1 /* Top level stuff for GDB, the GNU debugger.
2 Copyright 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
26 #include "terminal.h" /* for job_control */
27 #include "event-loop.h"
28 #include "event-top.h"
32 /* For dont_repeat() */
35 /* readline include files */
36 #include "readline/readline.h"
37 #include "readline/history.h"
39 /* readline defines this. */
42 static void rl_callback_read_char_wrapper (gdb_client_data client_data);
43 static void command_line_handler (char *rl);
44 static void command_line_handler_continuation (struct continuation_arg *arg);
45 static void change_line_handler (void);
46 static void change_annotation_level (void);
47 static void command_handler (char *command);
48 static void async_do_nothing (gdb_client_data arg);
49 static void async_disconnect (gdb_client_data arg);
50 static void async_stop_sig (gdb_client_data arg);
51 static void async_float_handler (gdb_client_data arg);
53 /* Signal handlers. */
54 static void handle_sigquit (int sig);
55 static void handle_sighup (int sig);
56 static void handle_sigfpe (int sig);
57 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
58 static void handle_sigwinch (int sig);
61 /* Functions to be invoked by the event loop in response to
63 static void async_do_nothing (gdb_client_data);
64 static void async_disconnect (gdb_client_data);
65 static void async_float_handler (gdb_client_data);
66 static void async_stop_sig (gdb_client_data);
68 /* Readline offers an alternate interface, via callback
69 functions. These are all included in the file callback.c in the
70 readline distribution. This file provides (mainly) a function, which
71 the event loop uses as callback (i.e. event handler) whenever an event
72 is detected on the standard input file descriptor.
73 readline_callback_read_char is called (by the GDB event loop) whenever
74 there is a new character ready on the input stream. This function
75 incrementally builds a buffer internal to readline where it
76 accumulates the line read up to the point of invocation. In the
77 special case in which the character read is newline, the function
78 invokes a GDB supplied callback routine, which does the processing of
79 a full command line. This latter routine is the asynchronous analog
80 of the old command_line_input in gdb. Instead of invoking (and waiting
81 for) readline to read the command line and pass it back to
82 command_loop for processing, the new command_line_handler function has
83 the command line already available as its parameter. INPUT_HANDLER is
84 to be set to the function that readline will invoke when a complete
85 line of input is ready. CALL_READLINE is to be set to the function
86 that readline offers as callback to the event_loop. */
88 void (*input_handler) (char *);
89 void (*call_readline) (gdb_client_data);
91 /* Important variables for the event loop. */
93 /* This is used to determine if GDB is using the readline library or
94 its own simplified form of readline. It is used by the asynchronous
95 form of the set editing command.
96 ezannoni: as of 1999-04-29 I expect that this
97 variable will not be used after gdb is changed to use the event
98 loop as default engine, and event-top.c is merged into top.c. */
99 int async_command_editing_p;
101 /* This variable contains the new prompt that the user sets with the
102 set prompt command. */
103 char *new_async_prompt;
105 /* This is the annotation suffix that will be used when the
106 annotation_level is 2. */
107 char *async_annotation_suffix;
109 /* This is used to display the notification of the completion of an
110 asynchronous execution command. */
111 int exec_done_display_p = 0;
113 /* This is the file descriptor for the input stream that GDB uses to
114 read commands from. */
117 /* This is the prompt stack. Prompts will be pushed on the stack as
118 needed by the different 'kinds' of user inputs GDB is asking
119 for. See event-loop.h. */
120 struct prompts the_prompts;
122 /* signal handling variables */
123 /* Each of these is a pointer to a function that the event loop will
124 invoke if the corresponding signal has received. The real signal
125 handlers mark these functions as ready to be executed and the event
126 loop, in a later iteration, calls them. See the function
127 invoke_async_signal_handler. */
134 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
135 void *sigwinch_token;
141 /* Structure to save a partially entered command. This is used when
142 the user types '\' at the end of a command line. This is necessary
143 because each line of input is handled by a different call to
144 command_line_handler, and normally there is no state retained
145 between different calls. */
146 int more_to_come = 0;
148 struct readline_input_state
151 char *linebuffer_ptr;
153 readline_input_state;
155 /* This hook is called by rl_callback_read_char_wrapper after each
156 character is processed. */
157 void (*after_char_processing_hook) ();
160 /* Wrapper function for calling into the readline library. The event
161 loop expects the callback function to have a paramter, while readline
164 rl_callback_read_char_wrapper (gdb_client_data client_data)
166 rl_callback_read_char ();
167 if (after_char_processing_hook)
168 (*after_char_processing_hook) ();
171 /* Initialize all the necessary variables, start the event loop,
172 register readline, and stdin, start the loop. */
174 cli_command_loop (void)
178 char *gdb_prompt = get_prompt ();
180 /* If we are using readline, set things up and display the first
181 prompt, otherwise just print the prompt. */
182 if (async_command_editing_p)
184 /* Tell readline what the prompt to display is and what function it
185 will need to call after a whole line is read. This also displays
187 length = strlen (PREFIX (0)) + strlen (gdb_prompt) + strlen (SUFFIX (0)) + 1;
188 a_prompt = (char *) xmalloc (length);
189 strcpy (a_prompt, PREFIX (0));
190 strcat (a_prompt, gdb_prompt);
191 strcat (a_prompt, SUFFIX (0));
192 rl_callback_handler_install (a_prompt, input_handler);
195 display_gdb_prompt (0);
197 /* Now it's time to start the event loop. */
201 /* Change the function to be invoked every time there is a character
202 ready on stdin. This is used when the user sets the editing off,
203 therefore bypassing readline, and letting gdb handle the input
204 itself, via gdb_readline2. Also it is used in the opposite case in
205 which the user sets editing on again, by restoring readline
206 handling of the input. */
208 change_line_handler (void)
210 /* NOTE: this operates on input_fd, not instream. If we are reading
211 commands from a file, instream will point to the file. However in
212 async mode, we always read commands from a file with editing
213 off. This means that the 'set editing on/off' will have effect
214 only on the interactive session. */
216 if (async_command_editing_p)
218 /* Turn on editing by using readline. */
219 call_readline = rl_callback_read_char_wrapper;
220 input_handler = command_line_handler;
224 /* Turn off editing by using gdb_readline2. */
225 rl_callback_handler_remove ();
226 call_readline = gdb_readline2;
228 /* Set up the command handler as well, in case we are called as
229 first thing from .gdbinit. */
230 input_handler = command_line_handler;
234 /* Displays the prompt. The prompt that is displayed is the current
235 top of the prompt stack, if the argument NEW_PROMPT is
236 0. Otherwise, it displays whatever NEW_PROMPT is. This is used
237 after each gdb command has completed, and in the following cases:
238 1. when the user enters a command line which is ended by '\'
239 indicating that the command will continue on the next line.
240 In that case the prompt that is displayed is the empty string.
241 2. When the user is entering 'commands' for a breakpoint, or
242 actions for a tracepoint. In this case the prompt will be '>'
244 FIXME: 2. & 3. not implemented yet for async. */
246 display_gdb_prompt (char *new_prompt)
248 int prompt_length = 0;
249 char *gdb_prompt = get_prompt ();
251 /* Each interpreter has its own rules on displaying the command
253 if (!current_interp_display_prompt_p ())
256 if (target_executing && sync_execution)
258 /* This is to trick readline into not trying to display the
259 prompt. Even though we display the prompt using this
260 function, readline still tries to do its own display if we
261 don't call rl_callback_handler_install and
262 rl_callback_handler_remove (which readline detects because a
263 global variable is not set). If readline did that, it could
264 mess up gdb signal handlers for SIGINT. Readline assumes
265 that between calls to rl_set_signals and rl_clear_signals gdb
266 doesn't do anything with the signal handlers. Well, that's
267 not the case, because when the target executes we change the
268 SIGINT signal handler. If we allowed readline to display the
269 prompt, the signal handler change would happen exactly
270 between the calls to the above two functions.
271 Calling rl_callback_handler_remove(), does the job. */
273 rl_callback_handler_remove ();
279 /* Just use the top of the prompt stack. */
280 prompt_length = strlen (PREFIX (0)) +
281 strlen (SUFFIX (0)) +
282 strlen (gdb_prompt) + 1;
284 new_prompt = (char *) alloca (prompt_length);
286 /* Prefix needs to have new line at end. */
287 strcpy (new_prompt, PREFIX (0));
288 strcat (new_prompt, gdb_prompt);
289 /* Suffix needs to have a new line at end and \032 \032 at
291 strcat (new_prompt, SUFFIX (0));
294 if (async_command_editing_p)
296 rl_callback_handler_remove ();
297 rl_callback_handler_install (new_prompt, input_handler);
299 /* new_prompt at this point can be the top of the stack or the one passed in */
302 /* Don't use a _filtered function here. It causes the assumed
303 character position to be off, since the newline we read from
304 the user is not accounted for. */
305 fputs_unfiltered (new_prompt, gdb_stdout);
306 gdb_flush (gdb_stdout);
310 /* Used when the user requests a different annotation level, with
311 'set annotate'. It pushes a new prompt (with prefix and suffix) on top
312 of the prompt stack, if the annotation level desired is 2, otherwise
313 it pops the top of the prompt stack when we want the annotation level
314 to be the normal ones (1 or 0). */
316 change_annotation_level (void)
318 char *prefix, *suffix;
320 if (!PREFIX (0) || !PROMPT (0) || !SUFFIX (0))
322 /* The prompt stack has not been initialized to "", we are
323 using gdb w/o the --async switch */
324 warning ("Command has same effect as set annotate");
328 if (annotation_level > 1)
330 if (!strcmp (PREFIX (0), "") && !strcmp (SUFFIX (0), ""))
332 /* Push a new prompt if the previous annotation_level was not >1. */
333 prefix = (char *) alloca (strlen (async_annotation_suffix) + 10);
334 strcpy (prefix, "\n\032\032pre-");
335 strcat (prefix, async_annotation_suffix);
336 strcat (prefix, "\n");
338 suffix = (char *) alloca (strlen (async_annotation_suffix) + 6);
339 strcpy (suffix, "\n\032\032");
340 strcat (suffix, async_annotation_suffix);
341 strcat (suffix, "\n");
343 push_prompt (prefix, (char *) 0, suffix);
348 if (strcmp (PREFIX (0), "") && strcmp (SUFFIX (0), ""))
350 /* Pop the top of the stack, we are going back to annotation < 1. */
356 /* Pushes a new prompt on the prompt stack. Each prompt has three
357 parts: prefix, prompt, suffix. Usually prefix and suffix are empty
358 strings, except when the annotation level is 2. Memory is allocated
359 within savestring for the new prompt. */
361 push_prompt (char *prefix, char *prompt, char *suffix)
364 PREFIX (0) = savestring (prefix, strlen (prefix));
366 /* Note that this function is used by the set annotate 2
367 command. This is why we take care of saving the old prompt
368 in case a new one is not specified. */
370 PROMPT (0) = savestring (prompt, strlen (prompt));
372 PROMPT (0) = savestring (PROMPT (-1), strlen (PROMPT (-1)));
374 SUFFIX (0) = savestring (suffix, strlen (suffix));
377 /* Pops the top of the prompt stack, and frees the memory allocated for it. */
381 /* If we are not during a 'synchronous' execution command, in which
382 case, the top prompt would be empty. */
383 if (strcmp (PROMPT (0), ""))
384 /* This is for the case in which the prompt is set while the
385 annotation level is 2. The top prompt will be changed, but when
386 we return to annotation level < 2, we want that new prompt to be
387 in effect, until the user does another 'set prompt'. */
388 if (strcmp (PROMPT (0), PROMPT (-1)))
391 PROMPT (-1) = savestring (PROMPT (0), strlen (PROMPT (0)));
400 /* When there is an event ready on the stdin file desriptor, instead
401 of calling readline directly throught the callback function, or
402 instead of calling gdb_readline2, give gdb a chance to detect
403 errors and do something. */
405 stdin_event_handler (int error, gdb_client_data client_data)
409 printf_unfiltered ("error detected on stdin\n");
410 delete_file_handler (input_fd);
411 discard_all_continuations ();
412 /* If stdin died, we may as well kill gdb. */
413 quit_command ((char *) 0, stdin == instream);
416 (*call_readline) (client_data);
419 /* Re-enable stdin after the end of an execution command in
420 synchronous mode, or after an error from the target, and we aborted
421 the exec operation. */
424 async_enable_stdin (void *dummy)
426 /* See NOTE in async_disable_stdin() */
427 /* FIXME: cagney/1999-09-27: Call this before clearing
428 sync_execution. Current target_terminal_ours() implementations
429 check for sync_execution before switching the terminal. */
430 target_terminal_ours ();
435 /* Disable reads from stdin (the console) marking the command as
439 async_disable_stdin (void)
442 push_prompt ("", "", "");
443 /* FIXME: cagney/1999-09-27: At present this call is technically
444 redundant since infcmd.c and infrun.c both already call
445 target_terminal_inferior(). As the terminal handling (in
446 sync/async mode) is refined, the duplicate calls can be
447 eliminated (Here or in infcmd.c/infrun.c). */
448 target_terminal_inferior ();
449 /* Add the reinstate of stdin to the list of cleanups to be done
450 in case the target errors out and dies. These cleanups are also
451 done in case of normal successful termination of the execution
452 command, by complete_execution(). */
453 make_exec_error_cleanup (async_enable_stdin, NULL);
457 /* Handles a gdb command. This function is called by
458 command_line_handler, which has processed one or more input lines
460 /* NOTE: 1999-04-30 This is the asynchronous version of the command_loop
461 function. The command_loop function will be obsolete when we
462 switch to use the event loop at every execution of gdb. */
464 command_handler (char *command)
466 struct cleanup *old_chain;
467 int stdin_is_tty = ISATTY (stdin);
468 struct continuation_arg *arg1;
469 struct continuation_arg *arg2;
470 long time_at_cmd_start;
472 long space_at_cmd_start = 0;
474 extern int display_time;
475 extern int display_space;
478 if (instream == stdin && stdin_is_tty)
479 reinitialize_more_filter ();
480 old_chain = make_cleanup (null_cleanup, 0);
482 /* If readline returned a NULL command, it means that the
483 connection with the terminal is gone. This happens at the
484 end of a testsuite run, after Expect has hung up
485 but GDB is still alive. In such a case, we just quit gdb
486 killing the inferior program too. */
488 quit_command ((char *) 0, stdin == instream);
490 time_at_cmd_start = get_run_time ();
495 char *lim = (char *) sbrk (0);
496 space_at_cmd_start = lim - lim_at_start;
500 execute_command (command, instream == stdin);
502 /* Set things up for this function to be compete later, once the
503 execution has completed, if we are doing an execution command,
504 otherwise, just go ahead and finish. */
505 if (target_can_async_p () && target_executing)
508 (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
510 (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
513 arg1->data.longint = time_at_cmd_start;
515 arg2->data.longint = space_at_cmd_start;
517 add_continuation (command_line_handler_continuation, arg1);
520 /* Do any commands attached to breakpoint we stopped at. Only if we
521 are always running synchronously. Or if we have just executed a
522 command that doesn't start the target. */
523 if (!target_can_async_p () || !target_executing)
525 bpstat_do_actions (&stop_bpstat);
526 do_cleanups (old_chain);
530 long cmd_time = get_run_time () - time_at_cmd_start;
532 printf_unfiltered ("Command execution time: %ld.%06ld\n",
533 cmd_time / 1000000, cmd_time % 1000000);
539 char *lim = (char *) sbrk (0);
540 long space_now = lim - lim_at_start;
541 long space_diff = space_now - space_at_cmd_start;
543 printf_unfiltered ("Space used: %ld (%c%ld for this command)\n",
545 (space_diff >= 0 ? '+' : '-'),
552 /* Do any commands attached to breakpoint we stopped at. Only if we
553 are always running synchronously. Or if we have just executed a
554 command that doesn't start the target. */
556 command_line_handler_continuation (struct continuation_arg *arg)
558 extern int display_time;
559 extern int display_space;
561 long time_at_cmd_start = arg->data.longint;
562 long space_at_cmd_start = arg->next->data.longint;
564 bpstat_do_actions (&stop_bpstat);
565 /*do_cleanups (old_chain); *//*?????FIXME????? */
569 long cmd_time = get_run_time () - time_at_cmd_start;
571 printf_unfiltered ("Command execution time: %ld.%06ld\n",
572 cmd_time / 1000000, cmd_time % 1000000);
577 char *lim = (char *) sbrk (0);
578 long space_now = lim - lim_at_start;
579 long space_diff = space_now - space_at_cmd_start;
581 printf_unfiltered ("Space used: %ld (%c%ld for this command)\n",
583 (space_diff >= 0 ? '+' : '-'),
589 /* Handle a complete line of input. This is called by the callback
590 mechanism within the readline library. Deal with incomplete commands
591 as well, by saving the partial input in a global buffer. */
593 /* NOTE: 1999-04-30 This is the asynchronous version of the
594 command_line_input function. command_line_input will become
595 obsolete once we use the event loop as the default mechanism in
598 command_line_handler (char *rl)
600 static char *linebuffer = 0;
601 static unsigned linelength = 0;
610 int repeat = (instream == stdin);
612 if (annotation_level > 1 && instream == stdin)
614 printf_unfiltered ("\n\032\032post-");
615 puts_unfiltered (async_annotation_suffix);
616 printf_unfiltered ("\n");
622 linebuffer = (char *) xmalloc (linelength);
629 strcpy (linebuffer, readline_input_state.linebuffer);
630 p = readline_input_state.linebuffer_ptr;
631 xfree (readline_input_state.linebuffer);
638 signal (STOP_SIGNAL, handle_stop_sig);
641 /* Make sure that all output has been output. Some machines may let
642 you get away with leaving out some of the gdb_flush, but not all. */
644 gdb_flush (gdb_stdout);
645 gdb_flush (gdb_stderr);
647 if (source_file_name != NULL)
649 ++source_line_number;
650 sprintf (source_error,
651 "%s%s:%d: Error in sourced command file:\n",
655 error_pre_print = source_error;
658 /* If we are in this case, then command_handler will call quit
659 and exit from gdb. */
660 if (!rl || rl == (char *) EOF)
665 if (strlen (rl) + 1 + (p - linebuffer) > linelength)
667 linelength = strlen (rl) + 1 + (p - linebuffer);
668 nline = (char *) xrealloc (linebuffer, linelength);
669 p += nline - linebuffer;
673 /* Copy line. Don't copy null at end. (Leaves line alone
674 if this was just a newline) */
678 xfree (rl); /* Allocated in readline. */
680 if (p > linebuffer && *(p - 1) == '\\')
682 p--; /* Put on top of '\'. */
684 readline_input_state.linebuffer = savestring (linebuffer,
685 strlen (linebuffer));
686 readline_input_state.linebuffer_ptr = p;
688 /* We will not invoke a execute_command if there is more
689 input expected to complete the command. So, we need to
690 print an empty prompt here. */
692 push_prompt ("", "", "");
693 display_gdb_prompt (0);
699 signal (STOP_SIGNAL, SIG_DFL);
702 #define SERVER_COMMAND_LENGTH 7
704 (p - linebuffer > SERVER_COMMAND_LENGTH)
705 && strncmp (linebuffer, "server ", SERVER_COMMAND_LENGTH) == 0;
708 /* Note that we don't set `line'. Between this and the check in
709 dont_repeat, this insures that repeating will still do the
712 command_handler (linebuffer + SERVER_COMMAND_LENGTH);
713 display_gdb_prompt (0);
717 /* Do history expansion if that is wished. */
718 if (history_expansion_p && instream == stdin
719 && ISATTY (instream))
724 *p = '\0'; /* Insert null now. */
725 expanded = history_expand (linebuffer, &history_value);
728 /* Print the changes. */
729 printf_unfiltered ("%s\n", history_value);
731 /* If there was an error, call this function again. */
734 xfree (history_value);
737 if (strlen (history_value) > linelength)
739 linelength = strlen (history_value) + 1;
740 linebuffer = (char *) xrealloc (linebuffer, linelength);
742 strcpy (linebuffer, history_value);
743 p = linebuffer + strlen (linebuffer);
744 xfree (history_value);
748 /* If we just got an empty line, and that is supposed
749 to repeat the previous command, return the value in the
751 if (repeat && p == linebuffer && *p != '\\')
753 command_handler (line);
754 display_gdb_prompt (0);
758 for (p1 = linebuffer; *p1 == ' ' || *p1 == '\t'; p1++);
761 command_handler (line);
762 display_gdb_prompt (0);
768 /* Add line to history if appropriate. */
769 if (instream == stdin
770 && ISATTY (stdin) && *linebuffer)
771 add_history (linebuffer);
773 /* Note: lines consisting solely of comments are added to the command
774 history. This is useful when you type a command, and then
775 realize you don't want to execute it quite yet. You can comment
776 out the command and then later fetch it from the value history
777 and remove the '#'. The kill ring is probably better, but some
778 people are in the habit of commenting things out. */
780 *p1 = '\0'; /* Found a comment. */
782 /* Save into global buffer if appropriate. */
785 if (linelength > linesize)
787 line = xrealloc (line, linelength);
788 linesize = linelength;
790 strcpy (line, linebuffer);
793 command_handler (line);
794 display_gdb_prompt (0);
799 command_handler (linebuffer);
800 display_gdb_prompt (0);
804 /* Does reading of input from terminal w/o the editing features
805 provided by the readline library. */
807 /* NOTE: 1999-04-30 Asynchronous version of gdb_readline. gdb_readline
808 will become obsolete when the event loop is made the default
809 execution for gdb. */
811 gdb_readline2 (gdb_client_data client_data)
816 int result_size = 80;
817 static int done_once = 0;
819 /* Unbuffer the input stream, so that, later on, the calls to fgetc
820 fetch only one char at the time from the stream. The fgetc's will
821 get up to the first newline, but there may be more chars in the
822 stream after '\n'. If we buffer the input and fgetc drains the
823 stream, getting stuff beyond the newline as well, a select, done
824 afterwards will not trigger. */
825 if (!done_once && !ISATTY (instream))
827 setbuf (instream, NULL);
831 result = (char *) xmalloc (result_size);
833 /* We still need the while loop here, even though it would seem
834 obvious to invoke gdb_readline2 at every character entered. If
835 not using the readline library, the terminal is in cooked mode,
836 which sends the characters all at once. Poll will notice that the
837 input fd has changed state only after enter is pressed. At this
838 point we still need to fetch all the chars entered. */
842 /* Read from stdin if we are executing a user defined command.
843 This is the right thing for prompt_for_continue, at least. */
844 c = fgetc (instream ? instream : stdin);
849 /* The last line does not end with a newline. Return it, and
850 if we are called again fgetc will still return EOF and
851 we'll return NULL then. */
854 (*input_handler) (0);
858 #ifndef CRLF_SOURCE_FILES
862 if (input_index > 0 && result[input_index - 1] == '\r')
868 result[input_index++] = c;
869 while (input_index >= result_size)
872 result = (char *) xrealloc (result, result_size);
876 result[input_index++] = '\0';
877 (*input_handler) (result);
881 /* Initialization of signal handlers and tokens. There is a function
882 handle_sig* for each of the signals GDB cares about. Specifically:
883 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
884 functions are the actual signal handlers associated to the signals
885 via calls to signal(). The only job for these functions is to
886 enqueue the appropriate event/procedure with the event loop. Such
887 procedures are the old signal handlers. The event loop will take
888 care of invoking the queued procedures to perform the usual tasks
889 associated with the reception of the signal. */
890 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
891 init_signals will become obsolete as we move to have to event loop
892 as the default for gdb. */
894 async_init_signals (void)
896 signal (SIGINT, handle_sigint);
898 create_async_signal_handler (async_request_quit, NULL);
900 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
901 to the inferior and breakpoints will be ignored. */
903 signal (SIGTRAP, SIG_DFL);
906 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
907 passed to the inferior, which we don't want. It would be
908 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
909 on BSD4.3 systems using vfork, that can affect the
910 GDB process as well as the inferior (the signal handling tables
911 might be in memory, shared between the two). Since we establish
912 a handler for SIGQUIT, when we call exec it will set the signal
913 to SIG_DFL for us. */
914 signal (SIGQUIT, handle_sigquit);
916 create_async_signal_handler (async_do_nothing, NULL);
918 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
920 create_async_signal_handler (async_disconnect, NULL);
923 create_async_signal_handler (async_do_nothing, NULL);
925 signal (SIGFPE, handle_sigfpe);
927 create_async_signal_handler (async_float_handler, NULL);
929 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
930 signal (SIGWINCH, handle_sigwinch);
932 create_async_signal_handler (SIGWINCH_HANDLER, NULL);
936 create_async_signal_handler (async_stop_sig, NULL);
942 mark_async_signal_handler_wrapper (void *token)
944 mark_async_signal_handler ((struct async_signal_handler *) token);
947 /* Tell the event loop what to do if SIGINT is received.
948 See event-signal.c. */
950 handle_sigint (int sig)
952 signal (sig, handle_sigint);
954 /* If immediate_quit is set, we go ahead and process the SIGINT right
955 away, even if we usually would defer this to the event loop. The
956 assumption here is that it is safe to process ^C immediately if
957 immediate_quit is set. If we didn't, SIGINT would be really
958 processed only the next time through the event loop. To get to
959 that point, though, the command that we want to interrupt needs to
960 finish first, which is unacceptable. */
962 async_request_quit (0);
964 /* If immediate quit is not set, we process SIGINT the next time
965 through the loop, which is fine. */
966 mark_async_signal_handler_wrapper (sigint_token);
969 /* Do the quit. All the checks have been done by the caller. */
971 async_request_quit (gdb_client_data arg)
977 /* Tell the event loop what to do if SIGQUIT is received.
978 See event-signal.c. */
980 handle_sigquit (int sig)
982 mark_async_signal_handler_wrapper (sigquit_token);
983 signal (sig, handle_sigquit);
986 /* Called by the event loop in response to a SIGQUIT. */
988 async_do_nothing (gdb_client_data arg)
990 /* Empty function body. */
994 /* Tell the event loop what to do if SIGHUP is received.
995 See event-signal.c. */
997 handle_sighup (int sig)
999 mark_async_signal_handler_wrapper (sighup_token);
1000 signal (sig, handle_sighup);
1003 /* Called by the event loop to process a SIGHUP */
1005 async_disconnect (gdb_client_data arg)
1007 catch_errors (quit_cover, NULL,
1008 "Could not kill the program being debugged",
1010 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1011 kill (getpid (), SIGHUP);
1017 handle_stop_sig (int sig)
1019 mark_async_signal_handler_wrapper (sigtstp_token);
1020 signal (sig, handle_stop_sig);
1024 async_stop_sig (gdb_client_data arg)
1026 char *prompt = get_prompt ();
1027 #if STOP_SIGNAL == SIGTSTP
1028 signal (SIGTSTP, SIG_DFL);
1029 #if HAVE_SIGPROCMASK
1033 sigemptyset (&zero);
1034 sigprocmask (SIG_SETMASK, &zero, 0);
1036 #elif HAVE_SIGSETMASK
1039 kill (getpid (), SIGTSTP);
1040 signal (SIGTSTP, handle_stop_sig);
1042 signal (STOP_SIGNAL, handle_stop_sig);
1044 printf_unfiltered ("%s", prompt);
1045 gdb_flush (gdb_stdout);
1047 /* Forget about any previous command -- null line now will do nothing. */
1050 #endif /* STOP_SIGNAL */
1052 /* Tell the event loop what to do if SIGFPE is received.
1053 See event-signal.c. */
1055 handle_sigfpe (int sig)
1057 mark_async_signal_handler_wrapper (sigfpe_token);
1058 signal (sig, handle_sigfpe);
1061 /* Event loop will call this functin to process a SIGFPE. */
1063 async_float_handler (gdb_client_data arg)
1065 /* This message is based on ANSI C, section 4.7. Note that integer
1066 divide by zero causes this, so "float" is a misnomer. */
1067 error ("Erroneous arithmetic operation.");
1070 /* Tell the event loop what to do if SIGWINCH is received.
1071 See event-signal.c. */
1072 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1074 handle_sigwinch (int sig)
1076 mark_async_signal_handler_wrapper (sigwinch_token);
1077 signal (sig, handle_sigwinch);
1082 /* Called by do_setshow_command. */
1084 set_async_editing_command (char *args, int from_tty, struct cmd_list_element *c)
1086 change_line_handler ();
1089 /* Called by do_setshow_command. */
1091 set_async_annotation_level (char *args, int from_tty, struct cmd_list_element *c)
1093 change_annotation_level ();
1096 /* Called by do_setshow_command. */
1098 set_async_prompt (char *args, int from_tty, struct cmd_list_element *c)
1100 PROMPT (0) = savestring (new_async_prompt, strlen (new_async_prompt));
1103 /* Set things up for readline to be invoked via the alternate
1104 interface, i.e. via a callback function (rl_callback_read_char),
1105 and hook up instream to the event loop. */
1107 gdb_setup_readline (void)
1109 /* This function is a noop for the sync case. The assumption is that
1110 the sync setup is ALL done in gdb_init, and we would only mess it up
1111 here. The sync stuff should really go away over time. */
1115 gdb_stdout = stdio_fileopen (stdout);
1116 gdb_stderr = stdio_fileopen (stderr);
1117 gdb_stdlog = gdb_stderr; /* for moment */
1118 gdb_stdtarg = gdb_stderr; /* for moment */
1120 /* If the input stream is connected to a terminal, turn on
1122 if (ISATTY (instream))
1124 /* Tell gdb that we will be using the readline library. This
1125 could be overwritten by a command in .gdbinit like 'set
1126 editing on' or 'off'. */
1127 async_command_editing_p = 1;
1129 /* When a character is detected on instream by select or
1130 poll, readline will be invoked via this callback
1132 call_readline = rl_callback_read_char_wrapper;
1136 async_command_editing_p = 0;
1137 call_readline = gdb_readline2;
1140 /* When readline has read an end-of-line character, it passes
1141 the complete line to gdb for processing. command_line_handler
1142 is the function that does this. */
1143 input_handler = command_line_handler;
1145 /* Tell readline to use the same input stream that gdb uses. */
1146 rl_instream = instream;
1148 /* Get a file descriptor for the input stream, so that we can
1149 register it with the event loop. */
1150 input_fd = fileno (instream);
1152 /* Now we need to create the event sources for the input file
1154 /* At this point in time, this is the only event source that we
1155 register with the even loop. Another source is going to be
1156 the target program (inferior), but that must be registered
1157 only when it actually exists (I.e. after we say 'run' or
1158 after we connect to a remote target. */
1159 add_file_handler (input_fd, stdin_event_handler, 0);
1163 /* Disable command input through the standard CLI channels. Used in
1164 the suspend proc for interpreters that use the standard gdb readline
1165 interface, like the cli & the mi. */
1167 gdb_disable_readline (void)
1171 /* FIXME - It is too heavyweight to delete and remake these
1172 every time you run an interpreter that needs readline.
1173 It is probably better to have the interpreters cache these,
1174 which in turn means that this needs to be moved into interpreter
1178 ui_file_delete (gdb_stdout);
1179 ui_file_delete (gdb_stderr);
1184 rl_callback_handler_remove ();
1185 delete_file_handler (input_fd);