1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28 #include "expression.h"
33 #include "complaints.h"
37 #include "cp-support.h"
39 #include "dwarf2loc.h"
41 #include "floatformat.h"
43 /* Initialize BADNESS constants. */
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
117 /* Should opaque types be resolved? */
119 static int opaque_type_resolution = 1;
121 /* A flag to enable printing of debugging information of C++
124 unsigned int overload_debug = 0;
126 /* A flag to enable strict type checking. */
128 static int strict_type_checking = 1;
130 /* A function to show whether opaque types are resolved. */
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
142 /* A function to show whether C++ overload debugging is enabled. */
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
152 /* A function to show the status of strict type checking. */
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
167 alloc_type (struct objfile *objfile)
171 gdb_assert (objfile != NULL);
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 OBJSTAT (objfile, n_types++);
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
182 /* Initialize the fields that might not be zero. */
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
195 alloc_type_arch (struct gdbarch *gdbarch)
199 gdb_assert (gdbarch != NULL);
201 /* Alloc the structure and start off with all fields zeroed. */
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
209 /* Initialize the fields that might not be zero. */
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
222 alloc_type_copy (const struct type *type)
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
234 get_type_arch (const struct type *type)
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
239 return TYPE_OWNER (type).gdbarch;
242 /* See gdbtypes.h. */
245 get_target_type (struct type *type)
249 type = TYPE_TARGET_TYPE (type);
251 type = check_typedef (type);
257 /* See gdbtypes.h. */
260 type_length_units (struct type *type)
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
265 return TYPE_LENGTH (type) / unit_size;
268 /* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
273 alloc_type_instance (struct type *oldtype)
277 /* Allocate the structure. */
279 if (! TYPE_OBJFILE_OWNED (oldtype))
280 type = XCNEW (struct type);
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
292 /* Clear all remnants of the previous type at TYPE, in preparation for
293 replacing it with something else. Preserve owner information. */
296 smash_type (struct type *type)
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
310 /* For now, leave the pointer/reference types alone. */
313 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
319 make_pointer_type (struct type *type, struct type **typeptr)
321 struct type *ntype; /* New type */
324 ntype = TYPE_POINTER_TYPE (type);
329 return ntype; /* Don't care about alloc,
330 and have new type. */
331 else if (*typeptr == 0)
333 *typeptr = ntype; /* Tracking alloc, and have new type. */
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
340 ntype = alloc_type_copy (type);
344 else /* We have storage, but need to reset it. */
347 chain = TYPE_CHAIN (ntype);
349 TYPE_CHAIN (ntype) = chain;
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
355 /* FIXME! Assumes the machine has only one representation for pointers! */
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
361 /* Mark pointers as unsigned. The target converts between pointers
362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
363 gdbarch_address_to_pointer. */
364 TYPE_UNSIGNED (ntype) = 1;
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
377 /* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
381 lookup_pointer_type (struct type *type)
383 return make_pointer_type (type, (struct type **) 0);
386 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
393 make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
396 struct type *ntype; /* New type */
397 struct type **reftype;
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
408 return ntype; /* Don't care about alloc,
409 and have new type. */
410 else if (*typeptr == 0)
412 *typeptr = ntype; /* Tracking alloc, and have new type. */
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
419 ntype = alloc_type_copy (type);
423 else /* We have storage, but need to reset it. */
426 chain = TYPE_CHAIN (ntype);
428 TYPE_CHAIN (ntype) = chain;
431 TYPE_TARGET_TYPE (ntype) = type;
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
443 TYPE_CODE (ntype) = refcode;
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
458 /* Same as above, but caller doesn't care about memory allocation
462 lookup_reference_type (struct type *type, enum type_code refcode)
464 return make_reference_type (type, (struct type **) 0, refcode);
467 /* Lookup the lvalue reference type for the type TYPE. */
470 lookup_lvalue_reference_type (struct type *type)
472 return lookup_reference_type (type, TYPE_CODE_REF);
475 /* Lookup the rvalue reference type for the type TYPE. */
478 lookup_rvalue_reference_type (struct type *type)
480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
483 /* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
486 function type we return. We allocate new memory if needed. */
489 make_function_type (struct type *type, struct type **typeptr)
491 struct type *ntype; /* New type */
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
495 ntype = alloc_type_copy (type);
499 else /* We have storage, but need to reset it. */
505 TYPE_TARGET_TYPE (ntype) = type;
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
510 INIT_FUNC_SPECIFIC (ntype);
515 /* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
519 lookup_function_type (struct type *type)
521 return make_function_type (type, (struct type **) 0);
524 /* Given a type TYPE and argument types, return the appropriate
525 function type. If the final type in PARAM_TYPES is NULL, make a
529 lookup_function_type_with_arguments (struct type *type,
531 struct type **param_types)
533 struct type *fn = make_function_type (type, (struct type **) 0);
538 if (param_types[nparams - 1] == NULL)
541 TYPE_VARARGS (fn) = 1;
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
552 TYPE_PROTOTYPED (fn) = 1;
555 TYPE_NFIELDS (fn) = nparams;
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
564 /* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
568 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
572 /* Check for known address space delimiters. */
573 if (!strcmp (space_identifier, "code"))
574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
575 else if (!strcmp (space_identifier, "data"))
576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
586 /* Identify address space identifier by integer flag as defined in
587 gdbtypes.h -- return the string version of the adress space name. */
590 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
603 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
609 make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
619 ntype = TYPE_CHAIN (ntype);
621 while (ntype != type);
623 /* Create a new type instance. */
625 ntype = alloc_type_instance (type);
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
639 /* Pointers or references to the original type are not relevant to
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
657 /* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
667 make_type_with_address_space (struct type *type, int space_flag)
669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
675 return make_qualified_type (type, new_flags, NULL);
678 /* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
691 make_cv_type (int cnst, int voltl,
693 struct type **typeptr)
695 struct type *ntype; /* New type */
697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
707 if (typeptr && *typeptr != NULL)
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
733 /* Make a 'restrict'-qualified version of TYPE. */
736 make_restrict_type (struct type *type)
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
744 /* Make a type without const, volatile, or restrict. */
747 make_unqualified_type (struct type *type)
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
757 /* Make a '_Atomic'-qualified version of TYPE. */
760 make_atomic_type (struct type *type)
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
768 /* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
779 replace_type (struct type *ntype, struct type *type)
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
807 while (ntype != chain);
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
814 /* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
820 lookup_memberptr_type (struct type *type, struct type *domain)
824 mtype = alloc_type_copy (type);
825 smash_to_memberptr_type (mtype, domain, type);
829 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
832 lookup_methodptr_type (struct type *to_type)
836 mtype = alloc_type_copy (to_type);
837 smash_to_methodptr_type (mtype, to_type);
841 /* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
848 allocate_stub_method (struct type *type)
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
856 TYPE_TARGET_TYPE (mtype) = type;
857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
861 /* See gdbtypes.h. */
864 operator== (const dynamic_prop &l, const dynamic_prop &r)
866 if (l.kind != r.kind)
874 return l.data.const_val == r.data.const_val;
875 case PROP_ADDR_OFFSET:
878 return l.data.baton == r.data.baton;
881 gdb_assert_not_reached ("unhandled dynamic_prop kind");
884 /* See gdbtypes.h. */
887 operator== (const range_bounds &l, const range_bounds &r)
889 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
891 return (FIELD_EQ (low)
893 && FIELD_EQ (flag_upper_bound_is_count)
894 && FIELD_EQ (flag_bound_evaluated));
899 /* Create a range type with a dynamic range from LOW_BOUND to
900 HIGH_BOUND, inclusive. See create_range_type for further details. */
903 create_range_type (struct type *result_type, struct type *index_type,
904 const struct dynamic_prop *low_bound,
905 const struct dynamic_prop *high_bound)
907 if (result_type == NULL)
908 result_type = alloc_type_copy (index_type);
909 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
910 TYPE_TARGET_TYPE (result_type) = index_type;
911 if (TYPE_STUB (index_type))
912 TYPE_TARGET_STUB (result_type) = 1;
914 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
916 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
917 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
918 TYPE_RANGE_DATA (result_type)->low = *low_bound;
919 TYPE_RANGE_DATA (result_type)->high = *high_bound;
921 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
922 TYPE_UNSIGNED (result_type) = 1;
924 /* Ada allows the declaration of range types whose upper bound is
925 less than the lower bound, so checking the lower bound is not
926 enough. Make sure we do not mark a range type whose upper bound
927 is negative as unsigned. */
928 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
929 TYPE_UNSIGNED (result_type) = 0;
934 /* Create a range type using either a blank type supplied in
935 RESULT_TYPE, or creating a new type, inheriting the objfile from
938 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
939 to HIGH_BOUND, inclusive.
941 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
942 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
945 create_static_range_type (struct type *result_type, struct type *index_type,
946 LONGEST low_bound, LONGEST high_bound)
948 struct dynamic_prop low, high;
950 low.kind = PROP_CONST;
951 low.data.const_val = low_bound;
953 high.kind = PROP_CONST;
954 high.data.const_val = high_bound;
956 result_type = create_range_type (result_type, index_type, &low, &high);
961 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
962 are static, otherwise returns 0. */
965 has_static_range (const struct range_bounds *bounds)
967 return (bounds->low.kind == PROP_CONST
968 && bounds->high.kind == PROP_CONST);
972 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
973 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
974 bounds will fit in LONGEST), or -1 otherwise. */
977 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
979 type = check_typedef (type);
980 switch (TYPE_CODE (type))
982 case TYPE_CODE_RANGE:
983 *lowp = TYPE_LOW_BOUND (type);
984 *highp = TYPE_HIGH_BOUND (type);
987 if (TYPE_NFIELDS (type) > 0)
989 /* The enums may not be sorted by value, so search all
993 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
994 for (i = 0; i < TYPE_NFIELDS (type); i++)
996 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
997 *lowp = TYPE_FIELD_ENUMVAL (type, i);
998 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
999 *highp = TYPE_FIELD_ENUMVAL (type, i);
1002 /* Set unsigned indicator if warranted. */
1005 TYPE_UNSIGNED (type) = 1;
1014 case TYPE_CODE_BOOL:
1019 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1021 if (!TYPE_UNSIGNED (type))
1023 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1024 *highp = -*lowp - 1;
1028 case TYPE_CODE_CHAR:
1030 /* This round-about calculation is to avoid shifting by
1031 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1032 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1033 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1034 *highp = (*highp - 1) | *highp;
1041 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1042 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1043 Save the high bound into HIGH_BOUND if not NULL.
1045 Return 1 if the operation was successful. Return zero otherwise,
1046 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1048 We now simply use get_discrete_bounds call to get the values
1049 of the low and high bounds.
1050 get_discrete_bounds can return three values:
1051 1, meaning that index is a range,
1052 0, meaning that index is a discrete type,
1053 or -1 for failure. */
1056 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1058 struct type *index = TYPE_INDEX_TYPE (type);
1066 res = get_discrete_bounds (index, &low, &high);
1070 /* Check if the array bounds are undefined. */
1072 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1073 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1085 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1086 representation of a value of this type, save the corresponding
1087 position number in POS.
1089 Its differs from VAL only in the case of enumeration types. In
1090 this case, the position number of the value of the first listed
1091 enumeration literal is zero; the position number of the value of
1092 each subsequent enumeration literal is one more than that of its
1093 predecessor in the list.
1095 Return 1 if the operation was successful. Return zero otherwise,
1096 in which case the value of POS is unmodified.
1100 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1102 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1108 if (val == TYPE_FIELD_ENUMVAL (type, i))
1114 /* Invalid enumeration value. */
1124 /* Create an array type using either a blank type supplied in
1125 RESULT_TYPE, or creating a new type, inheriting the objfile from
1128 Elements will be of type ELEMENT_TYPE, the indices will be of type
1131 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1132 This byte stride property is added to the resulting array type
1133 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1134 argument can only be used to create types that are objfile-owned
1135 (see add_dyn_prop), meaning that either this function must be called
1136 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1138 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1139 If BIT_STRIDE is not zero, build a packed array type whose element
1140 size is BIT_STRIDE. Otherwise, ignore this parameter.
1142 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1143 sure it is TYPE_CODE_UNDEF before we bash it into an array
1147 create_array_type_with_stride (struct type *result_type,
1148 struct type *element_type,
1149 struct type *range_type,
1150 struct dynamic_prop *byte_stride_prop,
1151 unsigned int bit_stride)
1153 if (byte_stride_prop != NULL
1154 && byte_stride_prop->kind == PROP_CONST)
1156 /* The byte stride is actually not dynamic. Pretend we were
1157 called with bit_stride set instead of byte_stride_prop.
1158 This will give us the same result type, while avoiding
1159 the need to handle this as a special case. */
1160 bit_stride = byte_stride_prop->data.const_val * 8;
1161 byte_stride_prop = NULL;
1164 if (result_type == NULL)
1165 result_type = alloc_type_copy (range_type);
1167 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1168 TYPE_TARGET_TYPE (result_type) = element_type;
1169 if (byte_stride_prop == NULL
1170 && has_static_range (TYPE_RANGE_DATA (range_type))
1171 && (!type_not_associated (result_type)
1172 && !type_not_allocated (result_type)))
1174 LONGEST low_bound, high_bound;
1176 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1177 low_bound = high_bound = 0;
1178 element_type = check_typedef (element_type);
1179 /* Be careful when setting the array length. Ada arrays can be
1180 empty arrays with the high_bound being smaller than the low_bound.
1181 In such cases, the array length should be zero. */
1182 if (high_bound < low_bound)
1183 TYPE_LENGTH (result_type) = 0;
1184 else if (bit_stride > 0)
1185 TYPE_LENGTH (result_type) =
1186 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1188 TYPE_LENGTH (result_type) =
1189 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1193 /* This type is dynamic and its length needs to be computed
1194 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1195 undefined by setting it to zero. Although we are not expected
1196 to trust TYPE_LENGTH in this case, setting the size to zero
1197 allows us to avoid allocating objects of random sizes in case
1198 we accidently do. */
1199 TYPE_LENGTH (result_type) = 0;
1202 TYPE_NFIELDS (result_type) = 1;
1203 TYPE_FIELDS (result_type) =
1204 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1205 TYPE_INDEX_TYPE (result_type) = range_type;
1206 if (byte_stride_prop != NULL)
1207 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1208 else if (bit_stride > 0)
1209 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1211 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1212 if (TYPE_LENGTH (result_type) == 0)
1213 TYPE_TARGET_STUB (result_type) = 1;
1218 /* Same as create_array_type_with_stride but with no bit_stride
1219 (BIT_STRIDE = 0), thus building an unpacked array. */
1222 create_array_type (struct type *result_type,
1223 struct type *element_type,
1224 struct type *range_type)
1226 return create_array_type_with_stride (result_type, element_type,
1227 range_type, NULL, 0);
1231 lookup_array_range_type (struct type *element_type,
1232 LONGEST low_bound, LONGEST high_bound)
1234 struct type *index_type;
1235 struct type *range_type;
1237 if (TYPE_OBJFILE_OWNED (element_type))
1238 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1240 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1241 range_type = create_static_range_type (NULL, index_type,
1242 low_bound, high_bound);
1244 return create_array_type (NULL, element_type, range_type);
1247 /* Create a string type using either a blank type supplied in
1248 RESULT_TYPE, or creating a new type. String types are similar
1249 enough to array of char types that we can use create_array_type to
1250 build the basic type and then bash it into a string type.
1252 For fixed length strings, the range type contains 0 as the lower
1253 bound and the length of the string minus one as the upper bound.
1255 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1256 sure it is TYPE_CODE_UNDEF before we bash it into a string
1260 create_string_type (struct type *result_type,
1261 struct type *string_char_type,
1262 struct type *range_type)
1264 result_type = create_array_type (result_type,
1267 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1272 lookup_string_range_type (struct type *string_char_type,
1273 LONGEST low_bound, LONGEST high_bound)
1275 struct type *result_type;
1277 result_type = lookup_array_range_type (string_char_type,
1278 low_bound, high_bound);
1279 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1284 create_set_type (struct type *result_type, struct type *domain_type)
1286 if (result_type == NULL)
1287 result_type = alloc_type_copy (domain_type);
1289 TYPE_CODE (result_type) = TYPE_CODE_SET;
1290 TYPE_NFIELDS (result_type) = 1;
1291 TYPE_FIELDS (result_type)
1292 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1294 if (!TYPE_STUB (domain_type))
1296 LONGEST low_bound, high_bound, bit_length;
1298 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1299 low_bound = high_bound = 0;
1300 bit_length = high_bound - low_bound + 1;
1301 TYPE_LENGTH (result_type)
1302 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1304 TYPE_UNSIGNED (result_type) = 1;
1306 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1311 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1312 and any array types nested inside it. */
1315 make_vector_type (struct type *array_type)
1317 struct type *inner_array, *elt_type;
1320 /* Find the innermost array type, in case the array is
1321 multi-dimensional. */
1322 inner_array = array_type;
1323 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1324 inner_array = TYPE_TARGET_TYPE (inner_array);
1326 elt_type = TYPE_TARGET_TYPE (inner_array);
1327 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1329 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1330 elt_type = make_qualified_type (elt_type, flags, NULL);
1331 TYPE_TARGET_TYPE (inner_array) = elt_type;
1334 TYPE_VECTOR (array_type) = 1;
1338 init_vector_type (struct type *elt_type, int n)
1340 struct type *array_type;
1342 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1343 make_vector_type (array_type);
1347 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1348 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1349 confusing. "self" is a common enough replacement for "this".
1350 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1351 TYPE_CODE_METHOD. */
1354 internal_type_self_type (struct type *type)
1356 switch (TYPE_CODE (type))
1358 case TYPE_CODE_METHODPTR:
1359 case TYPE_CODE_MEMBERPTR:
1360 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1362 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1363 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1364 case TYPE_CODE_METHOD:
1365 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1367 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1368 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1370 gdb_assert_not_reached ("bad type");
1374 /* Set the type of the class that TYPE belongs to.
1375 In c++ this is the class of "this".
1376 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1377 TYPE_CODE_METHOD. */
1380 set_type_self_type (struct type *type, struct type *self_type)
1382 switch (TYPE_CODE (type))
1384 case TYPE_CODE_METHODPTR:
1385 case TYPE_CODE_MEMBERPTR:
1386 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1387 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1388 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1389 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1391 case TYPE_CODE_METHOD:
1392 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1393 INIT_FUNC_SPECIFIC (type);
1394 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1395 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1398 gdb_assert_not_reached ("bad type");
1402 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1403 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1404 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1405 TYPE doesn't include the offset (that's the value of the MEMBER
1406 itself), but does include the structure type into which it points
1409 When "smashing" the type, we preserve the objfile that the old type
1410 pointed to, since we aren't changing where the type is actually
1414 smash_to_memberptr_type (struct type *type, struct type *self_type,
1415 struct type *to_type)
1418 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1419 TYPE_TARGET_TYPE (type) = to_type;
1420 set_type_self_type (type, self_type);
1421 /* Assume that a data member pointer is the same size as a normal
1424 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1427 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1429 When "smashing" the type, we preserve the objfile that the old type
1430 pointed to, since we aren't changing where the type is actually
1434 smash_to_methodptr_type (struct type *type, struct type *to_type)
1437 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1438 TYPE_TARGET_TYPE (type) = to_type;
1439 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1440 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1443 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1444 METHOD just means `function that gets an extra "this" argument'.
1446 When "smashing" the type, we preserve the objfile that the old type
1447 pointed to, since we aren't changing where the type is actually
1451 smash_to_method_type (struct type *type, struct type *self_type,
1452 struct type *to_type, struct field *args,
1453 int nargs, int varargs)
1456 TYPE_CODE (type) = TYPE_CODE_METHOD;
1457 TYPE_TARGET_TYPE (type) = to_type;
1458 set_type_self_type (type, self_type);
1459 TYPE_FIELDS (type) = args;
1460 TYPE_NFIELDS (type) = nargs;
1462 TYPE_VARARGS (type) = 1;
1463 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1466 /* Return a typename for a struct/union/enum type without "struct ",
1467 "union ", or "enum ". If the type has a NULL name, return NULL. */
1470 type_name_no_tag (const struct type *type)
1472 return TYPE_NAME (type);
1475 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1483 type_name_no_tag_or_error (struct type *type)
1485 struct type *saved_type = type;
1487 struct objfile *objfile;
1489 type = check_typedef (type);
1491 name = type_name_no_tag (type);
1495 name = type_name_no_tag (saved_type);
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
1502 /* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
1507 lookup_typename (const struct language_defn *language,
1508 struct gdbarch *gdbarch, const char *name,
1509 const struct block *block, int noerr)
1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1514 language->la_language, NULL).symbol;
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1520 error (_("No type named %s."), name);
1524 lookup_unsigned_typename (const struct language_defn *language,
1525 struct gdbarch *gdbarch, const char *name)
1527 char *uns = (char *) alloca (strlen (name) + 10);
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
1531 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1535 lookup_signed_typename (const struct language_defn *language,
1536 struct gdbarch *gdbarch, const char *name)
1539 char *uns = (char *) alloca (strlen (name) + 8);
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
1543 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
1547 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1550 /* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1554 lookup_struct (const char *name, const struct block *block)
1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1562 error (_("No struct type named %s."), name);
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1566 error (_("This context has class, union or enum %s, not a struct."),
1569 return (SYMBOL_TYPE (sym));
1572 /* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1576 lookup_union (const char *name, const struct block *block)
1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1584 error (_("No union type named %s."), name);
1586 t = SYMBOL_TYPE (sym);
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1596 /* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1600 lookup_enum (const char *name, const struct block *block)
1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1607 error (_("No enum type named %s."), name);
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1611 error (_("This context has class, struct or union %s, not an enum."),
1614 return (SYMBOL_TYPE (sym));
1617 /* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1621 lookup_template_type (char *name, struct type *type,
1622 const struct block *block)
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1630 strcat (nam, TYPE_NAME (type));
1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1637 error (_("No template type named %s."), name);
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1641 error (_("This context has class, union or enum %s, not a struct."),
1644 return (SYMBOL_TYPE (sym));
1647 /* Given a type TYPE, lookup the type of the component of type named
1650 TYPE can be either a struct or union, or a pointer or reference to
1651 a struct or union. If it is a pointer or reference, its target
1652 type is automatically used. Thus '.' and '->' are interchangable,
1653 as specified for the definitions of the expression element types
1654 STRUCTOP_STRUCT and STRUCTOP_PTR.
1656 If NOERR is nonzero, return zero if NAME is not suitably defined.
1657 If NAME is the name of a baseclass type, return that type. */
1660 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1666 type = check_typedef (type);
1667 if (TYPE_CODE (type) != TYPE_CODE_PTR
1668 && TYPE_CODE (type) != TYPE_CODE_REF)
1670 type = TYPE_TARGET_TYPE (type);
1673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1674 && TYPE_CODE (type) != TYPE_CODE_UNION)
1676 std::string type_name = type_to_string (type);
1677 error (_("Type %s is not a structure or union type."),
1678 type_name.c_str ());
1682 /* FIXME: This change put in by Michael seems incorrect for the case
1683 where the structure tag name is the same as the member name.
1684 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1685 foo; } bell;" Disabled by fnf. */
1689 type_name = type_name_no_tag (type);
1690 if (type_name != NULL && strcmp (type_name, name) == 0)
1695 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1699 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1701 return TYPE_FIELD_TYPE (type, i);
1703 else if (!t_field_name || *t_field_name == '\0')
1705 struct type *subtype
1706 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1708 if (subtype != NULL)
1713 /* OK, it's not in this class. Recursively check the baseclasses. */
1714 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1718 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1734 /* Store in *MAX the largest number representable by unsigned integer type
1738 get_unsigned_type_max (struct type *type, ULONGEST *max)
1742 type = check_typedef (type);
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1744 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1746 /* Written this way to avoid overflow. */
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1751 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1752 signed integer type TYPE. */
1755 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1759 type = check_typedef (type);
1760 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1761 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1763 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1764 *min = -((ULONGEST) 1 << (n - 1));
1765 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1768 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1769 cplus_stuff.vptr_fieldno.
1771 cplus_stuff is initialized to cplus_struct_default which does not
1772 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1773 designated initializers). We cope with that here. */
1776 internal_type_vptr_fieldno (struct type *type)
1778 type = check_typedef (type);
1779 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1780 || TYPE_CODE (type) == TYPE_CODE_UNION);
1781 if (!HAVE_CPLUS_STRUCT (type))
1783 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1786 /* Set the value of cplus_stuff.vptr_fieldno. */
1789 set_type_vptr_fieldno (struct type *type, int fieldno)
1791 type = check_typedef (type);
1792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1793 || TYPE_CODE (type) == TYPE_CODE_UNION);
1794 if (!HAVE_CPLUS_STRUCT (type))
1795 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1796 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1799 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1800 cplus_stuff.vptr_basetype. */
1803 internal_type_vptr_basetype (struct type *type)
1805 type = check_typedef (type);
1806 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1807 || TYPE_CODE (type) == TYPE_CODE_UNION);
1808 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1809 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1812 /* Set the value of cplus_stuff.vptr_basetype. */
1815 set_type_vptr_basetype (struct type *type, struct type *basetype)
1817 type = check_typedef (type);
1818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1819 || TYPE_CODE (type) == TYPE_CODE_UNION);
1820 if (!HAVE_CPLUS_STRUCT (type))
1821 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1822 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1825 /* Lookup the vptr basetype/fieldno values for TYPE.
1826 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1827 vptr_fieldno. Also, if found and basetype is from the same objfile,
1829 If not found, return -1 and ignore BASETYPEP.
1830 Callers should be aware that in some cases (for example,
1831 the type or one of its baseclasses is a stub type and we are
1832 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1833 this function will not be able to find the
1834 virtual function table pointer, and vptr_fieldno will remain -1 and
1835 vptr_basetype will remain NULL or incomplete. */
1838 get_vptr_fieldno (struct type *type, struct type **basetypep)
1840 type = check_typedef (type);
1842 if (TYPE_VPTR_FIELDNO (type) < 0)
1846 /* We must start at zero in case the first (and only) baseclass
1847 is virtual (and hence we cannot share the table pointer). */
1848 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1850 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1852 struct type *basetype;
1854 fieldno = get_vptr_fieldno (baseclass, &basetype);
1857 /* If the type comes from a different objfile we can't cache
1858 it, it may have a different lifetime. PR 2384 */
1859 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1861 set_type_vptr_fieldno (type, fieldno);
1862 set_type_vptr_basetype (type, basetype);
1865 *basetypep = basetype;
1876 *basetypep = TYPE_VPTR_BASETYPE (type);
1877 return TYPE_VPTR_FIELDNO (type);
1882 stub_noname_complaint (void)
1884 complaint (_("stub type has NULL name"));
1887 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1888 attached to it, and that property has a non-constant value. */
1891 array_type_has_dynamic_stride (struct type *type)
1893 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1895 return (prop != NULL && prop->kind != PROP_CONST);
1898 /* Worker for is_dynamic_type. */
1901 is_dynamic_type_internal (struct type *type, int top_level)
1903 type = check_typedef (type);
1905 /* We only want to recognize references at the outermost level. */
1906 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1907 type = check_typedef (TYPE_TARGET_TYPE (type));
1909 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1910 dynamic, even if the type itself is statically defined.
1911 From a user's point of view, this may appear counter-intuitive;
1912 but it makes sense in this context, because the point is to determine
1913 whether any part of the type needs to be resolved before it can
1915 if (TYPE_DATA_LOCATION (type) != NULL
1916 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1917 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1920 if (TYPE_ASSOCIATED_PROP (type))
1923 if (TYPE_ALLOCATED_PROP (type))
1926 switch (TYPE_CODE (type))
1928 case TYPE_CODE_RANGE:
1930 /* A range type is obviously dynamic if it has at least one
1931 dynamic bound. But also consider the range type to be
1932 dynamic when its subtype is dynamic, even if the bounds
1933 of the range type are static. It allows us to assume that
1934 the subtype of a static range type is also static. */
1935 return (!has_static_range (TYPE_RANGE_DATA (type))
1936 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1939 case TYPE_CODE_ARRAY:
1941 gdb_assert (TYPE_NFIELDS (type) == 1);
1943 /* The array is dynamic if either the bounds are dynamic... */
1944 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1946 /* ... or the elements it contains have a dynamic contents... */
1947 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1949 /* ... or if it has a dynamic stride... */
1950 if (array_type_has_dynamic_stride (type))
1955 case TYPE_CODE_STRUCT:
1956 case TYPE_CODE_UNION:
1960 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1961 if (!field_is_static (&TYPE_FIELD (type, i))
1962 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1971 /* See gdbtypes.h. */
1974 is_dynamic_type (struct type *type)
1976 return is_dynamic_type_internal (type, 1);
1979 static struct type *resolve_dynamic_type_internal
1980 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1982 /* Given a dynamic range type (dyn_range_type) and a stack of
1983 struct property_addr_info elements, return a static version
1986 static struct type *
1987 resolve_dynamic_range (struct type *dyn_range_type,
1988 struct property_addr_info *addr_stack)
1991 struct type *static_range_type, *static_target_type;
1992 const struct dynamic_prop *prop;
1993 struct dynamic_prop low_bound, high_bound;
1995 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1997 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1998 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2000 low_bound.kind = PROP_CONST;
2001 low_bound.data.const_val = value;
2005 low_bound.kind = PROP_UNDEFINED;
2006 low_bound.data.const_val = 0;
2009 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2010 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2012 high_bound.kind = PROP_CONST;
2013 high_bound.data.const_val = value;
2015 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2016 high_bound.data.const_val
2017 = low_bound.data.const_val + high_bound.data.const_val - 1;
2021 high_bound.kind = PROP_UNDEFINED;
2022 high_bound.data.const_val = 0;
2026 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2028 static_range_type = create_range_type (copy_type (dyn_range_type),
2030 &low_bound, &high_bound);
2031 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2032 return static_range_type;
2035 /* Resolves dynamic bound values of an array type TYPE to static ones.
2036 ADDR_STACK is a stack of struct property_addr_info to be used
2037 if needed during the dynamic resolution. */
2039 static struct type *
2040 resolve_dynamic_array (struct type *type,
2041 struct property_addr_info *addr_stack)
2044 struct type *elt_type;
2045 struct type *range_type;
2046 struct type *ary_dim;
2047 struct dynamic_prop *prop;
2048 unsigned int bit_stride = 0;
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2052 type = copy_type (type);
2055 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2056 range_type = resolve_dynamic_range (range_type, addr_stack);
2058 /* Resolve allocated/associated here before creating a new array type, which
2059 will update the length of the array accordingly. */
2060 prop = TYPE_ALLOCATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2066 prop = TYPE_ASSOCIATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2073 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2075 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2076 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2078 elt_type = TYPE_TARGET_TYPE (type);
2080 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2084 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2088 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2089 bit_stride = (unsigned int) (value * 8);
2093 /* Could be a bug in our code, but it could also happen
2094 if the DWARF info is not correct. Issue a warning,
2095 and assume no byte/bit stride (leave bit_stride = 0). */
2096 warning (_("cannot determine array stride for type %s"),
2097 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2101 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2103 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2107 /* Resolve dynamic bounds of members of the union TYPE to static
2108 bounds. ADDR_STACK is a stack of struct property_addr_info
2109 to be used if needed during the dynamic resolution. */
2111 static struct type *
2112 resolve_dynamic_union (struct type *type,
2113 struct property_addr_info *addr_stack)
2115 struct type *resolved_type;
2117 unsigned int max_len = 0;
2119 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2121 resolved_type = copy_type (type);
2122 TYPE_FIELDS (resolved_type)
2123 = (struct field *) TYPE_ALLOC (resolved_type,
2124 TYPE_NFIELDS (resolved_type)
2125 * sizeof (struct field));
2126 memcpy (TYPE_FIELDS (resolved_type),
2128 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2129 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2133 if (field_is_static (&TYPE_FIELD (type, i)))
2136 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2138 TYPE_FIELD_TYPE (resolved_type, i) = t;
2139 if (TYPE_LENGTH (t) > max_len)
2140 max_len = TYPE_LENGTH (t);
2143 TYPE_LENGTH (resolved_type) = max_len;
2144 return resolved_type;
2147 /* Resolve dynamic bounds of members of the struct TYPE to static
2148 bounds. ADDR_STACK is a stack of struct property_addr_info to
2149 be used if needed during the dynamic resolution. */
2151 static struct type *
2152 resolve_dynamic_struct (struct type *type,
2153 struct property_addr_info *addr_stack)
2155 struct type *resolved_type;
2157 unsigned resolved_type_bit_length = 0;
2159 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2160 gdb_assert (TYPE_NFIELDS (type) > 0);
2162 resolved_type = copy_type (type);
2163 TYPE_FIELDS (resolved_type)
2164 = (struct field *) TYPE_ALLOC (resolved_type,
2165 TYPE_NFIELDS (resolved_type)
2166 * sizeof (struct field));
2167 memcpy (TYPE_FIELDS (resolved_type),
2169 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2170 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2172 unsigned new_bit_length;
2173 struct property_addr_info pinfo;
2175 if (field_is_static (&TYPE_FIELD (type, i)))
2178 /* As we know this field is not a static field, the field's
2179 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2180 this is the case, but only trigger a simple error rather
2181 than an internal error if that fails. While failing
2182 that verification indicates a bug in our code, the error
2183 is not severe enough to suggest to the user he stops
2184 his debugging session because of it. */
2185 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2186 error (_("Cannot determine struct field location"
2187 " (invalid location kind)"));
2189 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2190 pinfo.valaddr = addr_stack->valaddr;
2193 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2194 pinfo.next = addr_stack;
2196 TYPE_FIELD_TYPE (resolved_type, i)
2197 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2199 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2200 == FIELD_LOC_KIND_BITPOS);
2202 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2203 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2204 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2206 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2209 /* Normally, we would use the position and size of the last field
2210 to determine the size of the enclosing structure. But GCC seems
2211 to be encoding the position of some fields incorrectly when
2212 the struct contains a dynamic field that is not placed last.
2213 So we compute the struct size based on the field that has
2214 the highest position + size - probably the best we can do. */
2215 if (new_bit_length > resolved_type_bit_length)
2216 resolved_type_bit_length = new_bit_length;
2219 /* The length of a type won't change for fortran, but it does for C and Ada.
2220 For fortran the size of dynamic fields might change over time but not the
2221 type length of the structure. If we adapt it, we run into problems
2222 when calculating the element offset for arrays of structs. */
2223 if (current_language->la_language != language_fortran)
2224 TYPE_LENGTH (resolved_type)
2225 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2227 /* The Ada language uses this field as a cache for static fixed types: reset
2228 it as RESOLVED_TYPE must have its own static fixed type. */
2229 TYPE_TARGET_TYPE (resolved_type) = NULL;
2231 return resolved_type;
2234 /* Worker for resolved_dynamic_type. */
2236 static struct type *
2237 resolve_dynamic_type_internal (struct type *type,
2238 struct property_addr_info *addr_stack,
2241 struct type *real_type = check_typedef (type);
2242 struct type *resolved_type = type;
2243 struct dynamic_prop *prop;
2246 if (!is_dynamic_type_internal (real_type, top_level))
2249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2251 resolved_type = copy_type (type);
2252 TYPE_TARGET_TYPE (resolved_type)
2253 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2258 /* Before trying to resolve TYPE, make sure it is not a stub. */
2261 switch (TYPE_CODE (type))
2265 struct property_addr_info pinfo;
2267 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2268 pinfo.valaddr = NULL;
2269 if (addr_stack->valaddr != NULL)
2270 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2272 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2273 pinfo.next = addr_stack;
2275 resolved_type = copy_type (type);
2276 TYPE_TARGET_TYPE (resolved_type)
2277 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2282 case TYPE_CODE_ARRAY:
2283 resolved_type = resolve_dynamic_array (type, addr_stack);
2286 case TYPE_CODE_RANGE:
2287 resolved_type = resolve_dynamic_range (type, addr_stack);
2290 case TYPE_CODE_UNION:
2291 resolved_type = resolve_dynamic_union (type, addr_stack);
2294 case TYPE_CODE_STRUCT:
2295 resolved_type = resolve_dynamic_struct (type, addr_stack);
2300 /* Resolve data_location attribute. */
2301 prop = TYPE_DATA_LOCATION (resolved_type);
2303 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2305 TYPE_DYN_PROP_ADDR (prop) = value;
2306 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2309 return resolved_type;
2312 /* See gdbtypes.h */
2315 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2318 struct property_addr_info pinfo
2319 = {check_typedef (type), valaddr, addr, NULL};
2321 return resolve_dynamic_type_internal (type, &pinfo, 1);
2324 /* See gdbtypes.h */
2326 struct dynamic_prop *
2327 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2329 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2331 while (node != NULL)
2333 if (node->prop_kind == prop_kind)
2340 /* See gdbtypes.h */
2343 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2346 struct dynamic_prop_list *temp;
2348 gdb_assert (TYPE_OBJFILE_OWNED (type));
2350 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2351 struct dynamic_prop_list);
2352 temp->prop_kind = prop_kind;
2354 temp->next = TYPE_DYN_PROP_LIST (type);
2356 TYPE_DYN_PROP_LIST (type) = temp;
2359 /* Remove dynamic property from TYPE in case it exists. */
2362 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2365 struct dynamic_prop_list *prev_node, *curr_node;
2367 curr_node = TYPE_DYN_PROP_LIST (type);
2370 while (NULL != curr_node)
2372 if (curr_node->prop_kind == prop_kind)
2374 /* Update the linked list but don't free anything.
2375 The property was allocated on objstack and it is not known
2376 if we are on top of it. Nevertheless, everything is released
2377 when the complete objstack is freed. */
2378 if (NULL == prev_node)
2379 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2381 prev_node->next = curr_node->next;
2386 prev_node = curr_node;
2387 curr_node = curr_node->next;
2391 /* Find the real type of TYPE. This function returns the real type,
2392 after removing all layers of typedefs, and completing opaque or stub
2393 types. Completion changes the TYPE argument, but stripping of
2396 Instance flags (e.g. const/volatile) are preserved as typedefs are
2397 stripped. If necessary a new qualified form of the underlying type
2400 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2401 not been computed and we're either in the middle of reading symbols, or
2402 there was no name for the typedef in the debug info.
2404 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2405 QUITs in the symbol reading code can also throw.
2406 Thus this function can throw an exception.
2408 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2411 If this is a stubbed struct (i.e. declared as struct foo *), see if
2412 we can find a full definition in some other file. If so, copy this
2413 definition, so we can use it in future. There used to be a comment
2414 (but not any code) that if we don't find a full definition, we'd
2415 set a flag so we don't spend time in the future checking the same
2416 type. That would be a mistake, though--we might load in more
2417 symbols which contain a full definition for the type. */
2420 check_typedef (struct type *type)
2422 struct type *orig_type = type;
2423 /* While we're removing typedefs, we don't want to lose qualifiers.
2424 E.g., const/volatile. */
2425 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2429 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2431 if (!TYPE_TARGET_TYPE (type))
2436 /* It is dangerous to call lookup_symbol if we are currently
2437 reading a symtab. Infinite recursion is one danger. */
2438 if (currently_reading_symtab)
2439 return make_qualified_type (type, instance_flags, NULL);
2441 name = type_name_no_tag (type);
2442 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2443 VAR_DOMAIN as appropriate? */
2446 stub_noname_complaint ();
2447 return make_qualified_type (type, instance_flags, NULL);
2449 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2451 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2452 else /* TYPE_CODE_UNDEF */
2453 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2455 type = TYPE_TARGET_TYPE (type);
2457 /* Preserve the instance flags as we traverse down the typedef chain.
2459 Handling address spaces/classes is nasty, what do we do if there's a
2461 E.g., what if an outer typedef marks the type as class_1 and an inner
2462 typedef marks the type as class_2?
2463 This is the wrong place to do such error checking. We leave it to
2464 the code that created the typedef in the first place to flag the
2465 error. We just pick the outer address space (akin to letting the
2466 outer cast in a chain of casting win), instead of assuming
2467 "it can't happen". */
2469 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2470 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2471 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2472 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2474 /* Treat code vs data spaces and address classes separately. */
2475 if ((instance_flags & ALL_SPACES) != 0)
2476 new_instance_flags &= ~ALL_SPACES;
2477 if ((instance_flags & ALL_CLASSES) != 0)
2478 new_instance_flags &= ~ALL_CLASSES;
2480 instance_flags |= new_instance_flags;
2484 /* If this is a struct/class/union with no fields, then check
2485 whether a full definition exists somewhere else. This is for
2486 systems where a type definition with no fields is issued for such
2487 types, instead of identifying them as stub types in the first
2490 if (TYPE_IS_OPAQUE (type)
2491 && opaque_type_resolution
2492 && !currently_reading_symtab)
2494 const char *name = type_name_no_tag (type);
2495 struct type *newtype;
2499 stub_noname_complaint ();
2500 return make_qualified_type (type, instance_flags, NULL);
2502 newtype = lookup_transparent_type (name);
2506 /* If the resolved type and the stub are in the same
2507 objfile, then replace the stub type with the real deal.
2508 But if they're in separate objfiles, leave the stub
2509 alone; we'll just look up the transparent type every time
2510 we call check_typedef. We can't create pointers between
2511 types allocated to different objfiles, since they may
2512 have different lifetimes. Trying to copy NEWTYPE over to
2513 TYPE's objfile is pointless, too, since you'll have to
2514 move over any other types NEWTYPE refers to, which could
2515 be an unbounded amount of stuff. */
2516 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2517 type = make_qualified_type (newtype,
2518 TYPE_INSTANCE_FLAGS (type),
2524 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2526 else if (TYPE_STUB (type) && !currently_reading_symtab)
2528 const char *name = type_name_no_tag (type);
2529 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2535 stub_noname_complaint ();
2536 return make_qualified_type (type, instance_flags, NULL);
2538 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2541 /* Same as above for opaque types, we can replace the stub
2542 with the complete type only if they are in the same
2544 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2545 type = make_qualified_type (SYMBOL_TYPE (sym),
2546 TYPE_INSTANCE_FLAGS (type),
2549 type = SYMBOL_TYPE (sym);
2553 if (TYPE_TARGET_STUB (type))
2555 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2557 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2559 /* Nothing we can do. */
2561 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2563 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2564 TYPE_TARGET_STUB (type) = 0;
2568 type = make_qualified_type (type, instance_flags, NULL);
2570 /* Cache TYPE_LENGTH for future use. */
2571 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2576 /* Parse a type expression in the string [P..P+LENGTH). If an error
2577 occurs, silently return a void type. */
2579 static struct type *
2580 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2582 struct ui_file *saved_gdb_stderr;
2583 struct type *type = NULL; /* Initialize to keep gcc happy. */
2585 /* Suppress error messages. */
2586 saved_gdb_stderr = gdb_stderr;
2587 gdb_stderr = &null_stream;
2589 /* Call parse_and_eval_type() without fear of longjmp()s. */
2592 type = parse_and_eval_type (p, length);
2594 CATCH (except, RETURN_MASK_ERROR)
2596 type = builtin_type (gdbarch)->builtin_void;
2600 /* Stop suppressing error messages. */
2601 gdb_stderr = saved_gdb_stderr;
2606 /* Ugly hack to convert method stubs into method types.
2608 He ain't kiddin'. This demangles the name of the method into a
2609 string including argument types, parses out each argument type,
2610 generates a string casting a zero to that type, evaluates the
2611 string, and stuffs the resulting type into an argtype vector!!!
2612 Then it knows the type of the whole function (including argument
2613 types for overloading), which info used to be in the stab's but was
2614 removed to hack back the space required for them. */
2617 check_stub_method (struct type *type, int method_id, int signature_id)
2619 struct gdbarch *gdbarch = get_type_arch (type);
2621 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2622 char *demangled_name = gdb_demangle (mangled_name,
2623 DMGL_PARAMS | DMGL_ANSI);
2624 char *argtypetext, *p;
2625 int depth = 0, argcount = 1;
2626 struct field *argtypes;
2629 /* Make sure we got back a function string that we can use. */
2631 p = strchr (demangled_name, '(');
2635 if (demangled_name == NULL || p == NULL)
2636 error (_("Internal: Cannot demangle mangled name `%s'."),
2639 /* Now, read in the parameters that define this type. */
2644 if (*p == '(' || *p == '<')
2648 else if (*p == ')' || *p == '>')
2652 else if (*p == ',' && depth == 0)
2660 /* If we read one argument and it was ``void'', don't count it. */
2661 if (startswith (argtypetext, "(void)"))
2664 /* We need one extra slot, for the THIS pointer. */
2666 argtypes = (struct field *)
2667 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2670 /* Add THIS pointer for non-static methods. */
2671 f = TYPE_FN_FIELDLIST1 (type, method_id);
2672 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2676 argtypes[0].type = lookup_pointer_type (type);
2680 if (*p != ')') /* () means no args, skip while. */
2685 if (depth <= 0 && (*p == ',' || *p == ')'))
2687 /* Avoid parsing of ellipsis, they will be handled below.
2688 Also avoid ``void'' as above. */
2689 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2690 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2692 argtypes[argcount].type =
2693 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2696 argtypetext = p + 1;
2699 if (*p == '(' || *p == '<')
2703 else if (*p == ')' || *p == '>')
2712 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2714 /* Now update the old "stub" type into a real type. */
2715 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2716 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2717 We want a method (TYPE_CODE_METHOD). */
2718 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2719 argtypes, argcount, p[-2] == '.');
2720 TYPE_STUB (mtype) = 0;
2721 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2723 xfree (demangled_name);
2726 /* This is the external interface to check_stub_method, above. This
2727 function unstubs all of the signatures for TYPE's METHOD_ID method
2728 name. After calling this function TYPE_FN_FIELD_STUB will be
2729 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2732 This function unfortunately can not die until stabs do. */
2735 check_stub_method_group (struct type *type, int method_id)
2737 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2738 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2739 int j, found_stub = 0;
2741 for (j = 0; j < len; j++)
2742 if (TYPE_FN_FIELD_STUB (f, j))
2745 check_stub_method (type, method_id, j);
2748 /* GNU v3 methods with incorrect names were corrected when we read
2749 in type information, because it was cheaper to do it then. The
2750 only GNU v2 methods with incorrect method names are operators and
2751 destructors; destructors were also corrected when we read in type
2754 Therefore the only thing we need to handle here are v2 operator
2756 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2759 char dem_opname[256];
2761 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2763 dem_opname, DMGL_ANSI);
2765 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2769 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2773 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2774 const struct cplus_struct_type cplus_struct_default = { };
2777 allocate_cplus_struct_type (struct type *type)
2779 if (HAVE_CPLUS_STRUCT (type))
2780 /* Structure was already allocated. Nothing more to do. */
2783 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2784 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2785 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2786 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2787 set_type_vptr_fieldno (type, -1);
2790 const struct gnat_aux_type gnat_aux_default =
2793 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2794 and allocate the associated gnat-specific data. The gnat-specific
2795 data is also initialized to gnat_aux_default. */
2798 allocate_gnat_aux_type (struct type *type)
2800 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2801 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2802 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2803 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2806 /* Helper function to initialize a newly allocated type. Set type code
2807 to CODE and initialize the type-specific fields accordingly. */
2810 set_type_code (struct type *type, enum type_code code)
2812 TYPE_CODE (type) = code;
2816 case TYPE_CODE_STRUCT:
2817 case TYPE_CODE_UNION:
2818 case TYPE_CODE_NAMESPACE:
2819 INIT_CPLUS_SPECIFIC (type);
2822 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2824 case TYPE_CODE_FUNC:
2825 INIT_FUNC_SPECIFIC (type);
2830 /* Helper function to verify floating-point format and size.
2831 BIT is the type size in bits; if BIT equals -1, the size is
2832 determined by the floatformat. Returns size to be used. */
2835 verify_floatformat (int bit, const struct floatformat *floatformat)
2837 gdb_assert (floatformat != NULL);
2840 bit = floatformat->totalsize;
2842 gdb_assert (bit >= 0);
2843 gdb_assert (bit >= floatformat->totalsize);
2848 /* Return the floating-point format for a floating-point variable of
2851 const struct floatformat *
2852 floatformat_from_type (const struct type *type)
2854 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2855 gdb_assert (TYPE_FLOATFORMAT (type));
2856 return TYPE_FLOATFORMAT (type);
2859 /* Helper function to initialize the standard scalar types.
2861 If NAME is non-NULL, then it is used to initialize the type name.
2862 Note that NAME is not copied; it is required to have a lifetime at
2863 least as long as OBJFILE. */
2866 init_type (struct objfile *objfile, enum type_code code, int bit,
2871 type = alloc_type (objfile);
2872 set_type_code (type, code);
2873 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2874 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2875 TYPE_NAME (type) = name;
2880 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2881 to use with variables that have no debug info. NAME is the type
2884 static struct type *
2885 init_nodebug_var_type (struct objfile *objfile, const char *name)
2887 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2890 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2891 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2892 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2895 init_integer_type (struct objfile *objfile,
2896 int bit, int unsigned_p, const char *name)
2900 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2902 TYPE_UNSIGNED (t) = 1;
2907 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2908 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2909 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2912 init_character_type (struct objfile *objfile,
2913 int bit, int unsigned_p, const char *name)
2917 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2919 TYPE_UNSIGNED (t) = 1;
2924 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2925 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2926 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2929 init_boolean_type (struct objfile *objfile,
2930 int bit, int unsigned_p, const char *name)
2934 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2936 TYPE_UNSIGNED (t) = 1;
2941 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2942 BIT is the type size in bits; if BIT equals -1, the size is
2943 determined by the floatformat. NAME is the type name. Set the
2944 TYPE_FLOATFORMAT from FLOATFORMATS. */
2947 init_float_type (struct objfile *objfile,
2948 int bit, const char *name,
2949 const struct floatformat **floatformats)
2951 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2952 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2955 bit = verify_floatformat (bit, fmt);
2956 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2957 TYPE_FLOATFORMAT (t) = fmt;
2962 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2963 BIT is the type size in bits. NAME is the type name. */
2966 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2970 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2974 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2975 NAME is the type name. TARGET_TYPE is the component float type. */
2978 init_complex_type (struct objfile *objfile,
2979 const char *name, struct type *target_type)
2983 t = init_type (objfile, TYPE_CODE_COMPLEX,
2984 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2985 TYPE_TARGET_TYPE (t) = target_type;
2989 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2990 BIT is the pointer type size in bits. NAME is the type name.
2991 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2992 TYPE_UNSIGNED flag. */
2995 init_pointer_type (struct objfile *objfile,
2996 int bit, const char *name, struct type *target_type)
3000 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3001 TYPE_TARGET_TYPE (t) = target_type;
3002 TYPE_UNSIGNED (t) = 1;
3006 /* See gdbtypes.h. */
3009 type_raw_align (struct type *type)
3011 if (type->align_log2 != 0)
3012 return 1 << (type->align_log2 - 1);
3016 /* See gdbtypes.h. */
3019 type_align (struct type *type)
3021 unsigned raw_align = type_raw_align (type);
3026 switch (TYPE_CODE (type))
3029 case TYPE_CODE_FUNC:
3030 case TYPE_CODE_FLAGS:
3033 case TYPE_CODE_ENUM:
3035 case TYPE_CODE_RVALUE_REF:
3036 case TYPE_CODE_CHAR:
3037 case TYPE_CODE_BOOL:
3038 case TYPE_CODE_DECFLOAT:
3040 struct gdbarch *arch = get_type_arch (type);
3041 align = gdbarch_type_align (arch, type);
3045 case TYPE_CODE_ARRAY:
3046 case TYPE_CODE_COMPLEX:
3047 case TYPE_CODE_TYPEDEF:
3048 align = type_align (TYPE_TARGET_TYPE (type));
3051 case TYPE_CODE_STRUCT:
3052 case TYPE_CODE_UNION:
3054 if (TYPE_NFIELDS (type) == 0)
3056 /* An empty struct has alignment 1. */
3060 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3062 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3065 /* Don't pretend we know something we don't. */
3069 if (f_align > align)
3076 case TYPE_CODE_RANGE:
3077 case TYPE_CODE_STRING:
3078 /* Not sure what to do here, and these can't appear in C or C++
3082 case TYPE_CODE_METHODPTR:
3083 case TYPE_CODE_MEMBERPTR:
3084 align = TYPE_LENGTH (type);
3087 case TYPE_CODE_VOID:
3091 case TYPE_CODE_ERROR:
3092 case TYPE_CODE_METHOD:
3097 if ((align & (align - 1)) != 0)
3099 /* Not a power of 2, so pass. */
3106 /* See gdbtypes.h. */
3109 set_type_align (struct type *type, ULONGEST align)
3111 /* Must be a power of 2. Zero is ok. */
3112 gdb_assert ((align & (align - 1)) == 0);
3114 unsigned result = 0;
3121 if (result >= (1 << TYPE_ALIGN_BITS))
3124 type->align_log2 = result;
3129 /* Queries on types. */
3132 can_dereference (struct type *t)
3134 /* FIXME: Should we return true for references as well as
3136 t = check_typedef (t);
3139 && TYPE_CODE (t) == TYPE_CODE_PTR
3140 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3144 is_integral_type (struct type *t)
3146 t = check_typedef (t);
3149 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3150 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3151 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3152 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3153 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3154 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3158 is_floating_type (struct type *t)
3160 t = check_typedef (t);
3163 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3164 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3167 /* Return true if TYPE is scalar. */
3170 is_scalar_type (struct type *type)
3172 type = check_typedef (type);
3174 switch (TYPE_CODE (type))
3176 case TYPE_CODE_ARRAY:
3177 case TYPE_CODE_STRUCT:
3178 case TYPE_CODE_UNION:
3180 case TYPE_CODE_STRING:
3187 /* Return true if T is scalar, or a composite type which in practice has
3188 the memory layout of a scalar type. E.g., an array or struct with only
3189 one scalar element inside it, or a union with only scalar elements. */
3192 is_scalar_type_recursive (struct type *t)
3194 t = check_typedef (t);
3196 if (is_scalar_type (t))
3198 /* Are we dealing with an array or string of known dimensions? */
3199 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3200 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3201 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3203 LONGEST low_bound, high_bound;
3204 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3206 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3208 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3210 /* Are we dealing with a struct with one element? */
3211 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3212 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3213 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3215 int i, n = TYPE_NFIELDS (t);
3217 /* If all elements of the union are scalar, then the union is scalar. */
3218 for (i = 0; i < n; i++)
3219 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3228 /* Return true is T is a class or a union. False otherwise. */
3231 class_or_union_p (const struct type *t)
3233 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3234 || TYPE_CODE (t) == TYPE_CODE_UNION);
3237 /* A helper function which returns true if types A and B represent the
3238 "same" class type. This is true if the types have the same main
3239 type, or the same name. */
3242 class_types_same_p (const struct type *a, const struct type *b)
3244 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3245 || (TYPE_NAME (a) && TYPE_NAME (b)
3246 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3249 /* If BASE is an ancestor of DCLASS return the distance between them.
3250 otherwise return -1;
3254 class B: public A {};
3255 class C: public B {};
3258 distance_to_ancestor (A, A, 0) = 0
3259 distance_to_ancestor (A, B, 0) = 1
3260 distance_to_ancestor (A, C, 0) = 2
3261 distance_to_ancestor (A, D, 0) = 3
3263 If PUBLIC is 1 then only public ancestors are considered,
3264 and the function returns the distance only if BASE is a public ancestor
3268 distance_to_ancestor (A, D, 1) = -1. */
3271 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3276 base = check_typedef (base);
3277 dclass = check_typedef (dclass);
3279 if (class_types_same_p (base, dclass))
3282 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3284 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3287 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3295 /* Check whether BASE is an ancestor or base class or DCLASS
3296 Return 1 if so, and 0 if not.
3297 Note: If BASE and DCLASS are of the same type, this function
3298 will return 1. So for some class A, is_ancestor (A, A) will
3302 is_ancestor (struct type *base, struct type *dclass)
3304 return distance_to_ancestor (base, dclass, 0) >= 0;
3307 /* Like is_ancestor, but only returns true when BASE is a public
3308 ancestor of DCLASS. */
3311 is_public_ancestor (struct type *base, struct type *dclass)
3313 return distance_to_ancestor (base, dclass, 1) >= 0;
3316 /* A helper function for is_unique_ancestor. */
3319 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3321 const gdb_byte *valaddr, int embedded_offset,
3322 CORE_ADDR address, struct value *val)
3326 base = check_typedef (base);
3327 dclass = check_typedef (dclass);
3329 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3334 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3336 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3339 if (class_types_same_p (base, iter))
3341 /* If this is the first subclass, set *OFFSET and set count
3342 to 1. Otherwise, if this is at the same offset as
3343 previous instances, do nothing. Otherwise, increment
3347 *offset = this_offset;
3350 else if (this_offset == *offset)
3358 count += is_unique_ancestor_worker (base, iter, offset,
3360 embedded_offset + this_offset,
3367 /* Like is_ancestor, but only returns true if BASE is a unique base
3368 class of the type of VAL. */
3371 is_unique_ancestor (struct type *base, struct value *val)
3375 return is_unique_ancestor_worker (base, value_type (val), &offset,
3376 value_contents_for_printing (val),
3377 value_embedded_offset (val),
3378 value_address (val), val) == 1;
3382 /* Overload resolution. */
3384 /* Return the sum of the rank of A with the rank of B. */
3387 sum_ranks (struct rank a, struct rank b)
3390 c.rank = a.rank + b.rank;
3391 c.subrank = a.subrank + b.subrank;
3395 /* Compare rank A and B and return:
3397 1 if a is better than b
3398 -1 if b is better than a. */
3401 compare_ranks (struct rank a, struct rank b)
3403 if (a.rank == b.rank)
3405 if (a.subrank == b.subrank)
3407 if (a.subrank < b.subrank)
3409 if (a.subrank > b.subrank)
3413 if (a.rank < b.rank)
3416 /* a.rank > b.rank */
3420 /* Functions for overload resolution begin here. */
3422 /* Compare two badness vectors A and B and return the result.
3423 0 => A and B are identical
3424 1 => A and B are incomparable
3425 2 => A is better than B
3426 3 => A is worse than B */
3429 compare_badness (struct badness_vector *a, struct badness_vector *b)
3433 short found_pos = 0; /* any positives in c? */
3434 short found_neg = 0; /* any negatives in c? */
3436 /* differing lengths => incomparable */
3437 if (a->length != b->length)
3440 /* Subtract b from a */
3441 for (i = 0; i < a->length; i++)
3443 tmp = compare_ranks (b->rank[i], a->rank[i]);
3453 return 1; /* incomparable */
3455 return 3; /* A > B */
3461 return 2; /* A < B */
3463 return 0; /* A == B */
3467 /* Rank a function by comparing its parameter types (PARMS, length
3468 NPARMS), to the types of an argument list (ARGS, length NARGS).
3469 Return a pointer to a badness vector. This has NARGS + 1
3472 struct badness_vector *
3473 rank_function (struct type **parms, int nparms,
3474 struct value **args, int nargs)
3477 struct badness_vector *bv = XNEW (struct badness_vector);
3478 int min_len = nparms < nargs ? nparms : nargs;
3480 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3481 bv->rank = XNEWVEC (struct rank, nargs + 1);
3483 /* First compare the lengths of the supplied lists.
3484 If there is a mismatch, set it to a high value. */
3486 /* pai/1997-06-03 FIXME: when we have debug info about default
3487 arguments and ellipsis parameter lists, we should consider those
3488 and rank the length-match more finely. */
3490 LENGTH_MATCH (bv) = (nargs != nparms)
3491 ? LENGTH_MISMATCH_BADNESS
3492 : EXACT_MATCH_BADNESS;
3494 /* Now rank all the parameters of the candidate function. */
3495 for (i = 1; i <= min_len; i++)
3496 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3499 /* If more arguments than parameters, add dummy entries. */
3500 for (i = min_len + 1; i <= nargs; i++)
3501 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3506 /* Compare the names of two integer types, assuming that any sign
3507 qualifiers have been checked already. We do it this way because
3508 there may be an "int" in the name of one of the types. */
3511 integer_types_same_name_p (const char *first, const char *second)
3513 int first_p, second_p;
3515 /* If both are shorts, return 1; if neither is a short, keep
3517 first_p = (strstr (first, "short") != NULL);
3518 second_p = (strstr (second, "short") != NULL);
3519 if (first_p && second_p)
3521 if (first_p || second_p)
3524 /* Likewise for long. */
3525 first_p = (strstr (first, "long") != NULL);
3526 second_p = (strstr (second, "long") != NULL);
3527 if (first_p && second_p)
3529 if (first_p || second_p)
3532 /* Likewise for char. */
3533 first_p = (strstr (first, "char") != NULL);
3534 second_p = (strstr (second, "char") != NULL);
3535 if (first_p && second_p)
3537 if (first_p || second_p)
3540 /* They must both be ints. */
3544 /* Compares type A to type B. Returns true if they represent the same
3545 type, false otherwise. */
3548 types_equal (struct type *a, struct type *b)
3550 /* Identical type pointers. */
3551 /* However, this still doesn't catch all cases of same type for b
3552 and a. The reason is that builtin types are different from
3553 the same ones constructed from the object. */
3557 /* Resolve typedefs */
3558 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3559 a = check_typedef (a);
3560 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3561 b = check_typedef (b);
3563 /* If after resolving typedefs a and b are not of the same type
3564 code then they are not equal. */
3565 if (TYPE_CODE (a) != TYPE_CODE (b))
3568 /* If a and b are both pointers types or both reference types then
3569 they are equal of the same type iff the objects they refer to are
3570 of the same type. */
3571 if (TYPE_CODE (a) == TYPE_CODE_PTR
3572 || TYPE_CODE (a) == TYPE_CODE_REF)
3573 return types_equal (TYPE_TARGET_TYPE (a),
3574 TYPE_TARGET_TYPE (b));
3576 /* Well, damnit, if the names are exactly the same, I'll say they
3577 are exactly the same. This happens when we generate method
3578 stubs. The types won't point to the same address, but they
3579 really are the same. */
3581 if (TYPE_NAME (a) && TYPE_NAME (b)
3582 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3585 /* Check if identical after resolving typedefs. */
3589 /* Two function types are equal if their argument and return types
3591 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3595 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3598 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3601 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3602 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3611 /* Deep comparison of types. */
3613 /* An entry in the type-equality bcache. */
3615 struct type_equality_entry
3617 type_equality_entry (struct type *t1, struct type *t2)
3623 struct type *type1, *type2;
3626 /* A helper function to compare two strings. Returns true if they are
3627 the same, false otherwise. Handles NULLs properly. */
3630 compare_maybe_null_strings (const char *s, const char *t)
3632 if (s == NULL || t == NULL)
3634 return strcmp (s, t) == 0;
3637 /* A helper function for check_types_worklist that checks two types for
3638 "deep" equality. Returns true if the types are considered the
3639 same, false otherwise. */
3642 check_types_equal (struct type *type1, struct type *type2,
3643 std::vector<type_equality_entry> *worklist)
3645 type1 = check_typedef (type1);
3646 type2 = check_typedef (type2);
3651 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3652 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3653 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3654 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3655 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3656 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3657 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3658 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3659 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3662 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3664 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3667 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3669 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3676 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3678 const struct field *field1 = &TYPE_FIELD (type1, i);
3679 const struct field *field2 = &TYPE_FIELD (type2, i);
3681 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3682 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3683 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3685 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3686 FIELD_NAME (*field2)))
3688 switch (FIELD_LOC_KIND (*field1))
3690 case FIELD_LOC_KIND_BITPOS:
3691 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3694 case FIELD_LOC_KIND_ENUMVAL:
3695 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3698 case FIELD_LOC_KIND_PHYSADDR:
3699 if (FIELD_STATIC_PHYSADDR (*field1)
3700 != FIELD_STATIC_PHYSADDR (*field2))
3703 case FIELD_LOC_KIND_PHYSNAME:
3704 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3705 FIELD_STATIC_PHYSNAME (*field2)))
3708 case FIELD_LOC_KIND_DWARF_BLOCK:
3710 struct dwarf2_locexpr_baton *block1, *block2;
3712 block1 = FIELD_DWARF_BLOCK (*field1);
3713 block2 = FIELD_DWARF_BLOCK (*field2);
3714 if (block1->per_cu != block2->per_cu
3715 || block1->size != block2->size
3716 || memcmp (block1->data, block2->data, block1->size) != 0)
3721 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3722 "%d by check_types_equal"),
3723 FIELD_LOC_KIND (*field1));
3726 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3730 if (TYPE_TARGET_TYPE (type1) != NULL)
3732 if (TYPE_TARGET_TYPE (type2) == NULL)
3735 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3736 TYPE_TARGET_TYPE (type2));
3738 else if (TYPE_TARGET_TYPE (type2) != NULL)
3744 /* Check types on a worklist for equality. Returns false if any pair
3745 is not equal, true if they are all considered equal. */
3748 check_types_worklist (std::vector<type_equality_entry> *worklist,
3749 struct bcache *cache)
3751 while (!worklist->empty ())
3755 struct type_equality_entry entry = std::move (worklist->back ());
3756 worklist->pop_back ();
3758 /* If the type pair has already been visited, we know it is
3760 bcache_full (&entry, sizeof (entry), cache, &added);
3764 if (!check_types_equal (entry.type1, entry.type2, worklist))
3771 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3772 "deep comparison". Otherwise return false. */
3775 types_deeply_equal (struct type *type1, struct type *type2)
3777 struct gdb_exception except = exception_none;
3778 bool result = false;
3779 struct bcache *cache;
3780 std::vector<type_equality_entry> worklist;
3782 gdb_assert (type1 != NULL && type2 != NULL);
3784 /* Early exit for the simple case. */
3788 cache = bcache_xmalloc (NULL, NULL);
3790 worklist.emplace_back (type1, type2);
3792 /* check_types_worklist calls several nested helper functions, some
3793 of which can raise a GDB exception, so we just check and rethrow
3794 here. If there is a GDB exception, a comparison is not capable
3795 (or trusted), so exit. */
3798 result = check_types_worklist (&worklist, cache);
3800 CATCH (ex, RETURN_MASK_ALL)
3806 bcache_xfree (cache);
3808 /* Rethrow if there was a problem. */
3809 if (except.reason < 0)
3810 throw_exception (except);
3815 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3816 Otherwise return one. */
3819 type_not_allocated (const struct type *type)
3821 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3823 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3824 && !TYPE_DYN_PROP_ADDR (prop));
3827 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3828 Otherwise return one. */
3831 type_not_associated (const struct type *type)
3833 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3835 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3836 && !TYPE_DYN_PROP_ADDR (prop));
3839 /* Compare one type (PARM) for compatibility with another (ARG).
3840 * PARM is intended to be the parameter type of a function; and
3841 * ARG is the supplied argument's type. This function tests if
3842 * the latter can be converted to the former.
3843 * VALUE is the argument's value or NULL if none (or called recursively)
3845 * Return 0 if they are identical types;
3846 * Otherwise, return an integer which corresponds to how compatible
3847 * PARM is to ARG. The higher the return value, the worse the match.
3848 * Generally the "bad" conversions are all uniformly assigned a 100. */
3851 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3853 struct rank rank = {0,0};
3855 /* Resolve typedefs */
3856 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3857 parm = check_typedef (parm);
3858 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3859 arg = check_typedef (arg);
3861 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3863 if (VALUE_LVAL (value) == not_lval)
3865 /* Rvalues should preferably bind to rvalue references or const
3866 lvalue references. */
3867 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3868 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3869 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3870 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3872 return INCOMPATIBLE_TYPE_BADNESS;
3873 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3877 /* Lvalues should prefer lvalue overloads. */
3878 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3880 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3881 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3886 if (types_equal (parm, arg))
3888 struct type *t1 = parm;
3889 struct type *t2 = arg;
3891 /* For pointers and references, compare target type. */
3892 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3894 t1 = TYPE_TARGET_TYPE (parm);
3895 t2 = TYPE_TARGET_TYPE (arg);
3898 /* Make sure they are CV equal, too. */
3899 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3900 rank.subrank |= CV_CONVERSION_CONST;
3901 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3902 rank.subrank |= CV_CONVERSION_VOLATILE;
3903 if (rank.subrank != 0)
3904 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3905 return EXACT_MATCH_BADNESS;
3908 /* See through references, since we can almost make non-references
3911 if (TYPE_IS_REFERENCE (arg))
3912 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3913 REFERENCE_CONVERSION_BADNESS));
3914 if (TYPE_IS_REFERENCE (parm))
3915 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3916 REFERENCE_CONVERSION_BADNESS));
3918 /* Debugging only. */
3919 fprintf_filtered (gdb_stderr,
3920 "------ Arg is %s [%d], parm is %s [%d]\n",
3921 TYPE_NAME (arg), TYPE_CODE (arg),
3922 TYPE_NAME (parm), TYPE_CODE (parm));
3924 /* x -> y means arg of type x being supplied for parameter of type y. */
3926 switch (TYPE_CODE (parm))
3929 switch (TYPE_CODE (arg))
3933 /* Allowed pointer conversions are:
3934 (a) pointer to void-pointer conversion. */
3935 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3936 return VOID_PTR_CONVERSION_BADNESS;
3938 /* (b) pointer to ancestor-pointer conversion. */
3939 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3940 TYPE_TARGET_TYPE (arg),
3942 if (rank.subrank >= 0)
3943 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3945 return INCOMPATIBLE_TYPE_BADNESS;
3946 case TYPE_CODE_ARRAY:
3948 struct type *t1 = TYPE_TARGET_TYPE (parm);
3949 struct type *t2 = TYPE_TARGET_TYPE (arg);
3951 if (types_equal (t1, t2))
3953 /* Make sure they are CV equal. */
3954 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3955 rank.subrank |= CV_CONVERSION_CONST;
3956 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3957 rank.subrank |= CV_CONVERSION_VOLATILE;
3958 if (rank.subrank != 0)
3959 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3960 return EXACT_MATCH_BADNESS;
3962 return INCOMPATIBLE_TYPE_BADNESS;
3964 case TYPE_CODE_FUNC:
3965 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3967 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3969 if (value_as_long (value) == 0)
3971 /* Null pointer conversion: allow it to be cast to a pointer.
3972 [4.10.1 of C++ standard draft n3290] */
3973 return NULL_POINTER_CONVERSION_BADNESS;
3977 /* If type checking is disabled, allow the conversion. */
3978 if (!strict_type_checking)
3979 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3983 case TYPE_CODE_ENUM:
3984 case TYPE_CODE_FLAGS:
3985 case TYPE_CODE_CHAR:
3986 case TYPE_CODE_RANGE:
3987 case TYPE_CODE_BOOL:
3989 return INCOMPATIBLE_TYPE_BADNESS;
3991 case TYPE_CODE_ARRAY:
3992 switch (TYPE_CODE (arg))
3995 case TYPE_CODE_ARRAY:
3996 return rank_one_type (TYPE_TARGET_TYPE (parm),
3997 TYPE_TARGET_TYPE (arg), NULL);
3999 return INCOMPATIBLE_TYPE_BADNESS;
4001 case TYPE_CODE_FUNC:
4002 switch (TYPE_CODE (arg))
4004 case TYPE_CODE_PTR: /* funcptr -> func */
4005 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4007 return INCOMPATIBLE_TYPE_BADNESS;
4010 switch (TYPE_CODE (arg))
4013 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4015 /* Deal with signed, unsigned, and plain chars and
4016 signed and unsigned ints. */
4017 if (TYPE_NOSIGN (parm))
4019 /* This case only for character types. */
4020 if (TYPE_NOSIGN (arg))
4021 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4022 else /* signed/unsigned char -> plain char */
4023 return INTEGER_CONVERSION_BADNESS;
4025 else if (TYPE_UNSIGNED (parm))
4027 if (TYPE_UNSIGNED (arg))
4029 /* unsigned int -> unsigned int, or
4030 unsigned long -> unsigned long */
4031 if (integer_types_same_name_p (TYPE_NAME (parm),
4033 return EXACT_MATCH_BADNESS;
4034 else if (integer_types_same_name_p (TYPE_NAME (arg),
4036 && integer_types_same_name_p (TYPE_NAME (parm),
4038 /* unsigned int -> unsigned long */
4039 return INTEGER_PROMOTION_BADNESS;
4041 /* unsigned long -> unsigned int */
4042 return INTEGER_CONVERSION_BADNESS;
4046 if (integer_types_same_name_p (TYPE_NAME (arg),
4048 && integer_types_same_name_p (TYPE_NAME (parm),
4050 /* signed long -> unsigned int */
4051 return INTEGER_CONVERSION_BADNESS;
4053 /* signed int/long -> unsigned int/long */
4054 return INTEGER_CONVERSION_BADNESS;
4057 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4059 if (integer_types_same_name_p (TYPE_NAME (parm),
4061 return EXACT_MATCH_BADNESS;
4062 else if (integer_types_same_name_p (TYPE_NAME (arg),
4064 && integer_types_same_name_p (TYPE_NAME (parm),
4066 return INTEGER_PROMOTION_BADNESS;
4068 return INTEGER_CONVERSION_BADNESS;
4071 return INTEGER_CONVERSION_BADNESS;
4073 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4074 return INTEGER_PROMOTION_BADNESS;
4076 return INTEGER_CONVERSION_BADNESS;
4077 case TYPE_CODE_ENUM:
4078 case TYPE_CODE_FLAGS:
4079 case TYPE_CODE_CHAR:
4080 case TYPE_CODE_RANGE:
4081 case TYPE_CODE_BOOL:
4082 if (TYPE_DECLARED_CLASS (arg))
4083 return INCOMPATIBLE_TYPE_BADNESS;
4084 return INTEGER_PROMOTION_BADNESS;
4086 return INT_FLOAT_CONVERSION_BADNESS;
4088 return NS_POINTER_CONVERSION_BADNESS;
4090 return INCOMPATIBLE_TYPE_BADNESS;
4093 case TYPE_CODE_ENUM:
4094 switch (TYPE_CODE (arg))
4097 case TYPE_CODE_CHAR:
4098 case TYPE_CODE_RANGE:
4099 case TYPE_CODE_BOOL:
4100 case TYPE_CODE_ENUM:
4101 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4102 return INCOMPATIBLE_TYPE_BADNESS;
4103 return INTEGER_CONVERSION_BADNESS;
4105 return INT_FLOAT_CONVERSION_BADNESS;
4107 return INCOMPATIBLE_TYPE_BADNESS;
4110 case TYPE_CODE_CHAR:
4111 switch (TYPE_CODE (arg))
4113 case TYPE_CODE_RANGE:
4114 case TYPE_CODE_BOOL:
4115 case TYPE_CODE_ENUM:
4116 if (TYPE_DECLARED_CLASS (arg))
4117 return INCOMPATIBLE_TYPE_BADNESS;
4118 return INTEGER_CONVERSION_BADNESS;
4120 return INT_FLOAT_CONVERSION_BADNESS;
4122 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4123 return INTEGER_CONVERSION_BADNESS;
4124 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4125 return INTEGER_PROMOTION_BADNESS;
4127 case TYPE_CODE_CHAR:
4128 /* Deal with signed, unsigned, and plain chars for C++ and
4129 with int cases falling through from previous case. */
4130 if (TYPE_NOSIGN (parm))
4132 if (TYPE_NOSIGN (arg))
4133 return EXACT_MATCH_BADNESS;
4135 return INTEGER_CONVERSION_BADNESS;
4137 else if (TYPE_UNSIGNED (parm))
4139 if (TYPE_UNSIGNED (arg))
4140 return EXACT_MATCH_BADNESS;
4142 return INTEGER_PROMOTION_BADNESS;
4144 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4145 return EXACT_MATCH_BADNESS;
4147 return INTEGER_CONVERSION_BADNESS;
4149 return INCOMPATIBLE_TYPE_BADNESS;
4152 case TYPE_CODE_RANGE:
4153 switch (TYPE_CODE (arg))
4156 case TYPE_CODE_CHAR:
4157 case TYPE_CODE_RANGE:
4158 case TYPE_CODE_BOOL:
4159 case TYPE_CODE_ENUM:
4160 return INTEGER_CONVERSION_BADNESS;
4162 return INT_FLOAT_CONVERSION_BADNESS;
4164 return INCOMPATIBLE_TYPE_BADNESS;
4167 case TYPE_CODE_BOOL:
4168 switch (TYPE_CODE (arg))
4170 /* n3290 draft, section 4.12.1 (conv.bool):
4172 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4173 pointer to member type can be converted to a prvalue of type
4174 bool. A zero value, null pointer value, or null member pointer
4175 value is converted to false; any other value is converted to
4176 true. A prvalue of type std::nullptr_t can be converted to a
4177 prvalue of type bool; the resulting value is false." */
4179 case TYPE_CODE_CHAR:
4180 case TYPE_CODE_ENUM:
4182 case TYPE_CODE_MEMBERPTR:
4184 return BOOL_CONVERSION_BADNESS;
4185 case TYPE_CODE_RANGE:
4186 return INCOMPATIBLE_TYPE_BADNESS;
4187 case TYPE_CODE_BOOL:
4188 return EXACT_MATCH_BADNESS;
4190 return INCOMPATIBLE_TYPE_BADNESS;
4194 switch (TYPE_CODE (arg))
4197 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4198 return FLOAT_PROMOTION_BADNESS;
4199 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4200 return EXACT_MATCH_BADNESS;
4202 return FLOAT_CONVERSION_BADNESS;
4204 case TYPE_CODE_BOOL:
4205 case TYPE_CODE_ENUM:
4206 case TYPE_CODE_RANGE:
4207 case TYPE_CODE_CHAR:
4208 return INT_FLOAT_CONVERSION_BADNESS;
4210 return INCOMPATIBLE_TYPE_BADNESS;
4213 case TYPE_CODE_COMPLEX:
4214 switch (TYPE_CODE (arg))
4215 { /* Strictly not needed for C++, but... */
4217 return FLOAT_PROMOTION_BADNESS;
4218 case TYPE_CODE_COMPLEX:
4219 return EXACT_MATCH_BADNESS;
4221 return INCOMPATIBLE_TYPE_BADNESS;
4224 case TYPE_CODE_STRUCT:
4225 switch (TYPE_CODE (arg))
4227 case TYPE_CODE_STRUCT:
4228 /* Check for derivation */
4229 rank.subrank = distance_to_ancestor (parm, arg, 0);
4230 if (rank.subrank >= 0)
4231 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4234 return INCOMPATIBLE_TYPE_BADNESS;
4237 case TYPE_CODE_UNION:
4238 switch (TYPE_CODE (arg))
4240 case TYPE_CODE_UNION:
4242 return INCOMPATIBLE_TYPE_BADNESS;
4245 case TYPE_CODE_MEMBERPTR:
4246 switch (TYPE_CODE (arg))
4249 return INCOMPATIBLE_TYPE_BADNESS;
4252 case TYPE_CODE_METHOD:
4253 switch (TYPE_CODE (arg))
4257 return INCOMPATIBLE_TYPE_BADNESS;
4261 switch (TYPE_CODE (arg))
4265 return INCOMPATIBLE_TYPE_BADNESS;
4270 switch (TYPE_CODE (arg))
4274 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4275 TYPE_FIELD_TYPE (arg, 0), NULL);
4277 return INCOMPATIBLE_TYPE_BADNESS;
4280 case TYPE_CODE_VOID:
4282 return INCOMPATIBLE_TYPE_BADNESS;
4283 } /* switch (TYPE_CODE (arg)) */
4286 /* End of functions for overload resolution. */
4288 /* Routines to pretty-print types. */
4291 print_bit_vector (B_TYPE *bits, int nbits)
4295 for (bitno = 0; bitno < nbits; bitno++)
4297 if ((bitno % 8) == 0)
4299 puts_filtered (" ");
4301 if (B_TST (bits, bitno))
4302 printf_filtered (("1"));
4304 printf_filtered (("0"));
4308 /* Note the first arg should be the "this" pointer, we may not want to
4309 include it since we may get into a infinitely recursive
4313 print_args (struct field *args, int nargs, int spaces)
4319 for (i = 0; i < nargs; i++)
4321 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4322 args[i].name != NULL ? args[i].name : "<NULL>");
4323 recursive_dump_type (args[i].type, spaces + 2);
4329 field_is_static (struct field *f)
4331 /* "static" fields are the fields whose location is not relative
4332 to the address of the enclosing struct. It would be nice to
4333 have a dedicated flag that would be set for static fields when
4334 the type is being created. But in practice, checking the field
4335 loc_kind should give us an accurate answer. */
4336 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4337 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4341 dump_fn_fieldlists (struct type *type, int spaces)
4347 printfi_filtered (spaces, "fn_fieldlists ");
4348 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4349 printf_filtered ("\n");
4350 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4352 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4353 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4355 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4356 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4358 printf_filtered (_(") length %d\n"),
4359 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4360 for (overload_idx = 0;
4361 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4364 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4366 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4367 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4369 printf_filtered (")\n");
4370 printfi_filtered (spaces + 8, "type ");
4371 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4373 printf_filtered ("\n");
4375 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4378 printfi_filtered (spaces + 8, "args ");
4379 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4381 printf_filtered ("\n");
4382 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4383 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4385 printfi_filtered (spaces + 8, "fcontext ");
4386 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4388 printf_filtered ("\n");
4390 printfi_filtered (spaces + 8, "is_const %d\n",
4391 TYPE_FN_FIELD_CONST (f, overload_idx));
4392 printfi_filtered (spaces + 8, "is_volatile %d\n",
4393 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4394 printfi_filtered (spaces + 8, "is_private %d\n",
4395 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4396 printfi_filtered (spaces + 8, "is_protected %d\n",
4397 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4398 printfi_filtered (spaces + 8, "is_stub %d\n",
4399 TYPE_FN_FIELD_STUB (f, overload_idx));
4400 printfi_filtered (spaces + 8, "voffset %u\n",
4401 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4407 print_cplus_stuff (struct type *type, int spaces)
4409 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4410 printfi_filtered (spaces, "vptr_basetype ");
4411 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4412 puts_filtered ("\n");
4413 if (TYPE_VPTR_BASETYPE (type) != NULL)
4414 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4416 printfi_filtered (spaces, "n_baseclasses %d\n",
4417 TYPE_N_BASECLASSES (type));
4418 printfi_filtered (spaces, "nfn_fields %d\n",
4419 TYPE_NFN_FIELDS (type));
4420 if (TYPE_N_BASECLASSES (type) > 0)
4422 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4423 TYPE_N_BASECLASSES (type));
4424 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4426 printf_filtered (")");
4428 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4429 TYPE_N_BASECLASSES (type));
4430 puts_filtered ("\n");
4432 if (TYPE_NFIELDS (type) > 0)
4434 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4436 printfi_filtered (spaces,
4437 "private_field_bits (%d bits at *",
4438 TYPE_NFIELDS (type));
4439 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4441 printf_filtered (")");
4442 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4443 TYPE_NFIELDS (type));
4444 puts_filtered ("\n");
4446 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4448 printfi_filtered (spaces,
4449 "protected_field_bits (%d bits at *",
4450 TYPE_NFIELDS (type));
4451 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4453 printf_filtered (")");
4454 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4455 TYPE_NFIELDS (type));
4456 puts_filtered ("\n");
4459 if (TYPE_NFN_FIELDS (type) > 0)
4461 dump_fn_fieldlists (type, spaces);
4465 /* Print the contents of the TYPE's type_specific union, assuming that
4466 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4469 print_gnat_stuff (struct type *type, int spaces)
4471 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4473 if (descriptive_type == NULL)
4474 printfi_filtered (spaces + 2, "no descriptive type\n");
4477 printfi_filtered (spaces + 2, "descriptive type\n");
4478 recursive_dump_type (descriptive_type, spaces + 4);
4482 static struct obstack dont_print_type_obstack;
4485 recursive_dump_type (struct type *type, int spaces)
4490 obstack_begin (&dont_print_type_obstack, 0);
4492 if (TYPE_NFIELDS (type) > 0
4493 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4495 struct type **first_dont_print
4496 = (struct type **) obstack_base (&dont_print_type_obstack);
4498 int i = (struct type **)
4499 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4503 if (type == first_dont_print[i])
4505 printfi_filtered (spaces, "type node ");
4506 gdb_print_host_address (type, gdb_stdout);
4507 printf_filtered (_(" <same as already seen type>\n"));
4512 obstack_ptr_grow (&dont_print_type_obstack, type);
4515 printfi_filtered (spaces, "type node ");
4516 gdb_print_host_address (type, gdb_stdout);
4517 printf_filtered ("\n");
4518 printfi_filtered (spaces, "name '%s' (",
4519 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4520 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4521 printf_filtered (")\n");
4522 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4523 switch (TYPE_CODE (type))
4525 case TYPE_CODE_UNDEF:
4526 printf_filtered ("(TYPE_CODE_UNDEF)");
4529 printf_filtered ("(TYPE_CODE_PTR)");
4531 case TYPE_CODE_ARRAY:
4532 printf_filtered ("(TYPE_CODE_ARRAY)");
4534 case TYPE_CODE_STRUCT:
4535 printf_filtered ("(TYPE_CODE_STRUCT)");
4537 case TYPE_CODE_UNION:
4538 printf_filtered ("(TYPE_CODE_UNION)");
4540 case TYPE_CODE_ENUM:
4541 printf_filtered ("(TYPE_CODE_ENUM)");
4543 case TYPE_CODE_FLAGS:
4544 printf_filtered ("(TYPE_CODE_FLAGS)");
4546 case TYPE_CODE_FUNC:
4547 printf_filtered ("(TYPE_CODE_FUNC)");
4550 printf_filtered ("(TYPE_CODE_INT)");
4553 printf_filtered ("(TYPE_CODE_FLT)");
4555 case TYPE_CODE_VOID:
4556 printf_filtered ("(TYPE_CODE_VOID)");
4559 printf_filtered ("(TYPE_CODE_SET)");
4561 case TYPE_CODE_RANGE:
4562 printf_filtered ("(TYPE_CODE_RANGE)");
4564 case TYPE_CODE_STRING:
4565 printf_filtered ("(TYPE_CODE_STRING)");
4567 case TYPE_CODE_ERROR:
4568 printf_filtered ("(TYPE_CODE_ERROR)");
4570 case TYPE_CODE_MEMBERPTR:
4571 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4573 case TYPE_CODE_METHODPTR:
4574 printf_filtered ("(TYPE_CODE_METHODPTR)");
4576 case TYPE_CODE_METHOD:
4577 printf_filtered ("(TYPE_CODE_METHOD)");
4580 printf_filtered ("(TYPE_CODE_REF)");
4582 case TYPE_CODE_CHAR:
4583 printf_filtered ("(TYPE_CODE_CHAR)");
4585 case TYPE_CODE_BOOL:
4586 printf_filtered ("(TYPE_CODE_BOOL)");
4588 case TYPE_CODE_COMPLEX:
4589 printf_filtered ("(TYPE_CODE_COMPLEX)");
4591 case TYPE_CODE_TYPEDEF:
4592 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4594 case TYPE_CODE_NAMESPACE:
4595 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4598 printf_filtered ("(UNKNOWN TYPE CODE)");
4601 puts_filtered ("\n");
4602 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4603 if (TYPE_OBJFILE_OWNED (type))
4605 printfi_filtered (spaces, "objfile ");
4606 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4610 printfi_filtered (spaces, "gdbarch ");
4611 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4613 printf_filtered ("\n");
4614 printfi_filtered (spaces, "target_type ");
4615 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4616 printf_filtered ("\n");
4617 if (TYPE_TARGET_TYPE (type) != NULL)
4619 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4621 printfi_filtered (spaces, "pointer_type ");
4622 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4623 printf_filtered ("\n");
4624 printfi_filtered (spaces, "reference_type ");
4625 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4626 printf_filtered ("\n");
4627 printfi_filtered (spaces, "type_chain ");
4628 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4629 printf_filtered ("\n");
4630 printfi_filtered (spaces, "instance_flags 0x%x",
4631 TYPE_INSTANCE_FLAGS (type));
4632 if (TYPE_CONST (type))
4634 puts_filtered (" TYPE_CONST");
4636 if (TYPE_VOLATILE (type))
4638 puts_filtered (" TYPE_VOLATILE");
4640 if (TYPE_CODE_SPACE (type))
4642 puts_filtered (" TYPE_CODE_SPACE");
4644 if (TYPE_DATA_SPACE (type))
4646 puts_filtered (" TYPE_DATA_SPACE");
4648 if (TYPE_ADDRESS_CLASS_1 (type))
4650 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4652 if (TYPE_ADDRESS_CLASS_2 (type))
4654 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4656 if (TYPE_RESTRICT (type))
4658 puts_filtered (" TYPE_RESTRICT");
4660 if (TYPE_ATOMIC (type))
4662 puts_filtered (" TYPE_ATOMIC");
4664 puts_filtered ("\n");
4666 printfi_filtered (spaces, "flags");
4667 if (TYPE_UNSIGNED (type))
4669 puts_filtered (" TYPE_UNSIGNED");
4671 if (TYPE_NOSIGN (type))
4673 puts_filtered (" TYPE_NOSIGN");
4675 if (TYPE_STUB (type))
4677 puts_filtered (" TYPE_STUB");
4679 if (TYPE_TARGET_STUB (type))
4681 puts_filtered (" TYPE_TARGET_STUB");
4683 if (TYPE_PROTOTYPED (type))
4685 puts_filtered (" TYPE_PROTOTYPED");
4687 if (TYPE_INCOMPLETE (type))
4689 puts_filtered (" TYPE_INCOMPLETE");
4691 if (TYPE_VARARGS (type))
4693 puts_filtered (" TYPE_VARARGS");
4695 /* This is used for things like AltiVec registers on ppc. Gcc emits
4696 an attribute for the array type, which tells whether or not we
4697 have a vector, instead of a regular array. */
4698 if (TYPE_VECTOR (type))
4700 puts_filtered (" TYPE_VECTOR");
4702 if (TYPE_FIXED_INSTANCE (type))
4704 puts_filtered (" TYPE_FIXED_INSTANCE");
4706 if (TYPE_STUB_SUPPORTED (type))
4708 puts_filtered (" TYPE_STUB_SUPPORTED");
4710 if (TYPE_NOTTEXT (type))
4712 puts_filtered (" TYPE_NOTTEXT");
4714 puts_filtered ("\n");
4715 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4716 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4717 puts_filtered ("\n");
4718 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4720 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4721 printfi_filtered (spaces + 2,
4722 "[%d] enumval %s type ",
4723 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4725 printfi_filtered (spaces + 2,
4726 "[%d] bitpos %s bitsize %d type ",
4727 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4728 TYPE_FIELD_BITSIZE (type, idx));
4729 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4730 printf_filtered (" name '%s' (",
4731 TYPE_FIELD_NAME (type, idx) != NULL
4732 ? TYPE_FIELD_NAME (type, idx)
4734 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4735 printf_filtered (")\n");
4736 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4738 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4741 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4743 printfi_filtered (spaces, "low %s%s high %s%s\n",
4744 plongest (TYPE_LOW_BOUND (type)),
4745 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4746 plongest (TYPE_HIGH_BOUND (type)),
4747 TYPE_HIGH_BOUND_UNDEFINED (type)
4748 ? " (undefined)" : "");
4751 switch (TYPE_SPECIFIC_FIELD (type))
4753 case TYPE_SPECIFIC_CPLUS_STUFF:
4754 printfi_filtered (spaces, "cplus_stuff ");
4755 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4757 puts_filtered ("\n");
4758 print_cplus_stuff (type, spaces);
4761 case TYPE_SPECIFIC_GNAT_STUFF:
4762 printfi_filtered (spaces, "gnat_stuff ");
4763 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4764 puts_filtered ("\n");
4765 print_gnat_stuff (type, spaces);
4768 case TYPE_SPECIFIC_FLOATFORMAT:
4769 printfi_filtered (spaces, "floatformat ");
4770 if (TYPE_FLOATFORMAT (type) == NULL
4771 || TYPE_FLOATFORMAT (type)->name == NULL)
4772 puts_filtered ("(null)");
4774 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4775 puts_filtered ("\n");
4778 case TYPE_SPECIFIC_FUNC:
4779 printfi_filtered (spaces, "calling_convention %d\n",
4780 TYPE_CALLING_CONVENTION (type));
4781 /* tail_call_list is not printed. */
4784 case TYPE_SPECIFIC_SELF_TYPE:
4785 printfi_filtered (spaces, "self_type ");
4786 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4787 puts_filtered ("\n");
4792 obstack_free (&dont_print_type_obstack, NULL);
4795 /* Trivial helpers for the libiberty hash table, for mapping one
4798 struct type_pair : public allocate_on_obstack
4800 type_pair (struct type *old_, struct type *newobj_)
4801 : old (old_), newobj (newobj_)
4804 struct type * const old, * const newobj;
4808 type_pair_hash (const void *item)
4810 const struct type_pair *pair = (const struct type_pair *) item;
4812 return htab_hash_pointer (pair->old);
4816 type_pair_eq (const void *item_lhs, const void *item_rhs)
4818 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4819 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4821 return lhs->old == rhs->old;
4824 /* Allocate the hash table used by copy_type_recursive to walk
4825 types without duplicates. We use OBJFILE's obstack, because
4826 OBJFILE is about to be deleted. */
4829 create_copied_types_hash (struct objfile *objfile)
4831 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4832 NULL, &objfile->objfile_obstack,
4833 hashtab_obstack_allocate,
4834 dummy_obstack_deallocate);
4837 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4839 static struct dynamic_prop_list *
4840 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4841 struct dynamic_prop_list *list)
4843 struct dynamic_prop_list *copy = list;
4844 struct dynamic_prop_list **node_ptr = ©
4846 while (*node_ptr != NULL)
4848 struct dynamic_prop_list *node_copy;
4850 node_copy = ((struct dynamic_prop_list *)
4851 obstack_copy (objfile_obstack, *node_ptr,
4852 sizeof (struct dynamic_prop_list)));
4853 node_copy->prop = (*node_ptr)->prop;
4854 *node_ptr = node_copy;
4856 node_ptr = &node_copy->next;
4862 /* Recursively copy (deep copy) TYPE, if it is associated with
4863 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4864 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4865 it is not associated with OBJFILE. */
4868 copy_type_recursive (struct objfile *objfile,
4870 htab_t copied_types)
4873 struct type *new_type;
4875 if (! TYPE_OBJFILE_OWNED (type))
4878 /* This type shouldn't be pointing to any types in other objfiles;
4879 if it did, the type might disappear unexpectedly. */
4880 gdb_assert (TYPE_OBJFILE (type) == objfile);
4882 struct type_pair pair (type, nullptr);
4884 slot = htab_find_slot (copied_types, &pair, INSERT);
4886 return ((struct type_pair *) *slot)->newobj;
4888 new_type = alloc_type_arch (get_type_arch (type));
4890 /* We must add the new type to the hash table immediately, in case
4891 we encounter this type again during a recursive call below. */
4892 struct type_pair *stored
4893 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4897 /* Copy the common fields of types. For the main type, we simply
4898 copy the entire thing and then update specific fields as needed. */
4899 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4900 TYPE_OBJFILE_OWNED (new_type) = 0;
4901 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4903 if (TYPE_NAME (type))
4904 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4906 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4907 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4909 /* Copy the fields. */
4910 if (TYPE_NFIELDS (type))
4914 nfields = TYPE_NFIELDS (type);
4915 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4916 for (i = 0; i < nfields; i++)
4918 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4919 TYPE_FIELD_ARTIFICIAL (type, i);
4920 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4921 if (TYPE_FIELD_TYPE (type, i))
4922 TYPE_FIELD_TYPE (new_type, i)
4923 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4925 if (TYPE_FIELD_NAME (type, i))
4926 TYPE_FIELD_NAME (new_type, i) =
4927 xstrdup (TYPE_FIELD_NAME (type, i));
4928 switch (TYPE_FIELD_LOC_KIND (type, i))
4930 case FIELD_LOC_KIND_BITPOS:
4931 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4932 TYPE_FIELD_BITPOS (type, i));
4934 case FIELD_LOC_KIND_ENUMVAL:
4935 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4936 TYPE_FIELD_ENUMVAL (type, i));
4938 case FIELD_LOC_KIND_PHYSADDR:
4939 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4940 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4942 case FIELD_LOC_KIND_PHYSNAME:
4943 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4944 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4948 internal_error (__FILE__, __LINE__,
4949 _("Unexpected type field location kind: %d"),
4950 TYPE_FIELD_LOC_KIND (type, i));
4955 /* For range types, copy the bounds information. */
4956 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4958 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4959 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4962 if (TYPE_DYN_PROP_LIST (type) != NULL)
4963 TYPE_DYN_PROP_LIST (new_type)
4964 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4965 TYPE_DYN_PROP_LIST (type));
4968 /* Copy pointers to other types. */
4969 if (TYPE_TARGET_TYPE (type))
4970 TYPE_TARGET_TYPE (new_type) =
4971 copy_type_recursive (objfile,
4972 TYPE_TARGET_TYPE (type),
4975 /* Maybe copy the type_specific bits.
4977 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4978 base classes and methods. There's no fundamental reason why we
4979 can't, but at the moment it is not needed. */
4981 switch (TYPE_SPECIFIC_FIELD (type))
4983 case TYPE_SPECIFIC_NONE:
4985 case TYPE_SPECIFIC_FUNC:
4986 INIT_FUNC_SPECIFIC (new_type);
4987 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4988 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4989 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4991 case TYPE_SPECIFIC_FLOATFORMAT:
4992 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4994 case TYPE_SPECIFIC_CPLUS_STUFF:
4995 INIT_CPLUS_SPECIFIC (new_type);
4997 case TYPE_SPECIFIC_GNAT_STUFF:
4998 INIT_GNAT_SPECIFIC (new_type);
5000 case TYPE_SPECIFIC_SELF_TYPE:
5001 set_type_self_type (new_type,
5002 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5006 gdb_assert_not_reached ("bad type_specific_kind");
5012 /* Make a copy of the given TYPE, except that the pointer & reference
5013 types are not preserved.
5015 This function assumes that the given type has an associated objfile.
5016 This objfile is used to allocate the new type. */
5019 copy_type (const struct type *type)
5021 struct type *new_type;
5023 gdb_assert (TYPE_OBJFILE_OWNED (type));
5025 new_type = alloc_type_copy (type);
5026 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5027 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5028 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5029 sizeof (struct main_type));
5030 if (TYPE_DYN_PROP_LIST (type) != NULL)
5031 TYPE_DYN_PROP_LIST (new_type)
5032 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5033 TYPE_DYN_PROP_LIST (type));
5038 /* Helper functions to initialize architecture-specific types. */
5040 /* Allocate a type structure associated with GDBARCH and set its
5041 CODE, LENGTH, and NAME fields. */
5044 arch_type (struct gdbarch *gdbarch,
5045 enum type_code code, int bit, const char *name)
5049 type = alloc_type_arch (gdbarch);
5050 set_type_code (type, code);
5051 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5052 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5055 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5060 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5061 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5062 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5065 arch_integer_type (struct gdbarch *gdbarch,
5066 int bit, int unsigned_p, const char *name)
5070 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5072 TYPE_UNSIGNED (t) = 1;
5077 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5078 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5079 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5082 arch_character_type (struct gdbarch *gdbarch,
5083 int bit, int unsigned_p, const char *name)
5087 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5089 TYPE_UNSIGNED (t) = 1;
5094 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5095 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5096 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5099 arch_boolean_type (struct gdbarch *gdbarch,
5100 int bit, int unsigned_p, const char *name)
5104 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5106 TYPE_UNSIGNED (t) = 1;
5111 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5112 BIT is the type size in bits; if BIT equals -1, the size is
5113 determined by the floatformat. NAME is the type name. Set the
5114 TYPE_FLOATFORMAT from FLOATFORMATS. */
5117 arch_float_type (struct gdbarch *gdbarch,
5118 int bit, const char *name,
5119 const struct floatformat **floatformats)
5121 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5124 bit = verify_floatformat (bit, fmt);
5125 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5126 TYPE_FLOATFORMAT (t) = fmt;
5131 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5132 BIT is the type size in bits. NAME is the type name. */
5135 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5139 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5143 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5144 NAME is the type name. TARGET_TYPE is the component float type. */
5147 arch_complex_type (struct gdbarch *gdbarch,
5148 const char *name, struct type *target_type)
5152 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5153 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5154 TYPE_TARGET_TYPE (t) = target_type;
5158 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5159 BIT is the pointer type size in bits. NAME is the type name.
5160 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5161 TYPE_UNSIGNED flag. */
5164 arch_pointer_type (struct gdbarch *gdbarch,
5165 int bit, const char *name, struct type *target_type)
5169 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5170 TYPE_TARGET_TYPE (t) = target_type;
5171 TYPE_UNSIGNED (t) = 1;
5175 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5176 NAME is the type name. BIT is the size of the flag word in bits. */
5179 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5183 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5184 TYPE_UNSIGNED (type) = 1;
5185 TYPE_NFIELDS (type) = 0;
5186 /* Pre-allocate enough space assuming every field is one bit. */
5188 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5193 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5194 position BITPOS is called NAME. Pass NAME as "" for fields that
5195 should not be printed. */
5198 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5199 struct type *field_type, const char *name)
5201 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5202 int field_nr = TYPE_NFIELDS (type);
5204 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5205 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5206 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5207 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5208 gdb_assert (name != NULL);
5210 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5211 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5212 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5213 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5214 ++TYPE_NFIELDS (type);
5217 /* Special version of append_flags_type_field to add a flag field.
5218 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5219 position BITPOS is called NAME. */
5222 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5224 struct gdbarch *gdbarch = get_type_arch (type);
5226 append_flags_type_field (type, bitpos, 1,
5227 builtin_type (gdbarch)->builtin_bool,
5231 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5232 specified by CODE) associated with GDBARCH. NAME is the type name. */
5235 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5236 enum type_code code)
5240 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5241 t = arch_type (gdbarch, code, 0, NULL);
5242 TYPE_NAME (t) = name;
5243 INIT_CPLUS_SPECIFIC (t);
5247 /* Add new field with name NAME and type FIELD to composite type T.
5248 Do not set the field's position or adjust the type's length;
5249 the caller should do so. Return the new field. */
5252 append_composite_type_field_raw (struct type *t, const char *name,
5257 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5258 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5260 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5261 memset (f, 0, sizeof f[0]);
5262 FIELD_TYPE (f[0]) = field;
5263 FIELD_NAME (f[0]) = name;
5267 /* Add new field with name NAME and type FIELD to composite type T.
5268 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5271 append_composite_type_field_aligned (struct type *t, const char *name,
5272 struct type *field, int alignment)
5274 struct field *f = append_composite_type_field_raw (t, name, field);
5276 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5278 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5279 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5281 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5283 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5284 if (TYPE_NFIELDS (t) > 1)
5286 SET_FIELD_BITPOS (f[0],
5287 (FIELD_BITPOS (f[-1])
5288 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5289 * TARGET_CHAR_BIT)));
5295 alignment *= TARGET_CHAR_BIT;
5296 left = FIELD_BITPOS (f[0]) % alignment;
5300 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5301 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5308 /* Add new field with name NAME and type FIELD to composite type T. */
5311 append_composite_type_field (struct type *t, const char *name,
5314 append_composite_type_field_aligned (t, name, field, 0);
5317 static struct gdbarch_data *gdbtypes_data;
5319 const struct builtin_type *
5320 builtin_type (struct gdbarch *gdbarch)
5322 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5326 gdbtypes_post_init (struct gdbarch *gdbarch)
5328 struct builtin_type *builtin_type
5329 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5332 builtin_type->builtin_void
5333 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5334 builtin_type->builtin_char
5335 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5336 !gdbarch_char_signed (gdbarch), "char");
5337 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5338 builtin_type->builtin_signed_char
5339 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5341 builtin_type->builtin_unsigned_char
5342 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5343 1, "unsigned char");
5344 builtin_type->builtin_short
5345 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5347 builtin_type->builtin_unsigned_short
5348 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5349 1, "unsigned short");
5350 builtin_type->builtin_int
5351 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5353 builtin_type->builtin_unsigned_int
5354 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5356 builtin_type->builtin_long
5357 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5359 builtin_type->builtin_unsigned_long
5360 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5361 1, "unsigned long");
5362 builtin_type->builtin_long_long
5363 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5365 builtin_type->builtin_unsigned_long_long
5366 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5367 1, "unsigned long long");
5368 builtin_type->builtin_float
5369 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5370 "float", gdbarch_float_format (gdbarch));
5371 builtin_type->builtin_double
5372 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5373 "double", gdbarch_double_format (gdbarch));
5374 builtin_type->builtin_long_double
5375 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5376 "long double", gdbarch_long_double_format (gdbarch));
5377 builtin_type->builtin_complex
5378 = arch_complex_type (gdbarch, "complex",
5379 builtin_type->builtin_float);
5380 builtin_type->builtin_double_complex
5381 = arch_complex_type (gdbarch, "double complex",
5382 builtin_type->builtin_double);
5383 builtin_type->builtin_string
5384 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5385 builtin_type->builtin_bool
5386 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5388 /* The following three are about decimal floating point types, which
5389 are 32-bits, 64-bits and 128-bits respectively. */
5390 builtin_type->builtin_decfloat
5391 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5392 builtin_type->builtin_decdouble
5393 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5394 builtin_type->builtin_declong
5395 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5397 /* "True" character types. */
5398 builtin_type->builtin_true_char
5399 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5400 builtin_type->builtin_true_unsigned_char
5401 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5403 /* Fixed-size integer types. */
5404 builtin_type->builtin_int0
5405 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5406 builtin_type->builtin_int8
5407 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5408 builtin_type->builtin_uint8
5409 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5410 builtin_type->builtin_int16
5411 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5412 builtin_type->builtin_uint16
5413 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5414 builtin_type->builtin_int32
5415 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5416 builtin_type->builtin_uint32
5417 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5418 builtin_type->builtin_int64
5419 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5420 builtin_type->builtin_uint64
5421 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5422 builtin_type->builtin_int128
5423 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5424 builtin_type->builtin_uint128
5425 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5426 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5427 TYPE_INSTANCE_FLAG_NOTTEXT;
5428 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5429 TYPE_INSTANCE_FLAG_NOTTEXT;
5431 /* Wide character types. */
5432 builtin_type->builtin_char16
5433 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5434 builtin_type->builtin_char32
5435 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5436 builtin_type->builtin_wchar
5437 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5438 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5440 /* Default data/code pointer types. */
5441 builtin_type->builtin_data_ptr
5442 = lookup_pointer_type (builtin_type->builtin_void);
5443 builtin_type->builtin_func_ptr
5444 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5445 builtin_type->builtin_func_func
5446 = lookup_function_type (builtin_type->builtin_func_ptr);
5448 /* This type represents a GDB internal function. */
5449 builtin_type->internal_fn
5450 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5451 "<internal function>");
5453 /* This type represents an xmethod. */
5454 builtin_type->xmethod
5455 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5457 return builtin_type;
5460 /* This set of objfile-based types is intended to be used by symbol
5461 readers as basic types. */
5463 static const struct objfile_data *objfile_type_data;
5465 const struct objfile_type *
5466 objfile_type (struct objfile *objfile)
5468 struct gdbarch *gdbarch;
5469 struct objfile_type *objfile_type
5470 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5473 return objfile_type;
5475 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5476 1, struct objfile_type);
5478 /* Use the objfile architecture to determine basic type properties. */
5479 gdbarch = get_objfile_arch (objfile);
5482 objfile_type->builtin_void
5483 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5484 objfile_type->builtin_char
5485 = init_integer_type (objfile, TARGET_CHAR_BIT,
5486 !gdbarch_char_signed (gdbarch), "char");
5487 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5488 objfile_type->builtin_signed_char
5489 = init_integer_type (objfile, TARGET_CHAR_BIT,
5491 objfile_type->builtin_unsigned_char
5492 = init_integer_type (objfile, TARGET_CHAR_BIT,
5493 1, "unsigned char");
5494 objfile_type->builtin_short
5495 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5497 objfile_type->builtin_unsigned_short
5498 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5499 1, "unsigned short");
5500 objfile_type->builtin_int
5501 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5503 objfile_type->builtin_unsigned_int
5504 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5506 objfile_type->builtin_long
5507 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5509 objfile_type->builtin_unsigned_long
5510 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5511 1, "unsigned long");
5512 objfile_type->builtin_long_long
5513 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5515 objfile_type->builtin_unsigned_long_long
5516 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5517 1, "unsigned long long");
5518 objfile_type->builtin_float
5519 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5520 "float", gdbarch_float_format (gdbarch));
5521 objfile_type->builtin_double
5522 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5523 "double", gdbarch_double_format (gdbarch));
5524 objfile_type->builtin_long_double
5525 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5526 "long double", gdbarch_long_double_format (gdbarch));
5528 /* This type represents a type that was unrecognized in symbol read-in. */
5529 objfile_type->builtin_error
5530 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5532 /* The following set of types is used for symbols with no
5533 debug information. */
5534 objfile_type->nodebug_text_symbol
5535 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5536 "<text variable, no debug info>");
5537 objfile_type->nodebug_text_gnu_ifunc_symbol
5538 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5539 "<text gnu-indirect-function variable, no debug info>");
5540 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5541 objfile_type->nodebug_got_plt_symbol
5542 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5543 "<text from jump slot in .got.plt, no debug info>",
5544 objfile_type->nodebug_text_symbol);
5545 objfile_type->nodebug_data_symbol
5546 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5547 objfile_type->nodebug_unknown_symbol
5548 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5549 objfile_type->nodebug_tls_symbol
5550 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5552 /* NOTE: on some targets, addresses and pointers are not necessarily
5556 - gdb's `struct type' always describes the target's
5558 - gdb's `struct value' objects should always hold values in
5560 - gdb's CORE_ADDR values are addresses in the unified virtual
5561 address space that the assembler and linker work with. Thus,
5562 since target_read_memory takes a CORE_ADDR as an argument, it
5563 can access any memory on the target, even if the processor has
5564 separate code and data address spaces.
5566 In this context, objfile_type->builtin_core_addr is a bit odd:
5567 it's a target type for a value the target will never see. It's
5568 only used to hold the values of (typeless) linker symbols, which
5569 are indeed in the unified virtual address space. */
5571 objfile_type->builtin_core_addr
5572 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5575 set_objfile_data (objfile, objfile_type_data, objfile_type);
5576 return objfile_type;
5580 _initialize_gdbtypes (void)
5582 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5583 objfile_type_data = register_objfile_data ();
5585 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5586 _("Set debugging of C++ overloading."),
5587 _("Show debugging of C++ overloading."),
5588 _("When enabled, ranking of the "
5589 "functions is displayed."),
5591 show_overload_debug,
5592 &setdebuglist, &showdebuglist);
5594 /* Add user knob for controlling resolution of opaque types. */
5595 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5596 &opaque_type_resolution,
5597 _("Set resolution of opaque struct/class/union"
5598 " types (if set before loading symbols)."),
5599 _("Show resolution of opaque struct/class/union"
5600 " types (if set before loading symbols)."),
5602 show_opaque_type_resolution,
5603 &setlist, &showlist);
5605 /* Add an option to permit non-strict type checking. */
5606 add_setshow_boolean_cmd ("type", class_support,
5607 &strict_type_checking,
5608 _("Set strict type checking."),
5609 _("Show strict type checking."),
5611 show_strict_type_checking,
5612 &setchecklist, &showchecklist);