1 /* i80960 instruction disassembler for GDB.
2 Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24 static FILE *stream; /* Output goes here */
25 static void print_addr();
33 static void invalid();
35 static void put_abs();
38 /* Print the i960 instruction at address 'memaddr' in debugged memory,
39 on stream 's'. Returns length of the instruction, in bytes. */
41 print_insn( memaddr, s )
45 unsigned int word1, word2;
48 word1 = read_memory_integer( memaddr, 4 );
49 word2 = read_memory_integer( memaddr+4, 4 );
50 return pinsn( memaddr, word1, word2 );
54 /* Read the i960 instruction at 'memaddr' and return the address of
55 the next instruction after that, or 0 if 'memaddr' is not the
56 address of a valid instruction. The first word of the instruction
57 is stored at 'pword1', and the second word, if any, is stored at
61 next_insn (memaddr, pword1, pword2)
62 unsigned long *pword1, *pword2;
68 /* Read the two (potential) words of the instruction at once,
69 to eliminate the overhead of two calls to read_memory ().
70 TODO: read more instructions at once and cache them. */
72 read_memory (memaddr, buf, sizeof (buf));
74 SWAP_TARGET_AND_HOST (pword1, sizeof (long));
76 SWAP_TARGET_AND_HOST (pword2, sizeof (long));
78 /* Divide instruction set into classes based on high 4 bits of opcode*/
80 switch ((*pword1 >> 28) & 0xf)
99 len = mem (memaddr, *pword1, *pword2, 1);
102 default: /* invalid instruction */
108 return memaddr + len;
115 /*****************************************************************************
116 * All code below this point should be identical with that of
117 * the disassembler in gdmp960.
118 *****************************************************************************/
126 pinsn( memaddr, word1, word2 )
127 unsigned long memaddr;
128 unsigned long word1, word2;
133 put_abs( word1, word2 );
135 /* Divide instruction set into classes based on high 4 bits of opcode*/
137 switch ( (word1 >> 28) & 0xf ){
140 ctrl( memaddr, word1, word2 );
144 cobr( memaddr, word1, word2 );
156 instr_len = mem( memaddr, word1, word2, 0 );
159 /* invalid instruction, print as data word */
166 /****************************************/
168 /****************************************/
170 ctrl( memaddr, word1, word2 )
171 unsigned long memaddr;
172 unsigned long word1, word2;
175 static struct tabent ctrl_tab[] = {
185 "call", 1, /* 0x09 */
200 "faultno", 0, /* 0x18 */
201 "faultg", 0, /* 0x19 */
202 "faulte", 0, /* 0x1a */
203 "faultge", 0, /* 0x1b */
204 "faultl", 0, /* 0x1c */
205 "faultne", 0, /* 0x1d */
206 "faultle", 0, /* 0x1e */
207 "faulto", 0, /* 0x1f */
210 i = (word1 >> 24) & 0xff;
211 if ( (ctrl_tab[i].name == NULL) || ((word1 & 1) != 0) ){
216 fputs( ctrl_tab[i].name, stream );
217 if ( word1 & 2 ){ /* Predicts branch not taken */
218 fputs( ".f", stream );
221 if ( ctrl_tab[i].numops == 1 ){
222 /* EXTRACT DISPLACEMENT AND CONVERT TO ADDRESS */
224 if ( word1 & 0x00800000 ){ /* Sign bit is set */
225 word1 |= (-1 & ~0xffffff); /* Sign extend */
227 putc( '\t', stream );
228 print_addr( word1 + memaddr );
232 /****************************************/
234 /****************************************/
236 cobr( memaddr, word1, word2 )
237 unsigned long memaddr;
238 unsigned long word1, word2;
244 static struct tabent cobr_tab[] = {
245 "testno", 1, /* 0x20 */
246 "testg", 1, /* 0x21 */
247 "teste", 1, /* 0x22 */
248 "testge", 1, /* 0x23 */
249 "testl", 1, /* 0x24 */
250 "testne", 1, /* 0x25 */
251 "testle", 1, /* 0x26 */
252 "testo", 1, /* 0x27 */
262 "cmpobg", 3, /* 0x31 */
263 "cmpobe", 3, /* 0x32 */
264 "cmpobge", 3, /* 0x33 */
265 "cmpobl", 3, /* 0x34 */
266 "cmpobne", 3, /* 0x35 */
267 "cmpoble", 3, /* 0x36 */
269 "cmpibno", 3, /* 0x38 */
270 "cmpibg", 3, /* 0x39 */
271 "cmpibe", 3, /* 0x3a */
272 "cmpibge", 3, /* 0x3b */
273 "cmpibl", 3, /* 0x3c */
274 "cmpibne", 3, /* 0x3d */
275 "cmpible", 3, /* 0x3e */
276 "cmpibo", 3, /* 0x3f */
279 i = ((word1 >> 24) & 0xff) - 0x20;
280 if ( cobr_tab[i].name == NULL ){
285 fputs( cobr_tab[i].name, stream );
286 if ( word1 & 2 ){ /* Predicts branch not taken */
287 fputs( ".f", stream );
289 putc( '\t', stream );
291 src1 = (word1 >> 19) & 0x1f;
292 src2 = (word1 >> 14) & 0x1f;
294 if ( word1 & 0x02000 ){ /* M1 is 1 */
295 fprintf( stream, "%d", src1 );
296 } else { /* M1 is 0 */
297 fputs( reg_names[src1], stream );
300 if ( cobr_tab[i].numops > 1 ){
301 if ( word1 & 1 ){ /* S2 is 1 */
302 fprintf( stream, ",sf%d,", src2 );
303 } else { /* S1 is 0 */
304 fprintf( stream, ",%s,", reg_names[src2] );
307 /* Extract displacement and convert to address
310 if ( word1 & 0x00001000 ){ /* Negative displacement */
311 word1 |= (-1 & ~0x1fff); /* Sign extend */
313 print_addr( memaddr + word1 );
317 /****************************************/
319 /****************************************/
320 static int /* returns instruction length: 4 or 8 */
321 mem( memaddr, word1, word2, noprint )
322 unsigned long memaddr;
323 unsigned long word1, word2;
324 int noprint; /* If TRUE, return instruction length, but
325 don't output any text. */
331 const char *reg1, *reg2, *reg3;
333 /* This lookup table is too sparse to make it worth typing in, but not
334 * so large as to make a sparse array necessary. We allocate the
335 * table at runtime, initialize all entries to empty, and copy the
336 * real ones in from an initialization table.
338 * NOTE: In this table, the meaning of 'numops' is:
340 * 2: 2 operands, load instruction
341 * -2: 2 operands, store instruction
343 static struct tabent *mem_tab = NULL;
344 static struct { int opcode; char *name; char numops; } mem_init[] = {
367 #define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
371 if ( mem_tab == NULL ){
372 mem_tab = (struct tabent *) xmalloc( MEM_SIZ );
373 bzero( mem_tab, MEM_SIZ );
374 for ( i = 0; mem_init[i].opcode != 0; i++ ){
375 j = mem_init[i].opcode - MEM_MIN;
376 mem_tab[j].name = mem_init[i].name;
377 mem_tab[j].numops = mem_init[i].numops;
381 i = ((word1 >> 24) & 0xff) - MEM_MIN;
382 mode = (word1 >> 10) & 0xf;
384 if ( (mem_tab[i].name != NULL) /* Valid instruction */
385 && ((mode == 5) || (mode >=12)) ){ /* With 32-bit displacement */
395 if ( (mem_tab[i].name == NULL) || (mode == 6) ){
400 fprintf( stream, "%s\t", mem_tab[i].name );
402 reg1 = reg_names[ (word1 >> 19) & 0x1f ]; /* MEMB only */
403 reg2 = reg_names[ (word1 >> 14) & 0x1f ];
404 reg3 = reg_names[ word1 & 0x1f ]; /* MEMB only */
405 offset = word1 & 0xfff; /* MEMA only */
407 switch ( mem_tab[i].numops ){
409 case 2: /* LOAD INSTRUCTION */
410 if ( mode & 4 ){ /* MEMB FORMAT */
411 ea( memaddr, mode, reg2, reg3, word1, word2 );
412 fprintf( stream, ",%s", reg1 );
413 } else { /* MEMA FORMAT */
414 fprintf( stream, "0x%x", offset );
416 fprintf( stream, "(%s)", reg2 );
418 fprintf( stream, ",%s", reg1 );
422 case -2: /* STORE INSTRUCTION */
423 if ( mode & 4 ){ /* MEMB FORMAT */
424 fprintf( stream, "%s,", reg1 );
425 ea( memaddr, mode, reg2, reg3, word1, word2 );
426 } else { /* MEMA FORMAT */
427 fprintf( stream, "%s,0x%x", reg1, offset );
429 fprintf( stream, "(%s)", reg2 );
434 case 1: /* BX/CALLX INSTRUCTION */
435 if ( mode & 4 ){ /* MEMB FORMAT */
436 ea( memaddr, mode, reg2, reg3, word1, word2 );
437 } else { /* MEMA FORMAT */
438 fprintf( stream, "0x%x", offset );
440 fprintf( stream, "(%s)", reg2 );
449 /****************************************/
451 /****************************************/
464 /* This lookup table is too sparse to make it worth typing in, but not
465 * so large as to make a sparse array necessary. We allocate the
466 * table at runtime, initialize all entries to empty, and copy the
467 * real ones in from an initialization table.
469 * NOTE: In this table, the meaning of 'numops' is:
470 * 1: single operand, which is NOT a destination.
471 * -1: single operand, which IS a destination.
472 * 2: 2 operands, the 2nd of which is NOT a destination.
473 * -2: 2 operands, the 2nd of which IS a destination.
476 * If an opcode mnemonic begins with "F", it is a floating-point
477 * opcode (the "F" is not printed).
480 static struct tabent *reg_tab = NULL;
481 static struct { int opcode; char *name; char numops; } reg_init[] = {
482 #define REG_MIN 0x580
497 0x58f, "alterbit", 3,
516 0x5ac, "scanbyte", 2,
533 0x613, "inspacc", -2,
539 0x640, "spanbit", -2,
540 0x641, "scanbit", -2,
545 0x646, "condrec", -2,
550 0x656, "receive", -2,
554 0x663, "sendserv", 1,
555 0x664, "resumprcs", 1,
556 0x665, "schedprcs", 1,
557 0x666, "saveprcs", 0,
558 0x668, "condwait", 1,
563 0x66d, "flushreg", 0,
569 0x675, "Fcvtilr", -2,
570 0x676, "Fscalerl", 3,
580 0x68a, "Flogbnr", -2,
581 0x68b, "Froundr", -2,
587 0x691, "Flogeprl", 3,
592 0x698, "Fsqrtrl", -2,
594 0x69a, "Flogbnrl", -2,
595 0x69b, "Froundrl", -2,
599 0x69f, "Fclassrl", 1,
601 0x6c1, "Fcvtril", -2,
602 0x6c2, "Fcvtzri", -2,
603 0x6c3, "Fcvtzril", -2,
608 0x6e3, "Fcpyrsre", 3,
624 #define REG_MAX 0x79f
625 #define REG_SIZ ((REG_MAX-REG_MIN+1) * sizeof(struct tabent))
629 if ( reg_tab == NULL ){
630 reg_tab = (struct tabent *) xmalloc( REG_SIZ );
631 bzero( reg_tab, REG_SIZ );
632 for ( i = 0; reg_init[i].opcode != 0; i++ ){
633 j = reg_init[i].opcode - REG_MIN;
634 reg_tab[j].name = reg_init[i].name;
635 reg_tab[j].numops = reg_init[i].numops;
639 opcode = ((word1 >> 20) & 0xff0) | ((word1 >> 7) & 0xf);
640 i = opcode - REG_MIN;
642 if ( (opcode<REG_MIN) || (opcode>REG_MAX) || (reg_tab[i].name==NULL) ){
647 mnemp = reg_tab[i].name;
648 if ( *mnemp == 'F' ){
655 fputs( mnemp, stream );
657 s1 = (word1 >> 5) & 1;
658 s2 = (word1 >> 6) & 1;
659 m1 = (word1 >> 11) & 1;
660 m2 = (word1 >> 12) & 1;
661 m3 = (word1 >> 13) & 1;
663 src2 = (word1 >> 14) & 0x1f;
664 dst = (word1 >> 19) & 0x1f;
666 if ( reg_tab[i].numops != 0 ){
667 putc( '\t', stream );
669 switch ( reg_tab[i].numops ){
671 regop( m1, s1, src, fp );
674 dstop( m3, dst, fp );
677 regop( m1, s1, src, fp );
679 regop( m2, s2, src2, fp );
682 regop( m1, s1, src, fp );
684 dstop( m3, dst, fp );
687 regop( m1, s1, src, fp );
689 regop( m2, s2, src2, fp );
691 dstop( m3, dst, fp );
699 * Print out effective address for memb instructions.
702 ea( memaddr, mode, reg2, reg3, word1, word2 )
703 unsigned long memaddr;
709 static int scale_tab[] = { 1, 2, 4, 8, 16 };
711 scale = (word1 >> 7) & 0x07;
712 if ( (scale > 4) || ((word1 >> 5) & 0x03 != 0) ){
716 scale = scale_tab[scale];
720 fprintf( stream, "(%s)", reg2 );
722 case 5: /* displ+8(ip) */
723 print_addr( word2+8+memaddr );
725 case 7: /* (reg)[index*scale] */
727 fprintf( stream, "(%s)[%s]", reg2, reg3 );
729 fprintf( stream, "(%s)[%s*%d]",reg2,reg3,scale);
732 case 12: /* displacement */
735 case 13: /* displ(reg) */
737 fprintf( stream, "(%s)", reg2 );
739 case 14: /* displ[index*scale] */
742 fprintf( stream, "[%s]", reg3 );
744 fprintf( stream, "[%s*%d]", reg3, scale );
747 case 15: /* displ(reg)[index*scale] */
750 fprintf( stream, "(%s)[%s]", reg2, reg3 );
752 fprintf( stream, "(%s)[%s*%d]",reg2,reg3,scale );
762 /************************************************/
763 /* Register Instruction Operand */
764 /************************************************/
766 regop( mode, spec, reg, fp )
767 int mode, spec, reg, fp;
769 if ( fp ){ /* FLOATING POINT INSTRUCTION */
770 if ( mode == 1 ){ /* FP operand */
772 case 0: fputs( "fp0", stream ); break;
773 case 1: fputs( "fp1", stream ); break;
774 case 2: fputs( "fp2", stream ); break;
775 case 3: fputs( "fp3", stream ); break;
776 case 16: fputs( "0f0.0", stream ); break;
777 case 22: fputs( "0f1.0", stream ); break;
778 default: putc( '?', stream ); break;
780 } else { /* Non-FP register */
781 fputs( reg_names[reg], stream );
783 } else { /* NOT FLOATING POINT */
784 if ( mode == 1 ){ /* Literal */
785 fprintf( stream, "%d", reg );
786 } else { /* Register */
788 fputs( reg_names[reg], stream );
790 fprintf( stream, "sf%d", reg );
796 /************************************************/
797 /* Register Instruction Destination Operand */
798 /************************************************/
800 dstop( mode, reg, fp )
803 /* 'dst' operand can't be a literal. On non-FP instructions, register
804 * mode is assumed and "m3" acts as if were "s3"; on FP-instructions,
805 * sf registers are not allowed so m3 acts normally.
808 regop( mode, 0, reg, fp );
810 regop( 0, mode, reg, fp );
819 fprintf( stream, ".word\t0x%08x", word1 );
825 print_address (a, stream);
829 put_abs( word1, word2 )
830 unsigned long word1, word2;
837 switch ( (word1 >> 28) & 0xf ){
843 /* MEM format instruction */
844 len = mem( 0, word1, word2, 1 );
852 fprintf( stream, "%08x %08x\t", word1, word2 );
854 fprintf( stream, "%08x \t", word1 );