (ALPHA_A0_REGNUM);
1636 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
1637 raw_buffer, tdep->jb_elt_size))
1640 *pc = extract_address (raw_buffer, tdep->jb_elt_size);
1644 /* alpha_software_single_step() is called just before we want to resume
1645 the inferior, if we want to single-step it but there is no hardware
1646 or kernel single-step support (NetBSD on Alpha, for example). We find
1647 the target of the coming instruction and breakpoint it.
1649 single_step is also called just after the inferior stops. If we had
1650 set up a simulated single-step, we undo our damage. */
1653 alpha_next_pc (CORE_ADDR pc)
1660 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1662 /* Opcode is top 6 bits. */
1663 op = (insn >> 26) & 0x3f;
1667 /* Jump format: target PC is:
1669 return (read_register ((insn >> 16) & 0x1f) & ~3);
1672 if ((op & 0x30) == 0x30)
1674 /* Branch format: target PC is:
1675 (new PC) + (4 * sext(displacement)) */
1676 if (op == 0x30 || /* BR */
1677 op == 0x34) /* BSR */
1680 offset = (insn & 0x001fffff);
1681 if (offset & 0x00100000)
1682 offset |= 0xffe00000;
1684 return (pc + 4 + offset);
1687 /* Need to determine if branch is taken; read RA. */
1688 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1691 case 0x38: /* BLBC */
1695 case 0x3c: /* BLBS */
1699 case 0x39: /* BEQ */
1703 case 0x3d: /* BNE */
1707 case 0x3a: /* BLT */
1711 case 0x3b: /* BLE */
1715 case 0x3f: /* BGT */
1719 case 0x3e: /* BGE */
1726 /* Not a branch or branch not taken; target PC is:
1732 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1734 static CORE_ADDR next_pc;
1735 typedef char binsn_quantum[BREAKPOINT_MAX];
1736 static binsn_quantum break_mem;
1739 if (insert_breakpoints_p)
1742 next_pc = alpha_next_pc (pc);
1744 target_insert_breakpoint (next_pc, break_mem);
1748 target_remove_breakpoint (next_pc, break_mem);
1755 /* Initialize the current architecture based on INFO. If possible, re-use an
1756 architecture from ARCHES, which is a list of architectures already created
1757 during this debugging session.
1759 Called e.g. at program startup, when reading a core file, and when reading
1762 static struct gdbarch *
1763 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1765 struct gdbarch_tdep *tdep;
1766 struct gdbarch *gdbarch;
1767 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1769 /* Try to determine the ABI of the object we are loading. */
1771 if (info.abfd != NULL)
1773 osabi = gdbarch_lookup_osabi (info.abfd);
1774 if (osabi == GDB_OSABI_UNKNOWN)
1776 /* If it's an ECOFF file, assume it's OSF/1. */
1777 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1778 osabi = GDB_OSABI_OSF1;
1782 /* Find a candidate among extant architectures. */
1783 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1785 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1787 /* Make sure the ABI selection matches. */
1788 tdep = gdbarch_tdep (arches->gdbarch);
1789 if (tdep && tdep->osabi == osabi)
1790 return arches->gdbarch;
1793 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1794 gdbarch = gdbarch_alloc (&info, tdep);
1796 tdep->osabi = osabi;
1798 /* Lowest text address. This is used by heuristic_proc_start() to
1799 decide when to stop looking. */
1800 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1802 tdep->dynamic_sigtramp_offset = NULL;
1803 tdep->skip_sigtramp_frame = NULL;
1804 tdep->sigcontext_addr = NULL;
1806 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1809 set_gdbarch_short_bit (gdbarch, 16);
1810 set_gdbarch_int_bit (gdbarch, 32);
1811 set_gdbarch_long_bit (gdbarch, 64);
1812 set_gdbarch_long_long_bit (gdbarch, 64);
1813 set_gdbarch_float_bit (gdbarch, 32);
1814 set_gdbarch_double_bit (gdbarch, 64);
1815 set_gdbarch_long_double_bit (gdbarch, 64);
1816 set_gdbarch_ptr_bit (gdbarch, 64);
1819 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1820 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1821 set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
1822 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1823 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1825 set_gdbarch_register_name (gdbarch, alpha_register_name);
1826 set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
1827 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
1828 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1829 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1830 set_gdbarch_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
1831 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1832 set_gdbarch_max_register_virtual_size (gdbarch,
1833 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
1834 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1836 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1837 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1839 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
1840 set_gdbarch_register_convert_to_virtual (gdbarch,
1841 alpha_register_convert_to_virtual);
1842 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
1844 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1846 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1847 set_gdbarch_frameless_function_invocation (gdbarch,
1848 generic_frameless_function_invocation_not);
1850 set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
1852 set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
1853 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1854 set_gdbarch_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
1856 set_gdbarch_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
1858 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1859 set_gdbarch_deprecated_extract_return_value (gdbarch, alpha_extract_return_value);
1861 set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
1862 set_gdbarch_deprecated_store_return_value (gdbarch, alpha_store_return_value);
1863 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1864 alpha_extract_struct_value_address);
1866 /* Settings for calling functions in the inferior. */
1867 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1868 set_gdbarch_call_dummy_length (gdbarch, 0);
1869 set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
1870 set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
1872 /* On the Alpha, the call dummy code is never copied to user space,
1873 stopping the user call is achieved via a bp_call_dummy breakpoint.
1874 But we need a fake CALL_DUMMY definition to enable the proper
1875 call_function_by_hand and to avoid zero length array warnings. */
1876 set_gdbarch_call_dummy_p (gdbarch, 1);
1877 set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
1878 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1879 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
1880 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
1881 set_gdbarch_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
1883 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
1884 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
1885 argument handling and bp_call_dummy takes care of stopping the dummy. */
1886 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1887 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
1888 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1889 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1890 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1891 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1892 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1893 set_gdbarch_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
1894 set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
1895 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
1896 set_gdbarch_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
1898 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1899 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1901 /* Floats are always passed as doubles. */
1902 set_gdbarch_coerce_float_to_double (gdbarch,
1903 standard_coerce_float_to_double);
1905 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1906 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1908 set_gdbarch_function_start_offset (gdbarch, 0);
1909 set_gdbarch_frame_args_skip (gdbarch, 0);
1911 /* Hook in ABI-specific overrides, if they have been registered. */
1912 gdbarch_init_osabi (info, gdbarch, osabi);
1914 /* Now that we have tuned the configuration, set a few final things
1915 based on what the OS ABI has told us. */
1917 if (tdep->jb_pc >= 0)
1918 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1924 alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1926 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1931 fprintf_unfiltered (file, "alpha_dump_tdep: OS ABI = %s\n",
1932 gdbarch_osabi_name (tdep->osabi));
1934 fprintf_unfiltered (file,
1935 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
1936 (long) tdep->vm_min_address);
1938 fprintf_unfiltered (file,
1939 "alpha_dump_tdep: jb_pc = %d\n",
1941 fprintf_unfiltered (file,
1942 "alpha_dump_tdep: jb_elt_size = %ld\n",
1943 (long) tdep->jb_elt_size);
1947 _initialize_alpha_tdep (void)
1949 struct cmd_list_element *c;
1951 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
1953 tm_print_insn = print_insn_alpha;
1955 /* Let the user set the fence post for heuristic_proc_start. */
1957 /* We really would like to have both "0" and "unlimited" work, but
1958 command.c doesn't deal with that. So make it a var_zinteger
1959 because the user can always use "999999" or some such for unlimited. */
1960 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1961 (char *) &heuristic_fence_post,
1963 Set the distance searched for the start of a function.\n\
1964 If you are debugging a stripped executable, GDB needs to search through the\n\
1965 program for the start of a function. This command sets the distance of the\n\
1966 search. The only need to set it is when debugging a stripped executable.",
1968 /* We need to throw away the frame cache when we set this, since it
1969 might change our ability to get backtraces. */
1970 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1971 add_show_from_set (c, &showlist);