1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
26 #include "gdb_string.h"
30 #include "gdb_regex.h"
35 #include "expression.h"
36 #include "parser-defs.h"
42 #include "breakpoint.h"
45 #include "gdb_obstack.h"
47 #include "completer.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
61 #ifndef ADA_RETAIN_DOTS
62 #define ADA_RETAIN_DOTS 0
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 static void extract_string (CORE_ADDR addr, char *buf);
76 static struct type *ada_create_fundamental_type (struct objfile *, int);
78 static void modify_general_field (char *, LONGEST, int, int);
80 static struct type *desc_base_type (struct type *);
82 static struct type *desc_bounds_type (struct type *);
84 static struct value *desc_bounds (struct value *);
86 static int fat_pntr_bounds_bitpos (struct type *);
88 static int fat_pntr_bounds_bitsize (struct type *);
90 static struct type *desc_data_type (struct type *);
92 static struct value *desc_data (struct value *);
94 static int fat_pntr_data_bitpos (struct type *);
96 static int fat_pntr_data_bitsize (struct type *);
98 static struct value *desc_one_bound (struct value *, int, int);
100 static int desc_bound_bitpos (struct type *, int, int);
102 static int desc_bound_bitsize (struct type *, int, int);
104 static struct type *desc_index_type (struct type *, int);
106 static int desc_arity (struct type *);
108 static int ada_type_match (struct type *, struct type *, int);
110 static int ada_args_match (struct symbol *, struct value **, int);
112 static struct value *ensure_lval (struct value *, CORE_ADDR *);
114 static struct value *convert_actual (struct value *, struct type *,
117 static struct value *make_array_descriptor (struct type *, struct value *,
120 static void ada_add_block_symbols (struct obstack *,
121 struct block *, const char *,
122 domain_enum, struct objfile *,
123 struct symtab *, int);
125 static int is_nonfunction (struct ada_symbol_info *, int);
127 static void add_defn_to_vec (struct obstack *, struct symbol *,
128 struct block *, struct symtab *);
130 static int num_defns_collected (struct obstack *);
132 static struct ada_symbol_info *defns_collected (struct obstack *, int);
134 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
135 *, const char *, int,
138 static struct symtab *symtab_for_sym (struct symbol *);
140 static struct value *resolve_subexp (struct expression **, int *, int,
143 static void replace_operator_with_call (struct expression **, int, int, int,
144 struct symbol *, struct block *);
146 static int possible_user_operator_p (enum exp_opcode, struct value **);
148 static char *ada_op_name (enum exp_opcode);
150 static const char *ada_decoded_op_name (enum exp_opcode);
152 static int numeric_type_p (struct type *);
154 static int integer_type_p (struct type *);
156 static int scalar_type_p (struct type *);
158 static int discrete_type_p (struct type *);
160 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
163 static struct value *evaluate_subexp (struct type *, struct expression *,
166 static struct value *evaluate_subexp_type (struct expression *, int *);
168 static int is_dynamic_field (struct type *, int);
170 static struct type *to_fixed_variant_branch_type (struct type *,
172 CORE_ADDR, struct value *);
174 static struct type *to_fixed_array_type (struct type *, struct value *, int);
176 static struct type *to_fixed_range_type (char *, struct value *,
179 static struct type *to_static_fixed_type (struct type *);
181 static struct value *unwrap_value (struct value *);
183 static struct type *packed_array_type (struct type *, long *);
185 static struct type *decode_packed_array_type (struct type *);
187 static struct value *decode_packed_array (struct value *);
189 static struct value *value_subscript_packed (struct value *, int,
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
194 static struct value *coerce_unspec_val_to_type (struct value *,
197 static struct value *get_var_value (char *, char *);
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
201 static int equiv_types (struct type *, struct type *);
203 static int is_name_suffix (const char *);
205 static int wild_match (const char *, int, const char *);
207 static struct value *ada_coerce_ref (struct value *);
209 static LONGEST pos_atr (struct value *);
211 static struct value *value_pos_atr (struct value *);
213 static struct value *value_val_atr (struct type *, struct value *);
215 static struct symbol *standard_lookup (const char *, const struct block *,
218 static struct value *ada_search_struct_field (char *, struct value *, int,
221 static struct value *ada_value_primitive_field (struct value *, int, int,
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 static struct value *ada_to_fixed_value (struct value *);
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
236 static struct value *ada_coerce_to_simple_array (struct value *);
238 static int ada_is_direct_array_type (struct type *);
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
243 static void check_size (const struct type *);
245 static struct value *ada_index_struct_field (int, struct value *, int,
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
251 static void aggregate_assign_from_choices (struct value *, struct value *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
256 static void aggregate_assign_positional (struct value *, struct value *,
258 int *, LONGEST *, int *, int,
262 static void aggregate_assign_others (struct value *, struct value *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
273 static void ada_forward_operator_length (struct expression *, int, int *,
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
316 ada_get_gdb_completer_word_break_characters (void)
318 return ada_completer_word_break_characters;
321 /* Print an array element index using the Ada syntax. */
324 ada_print_array_index (struct value *index_value, struct ui_file *stream,
325 int format, enum val_prettyprint pretty)
327 LA_VALUE_PRINT (index_value, stream, format, pretty);
328 fprintf_filtered (stream, " => ");
331 /* Read the string located at ADDR from the inferior and store the
335 extract_string (CORE_ADDR addr, char *buf)
339 /* Loop, reading one byte at a time, until we reach the '\000'
340 end-of-string marker. */
343 target_read_memory (addr + char_index * sizeof (char),
344 buf + char_index * sizeof (char), sizeof (char));
347 while (buf[char_index - 1] != '\000');
350 /* Assuming VECT points to an array of *SIZE objects of size
351 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
352 updating *SIZE as necessary and returning the (new) array. */
355 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
357 if (*size < min_size)
360 if (*size < min_size)
362 vect = xrealloc (vect, *size * element_size);
367 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
368 suffix of FIELD_NAME beginning "___". */
371 field_name_match (const char *field_name, const char *target)
373 int len = strlen (target);
375 (strncmp (field_name, target, len) == 0
376 && (field_name[len] == '\0'
377 || (strncmp (field_name + len, "___", 3) == 0
378 && strcmp (field_name + strlen (field_name) - 6,
383 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
384 FIELD_NAME, and return its index. This function also handles fields
385 whose name have ___ suffixes because the compiler sometimes alters
386 their name by adding such a suffix to represent fields with certain
387 constraints. If the field could not be found, return a negative
388 number if MAYBE_MISSING is set. Otherwise raise an error. */
391 ada_get_field_index (const struct type *type, const char *field_name,
395 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
396 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
400 error (_("Unable to find field %s in struct %s. Aborting"),
401 field_name, TYPE_NAME (type));
406 /* The length of the prefix of NAME prior to any "___" suffix. */
409 ada_name_prefix_len (const char *name)
415 const char *p = strstr (name, "___");
417 return strlen (name);
423 /* Return non-zero if SUFFIX is a suffix of STR.
424 Return zero if STR is null. */
427 is_suffix (const char *str, const char *suffix)
433 len2 = strlen (suffix);
434 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
437 /* Create a value of type TYPE whose contents come from VALADDR, if it
438 is non-null, and whose memory address (in the inferior) is
442 value_from_contents_and_address (struct type *type,
443 const gdb_byte *valaddr,
446 struct value *v = allocate_value (type);
448 set_value_lazy (v, 1);
450 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
451 VALUE_ADDRESS (v) = address;
453 VALUE_LVAL (v) = lval_memory;
457 /* The contents of value VAL, treated as a value of type TYPE. The
458 result is an lval in memory if VAL is. */
460 static struct value *
461 coerce_unspec_val_to_type (struct value *val, struct type *type)
463 type = ada_check_typedef (type);
464 if (value_type (val) == type)
468 struct value *result;
470 /* Make sure that the object size is not unreasonable before
471 trying to allocate some memory for it. */
474 result = allocate_value (type);
475 VALUE_LVAL (result) = VALUE_LVAL (val);
476 set_value_bitsize (result, value_bitsize (val));
477 set_value_bitpos (result, value_bitpos (val));
478 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
480 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
481 set_value_lazy (result, 1);
483 memcpy (value_contents_raw (result), value_contents (val),
489 static const gdb_byte *
490 cond_offset_host (const gdb_byte *valaddr, long offset)
495 return valaddr + offset;
499 cond_offset_target (CORE_ADDR address, long offset)
504 return address + offset;
507 /* Issue a warning (as for the definition of warning in utils.c, but
508 with exactly one argument rather than ...), unless the limit on the
509 number of warnings has passed during the evaluation of the current
512 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
513 provided by "complaint". */
514 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
517 lim_warning (const char *format, ...)
520 va_start (args, format);
522 warnings_issued += 1;
523 if (warnings_issued <= warning_limit)
524 vwarning (format, args);
529 /* Issue an error if the size of an object of type T is unreasonable,
530 i.e. if it would be a bad idea to allocate a value of this type in
534 check_size (const struct type *type)
536 if (TYPE_LENGTH (type) > varsize_limit)
537 error (_("object size is larger than varsize-limit"));
541 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
542 gdbtypes.h, but some of the necessary definitions in that file
543 seem to have gone missing. */
545 /* Maximum value of a SIZE-byte signed integer type. */
547 max_of_size (int size)
549 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
550 return top_bit | (top_bit - 1);
553 /* Minimum value of a SIZE-byte signed integer type. */
555 min_of_size (int size)
557 return -max_of_size (size) - 1;
560 /* Maximum value of a SIZE-byte unsigned integer type. */
562 umax_of_size (int size)
564 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
565 return top_bit | (top_bit - 1);
568 /* Maximum value of integral type T, as a signed quantity. */
570 max_of_type (struct type *t)
572 if (TYPE_UNSIGNED (t))
573 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
575 return max_of_size (TYPE_LENGTH (t));
578 /* Minimum value of integral type T, as a signed quantity. */
580 min_of_type (struct type *t)
582 if (TYPE_UNSIGNED (t))
585 return min_of_size (TYPE_LENGTH (t));
588 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
589 static struct value *
590 discrete_type_high_bound (struct type *type)
592 switch (TYPE_CODE (type))
594 case TYPE_CODE_RANGE:
595 return value_from_longest (TYPE_TARGET_TYPE (type),
596 TYPE_HIGH_BOUND (type));
599 value_from_longest (type,
600 TYPE_FIELD_BITPOS (type,
601 TYPE_NFIELDS (type) - 1));
603 return value_from_longest (type, max_of_type (type));
605 error (_("Unexpected type in discrete_type_high_bound."));
609 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
610 static struct value *
611 discrete_type_low_bound (struct type *type)
613 switch (TYPE_CODE (type))
615 case TYPE_CODE_RANGE:
616 return value_from_longest (TYPE_TARGET_TYPE (type),
617 TYPE_LOW_BOUND (type));
619 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
621 return value_from_longest (type, min_of_type (type));
623 error (_("Unexpected type in discrete_type_low_bound."));
627 /* The identity on non-range types. For range types, the underlying
628 non-range scalar type. */
631 base_type (struct type *type)
633 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
635 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
637 type = TYPE_TARGET_TYPE (type);
643 /* Language Selection */
645 /* If the main program is in Ada, return language_ada, otherwise return LANG
646 (the main program is in Ada iif the adainit symbol is found).
648 MAIN_PST is not used. */
651 ada_update_initial_language (enum language lang,
652 struct partial_symtab *main_pst)
654 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
655 (struct objfile *) NULL) != NULL)
661 /* If the main procedure is written in Ada, then return its name.
662 The result is good until the next call. Return NULL if the main
663 procedure doesn't appear to be in Ada. */
668 struct minimal_symbol *msym;
669 CORE_ADDR main_program_name_addr;
670 static char main_program_name[1024];
672 /* For Ada, the name of the main procedure is stored in a specific
673 string constant, generated by the binder. Look for that symbol,
674 extract its address, and then read that string. If we didn't find
675 that string, then most probably the main procedure is not written
677 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
681 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
682 if (main_program_name_addr == 0)
683 error (_("Invalid address for Ada main program name."));
685 extract_string (main_program_name_addr, main_program_name);
686 return main_program_name;
689 /* The main procedure doesn't seem to be in Ada. */
695 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
698 const struct ada_opname_map ada_opname_table[] = {
699 {"Oadd", "\"+\"", BINOP_ADD},
700 {"Osubtract", "\"-\"", BINOP_SUB},
701 {"Omultiply", "\"*\"", BINOP_MUL},
702 {"Odivide", "\"/\"", BINOP_DIV},
703 {"Omod", "\"mod\"", BINOP_MOD},
704 {"Orem", "\"rem\"", BINOP_REM},
705 {"Oexpon", "\"**\"", BINOP_EXP},
706 {"Olt", "\"<\"", BINOP_LESS},
707 {"Ole", "\"<=\"", BINOP_LEQ},
708 {"Ogt", "\">\"", BINOP_GTR},
709 {"Oge", "\">=\"", BINOP_GEQ},
710 {"Oeq", "\"=\"", BINOP_EQUAL},
711 {"One", "\"/=\"", BINOP_NOTEQUAL},
712 {"Oand", "\"and\"", BINOP_BITWISE_AND},
713 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
714 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
715 {"Oconcat", "\"&\"", BINOP_CONCAT},
716 {"Oabs", "\"abs\"", UNOP_ABS},
717 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
718 {"Oadd", "\"+\"", UNOP_PLUS},
719 {"Osubtract", "\"-\"", UNOP_NEG},
723 /* Return non-zero if STR should be suppressed in info listings. */
726 is_suppressed_name (const char *str)
728 if (strncmp (str, "_ada_", 5) == 0)
730 if (str[0] == '_' || str[0] == '\000')
735 const char *suffix = strstr (str, "___");
736 if (suffix != NULL && suffix[3] != 'X')
739 suffix = str + strlen (str);
740 for (p = suffix - 1; p != str; p -= 1)
744 if (p[0] == 'X' && p[-1] != '_')
748 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
749 if (strncmp (ada_opname_table[i].encoded, p,
750 strlen (ada_opname_table[i].encoded)) == 0)
759 /* The "encoded" form of DECODED, according to GNAT conventions.
760 The result is valid until the next call to ada_encode. */
763 ada_encode (const char *decoded)
765 static char *encoding_buffer = NULL;
766 static size_t encoding_buffer_size = 0;
773 GROW_VECT (encoding_buffer, encoding_buffer_size,
774 2 * strlen (decoded) + 10);
777 for (p = decoded; *p != '\0'; p += 1)
779 if (!ADA_RETAIN_DOTS && *p == '.')
781 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
786 const struct ada_opname_map *mapping;
788 for (mapping = ada_opname_table;
789 mapping->encoded != NULL
790 && strncmp (mapping->decoded, p,
791 strlen (mapping->decoded)) != 0; mapping += 1)
793 if (mapping->encoded == NULL)
794 error (_("invalid Ada operator name: %s"), p);
795 strcpy (encoding_buffer + k, mapping->encoded);
796 k += strlen (mapping->encoded);
801 encoding_buffer[k] = *p;
806 encoding_buffer[k] = '\0';
807 return encoding_buffer;
810 /* Return NAME folded to lower case, or, if surrounded by single
811 quotes, unfolded, but with the quotes stripped away. Result good
815 ada_fold_name (const char *name)
817 static char *fold_buffer = NULL;
818 static size_t fold_buffer_size = 0;
820 int len = strlen (name);
821 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
825 strncpy (fold_buffer, name + 1, len - 2);
826 fold_buffer[len - 2] = '\000';
831 for (i = 0; i <= len; i += 1)
832 fold_buffer[i] = tolower (name[i]);
838 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
841 is_lower_alphanum (const char c)
843 return (isdigit (c) || (isalpha (c) && islower (c)));
847 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
848 These are suffixes introduced by GNAT5 to nested subprogram
849 names, and do not serve any purpose for the debugger.
850 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
851 . Discard final N if it follows a lowercase alphanumeric character
852 (protected object subprogram suffix)
853 . Convert other instances of embedded "__" to `.'.
854 . Discard leading _ada_.
855 . Convert operator names to the appropriate quoted symbols.
856 . Remove everything after first ___ if it is followed by
858 . Replace TK__ with __, and a trailing B or TKB with nothing.
859 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
860 . Put symbols that should be suppressed in <...> brackets.
861 . Remove trailing X[bn]* suffix (indicating names in package bodies).
863 The resulting string is valid until the next call of ada_decode.
864 If the string is unchanged by demangling, the original string pointer
868 ada_decode (const char *encoded)
875 static char *decoding_buffer = NULL;
876 static size_t decoding_buffer_size = 0;
878 if (strncmp (encoded, "_ada_", 5) == 0)
881 if (encoded[0] == '_' || encoded[0] == '<')
884 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
885 len0 = strlen (encoded);
886 if (len0 > 1 && isdigit (encoded[len0 - 1]))
889 while (i > 0 && isdigit (encoded[i]))
891 if (i >= 0 && encoded[i] == '.')
893 else if (i >= 0 && encoded[i] == '$')
895 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
897 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
901 /* Remove trailing N. */
903 /* Protected entry subprograms are broken into two
904 separate subprograms: The first one is unprotected, and has
905 a 'N' suffix; the second is the protected version, and has
906 the 'P' suffix. The second calls the first one after handling
907 the protection. Since the P subprograms are internally generated,
908 we leave these names undecoded, giving the user a clue that this
909 entity is internal. */
912 && encoded[len0 - 1] == 'N'
913 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
916 /* Remove the ___X.* suffix if present. Do not forget to verify that
917 the suffix is located before the current "end" of ENCODED. We want
918 to avoid re-matching parts of ENCODED that have previously been
919 marked as discarded (by decrementing LEN0). */
920 p = strstr (encoded, "___");
921 if (p != NULL && p - encoded < len0 - 3)
929 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
935 /* Make decoded big enough for possible expansion by operator name. */
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
939 if (len0 > 1 && isdigit (encoded[len0 - 1]))
942 while ((i >= 0 && isdigit (encoded[i]))
943 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
945 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
947 else if (encoded[i] == '$')
951 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
952 decoded[j] = encoded[i];
957 if (at_start_name && encoded[i] == 'O')
960 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
962 int op_len = strlen (ada_opname_table[k].encoded);
963 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
965 && !isalnum (encoded[i + op_len]))
967 strcpy (decoded + j, ada_opname_table[k].decoded);
970 j += strlen (ada_opname_table[k].decoded);
974 if (ada_opname_table[k].encoded != NULL)
979 /* Replace "TK__" with "__", which will eventually be translated
980 into "." (just below). */
982 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
985 /* Remove _E{DIGITS}+[sb] */
987 /* Just as for protected object subprograms, there are 2 categories
988 of subprograms created by the compiler for each entry. The first
989 one implements the actual entry code, and has a suffix following
990 the convention above; the second one implements the barrier and
991 uses the same convention as above, except that the 'E' is replaced
994 Just as above, we do not decode the name of barrier functions
995 to give the user a clue that the code he is debugging has been
996 internally generated. */
998 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
999 && isdigit (encoded[i+2]))
1003 while (k < len0 && isdigit (encoded[k]))
1007 && (encoded[k] == 'b' || encoded[k] == 's'))
1010 /* Just as an extra precaution, make sure that if this
1011 suffix is followed by anything else, it is a '_'.
1012 Otherwise, we matched this sequence by accident. */
1014 || (k < len0 && encoded[k] == '_'))
1019 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1020 the GNAT front-end in protected object subprograms. */
1023 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1025 /* Backtrack a bit up until we reach either the begining of
1026 the encoded name, or "__". Make sure that we only find
1027 digits or lowercase characters. */
1028 const char *ptr = encoded + i - 1;
1030 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1033 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1037 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1041 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1045 else if (!ADA_RETAIN_DOTS
1046 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1055 decoded[j] = encoded[i];
1060 decoded[j] = '\000';
1062 for (i = 0; decoded[i] != '\0'; i += 1)
1063 if (isupper (decoded[i]) || decoded[i] == ' ')
1066 if (strcmp (decoded, encoded) == 0)
1072 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1073 decoded = decoding_buffer;
1074 if (encoded[0] == '<')
1075 strcpy (decoded, encoded);
1077 sprintf (decoded, "<%s>", encoded);
1082 /* Table for keeping permanent unique copies of decoded names. Once
1083 allocated, names in this table are never released. While this is a
1084 storage leak, it should not be significant unless there are massive
1085 changes in the set of decoded names in successive versions of a
1086 symbol table loaded during a single session. */
1087 static struct htab *decoded_names_store;
1089 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1090 in the language-specific part of GSYMBOL, if it has not been
1091 previously computed. Tries to save the decoded name in the same
1092 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1093 in any case, the decoded symbol has a lifetime at least that of
1095 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1096 const, but nevertheless modified to a semantically equivalent form
1097 when a decoded name is cached in it.
1101 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1104 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1105 if (*resultp == NULL)
1107 const char *decoded = ada_decode (gsymbol->name);
1108 if (gsymbol->bfd_section != NULL)
1110 bfd *obfd = gsymbol->bfd_section->owner;
1113 struct objfile *objf;
1116 if (obfd == objf->obfd)
1118 *resultp = obsavestring (decoded, strlen (decoded),
1119 &objf->objfile_obstack);
1125 /* Sometimes, we can't find a corresponding objfile, in which
1126 case, we put the result on the heap. Since we only decode
1127 when needed, we hope this usually does not cause a
1128 significant memory leak (FIXME). */
1129 if (*resultp == NULL)
1131 char **slot = (char **) htab_find_slot (decoded_names_store,
1134 *slot = xstrdup (decoded);
1143 ada_la_decode (const char *encoded, int options)
1145 return xstrdup (ada_decode (encoded));
1148 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1149 suffixes that encode debugging information or leading _ada_ on
1150 SYM_NAME (see is_name_suffix commentary for the debugging
1151 information that is ignored). If WILD, then NAME need only match a
1152 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1153 either argument is NULL. */
1156 ada_match_name (const char *sym_name, const char *name, int wild)
1158 if (sym_name == NULL || name == NULL)
1161 return wild_match (name, strlen (name), sym_name);
1164 int len_name = strlen (name);
1165 return (strncmp (sym_name, name, len_name) == 0
1166 && is_name_suffix (sym_name + len_name))
1167 || (strncmp (sym_name, "_ada_", 5) == 0
1168 && strncmp (sym_name + 5, name, len_name) == 0
1169 && is_name_suffix (sym_name + len_name + 5));
1173 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1174 suppressed in info listings. */
1177 ada_suppress_symbol_printing (struct symbol *sym)
1179 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1182 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1188 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1190 static char *bound_name[] = {
1191 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1192 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1195 /* Maximum number of array dimensions we are prepared to handle. */
1197 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1199 /* Like modify_field, but allows bitpos > wordlength. */
1202 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1204 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1208 /* The desc_* routines return primitive portions of array descriptors
1211 /* The descriptor or array type, if any, indicated by TYPE; removes
1212 level of indirection, if needed. */
1214 static struct type *
1215 desc_base_type (struct type *type)
1219 type = ada_check_typedef (type);
1221 && (TYPE_CODE (type) == TYPE_CODE_PTR
1222 || TYPE_CODE (type) == TYPE_CODE_REF))
1223 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1228 /* True iff TYPE indicates a "thin" array pointer type. */
1231 is_thin_pntr (struct type *type)
1234 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1235 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1238 /* The descriptor type for thin pointer type TYPE. */
1240 static struct type *
1241 thin_descriptor_type (struct type *type)
1243 struct type *base_type = desc_base_type (type);
1244 if (base_type == NULL)
1246 if (is_suffix (ada_type_name (base_type), "___XVE"))
1250 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1251 if (alt_type == NULL)
1258 /* A pointer to the array data for thin-pointer value VAL. */
1260 static struct value *
1261 thin_data_pntr (struct value *val)
1263 struct type *type = value_type (val);
1264 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1265 return value_cast (desc_data_type (thin_descriptor_type (type)),
1268 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1269 VALUE_ADDRESS (val) + value_offset (val));
1272 /* True iff TYPE indicates a "thick" array pointer type. */
1275 is_thick_pntr (struct type *type)
1277 type = desc_base_type (type);
1278 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1279 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1282 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1283 pointer to one, the type of its bounds data; otherwise, NULL. */
1285 static struct type *
1286 desc_bounds_type (struct type *type)
1290 type = desc_base_type (type);
1294 else if (is_thin_pntr (type))
1296 type = thin_descriptor_type (type);
1299 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1301 return ada_check_typedef (r);
1303 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1305 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1307 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1312 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1313 one, a pointer to its bounds data. Otherwise NULL. */
1315 static struct value *
1316 desc_bounds (struct value *arr)
1318 struct type *type = ada_check_typedef (value_type (arr));
1319 if (is_thin_pntr (type))
1321 struct type *bounds_type =
1322 desc_bounds_type (thin_descriptor_type (type));
1325 if (desc_bounds_type == NULL)
1326 error (_("Bad GNAT array descriptor"));
1328 /* NOTE: The following calculation is not really kosher, but
1329 since desc_type is an XVE-encoded type (and shouldn't be),
1330 the correct calculation is a real pain. FIXME (and fix GCC). */
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 addr = value_as_long (arr);
1334 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1337 value_from_longest (lookup_pointer_type (bounds_type),
1338 addr - TYPE_LENGTH (bounds_type));
1341 else if (is_thick_pntr (type))
1342 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1343 _("Bad GNAT array descriptor"));
1348 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1349 position of the field containing the address of the bounds data. */
1352 fat_pntr_bounds_bitpos (struct type *type)
1354 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1357 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1358 size of the field containing the address of the bounds data. */
1361 fat_pntr_bounds_bitsize (struct type *type)
1363 type = desc_base_type (type);
1365 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1366 return TYPE_FIELD_BITSIZE (type, 1);
1368 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its array data (a
1373 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1374 ada_type_of_array to get an array type with bounds data. */
1376 static struct type *
1377 desc_data_type (struct type *type)
1379 type = desc_base_type (type);
1381 /* NOTE: The following is bogus; see comment in desc_bounds. */
1382 if (is_thin_pntr (type))
1383 return lookup_pointer_type
1384 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1385 else if (is_thick_pntr (type))
1386 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1391 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1394 static struct value *
1395 desc_data (struct value *arr)
1397 struct type *type = value_type (arr);
1398 if (is_thin_pntr (type))
1399 return thin_data_pntr (arr);
1400 else if (is_thick_pntr (type))
1401 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1402 _("Bad GNAT array descriptor"));
1408 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1409 position of the field containing the address of the data. */
1412 fat_pntr_data_bitpos (struct type *type)
1414 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1417 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1418 size of the field containing the address of the data. */
1421 fat_pntr_data_bitsize (struct type *type)
1423 type = desc_base_type (type);
1425 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1426 return TYPE_FIELD_BITSIZE (type, 0);
1428 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1431 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1432 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1433 bound, if WHICH is 1. The first bound is I=1. */
1435 static struct value *
1436 desc_one_bound (struct value *bounds, int i, int which)
1438 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1439 _("Bad GNAT array descriptor bounds"));
1442 /* If BOUNDS is an array-bounds structure type, return the bit position
1443 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1444 bound, if WHICH is 1. The first bound is I=1. */
1447 desc_bound_bitpos (struct type *type, int i, int which)
1449 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1452 /* If BOUNDS is an array-bounds structure type, return the bit field size
1453 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1457 desc_bound_bitsize (struct type *type, int i, int which)
1459 type = desc_base_type (type);
1461 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1462 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1464 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1467 /* If TYPE is the type of an array-bounds structure, the type of its
1468 Ith bound (numbering from 1). Otherwise, NULL. */
1470 static struct type *
1471 desc_index_type (struct type *type, int i)
1473 type = desc_base_type (type);
1475 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1476 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1481 /* The number of index positions in the array-bounds type TYPE.
1482 Return 0 if TYPE is NULL. */
1485 desc_arity (struct type *type)
1487 type = desc_base_type (type);
1490 return TYPE_NFIELDS (type) / 2;
1494 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1495 an array descriptor type (representing an unconstrained array
1499 ada_is_direct_array_type (struct type *type)
1503 type = ada_check_typedef (type);
1504 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1505 || ada_is_array_descriptor_type (type));
1508 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1512 ada_is_array_type (struct type *type)
1515 && (TYPE_CODE (type) == TYPE_CODE_PTR
1516 || TYPE_CODE (type) == TYPE_CODE_REF))
1517 type = TYPE_TARGET_TYPE (type);
1518 return ada_is_direct_array_type (type);
1521 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1524 ada_is_simple_array_type (struct type *type)
1528 type = ada_check_typedef (type);
1529 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1530 || (TYPE_CODE (type) == TYPE_CODE_PTR
1531 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1534 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1537 ada_is_array_descriptor_type (struct type *type)
1539 struct type *data_type = desc_data_type (type);
1543 type = ada_check_typedef (type);
1546 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1547 && TYPE_TARGET_TYPE (data_type) != NULL
1548 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1549 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1550 && desc_arity (desc_bounds_type (type)) > 0;
1553 /* Non-zero iff type is a partially mal-formed GNAT array
1554 descriptor. FIXME: This is to compensate for some problems with
1555 debugging output from GNAT. Re-examine periodically to see if it
1559 ada_is_bogus_array_descriptor (struct type *type)
1563 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1564 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1565 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1566 && !ada_is_array_descriptor_type (type);
1570 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1571 (fat pointer) returns the type of the array data described---specifically,
1572 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1573 in from the descriptor; otherwise, they are left unspecified. If
1574 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1575 returns NULL. The result is simply the type of ARR if ARR is not
1578 ada_type_of_array (struct value *arr, int bounds)
1580 if (ada_is_packed_array_type (value_type (arr)))
1581 return decode_packed_array_type (value_type (arr));
1583 if (!ada_is_array_descriptor_type (value_type (arr)))
1584 return value_type (arr);
1588 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1591 struct type *elt_type;
1593 struct value *descriptor;
1594 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1596 elt_type = ada_array_element_type (value_type (arr), -1);
1597 arity = ada_array_arity (value_type (arr));
1599 if (elt_type == NULL || arity == 0)
1600 return ada_check_typedef (value_type (arr));
1602 descriptor = desc_bounds (arr);
1603 if (value_as_long (descriptor) == 0)
1607 struct type *range_type = alloc_type (objf);
1608 struct type *array_type = alloc_type (objf);
1609 struct value *low = desc_one_bound (descriptor, arity, 0);
1610 struct value *high = desc_one_bound (descriptor, arity, 1);
1613 create_range_type (range_type, value_type (low),
1614 longest_to_int (value_as_long (low)),
1615 longest_to_int (value_as_long (high)));
1616 elt_type = create_array_type (array_type, elt_type, range_type);
1619 return lookup_pointer_type (elt_type);
1623 /* If ARR does not represent an array, returns ARR unchanged.
1624 Otherwise, returns either a standard GDB array with bounds set
1625 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1626 GDB array. Returns NULL if ARR is a null fat pointer. */
1629 ada_coerce_to_simple_array_ptr (struct value *arr)
1631 if (ada_is_array_descriptor_type (value_type (arr)))
1633 struct type *arrType = ada_type_of_array (arr, 1);
1634 if (arrType == NULL)
1636 return value_cast (arrType, value_copy (desc_data (arr)));
1638 else if (ada_is_packed_array_type (value_type (arr)))
1639 return decode_packed_array (arr);
1644 /* If ARR does not represent an array, returns ARR unchanged.
1645 Otherwise, returns a standard GDB array describing ARR (which may
1646 be ARR itself if it already is in the proper form). */
1648 static struct value *
1649 ada_coerce_to_simple_array (struct value *arr)
1651 if (ada_is_array_descriptor_type (value_type (arr)))
1653 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1655 error (_("Bounds unavailable for null array pointer."));
1656 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1657 return value_ind (arrVal);
1659 else if (ada_is_packed_array_type (value_type (arr)))
1660 return decode_packed_array (arr);
1665 /* If TYPE represents a GNAT array type, return it translated to an
1666 ordinary GDB array type (possibly with BITSIZE fields indicating
1667 packing). For other types, is the identity. */
1670 ada_coerce_to_simple_array_type (struct type *type)
1672 struct value *mark = value_mark ();
1673 struct value *dummy = value_from_longest (builtin_type_long, 0);
1674 struct type *result;
1675 deprecated_set_value_type (dummy, type);
1676 result = ada_type_of_array (dummy, 0);
1677 value_free_to_mark (mark);
1681 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1684 ada_is_packed_array_type (struct type *type)
1688 type = desc_base_type (type);
1689 type = ada_check_typedef (type);
1691 ada_type_name (type) != NULL
1692 && strstr (ada_type_name (type), "___XP") != NULL;
1695 /* Given that TYPE is a standard GDB array type with all bounds filled
1696 in, and that the element size of its ultimate scalar constituents
1697 (that is, either its elements, or, if it is an array of arrays, its
1698 elements' elements, etc.) is *ELT_BITS, return an identical type,
1699 but with the bit sizes of its elements (and those of any
1700 constituent arrays) recorded in the BITSIZE components of its
1701 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1704 static struct type *
1705 packed_array_type (struct type *type, long *elt_bits)
1707 struct type *new_elt_type;
1708 struct type *new_type;
1709 LONGEST low_bound, high_bound;
1711 type = ada_check_typedef (type);
1712 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1715 new_type = alloc_type (TYPE_OBJFILE (type));
1716 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1718 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1719 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1720 TYPE_NAME (new_type) = ada_type_name (type);
1722 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1723 &low_bound, &high_bound) < 0)
1724 low_bound = high_bound = 0;
1725 if (high_bound < low_bound)
1726 *elt_bits = TYPE_LENGTH (new_type) = 0;
1729 *elt_bits *= (high_bound - low_bound + 1);
1730 TYPE_LENGTH (new_type) =
1731 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1734 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1738 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1740 static struct type *
1741 decode_packed_array_type (struct type *type)
1744 struct block **blocks;
1745 const char *raw_name = ada_type_name (ada_check_typedef (type));
1746 char *name = (char *) alloca (strlen (raw_name) + 1);
1747 char *tail = strstr (raw_name, "___XP");
1748 struct type *shadow_type;
1752 type = desc_base_type (type);
1754 memcpy (name, raw_name, tail - raw_name);
1755 name[tail - raw_name] = '\000';
1757 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1758 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1760 lim_warning (_("could not find bounds information on packed array"));
1763 shadow_type = SYMBOL_TYPE (sym);
1765 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1767 lim_warning (_("could not understand bounds information on packed array"));
1771 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1774 (_("could not understand bit size information on packed array"));
1778 return packed_array_type (shadow_type, &bits);
1781 /* Given that ARR is a struct value *indicating a GNAT packed array,
1782 returns a simple array that denotes that array. Its type is a
1783 standard GDB array type except that the BITSIZEs of the array
1784 target types are set to the number of bits in each element, and the
1785 type length is set appropriately. */
1787 static struct value *
1788 decode_packed_array (struct value *arr)
1792 arr = ada_coerce_ref (arr);
1793 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1794 arr = ada_value_ind (arr);
1796 type = decode_packed_array_type (value_type (arr));
1799 error (_("can't unpack array"));
1803 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1805 /* This is a (right-justified) modular type representing a packed
1806 array with no wrapper. In order to interpret the value through
1807 the (left-justified) packed array type we just built, we must
1808 first left-justify it. */
1809 int bit_size, bit_pos;
1812 mod = ada_modulus (value_type (arr)) - 1;
1819 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1820 arr = ada_value_primitive_packed_val (arr, NULL,
1821 bit_pos / HOST_CHAR_BIT,
1822 bit_pos % HOST_CHAR_BIT,
1827 return coerce_unspec_val_to_type (arr, type);
1831 /* The value of the element of packed array ARR at the ARITY indices
1832 given in IND. ARR must be a simple array. */
1834 static struct value *
1835 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1838 int bits, elt_off, bit_off;
1839 long elt_total_bit_offset;
1840 struct type *elt_type;
1844 elt_total_bit_offset = 0;
1845 elt_type = ada_check_typedef (value_type (arr));
1846 for (i = 0; i < arity; i += 1)
1848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1849 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1851 (_("attempt to do packed indexing of something other than a packed array"));
1854 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1855 LONGEST lowerbound, upperbound;
1858 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1860 lim_warning (_("don't know bounds of array"));
1861 lowerbound = upperbound = 0;
1864 idx = value_as_long (value_pos_atr (ind[i]));
1865 if (idx < lowerbound || idx > upperbound)
1866 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1867 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1868 elt_total_bit_offset += (idx - lowerbound) * bits;
1869 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1872 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1873 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1875 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1880 /* Non-zero iff TYPE includes negative integer values. */
1883 has_negatives (struct type *type)
1885 switch (TYPE_CODE (type))
1890 return !TYPE_UNSIGNED (type);
1891 case TYPE_CODE_RANGE:
1892 return TYPE_LOW_BOUND (type) < 0;
1897 /* Create a new value of type TYPE from the contents of OBJ starting
1898 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1899 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1900 assigning through the result will set the field fetched from.
1901 VALADDR is ignored unless OBJ is NULL, in which case,
1902 VALADDR+OFFSET must address the start of storage containing the
1903 packed value. The value returned in this case is never an lval.
1904 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1907 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1908 long offset, int bit_offset, int bit_size,
1912 int src, /* Index into the source area */
1913 targ, /* Index into the target area */
1914 srcBitsLeft, /* Number of source bits left to move */
1915 nsrc, ntarg, /* Number of source and target bytes */
1916 unusedLS, /* Number of bits in next significant
1917 byte of source that are unused */
1918 accumSize; /* Number of meaningful bits in accum */
1919 unsigned char *bytes; /* First byte containing data to unpack */
1920 unsigned char *unpacked;
1921 unsigned long accum; /* Staging area for bits being transferred */
1923 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1924 /* Transmit bytes from least to most significant; delta is the direction
1925 the indices move. */
1926 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1928 type = ada_check_typedef (type);
1932 v = allocate_value (type);
1933 bytes = (unsigned char *) (valaddr + offset);
1935 else if (value_lazy (obj))
1938 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1939 bytes = (unsigned char *) alloca (len);
1940 read_memory (VALUE_ADDRESS (v), bytes, len);
1944 v = allocate_value (type);
1945 bytes = (unsigned char *) value_contents (obj) + offset;
1950 VALUE_LVAL (v) = VALUE_LVAL (obj);
1951 if (VALUE_LVAL (obj) == lval_internalvar)
1952 VALUE_LVAL (v) = lval_internalvar_component;
1953 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1954 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1955 set_value_bitsize (v, bit_size);
1956 if (value_bitpos (v) >= HOST_CHAR_BIT)
1958 VALUE_ADDRESS (v) += 1;
1959 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1963 set_value_bitsize (v, bit_size);
1964 unpacked = (unsigned char *) value_contents (v);
1966 srcBitsLeft = bit_size;
1968 ntarg = TYPE_LENGTH (type);
1972 memset (unpacked, 0, TYPE_LENGTH (type));
1975 else if (BITS_BIG_ENDIAN)
1978 if (has_negatives (type)
1979 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1983 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1986 switch (TYPE_CODE (type))
1988 case TYPE_CODE_ARRAY:
1989 case TYPE_CODE_UNION:
1990 case TYPE_CODE_STRUCT:
1991 /* Non-scalar values must be aligned at a byte boundary... */
1993 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1994 /* ... And are placed at the beginning (most-significant) bytes
1996 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2000 targ = TYPE_LENGTH (type) - 1;
2006 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2009 unusedLS = bit_offset;
2012 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2019 /* Mask for removing bits of the next source byte that are not
2020 part of the value. */
2021 unsigned int unusedMSMask =
2022 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2024 /* Sign-extend bits for this byte. */
2025 unsigned int signMask = sign & ~unusedMSMask;
2027 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2028 accumSize += HOST_CHAR_BIT - unusedLS;
2029 if (accumSize >= HOST_CHAR_BIT)
2031 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2032 accumSize -= HOST_CHAR_BIT;
2033 accum >>= HOST_CHAR_BIT;
2037 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2044 accum |= sign << accumSize;
2045 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2046 accumSize -= HOST_CHAR_BIT;
2047 accum >>= HOST_CHAR_BIT;
2055 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2056 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2059 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2060 int src_offset, int n)
2062 unsigned int accum, mask;
2063 int accum_bits, chunk_size;
2065 target += targ_offset / HOST_CHAR_BIT;
2066 targ_offset %= HOST_CHAR_BIT;
2067 source += src_offset / HOST_CHAR_BIT;
2068 src_offset %= HOST_CHAR_BIT;
2069 if (BITS_BIG_ENDIAN)
2071 accum = (unsigned char) *source;
2073 accum_bits = HOST_CHAR_BIT - src_offset;
2078 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2079 accum_bits += HOST_CHAR_BIT;
2081 chunk_size = HOST_CHAR_BIT - targ_offset;
2084 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2085 mask = ((1 << chunk_size) - 1) << unused_right;
2088 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2090 accum_bits -= chunk_size;
2097 accum = (unsigned char) *source >> src_offset;
2099 accum_bits = HOST_CHAR_BIT - src_offset;
2103 accum = accum + ((unsigned char) *source << accum_bits);
2104 accum_bits += HOST_CHAR_BIT;
2106 chunk_size = HOST_CHAR_BIT - targ_offset;
2109 mask = ((1 << chunk_size) - 1) << targ_offset;
2110 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2112 accum_bits -= chunk_size;
2113 accum >>= chunk_size;
2120 /* Store the contents of FROMVAL into the location of TOVAL.
2121 Return a new value with the location of TOVAL and contents of
2122 FROMVAL. Handles assignment into packed fields that have
2123 floating-point or non-scalar types. */
2125 static struct value *
2126 ada_value_assign (struct value *toval, struct value *fromval)
2128 struct type *type = value_type (toval);
2129 int bits = value_bitsize (toval);
2131 toval = ada_coerce_ref (toval);
2132 fromval = ada_coerce_ref (fromval);
2134 if (ada_is_direct_array_type (value_type (toval)))
2135 toval = ada_coerce_to_simple_array (toval);
2136 if (ada_is_direct_array_type (value_type (fromval)))
2137 fromval = ada_coerce_to_simple_array (fromval);
2139 if (!deprecated_value_modifiable (toval))
2140 error (_("Left operand of assignment is not a modifiable lvalue."));
2142 if (VALUE_LVAL (toval) == lval_memory
2144 && (TYPE_CODE (type) == TYPE_CODE_FLT
2145 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2147 int len = (value_bitpos (toval)
2148 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2149 char *buffer = (char *) alloca (len);
2151 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2153 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2154 fromval = value_cast (type, fromval);
2156 read_memory (to_addr, buffer, len);
2157 if (BITS_BIG_ENDIAN)
2158 move_bits (buffer, value_bitpos (toval),
2159 value_contents (fromval),
2160 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2163 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2165 write_memory (to_addr, buffer, len);
2166 if (deprecated_memory_changed_hook)
2167 deprecated_memory_changed_hook (to_addr, len);
2169 val = value_copy (toval);
2170 memcpy (value_contents_raw (val), value_contents (fromval),
2171 TYPE_LENGTH (type));
2172 deprecated_set_value_type (val, type);
2177 return value_assign (toval, fromval);
2181 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2182 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2183 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2184 * COMPONENT, and not the inferior's memory. The current contents
2185 * of COMPONENT are ignored. */
2187 value_assign_to_component (struct value *container, struct value *component,
2190 LONGEST offset_in_container =
2191 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2192 - VALUE_ADDRESS (container) - value_offset (container));
2193 int bit_offset_in_container =
2194 value_bitpos (component) - value_bitpos (container);
2197 val = value_cast (value_type (component), val);
2199 if (value_bitsize (component) == 0)
2200 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2202 bits = value_bitsize (component);
2204 if (BITS_BIG_ENDIAN)
2205 move_bits (value_contents_writeable (container) + offset_in_container,
2206 value_bitpos (container) + bit_offset_in_container,
2207 value_contents (val),
2208 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2211 move_bits (value_contents_writeable (container) + offset_in_container,
2212 value_bitpos (container) + bit_offset_in_container,
2213 value_contents (val), 0, bits);
2216 /* The value of the element of array ARR at the ARITY indices given in IND.
2217 ARR may be either a simple array, GNAT array descriptor, or pointer
2221 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2225 struct type *elt_type;
2227 elt = ada_coerce_to_simple_array (arr);
2229 elt_type = ada_check_typedef (value_type (elt));
2230 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2231 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2232 return value_subscript_packed (elt, arity, ind);
2234 for (k = 0; k < arity; k += 1)
2236 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2237 error (_("too many subscripts (%d expected)"), k);
2238 elt = value_subscript (elt, value_pos_atr (ind[k]));
2243 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2244 value of the element of *ARR at the ARITY indices given in
2245 IND. Does not read the entire array into memory. */
2248 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2253 for (k = 0; k < arity; k += 1)
2258 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2259 error (_("too many subscripts (%d expected)"), k);
2260 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2262 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2263 idx = value_pos_atr (ind[k]);
2265 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2266 arr = value_add (arr, idx);
2267 type = TYPE_TARGET_TYPE (type);
2270 return value_ind (arr);
2273 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2274 actual type of ARRAY_PTR is ignored), returns a reference to
2275 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2276 bound of this array is LOW, as per Ada rules. */
2277 static struct value *
2278 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2281 CORE_ADDR base = value_as_address (array_ptr)
2282 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2283 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2284 struct type *index_type =
2285 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2287 struct type *slice_type =
2288 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2289 return value_from_pointer (lookup_reference_type (slice_type), base);
2293 static struct value *
2294 ada_value_slice (struct value *array, int low, int high)
2296 struct type *type = value_type (array);
2297 struct type *index_type =
2298 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2299 struct type *slice_type =
2300 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2301 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2304 /* If type is a record type in the form of a standard GNAT array
2305 descriptor, returns the number of dimensions for type. If arr is a
2306 simple array, returns the number of "array of"s that prefix its
2307 type designation. Otherwise, returns 0. */
2310 ada_array_arity (struct type *type)
2317 type = desc_base_type (type);
2320 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2321 return desc_arity (desc_bounds_type (type));
2323 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2326 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2332 /* If TYPE is a record type in the form of a standard GNAT array
2333 descriptor or a simple array type, returns the element type for
2334 TYPE after indexing by NINDICES indices, or by all indices if
2335 NINDICES is -1. Otherwise, returns NULL. */
2338 ada_array_element_type (struct type *type, int nindices)
2340 type = desc_base_type (type);
2342 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2345 struct type *p_array_type;
2347 p_array_type = desc_data_type (type);
2349 k = ada_array_arity (type);
2353 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2354 if (nindices >= 0 && k > nindices)
2356 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2357 while (k > 0 && p_array_type != NULL)
2359 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2362 return p_array_type;
2364 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2366 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2368 type = TYPE_TARGET_TYPE (type);
2377 /* The type of nth index in arrays of given type (n numbering from 1).
2378 Does not examine memory. */
2381 ada_index_type (struct type *type, int n)
2383 struct type *result_type;
2385 type = desc_base_type (type);
2387 if (n > ada_array_arity (type))
2390 if (ada_is_simple_array_type (type))
2394 for (i = 1; i < n; i += 1)
2395 type = TYPE_TARGET_TYPE (type);
2396 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2397 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2398 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2399 perhaps stabsread.c would make more sense. */
2400 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2401 result_type = builtin_type_int;
2406 return desc_index_type (desc_bounds_type (type), n);
2409 /* Given that arr is an array type, returns the lower bound of the
2410 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2411 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2412 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2413 bounds type. It works for other arrays with bounds supplied by
2414 run-time quantities other than discriminants. */
2417 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2418 struct type ** typep)
2421 struct type *index_type_desc;
2423 if (ada_is_packed_array_type (arr_type))
2424 arr_type = decode_packed_array_type (arr_type);
2426 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2429 *typep = builtin_type_int;
2430 return (LONGEST) - which;
2433 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2434 type = TYPE_TARGET_TYPE (arr_type);
2438 index_type_desc = ada_find_parallel_type (type, "___XA");
2439 if (index_type_desc == NULL)
2441 struct type *range_type;
2442 struct type *index_type;
2446 type = TYPE_TARGET_TYPE (type);
2450 range_type = TYPE_INDEX_TYPE (type);
2451 index_type = TYPE_TARGET_TYPE (range_type);
2452 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2453 index_type = builtin_type_long;
2455 *typep = index_type;
2457 (LONGEST) (which == 0
2458 ? TYPE_LOW_BOUND (range_type)
2459 : TYPE_HIGH_BOUND (range_type));
2463 struct type *index_type =
2464 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2465 NULL, TYPE_OBJFILE (arr_type));
2467 *typep = TYPE_TARGET_TYPE (index_type);
2469 (LONGEST) (which == 0
2470 ? TYPE_LOW_BOUND (index_type)
2471 : TYPE_HIGH_BOUND (index_type));
2475 /* Given that arr is an array value, returns the lower bound of the
2476 nth index (numbering from 1) if which is 0, and the upper bound if
2477 which is 1. This routine will also work for arrays with bounds
2478 supplied by run-time quantities other than discriminants. */
2481 ada_array_bound (struct value *arr, int n, int which)
2483 struct type *arr_type = value_type (arr);
2485 if (ada_is_packed_array_type (arr_type))
2486 return ada_array_bound (decode_packed_array (arr), n, which);
2487 else if (ada_is_simple_array_type (arr_type))
2490 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2491 return value_from_longest (type, v);
2494 return desc_one_bound (desc_bounds (arr), n, which);
2497 /* Given that arr is an array value, returns the length of the
2498 nth index. This routine will also work for arrays with bounds
2499 supplied by run-time quantities other than discriminants.
2500 Does not work for arrays indexed by enumeration types with representation
2501 clauses at the moment. */
2504 ada_array_length (struct value *arr, int n)
2506 struct type *arr_type = ada_check_typedef (value_type (arr));
2508 if (ada_is_packed_array_type (arr_type))
2509 return ada_array_length (decode_packed_array (arr), n);
2511 if (ada_is_simple_array_type (arr_type))
2515 ada_array_bound_from_type (arr_type, n, 1, &type) -
2516 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2517 return value_from_longest (type, v);
2521 value_from_longest (builtin_type_int,
2522 value_as_long (desc_one_bound (desc_bounds (arr),
2524 - value_as_long (desc_one_bound (desc_bounds (arr),
2528 /* An empty array whose type is that of ARR_TYPE (an array type),
2529 with bounds LOW to LOW-1. */
2531 static struct value *
2532 empty_array (struct type *arr_type, int low)
2534 struct type *index_type =
2535 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2537 struct type *elt_type = ada_array_element_type (arr_type, 1);
2538 return allocate_value (create_array_type (NULL, elt_type, index_type));
2542 /* Name resolution */
2544 /* The "decoded" name for the user-definable Ada operator corresponding
2548 ada_decoded_op_name (enum exp_opcode op)
2552 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2554 if (ada_opname_table[i].op == op)
2555 return ada_opname_table[i].decoded;
2557 error (_("Could not find operator name for opcode"));
2561 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2562 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2563 undefined namespace) and converts operators that are
2564 user-defined into appropriate function calls. If CONTEXT_TYPE is
2565 non-null, it provides a preferred result type [at the moment, only
2566 type void has any effect---causing procedures to be preferred over
2567 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2568 return type is preferred. May change (expand) *EXP. */
2571 resolve (struct expression **expp, int void_context_p)
2575 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2578 /* Resolve the operator of the subexpression beginning at
2579 position *POS of *EXPP. "Resolving" consists of replacing
2580 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2581 with their resolutions, replacing built-in operators with
2582 function calls to user-defined operators, where appropriate, and,
2583 when DEPROCEDURE_P is non-zero, converting function-valued variables
2584 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2585 are as in ada_resolve, above. */
2587 static struct value *
2588 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2589 struct type *context_type)
2593 struct expression *exp; /* Convenience: == *expp. */
2594 enum exp_opcode op = (*expp)->elts[pc].opcode;
2595 struct value **argvec; /* Vector of operand types (alloca'ed). */
2596 int nargs; /* Number of operands. */
2603 /* Pass one: resolve operands, saving their types and updating *pos,
2608 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2609 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2614 resolve_subexp (expp, pos, 0, NULL);
2616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2621 resolve_subexp (expp, pos, 0, NULL);
2626 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2629 case OP_ATR_MODULUS:
2639 case TERNOP_IN_RANGE:
2640 case BINOP_IN_BOUNDS:
2646 case OP_DISCRETE_RANGE:
2648 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2657 arg1 = resolve_subexp (expp, pos, 0, NULL);
2659 resolve_subexp (expp, pos, 1, NULL);
2661 resolve_subexp (expp, pos, 1, value_type (arg1));
2678 case BINOP_LOGICAL_AND:
2679 case BINOP_LOGICAL_OR:
2680 case BINOP_BITWISE_AND:
2681 case BINOP_BITWISE_IOR:
2682 case BINOP_BITWISE_XOR:
2685 case BINOP_NOTEQUAL:
2692 case BINOP_SUBSCRIPT:
2697 case UNOP_LOGICAL_NOT:
2714 case OP_INTERNALVAR:
2723 case STRUCTOP_STRUCT:
2724 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2737 error (_("Unexpected operator during name resolution"));
2740 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2741 for (i = 0; i < nargs; i += 1)
2742 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2746 /* Pass two: perform any resolution on principal operator. */
2753 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2755 struct ada_symbol_info *candidates;
2759 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2760 (exp->elts[pc + 2].symbol),
2761 exp->elts[pc + 1].block, VAR_DOMAIN,
2764 if (n_candidates > 1)
2766 /* Types tend to get re-introduced locally, so if there
2767 are any local symbols that are not types, first filter
2770 for (j = 0; j < n_candidates; j += 1)
2771 switch (SYMBOL_CLASS (candidates[j].sym))
2777 case LOC_REGPARM_ADDR:
2781 case LOC_BASEREG_ARG:
2783 case LOC_COMPUTED_ARG:
2789 if (j < n_candidates)
2792 while (j < n_candidates)
2794 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2796 candidates[j] = candidates[n_candidates - 1];
2805 if (n_candidates == 0)
2806 error (_("No definition found for %s"),
2807 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2808 else if (n_candidates == 1)
2810 else if (deprocedure_p
2811 && !is_nonfunction (candidates, n_candidates))
2813 i = ada_resolve_function
2814 (candidates, n_candidates, NULL, 0,
2815 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2818 error (_("Could not find a match for %s"),
2819 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2823 printf_filtered (_("Multiple matches for %s\n"),
2824 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2825 user_select_syms (candidates, n_candidates, 1);
2829 exp->elts[pc + 1].block = candidates[i].block;
2830 exp->elts[pc + 2].symbol = candidates[i].sym;
2831 if (innermost_block == NULL
2832 || contained_in (candidates[i].block, innermost_block))
2833 innermost_block = candidates[i].block;
2837 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2840 replace_operator_with_call (expp, pc, 0, 0,
2841 exp->elts[pc + 2].symbol,
2842 exp->elts[pc + 1].block);
2849 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2850 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2852 struct ada_symbol_info *candidates;
2856 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2857 (exp->elts[pc + 5].symbol),
2858 exp->elts[pc + 4].block, VAR_DOMAIN,
2860 if (n_candidates == 1)
2864 i = ada_resolve_function
2865 (candidates, n_candidates,
2867 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2870 error (_("Could not find a match for %s"),
2871 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2874 exp->elts[pc + 4].block = candidates[i].block;
2875 exp->elts[pc + 5].symbol = candidates[i].sym;
2876 if (innermost_block == NULL
2877 || contained_in (candidates[i].block, innermost_block))
2878 innermost_block = candidates[i].block;
2889 case BINOP_BITWISE_AND:
2890 case BINOP_BITWISE_IOR:
2891 case BINOP_BITWISE_XOR:
2893 case BINOP_NOTEQUAL:
2901 case UNOP_LOGICAL_NOT:
2903 if (possible_user_operator_p (op, argvec))
2905 struct ada_symbol_info *candidates;
2909 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2910 (struct block *) NULL, VAR_DOMAIN,
2912 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2913 ada_decoded_op_name (op), NULL);
2917 replace_operator_with_call (expp, pc, nargs, 1,
2918 candidates[i].sym, candidates[i].block);
2928 return evaluate_subexp_type (exp, pos);
2931 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2932 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2933 a non-pointer. A type of 'void' (which is never a valid expression type)
2934 by convention matches anything. */
2935 /* The term "match" here is rather loose. The match is heuristic and
2936 liberal. FIXME: TOO liberal, in fact. */
2939 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2941 ftype = ada_check_typedef (ftype);
2942 atype = ada_check_typedef (atype);
2944 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2945 ftype = TYPE_TARGET_TYPE (ftype);
2946 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2947 atype = TYPE_TARGET_TYPE (atype);
2949 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2950 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2953 switch (TYPE_CODE (ftype))
2958 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2959 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2960 TYPE_TARGET_TYPE (atype), 0);
2963 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2965 case TYPE_CODE_ENUM:
2966 case TYPE_CODE_RANGE:
2967 switch (TYPE_CODE (atype))
2970 case TYPE_CODE_ENUM:
2971 case TYPE_CODE_RANGE:
2977 case TYPE_CODE_ARRAY:
2978 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2979 || ada_is_array_descriptor_type (atype));
2981 case TYPE_CODE_STRUCT:
2982 if (ada_is_array_descriptor_type (ftype))
2983 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2984 || ada_is_array_descriptor_type (atype));
2986 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2987 && !ada_is_array_descriptor_type (atype));
2989 case TYPE_CODE_UNION:
2991 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2995 /* Return non-zero if the formals of FUNC "sufficiently match" the
2996 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2997 may also be an enumeral, in which case it is treated as a 0-
2998 argument function. */
3001 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3004 struct type *func_type = SYMBOL_TYPE (func);
3006 if (SYMBOL_CLASS (func) == LOC_CONST
3007 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3008 return (n_actuals == 0);
3009 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3012 if (TYPE_NFIELDS (func_type) != n_actuals)
3015 for (i = 0; i < n_actuals; i += 1)
3017 if (actuals[i] == NULL)
3021 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3022 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3024 if (!ada_type_match (ftype, atype, 1))
3031 /* False iff function type FUNC_TYPE definitely does not produce a value
3032 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3033 FUNC_TYPE is not a valid function type with a non-null return type
3034 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3037 return_match (struct type *func_type, struct type *context_type)
3039 struct type *return_type;
3041 if (func_type == NULL)
3044 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3045 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3047 return_type = base_type (func_type);
3048 if (return_type == NULL)
3051 context_type = base_type (context_type);
3053 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3054 return context_type == NULL || return_type == context_type;
3055 else if (context_type == NULL)
3056 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3058 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3062 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3063 function (if any) that matches the types of the NARGS arguments in
3064 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3065 that returns that type, then eliminate matches that don't. If
3066 CONTEXT_TYPE is void and there is at least one match that does not
3067 return void, eliminate all matches that do.
3069 Asks the user if there is more than one match remaining. Returns -1
3070 if there is no such symbol or none is selected. NAME is used
3071 solely for messages. May re-arrange and modify SYMS in
3072 the process; the index returned is for the modified vector. */
3075 ada_resolve_function (struct ada_symbol_info syms[],
3076 int nsyms, struct value **args, int nargs,
3077 const char *name, struct type *context_type)
3080 int m; /* Number of hits */
3081 struct type *fallback;
3082 struct type *return_type;
3084 return_type = context_type;
3085 if (context_type == NULL)
3086 fallback = builtin_type_void;
3093 for (k = 0; k < nsyms; k += 1)
3095 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3097 if (ada_args_match (syms[k].sym, args, nargs)
3098 && return_match (type, return_type))
3104 if (m > 0 || return_type == fallback)
3107 return_type = fallback;
3114 printf_filtered (_("Multiple matches for %s\n"), name);
3115 user_select_syms (syms, m, 1);
3121 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3122 in a listing of choices during disambiguation (see sort_choices, below).
3123 The idea is that overloadings of a subprogram name from the
3124 same package should sort in their source order. We settle for ordering
3125 such symbols by their trailing number (__N or $N). */
3128 encoded_ordered_before (char *N0, char *N1)
3132 else if (N0 == NULL)
3137 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3139 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3141 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3142 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3146 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3149 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3151 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3152 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3154 return (strcmp (N0, N1) < 0);
3158 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3162 sort_choices (struct ada_symbol_info syms[], int nsyms)
3165 for (i = 1; i < nsyms; i += 1)
3167 struct ada_symbol_info sym = syms[i];
3170 for (j = i - 1; j >= 0; j -= 1)
3172 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3173 SYMBOL_LINKAGE_NAME (sym.sym)))
3175 syms[j + 1] = syms[j];
3181 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3182 by asking the user (if necessary), returning the number selected,
3183 and setting the first elements of SYMS items. Error if no symbols
3186 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3187 to be re-integrated one of these days. */
3190 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3193 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3195 int first_choice = (max_results == 1) ? 1 : 2;
3197 if (max_results < 1)
3198 error (_("Request to select 0 symbols!"));
3202 printf_unfiltered (_("[0] cancel\n"));
3203 if (max_results > 1)
3204 printf_unfiltered (_("[1] all\n"));
3206 sort_choices (syms, nsyms);
3208 for (i = 0; i < nsyms; i += 1)
3210 if (syms[i].sym == NULL)
3213 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3215 struct symtab_and_line sal =
3216 find_function_start_sal (syms[i].sym, 1);
3217 if (sal.symtab == NULL)
3218 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3220 SYMBOL_PRINT_NAME (syms[i].sym),
3223 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3224 SYMBOL_PRINT_NAME (syms[i].sym),
3225 sal.symtab->filename, sal.line);
3231 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3232 && SYMBOL_TYPE (syms[i].sym) != NULL
3233 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3234 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3236 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3237 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3239 SYMBOL_PRINT_NAME (syms[i].sym),
3240 symtab->filename, SYMBOL_LINE (syms[i].sym));
3241 else if (is_enumeral
3242 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3244 printf_unfiltered (("[%d] "), i + first_choice);
3245 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3247 printf_unfiltered (_("'(%s) (enumeral)\n"),
3248 SYMBOL_PRINT_NAME (syms[i].sym));
3250 else if (symtab != NULL)
3251 printf_unfiltered (is_enumeral
3252 ? _("[%d] %s in %s (enumeral)\n")
3253 : _("[%d] %s at %s:?\n"),
3255 SYMBOL_PRINT_NAME (syms[i].sym),
3258 printf_unfiltered (is_enumeral
3259 ? _("[%d] %s (enumeral)\n")
3260 : _("[%d] %s at ?\n"),
3262 SYMBOL_PRINT_NAME (syms[i].sym));
3266 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3269 for (i = 0; i < n_chosen; i += 1)
3270 syms[i] = syms[chosen[i]];
3275 /* Read and validate a set of numeric choices from the user in the
3276 range 0 .. N_CHOICES-1. Place the results in increasing
3277 order in CHOICES[0 .. N-1], and return N.
3279 The user types choices as a sequence of numbers on one line
3280 separated by blanks, encoding them as follows:
3282 + A choice of 0 means to cancel the selection, throwing an error.
3283 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3284 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3286 The user is not allowed to choose more than MAX_RESULTS values.
3288 ANNOTATION_SUFFIX, if present, is used to annotate the input
3289 prompts (for use with the -f switch). */
3292 get_selections (int *choices, int n_choices, int max_results,
3293 int is_all_choice, char *annotation_suffix)
3298 int first_choice = is_all_choice ? 2 : 1;
3300 prompt = getenv ("PS2");
3304 printf_unfiltered (("%s "), prompt);
3305 gdb_flush (gdb_stdout);
3307 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3310 error_no_arg (_("one or more choice numbers"));
3314 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3315 order, as given in args. Choices are validated. */
3321 while (isspace (*args))
3323 if (*args == '\0' && n_chosen == 0)
3324 error_no_arg (_("one or more choice numbers"));
3325 else if (*args == '\0')
3328 choice = strtol (args, &args2, 10);
3329 if (args == args2 || choice < 0
3330 || choice > n_choices + first_choice - 1)
3331 error (_("Argument must be choice number"));
3335 error (_("cancelled"));
3337 if (choice < first_choice)
3339 n_chosen = n_choices;
3340 for (j = 0; j < n_choices; j += 1)
3344 choice -= first_choice;
3346 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3350 if (j < 0 || choice != choices[j])
3353 for (k = n_chosen - 1; k > j; k -= 1)
3354 choices[k + 1] = choices[k];
3355 choices[j + 1] = choice;
3360 if (n_chosen > max_results)
3361 error (_("Select no more than %d of the above"), max_results);
3366 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3367 on the function identified by SYM and BLOCK, and taking NARGS
3368 arguments. Update *EXPP as needed to hold more space. */
3371 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3372 int oplen, struct symbol *sym,
3373 struct block *block)
3375 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3376 symbol, -oplen for operator being replaced). */
3377 struct expression *newexp = (struct expression *)
3378 xmalloc (sizeof (struct expression)
3379 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3380 struct expression *exp = *expp;
3382 newexp->nelts = exp->nelts + 7 - oplen;
3383 newexp->language_defn = exp->language_defn;
3384 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3385 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3386 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3388 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3389 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3391 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3392 newexp->elts[pc + 4].block = block;
3393 newexp->elts[pc + 5].symbol = sym;
3399 /* Type-class predicates */
3401 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3405 numeric_type_p (struct type *type)
3411 switch (TYPE_CODE (type))
3416 case TYPE_CODE_RANGE:
3417 return (type == TYPE_TARGET_TYPE (type)
3418 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3425 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3428 integer_type_p (struct type *type)
3434 switch (TYPE_CODE (type))
3438 case TYPE_CODE_RANGE:
3439 return (type == TYPE_TARGET_TYPE (type)
3440 || integer_type_p (TYPE_TARGET_TYPE (type)));
3447 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3450 scalar_type_p (struct type *type)
3456 switch (TYPE_CODE (type))
3459 case TYPE_CODE_RANGE:
3460 case TYPE_CODE_ENUM:
3469 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3472 discrete_type_p (struct type *type)
3478 switch (TYPE_CODE (type))
3481 case TYPE_CODE_RANGE:
3482 case TYPE_CODE_ENUM:
3490 /* Returns non-zero if OP with operands in the vector ARGS could be
3491 a user-defined function. Errs on the side of pre-defined operators
3492 (i.e., result 0). */
3495 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3497 struct type *type0 =
3498 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3499 struct type *type1 =
3500 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3514 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3518 case BINOP_BITWISE_AND:
3519 case BINOP_BITWISE_IOR:
3520 case BINOP_BITWISE_XOR:
3521 return (!(integer_type_p (type0) && integer_type_p (type1)));
3524 case BINOP_NOTEQUAL:
3529 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3533 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3534 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3535 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3536 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3537 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3538 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3539 != TYPE_CODE_ARRAY))));
3542 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3546 case UNOP_LOGICAL_NOT:
3548 return (!numeric_type_p (type0));
3555 /* NOTE: In the following, we assume that a renaming type's name may
3556 have an ___XD suffix. It would be nice if this went away at some
3559 /* If TYPE encodes a renaming, returns the renaming suffix, which
3560 is XR for an object renaming, XRP for a procedure renaming, XRE for
3561 an exception renaming, and XRS for a subprogram renaming. Returns
3562 NULL if NAME encodes none of these. */
3565 ada_renaming_type (struct type *type)
3567 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3569 const char *name = type_name_no_tag (type);
3570 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3572 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3581 /* Return non-zero iff SYM encodes an object renaming. */
3584 ada_is_object_renaming (struct symbol *sym)
3586 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3587 return renaming_type != NULL
3588 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3591 /* Assuming that SYM encodes a non-object renaming, returns the original
3592 name of the renamed entity. The name is good until the end of
3596 ada_simple_renamed_entity (struct symbol *sym)
3599 const char *raw_name;
3603 type = SYMBOL_TYPE (sym);
3604 if (type == NULL || TYPE_NFIELDS (type) < 1)
3605 error (_("Improperly encoded renaming."));
3607 raw_name = TYPE_FIELD_NAME (type, 0);
3608 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3610 error (_("Improperly encoded renaming."));
3612 result = xmalloc (len + 1);
3613 strncpy (result, raw_name, len);
3614 result[len] = '\000';
3620 /* Evaluation: Function Calls */
3622 /* Return an lvalue containing the value VAL. This is the identity on
3623 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3624 on the stack, using and updating *SP as the stack pointer, and
3625 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3627 static struct value *
3628 ensure_lval (struct value *val, CORE_ADDR *sp)
3630 if (! VALUE_LVAL (val))
3632 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3634 /* The following is taken from the structure-return code in
3635 call_function_by_hand. FIXME: Therefore, some refactoring seems
3637 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3639 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3640 reserving sufficient space. */
3642 if (gdbarch_frame_align_p (current_gdbarch))
3643 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3644 VALUE_ADDRESS (val) = *sp;
3648 /* Stack grows upward. Align the frame, allocate space, and
3649 then again, re-align the frame. */
3650 if (gdbarch_frame_align_p (current_gdbarch))
3651 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3652 VALUE_ADDRESS (val) = *sp;
3654 if (gdbarch_frame_align_p (current_gdbarch))
3655 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3658 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3664 /* Return the value ACTUAL, converted to be an appropriate value for a
3665 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3666 allocating any necessary descriptors (fat pointers), or copies of
3667 values not residing in memory, updating it as needed. */
3669 static struct value *
3670 convert_actual (struct value *actual, struct type *formal_type0,
3673 struct type *actual_type = ada_check_typedef (value_type (actual));
3674 struct type *formal_type = ada_check_typedef (formal_type0);
3675 struct type *formal_target =
3676 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3677 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3678 struct type *actual_target =
3679 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3680 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3682 if (ada_is_array_descriptor_type (formal_target)
3683 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3684 return make_array_descriptor (formal_type, actual, sp);
3685 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3687 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3688 && ada_is_array_descriptor_type (actual_target))
3689 return desc_data (actual);
3690 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3692 if (VALUE_LVAL (actual) != lval_memory)
3695 actual_type = ada_check_typedef (value_type (actual));
3696 val = allocate_value (actual_type);
3697 memcpy ((char *) value_contents_raw (val),
3698 (char *) value_contents (actual),
3699 TYPE_LENGTH (actual_type));
3700 actual = ensure_lval (val, sp);
3702 return value_addr (actual);
3705 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3706 return ada_value_ind (actual);
3712 /* Push a descriptor of type TYPE for array value ARR on the stack at
3713 *SP, updating *SP to reflect the new descriptor. Return either
3714 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3715 to-descriptor type rather than a descriptor type), a struct value *
3716 representing a pointer to this descriptor. */
3718 static struct value *
3719 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3721 struct type *bounds_type = desc_bounds_type (type);
3722 struct type *desc_type = desc_base_type (type);
3723 struct value *descriptor = allocate_value (desc_type);
3724 struct value *bounds = allocate_value (bounds_type);
3727 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3729 modify_general_field (value_contents_writeable (bounds),
3730 value_as_long (ada_array_bound (arr, i, 0)),
3731 desc_bound_bitpos (bounds_type, i, 0),
3732 desc_bound_bitsize (bounds_type, i, 0));
3733 modify_general_field (value_contents_writeable (bounds),
3734 value_as_long (ada_array_bound (arr, i, 1)),
3735 desc_bound_bitpos (bounds_type, i, 1),
3736 desc_bound_bitsize (bounds_type, i, 1));
3739 bounds = ensure_lval (bounds, sp);
3741 modify_general_field (value_contents_writeable (descriptor),
3742 VALUE_ADDRESS (ensure_lval (arr, sp)),
3743 fat_pntr_data_bitpos (desc_type),
3744 fat_pntr_data_bitsize (desc_type));
3746 modify_general_field (value_contents_writeable (descriptor),
3747 VALUE_ADDRESS (bounds),
3748 fat_pntr_bounds_bitpos (desc_type),
3749 fat_pntr_bounds_bitsize (desc_type));
3751 descriptor = ensure_lval (descriptor, sp);
3753 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3754 return value_addr (descriptor);
3760 /* Assuming a dummy frame has been established on the target, perform any
3761 conversions needed for calling function FUNC on the NARGS actual
3762 parameters in ARGS, other than standard C conversions. Does
3763 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3764 does not match the number of arguments expected. Use *SP as a
3765 stack pointer for additional data that must be pushed, updating its
3769 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3774 if (TYPE_NFIELDS (value_type (func)) == 0
3775 || nargs != TYPE_NFIELDS (value_type (func)))
3778 for (i = 0; i < nargs; i += 1)
3780 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3783 /* Dummy definitions for an experimental caching module that is not
3784 * used in the public sources. */
3787 lookup_cached_symbol (const char *name, domain_enum namespace,
3788 struct symbol **sym, struct block **block,
3789 struct symtab **symtab)
3795 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3796 struct block *block, struct symtab *symtab)
3802 /* Return the result of a standard (literal, C-like) lookup of NAME in
3803 given DOMAIN, visible from lexical block BLOCK. */
3805 static struct symbol *
3806 standard_lookup (const char *name, const struct block *block,
3810 struct symtab *symtab;
3812 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3815 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3816 cache_symbol (name, domain, sym, block_found, symtab);
3821 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3822 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3823 since they contend in overloading in the same way. */
3825 is_nonfunction (struct ada_symbol_info syms[], int n)
3829 for (i = 0; i < n; i += 1)
3830 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3831 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3832 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3838 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3839 struct types. Otherwise, they may not. */
3842 equiv_types (struct type *type0, struct type *type1)
3846 if (type0 == NULL || type1 == NULL
3847 || TYPE_CODE (type0) != TYPE_CODE (type1))
3849 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3850 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3851 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3852 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3858 /* True iff SYM0 represents the same entity as SYM1, or one that is
3859 no more defined than that of SYM1. */
3862 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3866 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3867 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3870 switch (SYMBOL_CLASS (sym0))
3876 struct type *type0 = SYMBOL_TYPE (sym0);
3877 struct type *type1 = SYMBOL_TYPE (sym1);
3878 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3879 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3880 int len0 = strlen (name0);
3882 TYPE_CODE (type0) == TYPE_CODE (type1)
3883 && (equiv_types (type0, type1)
3884 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3885 && strncmp (name1 + len0, "___XV", 5) == 0));
3888 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3889 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3895 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3896 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3899 add_defn_to_vec (struct obstack *obstackp,
3901 struct block *block, struct symtab *symtab)
3905 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3907 /* Do not try to complete stub types, as the debugger is probably
3908 already scanning all symbols matching a certain name at the
3909 time when this function is called. Trying to replace the stub
3910 type by its associated full type will cause us to restart a scan
3911 which may lead to an infinite recursion. Instead, the client
3912 collecting the matching symbols will end up collecting several
3913 matches, with at least one of them complete. It can then filter
3914 out the stub ones if needed. */
3916 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3918 if (lesseq_defined_than (sym, prevDefns[i].sym))
3920 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3922 prevDefns[i].sym = sym;
3923 prevDefns[i].block = block;
3924 prevDefns[i].symtab = symtab;
3930 struct ada_symbol_info info;
3934 info.symtab = symtab;
3935 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3939 /* Number of ada_symbol_info structures currently collected in
3940 current vector in *OBSTACKP. */
3943 num_defns_collected (struct obstack *obstackp)
3945 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3948 /* Vector of ada_symbol_info structures currently collected in current
3949 vector in *OBSTACKP. If FINISH, close off the vector and return
3950 its final address. */
3952 static struct ada_symbol_info *
3953 defns_collected (struct obstack *obstackp, int finish)
3956 return obstack_finish (obstackp);
3958 return (struct ada_symbol_info *) obstack_base (obstackp);
3961 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3962 Check the global symbols if GLOBAL, the static symbols if not.
3963 Do wild-card match if WILD. */
3965 static struct partial_symbol *
3966 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3967 int global, domain_enum namespace, int wild)
3969 struct partial_symbol **start;
3970 int name_len = strlen (name);
3971 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3980 pst->objfile->global_psymbols.list + pst->globals_offset :
3981 pst->objfile->static_psymbols.list + pst->statics_offset);
3985 for (i = 0; i < length; i += 1)
3987 struct partial_symbol *psym = start[i];
3989 if (SYMBOL_DOMAIN (psym) == namespace
3990 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4004 int M = (U + i) >> 1;
4005 struct partial_symbol *psym = start[M];
4006 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4008 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4010 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4021 struct partial_symbol *psym = start[i];
4023 if (SYMBOL_DOMAIN (psym) == namespace)
4025 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4033 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4047 int M = (U + i) >> 1;
4048 struct partial_symbol *psym = start[M];
4049 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4051 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4053 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4064 struct partial_symbol *psym = start[i];
4066 if (SYMBOL_DOMAIN (psym) == namespace)
4070 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4073 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4075 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4085 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4095 /* Find a symbol table containing symbol SYM or NULL if none. */
4097 static struct symtab *
4098 symtab_for_sym (struct symbol *sym)
4101 struct objfile *objfile;
4103 struct symbol *tmp_sym;
4104 struct dict_iterator iter;
4107 ALL_PRIMARY_SYMTABS (objfile, s)
4109 switch (SYMBOL_CLASS (sym))
4117 case LOC_CONST_BYTES:
4118 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4119 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4121 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4122 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4128 switch (SYMBOL_CLASS (sym))
4134 case LOC_REGPARM_ADDR:
4139 case LOC_BASEREG_ARG:
4141 case LOC_COMPUTED_ARG:
4142 for (j = FIRST_LOCAL_BLOCK;
4143 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4145 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4146 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4157 /* Return a minimal symbol matching NAME according to Ada decoding
4158 rules. Returns NULL if there is no such minimal symbol. Names
4159 prefixed with "standard__" are handled specially: "standard__" is
4160 first stripped off, and only static and global symbols are searched. */
4162 struct minimal_symbol *
4163 ada_lookup_simple_minsym (const char *name)
4165 struct objfile *objfile;
4166 struct minimal_symbol *msymbol;
4169 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4171 name += sizeof ("standard__") - 1;
4175 wild_match = (strstr (name, "__") == NULL);
4177 ALL_MSYMBOLS (objfile, msymbol)
4179 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4180 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4187 /* For all subprograms that statically enclose the subprogram of the
4188 selected frame, add symbols matching identifier NAME in DOMAIN
4189 and their blocks to the list of data in OBSTACKP, as for
4190 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4194 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4195 const char *name, domain_enum namespace,
4200 /* True if TYPE is definitely an artificial type supplied to a symbol
4201 for which no debugging information was given in the symbol file. */
4204 is_nondebugging_type (struct type *type)
4206 char *name = ada_type_name (type);
4207 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4210 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4211 duplicate other symbols in the list (The only case I know of where
4212 this happens is when object files containing stabs-in-ecoff are
4213 linked with files containing ordinary ecoff debugging symbols (or no
4214 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4215 Returns the number of items in the modified list. */
4218 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4225 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4226 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4227 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4229 for (j = 0; j < nsyms; j += 1)
4232 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4233 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4234 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4235 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4236 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4237 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4240 for (k = i + 1; k < nsyms; k += 1)
4241 syms[k - 1] = syms[k];
4254 /* Given a type that corresponds to a renaming entity, use the type name
4255 to extract the scope (package name or function name, fully qualified,
4256 and following the GNAT encoding convention) where this renaming has been
4257 defined. The string returned needs to be deallocated after use. */
4260 xget_renaming_scope (struct type *renaming_type)
4262 /* The renaming types adhere to the following convention:
4263 <scope>__<rename>___<XR extension>.
4264 So, to extract the scope, we search for the "___XR" extension,
4265 and then backtrack until we find the first "__". */
4267 const char *name = type_name_no_tag (renaming_type);
4268 char *suffix = strstr (name, "___XR");
4273 /* Now, backtrack a bit until we find the first "__". Start looking
4274 at suffix - 3, as the <rename> part is at least one character long. */
4276 for (last = suffix - 3; last > name; last--)
4277 if (last[0] == '_' && last[1] == '_')
4280 /* Make a copy of scope and return it. */
4282 scope_len = last - name;
4283 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4285 strncpy (scope, name, scope_len);
4286 scope[scope_len] = '\0';
4291 /* Return nonzero if NAME corresponds to a package name. */
4294 is_package_name (const char *name)
4296 /* Here, We take advantage of the fact that no symbols are generated
4297 for packages, while symbols are generated for each function.
4298 So the condition for NAME represent a package becomes equivalent
4299 to NAME not existing in our list of symbols. There is only one
4300 small complication with library-level functions (see below). */
4304 /* If it is a function that has not been defined at library level,
4305 then we should be able to look it up in the symbols. */
4306 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4309 /* Library-level function names start with "_ada_". See if function
4310 "_ada_" followed by NAME can be found. */
4312 /* Do a quick check that NAME does not contain "__", since library-level
4313 functions names cannot contain "__" in them. */
4314 if (strstr (name, "__") != NULL)
4317 fun_name = xstrprintf ("_ada_%s", name);
4319 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4322 /* Return nonzero if SYM corresponds to a renaming entity that is
4323 visible from FUNCTION_NAME. */
4326 renaming_is_visible (const struct symbol *sym, char *function_name)
4328 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4330 make_cleanup (xfree, scope);
4332 /* If the rename has been defined in a package, then it is visible. */
4333 if (is_package_name (scope))
4336 /* Check that the rename is in the current function scope by checking
4337 that its name starts with SCOPE. */
4339 /* If the function name starts with "_ada_", it means that it is
4340 a library-level function. Strip this prefix before doing the
4341 comparison, as the encoding for the renaming does not contain
4343 if (strncmp (function_name, "_ada_", 5) == 0)
4346 return (strncmp (function_name, scope, strlen (scope)) == 0);
4349 /* Iterates over the SYMS list and remove any entry that corresponds to
4350 a renaming entity that is not visible from the function associated
4354 GNAT emits a type following a specified encoding for each renaming
4355 entity. Unfortunately, STABS currently does not support the definition
4356 of types that are local to a given lexical block, so all renamings types
4357 are emitted at library level. As a consequence, if an application
4358 contains two renaming entities using the same name, and a user tries to
4359 print the value of one of these entities, the result of the ada symbol
4360 lookup will also contain the wrong renaming type.
4362 This function partially covers for this limitation by attempting to
4363 remove from the SYMS list renaming symbols that should be visible
4364 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4365 method with the current information available. The implementation
4366 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4368 - When the user tries to print a rename in a function while there
4369 is another rename entity defined in a package: Normally, the
4370 rename in the function has precedence over the rename in the
4371 package, so the latter should be removed from the list. This is
4372 currently not the case.
4374 - This function will incorrectly remove valid renames if
4375 the CURRENT_BLOCK corresponds to a function which symbol name
4376 has been changed by an "Export" pragma. As a consequence,
4377 the user will be unable to print such rename entities. */
4380 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4381 int nsyms, const struct block *current_block)
4383 struct symbol *current_function;
4384 char *current_function_name;
4387 /* Extract the function name associated to CURRENT_BLOCK.
4388 Abort if unable to do so. */
4390 if (current_block == NULL)
4393 current_function = block_function (current_block);
4394 if (current_function == NULL)
4397 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4398 if (current_function_name == NULL)
4401 /* Check each of the symbols, and remove it from the list if it is
4402 a type corresponding to a renaming that is out of the scope of
4403 the current block. */
4408 if (ada_is_object_renaming (syms[i].sym)
4409 && !renaming_is_visible (syms[i].sym, current_function_name))
4412 for (j = i + 1; j < nsyms; j++)
4413 syms[j - 1] = syms[j];
4423 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4424 scope and in global scopes, returning the number of matches. Sets
4425 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4426 indicating the symbols found and the blocks and symbol tables (if
4427 any) in which they were found. This vector are transient---good only to
4428 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4429 symbol match within the nest of blocks whose innermost member is BLOCK0,
4430 is the one match returned (no other matches in that or
4431 enclosing blocks is returned). If there are any matches in or
4432 surrounding BLOCK0, then these alone are returned. Otherwise, the
4433 search extends to global and file-scope (static) symbol tables.
4434 Names prefixed with "standard__" are handled specially: "standard__"
4435 is first stripped off, and only static and global symbols are searched. */
4438 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4439 domain_enum namespace,
4440 struct ada_symbol_info **results)
4444 struct partial_symtab *ps;
4445 struct blockvector *bv;
4446 struct objfile *objfile;
4447 struct block *block;
4449 struct minimal_symbol *msymbol;
4455 obstack_free (&symbol_list_obstack, NULL);
4456 obstack_init (&symbol_list_obstack);
4460 /* Search specified block and its superiors. */
4462 wild_match = (strstr (name0, "__") == NULL);
4464 block = (struct block *) block0; /* FIXME: No cast ought to be
4465 needed, but adding const will
4466 have a cascade effect. */
4467 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4471 name = name0 + sizeof ("standard__") - 1;
4475 while (block != NULL)
4478 ada_add_block_symbols (&symbol_list_obstack, block, name,
4479 namespace, NULL, NULL, wild_match);
4481 /* If we found a non-function match, assume that's the one. */
4482 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4483 num_defns_collected (&symbol_list_obstack)))
4486 block = BLOCK_SUPERBLOCK (block);
4489 /* If no luck so far, try to find NAME as a local symbol in some lexically
4490 enclosing subprogram. */
4491 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4492 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4493 name, namespace, wild_match);
4495 /* If we found ANY matches among non-global symbols, we're done. */
4497 if (num_defns_collected (&symbol_list_obstack) > 0)
4501 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4504 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4508 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4509 tables, and psymtab's. */
4511 ALL_PRIMARY_SYMTABS (objfile, s)
4514 bv = BLOCKVECTOR (s);
4515 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4516 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4517 objfile, s, wild_match);
4520 if (namespace == VAR_DOMAIN)
4522 ALL_MSYMBOLS (objfile, msymbol)
4524 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4526 switch (MSYMBOL_TYPE (msymbol))
4528 case mst_solib_trampoline:
4531 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4534 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4536 bv = BLOCKVECTOR (s);
4537 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4538 ada_add_block_symbols (&symbol_list_obstack, block,
4539 SYMBOL_LINKAGE_NAME (msymbol),
4540 namespace, objfile, s, wild_match);
4542 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4544 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4545 ada_add_block_symbols (&symbol_list_obstack, block,
4546 SYMBOL_LINKAGE_NAME (msymbol),
4547 namespace, objfile, s,
4556 ALL_PSYMTABS (objfile, ps)
4560 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4562 s = PSYMTAB_TO_SYMTAB (ps);
4565 bv = BLOCKVECTOR (s);
4566 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4567 ada_add_block_symbols (&symbol_list_obstack, block, name,
4568 namespace, objfile, s, wild_match);
4572 /* Now add symbols from all per-file blocks if we've gotten no hits
4573 (Not strictly correct, but perhaps better than an error).
4574 Do the symtabs first, then check the psymtabs. */
4576 if (num_defns_collected (&symbol_list_obstack) == 0)
4579 ALL_PRIMARY_SYMTABS (objfile, s)
4582 bv = BLOCKVECTOR (s);
4583 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4584 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4585 objfile, s, wild_match);
4588 ALL_PSYMTABS (objfile, ps)
4592 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4594 s = PSYMTAB_TO_SYMTAB (ps);
4595 bv = BLOCKVECTOR (s);
4598 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4599 ada_add_block_symbols (&symbol_list_obstack, block, name,
4600 namespace, objfile, s, wild_match);
4606 ndefns = num_defns_collected (&symbol_list_obstack);
4607 *results = defns_collected (&symbol_list_obstack, 1);
4609 ndefns = remove_extra_symbols (*results, ndefns);
4612 cache_symbol (name0, namespace, NULL, NULL, NULL);
4614 if (ndefns == 1 && cacheIfUnique)
4615 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4616 (*results)[0].symtab);
4618 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4623 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4624 scope and in global scopes, or NULL if none. NAME is folded and
4625 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4626 choosing the first symbol if there are multiple choices.
4627 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4628 table in which the symbol was found (in both cases, these
4629 assignments occur only if the pointers are non-null). */
4632 ada_lookup_symbol (const char *name, const struct block *block0,
4633 domain_enum namespace, int *is_a_field_of_this,
4634 struct symtab **symtab)
4636 struct ada_symbol_info *candidates;
4639 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4640 block0, namespace, &candidates);
4642 if (n_candidates == 0)
4645 if (is_a_field_of_this != NULL)
4646 *is_a_field_of_this = 0;
4650 *symtab = candidates[0].symtab;
4651 if (*symtab == NULL && candidates[0].block != NULL)
4653 struct objfile *objfile;
4656 struct blockvector *bv;
4658 /* Search the list of symtabs for one which contains the
4659 address of the start of this block. */
4660 ALL_PRIMARY_SYMTABS (objfile, s)
4662 bv = BLOCKVECTOR (s);
4663 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4664 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4665 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4668 return fixup_symbol_section (candidates[0].sym, objfile);
4671 /* FIXME: brobecker/2004-11-12: I think that we should never
4672 reach this point. I don't see a reason why we would not
4673 find a symtab for a given block, so I suggest raising an
4674 internal_error exception here. Otherwise, we end up
4675 returning a symbol but no symtab, which certain parts of
4676 the code that rely (indirectly) on this function do not
4677 expect, eventually causing a SEGV. */
4678 return fixup_symbol_section (candidates[0].sym, NULL);
4681 return candidates[0].sym;
4684 static struct symbol *
4685 ada_lookup_symbol_nonlocal (const char *name,
4686 const char *linkage_name,
4687 const struct block *block,
4688 const domain_enum domain, struct symtab **symtab)
4690 if (linkage_name == NULL)
4691 linkage_name = name;
4692 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4697 /* True iff STR is a possible encoded suffix of a normal Ada name
4698 that is to be ignored for matching purposes. Suffixes of parallel
4699 names (e.g., XVE) are not included here. Currently, the possible suffixes
4700 are given by either of the regular expression:
4702 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4704 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4705 _E[0-9]+[bs]$ [protected object entry suffixes]
4706 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4710 is_name_suffix (const char *str)
4713 const char *matching;
4714 const int len = strlen (str);
4716 /* (__[0-9]+)?\.[0-9]+ */
4718 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4721 while (isdigit (matching[0]))
4723 if (matching[0] == '\0')
4727 if (matching[0] == '.' || matching[0] == '$')
4730 while (isdigit (matching[0]))
4732 if (matching[0] == '\0')
4737 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4740 while (isdigit (matching[0]))
4742 if (matching[0] == '\0')
4747 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4748 with a N at the end. Unfortunately, the compiler uses the same
4749 convention for other internal types it creates. So treating
4750 all entity names that end with an "N" as a name suffix causes
4751 some regressions. For instance, consider the case of an enumerated
4752 type. To support the 'Image attribute, it creates an array whose
4754 Having a single character like this as a suffix carrying some
4755 information is a bit risky. Perhaps we should change the encoding
4756 to be something like "_N" instead. In the meantime, do not do
4757 the following check. */
4758 /* Protected Object Subprograms */
4759 if (len == 1 && str [0] == 'N')
4764 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4767 while (isdigit (matching[0]))
4769 if ((matching[0] == 'b' || matching[0] == 's')
4770 && matching [1] == '\0')
4774 /* ??? We should not modify STR directly, as we are doing below. This
4775 is fine in this case, but may become problematic later if we find
4776 that this alternative did not work, and want to try matching
4777 another one from the begining of STR. Since we modified it, we
4778 won't be able to find the begining of the string anymore! */
4782 while (str[0] != '_' && str[0] != '\0')
4784 if (str[0] != 'n' && str[0] != 'b')
4789 if (str[0] == '\000')
4793 if (str[1] != '_' || str[2] == '\000')
4797 if (strcmp (str + 3, "JM") == 0)
4799 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4800 the LJM suffix in favor of the JM one. But we will
4801 still accept LJM as a valid suffix for a reasonable
4802 amount of time, just to allow ourselves to debug programs
4803 compiled using an older version of GNAT. */
4804 if (strcmp (str + 3, "LJM") == 0)
4808 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4809 || str[4] == 'U' || str[4] == 'P')
4811 if (str[4] == 'R' && str[5] != 'T')
4815 if (!isdigit (str[2]))
4817 for (k = 3; str[k] != '\0'; k += 1)
4818 if (!isdigit (str[k]) && str[k] != '_')
4822 if (str[0] == '$' && isdigit (str[1]))
4824 for (k = 2; str[k] != '\0'; k += 1)
4825 if (!isdigit (str[k]) && str[k] != '_')
4832 /* Return nonzero if the given string starts with a dot ('.')
4833 followed by zero or more digits.
4835 Note: brobecker/2003-11-10: A forward declaration has not been
4836 added at the begining of this file yet, because this function
4837 is only used to work around a problem found during wild matching
4838 when trying to match minimal symbol names against symbol names
4839 obtained from dwarf-2 data. This function is therefore currently
4840 only used in wild_match() and is likely to be deleted when the
4841 problem in dwarf-2 is fixed. */
4844 is_dot_digits_suffix (const char *str)
4850 while (isdigit (str[0]))
4852 return (str[0] == '\0');
4855 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4856 Certain symbols appear at first to match, except that they turn out
4857 not to follow the Ada encoding and hence should not be used as a wild
4858 match of a given pattern. */
4861 is_valid_name_for_wild_match (const char *name0)
4863 const char *decoded_name = ada_decode (name0);
4866 for (i=0; decoded_name[i] != '\0'; i++)
4867 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4873 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4874 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4875 informational suffixes of NAME (i.e., for which is_name_suffix is
4879 wild_match (const char *patn0, int patn_len, const char *name0)
4885 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4886 stored in the symbol table for nested function names is sometimes
4887 different from the name of the associated entity stored in
4888 the dwarf-2 data: This is the case for nested subprograms, where
4889 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4890 while the symbol name from the dwarf-2 data does not.
4892 Although the DWARF-2 standard documents that entity names stored
4893 in the dwarf-2 data should be identical to the name as seen in
4894 the source code, GNAT takes a different approach as we already use
4895 a special encoding mechanism to convey the information so that
4896 a C debugger can still use the information generated to debug
4897 Ada programs. A corollary is that the symbol names in the dwarf-2
4898 data should match the names found in the symbol table. I therefore
4899 consider this issue as a compiler defect.
4901 Until the compiler is properly fixed, we work-around the problem
4902 by ignoring such suffixes during the match. We do so by making
4903 a copy of PATN0 and NAME0, and then by stripping such a suffix
4904 if present. We then perform the match on the resulting strings. */
4907 name_len = strlen (name0);
4909 name = (char *) alloca ((name_len + 1) * sizeof (char));
4910 strcpy (name, name0);
4911 dot = strrchr (name, '.');
4912 if (dot != NULL && is_dot_digits_suffix (dot))
4915 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4916 strncpy (patn, patn0, patn_len);
4917 patn[patn_len] = '\0';
4918 dot = strrchr (patn, '.');
4919 if (dot != NULL && is_dot_digits_suffix (dot))
4922 patn_len = dot - patn;
4926 /* Now perform the wild match. */
4928 name_len = strlen (name);
4929 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4930 && strncmp (patn, name + 5, patn_len) == 0
4931 && is_name_suffix (name + patn_len + 5))
4934 while (name_len >= patn_len)
4936 if (strncmp (patn, name, patn_len) == 0
4937 && is_name_suffix (name + patn_len))
4938 return (is_valid_name_for_wild_match (name0));
4945 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4950 if (!islower (name[2]))
4957 if (!islower (name[1]))
4968 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4969 vector *defn_symbols, updating the list of symbols in OBSTACKP
4970 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4971 OBJFILE is the section containing BLOCK.
4972 SYMTAB is recorded with each symbol added. */
4975 ada_add_block_symbols (struct obstack *obstackp,
4976 struct block *block, const char *name,
4977 domain_enum domain, struct objfile *objfile,
4978 struct symtab *symtab, int wild)
4980 struct dict_iterator iter;
4981 int name_len = strlen (name);
4982 /* A matching argument symbol, if any. */
4983 struct symbol *arg_sym;
4984 /* Set true when we find a matching non-argument symbol. */
4993 ALL_BLOCK_SYMBOLS (block, iter, sym)
4995 if (SYMBOL_DOMAIN (sym) == domain
4996 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4998 switch (SYMBOL_CLASS (sym))
5004 case LOC_REGPARM_ADDR:
5005 case LOC_BASEREG_ARG:
5006 case LOC_COMPUTED_ARG:
5009 case LOC_UNRESOLVED:
5013 add_defn_to_vec (obstackp,
5014 fixup_symbol_section (sym, objfile),
5023 ALL_BLOCK_SYMBOLS (block, iter, sym)
5025 if (SYMBOL_DOMAIN (sym) == domain)
5027 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5029 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5031 switch (SYMBOL_CLASS (sym))
5037 case LOC_REGPARM_ADDR:
5038 case LOC_BASEREG_ARG:
5039 case LOC_COMPUTED_ARG:
5042 case LOC_UNRESOLVED:
5046 add_defn_to_vec (obstackp,
5047 fixup_symbol_section (sym, objfile),
5056 if (!found_sym && arg_sym != NULL)
5058 add_defn_to_vec (obstackp,
5059 fixup_symbol_section (arg_sym, objfile),
5068 ALL_BLOCK_SYMBOLS (block, iter, sym)
5070 if (SYMBOL_DOMAIN (sym) == domain)
5074 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5077 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5079 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5084 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5086 switch (SYMBOL_CLASS (sym))
5092 case LOC_REGPARM_ADDR:
5093 case LOC_BASEREG_ARG:
5094 case LOC_COMPUTED_ARG:
5097 case LOC_UNRESOLVED:
5101 add_defn_to_vec (obstackp,
5102 fixup_symbol_section (sym, objfile),
5110 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5111 They aren't parameters, right? */
5112 if (!found_sym && arg_sym != NULL)
5114 add_defn_to_vec (obstackp,
5115 fixup_symbol_section (arg_sym, objfile),
5123 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5124 to be invisible to users. */
5127 ada_is_ignored_field (struct type *type, int field_num)
5129 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5133 const char *name = TYPE_FIELD_NAME (type, field_num);
5134 return (name == NULL
5135 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5139 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5140 pointer or reference type whose ultimate target has a tag field. */
5143 ada_is_tagged_type (struct type *type, int refok)
5145 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5148 /* True iff TYPE represents the type of X'Tag */
5151 ada_is_tag_type (struct type *type)
5153 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5157 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5158 return (name != NULL
5159 && strcmp (name, "ada__tags__dispatch_table") == 0);
5163 /* The type of the tag on VAL. */
5166 ada_tag_type (struct value *val)
5168 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5171 /* The value of the tag on VAL. */
5174 ada_value_tag (struct value *val)
5176 return ada_value_struct_elt (val, "_tag", 0);
5179 /* The value of the tag on the object of type TYPE whose contents are
5180 saved at VALADDR, if it is non-null, or is at memory address
5183 static struct value *
5184 value_tag_from_contents_and_address (struct type *type,
5185 const gdb_byte *valaddr,
5188 int tag_byte_offset, dummy1, dummy2;
5189 struct type *tag_type;
5190 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5193 const gdb_byte *valaddr1 = ((valaddr == NULL)
5195 : valaddr + tag_byte_offset);
5196 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5198 return value_from_contents_and_address (tag_type, valaddr1, address1);
5203 static struct type *
5204 type_from_tag (struct value *tag)
5206 const char *type_name = ada_tag_name (tag);
5207 if (type_name != NULL)
5208 return ada_find_any_type (ada_encode (type_name));
5219 static int ada_tag_name_1 (void *);
5220 static int ada_tag_name_2 (struct tag_args *);
5222 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5223 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5224 The value stored in ARGS->name is valid until the next call to
5228 ada_tag_name_1 (void *args0)
5230 struct tag_args *args = (struct tag_args *) args0;
5231 static char name[1024];
5235 val = ada_value_struct_elt (args->tag, "tsd", 1);
5237 return ada_tag_name_2 (args);
5238 val = ada_value_struct_elt (val, "expanded_name", 1);
5241 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5242 for (p = name; *p != '\0'; p += 1)
5249 /* Utility function for ada_tag_name_1 that tries the second
5250 representation for the dispatch table (in which there is no
5251 explicit 'tsd' field in the referent of the tag pointer, and instead
5252 the tsd pointer is stored just before the dispatch table. */
5255 ada_tag_name_2 (struct tag_args *args)
5257 struct type *info_type;
5258 static char name[1024];
5260 struct value *val, *valp;
5263 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5264 if (info_type == NULL)
5266 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5267 valp = value_cast (info_type, args->tag);
5270 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5273 val = ada_value_struct_elt (val, "expanded_name", 1);
5276 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5277 for (p = name; *p != '\0'; p += 1)
5284 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5288 ada_tag_name (struct value *tag)
5290 struct tag_args args;
5291 if (!ada_is_tag_type (value_type (tag)))
5295 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5299 /* The parent type of TYPE, or NULL if none. */
5302 ada_parent_type (struct type *type)
5306 type = ada_check_typedef (type);
5308 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5311 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5312 if (ada_is_parent_field (type, i))
5313 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5318 /* True iff field number FIELD_NUM of structure type TYPE contains the
5319 parent-type (inherited) fields of a derived type. Assumes TYPE is
5320 a structure type with at least FIELD_NUM+1 fields. */
5323 ada_is_parent_field (struct type *type, int field_num)
5325 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5326 return (name != NULL
5327 && (strncmp (name, "PARENT", 6) == 0
5328 || strncmp (name, "_parent", 7) == 0));
5331 /* True iff field number FIELD_NUM of structure type TYPE is a
5332 transparent wrapper field (which should be silently traversed when doing
5333 field selection and flattened when printing). Assumes TYPE is a
5334 structure type with at least FIELD_NUM+1 fields. Such fields are always
5338 ada_is_wrapper_field (struct type *type, int field_num)
5340 const char *name = TYPE_FIELD_NAME (type, field_num);
5341 return (name != NULL
5342 && (strncmp (name, "PARENT", 6) == 0
5343 || strcmp (name, "REP") == 0
5344 || strncmp (name, "_parent", 7) == 0
5345 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5348 /* True iff field number FIELD_NUM of structure or union type TYPE
5349 is a variant wrapper. Assumes TYPE is a structure type with at least
5350 FIELD_NUM+1 fields. */
5353 ada_is_variant_part (struct type *type, int field_num)
5355 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5356 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5357 || (is_dynamic_field (type, field_num)
5358 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5359 == TYPE_CODE_UNION)));
5362 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5363 whose discriminants are contained in the record type OUTER_TYPE,
5364 returns the type of the controlling discriminant for the variant. */
5367 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5369 char *name = ada_variant_discrim_name (var_type);
5371 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5373 return builtin_type_int;
5378 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5379 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5380 represents a 'when others' clause; otherwise 0. */
5383 ada_is_others_clause (struct type *type, int field_num)
5385 const char *name = TYPE_FIELD_NAME (type, field_num);
5386 return (name != NULL && name[0] == 'O');
5389 /* Assuming that TYPE0 is the type of the variant part of a record,
5390 returns the name of the discriminant controlling the variant.
5391 The value is valid until the next call to ada_variant_discrim_name. */
5394 ada_variant_discrim_name (struct type *type0)
5396 static char *result = NULL;
5397 static size_t result_len = 0;
5400 const char *discrim_end;
5401 const char *discrim_start;
5403 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5404 type = TYPE_TARGET_TYPE (type0);
5408 name = ada_type_name (type);
5410 if (name == NULL || name[0] == '\000')
5413 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5416 if (strncmp (discrim_end, "___XVN", 6) == 0)
5419 if (discrim_end == name)
5422 for (discrim_start = discrim_end; discrim_start != name + 3;
5425 if (discrim_start == name + 1)
5427 if ((discrim_start > name + 3
5428 && strncmp (discrim_start - 3, "___", 3) == 0)
5429 || discrim_start[-1] == '.')
5433 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5434 strncpy (result, discrim_start, discrim_end - discrim_start);
5435 result[discrim_end - discrim_start] = '\0';
5439 /* Scan STR for a subtype-encoded number, beginning at position K.
5440 Put the position of the character just past the number scanned in
5441 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5442 Return 1 if there was a valid number at the given position, and 0
5443 otherwise. A "subtype-encoded" number consists of the absolute value
5444 in decimal, followed by the letter 'm' to indicate a negative number.
5445 Assumes 0m does not occur. */
5448 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5452 if (!isdigit (str[k]))
5455 /* Do it the hard way so as not to make any assumption about
5456 the relationship of unsigned long (%lu scan format code) and
5459 while (isdigit (str[k]))
5461 RU = RU * 10 + (str[k] - '0');
5468 *R = (-(LONGEST) (RU - 1)) - 1;
5474 /* NOTE on the above: Technically, C does not say what the results of
5475 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5476 number representable as a LONGEST (although either would probably work
5477 in most implementations). When RU>0, the locution in the then branch
5478 above is always equivalent to the negative of RU. */
5485 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5486 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5487 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5490 ada_in_variant (LONGEST val, struct type *type, int field_num)
5492 const char *name = TYPE_FIELD_NAME (type, field_num);
5505 if (!ada_scan_number (name, p + 1, &W, &p))
5514 if (!ada_scan_number (name, p + 1, &L, &p)
5515 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5517 if (val >= L && val <= U)
5529 /* FIXME: Lots of redundancy below. Try to consolidate. */
5531 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5532 ARG_TYPE, extract and return the value of one of its (non-static)
5533 fields. FIELDNO says which field. Differs from value_primitive_field
5534 only in that it can handle packed values of arbitrary type. */
5536 static struct value *
5537 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5538 struct type *arg_type)
5542 arg_type = ada_check_typedef (arg_type);
5543 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5545 /* Handle packed fields. */
5547 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5549 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5550 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5552 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5553 offset + bit_pos / 8,
5554 bit_pos % 8, bit_size, type);
5557 return value_primitive_field (arg1, offset, fieldno, arg_type);
5560 /* Find field with name NAME in object of type TYPE. If found,
5561 set the following for each argument that is non-null:
5562 - *FIELD_TYPE_P to the field's type;
5563 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5564 an object of that type;
5565 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5566 - *BIT_SIZE_P to its size in bits if the field is packed, and
5568 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5569 fields up to but not including the desired field, or by the total
5570 number of fields if not found. A NULL value of NAME never
5571 matches; the function just counts visible fields in this case.
5573 Returns 1 if found, 0 otherwise. */
5576 find_struct_field (char *name, struct type *type, int offset,
5577 struct type **field_type_p,
5578 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5583 type = ada_check_typedef (type);
5585 if (field_type_p != NULL)
5586 *field_type_p = NULL;
5587 if (byte_offset_p != NULL)
5589 if (bit_offset_p != NULL)
5591 if (bit_size_p != NULL)
5594 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5596 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5597 int fld_offset = offset + bit_pos / 8;
5598 char *t_field_name = TYPE_FIELD_NAME (type, i);
5600 if (t_field_name == NULL)
5603 else if (name != NULL && field_name_match (t_field_name, name))
5605 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5606 if (field_type_p != NULL)
5607 *field_type_p = TYPE_FIELD_TYPE (type, i);
5608 if (byte_offset_p != NULL)
5609 *byte_offset_p = fld_offset;
5610 if (bit_offset_p != NULL)
5611 *bit_offset_p = bit_pos % 8;
5612 if (bit_size_p != NULL)
5613 *bit_size_p = bit_size;
5616 else if (ada_is_wrapper_field (type, i))
5618 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5619 field_type_p, byte_offset_p, bit_offset_p,
5620 bit_size_p, index_p))
5623 else if (ada_is_variant_part (type, i))
5625 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5628 struct type *field_type
5629 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5631 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5633 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5635 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5636 field_type_p, byte_offset_p,
5637 bit_offset_p, bit_size_p, index_p))
5641 else if (index_p != NULL)
5647 /* Number of user-visible fields in record type TYPE. */
5650 num_visible_fields (struct type *type)
5654 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5658 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5659 and search in it assuming it has (class) type TYPE.
5660 If found, return value, else return NULL.
5662 Searches recursively through wrapper fields (e.g., '_parent'). */
5664 static struct value *
5665 ada_search_struct_field (char *name, struct value *arg, int offset,
5669 type = ada_check_typedef (type);
5671 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5673 char *t_field_name = TYPE_FIELD_NAME (type, i);
5675 if (t_field_name == NULL)
5678 else if (field_name_match (t_field_name, name))
5679 return ada_value_primitive_field (arg, offset, i, type);
5681 else if (ada_is_wrapper_field (type, i))
5683 struct value *v = /* Do not let indent join lines here. */
5684 ada_search_struct_field (name, arg,
5685 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5686 TYPE_FIELD_TYPE (type, i));
5691 else if (ada_is_variant_part (type, i))
5693 /* PNH: Do we ever get here? See find_struct_field. */
5695 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5696 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5698 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5700 struct value *v = ada_search_struct_field /* Force line break. */
5702 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5703 TYPE_FIELD_TYPE (field_type, j));
5712 static struct value *ada_index_struct_field_1 (int *, struct value *,
5713 int, struct type *);
5716 /* Return field #INDEX in ARG, where the index is that returned by
5717 * find_struct_field through its INDEX_P argument. Adjust the address
5718 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5719 * If found, return value, else return NULL. */
5721 static struct value *
5722 ada_index_struct_field (int index, struct value *arg, int offset,
5725 return ada_index_struct_field_1 (&index, arg, offset, type);
5729 /* Auxiliary function for ada_index_struct_field. Like
5730 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5733 static struct value *
5734 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5738 type = ada_check_typedef (type);
5740 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5742 if (TYPE_FIELD_NAME (type, i) == NULL)
5744 else if (ada_is_wrapper_field (type, i))
5746 struct value *v = /* Do not let indent join lines here. */
5747 ada_index_struct_field_1 (index_p, arg,
5748 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5749 TYPE_FIELD_TYPE (type, i));
5754 else if (ada_is_variant_part (type, i))
5756 /* PNH: Do we ever get here? See ada_search_struct_field,
5757 find_struct_field. */
5758 error (_("Cannot assign this kind of variant record"));
5760 else if (*index_p == 0)
5761 return ada_value_primitive_field (arg, offset, i, type);
5768 /* Given ARG, a value of type (pointer or reference to a)*
5769 structure/union, extract the component named NAME from the ultimate
5770 target structure/union and return it as a value with its
5771 appropriate type. If ARG is a pointer or reference and the field
5772 is not packed, returns a reference to the field, otherwise the
5773 value of the field (an lvalue if ARG is an lvalue).
5775 The routine searches for NAME among all members of the structure itself
5776 and (recursively) among all members of any wrapper members
5779 If NO_ERR, then simply return NULL in case of error, rather than
5783 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5785 struct type *t, *t1;
5789 t1 = t = ada_check_typedef (value_type (arg));
5790 if (TYPE_CODE (t) == TYPE_CODE_REF)
5792 t1 = TYPE_TARGET_TYPE (t);
5795 t1 = ada_check_typedef (t1);
5796 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5798 arg = coerce_ref (arg);
5803 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5805 t1 = TYPE_TARGET_TYPE (t);
5808 t1 = ada_check_typedef (t1);
5809 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5811 arg = value_ind (arg);
5818 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5822 v = ada_search_struct_field (name, arg, 0, t);
5825 int bit_offset, bit_size, byte_offset;
5826 struct type *field_type;
5829 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5830 address = value_as_address (arg);
5832 address = unpack_pointer (t, value_contents (arg));
5834 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5835 if (find_struct_field (name, t1, 0,
5836 &field_type, &byte_offset, &bit_offset,
5841 if (TYPE_CODE (t) == TYPE_CODE_REF)
5842 arg = ada_coerce_ref (arg);
5844 arg = ada_value_ind (arg);
5845 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5846 bit_offset, bit_size,
5850 v = value_from_pointer (lookup_reference_type (field_type),
5851 address + byte_offset);
5855 if (v != NULL || no_err)
5858 error (_("There is no member named %s."), name);
5864 error (_("Attempt to extract a component of a value that is not a record."));
5867 /* Given a type TYPE, look up the type of the component of type named NAME.
5868 If DISPP is non-null, add its byte displacement from the beginning of a
5869 structure (pointed to by a value) of type TYPE to *DISPP (does not
5870 work for packed fields).
5872 Matches any field whose name has NAME as a prefix, possibly
5875 TYPE can be either a struct or union. If REFOK, TYPE may also
5876 be a (pointer or reference)+ to a struct or union, and the
5877 ultimate target type will be searched.
5879 Looks recursively into variant clauses and parent types.
5881 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5882 TYPE is not a type of the right kind. */
5884 static struct type *
5885 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5886 int noerr, int *dispp)
5893 if (refok && type != NULL)
5896 type = ada_check_typedef (type);
5897 if (TYPE_CODE (type) != TYPE_CODE_PTR
5898 && TYPE_CODE (type) != TYPE_CODE_REF)
5900 type = TYPE_TARGET_TYPE (type);
5904 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5905 && TYPE_CODE (type) != TYPE_CODE_UNION))
5911 target_terminal_ours ();
5912 gdb_flush (gdb_stdout);
5914 error (_("Type (null) is not a structure or union type"));
5917 /* XXX: type_sprint */
5918 fprintf_unfiltered (gdb_stderr, _("Type "));
5919 type_print (type, "", gdb_stderr, -1);
5920 error (_(" is not a structure or union type"));
5925 type = to_static_fixed_type (type);
5927 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5929 char *t_field_name = TYPE_FIELD_NAME (type, i);
5933 if (t_field_name == NULL)
5936 else if (field_name_match (t_field_name, name))
5939 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5940 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5943 else if (ada_is_wrapper_field (type, i))
5946 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5951 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5956 else if (ada_is_variant_part (type, i))
5959 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5961 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5964 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5969 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5980 target_terminal_ours ();
5981 gdb_flush (gdb_stdout);
5984 /* XXX: type_sprint */
5985 fprintf_unfiltered (gdb_stderr, _("Type "));
5986 type_print (type, "", gdb_stderr, -1);
5987 error (_(" has no component named <null>"));
5991 /* XXX: type_sprint */
5992 fprintf_unfiltered (gdb_stderr, _("Type "));
5993 type_print (type, "", gdb_stderr, -1);
5994 error (_(" has no component named %s"), name);
6001 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6002 within a value of type OUTER_TYPE that is stored in GDB at
6003 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6004 numbering from 0) is applicable. Returns -1 if none are. */
6007 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6008 const gdb_byte *outer_valaddr)
6013 struct type *discrim_type;
6014 char *discrim_name = ada_variant_discrim_name (var_type);
6015 LONGEST discrim_val;
6019 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6020 if (discrim_type == NULL)
6022 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6025 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6027 if (ada_is_others_clause (var_type, i))
6029 else if (ada_in_variant (discrim_val, var_type, i))
6033 return others_clause;
6038 /* Dynamic-Sized Records */
6040 /* Strategy: The type ostensibly attached to a value with dynamic size
6041 (i.e., a size that is not statically recorded in the debugging
6042 data) does not accurately reflect the size or layout of the value.
6043 Our strategy is to convert these values to values with accurate,
6044 conventional types that are constructed on the fly. */
6046 /* There is a subtle and tricky problem here. In general, we cannot
6047 determine the size of dynamic records without its data. However,
6048 the 'struct value' data structure, which GDB uses to represent
6049 quantities in the inferior process (the target), requires the size
6050 of the type at the time of its allocation in order to reserve space
6051 for GDB's internal copy of the data. That's why the
6052 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6053 rather than struct value*s.
6055 However, GDB's internal history variables ($1, $2, etc.) are
6056 struct value*s containing internal copies of the data that are not, in
6057 general, the same as the data at their corresponding addresses in
6058 the target. Fortunately, the types we give to these values are all
6059 conventional, fixed-size types (as per the strategy described
6060 above), so that we don't usually have to perform the
6061 'to_fixed_xxx_type' conversions to look at their values.
6062 Unfortunately, there is one exception: if one of the internal
6063 history variables is an array whose elements are unconstrained
6064 records, then we will need to create distinct fixed types for each
6065 element selected. */
6067 /* The upshot of all of this is that many routines take a (type, host
6068 address, target address) triple as arguments to represent a value.
6069 The host address, if non-null, is supposed to contain an internal
6070 copy of the relevant data; otherwise, the program is to consult the
6071 target at the target address. */
6073 /* Assuming that VAL0 represents a pointer value, the result of
6074 dereferencing it. Differs from value_ind in its treatment of
6075 dynamic-sized types. */
6078 ada_value_ind (struct value *val0)
6080 struct value *val = unwrap_value (value_ind (val0));
6081 return ada_to_fixed_value (val);
6084 /* The value resulting from dereferencing any "reference to"
6085 qualifiers on VAL0. */
6087 static struct value *
6088 ada_coerce_ref (struct value *val0)
6090 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6092 struct value *val = val0;
6093 val = coerce_ref (val);
6094 val = unwrap_value (val);
6095 return ada_to_fixed_value (val);
6101 /* Return OFF rounded upward if necessary to a multiple of
6102 ALIGNMENT (a power of 2). */
6105 align_value (unsigned int off, unsigned int alignment)
6107 return (off + alignment - 1) & ~(alignment - 1);
6110 /* Return the bit alignment required for field #F of template type TYPE. */
6113 field_alignment (struct type *type, int f)
6115 const char *name = TYPE_FIELD_NAME (type, f);
6116 int len = (name == NULL) ? 0 : strlen (name);
6119 if (!isdigit (name[len - 1]))
6122 if (isdigit (name[len - 2]))
6123 align_offset = len - 2;
6125 align_offset = len - 1;
6127 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6128 return TARGET_CHAR_BIT;
6130 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6133 /* Find a symbol named NAME. Ignores ambiguity. */
6136 ada_find_any_symbol (const char *name)
6140 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6141 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6144 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6148 /* Find a type named NAME. Ignores ambiguity. */
6151 ada_find_any_type (const char *name)
6153 struct symbol *sym = ada_find_any_symbol (name);
6156 return SYMBOL_TYPE (sym);
6161 /* Given a symbol NAME and its associated BLOCK, search all symbols
6162 for its ___XR counterpart, which is the ``renaming'' symbol
6163 associated to NAME. Return this symbol if found, return
6167 ada_find_renaming_symbol (const char *name, struct block *block)
6169 const struct symbol *function_sym = block_function (block);
6172 if (function_sym != NULL)
6174 /* If the symbol is defined inside a function, NAME is not fully
6175 qualified. This means we need to prepend the function name
6176 as well as adding the ``___XR'' suffix to build the name of
6177 the associated renaming symbol. */
6178 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6179 /* Function names sometimes contain suffixes used
6180 for instance to qualify nested subprograms. When building
6181 the XR type name, we need to make sure that this suffix is
6182 not included. So do not include any suffix in the function
6183 name length below. */
6184 const int function_name_len = ada_name_prefix_len (function_name);
6185 const int rename_len = function_name_len + 2 /* "__" */
6186 + strlen (name) + 6 /* "___XR\0" */ ;
6188 /* Strip the suffix if necessary. */
6189 function_name[function_name_len] = '\0';
6191 /* Library-level functions are a special case, as GNAT adds
6192 a ``_ada_'' prefix to the function name to avoid namespace
6193 pollution. However, the renaming symbol themselves do not
6194 have this prefix, so we need to skip this prefix if present. */
6195 if (function_name_len > 5 /* "_ada_" */
6196 && strstr (function_name, "_ada_") == function_name)
6197 function_name = function_name + 5;
6199 rename = (char *) alloca (rename_len * sizeof (char));
6200 sprintf (rename, "%s__%s___XR", function_name, name);
6204 const int rename_len = strlen (name) + 6;
6205 rename = (char *) alloca (rename_len * sizeof (char));
6206 sprintf (rename, "%s___XR", name);
6209 return ada_find_any_symbol (rename);
6212 /* Because of GNAT encoding conventions, several GDB symbols may match a
6213 given type name. If the type denoted by TYPE0 is to be preferred to
6214 that of TYPE1 for purposes of type printing, return non-zero;
6215 otherwise return 0. */
6218 ada_prefer_type (struct type *type0, struct type *type1)
6222 else if (type0 == NULL)
6224 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6226 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6228 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6230 else if (ada_is_packed_array_type (type0))
6232 else if (ada_is_array_descriptor_type (type0)
6233 && !ada_is_array_descriptor_type (type1))
6235 else if (ada_renaming_type (type0) != NULL
6236 && ada_renaming_type (type1) == NULL)
6241 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6242 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6245 ada_type_name (struct type *type)
6249 else if (TYPE_NAME (type) != NULL)
6250 return TYPE_NAME (type);
6252 return TYPE_TAG_NAME (type);
6255 /* Find a parallel type to TYPE whose name is formed by appending
6256 SUFFIX to the name of TYPE. */
6259 ada_find_parallel_type (struct type *type, const char *suffix)
6262 static size_t name_len = 0;
6264 char *typename = ada_type_name (type);
6266 if (typename == NULL)
6269 len = strlen (typename);
6271 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6273 strcpy (name, typename);
6274 strcpy (name + len, suffix);
6276 return ada_find_any_type (name);
6280 /* If TYPE is a variable-size record type, return the corresponding template
6281 type describing its fields. Otherwise, return NULL. */
6283 static struct type *
6284 dynamic_template_type (struct type *type)
6286 type = ada_check_typedef (type);
6288 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6289 || ada_type_name (type) == NULL)
6293 int len = strlen (ada_type_name (type));
6294 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6297 return ada_find_parallel_type (type, "___XVE");
6301 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6302 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6305 is_dynamic_field (struct type *templ_type, int field_num)
6307 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6309 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6310 && strstr (name, "___XVL") != NULL;
6313 /* The index of the variant field of TYPE, or -1 if TYPE does not
6314 represent a variant record type. */
6317 variant_field_index (struct type *type)
6321 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6324 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6326 if (ada_is_variant_part (type, f))
6332 /* A record type with no fields. */
6334 static struct type *
6335 empty_record (struct objfile *objfile)
6337 struct type *type = alloc_type (objfile);
6338 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6339 TYPE_NFIELDS (type) = 0;
6340 TYPE_FIELDS (type) = NULL;
6341 TYPE_NAME (type) = "<empty>";
6342 TYPE_TAG_NAME (type) = NULL;
6343 TYPE_FLAGS (type) = 0;
6344 TYPE_LENGTH (type) = 0;
6348 /* An ordinary record type (with fixed-length fields) that describes
6349 the value of type TYPE at VALADDR or ADDRESS (see comments at
6350 the beginning of this section) VAL according to GNAT conventions.
6351 DVAL0 should describe the (portion of a) record that contains any
6352 necessary discriminants. It should be NULL if value_type (VAL) is
6353 an outer-level type (i.e., as opposed to a branch of a variant.) A
6354 variant field (unless unchecked) is replaced by a particular branch
6357 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6358 length are not statically known are discarded. As a consequence,
6359 VALADDR, ADDRESS and DVAL0 are ignored.
6361 NOTE: Limitations: For now, we assume that dynamic fields and
6362 variants occupy whole numbers of bytes. However, they need not be
6366 ada_template_to_fixed_record_type_1 (struct type *type,
6367 const gdb_byte *valaddr,
6368 CORE_ADDR address, struct value *dval0,
6369 int keep_dynamic_fields)
6371 struct value *mark = value_mark ();
6374 int nfields, bit_len;
6377 int fld_bit_len, bit_incr;
6380 /* Compute the number of fields in this record type that are going
6381 to be processed: unless keep_dynamic_fields, this includes only
6382 fields whose position and length are static will be processed. */
6383 if (keep_dynamic_fields)
6384 nfields = TYPE_NFIELDS (type);
6388 while (nfields < TYPE_NFIELDS (type)
6389 && !ada_is_variant_part (type, nfields)
6390 && !is_dynamic_field (type, nfields))
6394 rtype = alloc_type (TYPE_OBJFILE (type));
6395 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6396 INIT_CPLUS_SPECIFIC (rtype);
6397 TYPE_NFIELDS (rtype) = nfields;
6398 TYPE_FIELDS (rtype) = (struct field *)
6399 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6400 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6401 TYPE_NAME (rtype) = ada_type_name (type);
6402 TYPE_TAG_NAME (rtype) = NULL;
6403 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6409 for (f = 0; f < nfields; f += 1)
6411 off = align_value (off, field_alignment (type, f))
6412 + TYPE_FIELD_BITPOS (type, f);
6413 TYPE_FIELD_BITPOS (rtype, f) = off;
6414 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6416 if (ada_is_variant_part (type, f))
6419 fld_bit_len = bit_incr = 0;
6421 else if (is_dynamic_field (type, f))
6424 dval = value_from_contents_and_address (rtype, valaddr, address);
6428 TYPE_FIELD_TYPE (rtype, f) =
6431 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6432 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6433 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6434 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6435 bit_incr = fld_bit_len =
6436 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6440 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6441 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6442 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6443 bit_incr = fld_bit_len =
6444 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6446 bit_incr = fld_bit_len =
6447 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6449 if (off + fld_bit_len > bit_len)
6450 bit_len = off + fld_bit_len;
6452 TYPE_LENGTH (rtype) =
6453 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6456 /* We handle the variant part, if any, at the end because of certain
6457 odd cases in which it is re-ordered so as NOT the last field of
6458 the record. This can happen in the presence of representation
6460 if (variant_field >= 0)
6462 struct type *branch_type;
6464 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6467 dval = value_from_contents_and_address (rtype, valaddr, address);
6472 to_fixed_variant_branch_type
6473 (TYPE_FIELD_TYPE (type, variant_field),
6474 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6475 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6476 if (branch_type == NULL)
6478 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6479 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6480 TYPE_NFIELDS (rtype) -= 1;
6484 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6485 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6487 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6489 if (off + fld_bit_len > bit_len)
6490 bit_len = off + fld_bit_len;
6491 TYPE_LENGTH (rtype) =
6492 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6496 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6497 should contain the alignment of that record, which should be a strictly
6498 positive value. If null or negative, then something is wrong, most
6499 probably in the debug info. In that case, we don't round up the size
6500 of the resulting type. If this record is not part of another structure,
6501 the current RTYPE length might be good enough for our purposes. */
6502 if (TYPE_LENGTH (type) <= 0)
6504 if (TYPE_NAME (rtype))
6505 warning (_("Invalid type size for `%s' detected: %d."),
6506 TYPE_NAME (rtype), TYPE_LENGTH (type));
6508 warning (_("Invalid type size for <unnamed> detected: %d."),
6509 TYPE_LENGTH (type));
6513 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6514 TYPE_LENGTH (type));
6517 value_free_to_mark (mark);
6518 if (TYPE_LENGTH (rtype) > varsize_limit)
6519 error (_("record type with dynamic size is larger than varsize-limit"));
6523 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6526 static struct type *
6527 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6528 CORE_ADDR address, struct value *dval0)
6530 return ada_template_to_fixed_record_type_1 (type, valaddr,
6534 /* An ordinary record type in which ___XVL-convention fields and
6535 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6536 static approximations, containing all possible fields. Uses
6537 no runtime values. Useless for use in values, but that's OK,
6538 since the results are used only for type determinations. Works on both
6539 structs and unions. Representation note: to save space, we memorize
6540 the result of this function in the TYPE_TARGET_TYPE of the
6543 static struct type *
6544 template_to_static_fixed_type (struct type *type0)
6550 if (TYPE_TARGET_TYPE (type0) != NULL)
6551 return TYPE_TARGET_TYPE (type0);
6553 nfields = TYPE_NFIELDS (type0);
6556 for (f = 0; f < nfields; f += 1)
6558 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6559 struct type *new_type;
6561 if (is_dynamic_field (type0, f))
6562 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6564 new_type = to_static_fixed_type (field_type);
6565 if (type == type0 && new_type != field_type)
6567 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6568 TYPE_CODE (type) = TYPE_CODE (type0);
6569 INIT_CPLUS_SPECIFIC (type);
6570 TYPE_NFIELDS (type) = nfields;
6571 TYPE_FIELDS (type) = (struct field *)
6572 TYPE_ALLOC (type, nfields * sizeof (struct field));
6573 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6574 sizeof (struct field) * nfields);
6575 TYPE_NAME (type) = ada_type_name (type0);
6576 TYPE_TAG_NAME (type) = NULL;
6577 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6578 TYPE_LENGTH (type) = 0;
6580 TYPE_FIELD_TYPE (type, f) = new_type;
6581 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6586 /* Given an object of type TYPE whose contents are at VALADDR and
6587 whose address in memory is ADDRESS, returns a revision of TYPE --
6588 a non-dynamic-sized record with a variant part -- in which
6589 the variant part is replaced with the appropriate branch. Looks
6590 for discriminant values in DVAL0, which can be NULL if the record
6591 contains the necessary discriminant values. */
6593 static struct type *
6594 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6595 CORE_ADDR address, struct value *dval0)
6597 struct value *mark = value_mark ();
6600 struct type *branch_type;
6601 int nfields = TYPE_NFIELDS (type);
6602 int variant_field = variant_field_index (type);
6604 if (variant_field == -1)
6608 dval = value_from_contents_and_address (type, valaddr, address);
6612 rtype = alloc_type (TYPE_OBJFILE (type));
6613 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6614 INIT_CPLUS_SPECIFIC (rtype);
6615 TYPE_NFIELDS (rtype) = nfields;
6616 TYPE_FIELDS (rtype) =
6617 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6618 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6619 sizeof (struct field) * nfields);
6620 TYPE_NAME (rtype) = ada_type_name (type);
6621 TYPE_TAG_NAME (rtype) = NULL;
6622 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6623 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6625 branch_type = to_fixed_variant_branch_type
6626 (TYPE_FIELD_TYPE (type, variant_field),
6627 cond_offset_host (valaddr,
6628 TYPE_FIELD_BITPOS (type, variant_field)
6630 cond_offset_target (address,
6631 TYPE_FIELD_BITPOS (type, variant_field)
6632 / TARGET_CHAR_BIT), dval);
6633 if (branch_type == NULL)
6636 for (f = variant_field + 1; f < nfields; f += 1)
6637 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6638 TYPE_NFIELDS (rtype) -= 1;
6642 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6643 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6644 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6645 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6647 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6649 value_free_to_mark (mark);
6653 /* An ordinary record type (with fixed-length fields) that describes
6654 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6655 beginning of this section]. Any necessary discriminants' values
6656 should be in DVAL, a record value; it may be NULL if the object
6657 at ADDR itself contains any necessary discriminant values.
6658 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6659 values from the record are needed. Except in the case that DVAL,
6660 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6661 unchecked) is replaced by a particular branch of the variant.
6663 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6664 is questionable and may be removed. It can arise during the
6665 processing of an unconstrained-array-of-record type where all the
6666 variant branches have exactly the same size. This is because in
6667 such cases, the compiler does not bother to use the XVS convention
6668 when encoding the record. I am currently dubious of this
6669 shortcut and suspect the compiler should be altered. FIXME. */
6671 static struct type *
6672 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6673 CORE_ADDR address, struct value *dval)
6675 struct type *templ_type;
6677 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6680 templ_type = dynamic_template_type (type0);
6682 if (templ_type != NULL)
6683 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6684 else if (variant_field_index (type0) >= 0)
6686 if (dval == NULL && valaddr == NULL && address == 0)
6688 return to_record_with_fixed_variant_part (type0, valaddr, address,
6693 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6699 /* An ordinary record type (with fixed-length fields) that describes
6700 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6701 union type. Any necessary discriminants' values should be in DVAL,
6702 a record value. That is, this routine selects the appropriate
6703 branch of the union at ADDR according to the discriminant value
6704 indicated in the union's type name. */
6706 static struct type *
6707 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6708 CORE_ADDR address, struct value *dval)
6711 struct type *templ_type;
6712 struct type *var_type;
6714 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6715 var_type = TYPE_TARGET_TYPE (var_type0);
6717 var_type = var_type0;
6719 templ_type = ada_find_parallel_type (var_type, "___XVU");
6721 if (templ_type != NULL)
6722 var_type = templ_type;
6725 ada_which_variant_applies (var_type,
6726 value_type (dval), value_contents (dval));
6729 return empty_record (TYPE_OBJFILE (var_type));
6730 else if (is_dynamic_field (var_type, which))
6731 return to_fixed_record_type
6732 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6733 valaddr, address, dval);
6734 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6736 to_fixed_record_type
6737 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6739 return TYPE_FIELD_TYPE (var_type, which);
6742 /* Assuming that TYPE0 is an array type describing the type of a value
6743 at ADDR, and that DVAL describes a record containing any
6744 discriminants used in TYPE0, returns a type for the value that
6745 contains no dynamic components (that is, no components whose sizes
6746 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6747 true, gives an error message if the resulting type's size is over
6750 static struct type *
6751 to_fixed_array_type (struct type *type0, struct value *dval,
6754 struct type *index_type_desc;
6755 struct type *result;
6757 if (ada_is_packed_array_type (type0) /* revisit? */
6758 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6761 index_type_desc = ada_find_parallel_type (type0, "___XA");
6762 if (index_type_desc == NULL)
6764 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6765 /* NOTE: elt_type---the fixed version of elt_type0---should never
6766 depend on the contents of the array in properly constructed
6768 /* Create a fixed version of the array element type.
6769 We're not providing the address of an element here,
6770 and thus the actual object value cannot be inspected to do
6771 the conversion. This should not be a problem, since arrays of
6772 unconstrained objects are not allowed. In particular, all
6773 the elements of an array of a tagged type should all be of
6774 the same type specified in the debugging info. No need to
6775 consult the object tag. */
6776 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6778 if (elt_type0 == elt_type)
6781 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6782 elt_type, TYPE_INDEX_TYPE (type0));
6787 struct type *elt_type0;
6790 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6791 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6793 /* NOTE: result---the fixed version of elt_type0---should never
6794 depend on the contents of the array in properly constructed
6796 /* Create a fixed version of the array element type.
6797 We're not providing the address of an element here,
6798 and thus the actual object value cannot be inspected to do
6799 the conversion. This should not be a problem, since arrays of
6800 unconstrained objects are not allowed. In particular, all
6801 the elements of an array of a tagged type should all be of
6802 the same type specified in the debugging info. No need to
6803 consult the object tag. */
6804 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6805 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6807 struct type *range_type =
6808 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6809 dval, TYPE_OBJFILE (type0));
6810 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6811 result, range_type);
6813 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6814 error (_("array type with dynamic size is larger than varsize-limit"));
6817 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6822 /* A standard type (containing no dynamically sized components)
6823 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6824 DVAL describes a record containing any discriminants used in TYPE0,
6825 and may be NULL if there are none, or if the object of type TYPE at
6826 ADDRESS or in VALADDR contains these discriminants.
6828 In the case of tagged types, this function attempts to locate the object's
6829 tag and use it to compute the actual type. However, when ADDRESS is null,
6830 we cannot use it to determine the location of the tag, and therefore
6831 compute the tagged type's actual type. So we return the tagged type
6832 without consulting the tag. */
6835 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6836 CORE_ADDR address, struct value *dval)
6838 type = ada_check_typedef (type);
6839 switch (TYPE_CODE (type))
6843 case TYPE_CODE_STRUCT:
6845 struct type *static_type = to_static_fixed_type (type);
6847 /* If STATIC_TYPE is a tagged type and we know the object's address,
6848 then we can determine its tag, and compute the object's actual
6851 if (address != 0 && ada_is_tagged_type (static_type, 0))
6853 struct type *real_type =
6854 type_from_tag (value_tag_from_contents_and_address (static_type,
6857 if (real_type != NULL)
6860 return to_fixed_record_type (type, valaddr, address, NULL);
6862 case TYPE_CODE_ARRAY:
6863 return to_fixed_array_type (type, dval, 1);
6864 case TYPE_CODE_UNION:
6868 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6872 /* A standard (static-sized) type corresponding as well as possible to
6873 TYPE0, but based on no runtime data. */
6875 static struct type *
6876 to_static_fixed_type (struct type *type0)
6883 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6886 type0 = ada_check_typedef (type0);
6888 switch (TYPE_CODE (type0))
6892 case TYPE_CODE_STRUCT:
6893 type = dynamic_template_type (type0);
6895 return template_to_static_fixed_type (type);
6897 return template_to_static_fixed_type (type0);
6898 case TYPE_CODE_UNION:
6899 type = ada_find_parallel_type (type0, "___XVU");
6901 return template_to_static_fixed_type (type);
6903 return template_to_static_fixed_type (type0);
6907 /* A static approximation of TYPE with all type wrappers removed. */
6909 static struct type *
6910 static_unwrap_type (struct type *type)
6912 if (ada_is_aligner_type (type))
6914 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6915 if (ada_type_name (type1) == NULL)
6916 TYPE_NAME (type1) = ada_type_name (type);
6918 return static_unwrap_type (type1);
6922 struct type *raw_real_type = ada_get_base_type (type);
6923 if (raw_real_type == type)
6926 return to_static_fixed_type (raw_real_type);
6930 /* In some cases, incomplete and private types require
6931 cross-references that are not resolved as records (for example,
6933 type FooP is access Foo;
6935 type Foo is array ...;
6936 ). In these cases, since there is no mechanism for producing
6937 cross-references to such types, we instead substitute for FooP a
6938 stub enumeration type that is nowhere resolved, and whose tag is
6939 the name of the actual type. Call these types "non-record stubs". */
6941 /* A type equivalent to TYPE that is not a non-record stub, if one
6942 exists, otherwise TYPE. */
6945 ada_check_typedef (struct type *type)
6947 CHECK_TYPEDEF (type);
6948 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6949 || !TYPE_STUB (type)
6950 || TYPE_TAG_NAME (type) == NULL)
6954 char *name = TYPE_TAG_NAME (type);
6955 struct type *type1 = ada_find_any_type (name);
6956 return (type1 == NULL) ? type : type1;
6960 /* A value representing the data at VALADDR/ADDRESS as described by
6961 type TYPE0, but with a standard (static-sized) type that correctly
6962 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6963 type, then return VAL0 [this feature is simply to avoid redundant
6964 creation of struct values]. */
6966 static struct value *
6967 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6970 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6971 if (type == type0 && val0 != NULL)
6974 return value_from_contents_and_address (type, 0, address);
6977 /* A value representing VAL, but with a standard (static-sized) type
6978 that correctly describes it. Does not necessarily create a new
6981 static struct value *
6982 ada_to_fixed_value (struct value *val)
6984 return ada_to_fixed_value_create (value_type (val),
6985 VALUE_ADDRESS (val) + value_offset (val),
6989 /* A value representing VAL, but with a standard (static-sized) type
6990 chosen to approximate the real type of VAL as well as possible, but
6991 without consulting any runtime values. For Ada dynamic-sized
6992 types, therefore, the type of the result is likely to be inaccurate. */
6995 ada_to_static_fixed_value (struct value *val)
6998 to_static_fixed_type (static_unwrap_type (value_type (val)));
6999 if (type == value_type (val))
7002 return coerce_unspec_val_to_type (val, type);
7008 /* Table mapping attribute numbers to names.
7009 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7011 static const char *attribute_names[] = {
7029 ada_attribute_name (enum exp_opcode n)
7031 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7032 return attribute_names[n - OP_ATR_FIRST + 1];
7034 return attribute_names[0];
7037 /* Evaluate the 'POS attribute applied to ARG. */
7040 pos_atr (struct value *arg)
7042 struct type *type = value_type (arg);
7044 if (!discrete_type_p (type))
7045 error (_("'POS only defined on discrete types"));
7047 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7050 LONGEST v = value_as_long (arg);
7052 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7054 if (v == TYPE_FIELD_BITPOS (type, i))
7057 error (_("enumeration value is invalid: can't find 'POS"));
7060 return value_as_long (arg);
7063 static struct value *
7064 value_pos_atr (struct value *arg)
7066 return value_from_longest (builtin_type_int, pos_atr (arg));
7069 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7071 static struct value *
7072 value_val_atr (struct type *type, struct value *arg)
7074 if (!discrete_type_p (type))
7075 error (_("'VAL only defined on discrete types"));
7076 if (!integer_type_p (value_type (arg)))
7077 error (_("'VAL requires integral argument"));
7079 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7081 long pos = value_as_long (arg);
7082 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7083 error (_("argument to 'VAL out of range"));
7084 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7087 return value_from_longest (type, value_as_long (arg));
7093 /* True if TYPE appears to be an Ada character type.
7094 [At the moment, this is true only for Character and Wide_Character;
7095 It is a heuristic test that could stand improvement]. */
7098 ada_is_character_type (struct type *type)
7100 const char *name = ada_type_name (type);
7103 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7104 || TYPE_CODE (type) == TYPE_CODE_INT
7105 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7106 && (strcmp (name, "character") == 0
7107 || strcmp (name, "wide_character") == 0
7108 || strcmp (name, "unsigned char") == 0);
7111 /* True if TYPE appears to be an Ada string type. */
7114 ada_is_string_type (struct type *type)
7116 type = ada_check_typedef (type);
7118 && TYPE_CODE (type) != TYPE_CODE_PTR
7119 && (ada_is_simple_array_type (type)
7120 || ada_is_array_descriptor_type (type))
7121 && ada_array_arity (type) == 1)
7123 struct type *elttype = ada_array_element_type (type, 1);
7125 return ada_is_character_type (elttype);
7132 /* True if TYPE is a struct type introduced by the compiler to force the
7133 alignment of a value. Such types have a single field with a
7134 distinctive name. */
7137 ada_is_aligner_type (struct type *type)
7139 type = ada_check_typedef (type);
7141 /* If we can find a parallel XVS type, then the XVS type should
7142 be used instead of this type. And hence, this is not an aligner
7144 if (ada_find_parallel_type (type, "___XVS") != NULL)
7147 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7148 && TYPE_NFIELDS (type) == 1
7149 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7152 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7153 the parallel type. */
7156 ada_get_base_type (struct type *raw_type)
7158 struct type *real_type_namer;
7159 struct type *raw_real_type;
7161 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7164 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7165 if (real_type_namer == NULL
7166 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7167 || TYPE_NFIELDS (real_type_namer) != 1)
7170 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7171 if (raw_real_type == NULL)
7174 return raw_real_type;
7177 /* The type of value designated by TYPE, with all aligners removed. */
7180 ada_aligned_type (struct type *type)
7182 if (ada_is_aligner_type (type))
7183 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7185 return ada_get_base_type (type);
7189 /* The address of the aligned value in an object at address VALADDR
7190 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7193 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7195 if (ada_is_aligner_type (type))
7196 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7198 TYPE_FIELD_BITPOS (type,
7199 0) / TARGET_CHAR_BIT);
7206 /* The printed representation of an enumeration literal with encoded
7207 name NAME. The value is good to the next call of ada_enum_name. */
7209 ada_enum_name (const char *name)
7211 static char *result;
7212 static size_t result_len = 0;
7215 /* First, unqualify the enumeration name:
7216 1. Search for the last '.' character. If we find one, then skip
7217 all the preceeding characters, the unqualified name starts
7218 right after that dot.
7219 2. Otherwise, we may be debugging on a target where the compiler
7220 translates dots into "__". Search forward for double underscores,
7221 but stop searching when we hit an overloading suffix, which is
7222 of the form "__" followed by digits. */
7224 tmp = strrchr (name, '.');
7229 while ((tmp = strstr (name, "__")) != NULL)
7231 if (isdigit (tmp[2]))
7241 if (name[1] == 'U' || name[1] == 'W')
7243 if (sscanf (name + 2, "%x", &v) != 1)
7249 GROW_VECT (result, result_len, 16);
7250 if (isascii (v) && isprint (v))
7251 sprintf (result, "'%c'", v);
7252 else if (name[1] == 'U')
7253 sprintf (result, "[\"%02x\"]", v);
7255 sprintf (result, "[\"%04x\"]", v);
7261 tmp = strstr (name, "__");
7263 tmp = strstr (name, "$");
7266 GROW_VECT (result, result_len, tmp - name + 1);
7267 strncpy (result, name, tmp - name);
7268 result[tmp - name] = '\0';
7276 static struct value *
7277 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7280 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7281 (expect_type, exp, pos, noside);
7284 /* Evaluate the subexpression of EXP starting at *POS as for
7285 evaluate_type, updating *POS to point just past the evaluated
7288 static struct value *
7289 evaluate_subexp_type (struct expression *exp, int *pos)
7291 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7292 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7295 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7298 static struct value *
7299 unwrap_value (struct value *val)
7301 struct type *type = ada_check_typedef (value_type (val));
7302 if (ada_is_aligner_type (type))
7304 struct value *v = value_struct_elt (&val, NULL, "F",
7305 NULL, "internal structure");
7306 struct type *val_type = ada_check_typedef (value_type (v));
7307 if (ada_type_name (val_type) == NULL)
7308 TYPE_NAME (val_type) = ada_type_name (type);
7310 return unwrap_value (v);
7314 struct type *raw_real_type =
7315 ada_check_typedef (ada_get_base_type (type));
7317 if (type == raw_real_type)
7321 coerce_unspec_val_to_type
7322 (val, ada_to_fixed_type (raw_real_type, 0,
7323 VALUE_ADDRESS (val) + value_offset (val),
7328 static struct value *
7329 cast_to_fixed (struct type *type, struct value *arg)
7333 if (type == value_type (arg))
7335 else if (ada_is_fixed_point_type (value_type (arg)))
7336 val = ada_float_to_fixed (type,
7337 ada_fixed_to_float (value_type (arg),
7338 value_as_long (arg)));
7342 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7343 val = ada_float_to_fixed (type, argd);
7346 return value_from_longest (type, val);
7349 static struct value *
7350 cast_from_fixed_to_double (struct value *arg)
7352 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7353 value_as_long (arg));
7354 return value_from_double (builtin_type_double, val);
7357 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7358 return the converted value. */
7360 static struct value *
7361 coerce_for_assign (struct type *type, struct value *val)
7363 struct type *type2 = value_type (val);
7367 type2 = ada_check_typedef (type2);
7368 type = ada_check_typedef (type);
7370 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7371 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7373 val = ada_value_ind (val);
7374 type2 = value_type (val);
7377 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7378 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7380 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7381 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7382 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7383 error (_("Incompatible types in assignment"));
7384 deprecated_set_value_type (val, type);
7389 static struct value *
7390 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7393 struct type *type1, *type2;
7396 arg1 = coerce_ref (arg1);
7397 arg2 = coerce_ref (arg2);
7398 type1 = base_type (ada_check_typedef (value_type (arg1)));
7399 type2 = base_type (ada_check_typedef (value_type (arg2)));
7401 if (TYPE_CODE (type1) != TYPE_CODE_INT
7402 || TYPE_CODE (type2) != TYPE_CODE_INT)
7403 return value_binop (arg1, arg2, op);
7412 return value_binop (arg1, arg2, op);
7415 v2 = value_as_long (arg2);
7417 error (_("second operand of %s must not be zero."), op_string (op));
7419 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7420 return value_binop (arg1, arg2, op);
7422 v1 = value_as_long (arg1);
7427 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7428 v += v > 0 ? -1 : 1;
7436 /* Should not reach this point. */
7440 val = allocate_value (type1);
7441 store_unsigned_integer (value_contents_raw (val),
7442 TYPE_LENGTH (value_type (val)), v);
7447 ada_value_equal (struct value *arg1, struct value *arg2)
7449 if (ada_is_direct_array_type (value_type (arg1))
7450 || ada_is_direct_array_type (value_type (arg2)))
7452 arg1 = ada_coerce_to_simple_array (arg1);
7453 arg2 = ada_coerce_to_simple_array (arg2);
7454 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7455 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7456 error (_("Attempt to compare array with non-array"));
7457 /* FIXME: The following works only for types whose
7458 representations use all bits (no padding or undefined bits)
7459 and do not have user-defined equality. */
7461 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7462 && memcmp (value_contents (arg1), value_contents (arg2),
7463 TYPE_LENGTH (value_type (arg1))) == 0;
7465 return value_equal (arg1, arg2);
7468 /* Total number of component associations in the aggregate starting at
7469 index PC in EXP. Assumes that index PC is the start of an
7473 num_component_specs (struct expression *exp, int pc)
7476 m = exp->elts[pc + 1].longconst;
7479 for (i = 0; i < m; i += 1)
7481 switch (exp->elts[pc].opcode)
7487 n += exp->elts[pc + 1].longconst;
7490 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7495 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7496 component of LHS (a simple array or a record), updating *POS past
7497 the expression, assuming that LHS is contained in CONTAINER. Does
7498 not modify the inferior's memory, nor does it modify LHS (unless
7499 LHS == CONTAINER). */
7502 assign_component (struct value *container, struct value *lhs, LONGEST index,
7503 struct expression *exp, int *pos)
7505 struct value *mark = value_mark ();
7507 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7509 struct value *index_val = value_from_longest (builtin_type_int, index);
7510 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7514 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7515 elt = ada_to_fixed_value (unwrap_value (elt));
7518 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7519 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7521 value_assign_to_component (container, elt,
7522 ada_evaluate_subexp (NULL, exp, pos,
7525 value_free_to_mark (mark);
7528 /* Assuming that LHS represents an lvalue having a record or array
7529 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7530 of that aggregate's value to LHS, advancing *POS past the
7531 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7532 lvalue containing LHS (possibly LHS itself). Does not modify
7533 the inferior's memory, nor does it modify the contents of
7534 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7536 static struct value *
7537 assign_aggregate (struct value *container,
7538 struct value *lhs, struct expression *exp,
7539 int *pos, enum noside noside)
7541 struct type *lhs_type;
7542 int n = exp->elts[*pos+1].longconst;
7543 LONGEST low_index, high_index;
7546 int max_indices, num_indices;
7547 int is_array_aggregate;
7549 struct value *mark = value_mark ();
7552 if (noside != EVAL_NORMAL)
7555 for (i = 0; i < n; i += 1)
7556 ada_evaluate_subexp (NULL, exp, pos, noside);
7560 container = ada_coerce_ref (container);
7561 if (ada_is_direct_array_type (value_type (container)))
7562 container = ada_coerce_to_simple_array (container);
7563 lhs = ada_coerce_ref (lhs);
7564 if (!deprecated_value_modifiable (lhs))
7565 error (_("Left operand of assignment is not a modifiable lvalue."));
7567 lhs_type = value_type (lhs);
7568 if (ada_is_direct_array_type (lhs_type))
7570 lhs = ada_coerce_to_simple_array (lhs);
7571 lhs_type = value_type (lhs);
7572 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7573 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7574 is_array_aggregate = 1;
7576 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7579 high_index = num_visible_fields (lhs_type) - 1;
7580 is_array_aggregate = 0;
7583 error (_("Left-hand side must be array or record."));
7585 num_specs = num_component_specs (exp, *pos - 3);
7586 max_indices = 4 * num_specs + 4;
7587 indices = alloca (max_indices * sizeof (indices[0]));
7588 indices[0] = indices[1] = low_index - 1;
7589 indices[2] = indices[3] = high_index + 1;
7592 for (i = 0; i < n; i += 1)
7594 switch (exp->elts[*pos].opcode)
7597 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7598 &num_indices, max_indices,
7599 low_index, high_index);
7602 aggregate_assign_positional (container, lhs, exp, pos, indices,
7603 &num_indices, max_indices,
7604 low_index, high_index);
7608 error (_("Misplaced 'others' clause"));
7609 aggregate_assign_others (container, lhs, exp, pos, indices,
7610 num_indices, low_index, high_index);
7613 error (_("Internal error: bad aggregate clause"));
7620 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7621 construct at *POS, updating *POS past the construct, given that
7622 the positions are relative to lower bound LOW, where HIGH is the
7623 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7624 updating *NUM_INDICES as needed. CONTAINER is as for
7625 assign_aggregate. */
7627 aggregate_assign_positional (struct value *container,
7628 struct value *lhs, struct expression *exp,
7629 int *pos, LONGEST *indices, int *num_indices,
7630 int max_indices, LONGEST low, LONGEST high)
7632 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7634 if (ind - 1 == high)
7635 warning (_("Extra components in aggregate ignored."));
7638 add_component_interval (ind, ind, indices, num_indices, max_indices);
7640 assign_component (container, lhs, ind, exp, pos);
7643 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7646 /* Assign into the components of LHS indexed by the OP_CHOICES
7647 construct at *POS, updating *POS past the construct, given that
7648 the allowable indices are LOW..HIGH. Record the indices assigned
7649 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7650 needed. CONTAINER is as for assign_aggregate. */
7652 aggregate_assign_from_choices (struct value *container,
7653 struct value *lhs, struct expression *exp,
7654 int *pos, LONGEST *indices, int *num_indices,
7655 int max_indices, LONGEST low, LONGEST high)
7658 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7659 int choice_pos, expr_pc;
7660 int is_array = ada_is_direct_array_type (value_type (lhs));
7662 choice_pos = *pos += 3;
7664 for (j = 0; j < n_choices; j += 1)
7665 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7667 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7669 for (j = 0; j < n_choices; j += 1)
7671 LONGEST lower, upper;
7672 enum exp_opcode op = exp->elts[choice_pos].opcode;
7673 if (op == OP_DISCRETE_RANGE)
7676 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7678 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7683 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7694 name = &exp->elts[choice_pos + 2].string;
7697 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7700 error (_("Invalid record component association."));
7702 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7704 if (! find_struct_field (name, value_type (lhs), 0,
7705 NULL, NULL, NULL, NULL, &ind))
7706 error (_("Unknown component name: %s."), name);
7707 lower = upper = ind;
7710 if (lower <= upper && (lower < low || upper > high))
7711 error (_("Index in component association out of bounds."));
7713 add_component_interval (lower, upper, indices, num_indices,
7715 while (lower <= upper)
7719 assign_component (container, lhs, lower, exp, &pos1);
7725 /* Assign the value of the expression in the OP_OTHERS construct in
7726 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7727 have not been previously assigned. The index intervals already assigned
7728 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7729 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7731 aggregate_assign_others (struct value *container,
7732 struct value *lhs, struct expression *exp,
7733 int *pos, LONGEST *indices, int num_indices,
7734 LONGEST low, LONGEST high)
7737 int expr_pc = *pos+1;
7739 for (i = 0; i < num_indices - 2; i += 2)
7742 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7746 assign_component (container, lhs, ind, exp, &pos);
7749 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7752 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7753 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7754 modifying *SIZE as needed. It is an error if *SIZE exceeds
7755 MAX_SIZE. The resulting intervals do not overlap. */
7757 add_component_interval (LONGEST low, LONGEST high,
7758 LONGEST* indices, int *size, int max_size)
7761 for (i = 0; i < *size; i += 2) {
7762 if (high >= indices[i] && low <= indices[i + 1])
7765 for (kh = i + 2; kh < *size; kh += 2)
7766 if (high < indices[kh])
7768 if (low < indices[i])
7770 indices[i + 1] = indices[kh - 1];
7771 if (high > indices[i + 1])
7772 indices[i + 1] = high;
7773 memcpy (indices + i + 2, indices + kh, *size - kh);
7774 *size -= kh - i - 2;
7777 else if (high < indices[i])
7781 if (*size == max_size)
7782 error (_("Internal error: miscounted aggregate components."));
7784 for (j = *size-1; j >= i+2; j -= 1)
7785 indices[j] = indices[j - 2];
7787 indices[i + 1] = high;
7790 static struct value *
7791 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7792 int *pos, enum noside noside)
7795 int tem, tem2, tem3;
7797 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7800 struct value **argvec;
7804 op = exp->elts[pc].opcode;
7811 unwrap_value (evaluate_subexp_standard
7812 (expect_type, exp, pos, noside));
7816 struct value *result;
7818 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7819 /* The result type will have code OP_STRING, bashed there from
7820 OP_ARRAY. Bash it back. */
7821 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7822 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7828 type = exp->elts[pc + 1].type;
7829 arg1 = evaluate_subexp (type, exp, pos, noside);
7830 if (noside == EVAL_SKIP)
7832 if (type != ada_check_typedef (value_type (arg1)))
7834 if (ada_is_fixed_point_type (type))
7835 arg1 = cast_to_fixed (type, arg1);
7836 else if (ada_is_fixed_point_type (value_type (arg1)))
7837 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7838 else if (VALUE_LVAL (arg1) == lval_memory)
7840 /* This is in case of the really obscure (and undocumented,
7841 but apparently expected) case of (Foo) Bar.all, where Bar
7842 is an integer constant and Foo is a dynamic-sized type.
7843 If we don't do this, ARG1 will simply be relabeled with
7845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7846 return value_zero (to_static_fixed_type (type), not_lval);
7848 ada_to_fixed_value_create
7849 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7852 arg1 = value_cast (type, arg1);
7858 type = exp->elts[pc + 1].type;
7859 return ada_evaluate_subexp (type, exp, pos, noside);
7862 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7863 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7865 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7866 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7868 return ada_value_assign (arg1, arg1);
7870 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7871 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7873 if (ada_is_fixed_point_type (value_type (arg1)))
7874 arg2 = cast_to_fixed (value_type (arg1), arg2);
7875 else if (ada_is_fixed_point_type (value_type (arg2)))
7877 (_("Fixed-point values must be assigned to fixed-point variables"));
7879 arg2 = coerce_for_assign (value_type (arg1), arg2);
7880 return ada_value_assign (arg1, arg2);
7883 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7884 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7885 if (noside == EVAL_SKIP)
7887 if ((ada_is_fixed_point_type (value_type (arg1))
7888 || ada_is_fixed_point_type (value_type (arg2)))
7889 && value_type (arg1) != value_type (arg2))
7890 error (_("Operands of fixed-point addition must have the same type"));
7891 return value_cast (value_type (arg1), value_add (arg1, arg2));
7894 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7895 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7896 if (noside == EVAL_SKIP)
7898 if ((ada_is_fixed_point_type (value_type (arg1))
7899 || ada_is_fixed_point_type (value_type (arg2)))
7900 && value_type (arg1) != value_type (arg2))
7901 error (_("Operands of fixed-point subtraction must have the same type"));
7902 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7906 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7907 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7908 if (noside == EVAL_SKIP)
7910 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7911 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7912 return value_zero (value_type (arg1), not_lval);
7915 if (ada_is_fixed_point_type (value_type (arg1)))
7916 arg1 = cast_from_fixed_to_double (arg1);
7917 if (ada_is_fixed_point_type (value_type (arg2)))
7918 arg2 = cast_from_fixed_to_double (arg2);
7919 return ada_value_binop (arg1, arg2, op);
7924 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7925 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7926 if (noside == EVAL_SKIP)
7928 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7929 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7930 return value_zero (value_type (arg1), not_lval);
7932 return ada_value_binop (arg1, arg2, op);
7935 case BINOP_NOTEQUAL:
7936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7937 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7938 if (noside == EVAL_SKIP)
7940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7943 tem = ada_value_equal (arg1, arg2);
7944 if (op == BINOP_NOTEQUAL)
7946 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7949 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7950 if (noside == EVAL_SKIP)
7952 else if (ada_is_fixed_point_type (value_type (arg1)))
7953 return value_cast (value_type (arg1), value_neg (arg1));
7955 return value_neg (arg1);
7959 if (noside == EVAL_SKIP)
7964 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7965 /* Only encountered when an unresolved symbol occurs in a
7966 context other than a function call, in which case, it is
7968 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7969 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7970 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7974 (to_static_fixed_type
7975 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7981 unwrap_value (evaluate_subexp_standard
7982 (expect_type, exp, pos, noside));
7983 return ada_to_fixed_value (arg1);
7989 /* Allocate arg vector, including space for the function to be
7990 called in argvec[0] and a terminating NULL. */
7991 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7993 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7995 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7996 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
7997 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7998 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8001 for (tem = 0; tem <= nargs; tem += 1)
8002 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8005 if (noside == EVAL_SKIP)
8009 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8010 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8011 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8012 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8013 && VALUE_LVAL (argvec[0]) == lval_memory))
8014 argvec[0] = value_addr (argvec[0]);
8016 type = ada_check_typedef (value_type (argvec[0]));
8017 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8019 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8021 case TYPE_CODE_FUNC:
8022 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8024 case TYPE_CODE_ARRAY:
8026 case TYPE_CODE_STRUCT:
8027 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8028 argvec[0] = ada_value_ind (argvec[0]);
8029 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8032 error (_("cannot subscript or call something of type `%s'"),
8033 ada_type_name (value_type (argvec[0])));
8038 switch (TYPE_CODE (type))
8040 case TYPE_CODE_FUNC:
8041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8042 return allocate_value (TYPE_TARGET_TYPE (type));
8043 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8044 case TYPE_CODE_STRUCT:
8048 arity = ada_array_arity (type);
8049 type = ada_array_element_type (type, nargs);
8051 error (_("cannot subscript or call a record"));
8053 error (_("wrong number of subscripts; expecting %d"), arity);
8054 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8055 return allocate_value (ada_aligned_type (type));
8057 unwrap_value (ada_value_subscript
8058 (argvec[0], nargs, argvec + 1));
8060 case TYPE_CODE_ARRAY:
8061 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8063 type = ada_array_element_type (type, nargs);
8065 error (_("element type of array unknown"));
8067 return allocate_value (ada_aligned_type (type));
8070 unwrap_value (ada_value_subscript
8071 (ada_coerce_to_simple_array (argvec[0]),
8072 nargs, argvec + 1));
8073 case TYPE_CODE_PTR: /* Pointer to array */
8074 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8075 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8077 type = ada_array_element_type (type, nargs);
8079 error (_("element type of array unknown"));
8081 return allocate_value (ada_aligned_type (type));
8084 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8085 nargs, argvec + 1));
8088 error (_("Attempt to index or call something other than an "
8089 "array or function"));
8094 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8095 struct value *low_bound_val =
8096 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8097 struct value *high_bound_val =
8098 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8101 low_bound_val = coerce_ref (low_bound_val);
8102 high_bound_val = coerce_ref (high_bound_val);
8103 low_bound = pos_atr (low_bound_val);
8104 high_bound = pos_atr (high_bound_val);
8106 if (noside == EVAL_SKIP)
8109 /* If this is a reference to an aligner type, then remove all
8111 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8112 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8113 TYPE_TARGET_TYPE (value_type (array)) =
8114 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8116 if (ada_is_packed_array_type (value_type (array)))
8117 error (_("cannot slice a packed array"));
8119 /* If this is a reference to an array or an array lvalue,
8120 convert to a pointer. */
8121 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8122 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8123 && VALUE_LVAL (array) == lval_memory))
8124 array = value_addr (array);
8126 if (noside == EVAL_AVOID_SIDE_EFFECTS
8127 && ada_is_array_descriptor_type (ada_check_typedef
8128 (value_type (array))))
8129 return empty_array (ada_type_of_array (array, 0), low_bound);
8131 array = ada_coerce_to_simple_array_ptr (array);
8133 /* If we have more than one level of pointer indirection,
8134 dereference the value until we get only one level. */
8135 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8136 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8138 array = value_ind (array);
8140 /* Make sure we really do have an array type before going further,
8141 to avoid a SEGV when trying to get the index type or the target
8142 type later down the road if the debug info generated by
8143 the compiler is incorrect or incomplete. */
8144 if (!ada_is_simple_array_type (value_type (array)))
8145 error (_("cannot take slice of non-array"));
8147 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8149 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8150 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8154 struct type *arr_type0 =
8155 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8157 return ada_value_slice_ptr (array, arr_type0,
8158 longest_to_int (low_bound),
8159 longest_to_int (high_bound));
8162 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8164 else if (high_bound < low_bound)
8165 return empty_array (value_type (array), low_bound);
8167 return ada_value_slice (array, longest_to_int (low_bound),
8168 longest_to_int (high_bound));
8173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8174 type = exp->elts[pc + 1].type;
8176 if (noside == EVAL_SKIP)
8179 switch (TYPE_CODE (type))
8182 lim_warning (_("Membership test incompletely implemented; "
8183 "always returns true"));
8184 return value_from_longest (builtin_type_int, (LONGEST) 1);
8186 case TYPE_CODE_RANGE:
8187 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8188 arg3 = value_from_longest (builtin_type_int,
8189 TYPE_HIGH_BOUND (type));
8191 value_from_longest (builtin_type_int,
8192 (value_less (arg1, arg3)
8193 || value_equal (arg1, arg3))
8194 && (value_less (arg2, arg1)
8195 || value_equal (arg2, arg1)));
8198 case BINOP_IN_BOUNDS:
8200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8201 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8203 if (noside == EVAL_SKIP)
8206 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8207 return value_zero (builtin_type_int, not_lval);
8209 tem = longest_to_int (exp->elts[pc + 1].longconst);
8211 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8212 error (_("invalid dimension number to 'range"));
8214 arg3 = ada_array_bound (arg2, tem, 1);
8215 arg2 = ada_array_bound (arg2, tem, 0);
8218 value_from_longest (builtin_type_int,
8219 (value_less (arg1, arg3)
8220 || value_equal (arg1, arg3))
8221 && (value_less (arg2, arg1)
8222 || value_equal (arg2, arg1)));
8224 case TERNOP_IN_RANGE:
8225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8226 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8227 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8229 if (noside == EVAL_SKIP)
8233 value_from_longest (builtin_type_int,
8234 (value_less (arg1, arg3)
8235 || value_equal (arg1, arg3))
8236 && (value_less (arg2, arg1)
8237 || value_equal (arg2, arg1)));
8243 struct type *type_arg;
8244 if (exp->elts[*pos].opcode == OP_TYPE)
8246 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8248 type_arg = exp->elts[pc + 2].type;
8252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8256 if (exp->elts[*pos].opcode != OP_LONG)
8257 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8258 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8261 if (noside == EVAL_SKIP)
8264 if (type_arg == NULL)
8266 arg1 = ada_coerce_ref (arg1);
8268 if (ada_is_packed_array_type (value_type (arg1)))
8269 arg1 = ada_coerce_to_simple_array (arg1);
8271 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8272 error (_("invalid dimension number to '%s"),
8273 ada_attribute_name (op));
8275 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8277 type = ada_index_type (value_type (arg1), tem);
8280 (_("attempt to take bound of something that is not an array"));
8281 return allocate_value (type);
8286 default: /* Should never happen. */
8287 error (_("unexpected attribute encountered"));
8289 return ada_array_bound (arg1, tem, 0);
8291 return ada_array_bound (arg1, tem, 1);
8293 return ada_array_length (arg1, tem);
8296 else if (discrete_type_p (type_arg))
8298 struct type *range_type;
8299 char *name = ada_type_name (type_arg);
8301 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8303 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8304 if (range_type == NULL)
8305 range_type = type_arg;
8309 error (_("unexpected attribute encountered"));
8311 return discrete_type_low_bound (range_type);
8313 return discrete_type_high_bound (range_type);
8315 error (_("the 'length attribute applies only to array types"));
8318 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8319 error (_("unimplemented type attribute"));
8324 if (ada_is_packed_array_type (type_arg))
8325 type_arg = decode_packed_array_type (type_arg);
8327 if (tem < 1 || tem > ada_array_arity (type_arg))
8328 error (_("invalid dimension number to '%s"),
8329 ada_attribute_name (op));
8331 type = ada_index_type (type_arg, tem);
8334 (_("attempt to take bound of something that is not an array"));
8335 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8336 return allocate_value (type);
8341 error (_("unexpected attribute encountered"));
8343 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8344 return value_from_longest (type, low);
8346 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8347 return value_from_longest (type, high);
8349 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8350 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8351 return value_from_longest (type, high - low + 1);
8357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8358 if (noside == EVAL_SKIP)
8361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8362 return value_zero (ada_tag_type (arg1), not_lval);
8364 return ada_value_tag (arg1);
8368 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8370 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8371 if (noside == EVAL_SKIP)
8373 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8374 return value_zero (value_type (arg1), not_lval);
8376 return value_binop (arg1, arg2,
8377 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8379 case OP_ATR_MODULUS:
8381 struct type *type_arg = exp->elts[pc + 2].type;
8382 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8384 if (noside == EVAL_SKIP)
8387 if (!ada_is_modular_type (type_arg))
8388 error (_("'modulus must be applied to modular type"));
8390 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8391 ada_modulus (type_arg));
8396 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8397 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8398 if (noside == EVAL_SKIP)
8400 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8401 return value_zero (builtin_type_int, not_lval);
8403 return value_pos_atr (arg1);
8406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8407 if (noside == EVAL_SKIP)
8409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8410 return value_zero (builtin_type_int, not_lval);
8412 return value_from_longest (builtin_type_int,
8414 * TYPE_LENGTH (value_type (arg1)));
8417 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8419 type = exp->elts[pc + 2].type;
8420 if (noside == EVAL_SKIP)
8422 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8423 return value_zero (type, not_lval);
8425 return value_val_atr (type, arg1);
8428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8429 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8430 if (noside == EVAL_SKIP)
8432 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8433 return value_zero (value_type (arg1), not_lval);
8435 return value_binop (arg1, arg2, op);
8438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8439 if (noside == EVAL_SKIP)
8445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8446 if (noside == EVAL_SKIP)
8448 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8449 return value_neg (arg1);
8454 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8455 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8456 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8457 if (noside == EVAL_SKIP)
8459 type = ada_check_typedef (value_type (arg1));
8460 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8462 if (ada_is_array_descriptor_type (type))
8463 /* GDB allows dereferencing GNAT array descriptors. */
8465 struct type *arrType = ada_type_of_array (arg1, 0);
8466 if (arrType == NULL)
8467 error (_("Attempt to dereference null array pointer."));
8468 return value_at_lazy (arrType, 0);
8470 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8471 || TYPE_CODE (type) == TYPE_CODE_REF
8472 /* In C you can dereference an array to get the 1st elt. */
8473 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8475 type = to_static_fixed_type
8477 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8479 return value_zero (type, lval_memory);
8481 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8482 /* GDB allows dereferencing an int. */
8483 return value_zero (builtin_type_int, lval_memory);
8485 error (_("Attempt to take contents of a non-pointer value."));
8487 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8488 type = ada_check_typedef (value_type (arg1));
8490 if (ada_is_array_descriptor_type (type))
8491 /* GDB allows dereferencing GNAT array descriptors. */
8492 return ada_coerce_to_simple_array (arg1);
8494 return ada_value_ind (arg1);
8496 case STRUCTOP_STRUCT:
8497 tem = longest_to_int (exp->elts[pc + 1].longconst);
8498 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8500 if (noside == EVAL_SKIP)
8502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8504 struct type *type1 = value_type (arg1);
8505 if (ada_is_tagged_type (type1, 1))
8507 type = ada_lookup_struct_elt_type (type1,
8508 &exp->elts[pc + 2].string,
8511 /* In this case, we assume that the field COULD exist
8512 in some extension of the type. Return an object of
8513 "type" void, which will match any formal
8514 (see ada_type_match). */
8515 return value_zero (builtin_type_void, lval_memory);
8519 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8522 return value_zero (ada_aligned_type (type), lval_memory);
8526 ada_to_fixed_value (unwrap_value
8527 (ada_value_struct_elt
8528 (arg1, &exp->elts[pc + 2].string, 0)));
8530 /* The value is not supposed to be used. This is here to make it
8531 easier to accommodate expressions that contain types. */
8533 if (noside == EVAL_SKIP)
8535 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8536 return allocate_value (exp->elts[pc + 1].type);
8538 error (_("Attempt to use a type name as an expression"));
8543 case OP_DISCRETE_RANGE:
8546 if (noside == EVAL_NORMAL)
8550 error (_("Undefined name, ambiguous name, or renaming used in "
8551 "component association: %s."), &exp->elts[pc+2].string);
8553 error (_("Aggregates only allowed on the right of an assignment"));
8555 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8560 for (tem = 0; tem < nargs; tem += 1)
8561 ada_evaluate_subexp (NULL, exp, pos, noside);
8566 return value_from_longest (builtin_type_long, (LONGEST) 1);
8572 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8573 type name that encodes the 'small and 'delta information.
8574 Otherwise, return NULL. */
8577 fixed_type_info (struct type *type)
8579 const char *name = ada_type_name (type);
8580 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8582 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8584 const char *tail = strstr (name, "___XF_");
8590 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8591 return fixed_type_info (TYPE_TARGET_TYPE (type));
8596 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8599 ada_is_fixed_point_type (struct type *type)
8601 return fixed_type_info (type) != NULL;
8604 /* Return non-zero iff TYPE represents a System.Address type. */
8607 ada_is_system_address_type (struct type *type)
8609 return (TYPE_NAME (type)
8610 && strcmp (TYPE_NAME (type), "system__address") == 0);
8613 /* Assuming that TYPE is the representation of an Ada fixed-point
8614 type, return its delta, or -1 if the type is malformed and the
8615 delta cannot be determined. */
8618 ada_delta (struct type *type)
8620 const char *encoding = fixed_type_info (type);
8623 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8626 return (DOUBLEST) num / (DOUBLEST) den;
8629 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8630 factor ('SMALL value) associated with the type. */
8633 scaling_factor (struct type *type)
8635 const char *encoding = fixed_type_info (type);
8636 unsigned long num0, den0, num1, den1;
8639 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8644 return (DOUBLEST) num1 / (DOUBLEST) den1;
8646 return (DOUBLEST) num0 / (DOUBLEST) den0;
8650 /* Assuming that X is the representation of a value of fixed-point
8651 type TYPE, return its floating-point equivalent. */
8654 ada_fixed_to_float (struct type *type, LONGEST x)
8656 return (DOUBLEST) x *scaling_factor (type);
8659 /* The representation of a fixed-point value of type TYPE
8660 corresponding to the value X. */
8663 ada_float_to_fixed (struct type *type, DOUBLEST x)
8665 return (LONGEST) (x / scaling_factor (type) + 0.5);
8669 /* VAX floating formats */
8671 /* Non-zero iff TYPE represents one of the special VAX floating-point
8675 ada_is_vax_floating_type (struct type *type)
8678 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8681 && (TYPE_CODE (type) == TYPE_CODE_INT
8682 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8683 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8686 /* The type of special VAX floating-point type this is, assuming
8687 ada_is_vax_floating_point. */
8690 ada_vax_float_type_suffix (struct type *type)
8692 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8695 /* A value representing the special debugging function that outputs
8696 VAX floating-point values of the type represented by TYPE. Assumes
8697 ada_is_vax_floating_type (TYPE). */
8700 ada_vax_float_print_function (struct type *type)
8702 switch (ada_vax_float_type_suffix (type))
8705 return get_var_value ("DEBUG_STRING_F", 0);
8707 return get_var_value ("DEBUG_STRING_D", 0);
8709 return get_var_value ("DEBUG_STRING_G", 0);
8711 error (_("invalid VAX floating-point type"));
8718 /* Scan STR beginning at position K for a discriminant name, and
8719 return the value of that discriminant field of DVAL in *PX. If
8720 PNEW_K is not null, put the position of the character beyond the
8721 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8722 not alter *PX and *PNEW_K if unsuccessful. */
8725 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8728 static char *bound_buffer = NULL;
8729 static size_t bound_buffer_len = 0;
8732 struct value *bound_val;
8734 if (dval == NULL || str == NULL || str[k] == '\0')
8737 pend = strstr (str + k, "__");
8741 k += strlen (bound);
8745 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8746 bound = bound_buffer;
8747 strncpy (bound_buffer, str + k, pend - (str + k));
8748 bound[pend - (str + k)] = '\0';
8752 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8753 if (bound_val == NULL)
8756 *px = value_as_long (bound_val);
8762 /* Value of variable named NAME in the current environment. If
8763 no such variable found, then if ERR_MSG is null, returns 0, and
8764 otherwise causes an error with message ERR_MSG. */
8766 static struct value *
8767 get_var_value (char *name, char *err_msg)
8769 struct ada_symbol_info *syms;
8772 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8777 if (err_msg == NULL)
8780 error (("%s"), err_msg);
8783 return value_of_variable (syms[0].sym, syms[0].block);
8786 /* Value of integer variable named NAME in the current environment. If
8787 no such variable found, returns 0, and sets *FLAG to 0. If
8788 successful, sets *FLAG to 1. */
8791 get_int_var_value (char *name, int *flag)
8793 struct value *var_val = get_var_value (name, 0);
8805 return value_as_long (var_val);
8810 /* Return a range type whose base type is that of the range type named
8811 NAME in the current environment, and whose bounds are calculated
8812 from NAME according to the GNAT range encoding conventions.
8813 Extract discriminant values, if needed, from DVAL. If a new type
8814 must be created, allocate in OBJFILE's space. The bounds
8815 information, in general, is encoded in NAME, the base type given in
8816 the named range type. */
8818 static struct type *
8819 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8821 struct type *raw_type = ada_find_any_type (name);
8822 struct type *base_type;
8825 if (raw_type == NULL)
8826 base_type = builtin_type_int;
8827 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8828 base_type = TYPE_TARGET_TYPE (raw_type);
8830 base_type = raw_type;
8832 subtype_info = strstr (name, "___XD");
8833 if (subtype_info == NULL)
8837 static char *name_buf = NULL;
8838 static size_t name_len = 0;
8839 int prefix_len = subtype_info - name;
8845 GROW_VECT (name_buf, name_len, prefix_len + 5);
8846 strncpy (name_buf, name, prefix_len);
8847 name_buf[prefix_len] = '\0';
8850 bounds_str = strchr (subtype_info, '_');
8853 if (*subtype_info == 'L')
8855 if (!ada_scan_number (bounds_str, n, &L, &n)
8856 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8858 if (bounds_str[n] == '_')
8860 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8867 strcpy (name_buf + prefix_len, "___L");
8868 L = get_int_var_value (name_buf, &ok);
8871 lim_warning (_("Unknown lower bound, using 1."));
8876 if (*subtype_info == 'U')
8878 if (!ada_scan_number (bounds_str, n, &U, &n)
8879 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8885 strcpy (name_buf + prefix_len, "___U");
8886 U = get_int_var_value (name_buf, &ok);
8889 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8894 if (objfile == NULL)
8895 objfile = TYPE_OBJFILE (base_type);
8896 type = create_range_type (alloc_type (objfile), base_type, L, U);
8897 TYPE_NAME (type) = name;
8902 /* True iff NAME is the name of a range type. */
8905 ada_is_range_type_name (const char *name)
8907 return (name != NULL && strstr (name, "___XD"));
8913 /* True iff TYPE is an Ada modular type. */
8916 ada_is_modular_type (struct type *type)
8918 struct type *subranged_type = base_type (type);
8920 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8921 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8922 && TYPE_UNSIGNED (subranged_type));
8925 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8928 ada_modulus (struct type * type)
8930 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8934 /* Ada exception catchpoint support:
8935 ---------------------------------
8937 We support 3 kinds of exception catchpoints:
8938 . catchpoints on Ada exceptions
8939 . catchpoints on unhandled Ada exceptions
8940 . catchpoints on failed assertions
8942 Exceptions raised during failed assertions, or unhandled exceptions
8943 could perfectly be caught with the general catchpoint on Ada exceptions.
8944 However, we can easily differentiate these two special cases, and having
8945 the option to distinguish these two cases from the rest can be useful
8946 to zero-in on certain situations.
8948 Exception catchpoints are a specialized form of breakpoint,
8949 since they rely on inserting breakpoints inside known routines
8950 of the GNAT runtime. The implementation therefore uses a standard
8951 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8954 Support in the runtime for exception catchpoints have been changed
8955 a few times already, and these changes affect the implementation
8956 of these catchpoints. In order to be able to support several
8957 variants of the runtime, we use a sniffer that will determine
8958 the runtime variant used by the program being debugged.
8960 At this time, we do not support the use of conditions on Ada exception
8961 catchpoints. The COND and COND_STRING fields are therefore set
8962 to NULL (most of the time, see below).
8964 Conditions where EXP_STRING, COND, and COND_STRING are used:
8966 When a user specifies the name of a specific exception in the case
8967 of catchpoints on Ada exceptions, we store the name of that exception
8968 in the EXP_STRING. We then translate this request into an actual
8969 condition stored in COND_STRING, and then parse it into an expression
8972 /* The different types of catchpoints that we introduced for catching
8975 enum exception_catchpoint_kind
8978 ex_catch_exception_unhandled,
8982 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8984 /* A structure that describes how to support exception catchpoints
8985 for a given executable. */
8987 struct exception_support_info
8989 /* The name of the symbol to break on in order to insert
8990 a catchpoint on exceptions. */
8991 const char *catch_exception_sym;
8993 /* The name of the symbol to break on in order to insert
8994 a catchpoint on unhandled exceptions. */
8995 const char *catch_exception_unhandled_sym;
8997 /* The name of the symbol to break on in order to insert
8998 a catchpoint on failed assertions. */
8999 const char *catch_assert_sym;
9001 /* Assuming that the inferior just triggered an unhandled exception
9002 catchpoint, this function is responsible for returning the address
9003 in inferior memory where the name of that exception is stored.
9004 Return zero if the address could not be computed. */
9005 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9008 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9009 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9011 /* The following exception support info structure describes how to
9012 implement exception catchpoints with the latest version of the
9013 Ada runtime (as of 2007-03-06). */
9015 static const struct exception_support_info default_exception_support_info =
9017 "__gnat_debug_raise_exception", /* catch_exception_sym */
9018 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9019 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9020 ada_unhandled_exception_name_addr
9023 /* The following exception support info structure describes how to
9024 implement exception catchpoints with a slightly older version
9025 of the Ada runtime. */
9027 static const struct exception_support_info exception_support_info_fallback =
9029 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9030 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9031 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9032 ada_unhandled_exception_name_addr_from_raise
9035 /* For each executable, we sniff which exception info structure to use
9036 and cache it in the following global variable. */
9038 static const struct exception_support_info *exception_info = NULL;
9040 /* Inspect the Ada runtime and determine which exception info structure
9041 should be used to provide support for exception catchpoints.
9043 This function will always set exception_info, or raise an error. */
9046 ada_exception_support_info_sniffer (void)
9050 /* If the exception info is already known, then no need to recompute it. */
9051 if (exception_info != NULL)
9054 /* Check the latest (default) exception support info. */
9055 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9059 exception_info = &default_exception_support_info;
9063 /* Try our fallback exception suport info. */
9064 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9068 exception_info = &exception_support_info_fallback;
9072 /* Sometimes, it is normal for us to not be able to find the routine
9073 we are looking for. This happens when the program is linked with
9074 the shared version of the GNAT runtime, and the program has not been
9075 started yet. Inform the user of these two possible causes if
9078 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9079 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9081 /* If the symbol does not exist, then check that the program is
9082 already started, to make sure that shared libraries have been
9083 loaded. If it is not started, this may mean that the symbol is
9084 in a shared library. */
9086 if (ptid_get_pid (inferior_ptid) == 0)
9087 error (_("Unable to insert catchpoint. Try to start the program first."));
9089 /* At this point, we know that we are debugging an Ada program and
9090 that the inferior has been started, but we still are not able to
9091 find the run-time symbols. That can mean that we are in
9092 configurable run time mode, or that a-except as been optimized
9093 out by the linker... In any case, at this point it is not worth
9094 supporting this feature. */
9096 error (_("Cannot insert catchpoints in this configuration."));
9099 /* An observer of "executable_changed" events.
9100 Its role is to clear certain cached values that need to be recomputed
9101 each time a new executable is loaded by GDB. */
9104 ada_executable_changed_observer (void *unused)
9106 /* If the executable changed, then it is possible that the Ada runtime
9107 is different. So we need to invalidate the exception support info
9109 exception_info = NULL;
9112 /* Return the name of the function at PC, NULL if could not find it.
9113 This function only checks the debugging information, not the symbol
9117 function_name_from_pc (CORE_ADDR pc)
9121 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9127 /* True iff FRAME is very likely to be that of a function that is
9128 part of the runtime system. This is all very heuristic, but is
9129 intended to be used as advice as to what frames are uninteresting
9133 is_known_support_routine (struct frame_info *frame)
9135 struct symtab_and_line sal;
9139 /* If this code does not have any debugging information (no symtab),
9140 This cannot be any user code. */
9142 find_frame_sal (frame, &sal);
9143 if (sal.symtab == NULL)
9146 /* If there is a symtab, but the associated source file cannot be
9147 located, then assume this is not user code: Selecting a frame
9148 for which we cannot display the code would not be very helpful
9149 for the user. This should also take care of case such as VxWorks
9150 where the kernel has some debugging info provided for a few units. */
9152 if (symtab_to_fullname (sal.symtab) == NULL)
9155 /* Check the unit filename againt the Ada runtime file naming.
9156 We also check the name of the objfile against the name of some
9157 known system libraries that sometimes come with debugging info
9160 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9162 re_comp (known_runtime_file_name_patterns[i]);
9163 if (re_exec (sal.symtab->filename))
9165 if (sal.symtab->objfile != NULL
9166 && re_exec (sal.symtab->objfile->name))
9170 /* Check whether the function is a GNAT-generated entity. */
9172 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9173 if (func_name == NULL)
9176 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9178 re_comp (known_auxiliary_function_name_patterns[i]);
9179 if (re_exec (func_name))
9186 /* Find the first frame that contains debugging information and that is not
9187 part of the Ada run-time, starting from FI and moving upward. */
9190 ada_find_printable_frame (struct frame_info *fi)
9192 for (; fi != NULL; fi = get_prev_frame (fi))
9194 if (!is_known_support_routine (fi))
9203 /* Assuming that the inferior just triggered an unhandled exception
9204 catchpoint, return the address in inferior memory where the name
9205 of the exception is stored.
9207 Return zero if the address could not be computed. */
9210 ada_unhandled_exception_name_addr (void)
9212 return parse_and_eval_address ("e.full_name");
9215 /* Same as ada_unhandled_exception_name_addr, except that this function
9216 should be used when the inferior uses an older version of the runtime,
9217 where the exception name needs to be extracted from a specific frame
9218 several frames up in the callstack. */
9221 ada_unhandled_exception_name_addr_from_raise (void)
9224 struct frame_info *fi;
9226 /* To determine the name of this exception, we need to select
9227 the frame corresponding to RAISE_SYM_NAME. This frame is
9228 at least 3 levels up, so we simply skip the first 3 frames
9229 without checking the name of their associated function. */
9230 fi = get_current_frame ();
9231 for (frame_level = 0; frame_level < 3; frame_level += 1)
9233 fi = get_prev_frame (fi);
9237 const char *func_name =
9238 function_name_from_pc (get_frame_address_in_block (fi));
9239 if (func_name != NULL
9240 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9241 break; /* We found the frame we were looking for... */
9242 fi = get_prev_frame (fi);
9249 return parse_and_eval_address ("id.full_name");
9252 /* Assuming the inferior just triggered an Ada exception catchpoint
9253 (of any type), return the address in inferior memory where the name
9254 of the exception is stored, if applicable.
9256 Return zero if the address could not be computed, or if not relevant. */
9259 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9260 struct breakpoint *b)
9264 case ex_catch_exception:
9265 return (parse_and_eval_address ("e.full_name"));
9268 case ex_catch_exception_unhandled:
9269 return exception_info->unhandled_exception_name_addr ();
9272 case ex_catch_assert:
9273 return 0; /* Exception name is not relevant in this case. */
9277 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9281 return 0; /* Should never be reached. */
9284 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9285 any error that ada_exception_name_addr_1 might cause to be thrown.
9286 When an error is intercepted, a warning with the error message is printed,
9287 and zero is returned. */
9290 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9291 struct breakpoint *b)
9293 struct gdb_exception e;
9294 CORE_ADDR result = 0;
9296 TRY_CATCH (e, RETURN_MASK_ERROR)
9298 result = ada_exception_name_addr_1 (ex, b);
9303 warning (_("failed to get exception name: %s"), e.message);
9310 /* Implement the PRINT_IT method in the breakpoint_ops structure
9311 for all exception catchpoint kinds. */
9313 static enum print_stop_action
9314 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9316 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9317 char exception_name[256];
9321 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9322 exception_name [sizeof (exception_name) - 1] = '\0';
9325 ada_find_printable_frame (get_current_frame ());
9327 annotate_catchpoint (b->number);
9330 case ex_catch_exception:
9332 printf_filtered (_("\nCatchpoint %d, %s at "),
9333 b->number, exception_name);
9335 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9337 case ex_catch_exception_unhandled:
9339 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9340 b->number, exception_name);
9342 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9345 case ex_catch_assert:
9346 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9351 return PRINT_SRC_AND_LOC;
9354 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9355 for all exception catchpoint kinds. */
9358 print_one_exception (enum exception_catchpoint_kind ex,
9359 struct breakpoint *b, CORE_ADDR *last_addr)
9364 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9368 *last_addr = b->loc->address;
9371 case ex_catch_exception:
9372 if (b->exp_string != NULL)
9374 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9376 ui_out_field_string (uiout, "what", msg);
9380 ui_out_field_string (uiout, "what", "all Ada exceptions");
9384 case ex_catch_exception_unhandled:
9385 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9388 case ex_catch_assert:
9389 ui_out_field_string (uiout, "what", "failed Ada assertions");
9393 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9398 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9399 for all exception catchpoint kinds. */
9402 print_mention_exception (enum exception_catchpoint_kind ex,
9403 struct breakpoint *b)
9407 case ex_catch_exception:
9408 if (b->exp_string != NULL)
9409 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9410 b->number, b->exp_string);
9412 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9416 case ex_catch_exception_unhandled:
9417 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9421 case ex_catch_assert:
9422 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9426 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9431 /* Virtual table for "catch exception" breakpoints. */
9433 static enum print_stop_action
9434 print_it_catch_exception (struct breakpoint *b)
9436 return print_it_exception (ex_catch_exception, b);
9440 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9442 print_one_exception (ex_catch_exception, b, last_addr);
9446 print_mention_catch_exception (struct breakpoint *b)
9448 print_mention_exception (ex_catch_exception, b);
9451 static struct breakpoint_ops catch_exception_breakpoint_ops =
9453 print_it_catch_exception,
9454 print_one_catch_exception,
9455 print_mention_catch_exception
9458 /* Virtual table for "catch exception unhandled" breakpoints. */
9460 static enum print_stop_action
9461 print_it_catch_exception_unhandled (struct breakpoint *b)
9463 return print_it_exception (ex_catch_exception_unhandled, b);
9467 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9469 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9473 print_mention_catch_exception_unhandled (struct breakpoint *b)
9475 print_mention_exception (ex_catch_exception_unhandled, b);
9478 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9479 print_it_catch_exception_unhandled,
9480 print_one_catch_exception_unhandled,
9481 print_mention_catch_exception_unhandled
9484 /* Virtual table for "catch assert" breakpoints. */
9486 static enum print_stop_action
9487 print_it_catch_assert (struct breakpoint *b)
9489 return print_it_exception (ex_catch_assert, b);
9493 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9495 print_one_exception (ex_catch_assert, b, last_addr);
9499 print_mention_catch_assert (struct breakpoint *b)
9501 print_mention_exception (ex_catch_assert, b);
9504 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9505 print_it_catch_assert,
9506 print_one_catch_assert,
9507 print_mention_catch_assert
9510 /* Return non-zero if B is an Ada exception catchpoint. */
9513 ada_exception_catchpoint_p (struct breakpoint *b)
9515 return (b->ops == &catch_exception_breakpoint_ops
9516 || b->ops == &catch_exception_unhandled_breakpoint_ops
9517 || b->ops == &catch_assert_breakpoint_ops);
9520 /* Return a newly allocated copy of the first space-separated token
9521 in ARGSP, and then adjust ARGSP to point immediately after that
9524 Return NULL if ARGPS does not contain any more tokens. */
9527 ada_get_next_arg (char **argsp)
9529 char *args = *argsp;
9533 /* Skip any leading white space. */
9535 while (isspace (*args))
9538 if (args[0] == '\0')
9539 return NULL; /* No more arguments. */
9541 /* Find the end of the current argument. */
9544 while (*end != '\0' && !isspace (*end))
9547 /* Adjust ARGSP to point to the start of the next argument. */
9551 /* Make a copy of the current argument and return it. */
9553 result = xmalloc (end - args + 1);
9554 strncpy (result, args, end - args);
9555 result[end - args] = '\0';
9560 /* Split the arguments specified in a "catch exception" command.
9561 Set EX to the appropriate catchpoint type.
9562 Set EXP_STRING to the name of the specific exception if
9563 specified by the user. */
9566 catch_ada_exception_command_split (char *args,
9567 enum exception_catchpoint_kind *ex,
9570 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9571 char *exception_name;
9573 exception_name = ada_get_next_arg (&args);
9574 make_cleanup (xfree, exception_name);
9576 /* Check that we do not have any more arguments. Anything else
9579 while (isspace (*args))
9582 if (args[0] != '\0')
9583 error (_("Junk at end of expression"));
9585 discard_cleanups (old_chain);
9587 if (exception_name == NULL)
9589 /* Catch all exceptions. */
9590 *ex = ex_catch_exception;
9593 else if (strcmp (exception_name, "unhandled") == 0)
9595 /* Catch unhandled exceptions. */
9596 *ex = ex_catch_exception_unhandled;
9601 /* Catch a specific exception. */
9602 *ex = ex_catch_exception;
9603 *exp_string = exception_name;
9607 /* Return the name of the symbol on which we should break in order to
9608 implement a catchpoint of the EX kind. */
9611 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9613 gdb_assert (exception_info != NULL);
9617 case ex_catch_exception:
9618 return (exception_info->catch_exception_sym);
9620 case ex_catch_exception_unhandled:
9621 return (exception_info->catch_exception_unhandled_sym);
9623 case ex_catch_assert:
9624 return (exception_info->catch_assert_sym);
9627 internal_error (__FILE__, __LINE__,
9628 _("unexpected catchpoint kind (%d)"), ex);
9632 /* Return the breakpoint ops "virtual table" used for catchpoints
9635 static struct breakpoint_ops *
9636 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9640 case ex_catch_exception:
9641 return (&catch_exception_breakpoint_ops);
9643 case ex_catch_exception_unhandled:
9644 return (&catch_exception_unhandled_breakpoint_ops);
9646 case ex_catch_assert:
9647 return (&catch_assert_breakpoint_ops);
9650 internal_error (__FILE__, __LINE__,
9651 _("unexpected catchpoint kind (%d)"), ex);
9655 /* Return the condition that will be used to match the current exception
9656 being raised with the exception that the user wants to catch. This
9657 assumes that this condition is used when the inferior just triggered
9658 an exception catchpoint.
9660 The string returned is a newly allocated string that needs to be
9661 deallocated later. */
9664 ada_exception_catchpoint_cond_string (const char *exp_string)
9666 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9669 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9671 static struct expression *
9672 ada_parse_catchpoint_condition (char *cond_string,
9673 struct symtab_and_line sal)
9675 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9678 /* Return the symtab_and_line that should be used to insert an exception
9679 catchpoint of the TYPE kind.
9681 EX_STRING should contain the name of a specific exception
9682 that the catchpoint should catch, or NULL otherwise.
9684 The idea behind all the remaining parameters is that their names match
9685 the name of certain fields in the breakpoint structure that are used to
9686 handle exception catchpoints. This function returns the value to which
9687 these fields should be set, depending on the type of catchpoint we need
9690 If COND and COND_STRING are both non-NULL, any value they might
9691 hold will be free'ed, and then replaced by newly allocated ones.
9692 These parameters are left untouched otherwise. */
9694 static struct symtab_and_line
9695 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9696 char **addr_string, char **cond_string,
9697 struct expression **cond, struct breakpoint_ops **ops)
9699 const char *sym_name;
9701 struct symtab_and_line sal;
9703 /* First, find out which exception support info to use. */
9704 ada_exception_support_info_sniffer ();
9706 /* Then lookup the function on which we will break in order to catch
9707 the Ada exceptions requested by the user. */
9709 sym_name = ada_exception_sym_name (ex);
9710 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9712 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9713 that should be compiled with debugging information. As a result, we
9714 expect to find that symbol in the symtabs. If we don't find it, then
9715 the target most likely does not support Ada exceptions, or we cannot
9716 insert exception breakpoints yet, because the GNAT runtime hasn't been
9719 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9720 in such a way that no debugging information is produced for the symbol
9721 we are looking for. In this case, we could search the minimal symbols
9722 as a fall-back mechanism. This would still be operating in degraded
9723 mode, however, as we would still be missing the debugging information
9724 that is needed in order to extract the name of the exception being
9725 raised (this name is printed in the catchpoint message, and is also
9726 used when trying to catch a specific exception). We do not handle
9727 this case for now. */
9730 error (_("Unable to break on '%s' in this configuration."), sym_name);
9732 /* Make sure that the symbol we found corresponds to a function. */
9733 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9734 error (_("Symbol \"%s\" is not a function (class = %d)"),
9735 sym_name, SYMBOL_CLASS (sym));
9737 sal = find_function_start_sal (sym, 1);
9739 /* Set ADDR_STRING. */
9741 *addr_string = xstrdup (sym_name);
9743 /* Set the COND and COND_STRING (if not NULL). */
9745 if (cond_string != NULL && cond != NULL)
9747 if (*cond_string != NULL)
9749 xfree (*cond_string);
9750 *cond_string = NULL;
9757 if (exp_string != NULL)
9759 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9760 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9765 *ops = ada_exception_breakpoint_ops (ex);
9770 /* Parse the arguments (ARGS) of the "catch exception" command.
9772 Set TYPE to the appropriate exception catchpoint type.
9773 If the user asked the catchpoint to catch only a specific
9774 exception, then save the exception name in ADDR_STRING.
9776 See ada_exception_sal for a description of all the remaining
9777 function arguments of this function. */
9779 struct symtab_and_line
9780 ada_decode_exception_location (char *args, char **addr_string,
9781 char **exp_string, char **cond_string,
9782 struct expression **cond,
9783 struct breakpoint_ops **ops)
9785 enum exception_catchpoint_kind ex;
9787 catch_ada_exception_command_split (args, &ex, exp_string);
9788 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9792 struct symtab_and_line
9793 ada_decode_assert_location (char *args, char **addr_string,
9794 struct breakpoint_ops **ops)
9796 /* Check that no argument where provided at the end of the command. */
9800 while (isspace (*args))
9803 error (_("Junk at end of arguments."));
9806 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9811 /* Information about operators given special treatment in functions
9813 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9815 #define ADA_OPERATORS \
9816 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9817 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9818 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9819 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9820 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9821 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9822 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9823 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9824 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9825 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9826 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9827 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9828 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9829 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9830 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9831 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9832 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9833 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9834 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9837 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9839 switch (exp->elts[pc - 1].opcode)
9842 operator_length_standard (exp, pc, oplenp, argsp);
9845 #define OP_DEFN(op, len, args, binop) \
9846 case op: *oplenp = len; *argsp = args; break;
9852 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9857 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9863 ada_op_name (enum exp_opcode opcode)
9868 return op_name_standard (opcode);
9870 #define OP_DEFN(op, len, args, binop) case op: return #op;
9875 return "OP_AGGREGATE";
9877 return "OP_CHOICES";
9883 /* As for operator_length, but assumes PC is pointing at the first
9884 element of the operator, and gives meaningful results only for the
9885 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9888 ada_forward_operator_length (struct expression *exp, int pc,
9889 int *oplenp, int *argsp)
9891 switch (exp->elts[pc].opcode)
9894 *oplenp = *argsp = 0;
9897 #define OP_DEFN(op, len, args, binop) \
9898 case op: *oplenp = len; *argsp = args; break;
9904 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9909 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9915 int len = longest_to_int (exp->elts[pc + 1].longconst);
9916 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9924 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9926 enum exp_opcode op = exp->elts[elt].opcode;
9931 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9935 /* Ada attributes ('Foo). */
9942 case OP_ATR_MODULUS:
9951 /* XXX: gdb_sprint_host_address, type_sprint */
9952 fprintf_filtered (stream, _("Type @"));
9953 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9954 fprintf_filtered (stream, " (");
9955 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9956 fprintf_filtered (stream, ")");
9958 case BINOP_IN_BOUNDS:
9959 fprintf_filtered (stream, " (%d)",
9960 longest_to_int (exp->elts[pc + 2].longconst));
9962 case TERNOP_IN_RANGE:
9967 case OP_DISCRETE_RANGE:
9975 char *name = &exp->elts[elt + 2].string;
9976 int len = longest_to_int (exp->elts[elt + 1].longconst);
9977 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9982 return dump_subexp_body_standard (exp, stream, elt);
9986 for (i = 0; i < nargs; i += 1)
9987 elt = dump_subexp (exp, stream, elt);
9992 /* The Ada extension of print_subexp (q.v.). */
9995 ada_print_subexp (struct expression *exp, int *pos,
9996 struct ui_file *stream, enum precedence prec)
9998 int oplen, nargs, i;
10000 enum exp_opcode op = exp->elts[pc].opcode;
10002 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10009 print_subexp_standard (exp, pos, stream, prec);
10013 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10016 case BINOP_IN_BOUNDS:
10017 /* XXX: sprint_subexp */
10018 print_subexp (exp, pos, stream, PREC_SUFFIX);
10019 fputs_filtered (" in ", stream);
10020 print_subexp (exp, pos, stream, PREC_SUFFIX);
10021 fputs_filtered ("'range", stream);
10022 if (exp->elts[pc + 1].longconst > 1)
10023 fprintf_filtered (stream, "(%ld)",
10024 (long) exp->elts[pc + 1].longconst);
10027 case TERNOP_IN_RANGE:
10028 if (prec >= PREC_EQUAL)
10029 fputs_filtered ("(", stream);
10030 /* XXX: sprint_subexp */
10031 print_subexp (exp, pos, stream, PREC_SUFFIX);
10032 fputs_filtered (" in ", stream);
10033 print_subexp (exp, pos, stream, PREC_EQUAL);
10034 fputs_filtered (" .. ", stream);
10035 print_subexp (exp, pos, stream, PREC_EQUAL);
10036 if (prec >= PREC_EQUAL)
10037 fputs_filtered (")", stream);
10042 case OP_ATR_LENGTH:
10046 case OP_ATR_MODULUS:
10051 if (exp->elts[*pos].opcode == OP_TYPE)
10053 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10054 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10058 print_subexp (exp, pos, stream, PREC_SUFFIX);
10059 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10063 for (tem = 1; tem < nargs; tem += 1)
10065 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10066 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10068 fputs_filtered (")", stream);
10073 type_print (exp->elts[pc + 1].type, "", stream, 0);
10074 fputs_filtered ("'(", stream);
10075 print_subexp (exp, pos, stream, PREC_PREFIX);
10076 fputs_filtered (")", stream);
10079 case UNOP_IN_RANGE:
10080 /* XXX: sprint_subexp */
10081 print_subexp (exp, pos, stream, PREC_SUFFIX);
10082 fputs_filtered (" in ", stream);
10083 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10086 case OP_DISCRETE_RANGE:
10087 print_subexp (exp, pos, stream, PREC_SUFFIX);
10088 fputs_filtered ("..", stream);
10089 print_subexp (exp, pos, stream, PREC_SUFFIX);
10093 fputs_filtered ("others => ", stream);
10094 print_subexp (exp, pos, stream, PREC_SUFFIX);
10098 for (i = 0; i < nargs-1; i += 1)
10101 fputs_filtered ("|", stream);
10102 print_subexp (exp, pos, stream, PREC_SUFFIX);
10104 fputs_filtered (" => ", stream);
10105 print_subexp (exp, pos, stream, PREC_SUFFIX);
10108 case OP_POSITIONAL:
10109 print_subexp (exp, pos, stream, PREC_SUFFIX);
10113 fputs_filtered ("(", stream);
10114 for (i = 0; i < nargs; i += 1)
10117 fputs_filtered (", ", stream);
10118 print_subexp (exp, pos, stream, PREC_SUFFIX);
10120 fputs_filtered (")", stream);
10125 /* Table mapping opcodes into strings for printing operators
10126 and precedences of the operators. */
10128 static const struct op_print ada_op_print_tab[] = {
10129 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10130 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10131 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10132 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10133 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10134 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10135 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10136 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10137 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10138 {">=", BINOP_GEQ, PREC_ORDER, 0},
10139 {">", BINOP_GTR, PREC_ORDER, 0},
10140 {"<", BINOP_LESS, PREC_ORDER, 0},
10141 {">>", BINOP_RSH, PREC_SHIFT, 0},
10142 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10143 {"+", BINOP_ADD, PREC_ADD, 0},
10144 {"-", BINOP_SUB, PREC_ADD, 0},
10145 {"&", BINOP_CONCAT, PREC_ADD, 0},
10146 {"*", BINOP_MUL, PREC_MUL, 0},
10147 {"/", BINOP_DIV, PREC_MUL, 0},
10148 {"rem", BINOP_REM, PREC_MUL, 0},
10149 {"mod", BINOP_MOD, PREC_MUL, 0},
10150 {"**", BINOP_EXP, PREC_REPEAT, 0},
10151 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10152 {"-", UNOP_NEG, PREC_PREFIX, 0},
10153 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10154 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10155 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10156 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10157 {".all", UNOP_IND, PREC_SUFFIX, 1},
10158 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10159 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10163 /* Fundamental Ada Types */
10165 /* Create a fundamental Ada type using default reasonable for the current
10168 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10169 define fundamental types such as "int" or "double". Others (stabs or
10170 DWARF version 2, etc) do define fundamental types. For the formats which
10171 don't provide fundamental types, gdb can create such types using this
10174 FIXME: Some compilers distinguish explicitly signed integral types
10175 (signed short, signed int, signed long) from "regular" integral types
10176 (short, int, long) in the debugging information. There is some dis-
10177 agreement as to how useful this feature is. In particular, gcc does
10178 not support this. Also, only some debugging formats allow the
10179 distinction to be passed on to a debugger. For now, we always just
10180 use "short", "int", or "long" as the type name, for both the implicit
10181 and explicitly signed types. This also makes life easier for the
10182 gdb test suite since we don't have to account for the differences
10183 in output depending upon what the compiler and debugging format
10184 support. We will probably have to re-examine the issue when gdb
10185 starts taking it's fundamental type information directly from the
10188 static struct type *
10189 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10191 struct type *type = NULL;
10196 /* FIXME: For now, if we are asked to produce a type not in this
10197 language, create the equivalent of a C integer type with the
10198 name "<?type?>". When all the dust settles from the type
10199 reconstruction work, this should probably become an error. */
10200 type = init_type (TYPE_CODE_INT,
10201 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10202 0, "<?type?>", objfile);
10203 warning (_("internal error: no Ada fundamental type %d"), typeid);
10206 type = init_type (TYPE_CODE_VOID,
10207 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10208 0, "void", objfile);
10211 type = init_type (TYPE_CODE_INT,
10212 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10213 0, "character", objfile);
10215 case FT_SIGNED_CHAR:
10216 type = init_type (TYPE_CODE_INT,
10217 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10218 0, "signed char", objfile);
10220 case FT_UNSIGNED_CHAR:
10221 type = init_type (TYPE_CODE_INT,
10222 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10223 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10226 type = init_type (TYPE_CODE_INT,
10227 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10228 0, "short_integer", objfile);
10230 case FT_SIGNED_SHORT:
10231 type = init_type (TYPE_CODE_INT,
10232 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10233 0, "short_integer", objfile);
10235 case FT_UNSIGNED_SHORT:
10236 type = init_type (TYPE_CODE_INT,
10237 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10238 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10241 type = init_type (TYPE_CODE_INT,
10242 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10243 0, "integer", objfile);
10245 case FT_SIGNED_INTEGER:
10246 type = init_type (TYPE_CODE_INT,
10247 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10248 0, "integer", objfile); /* FIXME -fnf */
10250 case FT_UNSIGNED_INTEGER:
10251 type = init_type (TYPE_CODE_INT,
10252 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10253 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10256 type = init_type (TYPE_CODE_INT,
10257 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10258 0, "long_integer", objfile);
10260 case FT_SIGNED_LONG:
10261 type = init_type (TYPE_CODE_INT,
10262 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10263 0, "long_integer", objfile);
10265 case FT_UNSIGNED_LONG:
10266 type = init_type (TYPE_CODE_INT,
10267 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10268 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10271 type = init_type (TYPE_CODE_INT,
10272 gdbarch_long_long_bit (current_gdbarch)
10274 0, "long_long_integer", objfile);
10276 case FT_SIGNED_LONG_LONG:
10277 type = init_type (TYPE_CODE_INT,
10278 gdbarch_long_long_bit (current_gdbarch)
10280 0, "long_long_integer", objfile);
10282 case FT_UNSIGNED_LONG_LONG:
10283 type = init_type (TYPE_CODE_INT,
10284 gdbarch_long_long_bit (current_gdbarch)
10286 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10289 type = init_type (TYPE_CODE_FLT,
10290 gdbarch_float_bit (current_gdbarch) / TARGET_CHAR_BIT,
10291 0, "float", objfile);
10293 case FT_DBL_PREC_FLOAT:
10294 type = init_type (TYPE_CODE_FLT,
10295 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10296 0, "long_float", objfile);
10298 case FT_EXT_PREC_FLOAT:
10299 type = init_type (TYPE_CODE_FLT,
10300 gdbarch_long_double_bit (current_gdbarch)
10302 0, "long_long_float", objfile);
10308 enum ada_primitive_types {
10309 ada_primitive_type_int,
10310 ada_primitive_type_long,
10311 ada_primitive_type_short,
10312 ada_primitive_type_char,
10313 ada_primitive_type_float,
10314 ada_primitive_type_double,
10315 ada_primitive_type_void,
10316 ada_primitive_type_long_long,
10317 ada_primitive_type_long_double,
10318 ada_primitive_type_natural,
10319 ada_primitive_type_positive,
10320 ada_primitive_type_system_address,
10321 nr_ada_primitive_types
10325 ada_language_arch_info (struct gdbarch *current_gdbarch,
10326 struct language_arch_info *lai)
10328 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10329 lai->primitive_type_vector
10330 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10332 lai->primitive_type_vector [ada_primitive_type_int] =
10333 init_type (TYPE_CODE_INT,
10334 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10335 0, "integer", (struct objfile *) NULL);
10336 lai->primitive_type_vector [ada_primitive_type_long] =
10337 init_type (TYPE_CODE_INT,
10338 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10339 0, "long_integer", (struct objfile *) NULL);
10340 lai->primitive_type_vector [ada_primitive_type_short] =
10341 init_type (TYPE_CODE_INT,
10342 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10343 0, "short_integer", (struct objfile *) NULL);
10344 lai->string_char_type =
10345 lai->primitive_type_vector [ada_primitive_type_char] =
10346 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10347 0, "character", (struct objfile *) NULL);
10348 lai->primitive_type_vector [ada_primitive_type_float] =
10349 init_type (TYPE_CODE_FLT,
10350 gdbarch_float_bit (current_gdbarch)/ TARGET_CHAR_BIT,
10351 0, "float", (struct objfile *) NULL);
10352 lai->primitive_type_vector [ada_primitive_type_double] =
10353 init_type (TYPE_CODE_FLT,
10354 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10355 0, "long_float", (struct objfile *) NULL);
10356 lai->primitive_type_vector [ada_primitive_type_long_long] =
10357 init_type (TYPE_CODE_INT,
10358 gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10359 0, "long_long_integer", (struct objfile *) NULL);
10360 lai->primitive_type_vector [ada_primitive_type_long_double] =
10361 init_type (TYPE_CODE_FLT,
10362 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10363 0, "long_long_float", (struct objfile *) NULL);
10364 lai->primitive_type_vector [ada_primitive_type_natural] =
10365 init_type (TYPE_CODE_INT,
10366 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10367 0, "natural", (struct objfile *) NULL);
10368 lai->primitive_type_vector [ada_primitive_type_positive] =
10369 init_type (TYPE_CODE_INT,
10370 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10371 0, "positive", (struct objfile *) NULL);
10372 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10374 lai->primitive_type_vector [ada_primitive_type_system_address] =
10375 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10376 (struct objfile *) NULL));
10377 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10378 = "system__address";
10381 /* Language vector */
10383 /* Not really used, but needed in the ada_language_defn. */
10386 emit_char (int c, struct ui_file *stream, int quoter)
10388 ada_emit_char (c, stream, quoter, 1);
10394 warnings_issued = 0;
10395 return ada_parse ();
10398 static const struct exp_descriptor ada_exp_descriptor = {
10400 ada_operator_length,
10402 ada_dump_subexp_body,
10403 ada_evaluate_subexp
10406 const struct language_defn ada_language_defn = {
10407 "ada", /* Language name */
10412 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10413 that's not quite what this means. */
10415 &ada_exp_descriptor,
10419 ada_printchar, /* Print a character constant */
10420 ada_printstr, /* Function to print string constant */
10421 emit_char, /* Function to print single char (not used) */
10422 ada_create_fundamental_type, /* Create fundamental type in this language */
10423 ada_print_type, /* Print a type using appropriate syntax */
10424 ada_val_print, /* Print a value using appropriate syntax */
10425 ada_value_print, /* Print a top-level value */
10426 NULL, /* Language specific skip_trampoline */
10427 NULL, /* value_of_this */
10428 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10429 basic_lookup_transparent_type, /* lookup_transparent_type */
10430 ada_la_decode, /* Language specific symbol demangler */
10431 NULL, /* Language specific class_name_from_physname */
10432 ada_op_print_tab, /* expression operators for printing */
10433 0, /* c-style arrays */
10434 1, /* String lower bound */
10436 ada_get_gdb_completer_word_break_characters,
10437 ada_language_arch_info,
10438 ada_print_array_index,
10443 _initialize_ada_language (void)
10445 add_language (&ada_language_defn);
10447 varsize_limit = 65536;
10449 obstack_init (&symbol_list_obstack);
10451 decoded_names_store = htab_create_alloc
10452 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10453 NULL, xcalloc, xfree);