1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_type_match (struct type *, struct type *, int);
102 static int ada_args_match (struct symbol *, struct value **, int);
104 static int full_match (const char *, const char *);
106 static struct value *make_array_descriptor (struct type *, struct value *);
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
112 static int is_nonfunction (struct ada_symbol_info *, int);
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 static int num_defns_collected (struct obstack *);
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
121 static struct value *resolve_subexp (struct expression **, int *, int,
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, struct block *);
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
129 static char *ada_op_name (enum exp_opcode);
131 static const char *ada_decoded_op_name (enum exp_opcode);
133 static int numeric_type_p (struct type *);
135 static int integer_type_p (struct type *);
137 static int scalar_type_p (struct type *);
139 static int discrete_type_p (struct type *);
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
146 static struct symbol *find_old_style_renaming_symbol (const char *,
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
152 static struct value *evaluate_subexp_type (struct expression *, int *);
154 static struct type *ada_find_parallel_type_with_name (struct type *,
157 static int is_dynamic_field (struct type *, int);
159 static struct type *to_fixed_variant_branch_type (struct type *,
161 CORE_ADDR, struct value *);
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165 static struct type *to_fixed_range_type (struct type *, struct value *);
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
170 static struct value *unwrap_value (struct value *);
172 static struct type *constrained_packed_array_type (struct type *, long *);
174 static struct type *decode_constrained_packed_array_type (struct type *);
176 static long decode_packed_array_bitsize (struct type *);
178 static struct value *decode_constrained_packed_array (struct value *);
180 static int ada_is_packed_array_type (struct type *);
182 static int ada_is_unconstrained_packed_array_type (struct type *);
184 static struct value *value_subscript_packed (struct value *, int,
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
189 static struct value *coerce_unspec_val_to_type (struct value *,
192 static struct value *get_var_value (char *, char *);
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
196 static int equiv_types (struct type *, struct type *);
198 static int is_name_suffix (const char *);
200 static int advance_wild_match (const char **, const char *, int);
202 static int wild_match (const char *, const char *);
204 static struct value *ada_coerce_ref (struct value *);
206 static LONGEST pos_atr (struct value *);
208 static struct value *value_pos_atr (struct type *, struct value *);
210 static struct value *value_val_atr (struct type *, struct value *);
212 static struct symbol *standard_lookup (const char *, const struct block *,
215 static struct value *ada_search_struct_field (char *, struct value *, int,
218 static struct value *ada_value_primitive_field (struct value *, int, int,
221 static int find_struct_field (char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
231 static int ada_is_direct_array_type (struct type *);
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
236 static void check_size (const struct type *);
238 static struct value *ada_index_struct_field (int, struct value *, int,
241 static struct value *assign_aggregate (struct value *, struct value *,
245 static void aggregate_assign_from_choices (struct value *, struct value *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
250 static void aggregate_assign_positional (struct value *, struct value *,
252 int *, LONGEST *, int *, int,
256 static void aggregate_assign_others (struct value *, struct value *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
261 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 static void ada_forward_operator_length (struct expression *, int, int *,
272 /* Maximum-sized dynamic type. */
273 static unsigned int varsize_limit;
275 /* FIXME: brobecker/2003-09-17: No longer a const because it is
276 returned by a function that does not return a const char *. */
277 static char *ada_completer_word_break_characters =
279 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284 /* The name of the symbol to use to get the name of the main subprogram. */
285 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
286 = "__gnat_ada_main_program_name";
288 /* Limit on the number of warnings to raise per expression evaluation. */
289 static int warning_limit = 2;
291 /* Number of warning messages issued; reset to 0 by cleanups after
292 expression evaluation. */
293 static int warnings_issued = 0;
295 static const char *known_runtime_file_name_patterns[] = {
296 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
299 static const char *known_auxiliary_function_name_patterns[] = {
300 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
303 /* Space for allocating results of ada_lookup_symbol_list. */
304 static struct obstack symbol_list_obstack;
306 /* Inferior-specific data. */
308 /* Per-inferior data for this module. */
310 struct ada_inferior_data
312 /* The ada__tags__type_specific_data type, which is used when decoding
313 tagged types. With older versions of GNAT, this type was directly
314 accessible through a component ("tsd") in the object tag. But this
315 is no longer the case, so we cache it for each inferior. */
316 struct type *tsd_type;
319 /* Our key to this module's inferior data. */
320 static const struct inferior_data *ada_inferior_data;
322 /* A cleanup routine for our inferior data. */
324 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326 struct ada_inferior_data *data;
328 data = inferior_data (inf, ada_inferior_data);
333 /* Return our inferior data for the given inferior (INF).
335 This function always returns a valid pointer to an allocated
336 ada_inferior_data structure. If INF's inferior data has not
337 been previously set, this functions creates a new one with all
338 fields set to zero, sets INF's inferior to it, and then returns
339 a pointer to that newly allocated ada_inferior_data. */
341 static struct ada_inferior_data *
342 get_ada_inferior_data (struct inferior *inf)
344 struct ada_inferior_data *data;
346 data = inferior_data (inf, ada_inferior_data);
349 data = XZALLOC (struct ada_inferior_data);
350 set_inferior_data (inf, ada_inferior_data, data);
356 /* Perform all necessary cleanups regarding our module's inferior data
357 that is required after the inferior INF just exited. */
360 ada_inferior_exit (struct inferior *inf)
362 ada_inferior_data_cleanup (inf, NULL);
363 set_inferior_data (inf, ada_inferior_data, NULL);
368 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
369 all typedef layers have been peeled. Otherwise, return TYPE.
371 Normally, we really expect a typedef type to only have 1 typedef layer.
372 In other words, we really expect the target type of a typedef type to be
373 a non-typedef type. This is particularly true for Ada units, because
374 the language does not have a typedef vs not-typedef distinction.
375 In that respect, the Ada compiler has been trying to eliminate as many
376 typedef definitions in the debugging information, since they generally
377 do not bring any extra information (we still use typedef under certain
378 circumstances related mostly to the GNAT encoding).
380 Unfortunately, we have seen situations where the debugging information
381 generated by the compiler leads to such multiple typedef layers. For
382 instance, consider the following example with stabs:
384 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
385 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387 This is an error in the debugging information which causes type
388 pck__float_array___XUP to be defined twice, and the second time,
389 it is defined as a typedef of a typedef.
391 This is on the fringe of legality as far as debugging information is
392 concerned, and certainly unexpected. But it is easy to handle these
393 situations correctly, so we can afford to be lenient in this case. */
396 ada_typedef_target_type (struct type *type)
398 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
399 type = TYPE_TARGET_TYPE (type);
403 /* Given DECODED_NAME a string holding a symbol name in its
404 decoded form (ie using the Ada dotted notation), returns
405 its unqualified name. */
408 ada_unqualified_name (const char *decoded_name)
410 const char *result = strrchr (decoded_name, '.');
413 result++; /* Skip the dot... */
415 result = decoded_name;
420 /* Return a string starting with '<', followed by STR, and '>'.
421 The result is good until the next call. */
424 add_angle_brackets (const char *str)
426 static char *result = NULL;
429 result = xstrprintf ("<%s>", str);
434 ada_get_gdb_completer_word_break_characters (void)
436 return ada_completer_word_break_characters;
439 /* Print an array element index using the Ada syntax. */
442 ada_print_array_index (struct value *index_value, struct ui_file *stream,
443 const struct value_print_options *options)
445 LA_VALUE_PRINT (index_value, stream, options);
446 fprintf_filtered (stream, " => ");
449 /* Assuming VECT points to an array of *SIZE objects of size
450 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
451 updating *SIZE as necessary and returning the (new) array. */
454 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
456 if (*size < min_size)
459 if (*size < min_size)
461 vect = xrealloc (vect, *size * element_size);
466 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
467 suffix of FIELD_NAME beginning "___". */
470 field_name_match (const char *field_name, const char *target)
472 int len = strlen (target);
475 (strncmp (field_name, target, len) == 0
476 && (field_name[len] == '\0'
477 || (strncmp (field_name + len, "___", 3) == 0
478 && strcmp (field_name + strlen (field_name) - 6,
483 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
484 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
485 and return its index. This function also handles fields whose name
486 have ___ suffixes because the compiler sometimes alters their name
487 by adding such a suffix to represent fields with certain constraints.
488 If the field could not be found, return a negative number if
489 MAYBE_MISSING is set. Otherwise raise an error. */
492 ada_get_field_index (const struct type *type, const char *field_name,
496 struct type *struct_type = check_typedef ((struct type *) type);
498 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
499 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
503 error (_("Unable to find field %s in struct %s. Aborting"),
504 field_name, TYPE_NAME (struct_type));
509 /* The length of the prefix of NAME prior to any "___" suffix. */
512 ada_name_prefix_len (const char *name)
518 const char *p = strstr (name, "___");
521 return strlen (name);
527 /* Return non-zero if SUFFIX is a suffix of STR.
528 Return zero if STR is null. */
531 is_suffix (const char *str, const char *suffix)
538 len2 = strlen (suffix);
539 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
542 /* The contents of value VAL, treated as a value of type TYPE. The
543 result is an lval in memory if VAL is. */
545 static struct value *
546 coerce_unspec_val_to_type (struct value *val, struct type *type)
548 type = ada_check_typedef (type);
549 if (value_type (val) == type)
553 struct value *result;
555 /* Make sure that the object size is not unreasonable before
556 trying to allocate some memory for it. */
560 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
561 result = allocate_value_lazy (type);
564 result = allocate_value (type);
565 memcpy (value_contents_raw (result), value_contents (val),
568 set_value_component_location (result, val);
569 set_value_bitsize (result, value_bitsize (val));
570 set_value_bitpos (result, value_bitpos (val));
571 set_value_address (result, value_address (val));
576 static const gdb_byte *
577 cond_offset_host (const gdb_byte *valaddr, long offset)
582 return valaddr + offset;
586 cond_offset_target (CORE_ADDR address, long offset)
591 return address + offset;
594 /* Issue a warning (as for the definition of warning in utils.c, but
595 with exactly one argument rather than ...), unless the limit on the
596 number of warnings has passed during the evaluation of the current
599 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
600 provided by "complaint". */
601 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
604 lim_warning (const char *format, ...)
608 va_start (args, format);
609 warnings_issued += 1;
610 if (warnings_issued <= warning_limit)
611 vwarning (format, args);
616 /* Issue an error if the size of an object of type T is unreasonable,
617 i.e. if it would be a bad idea to allocate a value of this type in
621 check_size (const struct type *type)
623 if (TYPE_LENGTH (type) > varsize_limit)
624 error (_("object size is larger than varsize-limit"));
627 /* Maximum value of a SIZE-byte signed integer type. */
629 max_of_size (int size)
631 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
633 return top_bit | (top_bit - 1);
636 /* Minimum value of a SIZE-byte signed integer type. */
638 min_of_size (int size)
640 return -max_of_size (size) - 1;
643 /* Maximum value of a SIZE-byte unsigned integer type. */
645 umax_of_size (int size)
647 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
649 return top_bit | (top_bit - 1);
652 /* Maximum value of integral type T, as a signed quantity. */
654 max_of_type (struct type *t)
656 if (TYPE_UNSIGNED (t))
657 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
659 return max_of_size (TYPE_LENGTH (t));
662 /* Minimum value of integral type T, as a signed quantity. */
664 min_of_type (struct type *t)
666 if (TYPE_UNSIGNED (t))
669 return min_of_size (TYPE_LENGTH (t));
672 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
674 ada_discrete_type_high_bound (struct type *type)
676 switch (TYPE_CODE (type))
678 case TYPE_CODE_RANGE:
679 return TYPE_HIGH_BOUND (type);
681 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
686 return max_of_type (type);
688 error (_("Unexpected type in ada_discrete_type_high_bound."));
692 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
694 ada_discrete_type_low_bound (struct type *type)
696 switch (TYPE_CODE (type))
698 case TYPE_CODE_RANGE:
699 return TYPE_LOW_BOUND (type);
701 return TYPE_FIELD_BITPOS (type, 0);
706 return min_of_type (type);
708 error (_("Unexpected type in ada_discrete_type_low_bound."));
712 /* The identity on non-range types. For range types, the underlying
713 non-range scalar type. */
716 base_type (struct type *type)
718 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
720 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
722 type = TYPE_TARGET_TYPE (type);
728 /* Language Selection */
730 /* If the main program is in Ada, return language_ada, otherwise return LANG
731 (the main program is in Ada iif the adainit symbol is found). */
734 ada_update_initial_language (enum language lang)
736 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
737 (struct objfile *) NULL) != NULL)
743 /* If the main procedure is written in Ada, then return its name.
744 The result is good until the next call. Return NULL if the main
745 procedure doesn't appear to be in Ada. */
750 struct minimal_symbol *msym;
751 static char *main_program_name = NULL;
753 /* For Ada, the name of the main procedure is stored in a specific
754 string constant, generated by the binder. Look for that symbol,
755 extract its address, and then read that string. If we didn't find
756 that string, then most probably the main procedure is not written
758 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
762 CORE_ADDR main_program_name_addr;
765 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
766 if (main_program_name_addr == 0)
767 error (_("Invalid address for Ada main program name."));
769 xfree (main_program_name);
770 target_read_string (main_program_name_addr, &main_program_name,
775 return main_program_name;
778 /* The main procedure doesn't seem to be in Ada. */
784 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
787 const struct ada_opname_map ada_opname_table[] = {
788 {"Oadd", "\"+\"", BINOP_ADD},
789 {"Osubtract", "\"-\"", BINOP_SUB},
790 {"Omultiply", "\"*\"", BINOP_MUL},
791 {"Odivide", "\"/\"", BINOP_DIV},
792 {"Omod", "\"mod\"", BINOP_MOD},
793 {"Orem", "\"rem\"", BINOP_REM},
794 {"Oexpon", "\"**\"", BINOP_EXP},
795 {"Olt", "\"<\"", BINOP_LESS},
796 {"Ole", "\"<=\"", BINOP_LEQ},
797 {"Ogt", "\">\"", BINOP_GTR},
798 {"Oge", "\">=\"", BINOP_GEQ},
799 {"Oeq", "\"=\"", BINOP_EQUAL},
800 {"One", "\"/=\"", BINOP_NOTEQUAL},
801 {"Oand", "\"and\"", BINOP_BITWISE_AND},
802 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
803 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
804 {"Oconcat", "\"&\"", BINOP_CONCAT},
805 {"Oabs", "\"abs\"", UNOP_ABS},
806 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
807 {"Oadd", "\"+\"", UNOP_PLUS},
808 {"Osubtract", "\"-\"", UNOP_NEG},
812 /* The "encoded" form of DECODED, according to GNAT conventions.
813 The result is valid until the next call to ada_encode. */
816 ada_encode (const char *decoded)
818 static char *encoding_buffer = NULL;
819 static size_t encoding_buffer_size = 0;
826 GROW_VECT (encoding_buffer, encoding_buffer_size,
827 2 * strlen (decoded) + 10);
830 for (p = decoded; *p != '\0'; p += 1)
834 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
839 const struct ada_opname_map *mapping;
841 for (mapping = ada_opname_table;
842 mapping->encoded != NULL
843 && strncmp (mapping->decoded, p,
844 strlen (mapping->decoded)) != 0; mapping += 1)
846 if (mapping->encoded == NULL)
847 error (_("invalid Ada operator name: %s"), p);
848 strcpy (encoding_buffer + k, mapping->encoded);
849 k += strlen (mapping->encoded);
854 encoding_buffer[k] = *p;
859 encoding_buffer[k] = '\0';
860 return encoding_buffer;
863 /* Return NAME folded to lower case, or, if surrounded by single
864 quotes, unfolded, but with the quotes stripped away. Result good
868 ada_fold_name (const char *name)
870 static char *fold_buffer = NULL;
871 static size_t fold_buffer_size = 0;
873 int len = strlen (name);
874 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
878 strncpy (fold_buffer, name + 1, len - 2);
879 fold_buffer[len - 2] = '\000';
885 for (i = 0; i <= len; i += 1)
886 fold_buffer[i] = tolower (name[i]);
892 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
895 is_lower_alphanum (const char c)
897 return (isdigit (c) || (isalpha (c) && islower (c)));
900 /* Remove either of these suffixes:
905 These are suffixes introduced by the compiler for entities such as
906 nested subprogram for instance, in order to avoid name clashes.
907 They do not serve any purpose for the debugger. */
910 ada_remove_trailing_digits (const char *encoded, int *len)
912 if (*len > 1 && isdigit (encoded[*len - 1]))
916 while (i > 0 && isdigit (encoded[i]))
918 if (i >= 0 && encoded[i] == '.')
920 else if (i >= 0 && encoded[i] == '$')
922 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
924 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
929 /* Remove the suffix introduced by the compiler for protected object
933 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
935 /* Remove trailing N. */
937 /* Protected entry subprograms are broken into two
938 separate subprograms: The first one is unprotected, and has
939 a 'N' suffix; the second is the protected version, and has
940 the 'P' suffix. The second calls the first one after handling
941 the protection. Since the P subprograms are internally generated,
942 we leave these names undecoded, giving the user a clue that this
943 entity is internal. */
946 && encoded[*len - 1] == 'N'
947 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
951 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
954 ada_remove_Xbn_suffix (const char *encoded, int *len)
958 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
961 if (encoded[i] != 'X')
967 if (isalnum (encoded[i-1]))
971 /* If ENCODED follows the GNAT entity encoding conventions, then return
972 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
975 The resulting string is valid until the next call of ada_decode.
976 If the string is unchanged by decoding, the original string pointer
980 ada_decode (const char *encoded)
987 static char *decoding_buffer = NULL;
988 static size_t decoding_buffer_size = 0;
990 /* The name of the Ada main procedure starts with "_ada_".
991 This prefix is not part of the decoded name, so skip this part
992 if we see this prefix. */
993 if (strncmp (encoded, "_ada_", 5) == 0)
996 /* If the name starts with '_', then it is not a properly encoded
997 name, so do not attempt to decode it. Similarly, if the name
998 starts with '<', the name should not be decoded. */
999 if (encoded[0] == '_' || encoded[0] == '<')
1002 len0 = strlen (encoded);
1004 ada_remove_trailing_digits (encoded, &len0);
1005 ada_remove_po_subprogram_suffix (encoded, &len0);
1007 /* Remove the ___X.* suffix if present. Do not forget to verify that
1008 the suffix is located before the current "end" of ENCODED. We want
1009 to avoid re-matching parts of ENCODED that have previously been
1010 marked as discarded (by decrementing LEN0). */
1011 p = strstr (encoded, "___");
1012 if (p != NULL && p - encoded < len0 - 3)
1020 /* Remove any trailing TKB suffix. It tells us that this symbol
1021 is for the body of a task, but that information does not actually
1022 appear in the decoded name. */
1024 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1027 /* Remove any trailing TB suffix. The TB suffix is slightly different
1028 from the TKB suffix because it is used for non-anonymous task
1031 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1034 /* Remove trailing "B" suffixes. */
1035 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1037 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1040 /* Make decoded big enough for possible expansion by operator name. */
1042 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1043 decoded = decoding_buffer;
1045 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1047 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1050 while ((i >= 0 && isdigit (encoded[i]))
1051 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1053 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1055 else if (encoded[i] == '$')
1059 /* The first few characters that are not alphabetic are not part
1060 of any encoding we use, so we can copy them over verbatim. */
1062 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1063 decoded[j] = encoded[i];
1068 /* Is this a symbol function? */
1069 if (at_start_name && encoded[i] == 'O')
1073 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1075 int op_len = strlen (ada_opname_table[k].encoded);
1076 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1078 && !isalnum (encoded[i + op_len]))
1080 strcpy (decoded + j, ada_opname_table[k].decoded);
1083 j += strlen (ada_opname_table[k].decoded);
1087 if (ada_opname_table[k].encoded != NULL)
1092 /* Replace "TK__" with "__", which will eventually be translated
1093 into "." (just below). */
1095 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1098 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1099 be translated into "." (just below). These are internal names
1100 generated for anonymous blocks inside which our symbol is nested. */
1102 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1103 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1104 && isdigit (encoded [i+4]))
1108 while (k < len0 && isdigit (encoded[k]))
1109 k++; /* Skip any extra digit. */
1111 /* Double-check that the "__B_{DIGITS}+" sequence we found
1112 is indeed followed by "__". */
1113 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1117 /* Remove _E{DIGITS}+[sb] */
1119 /* Just as for protected object subprograms, there are 2 categories
1120 of subprograms created by the compiler for each entry. The first
1121 one implements the actual entry code, and has a suffix following
1122 the convention above; the second one implements the barrier and
1123 uses the same convention as above, except that the 'E' is replaced
1126 Just as above, we do not decode the name of barrier functions
1127 to give the user a clue that the code he is debugging has been
1128 internally generated. */
1130 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1131 && isdigit (encoded[i+2]))
1135 while (k < len0 && isdigit (encoded[k]))
1139 && (encoded[k] == 'b' || encoded[k] == 's'))
1142 /* Just as an extra precaution, make sure that if this
1143 suffix is followed by anything else, it is a '_'.
1144 Otherwise, we matched this sequence by accident. */
1146 || (k < len0 && encoded[k] == '_'))
1151 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1152 the GNAT front-end in protected object subprograms. */
1155 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1157 /* Backtrack a bit up until we reach either the begining of
1158 the encoded name, or "__". Make sure that we only find
1159 digits or lowercase characters. */
1160 const char *ptr = encoded + i - 1;
1162 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1165 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1169 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1171 /* This is a X[bn]* sequence not separated from the previous
1172 part of the name with a non-alpha-numeric character (in other
1173 words, immediately following an alpha-numeric character), then
1174 verify that it is placed at the end of the encoded name. If
1175 not, then the encoding is not valid and we should abort the
1176 decoding. Otherwise, just skip it, it is used in body-nested
1180 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1184 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1186 /* Replace '__' by '.'. */
1194 /* It's a character part of the decoded name, so just copy it
1196 decoded[j] = encoded[i];
1201 decoded[j] = '\000';
1203 /* Decoded names should never contain any uppercase character.
1204 Double-check this, and abort the decoding if we find one. */
1206 for (i = 0; decoded[i] != '\0'; i += 1)
1207 if (isupper (decoded[i]) || decoded[i] == ' ')
1210 if (strcmp (decoded, encoded) == 0)
1216 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1217 decoded = decoding_buffer;
1218 if (encoded[0] == '<')
1219 strcpy (decoded, encoded);
1221 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1226 /* Table for keeping permanent unique copies of decoded names. Once
1227 allocated, names in this table are never released. While this is a
1228 storage leak, it should not be significant unless there are massive
1229 changes in the set of decoded names in successive versions of a
1230 symbol table loaded during a single session. */
1231 static struct htab *decoded_names_store;
1233 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1234 in the language-specific part of GSYMBOL, if it has not been
1235 previously computed. Tries to save the decoded name in the same
1236 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1237 in any case, the decoded symbol has a lifetime at least that of
1239 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1240 const, but nevertheless modified to a semantically equivalent form
1241 when a decoded name is cached in it. */
1244 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1247 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1249 if (*resultp == NULL)
1251 const char *decoded = ada_decode (gsymbol->name);
1253 if (gsymbol->obj_section != NULL)
1255 struct objfile *objf = gsymbol->obj_section->objfile;
1257 *resultp = obsavestring (decoded, strlen (decoded),
1258 &objf->objfile_obstack);
1260 /* Sometimes, we can't find a corresponding objfile, in which
1261 case, we put the result on the heap. Since we only decode
1262 when needed, we hope this usually does not cause a
1263 significant memory leak (FIXME). */
1264 if (*resultp == NULL)
1266 char **slot = (char **) htab_find_slot (decoded_names_store,
1270 *slot = xstrdup (decoded);
1279 ada_la_decode (const char *encoded, int options)
1281 return xstrdup (ada_decode (encoded));
1284 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1285 suffixes that encode debugging information or leading _ada_ on
1286 SYM_NAME (see is_name_suffix commentary for the debugging
1287 information that is ignored). If WILD, then NAME need only match a
1288 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1289 either argument is NULL. */
1292 match_name (const char *sym_name, const char *name, int wild)
1294 if (sym_name == NULL || name == NULL)
1297 return wild_match (sym_name, name) == 0;
1300 int len_name = strlen (name);
1302 return (strncmp (sym_name, name, len_name) == 0
1303 && is_name_suffix (sym_name + len_name))
1304 || (strncmp (sym_name, "_ada_", 5) == 0
1305 && strncmp (sym_name + 5, name, len_name) == 0
1306 && is_name_suffix (sym_name + len_name + 5));
1313 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1320 The GNAT encoding used to describle the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1337 ada_fixup_array_indexes_type (struct type *index_desc_type)
1341 if (index_desc_type == NULL)
1343 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1353 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1354 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1360 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1364 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1368 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1370 static char *bound_name[] = {
1371 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1372 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1375 /* Maximum number of array dimensions we are prepared to handle. */
1377 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1380 /* The desc_* routines return primitive portions of array descriptors
1383 /* The descriptor or array type, if any, indicated by TYPE; removes
1384 level of indirection, if needed. */
1386 static struct type *
1387 desc_base_type (struct type *type)
1391 type = ada_check_typedef (type);
1392 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1393 type = ada_typedef_target_type (type);
1396 && (TYPE_CODE (type) == TYPE_CODE_PTR
1397 || TYPE_CODE (type) == TYPE_CODE_REF))
1398 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1403 /* True iff TYPE indicates a "thin" array pointer type. */
1406 is_thin_pntr (struct type *type)
1409 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1410 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1413 /* The descriptor type for thin pointer type TYPE. */
1415 static struct type *
1416 thin_descriptor_type (struct type *type)
1418 struct type *base_type = desc_base_type (type);
1420 if (base_type == NULL)
1422 if (is_suffix (ada_type_name (base_type), "___XVE"))
1426 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1428 if (alt_type == NULL)
1435 /* A pointer to the array data for thin-pointer value VAL. */
1437 static struct value *
1438 thin_data_pntr (struct value *val)
1440 struct type *type = value_type (val);
1441 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1443 data_type = lookup_pointer_type (data_type);
1445 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1446 return value_cast (data_type, value_copy (val));
1448 return value_from_longest (data_type, value_address (val));
1451 /* True iff TYPE indicates a "thick" array pointer type. */
1454 is_thick_pntr (struct type *type)
1456 type = desc_base_type (type);
1457 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1458 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1461 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1462 pointer to one, the type of its bounds data; otherwise, NULL. */
1464 static struct type *
1465 desc_bounds_type (struct type *type)
1469 type = desc_base_type (type);
1473 else if (is_thin_pntr (type))
1475 type = thin_descriptor_type (type);
1478 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1480 return ada_check_typedef (r);
1482 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1484 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1486 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1491 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1492 one, a pointer to its bounds data. Otherwise NULL. */
1494 static struct value *
1495 desc_bounds (struct value *arr)
1497 struct type *type = ada_check_typedef (value_type (arr));
1499 if (is_thin_pntr (type))
1501 struct type *bounds_type =
1502 desc_bounds_type (thin_descriptor_type (type));
1505 if (bounds_type == NULL)
1506 error (_("Bad GNAT array descriptor"));
1508 /* NOTE: The following calculation is not really kosher, but
1509 since desc_type is an XVE-encoded type (and shouldn't be),
1510 the correct calculation is a real pain. FIXME (and fix GCC). */
1511 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1512 addr = value_as_long (arr);
1514 addr = value_address (arr);
1517 value_from_longest (lookup_pointer_type (bounds_type),
1518 addr - TYPE_LENGTH (bounds_type));
1521 else if (is_thick_pntr (type))
1523 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1524 _("Bad GNAT array descriptor"));
1525 struct type *p_bounds_type = value_type (p_bounds);
1528 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1530 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1532 if (TYPE_STUB (target_type))
1533 p_bounds = value_cast (lookup_pointer_type
1534 (ada_check_typedef (target_type)),
1538 error (_("Bad GNAT array descriptor"));
1546 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1547 position of the field containing the address of the bounds data. */
1550 fat_pntr_bounds_bitpos (struct type *type)
1552 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1555 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1556 size of the field containing the address of the bounds data. */
1559 fat_pntr_bounds_bitsize (struct type *type)
1561 type = desc_base_type (type);
1563 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1564 return TYPE_FIELD_BITSIZE (type, 1);
1566 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1569 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1570 pointer to one, the type of its array data (a array-with-no-bounds type);
1571 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1574 static struct type *
1575 desc_data_target_type (struct type *type)
1577 type = desc_base_type (type);
1579 /* NOTE: The following is bogus; see comment in desc_bounds. */
1580 if (is_thin_pntr (type))
1581 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1582 else if (is_thick_pntr (type))
1584 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1587 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1588 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1594 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1597 static struct value *
1598 desc_data (struct value *arr)
1600 struct type *type = value_type (arr);
1602 if (is_thin_pntr (type))
1603 return thin_data_pntr (arr);
1604 else if (is_thick_pntr (type))
1605 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1606 _("Bad GNAT array descriptor"));
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 position of the field containing the address of the data. */
1616 fat_pntr_data_bitpos (struct type *type)
1618 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1621 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1622 size of the field containing the address of the data. */
1625 fat_pntr_data_bitsize (struct type *type)
1627 type = desc_base_type (type);
1629 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1630 return TYPE_FIELD_BITSIZE (type, 0);
1632 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1635 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1636 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1637 bound, if WHICH is 1. The first bound is I=1. */
1639 static struct value *
1640 desc_one_bound (struct value *bounds, int i, int which)
1642 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1643 _("Bad GNAT array descriptor bounds"));
1646 /* If BOUNDS is an array-bounds structure type, return the bit position
1647 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1648 bound, if WHICH is 1. The first bound is I=1. */
1651 desc_bound_bitpos (struct type *type, int i, int which)
1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1656 /* If BOUNDS is an array-bounds structure type, return the bit field size
1657 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1658 bound, if WHICH is 1. The first bound is I=1. */
1661 desc_bound_bitsize (struct type *type, int i, int which)
1663 type = desc_base_type (type);
1665 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1666 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1668 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1671 /* If TYPE is the type of an array-bounds structure, the type of its
1672 Ith bound (numbering from 1). Otherwise, NULL. */
1674 static struct type *
1675 desc_index_type (struct type *type, int i)
1677 type = desc_base_type (type);
1679 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1685 /* The number of index positions in the array-bounds type TYPE.
1686 Return 0 if TYPE is NULL. */
1689 desc_arity (struct type *type)
1691 type = desc_base_type (type);
1694 return TYPE_NFIELDS (type) / 2;
1698 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1699 an array descriptor type (representing an unconstrained array
1703 ada_is_direct_array_type (struct type *type)
1707 type = ada_check_typedef (type);
1708 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1709 || ada_is_array_descriptor_type (type));
1712 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1716 ada_is_array_type (struct type *type)
1719 && (TYPE_CODE (type) == TYPE_CODE_PTR
1720 || TYPE_CODE (type) == TYPE_CODE_REF))
1721 type = TYPE_TARGET_TYPE (type);
1722 return ada_is_direct_array_type (type);
1725 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1728 ada_is_simple_array_type (struct type *type)
1732 type = ada_check_typedef (type);
1733 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1734 || (TYPE_CODE (type) == TYPE_CODE_PTR
1735 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1738 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1741 ada_is_array_descriptor_type (struct type *type)
1743 struct type *data_type = desc_data_target_type (type);
1747 type = ada_check_typedef (type);
1748 return (data_type != NULL
1749 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1750 && desc_arity (desc_bounds_type (type)) > 0);
1753 /* Non-zero iff type is a partially mal-formed GNAT array
1754 descriptor. FIXME: This is to compensate for some problems with
1755 debugging output from GNAT. Re-examine periodically to see if it
1759 ada_is_bogus_array_descriptor (struct type *type)
1763 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1764 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1765 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1766 && !ada_is_array_descriptor_type (type);
1770 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1771 (fat pointer) returns the type of the array data described---specifically,
1772 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1773 in from the descriptor; otherwise, they are left unspecified. If
1774 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1775 returns NULL. The result is simply the type of ARR if ARR is not
1778 ada_type_of_array (struct value *arr, int bounds)
1780 if (ada_is_constrained_packed_array_type (value_type (arr)))
1781 return decode_constrained_packed_array_type (value_type (arr));
1783 if (!ada_is_array_descriptor_type (value_type (arr)))
1784 return value_type (arr);
1788 struct type *array_type =
1789 ada_check_typedef (desc_data_target_type (value_type (arr)));
1791 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1792 TYPE_FIELD_BITSIZE (array_type, 0) =
1793 decode_packed_array_bitsize (value_type (arr));
1799 struct type *elt_type;
1801 struct value *descriptor;
1803 elt_type = ada_array_element_type (value_type (arr), -1);
1804 arity = ada_array_arity (value_type (arr));
1806 if (elt_type == NULL || arity == 0)
1807 return ada_check_typedef (value_type (arr));
1809 descriptor = desc_bounds (arr);
1810 if (value_as_long (descriptor) == 0)
1814 struct type *range_type = alloc_type_copy (value_type (arr));
1815 struct type *array_type = alloc_type_copy (value_type (arr));
1816 struct value *low = desc_one_bound (descriptor, arity, 0);
1817 struct value *high = desc_one_bound (descriptor, arity, 1);
1820 create_range_type (range_type, value_type (low),
1821 longest_to_int (value_as_long (low)),
1822 longest_to_int (value_as_long (high)));
1823 elt_type = create_array_type (array_type, elt_type, range_type);
1825 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1827 /* We need to store the element packed bitsize, as well as
1828 recompute the array size, because it was previously
1829 computed based on the unpacked element size. */
1830 LONGEST lo = value_as_long (low);
1831 LONGEST hi = value_as_long (high);
1833 TYPE_FIELD_BITSIZE (elt_type, 0) =
1834 decode_packed_array_bitsize (value_type (arr));
1835 /* If the array has no element, then the size is already
1836 zero, and does not need to be recomputed. */
1840 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1842 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1847 return lookup_pointer_type (elt_type);
1851 /* If ARR does not represent an array, returns ARR unchanged.
1852 Otherwise, returns either a standard GDB array with bounds set
1853 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1854 GDB array. Returns NULL if ARR is a null fat pointer. */
1857 ada_coerce_to_simple_array_ptr (struct value *arr)
1859 if (ada_is_array_descriptor_type (value_type (arr)))
1861 struct type *arrType = ada_type_of_array (arr, 1);
1863 if (arrType == NULL)
1865 return value_cast (arrType, value_copy (desc_data (arr)));
1867 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1868 return decode_constrained_packed_array (arr);
1873 /* If ARR does not represent an array, returns ARR unchanged.
1874 Otherwise, returns a standard GDB array describing ARR (which may
1875 be ARR itself if it already is in the proper form). */
1878 ada_coerce_to_simple_array (struct value *arr)
1880 if (ada_is_array_descriptor_type (value_type (arr)))
1882 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1885 error (_("Bounds unavailable for null array pointer."));
1886 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1887 return value_ind (arrVal);
1889 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1890 return decode_constrained_packed_array (arr);
1895 /* If TYPE represents a GNAT array type, return it translated to an
1896 ordinary GDB array type (possibly with BITSIZE fields indicating
1897 packing). For other types, is the identity. */
1900 ada_coerce_to_simple_array_type (struct type *type)
1902 if (ada_is_constrained_packed_array_type (type))
1903 return decode_constrained_packed_array_type (type);
1905 if (ada_is_array_descriptor_type (type))
1906 return ada_check_typedef (desc_data_target_type (type));
1911 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1914 ada_is_packed_array_type (struct type *type)
1918 type = desc_base_type (type);
1919 type = ada_check_typedef (type);
1921 ada_type_name (type) != NULL
1922 && strstr (ada_type_name (type), "___XP") != NULL;
1925 /* Non-zero iff TYPE represents a standard GNAT constrained
1926 packed-array type. */
1929 ada_is_constrained_packed_array_type (struct type *type)
1931 return ada_is_packed_array_type (type)
1932 && !ada_is_array_descriptor_type (type);
1935 /* Non-zero iff TYPE represents an array descriptor for a
1936 unconstrained packed-array type. */
1939 ada_is_unconstrained_packed_array_type (struct type *type)
1941 return ada_is_packed_array_type (type)
1942 && ada_is_array_descriptor_type (type);
1945 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1946 return the size of its elements in bits. */
1949 decode_packed_array_bitsize (struct type *type)
1955 /* Access to arrays implemented as fat pointers are encoded as a typedef
1956 of the fat pointer type. We need the name of the fat pointer type
1957 to do the decoding, so strip the typedef layer. */
1958 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1959 type = ada_typedef_target_type (type);
1961 raw_name = ada_type_name (ada_check_typedef (type));
1963 raw_name = ada_type_name (desc_base_type (type));
1968 tail = strstr (raw_name, "___XP");
1969 gdb_assert (tail != NULL);
1971 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1974 (_("could not understand bit size information on packed array"));
1981 /* Given that TYPE is a standard GDB array type with all bounds filled
1982 in, and that the element size of its ultimate scalar constituents
1983 (that is, either its elements, or, if it is an array of arrays, its
1984 elements' elements, etc.) is *ELT_BITS, return an identical type,
1985 but with the bit sizes of its elements (and those of any
1986 constituent arrays) recorded in the BITSIZE components of its
1987 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1990 static struct type *
1991 constrained_packed_array_type (struct type *type, long *elt_bits)
1993 struct type *new_elt_type;
1994 struct type *new_type;
1995 LONGEST low_bound, high_bound;
1997 type = ada_check_typedef (type);
1998 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2001 new_type = alloc_type_copy (type);
2003 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2005 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2006 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2007 TYPE_NAME (new_type) = ada_type_name (type);
2009 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2010 &low_bound, &high_bound) < 0)
2011 low_bound = high_bound = 0;
2012 if (high_bound < low_bound)
2013 *elt_bits = TYPE_LENGTH (new_type) = 0;
2016 *elt_bits *= (high_bound - low_bound + 1);
2017 TYPE_LENGTH (new_type) =
2018 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2021 TYPE_FIXED_INSTANCE (new_type) = 1;
2025 /* The array type encoded by TYPE, where
2026 ada_is_constrained_packed_array_type (TYPE). */
2028 static struct type *
2029 decode_constrained_packed_array_type (struct type *type)
2031 char *raw_name = ada_type_name (ada_check_typedef (type));
2034 struct type *shadow_type;
2038 raw_name = ada_type_name (desc_base_type (type));
2043 name = (char *) alloca (strlen (raw_name) + 1);
2044 tail = strstr (raw_name, "___XP");
2045 type = desc_base_type (type);
2047 memcpy (name, raw_name, tail - raw_name);
2048 name[tail - raw_name] = '\000';
2050 shadow_type = ada_find_parallel_type_with_name (type, name);
2052 if (shadow_type == NULL)
2054 lim_warning (_("could not find bounds information on packed array"));
2057 CHECK_TYPEDEF (shadow_type);
2059 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2061 lim_warning (_("could not understand bounds "
2062 "information on packed array"));
2066 bits = decode_packed_array_bitsize (type);
2067 return constrained_packed_array_type (shadow_type, &bits);
2070 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2071 array, returns a simple array that denotes that array. Its type is a
2072 standard GDB array type except that the BITSIZEs of the array
2073 target types are set to the number of bits in each element, and the
2074 type length is set appropriately. */
2076 static struct value *
2077 decode_constrained_packed_array (struct value *arr)
2081 arr = ada_coerce_ref (arr);
2083 /* If our value is a pointer, then dererence it. Make sure that
2084 this operation does not cause the target type to be fixed, as
2085 this would indirectly cause this array to be decoded. The rest
2086 of the routine assumes that the array hasn't been decoded yet,
2087 so we use the basic "value_ind" routine to perform the dereferencing,
2088 as opposed to using "ada_value_ind". */
2089 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2090 arr = value_ind (arr);
2092 type = decode_constrained_packed_array_type (value_type (arr));
2095 error (_("can't unpack array"));
2099 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2100 && ada_is_modular_type (value_type (arr)))
2102 /* This is a (right-justified) modular type representing a packed
2103 array with no wrapper. In order to interpret the value through
2104 the (left-justified) packed array type we just built, we must
2105 first left-justify it. */
2106 int bit_size, bit_pos;
2109 mod = ada_modulus (value_type (arr)) - 1;
2116 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2117 arr = ada_value_primitive_packed_val (arr, NULL,
2118 bit_pos / HOST_CHAR_BIT,
2119 bit_pos % HOST_CHAR_BIT,
2124 return coerce_unspec_val_to_type (arr, type);
2128 /* The value of the element of packed array ARR at the ARITY indices
2129 given in IND. ARR must be a simple array. */
2131 static struct value *
2132 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2135 int bits, elt_off, bit_off;
2136 long elt_total_bit_offset;
2137 struct type *elt_type;
2141 elt_total_bit_offset = 0;
2142 elt_type = ada_check_typedef (value_type (arr));
2143 for (i = 0; i < arity; i += 1)
2145 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2146 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2148 (_("attempt to do packed indexing of "
2149 "something other than a packed array"));
2152 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2153 LONGEST lowerbound, upperbound;
2156 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2158 lim_warning (_("don't know bounds of array"));
2159 lowerbound = upperbound = 0;
2162 idx = pos_atr (ind[i]);
2163 if (idx < lowerbound || idx > upperbound)
2164 lim_warning (_("packed array index %ld out of bounds"),
2166 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2167 elt_total_bit_offset += (idx - lowerbound) * bits;
2168 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2171 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2172 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2174 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2179 /* Non-zero iff TYPE includes negative integer values. */
2182 has_negatives (struct type *type)
2184 switch (TYPE_CODE (type))
2189 return !TYPE_UNSIGNED (type);
2190 case TYPE_CODE_RANGE:
2191 return TYPE_LOW_BOUND (type) < 0;
2196 /* Create a new value of type TYPE from the contents of OBJ starting
2197 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2198 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2199 assigning through the result will set the field fetched from.
2200 VALADDR is ignored unless OBJ is NULL, in which case,
2201 VALADDR+OFFSET must address the start of storage containing the
2202 packed value. The value returned in this case is never an lval.
2203 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2206 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2207 long offset, int bit_offset, int bit_size,
2211 int src, /* Index into the source area */
2212 targ, /* Index into the target area */
2213 srcBitsLeft, /* Number of source bits left to move */
2214 nsrc, ntarg, /* Number of source and target bytes */
2215 unusedLS, /* Number of bits in next significant
2216 byte of source that are unused */
2217 accumSize; /* Number of meaningful bits in accum */
2218 unsigned char *bytes; /* First byte containing data to unpack */
2219 unsigned char *unpacked;
2220 unsigned long accum; /* Staging area for bits being transferred */
2222 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2223 /* Transmit bytes from least to most significant; delta is the direction
2224 the indices move. */
2225 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2227 type = ada_check_typedef (type);
2231 v = allocate_value (type);
2232 bytes = (unsigned char *) (valaddr + offset);
2234 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2237 value_address (obj) + offset);
2238 bytes = (unsigned char *) alloca (len);
2239 read_memory (value_address (v), bytes, len);
2243 v = allocate_value (type);
2244 bytes = (unsigned char *) value_contents (obj) + offset;
2251 set_value_component_location (v, obj);
2252 new_addr = value_address (obj) + offset;
2253 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2254 set_value_bitsize (v, bit_size);
2255 if (value_bitpos (v) >= HOST_CHAR_BIT)
2258 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2260 set_value_address (v, new_addr);
2263 set_value_bitsize (v, bit_size);
2264 unpacked = (unsigned char *) value_contents (v);
2266 srcBitsLeft = bit_size;
2268 ntarg = TYPE_LENGTH (type);
2272 memset (unpacked, 0, TYPE_LENGTH (type));
2275 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2278 if (has_negatives (type)
2279 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2283 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2286 switch (TYPE_CODE (type))
2288 case TYPE_CODE_ARRAY:
2289 case TYPE_CODE_UNION:
2290 case TYPE_CODE_STRUCT:
2291 /* Non-scalar values must be aligned at a byte boundary... */
2293 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2294 /* ... And are placed at the beginning (most-significant) bytes
2296 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2301 targ = TYPE_LENGTH (type) - 1;
2307 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2310 unusedLS = bit_offset;
2313 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2320 /* Mask for removing bits of the next source byte that are not
2321 part of the value. */
2322 unsigned int unusedMSMask =
2323 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2325 /* Sign-extend bits for this byte. */
2326 unsigned int signMask = sign & ~unusedMSMask;
2329 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2330 accumSize += HOST_CHAR_BIT - unusedLS;
2331 if (accumSize >= HOST_CHAR_BIT)
2333 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2334 accumSize -= HOST_CHAR_BIT;
2335 accum >>= HOST_CHAR_BIT;
2339 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2346 accum |= sign << accumSize;
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2357 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2358 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2361 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2362 int src_offset, int n, int bits_big_endian_p)
2364 unsigned int accum, mask;
2365 int accum_bits, chunk_size;
2367 target += targ_offset / HOST_CHAR_BIT;
2368 targ_offset %= HOST_CHAR_BIT;
2369 source += src_offset / HOST_CHAR_BIT;
2370 src_offset %= HOST_CHAR_BIT;
2371 if (bits_big_endian_p)
2373 accum = (unsigned char) *source;
2375 accum_bits = HOST_CHAR_BIT - src_offset;
2381 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2382 accum_bits += HOST_CHAR_BIT;
2384 chunk_size = HOST_CHAR_BIT - targ_offset;
2387 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2388 mask = ((1 << chunk_size) - 1) << unused_right;
2391 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2393 accum_bits -= chunk_size;
2400 accum = (unsigned char) *source >> src_offset;
2402 accum_bits = HOST_CHAR_BIT - src_offset;
2406 accum = accum + ((unsigned char) *source << accum_bits);
2407 accum_bits += HOST_CHAR_BIT;
2409 chunk_size = HOST_CHAR_BIT - targ_offset;
2412 mask = ((1 << chunk_size) - 1) << targ_offset;
2413 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2415 accum_bits -= chunk_size;
2416 accum >>= chunk_size;
2423 /* Store the contents of FROMVAL into the location of TOVAL.
2424 Return a new value with the location of TOVAL and contents of
2425 FROMVAL. Handles assignment into packed fields that have
2426 floating-point or non-scalar types. */
2428 static struct value *
2429 ada_value_assign (struct value *toval, struct value *fromval)
2431 struct type *type = value_type (toval);
2432 int bits = value_bitsize (toval);
2434 toval = ada_coerce_ref (toval);
2435 fromval = ada_coerce_ref (fromval);
2437 if (ada_is_direct_array_type (value_type (toval)))
2438 toval = ada_coerce_to_simple_array (toval);
2439 if (ada_is_direct_array_type (value_type (fromval)))
2440 fromval = ada_coerce_to_simple_array (fromval);
2442 if (!deprecated_value_modifiable (toval))
2443 error (_("Left operand of assignment is not a modifiable lvalue."));
2445 if (VALUE_LVAL (toval) == lval_memory
2447 && (TYPE_CODE (type) == TYPE_CODE_FLT
2448 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2450 int len = (value_bitpos (toval)
2451 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2453 char *buffer = (char *) alloca (len);
2455 CORE_ADDR to_addr = value_address (toval);
2457 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2458 fromval = value_cast (type, fromval);
2460 read_memory (to_addr, buffer, len);
2461 from_size = value_bitsize (fromval);
2463 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2464 if (gdbarch_bits_big_endian (get_type_arch (type)))
2465 move_bits (buffer, value_bitpos (toval),
2466 value_contents (fromval), from_size - bits, bits, 1);
2468 move_bits (buffer, value_bitpos (toval),
2469 value_contents (fromval), 0, bits, 0);
2470 write_memory (to_addr, buffer, len);
2471 observer_notify_memory_changed (to_addr, len, buffer);
2473 val = value_copy (toval);
2474 memcpy (value_contents_raw (val), value_contents (fromval),
2475 TYPE_LENGTH (type));
2476 deprecated_set_value_type (val, type);
2481 return value_assign (toval, fromval);
2485 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2486 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2487 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2488 * COMPONENT, and not the inferior's memory. The current contents
2489 * of COMPONENT are ignored. */
2491 value_assign_to_component (struct value *container, struct value *component,
2494 LONGEST offset_in_container =
2495 (LONGEST) (value_address (component) - value_address (container));
2496 int bit_offset_in_container =
2497 value_bitpos (component) - value_bitpos (container);
2500 val = value_cast (value_type (component), val);
2502 if (value_bitsize (component) == 0)
2503 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2505 bits = value_bitsize (component);
2507 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2508 move_bits (value_contents_writeable (container) + offset_in_container,
2509 value_bitpos (container) + bit_offset_in_container,
2510 value_contents (val),
2511 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2514 move_bits (value_contents_writeable (container) + offset_in_container,
2515 value_bitpos (container) + bit_offset_in_container,
2516 value_contents (val), 0, bits, 0);
2519 /* The value of the element of array ARR at the ARITY indices given in IND.
2520 ARR may be either a simple array, GNAT array descriptor, or pointer
2524 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2528 struct type *elt_type;
2530 elt = ada_coerce_to_simple_array (arr);
2532 elt_type = ada_check_typedef (value_type (elt));
2533 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2534 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2535 return value_subscript_packed (elt, arity, ind);
2537 for (k = 0; k < arity; k += 1)
2539 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2540 error (_("too many subscripts (%d expected)"), k);
2541 elt = value_subscript (elt, pos_atr (ind[k]));
2546 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2547 value of the element of *ARR at the ARITY indices given in
2548 IND. Does not read the entire array into memory. */
2550 static struct value *
2551 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2556 for (k = 0; k < arity; k += 1)
2560 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2561 error (_("too many subscripts (%d expected)"), k);
2562 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2564 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2565 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2566 type = TYPE_TARGET_TYPE (type);
2569 return value_ind (arr);
2572 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2573 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2574 elements starting at index LOW. The lower bound of this array is LOW, as
2576 static struct value *
2577 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2580 CORE_ADDR base = value_as_address (array_ptr)
2581 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2582 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2583 struct type *index_type =
2584 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2586 struct type *slice_type =
2587 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2589 return value_at_lazy (slice_type, base);
2593 static struct value *
2594 ada_value_slice (struct value *array, int low, int high)
2596 struct type *type = value_type (array);
2597 struct type *index_type =
2598 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2599 struct type *slice_type =
2600 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2602 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2605 /* If type is a record type in the form of a standard GNAT array
2606 descriptor, returns the number of dimensions for type. If arr is a
2607 simple array, returns the number of "array of"s that prefix its
2608 type designation. Otherwise, returns 0. */
2611 ada_array_arity (struct type *type)
2618 type = desc_base_type (type);
2621 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2622 return desc_arity (desc_bounds_type (type));
2624 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2627 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2633 /* If TYPE is a record type in the form of a standard GNAT array
2634 descriptor or a simple array type, returns the element type for
2635 TYPE after indexing by NINDICES indices, or by all indices if
2636 NINDICES is -1. Otherwise, returns NULL. */
2639 ada_array_element_type (struct type *type, int nindices)
2641 type = desc_base_type (type);
2643 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2646 struct type *p_array_type;
2648 p_array_type = desc_data_target_type (type);
2650 k = ada_array_arity (type);
2654 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2655 if (nindices >= 0 && k > nindices)
2657 while (k > 0 && p_array_type != NULL)
2659 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2662 return p_array_type;
2664 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2666 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2668 type = TYPE_TARGET_TYPE (type);
2677 /* The type of nth index in arrays of given type (n numbering from 1).
2678 Does not examine memory. Throws an error if N is invalid or TYPE
2679 is not an array type. NAME is the name of the Ada attribute being
2680 evaluated ('range, 'first, 'last, or 'length); it is used in building
2681 the error message. */
2683 static struct type *
2684 ada_index_type (struct type *type, int n, const char *name)
2686 struct type *result_type;
2688 type = desc_base_type (type);
2690 if (n < 0 || n > ada_array_arity (type))
2691 error (_("invalid dimension number to '%s"), name);
2693 if (ada_is_simple_array_type (type))
2697 for (i = 1; i < n; i += 1)
2698 type = TYPE_TARGET_TYPE (type);
2699 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2700 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2701 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2702 perhaps stabsread.c would make more sense. */
2703 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2708 result_type = desc_index_type (desc_bounds_type (type), n);
2709 if (result_type == NULL)
2710 error (_("attempt to take bound of something that is not an array"));
2716 /* Given that arr is an array type, returns the lower bound of the
2717 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2718 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2719 array-descriptor type. It works for other arrays with bounds supplied
2720 by run-time quantities other than discriminants. */
2723 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2725 struct type *type, *elt_type, *index_type_desc, *index_type;
2728 gdb_assert (which == 0 || which == 1);
2730 if (ada_is_constrained_packed_array_type (arr_type))
2731 arr_type = decode_constrained_packed_array_type (arr_type);
2733 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2734 return (LONGEST) - which;
2736 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2737 type = TYPE_TARGET_TYPE (arr_type);
2742 for (i = n; i > 1; i--)
2743 elt_type = TYPE_TARGET_TYPE (type);
2745 index_type_desc = ada_find_parallel_type (type, "___XA");
2746 ada_fixup_array_indexes_type (index_type_desc);
2747 if (index_type_desc != NULL)
2748 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2751 index_type = TYPE_INDEX_TYPE (elt_type);
2754 (LONGEST) (which == 0
2755 ? ada_discrete_type_low_bound (index_type)
2756 : ada_discrete_type_high_bound (index_type));
2759 /* Given that arr is an array value, returns the lower bound of the
2760 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2761 WHICH is 1. This routine will also work for arrays with bounds
2762 supplied by run-time quantities other than discriminants. */
2765 ada_array_bound (struct value *arr, int n, int which)
2767 struct type *arr_type = value_type (arr);
2769 if (ada_is_constrained_packed_array_type (arr_type))
2770 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2771 else if (ada_is_simple_array_type (arr_type))
2772 return ada_array_bound_from_type (arr_type, n, which);
2774 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2777 /* Given that arr is an array value, returns the length of the
2778 nth index. This routine will also work for arrays with bounds
2779 supplied by run-time quantities other than discriminants.
2780 Does not work for arrays indexed by enumeration types with representation
2781 clauses at the moment. */
2784 ada_array_length (struct value *arr, int n)
2786 struct type *arr_type = ada_check_typedef (value_type (arr));
2788 if (ada_is_constrained_packed_array_type (arr_type))
2789 return ada_array_length (decode_constrained_packed_array (arr), n);
2791 if (ada_is_simple_array_type (arr_type))
2792 return (ada_array_bound_from_type (arr_type, n, 1)
2793 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2795 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2796 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2799 /* An empty array whose type is that of ARR_TYPE (an array type),
2800 with bounds LOW to LOW-1. */
2802 static struct value *
2803 empty_array (struct type *arr_type, int low)
2805 struct type *index_type =
2806 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2808 struct type *elt_type = ada_array_element_type (arr_type, 1);
2810 return allocate_value (create_array_type (NULL, elt_type, index_type));
2814 /* Name resolution */
2816 /* The "decoded" name for the user-definable Ada operator corresponding
2820 ada_decoded_op_name (enum exp_opcode op)
2824 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2826 if (ada_opname_table[i].op == op)
2827 return ada_opname_table[i].decoded;
2829 error (_("Could not find operator name for opcode"));
2833 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2834 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2835 undefined namespace) and converts operators that are
2836 user-defined into appropriate function calls. If CONTEXT_TYPE is
2837 non-null, it provides a preferred result type [at the moment, only
2838 type void has any effect---causing procedures to be preferred over
2839 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2840 return type is preferred. May change (expand) *EXP. */
2843 resolve (struct expression **expp, int void_context_p)
2845 struct type *context_type = NULL;
2849 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2851 resolve_subexp (expp, &pc, 1, context_type);
2854 /* Resolve the operator of the subexpression beginning at
2855 position *POS of *EXPP. "Resolving" consists of replacing
2856 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2857 with their resolutions, replacing built-in operators with
2858 function calls to user-defined operators, where appropriate, and,
2859 when DEPROCEDURE_P is non-zero, converting function-valued variables
2860 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2861 are as in ada_resolve, above. */
2863 static struct value *
2864 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2865 struct type *context_type)
2869 struct expression *exp; /* Convenience: == *expp. */
2870 enum exp_opcode op = (*expp)->elts[pc].opcode;
2871 struct value **argvec; /* Vector of operand types (alloca'ed). */
2872 int nargs; /* Number of operands. */
2879 /* Pass one: resolve operands, saving their types and updating *pos,
2884 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2885 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2890 resolve_subexp (expp, pos, 0, NULL);
2892 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2897 resolve_subexp (expp, pos, 0, NULL);
2902 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2905 case OP_ATR_MODULUS:
2915 case TERNOP_IN_RANGE:
2916 case BINOP_IN_BOUNDS:
2922 case OP_DISCRETE_RANGE:
2924 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2933 arg1 = resolve_subexp (expp, pos, 0, NULL);
2935 resolve_subexp (expp, pos, 1, NULL);
2937 resolve_subexp (expp, pos, 1, value_type (arg1));
2954 case BINOP_LOGICAL_AND:
2955 case BINOP_LOGICAL_OR:
2956 case BINOP_BITWISE_AND:
2957 case BINOP_BITWISE_IOR:
2958 case BINOP_BITWISE_XOR:
2961 case BINOP_NOTEQUAL:
2968 case BINOP_SUBSCRIPT:
2976 case UNOP_LOGICAL_NOT:
2992 case OP_INTERNALVAR:
3002 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3005 case STRUCTOP_STRUCT:
3006 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3019 error (_("Unexpected operator during name resolution"));
3022 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3023 for (i = 0; i < nargs; i += 1)
3024 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3028 /* Pass two: perform any resolution on principal operator. */
3035 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3037 struct ada_symbol_info *candidates;
3041 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3042 (exp->elts[pc + 2].symbol),
3043 exp->elts[pc + 1].block, VAR_DOMAIN,
3046 if (n_candidates > 1)
3048 /* Types tend to get re-introduced locally, so if there
3049 are any local symbols that are not types, first filter
3052 for (j = 0; j < n_candidates; j += 1)
3053 switch (SYMBOL_CLASS (candidates[j].sym))
3058 case LOC_REGPARM_ADDR:
3066 if (j < n_candidates)
3069 while (j < n_candidates)
3071 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3073 candidates[j] = candidates[n_candidates - 1];
3082 if (n_candidates == 0)
3083 error (_("No definition found for %s"),
3084 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3085 else if (n_candidates == 1)
3087 else if (deprocedure_p
3088 && !is_nonfunction (candidates, n_candidates))
3090 i = ada_resolve_function
3091 (candidates, n_candidates, NULL, 0,
3092 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3095 error (_("Could not find a match for %s"),
3096 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3100 printf_filtered (_("Multiple matches for %s\n"),
3101 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3102 user_select_syms (candidates, n_candidates, 1);
3106 exp->elts[pc + 1].block = candidates[i].block;
3107 exp->elts[pc + 2].symbol = candidates[i].sym;
3108 if (innermost_block == NULL
3109 || contained_in (candidates[i].block, innermost_block))
3110 innermost_block = candidates[i].block;
3114 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3117 replace_operator_with_call (expp, pc, 0, 0,
3118 exp->elts[pc + 2].symbol,
3119 exp->elts[pc + 1].block);
3126 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3127 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3129 struct ada_symbol_info *candidates;
3133 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3134 (exp->elts[pc + 5].symbol),
3135 exp->elts[pc + 4].block, VAR_DOMAIN,
3137 if (n_candidates == 1)
3141 i = ada_resolve_function
3142 (candidates, n_candidates,
3144 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3147 error (_("Could not find a match for %s"),
3148 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3151 exp->elts[pc + 4].block = candidates[i].block;
3152 exp->elts[pc + 5].symbol = candidates[i].sym;
3153 if (innermost_block == NULL
3154 || contained_in (candidates[i].block, innermost_block))
3155 innermost_block = candidates[i].block;
3166 case BINOP_BITWISE_AND:
3167 case BINOP_BITWISE_IOR:
3168 case BINOP_BITWISE_XOR:
3170 case BINOP_NOTEQUAL:
3178 case UNOP_LOGICAL_NOT:
3180 if (possible_user_operator_p (op, argvec))
3182 struct ada_symbol_info *candidates;
3186 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3187 (struct block *) NULL, VAR_DOMAIN,
3189 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3190 ada_decoded_op_name (op), NULL);
3194 replace_operator_with_call (expp, pc, nargs, 1,
3195 candidates[i].sym, candidates[i].block);
3206 return evaluate_subexp_type (exp, pos);
3209 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3210 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3212 /* The term "match" here is rather loose. The match is heuristic and
3216 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3218 ftype = ada_check_typedef (ftype);
3219 atype = ada_check_typedef (atype);
3221 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3222 ftype = TYPE_TARGET_TYPE (ftype);
3223 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3224 atype = TYPE_TARGET_TYPE (atype);
3226 switch (TYPE_CODE (ftype))
3229 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3231 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3232 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3233 TYPE_TARGET_TYPE (atype), 0);
3236 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3238 case TYPE_CODE_ENUM:
3239 case TYPE_CODE_RANGE:
3240 switch (TYPE_CODE (atype))
3243 case TYPE_CODE_ENUM:
3244 case TYPE_CODE_RANGE:
3250 case TYPE_CODE_ARRAY:
3251 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3252 || ada_is_array_descriptor_type (atype));
3254 case TYPE_CODE_STRUCT:
3255 if (ada_is_array_descriptor_type (ftype))
3256 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3257 || ada_is_array_descriptor_type (atype));
3259 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3260 && !ada_is_array_descriptor_type (atype));
3262 case TYPE_CODE_UNION:
3264 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3268 /* Return non-zero if the formals of FUNC "sufficiently match" the
3269 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3270 may also be an enumeral, in which case it is treated as a 0-
3271 argument function. */
3274 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3277 struct type *func_type = SYMBOL_TYPE (func);
3279 if (SYMBOL_CLASS (func) == LOC_CONST
3280 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3281 return (n_actuals == 0);
3282 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3285 if (TYPE_NFIELDS (func_type) != n_actuals)
3288 for (i = 0; i < n_actuals; i += 1)
3290 if (actuals[i] == NULL)
3294 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3296 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3298 if (!ada_type_match (ftype, atype, 1))
3305 /* False iff function type FUNC_TYPE definitely does not produce a value
3306 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3307 FUNC_TYPE is not a valid function type with a non-null return type
3308 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3311 return_match (struct type *func_type, struct type *context_type)
3313 struct type *return_type;
3315 if (func_type == NULL)
3318 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3319 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3321 return_type = base_type (func_type);
3322 if (return_type == NULL)
3325 context_type = base_type (context_type);
3327 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3328 return context_type == NULL || return_type == context_type;
3329 else if (context_type == NULL)
3330 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3332 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3336 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3337 function (if any) that matches the types of the NARGS arguments in
3338 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3339 that returns that type, then eliminate matches that don't. If
3340 CONTEXT_TYPE is void and there is at least one match that does not
3341 return void, eliminate all matches that do.
3343 Asks the user if there is more than one match remaining. Returns -1
3344 if there is no such symbol or none is selected. NAME is used
3345 solely for messages. May re-arrange and modify SYMS in
3346 the process; the index returned is for the modified vector. */
3349 ada_resolve_function (struct ada_symbol_info syms[],
3350 int nsyms, struct value **args, int nargs,
3351 const char *name, struct type *context_type)
3355 int m; /* Number of hits */
3358 /* In the first pass of the loop, we only accept functions matching
3359 context_type. If none are found, we add a second pass of the loop
3360 where every function is accepted. */
3361 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3363 for (k = 0; k < nsyms; k += 1)
3365 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3367 if (ada_args_match (syms[k].sym, args, nargs)
3368 && (fallback || return_match (type, context_type)))
3380 printf_filtered (_("Multiple matches for %s\n"), name);
3381 user_select_syms (syms, m, 1);
3387 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3388 in a listing of choices during disambiguation (see sort_choices, below).
3389 The idea is that overloadings of a subprogram name from the
3390 same package should sort in their source order. We settle for ordering
3391 such symbols by their trailing number (__N or $N). */
3394 encoded_ordered_before (char *N0, char *N1)
3398 else if (N0 == NULL)
3404 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3406 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3408 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3409 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3414 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3417 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3419 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3420 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3422 return (strcmp (N0, N1) < 0);
3426 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3430 sort_choices (struct ada_symbol_info syms[], int nsyms)
3434 for (i = 1; i < nsyms; i += 1)
3436 struct ada_symbol_info sym = syms[i];
3439 for (j = i - 1; j >= 0; j -= 1)
3441 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3442 SYMBOL_LINKAGE_NAME (sym.sym)))
3444 syms[j + 1] = syms[j];
3450 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3451 by asking the user (if necessary), returning the number selected,
3452 and setting the first elements of SYMS items. Error if no symbols
3455 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3456 to be re-integrated one of these days. */
3459 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3462 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3464 int first_choice = (max_results == 1) ? 1 : 2;
3465 const char *select_mode = multiple_symbols_select_mode ();
3467 if (max_results < 1)
3468 error (_("Request to select 0 symbols!"));
3472 if (select_mode == multiple_symbols_cancel)
3474 canceled because the command is ambiguous\n\
3475 See set/show multiple-symbol."));
3477 /* If select_mode is "all", then return all possible symbols.
3478 Only do that if more than one symbol can be selected, of course.
3479 Otherwise, display the menu as usual. */
3480 if (select_mode == multiple_symbols_all && max_results > 1)
3483 printf_unfiltered (_("[0] cancel\n"));
3484 if (max_results > 1)
3485 printf_unfiltered (_("[1] all\n"));
3487 sort_choices (syms, nsyms);
3489 for (i = 0; i < nsyms; i += 1)
3491 if (syms[i].sym == NULL)
3494 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3496 struct symtab_and_line sal =
3497 find_function_start_sal (syms[i].sym, 1);
3499 if (sal.symtab == NULL)
3500 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3502 SYMBOL_PRINT_NAME (syms[i].sym),
3505 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3506 SYMBOL_PRINT_NAME (syms[i].sym),
3507 sal.symtab->filename, sal.line);
3513 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3514 && SYMBOL_TYPE (syms[i].sym) != NULL
3515 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3516 struct symtab *symtab = syms[i].sym->symtab;
3518 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3519 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3521 SYMBOL_PRINT_NAME (syms[i].sym),
3522 symtab->filename, SYMBOL_LINE (syms[i].sym));
3523 else if (is_enumeral
3524 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3526 printf_unfiltered (("[%d] "), i + first_choice);
3527 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3529 printf_unfiltered (_("'(%s) (enumeral)\n"),
3530 SYMBOL_PRINT_NAME (syms[i].sym));
3532 else if (symtab != NULL)
3533 printf_unfiltered (is_enumeral
3534 ? _("[%d] %s in %s (enumeral)\n")
3535 : _("[%d] %s at %s:?\n"),
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3540 printf_unfiltered (is_enumeral
3541 ? _("[%d] %s (enumeral)\n")
3542 : _("[%d] %s at ?\n"),
3544 SYMBOL_PRINT_NAME (syms[i].sym));
3548 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3551 for (i = 0; i < n_chosen; i += 1)
3552 syms[i] = syms[chosen[i]];
3557 /* Read and validate a set of numeric choices from the user in the
3558 range 0 .. N_CHOICES-1. Place the results in increasing
3559 order in CHOICES[0 .. N-1], and return N.
3561 The user types choices as a sequence of numbers on one line
3562 separated by blanks, encoding them as follows:
3564 + A choice of 0 means to cancel the selection, throwing an error.
3565 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3566 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3568 The user is not allowed to choose more than MAX_RESULTS values.
3570 ANNOTATION_SUFFIX, if present, is used to annotate the input
3571 prompts (for use with the -f switch). */
3574 get_selections (int *choices, int n_choices, int max_results,
3575 int is_all_choice, char *annotation_suffix)
3580 int first_choice = is_all_choice ? 2 : 1;
3582 prompt = getenv ("PS2");
3586 args = command_line_input (prompt, 0, annotation_suffix);
3589 error_no_arg (_("one or more choice numbers"));
3593 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3594 order, as given in args. Choices are validated. */
3600 while (isspace (*args))
3602 if (*args == '\0' && n_chosen == 0)
3603 error_no_arg (_("one or more choice numbers"));
3604 else if (*args == '\0')
3607 choice = strtol (args, &args2, 10);
3608 if (args == args2 || choice < 0
3609 || choice > n_choices + first_choice - 1)
3610 error (_("Argument must be choice number"));
3614 error (_("cancelled"));
3616 if (choice < first_choice)
3618 n_chosen = n_choices;
3619 for (j = 0; j < n_choices; j += 1)
3623 choice -= first_choice;
3625 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3629 if (j < 0 || choice != choices[j])
3633 for (k = n_chosen - 1; k > j; k -= 1)
3634 choices[k + 1] = choices[k];
3635 choices[j + 1] = choice;
3640 if (n_chosen > max_results)
3641 error (_("Select no more than %d of the above"), max_results);
3646 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3647 on the function identified by SYM and BLOCK, and taking NARGS
3648 arguments. Update *EXPP as needed to hold more space. */
3651 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3652 int oplen, struct symbol *sym,
3653 struct block *block)
3655 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3656 symbol, -oplen for operator being replaced). */
3657 struct expression *newexp = (struct expression *)
3658 xmalloc (sizeof (struct expression)
3659 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3660 struct expression *exp = *expp;
3662 newexp->nelts = exp->nelts + 7 - oplen;
3663 newexp->language_defn = exp->language_defn;
3664 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3665 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3666 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3668 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3669 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3671 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3672 newexp->elts[pc + 4].block = block;
3673 newexp->elts[pc + 5].symbol = sym;
3679 /* Type-class predicates */
3681 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3685 numeric_type_p (struct type *type)
3691 switch (TYPE_CODE (type))
3696 case TYPE_CODE_RANGE:
3697 return (type == TYPE_TARGET_TYPE (type)
3698 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3705 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3708 integer_type_p (struct type *type)
3714 switch (TYPE_CODE (type))
3718 case TYPE_CODE_RANGE:
3719 return (type == TYPE_TARGET_TYPE (type)
3720 || integer_type_p (TYPE_TARGET_TYPE (type)));
3727 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3730 scalar_type_p (struct type *type)
3736 switch (TYPE_CODE (type))
3739 case TYPE_CODE_RANGE:
3740 case TYPE_CODE_ENUM:
3749 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3752 discrete_type_p (struct type *type)
3758 switch (TYPE_CODE (type))
3761 case TYPE_CODE_RANGE:
3762 case TYPE_CODE_ENUM:
3763 case TYPE_CODE_BOOL:
3771 /* Returns non-zero if OP with operands in the vector ARGS could be
3772 a user-defined function. Errs on the side of pre-defined operators
3773 (i.e., result 0). */
3776 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3778 struct type *type0 =
3779 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3780 struct type *type1 =
3781 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3795 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3799 case BINOP_BITWISE_AND:
3800 case BINOP_BITWISE_IOR:
3801 case BINOP_BITWISE_XOR:
3802 return (!(integer_type_p (type0) && integer_type_p (type1)));
3805 case BINOP_NOTEQUAL:
3810 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3813 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3816 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3820 case UNOP_LOGICAL_NOT:
3822 return (!numeric_type_p (type0));
3831 1. In the following, we assume that a renaming type's name may
3832 have an ___XD suffix. It would be nice if this went away at some
3834 2. We handle both the (old) purely type-based representation of
3835 renamings and the (new) variable-based encoding. At some point,
3836 it is devoutly to be hoped that the former goes away
3837 (FIXME: hilfinger-2007-07-09).
3838 3. Subprogram renamings are not implemented, although the XRS
3839 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3841 /* If SYM encodes a renaming,
3843 <renaming> renames <renamed entity>,
3845 sets *LEN to the length of the renamed entity's name,
3846 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3847 the string describing the subcomponent selected from the renamed
3848 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3849 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3850 are undefined). Otherwise, returns a value indicating the category
3851 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3852 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3853 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3854 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3855 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3856 may be NULL, in which case they are not assigned.
3858 [Currently, however, GCC does not generate subprogram renamings.] */
3860 enum ada_renaming_category
3861 ada_parse_renaming (struct symbol *sym,
3862 const char **renamed_entity, int *len,
3863 const char **renaming_expr)
3865 enum ada_renaming_category kind;
3870 return ADA_NOT_RENAMING;
3871 switch (SYMBOL_CLASS (sym))
3874 return ADA_NOT_RENAMING;
3876 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3877 renamed_entity, len, renaming_expr);
3881 case LOC_OPTIMIZED_OUT:
3882 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3884 return ADA_NOT_RENAMING;
3888 kind = ADA_OBJECT_RENAMING;
3892 kind = ADA_EXCEPTION_RENAMING;
3896 kind = ADA_PACKAGE_RENAMING;
3900 kind = ADA_SUBPROGRAM_RENAMING;
3904 return ADA_NOT_RENAMING;
3908 if (renamed_entity != NULL)
3909 *renamed_entity = info;
3910 suffix = strstr (info, "___XE");
3911 if (suffix == NULL || suffix == info)
3912 return ADA_NOT_RENAMING;
3914 *len = strlen (info) - strlen (suffix);
3916 if (renaming_expr != NULL)
3917 *renaming_expr = suffix;
3921 /* Assuming TYPE encodes a renaming according to the old encoding in
3922 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3923 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3924 ADA_NOT_RENAMING otherwise. */
3925 static enum ada_renaming_category
3926 parse_old_style_renaming (struct type *type,
3927 const char **renamed_entity, int *len,
3928 const char **renaming_expr)
3930 enum ada_renaming_category kind;
3935 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3936 || TYPE_NFIELDS (type) != 1)
3937 return ADA_NOT_RENAMING;
3939 name = type_name_no_tag (type);
3941 return ADA_NOT_RENAMING;
3943 name = strstr (name, "___XR");
3945 return ADA_NOT_RENAMING;
3950 kind = ADA_OBJECT_RENAMING;
3953 kind = ADA_EXCEPTION_RENAMING;
3956 kind = ADA_PACKAGE_RENAMING;
3959 kind = ADA_SUBPROGRAM_RENAMING;
3962 return ADA_NOT_RENAMING;
3965 info = TYPE_FIELD_NAME (type, 0);
3967 return ADA_NOT_RENAMING;
3968 if (renamed_entity != NULL)
3969 *renamed_entity = info;
3970 suffix = strstr (info, "___XE");
3971 if (renaming_expr != NULL)
3972 *renaming_expr = suffix + 5;
3973 if (suffix == NULL || suffix == info)
3974 return ADA_NOT_RENAMING;
3976 *len = suffix - info;
3982 /* Evaluation: Function Calls */
3984 /* Return an lvalue containing the value VAL. This is the identity on
3985 lvalues, and otherwise has the side-effect of allocating memory
3986 in the inferior where a copy of the value contents is copied. */
3988 static struct value *
3989 ensure_lval (struct value *val)
3991 if (VALUE_LVAL (val) == not_lval
3992 || VALUE_LVAL (val) == lval_internalvar)
3994 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3995 const CORE_ADDR addr =
3996 value_as_long (value_allocate_space_in_inferior (len));
3998 set_value_address (val, addr);
3999 VALUE_LVAL (val) = lval_memory;
4000 write_memory (addr, value_contents (val), len);
4006 /* Return the value ACTUAL, converted to be an appropriate value for a
4007 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4008 allocating any necessary descriptors (fat pointers), or copies of
4009 values not residing in memory, updating it as needed. */
4012 ada_convert_actual (struct value *actual, struct type *formal_type0)
4014 struct type *actual_type = ada_check_typedef (value_type (actual));
4015 struct type *formal_type = ada_check_typedef (formal_type0);
4016 struct type *formal_target =
4017 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4018 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4019 struct type *actual_target =
4020 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4021 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4023 if (ada_is_array_descriptor_type (formal_target)
4024 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4025 return make_array_descriptor (formal_type, actual);
4026 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4027 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4029 struct value *result;
4031 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4032 && ada_is_array_descriptor_type (actual_target))
4033 result = desc_data (actual);
4034 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4036 if (VALUE_LVAL (actual) != lval_memory)
4040 actual_type = ada_check_typedef (value_type (actual));
4041 val = allocate_value (actual_type);
4042 memcpy ((char *) value_contents_raw (val),
4043 (char *) value_contents (actual),
4044 TYPE_LENGTH (actual_type));
4045 actual = ensure_lval (val);
4047 result = value_addr (actual);
4051 return value_cast_pointers (formal_type, result);
4053 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4054 return ada_value_ind (actual);
4059 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4060 type TYPE. This is usually an inefficient no-op except on some targets
4061 (such as AVR) where the representation of a pointer and an address
4065 value_pointer (struct value *value, struct type *type)
4067 struct gdbarch *gdbarch = get_type_arch (type);
4068 unsigned len = TYPE_LENGTH (type);
4069 gdb_byte *buf = alloca (len);
4072 addr = value_address (value);
4073 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4074 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4079 /* Push a descriptor of type TYPE for array value ARR on the stack at
4080 *SP, updating *SP to reflect the new descriptor. Return either
4081 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4082 to-descriptor type rather than a descriptor type), a struct value *
4083 representing a pointer to this descriptor. */
4085 static struct value *
4086 make_array_descriptor (struct type *type, struct value *arr)
4088 struct type *bounds_type = desc_bounds_type (type);
4089 struct type *desc_type = desc_base_type (type);
4090 struct value *descriptor = allocate_value (desc_type);
4091 struct value *bounds = allocate_value (bounds_type);
4094 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4097 modify_field (value_type (bounds), value_contents_writeable (bounds),
4098 ada_array_bound (arr, i, 0),
4099 desc_bound_bitpos (bounds_type, i, 0),
4100 desc_bound_bitsize (bounds_type, i, 0));
4101 modify_field (value_type (bounds), value_contents_writeable (bounds),
4102 ada_array_bound (arr, i, 1),
4103 desc_bound_bitpos (bounds_type, i, 1),
4104 desc_bound_bitsize (bounds_type, i, 1));
4107 bounds = ensure_lval (bounds);
4109 modify_field (value_type (descriptor),
4110 value_contents_writeable (descriptor),
4111 value_pointer (ensure_lval (arr),
4112 TYPE_FIELD_TYPE (desc_type, 0)),
4113 fat_pntr_data_bitpos (desc_type),
4114 fat_pntr_data_bitsize (desc_type));
4116 modify_field (value_type (descriptor),
4117 value_contents_writeable (descriptor),
4118 value_pointer (bounds,
4119 TYPE_FIELD_TYPE (desc_type, 1)),
4120 fat_pntr_bounds_bitpos (desc_type),
4121 fat_pntr_bounds_bitsize (desc_type));
4123 descriptor = ensure_lval (descriptor);
4125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4126 return value_addr (descriptor);
4131 /* Dummy definitions for an experimental caching module that is not
4132 * used in the public sources. */
4135 lookup_cached_symbol (const char *name, domain_enum namespace,
4136 struct symbol **sym, struct block **block)
4142 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4143 struct block *block)
4149 /* Return the result of a standard (literal, C-like) lookup of NAME in
4150 given DOMAIN, visible from lexical block BLOCK. */
4152 static struct symbol *
4153 standard_lookup (const char *name, const struct block *block,
4158 if (lookup_cached_symbol (name, domain, &sym, NULL))
4160 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4161 cache_symbol (name, domain, sym, block_found);
4166 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4167 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4168 since they contend in overloading in the same way. */
4170 is_nonfunction (struct ada_symbol_info syms[], int n)
4174 for (i = 0; i < n; i += 1)
4175 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4176 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4177 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4183 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4184 struct types. Otherwise, they may not. */
4187 equiv_types (struct type *type0, struct type *type1)
4191 if (type0 == NULL || type1 == NULL
4192 || TYPE_CODE (type0) != TYPE_CODE (type1))
4194 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4195 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4196 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4197 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4203 /* True iff SYM0 represents the same entity as SYM1, or one that is
4204 no more defined than that of SYM1. */
4207 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4211 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4212 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4215 switch (SYMBOL_CLASS (sym0))
4221 struct type *type0 = SYMBOL_TYPE (sym0);
4222 struct type *type1 = SYMBOL_TYPE (sym1);
4223 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4224 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4225 int len0 = strlen (name0);
4228 TYPE_CODE (type0) == TYPE_CODE (type1)
4229 && (equiv_types (type0, type1)
4230 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4231 && strncmp (name1 + len0, "___XV", 5) == 0));
4234 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4235 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4241 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4242 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4245 add_defn_to_vec (struct obstack *obstackp,
4247 struct block *block)
4250 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4252 /* Do not try to complete stub types, as the debugger is probably
4253 already scanning all symbols matching a certain name at the
4254 time when this function is called. Trying to replace the stub
4255 type by its associated full type will cause us to restart a scan
4256 which may lead to an infinite recursion. Instead, the client
4257 collecting the matching symbols will end up collecting several
4258 matches, with at least one of them complete. It can then filter
4259 out the stub ones if needed. */
4261 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4263 if (lesseq_defined_than (sym, prevDefns[i].sym))
4265 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4267 prevDefns[i].sym = sym;
4268 prevDefns[i].block = block;
4274 struct ada_symbol_info info;
4278 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4282 /* Number of ada_symbol_info structures currently collected in
4283 current vector in *OBSTACKP. */
4286 num_defns_collected (struct obstack *obstackp)
4288 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4291 /* Vector of ada_symbol_info structures currently collected in current
4292 vector in *OBSTACKP. If FINISH, close off the vector and return
4293 its final address. */
4295 static struct ada_symbol_info *
4296 defns_collected (struct obstack *obstackp, int finish)
4299 return obstack_finish (obstackp);
4301 return (struct ada_symbol_info *) obstack_base (obstackp);
4304 /* Return a minimal symbol matching NAME according to Ada decoding
4305 rules. Returns NULL if there is no such minimal symbol. Names
4306 prefixed with "standard__" are handled specially: "standard__" is
4307 first stripped off, and only static and global symbols are searched. */
4309 struct minimal_symbol *
4310 ada_lookup_simple_minsym (const char *name)
4312 struct objfile *objfile;
4313 struct minimal_symbol *msymbol;
4316 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4318 name += sizeof ("standard__") - 1;
4322 wild_match = (strstr (name, "__") == NULL);
4324 ALL_MSYMBOLS (objfile, msymbol)
4326 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4327 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4334 /* For all subprograms that statically enclose the subprogram of the
4335 selected frame, add symbols matching identifier NAME in DOMAIN
4336 and their blocks to the list of data in OBSTACKP, as for
4337 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4341 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4342 const char *name, domain_enum namespace,
4347 /* True if TYPE is definitely an artificial type supplied to a symbol
4348 for which no debugging information was given in the symbol file. */
4351 is_nondebugging_type (struct type *type)
4353 char *name = ada_type_name (type);
4355 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4358 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4359 duplicate other symbols in the list (The only case I know of where
4360 this happens is when object files containing stabs-in-ecoff are
4361 linked with files containing ordinary ecoff debugging symbols (or no
4362 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4363 Returns the number of items in the modified list. */
4366 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4375 /* If two symbols have the same name and one of them is a stub type,
4376 the get rid of the stub. */
4378 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4379 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4381 for (j = 0; j < nsyms; j++)
4384 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4385 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4386 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4387 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4392 /* Two symbols with the same name, same class and same address
4393 should be identical. */
4395 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4396 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4397 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4399 for (j = 0; j < nsyms; j += 1)
4402 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4403 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4404 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4405 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4406 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4407 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4414 for (j = i + 1; j < nsyms; j += 1)
4415 syms[j - 1] = syms[j];
4424 /* Given a type that corresponds to a renaming entity, use the type name
4425 to extract the scope (package name or function name, fully qualified,
4426 and following the GNAT encoding convention) where this renaming has been
4427 defined. The string returned needs to be deallocated after use. */
4430 xget_renaming_scope (struct type *renaming_type)
4432 /* The renaming types adhere to the following convention:
4433 <scope>__<rename>___<XR extension>.
4434 So, to extract the scope, we search for the "___XR" extension,
4435 and then backtrack until we find the first "__". */
4437 const char *name = type_name_no_tag (renaming_type);
4438 char *suffix = strstr (name, "___XR");
4443 /* Now, backtrack a bit until we find the first "__". Start looking
4444 at suffix - 3, as the <rename> part is at least one character long. */
4446 for (last = suffix - 3; last > name; last--)
4447 if (last[0] == '_' && last[1] == '_')
4450 /* Make a copy of scope and return it. */
4452 scope_len = last - name;
4453 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4455 strncpy (scope, name, scope_len);
4456 scope[scope_len] = '\0';
4461 /* Return nonzero if NAME corresponds to a package name. */
4464 is_package_name (const char *name)
4466 /* Here, We take advantage of the fact that no symbols are generated
4467 for packages, while symbols are generated for each function.
4468 So the condition for NAME represent a package becomes equivalent
4469 to NAME not existing in our list of symbols. There is only one
4470 small complication with library-level functions (see below). */
4474 /* If it is a function that has not been defined at library level,
4475 then we should be able to look it up in the symbols. */
4476 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4479 /* Library-level function names start with "_ada_". See if function
4480 "_ada_" followed by NAME can be found. */
4482 /* Do a quick check that NAME does not contain "__", since library-level
4483 functions names cannot contain "__" in them. */
4484 if (strstr (name, "__") != NULL)
4487 fun_name = xstrprintf ("_ada_%s", name);
4489 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4492 /* Return nonzero if SYM corresponds to a renaming entity that is
4493 not visible from FUNCTION_NAME. */
4496 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4500 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4503 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4505 make_cleanup (xfree, scope);
4507 /* If the rename has been defined in a package, then it is visible. */
4508 if (is_package_name (scope))
4511 /* Check that the rename is in the current function scope by checking
4512 that its name starts with SCOPE. */
4514 /* If the function name starts with "_ada_", it means that it is
4515 a library-level function. Strip this prefix before doing the
4516 comparison, as the encoding for the renaming does not contain
4518 if (strncmp (function_name, "_ada_", 5) == 0)
4521 return (strncmp (function_name, scope, strlen (scope)) != 0);
4524 /* Remove entries from SYMS that corresponds to a renaming entity that
4525 is not visible from the function associated with CURRENT_BLOCK or
4526 that is superfluous due to the presence of more specific renaming
4527 information. Places surviving symbols in the initial entries of
4528 SYMS and returns the number of surviving symbols.
4531 First, in cases where an object renaming is implemented as a
4532 reference variable, GNAT may produce both the actual reference
4533 variable and the renaming encoding. In this case, we discard the
4536 Second, GNAT emits a type following a specified encoding for each renaming
4537 entity. Unfortunately, STABS currently does not support the definition
4538 of types that are local to a given lexical block, so all renamings types
4539 are emitted at library level. As a consequence, if an application
4540 contains two renaming entities using the same name, and a user tries to
4541 print the value of one of these entities, the result of the ada symbol
4542 lookup will also contain the wrong renaming type.
4544 This function partially covers for this limitation by attempting to
4545 remove from the SYMS list renaming symbols that should be visible
4546 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4547 method with the current information available. The implementation
4548 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4550 - When the user tries to print a rename in a function while there
4551 is another rename entity defined in a package: Normally, the
4552 rename in the function has precedence over the rename in the
4553 package, so the latter should be removed from the list. This is
4554 currently not the case.
4556 - This function will incorrectly remove valid renames if
4557 the CURRENT_BLOCK corresponds to a function which symbol name
4558 has been changed by an "Export" pragma. As a consequence,
4559 the user will be unable to print such rename entities. */
4562 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4563 int nsyms, const struct block *current_block)
4565 struct symbol *current_function;
4566 char *current_function_name;
4568 int is_new_style_renaming;
4570 /* If there is both a renaming foo___XR... encoded as a variable and
4571 a simple variable foo in the same block, discard the latter.
4572 First, zero out such symbols, then compress. */
4573 is_new_style_renaming = 0;
4574 for (i = 0; i < nsyms; i += 1)
4576 struct symbol *sym = syms[i].sym;
4577 struct block *block = syms[i].block;
4581 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4583 name = SYMBOL_LINKAGE_NAME (sym);
4584 suffix = strstr (name, "___XR");
4588 int name_len = suffix - name;
4591 is_new_style_renaming = 1;
4592 for (j = 0; j < nsyms; j += 1)
4593 if (i != j && syms[j].sym != NULL
4594 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4596 && block == syms[j].block)
4600 if (is_new_style_renaming)
4604 for (j = k = 0; j < nsyms; j += 1)
4605 if (syms[j].sym != NULL)
4613 /* Extract the function name associated to CURRENT_BLOCK.
4614 Abort if unable to do so. */
4616 if (current_block == NULL)
4619 current_function = block_linkage_function (current_block);
4620 if (current_function == NULL)
4623 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4624 if (current_function_name == NULL)
4627 /* Check each of the symbols, and remove it from the list if it is
4628 a type corresponding to a renaming that is out of the scope of
4629 the current block. */
4634 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4635 == ADA_OBJECT_RENAMING
4636 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4640 for (j = i + 1; j < nsyms; j += 1)
4641 syms[j - 1] = syms[j];
4651 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4652 whose name and domain match NAME and DOMAIN respectively.
4653 If no match was found, then extend the search to "enclosing"
4654 routines (in other words, if we're inside a nested function,
4655 search the symbols defined inside the enclosing functions).
4657 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4660 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4661 struct block *block, domain_enum domain,
4664 int block_depth = 0;
4666 while (block != NULL)
4669 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4671 /* If we found a non-function match, assume that's the one. */
4672 if (is_nonfunction (defns_collected (obstackp, 0),
4673 num_defns_collected (obstackp)))
4676 block = BLOCK_SUPERBLOCK (block);
4679 /* If no luck so far, try to find NAME as a local symbol in some lexically
4680 enclosing subprogram. */
4681 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4682 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4685 /* An object of this type is used as the user_data argument when
4686 calling the map_matching_symbols method. */
4690 struct objfile *objfile;
4691 struct obstack *obstackp;
4692 struct symbol *arg_sym;
4696 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4697 to a list of symbols. DATA0 is a pointer to a struct match_data *
4698 containing the obstack that collects the symbol list, the file that SYM
4699 must come from, a flag indicating whether a non-argument symbol has
4700 been found in the current block, and the last argument symbol
4701 passed in SYM within the current block (if any). When SYM is null,
4702 marking the end of a block, the argument symbol is added if no
4703 other has been found. */
4706 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4708 struct match_data *data = (struct match_data *) data0;
4712 if (!data->found_sym && data->arg_sym != NULL)
4713 add_defn_to_vec (data->obstackp,
4714 fixup_symbol_section (data->arg_sym, data->objfile),
4716 data->found_sym = 0;
4717 data->arg_sym = NULL;
4721 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4723 else if (SYMBOL_IS_ARGUMENT (sym))
4724 data->arg_sym = sym;
4727 data->found_sym = 1;
4728 add_defn_to_vec (data->obstackp,
4729 fixup_symbol_section (sym, data->objfile),
4736 /* Compare STRING1 to STRING2, with results as for strcmp.
4737 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4738 implies compare_names (STRING1, STRING2) (they may differ as to
4739 what symbols compare equal). */
4742 compare_names (const char *string1, const char *string2)
4744 while (*string1 != '\0' && *string2 != '\0')
4746 if (isspace (*string1) || isspace (*string2))
4747 return strcmp_iw_ordered (string1, string2);
4748 if (*string1 != *string2)
4756 return strcmp_iw_ordered (string1, string2);
4758 if (*string2 == '\0')
4760 if (is_name_suffix (string2))
4766 if (*string2 == '(')
4767 return strcmp_iw_ordered (string1, string2);
4769 return *string1 - *string2;
4773 /* Add to OBSTACKP all non-local symbols whose name and domain match
4774 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4775 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4778 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4779 domain_enum domain, int global,
4782 struct objfile *objfile;
4783 struct match_data data;
4785 data.obstackp = obstackp;
4786 data.arg_sym = NULL;
4788 ALL_OBJFILES (objfile)
4790 data.objfile = objfile;
4793 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4794 aux_add_nonlocal_symbols, &data,
4797 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4798 aux_add_nonlocal_symbols, &data,
4799 full_match, compare_names);
4802 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4804 ALL_OBJFILES (objfile)
4806 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4807 strcpy (name1, "_ada_");
4808 strcpy (name1 + sizeof ("_ada_") - 1, name);
4809 data.objfile = objfile;
4810 objfile->sf->qf->map_matching_symbols (name1, domain,
4812 aux_add_nonlocal_symbols,
4814 full_match, compare_names);
4819 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4820 scope and in global scopes, returning the number of matches. Sets
4821 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4822 indicating the symbols found and the blocks and symbol tables (if
4823 any) in which they were found. This vector are transient---good only to
4824 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4825 symbol match within the nest of blocks whose innermost member is BLOCK0,
4826 is the one match returned (no other matches in that or
4827 enclosing blocks is returned). If there are any matches in or
4828 surrounding BLOCK0, then these alone are returned. Otherwise, the
4829 search extends to global and file-scope (static) symbol tables.
4830 Names prefixed with "standard__" are handled specially: "standard__"
4831 is first stripped off, and only static and global symbols are searched. */
4834 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4835 domain_enum namespace,
4836 struct ada_symbol_info **results)
4839 struct block *block;
4845 obstack_free (&symbol_list_obstack, NULL);
4846 obstack_init (&symbol_list_obstack);
4850 /* Search specified block and its superiors. */
4852 wild_match = (strstr (name0, "__") == NULL);
4854 block = (struct block *) block0; /* FIXME: No cast ought to be
4855 needed, but adding const will
4856 have a cascade effect. */
4858 /* Special case: If the user specifies a symbol name inside package
4859 Standard, do a non-wild matching of the symbol name without
4860 the "standard__" prefix. This was primarily introduced in order
4861 to allow the user to specifically access the standard exceptions
4862 using, for instance, Standard.Constraint_Error when Constraint_Error
4863 is ambiguous (due to the user defining its own Constraint_Error
4864 entity inside its program). */
4865 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4869 name = name0 + sizeof ("standard__") - 1;
4872 /* Check the non-global symbols. If we have ANY match, then we're done. */
4874 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4876 if (num_defns_collected (&symbol_list_obstack) > 0)
4879 /* No non-global symbols found. Check our cache to see if we have
4880 already performed this search before. If we have, then return
4884 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4887 add_defn_to_vec (&symbol_list_obstack, sym, block);
4891 /* Search symbols from all global blocks. */
4893 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4896 /* Now add symbols from all per-file blocks if we've gotten no hits
4897 (not strictly correct, but perhaps better than an error). */
4899 if (num_defns_collected (&symbol_list_obstack) == 0)
4900 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4904 ndefns = num_defns_collected (&symbol_list_obstack);
4905 *results = defns_collected (&symbol_list_obstack, 1);
4907 ndefns = remove_extra_symbols (*results, ndefns);
4910 cache_symbol (name0, namespace, NULL, NULL);
4912 if (ndefns == 1 && cacheIfUnique)
4913 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4915 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4921 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4922 domain_enum namespace, struct block **block_found)
4924 struct ada_symbol_info *candidates;
4927 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4929 if (n_candidates == 0)
4932 if (block_found != NULL)
4933 *block_found = candidates[0].block;
4935 return fixup_symbol_section (candidates[0].sym, NULL);
4938 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4939 scope and in global scopes, or NULL if none. NAME is folded and
4940 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4941 choosing the first symbol if there are multiple choices.
4942 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4943 table in which the symbol was found (in both cases, these
4944 assignments occur only if the pointers are non-null). */
4946 ada_lookup_symbol (const char *name, const struct block *block0,
4947 domain_enum namespace, int *is_a_field_of_this)
4949 if (is_a_field_of_this != NULL)
4950 *is_a_field_of_this = 0;
4953 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4954 block0, namespace, NULL);
4957 static struct symbol *
4958 ada_lookup_symbol_nonlocal (const char *name,
4959 const struct block *block,
4960 const domain_enum domain)
4962 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4966 /* True iff STR is a possible encoded suffix of a normal Ada name
4967 that is to be ignored for matching purposes. Suffixes of parallel
4968 names (e.g., XVE) are not included here. Currently, the possible suffixes
4969 are given by any of the regular expressions:
4971 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4972 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4973 _E[0-9]+[bs]$ [protected object entry suffixes]
4974 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4976 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4977 match is performed. This sequence is used to differentiate homonyms,
4978 is an optional part of a valid name suffix. */
4981 is_name_suffix (const char *str)
4984 const char *matching;
4985 const int len = strlen (str);
4987 /* Skip optional leading __[0-9]+. */
4989 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4992 while (isdigit (str[0]))
4998 if (str[0] == '.' || str[0] == '$')
5001 while (isdigit (matching[0]))
5003 if (matching[0] == '\0')
5009 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5012 while (isdigit (matching[0]))
5014 if (matching[0] == '\0')
5019 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5020 with a N at the end. Unfortunately, the compiler uses the same
5021 convention for other internal types it creates. So treating
5022 all entity names that end with an "N" as a name suffix causes
5023 some regressions. For instance, consider the case of an enumerated
5024 type. To support the 'Image attribute, it creates an array whose
5026 Having a single character like this as a suffix carrying some
5027 information is a bit risky. Perhaps we should change the encoding
5028 to be something like "_N" instead. In the meantime, do not do
5029 the following check. */
5030 /* Protected Object Subprograms */
5031 if (len == 1 && str [0] == 'N')
5036 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5039 while (isdigit (matching[0]))
5041 if ((matching[0] == 'b' || matching[0] == 's')
5042 && matching [1] == '\0')
5046 /* ??? We should not modify STR directly, as we are doing below. This
5047 is fine in this case, but may become problematic later if we find
5048 that this alternative did not work, and want to try matching
5049 another one from the begining of STR. Since we modified it, we
5050 won't be able to find the begining of the string anymore! */
5054 while (str[0] != '_' && str[0] != '\0')
5056 if (str[0] != 'n' && str[0] != 'b')
5062 if (str[0] == '\000')
5067 if (str[1] != '_' || str[2] == '\000')
5071 if (strcmp (str + 3, "JM") == 0)
5073 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5074 the LJM suffix in favor of the JM one. But we will
5075 still accept LJM as a valid suffix for a reasonable
5076 amount of time, just to allow ourselves to debug programs
5077 compiled using an older version of GNAT. */
5078 if (strcmp (str + 3, "LJM") == 0)
5082 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5083 || str[4] == 'U' || str[4] == 'P')
5085 if (str[4] == 'R' && str[5] != 'T')
5089 if (!isdigit (str[2]))
5091 for (k = 3; str[k] != '\0'; k += 1)
5092 if (!isdigit (str[k]) && str[k] != '_')
5096 if (str[0] == '$' && isdigit (str[1]))
5098 for (k = 2; str[k] != '\0'; k += 1)
5099 if (!isdigit (str[k]) && str[k] != '_')
5106 /* Return non-zero if the string starting at NAME and ending before
5107 NAME_END contains no capital letters. */
5110 is_valid_name_for_wild_match (const char *name0)
5112 const char *decoded_name = ada_decode (name0);
5115 /* If the decoded name starts with an angle bracket, it means that
5116 NAME0 does not follow the GNAT encoding format. It should then
5117 not be allowed as a possible wild match. */
5118 if (decoded_name[0] == '<')
5121 for (i=0; decoded_name[i] != '\0'; i++)
5122 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5128 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5129 that could start a simple name. Assumes that *NAMEP points into
5130 the string beginning at NAME0. */
5133 advance_wild_match (const char **namep, const char *name0, int target0)
5135 const char *name = *namep;
5145 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5148 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5153 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5154 || name[2] == target0))
5162 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5172 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5173 informational suffixes of NAME (i.e., for which is_name_suffix is
5174 true). Assumes that PATN is a lower-cased Ada simple name. */
5177 wild_match (const char *name, const char *patn)
5180 const char *name0 = name;
5184 const char *match = name;
5188 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5191 if (*p == '\0' && is_name_suffix (name))
5192 return match != name0 && !is_valid_name_for_wild_match (name0);
5194 if (name[-1] == '_')
5197 if (!advance_wild_match (&name, name0, *patn))
5202 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5203 informational suffix. */
5206 full_match (const char *sym_name, const char *search_name)
5208 return !match_name (sym_name, search_name, 0);
5212 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5213 vector *defn_symbols, updating the list of symbols in OBSTACKP
5214 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5215 OBJFILE is the section containing BLOCK.
5216 SYMTAB is recorded with each symbol added. */
5219 ada_add_block_symbols (struct obstack *obstackp,
5220 struct block *block, const char *name,
5221 domain_enum domain, struct objfile *objfile,
5224 struct dict_iterator iter;
5225 int name_len = strlen (name);
5226 /* A matching argument symbol, if any. */
5227 struct symbol *arg_sym;
5228 /* Set true when we find a matching non-argument symbol. */
5236 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5238 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5240 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5241 SYMBOL_DOMAIN (sym), domain)
5242 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5244 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5246 else if (SYMBOL_IS_ARGUMENT (sym))
5251 add_defn_to_vec (obstackp,
5252 fixup_symbol_section (sym, objfile),
5260 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5262 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5264 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5265 SYMBOL_DOMAIN (sym), domain))
5267 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5269 if (SYMBOL_IS_ARGUMENT (sym))
5274 add_defn_to_vec (obstackp,
5275 fixup_symbol_section (sym, objfile),
5283 if (!found_sym && arg_sym != NULL)
5285 add_defn_to_vec (obstackp,
5286 fixup_symbol_section (arg_sym, objfile),
5295 ALL_BLOCK_SYMBOLS (block, iter, sym)
5297 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5298 SYMBOL_DOMAIN (sym), domain))
5302 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5305 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5307 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5312 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5314 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5316 if (SYMBOL_IS_ARGUMENT (sym))
5321 add_defn_to_vec (obstackp,
5322 fixup_symbol_section (sym, objfile),
5330 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5331 They aren't parameters, right? */
5332 if (!found_sym && arg_sym != NULL)
5334 add_defn_to_vec (obstackp,
5335 fixup_symbol_section (arg_sym, objfile),
5342 /* Symbol Completion */
5344 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5345 name in a form that's appropriate for the completion. The result
5346 does not need to be deallocated, but is only good until the next call.
5348 TEXT_LEN is equal to the length of TEXT.
5349 Perform a wild match if WILD_MATCH is set.
5350 ENCODED should be set if TEXT represents the start of a symbol name
5351 in its encoded form. */
5354 symbol_completion_match (const char *sym_name,
5355 const char *text, int text_len,
5356 int wild_match, int encoded)
5358 const int verbatim_match = (text[0] == '<');
5363 /* Strip the leading angle bracket. */
5368 /* First, test against the fully qualified name of the symbol. */
5370 if (strncmp (sym_name, text, text_len) == 0)
5373 if (match && !encoded)
5375 /* One needed check before declaring a positive match is to verify
5376 that iff we are doing a verbatim match, the decoded version
5377 of the symbol name starts with '<'. Otherwise, this symbol name
5378 is not a suitable completion. */
5379 const char *sym_name_copy = sym_name;
5380 int has_angle_bracket;
5382 sym_name = ada_decode (sym_name);
5383 has_angle_bracket = (sym_name[0] == '<');
5384 match = (has_angle_bracket == verbatim_match);
5385 sym_name = sym_name_copy;
5388 if (match && !verbatim_match)
5390 /* When doing non-verbatim match, another check that needs to
5391 be done is to verify that the potentially matching symbol name
5392 does not include capital letters, because the ada-mode would
5393 not be able to understand these symbol names without the
5394 angle bracket notation. */
5397 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5402 /* Second: Try wild matching... */
5404 if (!match && wild_match)
5406 /* Since we are doing wild matching, this means that TEXT
5407 may represent an unqualified symbol name. We therefore must
5408 also compare TEXT against the unqualified name of the symbol. */
5409 sym_name = ada_unqualified_name (ada_decode (sym_name));
5411 if (strncmp (sym_name, text, text_len) == 0)
5415 /* Finally: If we found a mach, prepare the result to return. */
5421 sym_name = add_angle_brackets (sym_name);
5424 sym_name = ada_decode (sym_name);
5429 DEF_VEC_P (char_ptr);
5431 /* A companion function to ada_make_symbol_completion_list().
5432 Check if SYM_NAME represents a symbol which name would be suitable
5433 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5434 it is appended at the end of the given string vector SV.
5436 ORIG_TEXT is the string original string from the user command
5437 that needs to be completed. WORD is the entire command on which
5438 completion should be performed. These two parameters are used to
5439 determine which part of the symbol name should be added to the
5441 if WILD_MATCH is set, then wild matching is performed.
5442 ENCODED should be set if TEXT represents a symbol name in its
5443 encoded formed (in which case the completion should also be
5447 symbol_completion_add (VEC(char_ptr) **sv,
5448 const char *sym_name,
5449 const char *text, int text_len,
5450 const char *orig_text, const char *word,
5451 int wild_match, int encoded)
5453 const char *match = symbol_completion_match (sym_name, text, text_len,
5454 wild_match, encoded);
5460 /* We found a match, so add the appropriate completion to the given
5463 if (word == orig_text)
5465 completion = xmalloc (strlen (match) + 5);
5466 strcpy (completion, match);
5468 else if (word > orig_text)
5470 /* Return some portion of sym_name. */
5471 completion = xmalloc (strlen (match) + 5);
5472 strcpy (completion, match + (word - orig_text));
5476 /* Return some of ORIG_TEXT plus sym_name. */
5477 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5478 strncpy (completion, word, orig_text - word);
5479 completion[orig_text - word] = '\0';
5480 strcat (completion, match);
5483 VEC_safe_push (char_ptr, *sv, completion);
5486 /* An object of this type is passed as the user_data argument to the
5487 map_partial_symbol_names method. */
5488 struct add_partial_datum
5490 VEC(char_ptr) **completions;
5499 /* A callback for map_partial_symbol_names. */
5501 ada_add_partial_symbol_completions (const char *name, void *user_data)
5503 struct add_partial_datum *data = user_data;
5505 symbol_completion_add (data->completions, name,
5506 data->text, data->text_len, data->text0, data->word,
5507 data->wild_match, data->encoded);
5510 /* Return a list of possible symbol names completing TEXT0. The list
5511 is NULL terminated. WORD is the entire command on which completion
5515 ada_make_symbol_completion_list (char *text0, char *word)
5521 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5524 struct minimal_symbol *msymbol;
5525 struct objfile *objfile;
5526 struct block *b, *surrounding_static_block = 0;
5528 struct dict_iterator iter;
5530 if (text0[0] == '<')
5532 text = xstrdup (text0);
5533 make_cleanup (xfree, text);
5534 text_len = strlen (text);
5540 text = xstrdup (ada_encode (text0));
5541 make_cleanup (xfree, text);
5542 text_len = strlen (text);
5543 for (i = 0; i < text_len; i++)
5544 text[i] = tolower (text[i]);
5546 encoded = (strstr (text0, "__") != NULL);
5547 /* If the name contains a ".", then the user is entering a fully
5548 qualified entity name, and the match must not be done in wild
5549 mode. Similarly, if the user wants to complete what looks like
5550 an encoded name, the match must not be done in wild mode. */
5551 wild_match = (strchr (text0, '.') == NULL && !encoded);
5554 /* First, look at the partial symtab symbols. */
5556 struct add_partial_datum data;
5558 data.completions = &completions;
5560 data.text_len = text_len;
5563 data.wild_match = wild_match;
5564 data.encoded = encoded;
5565 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5568 /* At this point scan through the misc symbol vectors and add each
5569 symbol you find to the list. Eventually we want to ignore
5570 anything that isn't a text symbol (everything else will be
5571 handled by the psymtab code above). */
5573 ALL_MSYMBOLS (objfile, msymbol)
5576 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5577 text, text_len, text0, word, wild_match, encoded);
5580 /* Search upwards from currently selected frame (so that we can
5581 complete on local vars. */
5583 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5585 if (!BLOCK_SUPERBLOCK (b))
5586 surrounding_static_block = b; /* For elmin of dups */
5588 ALL_BLOCK_SYMBOLS (b, iter, sym)
5590 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5591 text, text_len, text0, word,
5592 wild_match, encoded);
5596 /* Go through the symtabs and check the externs and statics for
5597 symbols which match. */
5599 ALL_SYMTABS (objfile, s)
5602 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5603 ALL_BLOCK_SYMBOLS (b, iter, sym)
5605 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5606 text, text_len, text0, word,
5607 wild_match, encoded);
5611 ALL_SYMTABS (objfile, s)
5614 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5615 /* Don't do this block twice. */
5616 if (b == surrounding_static_block)
5618 ALL_BLOCK_SYMBOLS (b, iter, sym)
5620 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5621 text, text_len, text0, word,
5622 wild_match, encoded);
5626 /* Append the closing NULL entry. */
5627 VEC_safe_push (char_ptr, completions, NULL);
5629 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5630 return the copy. It's unfortunate that we have to make a copy
5631 of an array that we're about to destroy, but there is nothing much
5632 we can do about it. Fortunately, it's typically not a very large
5635 const size_t completions_size =
5636 VEC_length (char_ptr, completions) * sizeof (char *);
5637 char **result = malloc (completions_size);
5639 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5641 VEC_free (char_ptr, completions);
5648 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5649 for tagged types. */
5652 ada_is_dispatch_table_ptr_type (struct type *type)
5656 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5659 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5663 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5666 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5667 to be invisible to users. */
5670 ada_is_ignored_field (struct type *type, int field_num)
5672 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5675 /* Check the name of that field. */
5677 const char *name = TYPE_FIELD_NAME (type, field_num);
5679 /* Anonymous field names should not be printed.
5680 brobecker/2007-02-20: I don't think this can actually happen
5681 but we don't want to print the value of annonymous fields anyway. */
5685 /* A field named "_parent" is internally generated by GNAT for
5686 tagged types, and should not be printed either. */
5687 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5691 /* If this is the dispatch table of a tagged type, then ignore. */
5692 if (ada_is_tagged_type (type, 1)
5693 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5696 /* Not a special field, so it should not be ignored. */
5700 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5701 pointer or reference type whose ultimate target has a tag field. */
5704 ada_is_tagged_type (struct type *type, int refok)
5706 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5709 /* True iff TYPE represents the type of X'Tag */
5712 ada_is_tag_type (struct type *type)
5714 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5718 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5720 return (name != NULL
5721 && strcmp (name, "ada__tags__dispatch_table") == 0);
5725 /* The type of the tag on VAL. */
5728 ada_tag_type (struct value *val)
5730 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5733 /* The value of the tag on VAL. */
5736 ada_value_tag (struct value *val)
5738 return ada_value_struct_elt (val, "_tag", 0);
5741 /* The value of the tag on the object of type TYPE whose contents are
5742 saved at VALADDR, if it is non-null, or is at memory address
5745 static struct value *
5746 value_tag_from_contents_and_address (struct type *type,
5747 const gdb_byte *valaddr,
5750 int tag_byte_offset;
5751 struct type *tag_type;
5753 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5756 const gdb_byte *valaddr1 = ((valaddr == NULL)
5758 : valaddr + tag_byte_offset);
5759 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5761 return value_from_contents_and_address (tag_type, valaddr1, address1);
5766 static struct type *
5767 type_from_tag (struct value *tag)
5769 const char *type_name = ada_tag_name (tag);
5771 if (type_name != NULL)
5772 return ada_find_any_type (ada_encode (type_name));
5783 static int ada_tag_name_1 (void *);
5784 static int ada_tag_name_2 (struct tag_args *);
5786 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5787 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5788 The value stored in ARGS->name is valid until the next call to
5792 ada_tag_name_1 (void *args0)
5794 struct tag_args *args = (struct tag_args *) args0;
5795 static char name[1024];
5800 val = ada_value_struct_elt (args->tag, "tsd", 1);
5802 return ada_tag_name_2 (args);
5803 val = ada_value_struct_elt (val, "expanded_name", 1);
5806 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5807 for (p = name; *p != '\0'; p += 1)
5814 /* Return the "ada__tags__type_specific_data" type. */
5816 static struct type *
5817 ada_get_tsd_type (struct inferior *inf)
5819 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5821 if (data->tsd_type == 0)
5822 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5823 return data->tsd_type;
5826 /* Utility function for ada_tag_name_1 that tries the second
5827 representation for the dispatch table (in which there is no
5828 explicit 'tsd' field in the referent of the tag pointer, and instead
5829 the tsd pointer is stored just before the dispatch table. */
5832 ada_tag_name_2 (struct tag_args *args)
5834 struct type *info_type;
5835 static char name[1024];
5837 struct value *val, *valp;
5840 info_type = ada_get_tsd_type (current_inferior());
5841 if (info_type == NULL)
5843 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5844 valp = value_cast (info_type, args->tag);
5847 val = value_ind (value_ptradd (valp, -1));
5850 val = ada_value_struct_elt (val, "expanded_name", 1);
5853 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5854 for (p = name; *p != '\0'; p += 1)
5861 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5865 ada_tag_name (struct value *tag)
5867 struct tag_args args;
5869 if (!ada_is_tag_type (value_type (tag)))
5873 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5877 /* The parent type of TYPE, or NULL if none. */
5880 ada_parent_type (struct type *type)
5884 type = ada_check_typedef (type);
5886 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5889 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5890 if (ada_is_parent_field (type, i))
5892 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5894 /* If the _parent field is a pointer, then dereference it. */
5895 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5896 parent_type = TYPE_TARGET_TYPE (parent_type);
5897 /* If there is a parallel XVS type, get the actual base type. */
5898 parent_type = ada_get_base_type (parent_type);
5900 return ada_check_typedef (parent_type);
5906 /* True iff field number FIELD_NUM of structure type TYPE contains the
5907 parent-type (inherited) fields of a derived type. Assumes TYPE is
5908 a structure type with at least FIELD_NUM+1 fields. */
5911 ada_is_parent_field (struct type *type, int field_num)
5913 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5915 return (name != NULL
5916 && (strncmp (name, "PARENT", 6) == 0
5917 || strncmp (name, "_parent", 7) == 0));
5920 /* True iff field number FIELD_NUM of structure type TYPE is a
5921 transparent wrapper field (which should be silently traversed when doing
5922 field selection and flattened when printing). Assumes TYPE is a
5923 structure type with at least FIELD_NUM+1 fields. Such fields are always
5927 ada_is_wrapper_field (struct type *type, int field_num)
5929 const char *name = TYPE_FIELD_NAME (type, field_num);
5931 return (name != NULL
5932 && (strncmp (name, "PARENT", 6) == 0
5933 || strcmp (name, "REP") == 0
5934 || strncmp (name, "_parent", 7) == 0
5935 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5938 /* True iff field number FIELD_NUM of structure or union type TYPE
5939 is a variant wrapper. Assumes TYPE is a structure type with at least
5940 FIELD_NUM+1 fields. */
5943 ada_is_variant_part (struct type *type, int field_num)
5945 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5947 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5948 || (is_dynamic_field (type, field_num)
5949 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5950 == TYPE_CODE_UNION)));
5953 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5954 whose discriminants are contained in the record type OUTER_TYPE,
5955 returns the type of the controlling discriminant for the variant.
5956 May return NULL if the type could not be found. */
5959 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5961 char *name = ada_variant_discrim_name (var_type);
5963 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5966 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5967 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5968 represents a 'when others' clause; otherwise 0. */
5971 ada_is_others_clause (struct type *type, int field_num)
5973 const char *name = TYPE_FIELD_NAME (type, field_num);
5975 return (name != NULL && name[0] == 'O');
5978 /* Assuming that TYPE0 is the type of the variant part of a record,
5979 returns the name of the discriminant controlling the variant.
5980 The value is valid until the next call to ada_variant_discrim_name. */
5983 ada_variant_discrim_name (struct type *type0)
5985 static char *result = NULL;
5986 static size_t result_len = 0;
5989 const char *discrim_end;
5990 const char *discrim_start;
5992 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5993 type = TYPE_TARGET_TYPE (type0);
5997 name = ada_type_name (type);
5999 if (name == NULL || name[0] == '\000')
6002 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6005 if (strncmp (discrim_end, "___XVN", 6) == 0)
6008 if (discrim_end == name)
6011 for (discrim_start = discrim_end; discrim_start != name + 3;
6014 if (discrim_start == name + 1)
6016 if ((discrim_start > name + 3
6017 && strncmp (discrim_start - 3, "___", 3) == 0)
6018 || discrim_start[-1] == '.')
6022 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6023 strncpy (result, discrim_start, discrim_end - discrim_start);
6024 result[discrim_end - discrim_start] = '\0';
6028 /* Scan STR for a subtype-encoded number, beginning at position K.
6029 Put the position of the character just past the number scanned in
6030 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6031 Return 1 if there was a valid number at the given position, and 0
6032 otherwise. A "subtype-encoded" number consists of the absolute value
6033 in decimal, followed by the letter 'm' to indicate a negative number.
6034 Assumes 0m does not occur. */
6037 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6041 if (!isdigit (str[k]))
6044 /* Do it the hard way so as not to make any assumption about
6045 the relationship of unsigned long (%lu scan format code) and
6048 while (isdigit (str[k]))
6050 RU = RU * 10 + (str[k] - '0');
6057 *R = (-(LONGEST) (RU - 1)) - 1;
6063 /* NOTE on the above: Technically, C does not say what the results of
6064 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6065 number representable as a LONGEST (although either would probably work
6066 in most implementations). When RU>0, the locution in the then branch
6067 above is always equivalent to the negative of RU. */
6074 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6075 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6076 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6079 ada_in_variant (LONGEST val, struct type *type, int field_num)
6081 const char *name = TYPE_FIELD_NAME (type, field_num);
6095 if (!ada_scan_number (name, p + 1, &W, &p))
6105 if (!ada_scan_number (name, p + 1, &L, &p)
6106 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6108 if (val >= L && val <= U)
6120 /* FIXME: Lots of redundancy below. Try to consolidate. */
6122 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6123 ARG_TYPE, extract and return the value of one of its (non-static)
6124 fields. FIELDNO says which field. Differs from value_primitive_field
6125 only in that it can handle packed values of arbitrary type. */
6127 static struct value *
6128 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6129 struct type *arg_type)
6133 arg_type = ada_check_typedef (arg_type);
6134 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6136 /* Handle packed fields. */
6138 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6140 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6141 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6143 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6144 offset + bit_pos / 8,
6145 bit_pos % 8, bit_size, type);
6148 return value_primitive_field (arg1, offset, fieldno, arg_type);
6151 /* Find field with name NAME in object of type TYPE. If found,
6152 set the following for each argument that is non-null:
6153 - *FIELD_TYPE_P to the field's type;
6154 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6155 an object of that type;
6156 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6157 - *BIT_SIZE_P to its size in bits if the field is packed, and
6159 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6160 fields up to but not including the desired field, or by the total
6161 number of fields if not found. A NULL value of NAME never
6162 matches; the function just counts visible fields in this case.
6164 Returns 1 if found, 0 otherwise. */
6167 find_struct_field (char *name, struct type *type, int offset,
6168 struct type **field_type_p,
6169 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6174 type = ada_check_typedef (type);
6176 if (field_type_p != NULL)
6177 *field_type_p = NULL;
6178 if (byte_offset_p != NULL)
6180 if (bit_offset_p != NULL)
6182 if (bit_size_p != NULL)
6185 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6187 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6188 int fld_offset = offset + bit_pos / 8;
6189 char *t_field_name = TYPE_FIELD_NAME (type, i);
6191 if (t_field_name == NULL)
6194 else if (name != NULL && field_name_match (t_field_name, name))
6196 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6198 if (field_type_p != NULL)
6199 *field_type_p = TYPE_FIELD_TYPE (type, i);
6200 if (byte_offset_p != NULL)
6201 *byte_offset_p = fld_offset;
6202 if (bit_offset_p != NULL)
6203 *bit_offset_p = bit_pos % 8;
6204 if (bit_size_p != NULL)
6205 *bit_size_p = bit_size;
6208 else if (ada_is_wrapper_field (type, i))
6210 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6211 field_type_p, byte_offset_p, bit_offset_p,
6212 bit_size_p, index_p))
6215 else if (ada_is_variant_part (type, i))
6217 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6220 struct type *field_type
6221 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6223 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6225 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6227 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6228 field_type_p, byte_offset_p,
6229 bit_offset_p, bit_size_p, index_p))
6233 else if (index_p != NULL)
6239 /* Number of user-visible fields in record type TYPE. */
6242 num_visible_fields (struct type *type)
6247 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6251 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6252 and search in it assuming it has (class) type TYPE.
6253 If found, return value, else return NULL.
6255 Searches recursively through wrapper fields (e.g., '_parent'). */
6257 static struct value *
6258 ada_search_struct_field (char *name, struct value *arg, int offset,
6263 type = ada_check_typedef (type);
6264 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6266 char *t_field_name = TYPE_FIELD_NAME (type, i);
6268 if (t_field_name == NULL)
6271 else if (field_name_match (t_field_name, name))
6272 return ada_value_primitive_field (arg, offset, i, type);
6274 else if (ada_is_wrapper_field (type, i))
6276 struct value *v = /* Do not let indent join lines here. */
6277 ada_search_struct_field (name, arg,
6278 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6279 TYPE_FIELD_TYPE (type, i));
6285 else if (ada_is_variant_part (type, i))
6287 /* PNH: Do we ever get here? See find_struct_field. */
6289 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6291 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6293 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6295 struct value *v = ada_search_struct_field /* Force line
6298 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6299 TYPE_FIELD_TYPE (field_type, j));
6309 static struct value *ada_index_struct_field_1 (int *, struct value *,
6310 int, struct type *);
6313 /* Return field #INDEX in ARG, where the index is that returned by
6314 * find_struct_field through its INDEX_P argument. Adjust the address
6315 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6316 * If found, return value, else return NULL. */
6318 static struct value *
6319 ada_index_struct_field (int index, struct value *arg, int offset,
6322 return ada_index_struct_field_1 (&index, arg, offset, type);
6326 /* Auxiliary function for ada_index_struct_field. Like
6327 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6330 static struct value *
6331 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6335 type = ada_check_typedef (type);
6337 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6339 if (TYPE_FIELD_NAME (type, i) == NULL)
6341 else if (ada_is_wrapper_field (type, i))
6343 struct value *v = /* Do not let indent join lines here. */
6344 ada_index_struct_field_1 (index_p, arg,
6345 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6346 TYPE_FIELD_TYPE (type, i));
6352 else if (ada_is_variant_part (type, i))
6354 /* PNH: Do we ever get here? See ada_search_struct_field,
6355 find_struct_field. */
6356 error (_("Cannot assign this kind of variant record"));
6358 else if (*index_p == 0)
6359 return ada_value_primitive_field (arg, offset, i, type);
6366 /* Given ARG, a value of type (pointer or reference to a)*
6367 structure/union, extract the component named NAME from the ultimate
6368 target structure/union and return it as a value with its
6371 The routine searches for NAME among all members of the structure itself
6372 and (recursively) among all members of any wrapper members
6375 If NO_ERR, then simply return NULL in case of error, rather than
6379 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6381 struct type *t, *t1;
6385 t1 = t = ada_check_typedef (value_type (arg));
6386 if (TYPE_CODE (t) == TYPE_CODE_REF)
6388 t1 = TYPE_TARGET_TYPE (t);
6391 t1 = ada_check_typedef (t1);
6392 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6394 arg = coerce_ref (arg);
6399 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6401 t1 = TYPE_TARGET_TYPE (t);
6404 t1 = ada_check_typedef (t1);
6405 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6407 arg = value_ind (arg);
6414 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6418 v = ada_search_struct_field (name, arg, 0, t);
6421 int bit_offset, bit_size, byte_offset;
6422 struct type *field_type;
6425 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6426 address = value_as_address (arg);
6428 address = unpack_pointer (t, value_contents (arg));
6430 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6431 if (find_struct_field (name, t1, 0,
6432 &field_type, &byte_offset, &bit_offset,
6437 if (TYPE_CODE (t) == TYPE_CODE_REF)
6438 arg = ada_coerce_ref (arg);
6440 arg = ada_value_ind (arg);
6441 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6442 bit_offset, bit_size,
6446 v = value_at_lazy (field_type, address + byte_offset);
6450 if (v != NULL || no_err)
6453 error (_("There is no member named %s."), name);
6459 error (_("Attempt to extract a component of "
6460 "a value that is not a record."));
6463 /* Given a type TYPE, look up the type of the component of type named NAME.
6464 If DISPP is non-null, add its byte displacement from the beginning of a
6465 structure (pointed to by a value) of type TYPE to *DISPP (does not
6466 work for packed fields).
6468 Matches any field whose name has NAME as a prefix, possibly
6471 TYPE can be either a struct or union. If REFOK, TYPE may also
6472 be a (pointer or reference)+ to a struct or union, and the
6473 ultimate target type will be searched.
6475 Looks recursively into variant clauses and parent types.
6477 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6478 TYPE is not a type of the right kind. */
6480 static struct type *
6481 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6482 int noerr, int *dispp)
6489 if (refok && type != NULL)
6492 type = ada_check_typedef (type);
6493 if (TYPE_CODE (type) != TYPE_CODE_PTR
6494 && TYPE_CODE (type) != TYPE_CODE_REF)
6496 type = TYPE_TARGET_TYPE (type);
6500 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6501 && TYPE_CODE (type) != TYPE_CODE_UNION))
6507 target_terminal_ours ();
6508 gdb_flush (gdb_stdout);
6510 error (_("Type (null) is not a structure or union type"));
6513 /* XXX: type_sprint */
6514 fprintf_unfiltered (gdb_stderr, _("Type "));
6515 type_print (type, "", gdb_stderr, -1);
6516 error (_(" is not a structure or union type"));
6521 type = to_static_fixed_type (type);
6523 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6525 char *t_field_name = TYPE_FIELD_NAME (type, i);
6529 if (t_field_name == NULL)
6532 else if (field_name_match (t_field_name, name))
6535 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6536 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6539 else if (ada_is_wrapper_field (type, i))
6542 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6547 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6552 else if (ada_is_variant_part (type, i))
6555 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6558 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6560 /* FIXME pnh 2008/01/26: We check for a field that is
6561 NOT wrapped in a struct, since the compiler sometimes
6562 generates these for unchecked variant types. Revisit
6563 if the compiler changes this practice. */
6564 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6566 if (v_field_name != NULL
6567 && field_name_match (v_field_name, name))
6568 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6570 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6577 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6588 target_terminal_ours ();
6589 gdb_flush (gdb_stdout);
6592 /* XXX: type_sprint */
6593 fprintf_unfiltered (gdb_stderr, _("Type "));
6594 type_print (type, "", gdb_stderr, -1);
6595 error (_(" has no component named <null>"));
6599 /* XXX: type_sprint */
6600 fprintf_unfiltered (gdb_stderr, _("Type "));
6601 type_print (type, "", gdb_stderr, -1);
6602 error (_(" has no component named %s"), name);
6609 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6610 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6611 represents an unchecked union (that is, the variant part of a
6612 record that is named in an Unchecked_Union pragma). */
6615 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6617 char *discrim_name = ada_variant_discrim_name (var_type);
6619 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6624 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6625 within a value of type OUTER_TYPE that is stored in GDB at
6626 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6627 numbering from 0) is applicable. Returns -1 if none are. */
6630 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6631 const gdb_byte *outer_valaddr)
6635 char *discrim_name = ada_variant_discrim_name (var_type);
6636 struct value *outer;
6637 struct value *discrim;
6638 LONGEST discrim_val;
6640 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6641 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6642 if (discrim == NULL)
6644 discrim_val = value_as_long (discrim);
6647 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6649 if (ada_is_others_clause (var_type, i))
6651 else if (ada_in_variant (discrim_val, var_type, i))
6655 return others_clause;
6660 /* Dynamic-Sized Records */
6662 /* Strategy: The type ostensibly attached to a value with dynamic size
6663 (i.e., a size that is not statically recorded in the debugging
6664 data) does not accurately reflect the size or layout of the value.
6665 Our strategy is to convert these values to values with accurate,
6666 conventional types that are constructed on the fly. */
6668 /* There is a subtle and tricky problem here. In general, we cannot
6669 determine the size of dynamic records without its data. However,
6670 the 'struct value' data structure, which GDB uses to represent
6671 quantities in the inferior process (the target), requires the size
6672 of the type at the time of its allocation in order to reserve space
6673 for GDB's internal copy of the data. That's why the
6674 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6675 rather than struct value*s.
6677 However, GDB's internal history variables ($1, $2, etc.) are
6678 struct value*s containing internal copies of the data that are not, in
6679 general, the same as the data at their corresponding addresses in
6680 the target. Fortunately, the types we give to these values are all
6681 conventional, fixed-size types (as per the strategy described
6682 above), so that we don't usually have to perform the
6683 'to_fixed_xxx_type' conversions to look at their values.
6684 Unfortunately, there is one exception: if one of the internal
6685 history variables is an array whose elements are unconstrained
6686 records, then we will need to create distinct fixed types for each
6687 element selected. */
6689 /* The upshot of all of this is that many routines take a (type, host
6690 address, target address) triple as arguments to represent a value.
6691 The host address, if non-null, is supposed to contain an internal
6692 copy of the relevant data; otherwise, the program is to consult the
6693 target at the target address. */
6695 /* Assuming that VAL0 represents a pointer value, the result of
6696 dereferencing it. Differs from value_ind in its treatment of
6697 dynamic-sized types. */
6700 ada_value_ind (struct value *val0)
6702 struct value *val = unwrap_value (value_ind (val0));
6704 return ada_to_fixed_value (val);
6707 /* The value resulting from dereferencing any "reference to"
6708 qualifiers on VAL0. */
6710 static struct value *
6711 ada_coerce_ref (struct value *val0)
6713 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6715 struct value *val = val0;
6717 val = coerce_ref (val);
6718 val = unwrap_value (val);
6719 return ada_to_fixed_value (val);
6725 /* Return OFF rounded upward if necessary to a multiple of
6726 ALIGNMENT (a power of 2). */
6729 align_value (unsigned int off, unsigned int alignment)
6731 return (off + alignment - 1) & ~(alignment - 1);
6734 /* Return the bit alignment required for field #F of template type TYPE. */
6737 field_alignment (struct type *type, int f)
6739 const char *name = TYPE_FIELD_NAME (type, f);
6743 /* The field name should never be null, unless the debugging information
6744 is somehow malformed. In this case, we assume the field does not
6745 require any alignment. */
6749 len = strlen (name);
6751 if (!isdigit (name[len - 1]))
6754 if (isdigit (name[len - 2]))
6755 align_offset = len - 2;
6757 align_offset = len - 1;
6759 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6760 return TARGET_CHAR_BIT;
6762 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6765 /* Find a symbol named NAME. Ignores ambiguity. */
6768 ada_find_any_symbol (const char *name)
6772 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6773 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6776 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6780 /* Find a type named NAME. Ignores ambiguity. This routine will look
6781 solely for types defined by debug info, it will not search the GDB
6785 ada_find_any_type (const char *name)
6787 struct symbol *sym = ada_find_any_symbol (name);
6790 return SYMBOL_TYPE (sym);
6795 /* Given NAME and an associated BLOCK, search all symbols for
6796 NAME suffixed with "___XR", which is the ``renaming'' symbol
6797 associated to NAME. Return this symbol if found, return
6801 ada_find_renaming_symbol (const char *name, struct block *block)
6805 sym = find_old_style_renaming_symbol (name, block);
6810 /* Not right yet. FIXME pnh 7/20/2007. */
6811 sym = ada_find_any_symbol (name);
6812 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6818 static struct symbol *
6819 find_old_style_renaming_symbol (const char *name, struct block *block)
6821 const struct symbol *function_sym = block_linkage_function (block);
6824 if (function_sym != NULL)
6826 /* If the symbol is defined inside a function, NAME is not fully
6827 qualified. This means we need to prepend the function name
6828 as well as adding the ``___XR'' suffix to build the name of
6829 the associated renaming symbol. */
6830 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6831 /* Function names sometimes contain suffixes used
6832 for instance to qualify nested subprograms. When building
6833 the XR type name, we need to make sure that this suffix is
6834 not included. So do not include any suffix in the function
6835 name length below. */
6836 int function_name_len = ada_name_prefix_len (function_name);
6837 const int rename_len = function_name_len + 2 /* "__" */
6838 + strlen (name) + 6 /* "___XR\0" */ ;
6840 /* Strip the suffix if necessary. */
6841 ada_remove_trailing_digits (function_name, &function_name_len);
6842 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6843 ada_remove_Xbn_suffix (function_name, &function_name_len);
6845 /* Library-level functions are a special case, as GNAT adds
6846 a ``_ada_'' prefix to the function name to avoid namespace
6847 pollution. However, the renaming symbols themselves do not
6848 have this prefix, so we need to skip this prefix if present. */
6849 if (function_name_len > 5 /* "_ada_" */
6850 && strstr (function_name, "_ada_") == function_name)
6853 function_name_len -= 5;
6856 rename = (char *) alloca (rename_len * sizeof (char));
6857 strncpy (rename, function_name, function_name_len);
6858 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6863 const int rename_len = strlen (name) + 6;
6865 rename = (char *) alloca (rename_len * sizeof (char));
6866 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6869 return ada_find_any_symbol (rename);
6872 /* Because of GNAT encoding conventions, several GDB symbols may match a
6873 given type name. If the type denoted by TYPE0 is to be preferred to
6874 that of TYPE1 for purposes of type printing, return non-zero;
6875 otherwise return 0. */
6878 ada_prefer_type (struct type *type0, struct type *type1)
6882 else if (type0 == NULL)
6884 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6886 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6888 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6890 else if (ada_is_constrained_packed_array_type (type0))
6892 else if (ada_is_array_descriptor_type (type0)
6893 && !ada_is_array_descriptor_type (type1))
6897 const char *type0_name = type_name_no_tag (type0);
6898 const char *type1_name = type_name_no_tag (type1);
6900 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6901 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6907 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6908 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6911 ada_type_name (struct type *type)
6915 else if (TYPE_NAME (type) != NULL)
6916 return TYPE_NAME (type);
6918 return TYPE_TAG_NAME (type);
6921 /* Search the list of "descriptive" types associated to TYPE for a type
6922 whose name is NAME. */
6924 static struct type *
6925 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6927 struct type *result;
6929 /* If there no descriptive-type info, then there is no parallel type
6931 if (!HAVE_GNAT_AUX_INFO (type))
6934 result = TYPE_DESCRIPTIVE_TYPE (type);
6935 while (result != NULL)
6937 char *result_name = ada_type_name (result);
6939 if (result_name == NULL)
6941 warning (_("unexpected null name on descriptive type"));
6945 /* If the names match, stop. */
6946 if (strcmp (result_name, name) == 0)
6949 /* Otherwise, look at the next item on the list, if any. */
6950 if (HAVE_GNAT_AUX_INFO (result))
6951 result = TYPE_DESCRIPTIVE_TYPE (result);
6956 /* If we didn't find a match, see whether this is a packed array. With
6957 older compilers, the descriptive type information is either absent or
6958 irrelevant when it comes to packed arrays so the above lookup fails.
6959 Fall back to using a parallel lookup by name in this case. */
6960 if (result == NULL && ada_is_constrained_packed_array_type (type))
6961 return ada_find_any_type (name);
6966 /* Find a parallel type to TYPE with the specified NAME, using the
6967 descriptive type taken from the debugging information, if available,
6968 and otherwise using the (slower) name-based method. */
6970 static struct type *
6971 ada_find_parallel_type_with_name (struct type *type, const char *name)
6973 struct type *result = NULL;
6975 if (HAVE_GNAT_AUX_INFO (type))
6976 result = find_parallel_type_by_descriptive_type (type, name);
6978 result = ada_find_any_type (name);
6983 /* Same as above, but specify the name of the parallel type by appending
6984 SUFFIX to the name of TYPE. */
6987 ada_find_parallel_type (struct type *type, const char *suffix)
6989 char *name, *typename = ada_type_name (type);
6992 if (typename == NULL)
6995 len = strlen (typename);
6997 name = (char *) alloca (len + strlen (suffix) + 1);
6999 strcpy (name, typename);
7000 strcpy (name + len, suffix);
7002 return ada_find_parallel_type_with_name (type, name);
7005 /* If TYPE is a variable-size record type, return the corresponding template
7006 type describing its fields. Otherwise, return NULL. */
7008 static struct type *
7009 dynamic_template_type (struct type *type)
7011 type = ada_check_typedef (type);
7013 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7014 || ada_type_name (type) == NULL)
7018 int len = strlen (ada_type_name (type));
7020 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7023 return ada_find_parallel_type (type, "___XVE");
7027 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7028 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7031 is_dynamic_field (struct type *templ_type, int field_num)
7033 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7036 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7037 && strstr (name, "___XVL") != NULL;
7040 /* The index of the variant field of TYPE, or -1 if TYPE does not
7041 represent a variant record type. */
7044 variant_field_index (struct type *type)
7048 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7051 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7053 if (ada_is_variant_part (type, f))
7059 /* A record type with no fields. */
7061 static struct type *
7062 empty_record (struct type *template)
7064 struct type *type = alloc_type_copy (template);
7066 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7067 TYPE_NFIELDS (type) = 0;
7068 TYPE_FIELDS (type) = NULL;
7069 INIT_CPLUS_SPECIFIC (type);
7070 TYPE_NAME (type) = "<empty>";
7071 TYPE_TAG_NAME (type) = NULL;
7072 TYPE_LENGTH (type) = 0;
7076 /* An ordinary record type (with fixed-length fields) that describes
7077 the value of type TYPE at VALADDR or ADDRESS (see comments at
7078 the beginning of this section) VAL according to GNAT conventions.
7079 DVAL0 should describe the (portion of a) record that contains any
7080 necessary discriminants. It should be NULL if value_type (VAL) is
7081 an outer-level type (i.e., as opposed to a branch of a variant.) A
7082 variant field (unless unchecked) is replaced by a particular branch
7085 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7086 length are not statically known are discarded. As a consequence,
7087 VALADDR, ADDRESS and DVAL0 are ignored.
7089 NOTE: Limitations: For now, we assume that dynamic fields and
7090 variants occupy whole numbers of bytes. However, they need not be
7094 ada_template_to_fixed_record_type_1 (struct type *type,
7095 const gdb_byte *valaddr,
7096 CORE_ADDR address, struct value *dval0,
7097 int keep_dynamic_fields)
7099 struct value *mark = value_mark ();
7102 int nfields, bit_len;
7108 /* Compute the number of fields in this record type that are going
7109 to be processed: unless keep_dynamic_fields, this includes only
7110 fields whose position and length are static will be processed. */
7111 if (keep_dynamic_fields)
7112 nfields = TYPE_NFIELDS (type);
7116 while (nfields < TYPE_NFIELDS (type)
7117 && !ada_is_variant_part (type, nfields)
7118 && !is_dynamic_field (type, nfields))
7122 rtype = alloc_type_copy (type);
7123 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7124 INIT_CPLUS_SPECIFIC (rtype);
7125 TYPE_NFIELDS (rtype) = nfields;
7126 TYPE_FIELDS (rtype) = (struct field *)
7127 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7128 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7129 TYPE_NAME (rtype) = ada_type_name (type);
7130 TYPE_TAG_NAME (rtype) = NULL;
7131 TYPE_FIXED_INSTANCE (rtype) = 1;
7137 for (f = 0; f < nfields; f += 1)
7139 off = align_value (off, field_alignment (type, f))
7140 + TYPE_FIELD_BITPOS (type, f);
7141 TYPE_FIELD_BITPOS (rtype, f) = off;
7142 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7144 if (ada_is_variant_part (type, f))
7149 else if (is_dynamic_field (type, f))
7151 const gdb_byte *field_valaddr = valaddr;
7152 CORE_ADDR field_address = address;
7153 struct type *field_type =
7154 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7158 /* rtype's length is computed based on the run-time
7159 value of discriminants. If the discriminants are not
7160 initialized, the type size may be completely bogus and
7161 GDB may fail to allocate a value for it. So check the
7162 size first before creating the value. */
7164 dval = value_from_contents_and_address (rtype, valaddr, address);
7169 /* If the type referenced by this field is an aligner type, we need
7170 to unwrap that aligner type, because its size might not be set.
7171 Keeping the aligner type would cause us to compute the wrong
7172 size for this field, impacting the offset of the all the fields
7173 that follow this one. */
7174 if (ada_is_aligner_type (field_type))
7176 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7178 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7179 field_address = cond_offset_target (field_address, field_offset);
7180 field_type = ada_aligned_type (field_type);
7183 field_valaddr = cond_offset_host (field_valaddr,
7184 off / TARGET_CHAR_BIT);
7185 field_address = cond_offset_target (field_address,
7186 off / TARGET_CHAR_BIT);
7188 /* Get the fixed type of the field. Note that, in this case,
7189 we do not want to get the real type out of the tag: if
7190 the current field is the parent part of a tagged record,
7191 we will get the tag of the object. Clearly wrong: the real
7192 type of the parent is not the real type of the child. We
7193 would end up in an infinite loop. */
7194 field_type = ada_get_base_type (field_type);
7195 field_type = ada_to_fixed_type (field_type, field_valaddr,
7196 field_address, dval, 0);
7197 /* If the field size is already larger than the maximum
7198 object size, then the record itself will necessarily
7199 be larger than the maximum object size. We need to make
7200 this check now, because the size might be so ridiculously
7201 large (due to an uninitialized variable in the inferior)
7202 that it would cause an overflow when adding it to the
7204 check_size (field_type);
7206 TYPE_FIELD_TYPE (rtype, f) = field_type;
7207 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7208 /* The multiplication can potentially overflow. But because
7209 the field length has been size-checked just above, and
7210 assuming that the maximum size is a reasonable value,
7211 an overflow should not happen in practice. So rather than
7212 adding overflow recovery code to this already complex code,
7213 we just assume that it's not going to happen. */
7215 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7219 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7221 /* If our field is a typedef type (most likely a typedef of
7222 a fat pointer, encoding an array access), then we need to
7223 look at its target type to determine its characteristics.
7224 In particular, we would miscompute the field size if we took
7225 the size of the typedef (zero), instead of the size of
7227 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7228 field_type = ada_typedef_target_type (field_type);
7230 TYPE_FIELD_TYPE (rtype, f) = field_type;
7231 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7232 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7234 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7237 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7239 if (off + fld_bit_len > bit_len)
7240 bit_len = off + fld_bit_len;
7242 TYPE_LENGTH (rtype) =
7243 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7246 /* We handle the variant part, if any, at the end because of certain
7247 odd cases in which it is re-ordered so as NOT to be the last field of
7248 the record. This can happen in the presence of representation
7250 if (variant_field >= 0)
7252 struct type *branch_type;
7254 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7257 dval = value_from_contents_and_address (rtype, valaddr, address);
7262 to_fixed_variant_branch_type
7263 (TYPE_FIELD_TYPE (type, variant_field),
7264 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7265 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7266 if (branch_type == NULL)
7268 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7269 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7270 TYPE_NFIELDS (rtype) -= 1;
7274 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7275 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7277 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7279 if (off + fld_bit_len > bit_len)
7280 bit_len = off + fld_bit_len;
7281 TYPE_LENGTH (rtype) =
7282 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7286 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7287 should contain the alignment of that record, which should be a strictly
7288 positive value. If null or negative, then something is wrong, most
7289 probably in the debug info. In that case, we don't round up the size
7290 of the resulting type. If this record is not part of another structure,
7291 the current RTYPE length might be good enough for our purposes. */
7292 if (TYPE_LENGTH (type) <= 0)
7294 if (TYPE_NAME (rtype))
7295 warning (_("Invalid type size for `%s' detected: %d."),
7296 TYPE_NAME (rtype), TYPE_LENGTH (type));
7298 warning (_("Invalid type size for <unnamed> detected: %d."),
7299 TYPE_LENGTH (type));
7303 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7304 TYPE_LENGTH (type));
7307 value_free_to_mark (mark);
7308 if (TYPE_LENGTH (rtype) > varsize_limit)
7309 error (_("record type with dynamic size is larger than varsize-limit"));
7313 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7316 static struct type *
7317 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7318 CORE_ADDR address, struct value *dval0)
7320 return ada_template_to_fixed_record_type_1 (type, valaddr,
7324 /* An ordinary record type in which ___XVL-convention fields and
7325 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7326 static approximations, containing all possible fields. Uses
7327 no runtime values. Useless for use in values, but that's OK,
7328 since the results are used only for type determinations. Works on both
7329 structs and unions. Representation note: to save space, we memorize
7330 the result of this function in the TYPE_TARGET_TYPE of the
7333 static struct type *
7334 template_to_static_fixed_type (struct type *type0)
7340 if (TYPE_TARGET_TYPE (type0) != NULL)
7341 return TYPE_TARGET_TYPE (type0);
7343 nfields = TYPE_NFIELDS (type0);
7346 for (f = 0; f < nfields; f += 1)
7348 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7349 struct type *new_type;
7351 if (is_dynamic_field (type0, f))
7352 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7354 new_type = static_unwrap_type (field_type);
7355 if (type == type0 && new_type != field_type)
7357 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7358 TYPE_CODE (type) = TYPE_CODE (type0);
7359 INIT_CPLUS_SPECIFIC (type);
7360 TYPE_NFIELDS (type) = nfields;
7361 TYPE_FIELDS (type) = (struct field *)
7362 TYPE_ALLOC (type, nfields * sizeof (struct field));
7363 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7364 sizeof (struct field) * nfields);
7365 TYPE_NAME (type) = ada_type_name (type0);
7366 TYPE_TAG_NAME (type) = NULL;
7367 TYPE_FIXED_INSTANCE (type) = 1;
7368 TYPE_LENGTH (type) = 0;
7370 TYPE_FIELD_TYPE (type, f) = new_type;
7371 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7376 /* Given an object of type TYPE whose contents are at VALADDR and
7377 whose address in memory is ADDRESS, returns a revision of TYPE,
7378 which should be a non-dynamic-sized record, in which the variant
7379 part, if any, is replaced with the appropriate branch. Looks
7380 for discriminant values in DVAL0, which can be NULL if the record
7381 contains the necessary discriminant values. */
7383 static struct type *
7384 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7385 CORE_ADDR address, struct value *dval0)
7387 struct value *mark = value_mark ();
7390 struct type *branch_type;
7391 int nfields = TYPE_NFIELDS (type);
7392 int variant_field = variant_field_index (type);
7394 if (variant_field == -1)
7398 dval = value_from_contents_and_address (type, valaddr, address);
7402 rtype = alloc_type_copy (type);
7403 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7404 INIT_CPLUS_SPECIFIC (rtype);
7405 TYPE_NFIELDS (rtype) = nfields;
7406 TYPE_FIELDS (rtype) =
7407 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7408 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7409 sizeof (struct field) * nfields);
7410 TYPE_NAME (rtype) = ada_type_name (type);
7411 TYPE_TAG_NAME (rtype) = NULL;
7412 TYPE_FIXED_INSTANCE (rtype) = 1;
7413 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7415 branch_type = to_fixed_variant_branch_type
7416 (TYPE_FIELD_TYPE (type, variant_field),
7417 cond_offset_host (valaddr,
7418 TYPE_FIELD_BITPOS (type, variant_field)
7420 cond_offset_target (address,
7421 TYPE_FIELD_BITPOS (type, variant_field)
7422 / TARGET_CHAR_BIT), dval);
7423 if (branch_type == NULL)
7427 for (f = variant_field + 1; f < nfields; f += 1)
7428 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7429 TYPE_NFIELDS (rtype) -= 1;
7433 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7434 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7435 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7436 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7438 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7440 value_free_to_mark (mark);
7444 /* An ordinary record type (with fixed-length fields) that describes
7445 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7446 beginning of this section]. Any necessary discriminants' values
7447 should be in DVAL, a record value; it may be NULL if the object
7448 at ADDR itself contains any necessary discriminant values.
7449 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7450 values from the record are needed. Except in the case that DVAL,
7451 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7452 unchecked) is replaced by a particular branch of the variant.
7454 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7455 is questionable and may be removed. It can arise during the
7456 processing of an unconstrained-array-of-record type where all the
7457 variant branches have exactly the same size. This is because in
7458 such cases, the compiler does not bother to use the XVS convention
7459 when encoding the record. I am currently dubious of this
7460 shortcut and suspect the compiler should be altered. FIXME. */
7462 static struct type *
7463 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7464 CORE_ADDR address, struct value *dval)
7466 struct type *templ_type;
7468 if (TYPE_FIXED_INSTANCE (type0))
7471 templ_type = dynamic_template_type (type0);
7473 if (templ_type != NULL)
7474 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7475 else if (variant_field_index (type0) >= 0)
7477 if (dval == NULL && valaddr == NULL && address == 0)
7479 return to_record_with_fixed_variant_part (type0, valaddr, address,
7484 TYPE_FIXED_INSTANCE (type0) = 1;
7490 /* An ordinary record type (with fixed-length fields) that describes
7491 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7492 union type. Any necessary discriminants' values should be in DVAL,
7493 a record value. That is, this routine selects the appropriate
7494 branch of the union at ADDR according to the discriminant value
7495 indicated in the union's type name. Returns VAR_TYPE0 itself if
7496 it represents a variant subject to a pragma Unchecked_Union. */
7498 static struct type *
7499 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7500 CORE_ADDR address, struct value *dval)
7503 struct type *templ_type;
7504 struct type *var_type;
7506 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7507 var_type = TYPE_TARGET_TYPE (var_type0);
7509 var_type = var_type0;
7511 templ_type = ada_find_parallel_type (var_type, "___XVU");
7513 if (templ_type != NULL)
7514 var_type = templ_type;
7516 if (is_unchecked_variant (var_type, value_type (dval)))
7519 ada_which_variant_applies (var_type,
7520 value_type (dval), value_contents (dval));
7523 return empty_record (var_type);
7524 else if (is_dynamic_field (var_type, which))
7525 return to_fixed_record_type
7526 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7527 valaddr, address, dval);
7528 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7530 to_fixed_record_type
7531 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7533 return TYPE_FIELD_TYPE (var_type, which);
7536 /* Assuming that TYPE0 is an array type describing the type of a value
7537 at ADDR, and that DVAL describes a record containing any
7538 discriminants used in TYPE0, returns a type for the value that
7539 contains no dynamic components (that is, no components whose sizes
7540 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7541 true, gives an error message if the resulting type's size is over
7544 static struct type *
7545 to_fixed_array_type (struct type *type0, struct value *dval,
7548 struct type *index_type_desc;
7549 struct type *result;
7550 int constrained_packed_array_p;
7552 if (TYPE_FIXED_INSTANCE (type0))
7555 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7556 if (constrained_packed_array_p)
7557 type0 = decode_constrained_packed_array_type (type0);
7559 index_type_desc = ada_find_parallel_type (type0, "___XA");
7560 ada_fixup_array_indexes_type (index_type_desc);
7561 if (index_type_desc == NULL)
7563 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7565 /* NOTE: elt_type---the fixed version of elt_type0---should never
7566 depend on the contents of the array in properly constructed
7568 /* Create a fixed version of the array element type.
7569 We're not providing the address of an element here,
7570 and thus the actual object value cannot be inspected to do
7571 the conversion. This should not be a problem, since arrays of
7572 unconstrained objects are not allowed. In particular, all
7573 the elements of an array of a tagged type should all be of
7574 the same type specified in the debugging info. No need to
7575 consult the object tag. */
7576 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7578 /* Make sure we always create a new array type when dealing with
7579 packed array types, since we're going to fix-up the array
7580 type length and element bitsize a little further down. */
7581 if (elt_type0 == elt_type && !constrained_packed_array_p)
7584 result = create_array_type (alloc_type_copy (type0),
7585 elt_type, TYPE_INDEX_TYPE (type0));
7590 struct type *elt_type0;
7593 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7594 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7596 /* NOTE: result---the fixed version of elt_type0---should never
7597 depend on the contents of the array in properly constructed
7599 /* Create a fixed version of the array element type.
7600 We're not providing the address of an element here,
7601 and thus the actual object value cannot be inspected to do
7602 the conversion. This should not be a problem, since arrays of
7603 unconstrained objects are not allowed. In particular, all
7604 the elements of an array of a tagged type should all be of
7605 the same type specified in the debugging info. No need to
7606 consult the object tag. */
7608 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7611 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7613 struct type *range_type =
7614 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7616 result = create_array_type (alloc_type_copy (elt_type0),
7617 result, range_type);
7618 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7620 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7621 error (_("array type with dynamic size is larger than varsize-limit"));
7624 if (constrained_packed_array_p)
7626 /* So far, the resulting type has been created as if the original
7627 type was a regular (non-packed) array type. As a result, the
7628 bitsize of the array elements needs to be set again, and the array
7629 length needs to be recomputed based on that bitsize. */
7630 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7631 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7633 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7634 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7635 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7636 TYPE_LENGTH (result)++;
7639 TYPE_FIXED_INSTANCE (result) = 1;
7644 /* A standard type (containing no dynamically sized components)
7645 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7646 DVAL describes a record containing any discriminants used in TYPE0,
7647 and may be NULL if there are none, or if the object of type TYPE at
7648 ADDRESS or in VALADDR contains these discriminants.
7650 If CHECK_TAG is not null, in the case of tagged types, this function
7651 attempts to locate the object's tag and use it to compute the actual
7652 type. However, when ADDRESS is null, we cannot use it to determine the
7653 location of the tag, and therefore compute the tagged type's actual type.
7654 So we return the tagged type without consulting the tag. */
7656 static struct type *
7657 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7658 CORE_ADDR address, struct value *dval, int check_tag)
7660 type = ada_check_typedef (type);
7661 switch (TYPE_CODE (type))
7665 case TYPE_CODE_STRUCT:
7667 struct type *static_type = to_static_fixed_type (type);
7668 struct type *fixed_record_type =
7669 to_fixed_record_type (type, valaddr, address, NULL);
7671 /* If STATIC_TYPE is a tagged type and we know the object's address,
7672 then we can determine its tag, and compute the object's actual
7673 type from there. Note that we have to use the fixed record
7674 type (the parent part of the record may have dynamic fields
7675 and the way the location of _tag is expressed may depend on
7678 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7680 struct type *real_type =
7681 type_from_tag (value_tag_from_contents_and_address
7686 if (real_type != NULL)
7687 return to_fixed_record_type (real_type, valaddr, address, NULL);
7690 /* Check to see if there is a parallel ___XVZ variable.
7691 If there is, then it provides the actual size of our type. */
7692 else if (ada_type_name (fixed_record_type) != NULL)
7694 char *name = ada_type_name (fixed_record_type);
7695 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7699 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7700 size = get_int_var_value (xvz_name, &xvz_found);
7701 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7703 fixed_record_type = copy_type (fixed_record_type);
7704 TYPE_LENGTH (fixed_record_type) = size;
7706 /* The FIXED_RECORD_TYPE may have be a stub. We have
7707 observed this when the debugging info is STABS, and
7708 apparently it is something that is hard to fix.
7710 In practice, we don't need the actual type definition
7711 at all, because the presence of the XVZ variable allows us
7712 to assume that there must be a XVS type as well, which we
7713 should be able to use later, when we need the actual type
7716 In the meantime, pretend that the "fixed" type we are
7717 returning is NOT a stub, because this can cause trouble
7718 when using this type to create new types targeting it.
7719 Indeed, the associated creation routines often check
7720 whether the target type is a stub and will try to replace
7721 it, thus using a type with the wrong size. This, in turn,
7722 might cause the new type to have the wrong size too.
7723 Consider the case of an array, for instance, where the size
7724 of the array is computed from the number of elements in
7725 our array multiplied by the size of its element. */
7726 TYPE_STUB (fixed_record_type) = 0;
7729 return fixed_record_type;
7731 case TYPE_CODE_ARRAY:
7732 return to_fixed_array_type (type, dval, 1);
7733 case TYPE_CODE_UNION:
7737 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7741 /* The same as ada_to_fixed_type_1, except that it preserves the type
7742 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7744 The typedef layer needs be preserved in order to differentiate between
7745 arrays and array pointers when both types are implemented using the same
7746 fat pointer. In the array pointer case, the pointer is encoded as
7747 a typedef of the pointer type. For instance, considering:
7749 type String_Access is access String;
7750 S1 : String_Access := null;
7752 To the debugger, S1 is defined as a typedef of type String. But
7753 to the user, it is a pointer. So if the user tries to print S1,
7754 we should not dereference the array, but print the array address
7757 If we didn't preserve the typedef layer, we would lose the fact that
7758 the type is to be presented as a pointer (needs de-reference before
7759 being printed). And we would also use the source-level type name. */
7762 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7763 CORE_ADDR address, struct value *dval, int check_tag)
7766 struct type *fixed_type =
7767 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7769 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7770 then preserve the typedef layer.
7772 Implementation note: We can only check the main-type portion of
7773 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7774 from TYPE now returns a type that has the same instance flags
7775 as TYPE. For instance, if TYPE is a "typedef const", and its
7776 target type is a "struct", then the typedef elimination will return
7777 a "const" version of the target type. See check_typedef for more
7778 details about how the typedef layer elimination is done.
7780 brobecker/2010-11-19: It seems to me that the only case where it is
7781 useful to preserve the typedef layer is when dealing with fat pointers.
7782 Perhaps, we could add a check for that and preserve the typedef layer
7783 only in that situation. But this seems unecessary so far, probably
7784 because we call check_typedef/ada_check_typedef pretty much everywhere.
7786 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7787 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7788 == TYPE_MAIN_TYPE (fixed_type)))
7794 /* A standard (static-sized) type corresponding as well as possible to
7795 TYPE0, but based on no runtime data. */
7797 static struct type *
7798 to_static_fixed_type (struct type *type0)
7805 if (TYPE_FIXED_INSTANCE (type0))
7808 type0 = ada_check_typedef (type0);
7810 switch (TYPE_CODE (type0))
7814 case TYPE_CODE_STRUCT:
7815 type = dynamic_template_type (type0);
7817 return template_to_static_fixed_type (type);
7819 return template_to_static_fixed_type (type0);
7820 case TYPE_CODE_UNION:
7821 type = ada_find_parallel_type (type0, "___XVU");
7823 return template_to_static_fixed_type (type);
7825 return template_to_static_fixed_type (type0);
7829 /* A static approximation of TYPE with all type wrappers removed. */
7831 static struct type *
7832 static_unwrap_type (struct type *type)
7834 if (ada_is_aligner_type (type))
7836 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7837 if (ada_type_name (type1) == NULL)
7838 TYPE_NAME (type1) = ada_type_name (type);
7840 return static_unwrap_type (type1);
7844 struct type *raw_real_type = ada_get_base_type (type);
7846 if (raw_real_type == type)
7849 return to_static_fixed_type (raw_real_type);
7853 /* In some cases, incomplete and private types require
7854 cross-references that are not resolved as records (for example,
7856 type FooP is access Foo;
7858 type Foo is array ...;
7859 ). In these cases, since there is no mechanism for producing
7860 cross-references to such types, we instead substitute for FooP a
7861 stub enumeration type that is nowhere resolved, and whose tag is
7862 the name of the actual type. Call these types "non-record stubs". */
7864 /* A type equivalent to TYPE that is not a non-record stub, if one
7865 exists, otherwise TYPE. */
7868 ada_check_typedef (struct type *type)
7873 /* If our type is a typedef type of a fat pointer, then we're done.
7874 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7875 what allows us to distinguish between fat pointers that represent
7876 array types, and fat pointers that represent array access types
7877 (in both cases, the compiler implements them as fat pointers). */
7878 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7879 && is_thick_pntr (ada_typedef_target_type (type)))
7882 CHECK_TYPEDEF (type);
7883 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7884 || !TYPE_STUB (type)
7885 || TYPE_TAG_NAME (type) == NULL)
7889 char *name = TYPE_TAG_NAME (type);
7890 struct type *type1 = ada_find_any_type (name);
7895 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7896 stubs pointing to arrays, as we don't create symbols for array
7897 types, only for the typedef-to-array types). If that's the case,
7898 strip the typedef layer. */
7899 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7900 type1 = ada_check_typedef (type1);
7906 /* A value representing the data at VALADDR/ADDRESS as described by
7907 type TYPE0, but with a standard (static-sized) type that correctly
7908 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7909 type, then return VAL0 [this feature is simply to avoid redundant
7910 creation of struct values]. */
7912 static struct value *
7913 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7916 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7918 if (type == type0 && val0 != NULL)
7921 return value_from_contents_and_address (type, 0, address);
7924 /* A value representing VAL, but with a standard (static-sized) type
7925 that correctly describes it. Does not necessarily create a new
7929 ada_to_fixed_value (struct value *val)
7931 return ada_to_fixed_value_create (value_type (val),
7932 value_address (val),
7939 /* Table mapping attribute numbers to names.
7940 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7942 static const char *attribute_names[] = {
7960 ada_attribute_name (enum exp_opcode n)
7962 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7963 return attribute_names[n - OP_ATR_FIRST + 1];
7965 return attribute_names[0];
7968 /* Evaluate the 'POS attribute applied to ARG. */
7971 pos_atr (struct value *arg)
7973 struct value *val = coerce_ref (arg);
7974 struct type *type = value_type (val);
7976 if (!discrete_type_p (type))
7977 error (_("'POS only defined on discrete types"));
7979 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7982 LONGEST v = value_as_long (val);
7984 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7986 if (v == TYPE_FIELD_BITPOS (type, i))
7989 error (_("enumeration value is invalid: can't find 'POS"));
7992 return value_as_long (val);
7995 static struct value *
7996 value_pos_atr (struct type *type, struct value *arg)
7998 return value_from_longest (type, pos_atr (arg));
8001 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8003 static struct value *
8004 value_val_atr (struct type *type, struct value *arg)
8006 if (!discrete_type_p (type))
8007 error (_("'VAL only defined on discrete types"));
8008 if (!integer_type_p (value_type (arg)))
8009 error (_("'VAL requires integral argument"));
8011 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8013 long pos = value_as_long (arg);
8015 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8016 error (_("argument to 'VAL out of range"));
8017 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8020 return value_from_longest (type, value_as_long (arg));
8026 /* True if TYPE appears to be an Ada character type.
8027 [At the moment, this is true only for Character and Wide_Character;
8028 It is a heuristic test that could stand improvement]. */
8031 ada_is_character_type (struct type *type)
8035 /* If the type code says it's a character, then assume it really is,
8036 and don't check any further. */
8037 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8040 /* Otherwise, assume it's a character type iff it is a discrete type
8041 with a known character type name. */
8042 name = ada_type_name (type);
8043 return (name != NULL
8044 && (TYPE_CODE (type) == TYPE_CODE_INT
8045 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8046 && (strcmp (name, "character") == 0
8047 || strcmp (name, "wide_character") == 0
8048 || strcmp (name, "wide_wide_character") == 0
8049 || strcmp (name, "unsigned char") == 0));
8052 /* True if TYPE appears to be an Ada string type. */
8055 ada_is_string_type (struct type *type)
8057 type = ada_check_typedef (type);
8059 && TYPE_CODE (type) != TYPE_CODE_PTR
8060 && (ada_is_simple_array_type (type)
8061 || ada_is_array_descriptor_type (type))
8062 && ada_array_arity (type) == 1)
8064 struct type *elttype = ada_array_element_type (type, 1);
8066 return ada_is_character_type (elttype);
8072 /* The compiler sometimes provides a parallel XVS type for a given
8073 PAD type. Normally, it is safe to follow the PAD type directly,
8074 but older versions of the compiler have a bug that causes the offset
8075 of its "F" field to be wrong. Following that field in that case
8076 would lead to incorrect results, but this can be worked around
8077 by ignoring the PAD type and using the associated XVS type instead.
8079 Set to True if the debugger should trust the contents of PAD types.
8080 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8081 static int trust_pad_over_xvs = 1;
8083 /* True if TYPE is a struct type introduced by the compiler to force the
8084 alignment of a value. Such types have a single field with a
8085 distinctive name. */
8088 ada_is_aligner_type (struct type *type)
8090 type = ada_check_typedef (type);
8092 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8095 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8096 && TYPE_NFIELDS (type) == 1
8097 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8100 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8101 the parallel type. */
8104 ada_get_base_type (struct type *raw_type)
8106 struct type *real_type_namer;
8107 struct type *raw_real_type;
8109 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8112 if (ada_is_aligner_type (raw_type))
8113 /* The encoding specifies that we should always use the aligner type.
8114 So, even if this aligner type has an associated XVS type, we should
8117 According to the compiler gurus, an XVS type parallel to an aligner
8118 type may exist because of a stabs limitation. In stabs, aligner
8119 types are empty because the field has a variable-sized type, and
8120 thus cannot actually be used as an aligner type. As a result,
8121 we need the associated parallel XVS type to decode the type.
8122 Since the policy in the compiler is to not change the internal
8123 representation based on the debugging info format, we sometimes
8124 end up having a redundant XVS type parallel to the aligner type. */
8127 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8128 if (real_type_namer == NULL
8129 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8130 || TYPE_NFIELDS (real_type_namer) != 1)
8133 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8135 /* This is an older encoding form where the base type needs to be
8136 looked up by name. We prefer the newer enconding because it is
8138 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8139 if (raw_real_type == NULL)
8142 return raw_real_type;
8145 /* The field in our XVS type is a reference to the base type. */
8146 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8149 /* The type of value designated by TYPE, with all aligners removed. */
8152 ada_aligned_type (struct type *type)
8154 if (ada_is_aligner_type (type))
8155 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8157 return ada_get_base_type (type);
8161 /* The address of the aligned value in an object at address VALADDR
8162 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8165 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8167 if (ada_is_aligner_type (type))
8168 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8170 TYPE_FIELD_BITPOS (type,
8171 0) / TARGET_CHAR_BIT);
8178 /* The printed representation of an enumeration literal with encoded
8179 name NAME. The value is good to the next call of ada_enum_name. */
8181 ada_enum_name (const char *name)
8183 static char *result;
8184 static size_t result_len = 0;
8187 /* First, unqualify the enumeration name:
8188 1. Search for the last '.' character. If we find one, then skip
8189 all the preceeding characters, the unqualified name starts
8190 right after that dot.
8191 2. Otherwise, we may be debugging on a target where the compiler
8192 translates dots into "__". Search forward for double underscores,
8193 but stop searching when we hit an overloading suffix, which is
8194 of the form "__" followed by digits. */
8196 tmp = strrchr (name, '.');
8201 while ((tmp = strstr (name, "__")) != NULL)
8203 if (isdigit (tmp[2]))
8214 if (name[1] == 'U' || name[1] == 'W')
8216 if (sscanf (name + 2, "%x", &v) != 1)
8222 GROW_VECT (result, result_len, 16);
8223 if (isascii (v) && isprint (v))
8224 xsnprintf (result, result_len, "'%c'", v);
8225 else if (name[1] == 'U')
8226 xsnprintf (result, result_len, "[\"%02x\"]", v);
8228 xsnprintf (result, result_len, "[\"%04x\"]", v);
8234 tmp = strstr (name, "__");
8236 tmp = strstr (name, "$");
8239 GROW_VECT (result, result_len, tmp - name + 1);
8240 strncpy (result, name, tmp - name);
8241 result[tmp - name] = '\0';
8249 /* Evaluate the subexpression of EXP starting at *POS as for
8250 evaluate_type, updating *POS to point just past the evaluated
8253 static struct value *
8254 evaluate_subexp_type (struct expression *exp, int *pos)
8256 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8259 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8262 static struct value *
8263 unwrap_value (struct value *val)
8265 struct type *type = ada_check_typedef (value_type (val));
8267 if (ada_is_aligner_type (type))
8269 struct value *v = ada_value_struct_elt (val, "F", 0);
8270 struct type *val_type = ada_check_typedef (value_type (v));
8272 if (ada_type_name (val_type) == NULL)
8273 TYPE_NAME (val_type) = ada_type_name (type);
8275 return unwrap_value (v);
8279 struct type *raw_real_type =
8280 ada_check_typedef (ada_get_base_type (type));
8282 /* If there is no parallel XVS or XVE type, then the value is
8283 already unwrapped. Return it without further modification. */
8284 if ((type == raw_real_type)
8285 && ada_find_parallel_type (type, "___XVE") == NULL)
8289 coerce_unspec_val_to_type
8290 (val, ada_to_fixed_type (raw_real_type, 0,
8291 value_address (val),
8296 static struct value *
8297 cast_to_fixed (struct type *type, struct value *arg)
8301 if (type == value_type (arg))
8303 else if (ada_is_fixed_point_type (value_type (arg)))
8304 val = ada_float_to_fixed (type,
8305 ada_fixed_to_float (value_type (arg),
8306 value_as_long (arg)));
8309 DOUBLEST argd = value_as_double (arg);
8311 val = ada_float_to_fixed (type, argd);
8314 return value_from_longest (type, val);
8317 static struct value *
8318 cast_from_fixed (struct type *type, struct value *arg)
8320 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8321 value_as_long (arg));
8323 return value_from_double (type, val);
8326 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8327 return the converted value. */
8329 static struct value *
8330 coerce_for_assign (struct type *type, struct value *val)
8332 struct type *type2 = value_type (val);
8337 type2 = ada_check_typedef (type2);
8338 type = ada_check_typedef (type);
8340 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8341 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8343 val = ada_value_ind (val);
8344 type2 = value_type (val);
8347 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8348 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8350 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8351 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8352 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8353 error (_("Incompatible types in assignment"));
8354 deprecated_set_value_type (val, type);
8359 static struct value *
8360 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8363 struct type *type1, *type2;
8366 arg1 = coerce_ref (arg1);
8367 arg2 = coerce_ref (arg2);
8368 type1 = base_type (ada_check_typedef (value_type (arg1)));
8369 type2 = base_type (ada_check_typedef (value_type (arg2)));
8371 if (TYPE_CODE (type1) != TYPE_CODE_INT
8372 || TYPE_CODE (type2) != TYPE_CODE_INT)
8373 return value_binop (arg1, arg2, op);
8382 return value_binop (arg1, arg2, op);
8385 v2 = value_as_long (arg2);
8387 error (_("second operand of %s must not be zero."), op_string (op));
8389 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8390 return value_binop (arg1, arg2, op);
8392 v1 = value_as_long (arg1);
8397 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8398 v += v > 0 ? -1 : 1;
8406 /* Should not reach this point. */
8410 val = allocate_value (type1);
8411 store_unsigned_integer (value_contents_raw (val),
8412 TYPE_LENGTH (value_type (val)),
8413 gdbarch_byte_order (get_type_arch (type1)), v);
8418 ada_value_equal (struct value *arg1, struct value *arg2)
8420 if (ada_is_direct_array_type (value_type (arg1))
8421 || ada_is_direct_array_type (value_type (arg2)))
8423 /* Automatically dereference any array reference before
8424 we attempt to perform the comparison. */
8425 arg1 = ada_coerce_ref (arg1);
8426 arg2 = ada_coerce_ref (arg2);
8428 arg1 = ada_coerce_to_simple_array (arg1);
8429 arg2 = ada_coerce_to_simple_array (arg2);
8430 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8431 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8432 error (_("Attempt to compare array with non-array"));
8433 /* FIXME: The following works only for types whose
8434 representations use all bits (no padding or undefined bits)
8435 and do not have user-defined equality. */
8437 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8438 && memcmp (value_contents (arg1), value_contents (arg2),
8439 TYPE_LENGTH (value_type (arg1))) == 0;
8441 return value_equal (arg1, arg2);
8444 /* Total number of component associations in the aggregate starting at
8445 index PC in EXP. Assumes that index PC is the start of an
8449 num_component_specs (struct expression *exp, int pc)
8453 m = exp->elts[pc + 1].longconst;
8456 for (i = 0; i < m; i += 1)
8458 switch (exp->elts[pc].opcode)
8464 n += exp->elts[pc + 1].longconst;
8467 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8472 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8473 component of LHS (a simple array or a record), updating *POS past
8474 the expression, assuming that LHS is contained in CONTAINER. Does
8475 not modify the inferior's memory, nor does it modify LHS (unless
8476 LHS == CONTAINER). */
8479 assign_component (struct value *container, struct value *lhs, LONGEST index,
8480 struct expression *exp, int *pos)
8482 struct value *mark = value_mark ();
8485 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8487 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8488 struct value *index_val = value_from_longest (index_type, index);
8490 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8494 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8495 elt = ada_to_fixed_value (unwrap_value (elt));
8498 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8499 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8501 value_assign_to_component (container, elt,
8502 ada_evaluate_subexp (NULL, exp, pos,
8505 value_free_to_mark (mark);
8508 /* Assuming that LHS represents an lvalue having a record or array
8509 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8510 of that aggregate's value to LHS, advancing *POS past the
8511 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8512 lvalue containing LHS (possibly LHS itself). Does not modify
8513 the inferior's memory, nor does it modify the contents of
8514 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8516 static struct value *
8517 assign_aggregate (struct value *container,
8518 struct value *lhs, struct expression *exp,
8519 int *pos, enum noside noside)
8521 struct type *lhs_type;
8522 int n = exp->elts[*pos+1].longconst;
8523 LONGEST low_index, high_index;
8526 int max_indices, num_indices;
8527 int is_array_aggregate;
8531 if (noside != EVAL_NORMAL)
8535 for (i = 0; i < n; i += 1)
8536 ada_evaluate_subexp (NULL, exp, pos, noside);
8540 container = ada_coerce_ref (container);
8541 if (ada_is_direct_array_type (value_type (container)))
8542 container = ada_coerce_to_simple_array (container);
8543 lhs = ada_coerce_ref (lhs);
8544 if (!deprecated_value_modifiable (lhs))
8545 error (_("Left operand of assignment is not a modifiable lvalue."));
8547 lhs_type = value_type (lhs);
8548 if (ada_is_direct_array_type (lhs_type))
8550 lhs = ada_coerce_to_simple_array (lhs);
8551 lhs_type = value_type (lhs);
8552 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8553 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8554 is_array_aggregate = 1;
8556 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8559 high_index = num_visible_fields (lhs_type) - 1;
8560 is_array_aggregate = 0;
8563 error (_("Left-hand side must be array or record."));
8565 num_specs = num_component_specs (exp, *pos - 3);
8566 max_indices = 4 * num_specs + 4;
8567 indices = alloca (max_indices * sizeof (indices[0]));
8568 indices[0] = indices[1] = low_index - 1;
8569 indices[2] = indices[3] = high_index + 1;
8572 for (i = 0; i < n; i += 1)
8574 switch (exp->elts[*pos].opcode)
8577 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8578 &num_indices, max_indices,
8579 low_index, high_index);
8582 aggregate_assign_positional (container, lhs, exp, pos, indices,
8583 &num_indices, max_indices,
8584 low_index, high_index);
8588 error (_("Misplaced 'others' clause"));
8589 aggregate_assign_others (container, lhs, exp, pos, indices,
8590 num_indices, low_index, high_index);
8593 error (_("Internal error: bad aggregate clause"));
8600 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8601 construct at *POS, updating *POS past the construct, given that
8602 the positions are relative to lower bound LOW, where HIGH is the
8603 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8604 updating *NUM_INDICES as needed. CONTAINER is as for
8605 assign_aggregate. */
8607 aggregate_assign_positional (struct value *container,
8608 struct value *lhs, struct expression *exp,
8609 int *pos, LONGEST *indices, int *num_indices,
8610 int max_indices, LONGEST low, LONGEST high)
8612 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8614 if (ind - 1 == high)
8615 warning (_("Extra components in aggregate ignored."));
8618 add_component_interval (ind, ind, indices, num_indices, max_indices);
8620 assign_component (container, lhs, ind, exp, pos);
8623 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8626 /* Assign into the components of LHS indexed by the OP_CHOICES
8627 construct at *POS, updating *POS past the construct, given that
8628 the allowable indices are LOW..HIGH. Record the indices assigned
8629 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8630 needed. CONTAINER is as for assign_aggregate. */
8632 aggregate_assign_from_choices (struct value *container,
8633 struct value *lhs, struct expression *exp,
8634 int *pos, LONGEST *indices, int *num_indices,
8635 int max_indices, LONGEST low, LONGEST high)
8638 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8639 int choice_pos, expr_pc;
8640 int is_array = ada_is_direct_array_type (value_type (lhs));
8642 choice_pos = *pos += 3;
8644 for (j = 0; j < n_choices; j += 1)
8645 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8647 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8649 for (j = 0; j < n_choices; j += 1)
8651 LONGEST lower, upper;
8652 enum exp_opcode op = exp->elts[choice_pos].opcode;
8654 if (op == OP_DISCRETE_RANGE)
8657 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8659 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8664 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8676 name = &exp->elts[choice_pos + 2].string;
8679 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8682 error (_("Invalid record component association."));
8684 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8686 if (! find_struct_field (name, value_type (lhs), 0,
8687 NULL, NULL, NULL, NULL, &ind))
8688 error (_("Unknown component name: %s."), name);
8689 lower = upper = ind;
8692 if (lower <= upper && (lower < low || upper > high))
8693 error (_("Index in component association out of bounds."));
8695 add_component_interval (lower, upper, indices, num_indices,
8697 while (lower <= upper)
8702 assign_component (container, lhs, lower, exp, &pos1);
8708 /* Assign the value of the expression in the OP_OTHERS construct in
8709 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8710 have not been previously assigned. The index intervals already assigned
8711 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8712 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8714 aggregate_assign_others (struct value *container,
8715 struct value *lhs, struct expression *exp,
8716 int *pos, LONGEST *indices, int num_indices,
8717 LONGEST low, LONGEST high)
8720 int expr_pc = *pos+1;
8722 for (i = 0; i < num_indices - 2; i += 2)
8726 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8731 assign_component (container, lhs, ind, exp, &pos);
8734 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8737 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8738 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8739 modifying *SIZE as needed. It is an error if *SIZE exceeds
8740 MAX_SIZE. The resulting intervals do not overlap. */
8742 add_component_interval (LONGEST low, LONGEST high,
8743 LONGEST* indices, int *size, int max_size)
8747 for (i = 0; i < *size; i += 2) {
8748 if (high >= indices[i] && low <= indices[i + 1])
8752 for (kh = i + 2; kh < *size; kh += 2)
8753 if (high < indices[kh])
8755 if (low < indices[i])
8757 indices[i + 1] = indices[kh - 1];
8758 if (high > indices[i + 1])
8759 indices[i + 1] = high;
8760 memcpy (indices + i + 2, indices + kh, *size - kh);
8761 *size -= kh - i - 2;
8764 else if (high < indices[i])
8768 if (*size == max_size)
8769 error (_("Internal error: miscounted aggregate components."));
8771 for (j = *size-1; j >= i+2; j -= 1)
8772 indices[j] = indices[j - 2];
8774 indices[i + 1] = high;
8777 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8780 static struct value *
8781 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8783 if (type == ada_check_typedef (value_type (arg2)))
8786 if (ada_is_fixed_point_type (type))
8787 return (cast_to_fixed (type, arg2));
8789 if (ada_is_fixed_point_type (value_type (arg2)))
8790 return cast_from_fixed (type, arg2);
8792 return value_cast (type, arg2);
8795 /* Evaluating Ada expressions, and printing their result.
8796 ------------------------------------------------------
8801 We usually evaluate an Ada expression in order to print its value.
8802 We also evaluate an expression in order to print its type, which
8803 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8804 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8805 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8806 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8809 Evaluating expressions is a little more complicated for Ada entities
8810 than it is for entities in languages such as C. The main reason for
8811 this is that Ada provides types whose definition might be dynamic.
8812 One example of such types is variant records. Or another example
8813 would be an array whose bounds can only be known at run time.
8815 The following description is a general guide as to what should be
8816 done (and what should NOT be done) in order to evaluate an expression
8817 involving such types, and when. This does not cover how the semantic
8818 information is encoded by GNAT as this is covered separatly. For the
8819 document used as the reference for the GNAT encoding, see exp_dbug.ads
8820 in the GNAT sources.
8822 Ideally, we should embed each part of this description next to its
8823 associated code. Unfortunately, the amount of code is so vast right
8824 now that it's hard to see whether the code handling a particular
8825 situation might be duplicated or not. One day, when the code is
8826 cleaned up, this guide might become redundant with the comments
8827 inserted in the code, and we might want to remove it.
8829 2. ``Fixing'' an Entity, the Simple Case:
8830 -----------------------------------------
8832 When evaluating Ada expressions, the tricky issue is that they may
8833 reference entities whose type contents and size are not statically
8834 known. Consider for instance a variant record:
8836 type Rec (Empty : Boolean := True) is record
8839 when False => Value : Integer;
8842 Yes : Rec := (Empty => False, Value => 1);
8843 No : Rec := (empty => True);
8845 The size and contents of that record depends on the value of the
8846 descriminant (Rec.Empty). At this point, neither the debugging
8847 information nor the associated type structure in GDB are able to
8848 express such dynamic types. So what the debugger does is to create
8849 "fixed" versions of the type that applies to the specific object.
8850 We also informally refer to this opperation as "fixing" an object,
8851 which means creating its associated fixed type.
8853 Example: when printing the value of variable "Yes" above, its fixed
8854 type would look like this:
8861 On the other hand, if we printed the value of "No", its fixed type
8868 Things become a little more complicated when trying to fix an entity
8869 with a dynamic type that directly contains another dynamic type,
8870 such as an array of variant records, for instance. There are
8871 two possible cases: Arrays, and records.
8873 3. ``Fixing'' Arrays:
8874 ---------------------
8876 The type structure in GDB describes an array in terms of its bounds,
8877 and the type of its elements. By design, all elements in the array
8878 have the same type and we cannot represent an array of variant elements
8879 using the current type structure in GDB. When fixing an array,
8880 we cannot fix the array element, as we would potentially need one
8881 fixed type per element of the array. As a result, the best we can do
8882 when fixing an array is to produce an array whose bounds and size
8883 are correct (allowing us to read it from memory), but without having
8884 touched its element type. Fixing each element will be done later,
8885 when (if) necessary.
8887 Arrays are a little simpler to handle than records, because the same
8888 amount of memory is allocated for each element of the array, even if
8889 the amount of space actually used by each element differs from element
8890 to element. Consider for instance the following array of type Rec:
8892 type Rec_Array is array (1 .. 2) of Rec;
8894 The actual amount of memory occupied by each element might be different
8895 from element to element, depending on the value of their discriminant.
8896 But the amount of space reserved for each element in the array remains
8897 fixed regardless. So we simply need to compute that size using
8898 the debugging information available, from which we can then determine
8899 the array size (we multiply the number of elements of the array by
8900 the size of each element).
8902 The simplest case is when we have an array of a constrained element
8903 type. For instance, consider the following type declarations:
8905 type Bounded_String (Max_Size : Integer) is
8907 Buffer : String (1 .. Max_Size);
8909 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8911 In this case, the compiler describes the array as an array of
8912 variable-size elements (identified by its XVS suffix) for which
8913 the size can be read in the parallel XVZ variable.
8915 In the case of an array of an unconstrained element type, the compiler
8916 wraps the array element inside a private PAD type. This type should not
8917 be shown to the user, and must be "unwrap"'ed before printing. Note
8918 that we also use the adjective "aligner" in our code to designate
8919 these wrapper types.
8921 In some cases, the size allocated for each element is statically
8922 known. In that case, the PAD type already has the correct size,
8923 and the array element should remain unfixed.
8925 But there are cases when this size is not statically known.
8926 For instance, assuming that "Five" is an integer variable:
8928 type Dynamic is array (1 .. Five) of Integer;
8929 type Wrapper (Has_Length : Boolean := False) is record
8932 when True => Length : Integer;
8936 type Wrapper_Array is array (1 .. 2) of Wrapper;
8938 Hello : Wrapper_Array := (others => (Has_Length => True,
8939 Data => (others => 17),
8943 The debugging info would describe variable Hello as being an
8944 array of a PAD type. The size of that PAD type is not statically
8945 known, but can be determined using a parallel XVZ variable.
8946 In that case, a copy of the PAD type with the correct size should
8947 be used for the fixed array.
8949 3. ``Fixing'' record type objects:
8950 ----------------------------------
8952 Things are slightly different from arrays in the case of dynamic
8953 record types. In this case, in order to compute the associated
8954 fixed type, we need to determine the size and offset of each of
8955 its components. This, in turn, requires us to compute the fixed
8956 type of each of these components.
8958 Consider for instance the example:
8960 type Bounded_String (Max_Size : Natural) is record
8961 Str : String (1 .. Max_Size);
8964 My_String : Bounded_String (Max_Size => 10);
8966 In that case, the position of field "Length" depends on the size
8967 of field Str, which itself depends on the value of the Max_Size
8968 discriminant. In order to fix the type of variable My_String,
8969 we need to fix the type of field Str. Therefore, fixing a variant
8970 record requires us to fix each of its components.
8972 However, if a component does not have a dynamic size, the component
8973 should not be fixed. In particular, fields that use a PAD type
8974 should not fixed. Here is an example where this might happen
8975 (assuming type Rec above):
8977 type Container (Big : Boolean) is record
8981 when True => Another : Integer;
8985 My_Container : Container := (Big => False,
8986 First => (Empty => True),
8989 In that example, the compiler creates a PAD type for component First,
8990 whose size is constant, and then positions the component After just
8991 right after it. The offset of component After is therefore constant
8994 The debugger computes the position of each field based on an algorithm
8995 that uses, among other things, the actual position and size of the field
8996 preceding it. Let's now imagine that the user is trying to print
8997 the value of My_Container. If the type fixing was recursive, we would
8998 end up computing the offset of field After based on the size of the
8999 fixed version of field First. And since in our example First has
9000 only one actual field, the size of the fixed type is actually smaller
9001 than the amount of space allocated to that field, and thus we would
9002 compute the wrong offset of field After.
9004 To make things more complicated, we need to watch out for dynamic
9005 components of variant records (identified by the ___XVL suffix in
9006 the component name). Even if the target type is a PAD type, the size
9007 of that type might not be statically known. So the PAD type needs
9008 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9009 we might end up with the wrong size for our component. This can be
9010 observed with the following type declarations:
9012 type Octal is new Integer range 0 .. 7;
9013 type Octal_Array is array (Positive range <>) of Octal;
9014 pragma Pack (Octal_Array);
9016 type Octal_Buffer (Size : Positive) is record
9017 Buffer : Octal_Array (1 .. Size);
9021 In that case, Buffer is a PAD type whose size is unset and needs
9022 to be computed by fixing the unwrapped type.
9024 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9025 ----------------------------------------------------------
9027 Lastly, when should the sub-elements of an entity that remained unfixed
9028 thus far, be actually fixed?
9030 The answer is: Only when referencing that element. For instance
9031 when selecting one component of a record, this specific component
9032 should be fixed at that point in time. Or when printing the value
9033 of a record, each component should be fixed before its value gets
9034 printed. Similarly for arrays, the element of the array should be
9035 fixed when printing each element of the array, or when extracting
9036 one element out of that array. On the other hand, fixing should
9037 not be performed on the elements when taking a slice of an array!
9039 Note that one of the side-effects of miscomputing the offset and
9040 size of each field is that we end up also miscomputing the size
9041 of the containing type. This can have adverse results when computing
9042 the value of an entity. GDB fetches the value of an entity based
9043 on the size of its type, and thus a wrong size causes GDB to fetch
9044 the wrong amount of memory. In the case where the computed size is
9045 too small, GDB fetches too little data to print the value of our
9046 entiry. Results in this case as unpredicatble, as we usually read
9047 past the buffer containing the data =:-o. */
9049 /* Implement the evaluate_exp routine in the exp_descriptor structure
9050 for the Ada language. */
9052 static struct value *
9053 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9054 int *pos, enum noside noside)
9059 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9062 struct value **argvec;
9066 op = exp->elts[pc].opcode;
9072 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9073 arg1 = unwrap_value (arg1);
9075 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9076 then we need to perform the conversion manually, because
9077 evaluate_subexp_standard doesn't do it. This conversion is
9078 necessary in Ada because the different kinds of float/fixed
9079 types in Ada have different representations.
9081 Similarly, we need to perform the conversion from OP_LONG
9083 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9084 arg1 = ada_value_cast (expect_type, arg1, noside);
9090 struct value *result;
9093 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9094 /* The result type will have code OP_STRING, bashed there from
9095 OP_ARRAY. Bash it back. */
9096 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9097 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9103 type = exp->elts[pc + 1].type;
9104 arg1 = evaluate_subexp (type, exp, pos, noside);
9105 if (noside == EVAL_SKIP)
9107 arg1 = ada_value_cast (type, arg1, noside);
9112 type = exp->elts[pc + 1].type;
9113 return ada_evaluate_subexp (type, exp, pos, noside);
9116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9117 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9119 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9120 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9122 return ada_value_assign (arg1, arg1);
9124 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9125 except if the lhs of our assignment is a convenience variable.
9126 In the case of assigning to a convenience variable, the lhs
9127 should be exactly the result of the evaluation of the rhs. */
9128 type = value_type (arg1);
9129 if (VALUE_LVAL (arg1) == lval_internalvar)
9131 arg2 = evaluate_subexp (type, exp, pos, noside);
9132 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9134 if (ada_is_fixed_point_type (value_type (arg1)))
9135 arg2 = cast_to_fixed (value_type (arg1), arg2);
9136 else if (ada_is_fixed_point_type (value_type (arg2)))
9138 (_("Fixed-point values must be assigned to fixed-point variables"));
9140 arg2 = coerce_for_assign (value_type (arg1), arg2);
9141 return ada_value_assign (arg1, arg2);
9144 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9145 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9146 if (noside == EVAL_SKIP)
9148 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9149 return (value_from_longest
9151 value_as_long (arg1) + value_as_long (arg2)));
9152 if ((ada_is_fixed_point_type (value_type (arg1))
9153 || ada_is_fixed_point_type (value_type (arg2)))
9154 && value_type (arg1) != value_type (arg2))
9155 error (_("Operands of fixed-point addition must have the same type"));
9156 /* Do the addition, and cast the result to the type of the first
9157 argument. We cannot cast the result to a reference type, so if
9158 ARG1 is a reference type, find its underlying type. */
9159 type = value_type (arg1);
9160 while (TYPE_CODE (type) == TYPE_CODE_REF)
9161 type = TYPE_TARGET_TYPE (type);
9162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9163 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9166 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9167 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9168 if (noside == EVAL_SKIP)
9170 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9171 return (value_from_longest
9173 value_as_long (arg1) - value_as_long (arg2)));
9174 if ((ada_is_fixed_point_type (value_type (arg1))
9175 || ada_is_fixed_point_type (value_type (arg2)))
9176 && value_type (arg1) != value_type (arg2))
9177 error (_("Operands of fixed-point subtraction "
9178 "must have the same type"));
9179 /* Do the substraction, and cast the result to the type of the first
9180 argument. We cannot cast the result to a reference type, so if
9181 ARG1 is a reference type, find its underlying type. */
9182 type = value_type (arg1);
9183 while (TYPE_CODE (type) == TYPE_CODE_REF)
9184 type = TYPE_TARGET_TYPE (type);
9185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9186 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9193 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9194 if (noside == EVAL_SKIP)
9196 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9199 return value_zero (value_type (arg1), not_lval);
9203 type = builtin_type (exp->gdbarch)->builtin_double;
9204 if (ada_is_fixed_point_type (value_type (arg1)))
9205 arg1 = cast_from_fixed (type, arg1);
9206 if (ada_is_fixed_point_type (value_type (arg2)))
9207 arg2 = cast_from_fixed (type, arg2);
9208 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9209 return ada_value_binop (arg1, arg2, op);
9213 case BINOP_NOTEQUAL:
9214 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9215 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9216 if (noside == EVAL_SKIP)
9218 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9222 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9223 tem = ada_value_equal (arg1, arg2);
9225 if (op == BINOP_NOTEQUAL)
9227 type = language_bool_type (exp->language_defn, exp->gdbarch);
9228 return value_from_longest (type, (LONGEST) tem);
9231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9232 if (noside == EVAL_SKIP)
9234 else if (ada_is_fixed_point_type (value_type (arg1)))
9235 return value_cast (value_type (arg1), value_neg (arg1));
9238 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9239 return value_neg (arg1);
9242 case BINOP_LOGICAL_AND:
9243 case BINOP_LOGICAL_OR:
9244 case UNOP_LOGICAL_NOT:
9249 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9250 type = language_bool_type (exp->language_defn, exp->gdbarch);
9251 return value_cast (type, val);
9254 case BINOP_BITWISE_AND:
9255 case BINOP_BITWISE_IOR:
9256 case BINOP_BITWISE_XOR:
9260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9262 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9264 return value_cast (value_type (arg1), val);
9270 if (noside == EVAL_SKIP)
9275 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9276 /* Only encountered when an unresolved symbol occurs in a
9277 context other than a function call, in which case, it is
9279 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9280 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9281 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9283 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9284 /* Check to see if this is a tagged type. We also need to handle
9285 the case where the type is a reference to a tagged type, but
9286 we have to be careful to exclude pointers to tagged types.
9287 The latter should be shown as usual (as a pointer), whereas
9288 a reference should mostly be transparent to the user. */
9289 if (ada_is_tagged_type (type, 0)
9290 || (TYPE_CODE(type) == TYPE_CODE_REF
9291 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9293 /* Tagged types are a little special in the fact that the real
9294 type is dynamic and can only be determined by inspecting the
9295 object's tag. This means that we need to get the object's
9296 value first (EVAL_NORMAL) and then extract the actual object
9299 Note that we cannot skip the final step where we extract
9300 the object type from its tag, because the EVAL_NORMAL phase
9301 results in dynamic components being resolved into fixed ones.
9302 This can cause problems when trying to print the type
9303 description of tagged types whose parent has a dynamic size:
9304 We use the type name of the "_parent" component in order
9305 to print the name of the ancestor type in the type description.
9306 If that component had a dynamic size, the resolution into
9307 a fixed type would result in the loss of that type name,
9308 thus preventing us from printing the name of the ancestor
9309 type in the type description. */
9310 struct type *actual_type;
9312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9313 actual_type = type_from_tag (ada_value_tag (arg1));
9314 if (actual_type == NULL)
9315 /* If, for some reason, we were unable to determine
9316 the actual type from the tag, then use the static
9317 approximation that we just computed as a fallback.
9318 This can happen if the debugging information is
9319 incomplete, for instance. */
9322 return value_zero (actual_type, not_lval);
9327 (to_static_fixed_type
9328 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9333 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9334 arg1 = unwrap_value (arg1);
9335 return ada_to_fixed_value (arg1);
9341 /* Allocate arg vector, including space for the function to be
9342 called in argvec[0] and a terminating NULL. */
9343 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9345 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9347 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9348 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9349 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9350 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9353 for (tem = 0; tem <= nargs; tem += 1)
9354 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9357 if (noside == EVAL_SKIP)
9361 if (ada_is_constrained_packed_array_type
9362 (desc_base_type (value_type (argvec[0]))))
9363 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9364 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9365 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9366 /* This is a packed array that has already been fixed, and
9367 therefore already coerced to a simple array. Nothing further
9370 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9371 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9372 && VALUE_LVAL (argvec[0]) == lval_memory))
9373 argvec[0] = value_addr (argvec[0]);
9375 type = ada_check_typedef (value_type (argvec[0]));
9377 /* Ada allows us to implicitly dereference arrays when subscripting
9378 them. So, if this is an typedef (encoding use for array access
9379 types encoded as fat pointers), strip it now. */
9380 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9381 type = ada_typedef_target_type (type);
9383 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9385 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9387 case TYPE_CODE_FUNC:
9388 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9390 case TYPE_CODE_ARRAY:
9392 case TYPE_CODE_STRUCT:
9393 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9394 argvec[0] = ada_value_ind (argvec[0]);
9395 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9398 error (_("cannot subscript or call something of type `%s'"),
9399 ada_type_name (value_type (argvec[0])));
9404 switch (TYPE_CODE (type))
9406 case TYPE_CODE_FUNC:
9407 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9408 return allocate_value (TYPE_TARGET_TYPE (type));
9409 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9410 case TYPE_CODE_STRUCT:
9414 arity = ada_array_arity (type);
9415 type = ada_array_element_type (type, nargs);
9417 error (_("cannot subscript or call a record"));
9419 error (_("wrong number of subscripts; expecting %d"), arity);
9420 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9421 return value_zero (ada_aligned_type (type), lval_memory);
9423 unwrap_value (ada_value_subscript
9424 (argvec[0], nargs, argvec + 1));
9426 case TYPE_CODE_ARRAY:
9427 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9429 type = ada_array_element_type (type, nargs);
9431 error (_("element type of array unknown"));
9433 return value_zero (ada_aligned_type (type), lval_memory);
9436 unwrap_value (ada_value_subscript
9437 (ada_coerce_to_simple_array (argvec[0]),
9438 nargs, argvec + 1));
9439 case TYPE_CODE_PTR: /* Pointer to array */
9440 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9441 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9443 type = ada_array_element_type (type, nargs);
9445 error (_("element type of array unknown"));
9447 return value_zero (ada_aligned_type (type), lval_memory);
9450 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9451 nargs, argvec + 1));
9454 error (_("Attempt to index or call something other than an "
9455 "array or function"));
9460 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9461 struct value *low_bound_val =
9462 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9463 struct value *high_bound_val =
9464 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9468 low_bound_val = coerce_ref (low_bound_val);
9469 high_bound_val = coerce_ref (high_bound_val);
9470 low_bound = pos_atr (low_bound_val);
9471 high_bound = pos_atr (high_bound_val);
9473 if (noside == EVAL_SKIP)
9476 /* If this is a reference to an aligner type, then remove all
9478 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9479 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9480 TYPE_TARGET_TYPE (value_type (array)) =
9481 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9483 if (ada_is_constrained_packed_array_type (value_type (array)))
9484 error (_("cannot slice a packed array"));
9486 /* If this is a reference to an array or an array lvalue,
9487 convert to a pointer. */
9488 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9489 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9490 && VALUE_LVAL (array) == lval_memory))
9491 array = value_addr (array);
9493 if (noside == EVAL_AVOID_SIDE_EFFECTS
9494 && ada_is_array_descriptor_type (ada_check_typedef
9495 (value_type (array))))
9496 return empty_array (ada_type_of_array (array, 0), low_bound);
9498 array = ada_coerce_to_simple_array_ptr (array);
9500 /* If we have more than one level of pointer indirection,
9501 dereference the value until we get only one level. */
9502 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9503 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9505 array = value_ind (array);
9507 /* Make sure we really do have an array type before going further,
9508 to avoid a SEGV when trying to get the index type or the target
9509 type later down the road if the debug info generated by
9510 the compiler is incorrect or incomplete. */
9511 if (!ada_is_simple_array_type (value_type (array)))
9512 error (_("cannot take slice of non-array"));
9514 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9516 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9517 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9521 struct type *arr_type0 =
9522 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9525 return ada_value_slice_from_ptr (array, arr_type0,
9526 longest_to_int (low_bound),
9527 longest_to_int (high_bound));
9530 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9532 else if (high_bound < low_bound)
9533 return empty_array (value_type (array), low_bound);
9535 return ada_value_slice (array, longest_to_int (low_bound),
9536 longest_to_int (high_bound));
9541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9542 type = check_typedef (exp->elts[pc + 1].type);
9544 if (noside == EVAL_SKIP)
9547 switch (TYPE_CODE (type))
9550 lim_warning (_("Membership test incompletely implemented; "
9551 "always returns true"));
9552 type = language_bool_type (exp->language_defn, exp->gdbarch);
9553 return value_from_longest (type, (LONGEST) 1);
9555 case TYPE_CODE_RANGE:
9556 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9557 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9558 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9559 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9560 type = language_bool_type (exp->language_defn, exp->gdbarch);
9562 value_from_longest (type,
9563 (value_less (arg1, arg3)
9564 || value_equal (arg1, arg3))
9565 && (value_less (arg2, arg1)
9566 || value_equal (arg2, arg1)));
9569 case BINOP_IN_BOUNDS:
9571 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9572 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9574 if (noside == EVAL_SKIP)
9577 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9579 type = language_bool_type (exp->language_defn, exp->gdbarch);
9580 return value_zero (type, not_lval);
9583 tem = longest_to_int (exp->elts[pc + 1].longconst);
9585 type = ada_index_type (value_type (arg2), tem, "range");
9587 type = value_type (arg1);
9589 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9590 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9592 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9593 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9594 type = language_bool_type (exp->language_defn, exp->gdbarch);
9596 value_from_longest (type,
9597 (value_less (arg1, arg3)
9598 || value_equal (arg1, arg3))
9599 && (value_less (arg2, arg1)
9600 || value_equal (arg2, arg1)));
9602 case TERNOP_IN_RANGE:
9603 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9604 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9605 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9607 if (noside == EVAL_SKIP)
9610 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9611 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9612 type = language_bool_type (exp->language_defn, exp->gdbarch);
9614 value_from_longest (type,
9615 (value_less (arg1, arg3)
9616 || value_equal (arg1, arg3))
9617 && (value_less (arg2, arg1)
9618 || value_equal (arg2, arg1)));
9624 struct type *type_arg;
9626 if (exp->elts[*pos].opcode == OP_TYPE)
9628 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9630 type_arg = check_typedef (exp->elts[pc + 2].type);
9634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9638 if (exp->elts[*pos].opcode != OP_LONG)
9639 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9640 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9643 if (noside == EVAL_SKIP)
9646 if (type_arg == NULL)
9648 arg1 = ada_coerce_ref (arg1);
9650 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9651 arg1 = ada_coerce_to_simple_array (arg1);
9653 type = ada_index_type (value_type (arg1), tem,
9654 ada_attribute_name (op));
9656 type = builtin_type (exp->gdbarch)->builtin_int;
9658 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9659 return allocate_value (type);
9663 default: /* Should never happen. */
9664 error (_("unexpected attribute encountered"));
9666 return value_from_longest
9667 (type, ada_array_bound (arg1, tem, 0));
9669 return value_from_longest
9670 (type, ada_array_bound (arg1, tem, 1));
9672 return value_from_longest
9673 (type, ada_array_length (arg1, tem));
9676 else if (discrete_type_p (type_arg))
9678 struct type *range_type;
9679 char *name = ada_type_name (type_arg);
9682 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9683 range_type = to_fixed_range_type (type_arg, NULL);
9684 if (range_type == NULL)
9685 range_type = type_arg;
9689 error (_("unexpected attribute encountered"));
9691 return value_from_longest
9692 (range_type, ada_discrete_type_low_bound (range_type));
9694 return value_from_longest
9695 (range_type, ada_discrete_type_high_bound (range_type));
9697 error (_("the 'length attribute applies only to array types"));
9700 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9701 error (_("unimplemented type attribute"));
9706 if (ada_is_constrained_packed_array_type (type_arg))
9707 type_arg = decode_constrained_packed_array_type (type_arg);
9709 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9711 type = builtin_type (exp->gdbarch)->builtin_int;
9713 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9714 return allocate_value (type);
9719 error (_("unexpected attribute encountered"));
9721 low = ada_array_bound_from_type (type_arg, tem, 0);
9722 return value_from_longest (type, low);
9724 high = ada_array_bound_from_type (type_arg, tem, 1);
9725 return value_from_longest (type, high);
9727 low = ada_array_bound_from_type (type_arg, tem, 0);
9728 high = ada_array_bound_from_type (type_arg, tem, 1);
9729 return value_from_longest (type, high - low + 1);
9735 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9736 if (noside == EVAL_SKIP)
9739 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9740 return value_zero (ada_tag_type (arg1), not_lval);
9742 return ada_value_tag (arg1);
9746 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9747 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9748 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9749 if (noside == EVAL_SKIP)
9751 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9752 return value_zero (value_type (arg1), not_lval);
9755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9756 return value_binop (arg1, arg2,
9757 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9760 case OP_ATR_MODULUS:
9762 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9764 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9765 if (noside == EVAL_SKIP)
9768 if (!ada_is_modular_type (type_arg))
9769 error (_("'modulus must be applied to modular type"));
9771 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9772 ada_modulus (type_arg));
9777 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9778 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9779 if (noside == EVAL_SKIP)
9781 type = builtin_type (exp->gdbarch)->builtin_int;
9782 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9783 return value_zero (type, not_lval);
9785 return value_pos_atr (type, arg1);
9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9789 type = value_type (arg1);
9791 /* If the argument is a reference, then dereference its type, since
9792 the user is really asking for the size of the actual object,
9793 not the size of the pointer. */
9794 if (TYPE_CODE (type) == TYPE_CODE_REF)
9795 type = TYPE_TARGET_TYPE (type);
9797 if (noside == EVAL_SKIP)
9799 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9800 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9802 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9803 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9806 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9808 type = exp->elts[pc + 2].type;
9809 if (noside == EVAL_SKIP)
9811 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9812 return value_zero (type, not_lval);
9814 return value_val_atr (type, arg1);
9817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9819 if (noside == EVAL_SKIP)
9821 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9822 return value_zero (value_type (arg1), not_lval);
9825 /* For integer exponentiation operations,
9826 only promote the first argument. */
9827 if (is_integral_type (value_type (arg2)))
9828 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9830 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9832 return value_binop (arg1, arg2, op);
9836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9837 if (noside == EVAL_SKIP)
9843 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9844 if (noside == EVAL_SKIP)
9846 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9847 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9848 return value_neg (arg1);
9853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9854 if (noside == EVAL_SKIP)
9856 type = ada_check_typedef (value_type (arg1));
9857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9859 if (ada_is_array_descriptor_type (type))
9860 /* GDB allows dereferencing GNAT array descriptors. */
9862 struct type *arrType = ada_type_of_array (arg1, 0);
9864 if (arrType == NULL)
9865 error (_("Attempt to dereference null array pointer."));
9866 return value_at_lazy (arrType, 0);
9868 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9869 || TYPE_CODE (type) == TYPE_CODE_REF
9870 /* In C you can dereference an array to get the 1st elt. */
9871 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9873 type = to_static_fixed_type
9875 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9877 return value_zero (type, lval_memory);
9879 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9881 /* GDB allows dereferencing an int. */
9882 if (expect_type == NULL)
9883 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9888 to_static_fixed_type (ada_aligned_type (expect_type));
9889 return value_zero (expect_type, lval_memory);
9893 error (_("Attempt to take contents of a non-pointer value."));
9895 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9896 type = ada_check_typedef (value_type (arg1));
9898 if (TYPE_CODE (type) == TYPE_CODE_INT)
9899 /* GDB allows dereferencing an int. If we were given
9900 the expect_type, then use that as the target type.
9901 Otherwise, assume that the target type is an int. */
9903 if (expect_type != NULL)
9904 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9907 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9908 (CORE_ADDR) value_as_address (arg1));
9911 if (ada_is_array_descriptor_type (type))
9912 /* GDB allows dereferencing GNAT array descriptors. */
9913 return ada_coerce_to_simple_array (arg1);
9915 return ada_value_ind (arg1);
9917 case STRUCTOP_STRUCT:
9918 tem = longest_to_int (exp->elts[pc + 1].longconst);
9919 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9920 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9921 if (noside == EVAL_SKIP)
9923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9925 struct type *type1 = value_type (arg1);
9927 if (ada_is_tagged_type (type1, 1))
9929 type = ada_lookup_struct_elt_type (type1,
9930 &exp->elts[pc + 2].string,
9933 /* In this case, we assume that the field COULD exist
9934 in some extension of the type. Return an object of
9935 "type" void, which will match any formal
9936 (see ada_type_match). */
9937 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9942 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9945 return value_zero (ada_aligned_type (type), lval_memory);
9948 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9949 arg1 = unwrap_value (arg1);
9950 return ada_to_fixed_value (arg1);
9953 /* The value is not supposed to be used. This is here to make it
9954 easier to accommodate expressions that contain types. */
9956 if (noside == EVAL_SKIP)
9958 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9959 return allocate_value (exp->elts[pc + 1].type);
9961 error (_("Attempt to use a type name as an expression"));
9966 case OP_DISCRETE_RANGE:
9969 if (noside == EVAL_NORMAL)
9973 error (_("Undefined name, ambiguous name, or renaming used in "
9974 "component association: %s."), &exp->elts[pc+2].string);
9976 error (_("Aggregates only allowed on the right of an assignment"));
9978 internal_error (__FILE__, __LINE__,
9979 _("aggregate apparently mangled"));
9982 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9984 for (tem = 0; tem < nargs; tem += 1)
9985 ada_evaluate_subexp (NULL, exp, pos, noside);
9990 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9996 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9997 type name that encodes the 'small and 'delta information.
9998 Otherwise, return NULL. */
10000 static const char *
10001 fixed_type_info (struct type *type)
10003 const char *name = ada_type_name (type);
10004 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10006 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10008 const char *tail = strstr (name, "___XF_");
10015 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10016 return fixed_type_info (TYPE_TARGET_TYPE (type));
10021 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10024 ada_is_fixed_point_type (struct type *type)
10026 return fixed_type_info (type) != NULL;
10029 /* Return non-zero iff TYPE represents a System.Address type. */
10032 ada_is_system_address_type (struct type *type)
10034 return (TYPE_NAME (type)
10035 && strcmp (TYPE_NAME (type), "system__address") == 0);
10038 /* Assuming that TYPE is the representation of an Ada fixed-point
10039 type, return its delta, or -1 if the type is malformed and the
10040 delta cannot be determined. */
10043 ada_delta (struct type *type)
10045 const char *encoding = fixed_type_info (type);
10048 /* Strictly speaking, num and den are encoded as integer. However,
10049 they may not fit into a long, and they will have to be converted
10050 to DOUBLEST anyway. So scan them as DOUBLEST. */
10051 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10058 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10059 factor ('SMALL value) associated with the type. */
10062 scaling_factor (struct type *type)
10064 const char *encoding = fixed_type_info (type);
10065 DOUBLEST num0, den0, num1, den1;
10068 /* Strictly speaking, num's and den's are encoded as integer. However,
10069 they may not fit into a long, and they will have to be converted
10070 to DOUBLEST anyway. So scan them as DOUBLEST. */
10071 n = sscanf (encoding,
10072 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10073 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10074 &num0, &den0, &num1, &den1);
10079 return num1 / den1;
10081 return num0 / den0;
10085 /* Assuming that X is the representation of a value of fixed-point
10086 type TYPE, return its floating-point equivalent. */
10089 ada_fixed_to_float (struct type *type, LONGEST x)
10091 return (DOUBLEST) x *scaling_factor (type);
10094 /* The representation of a fixed-point value of type TYPE
10095 corresponding to the value X. */
10098 ada_float_to_fixed (struct type *type, DOUBLEST x)
10100 return (LONGEST) (x / scaling_factor (type) + 0.5);
10107 /* Scan STR beginning at position K for a discriminant name, and
10108 return the value of that discriminant field of DVAL in *PX. If
10109 PNEW_K is not null, put the position of the character beyond the
10110 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10111 not alter *PX and *PNEW_K if unsuccessful. */
10114 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10117 static char *bound_buffer = NULL;
10118 static size_t bound_buffer_len = 0;
10121 struct value *bound_val;
10123 if (dval == NULL || str == NULL || str[k] == '\0')
10126 pend = strstr (str + k, "__");
10130 k += strlen (bound);
10134 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10135 bound = bound_buffer;
10136 strncpy (bound_buffer, str + k, pend - (str + k));
10137 bound[pend - (str + k)] = '\0';
10141 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10142 if (bound_val == NULL)
10145 *px = value_as_long (bound_val);
10146 if (pnew_k != NULL)
10151 /* Value of variable named NAME in the current environment. If
10152 no such variable found, then if ERR_MSG is null, returns 0, and
10153 otherwise causes an error with message ERR_MSG. */
10155 static struct value *
10156 get_var_value (char *name, char *err_msg)
10158 struct ada_symbol_info *syms;
10161 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10166 if (err_msg == NULL)
10169 error (("%s"), err_msg);
10172 return value_of_variable (syms[0].sym, syms[0].block);
10175 /* Value of integer variable named NAME in the current environment. If
10176 no such variable found, returns 0, and sets *FLAG to 0. If
10177 successful, sets *FLAG to 1. */
10180 get_int_var_value (char *name, int *flag)
10182 struct value *var_val = get_var_value (name, 0);
10194 return value_as_long (var_val);
10199 /* Return a range type whose base type is that of the range type named
10200 NAME in the current environment, and whose bounds are calculated
10201 from NAME according to the GNAT range encoding conventions.
10202 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10203 corresponding range type from debug information; fall back to using it
10204 if symbol lookup fails. If a new type must be created, allocate it
10205 like ORIG_TYPE was. The bounds information, in general, is encoded
10206 in NAME, the base type given in the named range type. */
10208 static struct type *
10209 to_fixed_range_type (struct type *raw_type, struct value *dval)
10212 struct type *base_type;
10213 char *subtype_info;
10215 gdb_assert (raw_type != NULL);
10216 gdb_assert (TYPE_NAME (raw_type) != NULL);
10218 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10219 base_type = TYPE_TARGET_TYPE (raw_type);
10221 base_type = raw_type;
10223 name = TYPE_NAME (raw_type);
10224 subtype_info = strstr (name, "___XD");
10225 if (subtype_info == NULL)
10227 LONGEST L = ada_discrete_type_low_bound (raw_type);
10228 LONGEST U = ada_discrete_type_high_bound (raw_type);
10230 if (L < INT_MIN || U > INT_MAX)
10233 return create_range_type (alloc_type_copy (raw_type), raw_type,
10234 ada_discrete_type_low_bound (raw_type),
10235 ada_discrete_type_high_bound (raw_type));
10239 static char *name_buf = NULL;
10240 static size_t name_len = 0;
10241 int prefix_len = subtype_info - name;
10247 GROW_VECT (name_buf, name_len, prefix_len + 5);
10248 strncpy (name_buf, name, prefix_len);
10249 name_buf[prefix_len] = '\0';
10252 bounds_str = strchr (subtype_info, '_');
10255 if (*subtype_info == 'L')
10257 if (!ada_scan_number (bounds_str, n, &L, &n)
10258 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10260 if (bounds_str[n] == '_')
10262 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10270 strcpy (name_buf + prefix_len, "___L");
10271 L = get_int_var_value (name_buf, &ok);
10274 lim_warning (_("Unknown lower bound, using 1."));
10279 if (*subtype_info == 'U')
10281 if (!ada_scan_number (bounds_str, n, &U, &n)
10282 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10289 strcpy (name_buf + prefix_len, "___U");
10290 U = get_int_var_value (name_buf, &ok);
10293 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10298 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10299 TYPE_NAME (type) = name;
10304 /* True iff NAME is the name of a range type. */
10307 ada_is_range_type_name (const char *name)
10309 return (name != NULL && strstr (name, "___XD"));
10313 /* Modular types */
10315 /* True iff TYPE is an Ada modular type. */
10318 ada_is_modular_type (struct type *type)
10320 struct type *subranged_type = base_type (type);
10322 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10323 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10324 && TYPE_UNSIGNED (subranged_type));
10327 /* Try to determine the lower and upper bounds of the given modular type
10328 using the type name only. Return non-zero and set L and U as the lower
10329 and upper bounds (respectively) if successful. */
10332 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10334 char *name = ada_type_name (type);
10342 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10343 we are looking for static bounds, which means an __XDLU suffix.
10344 Moreover, we know that the lower bound of modular types is always
10345 zero, so the actual suffix should start with "__XDLU_0__", and
10346 then be followed by the upper bound value. */
10347 suffix = strstr (name, "__XDLU_0__");
10348 if (suffix == NULL)
10351 if (!ada_scan_number (suffix, k, &U, NULL))
10354 *modulus = (ULONGEST) U + 1;
10358 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10361 ada_modulus (struct type *type)
10363 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10367 /* Ada exception catchpoint support:
10368 ---------------------------------
10370 We support 3 kinds of exception catchpoints:
10371 . catchpoints on Ada exceptions
10372 . catchpoints on unhandled Ada exceptions
10373 . catchpoints on failed assertions
10375 Exceptions raised during failed assertions, or unhandled exceptions
10376 could perfectly be caught with the general catchpoint on Ada exceptions.
10377 However, we can easily differentiate these two special cases, and having
10378 the option to distinguish these two cases from the rest can be useful
10379 to zero-in on certain situations.
10381 Exception catchpoints are a specialized form of breakpoint,
10382 since they rely on inserting breakpoints inside known routines
10383 of the GNAT runtime. The implementation therefore uses a standard
10384 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10387 Support in the runtime for exception catchpoints have been changed
10388 a few times already, and these changes affect the implementation
10389 of these catchpoints. In order to be able to support several
10390 variants of the runtime, we use a sniffer that will determine
10391 the runtime variant used by the program being debugged.
10393 At this time, we do not support the use of conditions on Ada exception
10394 catchpoints. The COND and COND_STRING fields are therefore set
10395 to NULL (most of the time, see below).
10397 Conditions where EXP_STRING, COND, and COND_STRING are used:
10399 When a user specifies the name of a specific exception in the case
10400 of catchpoints on Ada exceptions, we store the name of that exception
10401 in the EXP_STRING. We then translate this request into an actual
10402 condition stored in COND_STRING, and then parse it into an expression
10405 /* The different types of catchpoints that we introduced for catching
10408 enum exception_catchpoint_kind
10410 ex_catch_exception,
10411 ex_catch_exception_unhandled,
10415 /* Ada's standard exceptions. */
10417 static char *standard_exc[] = {
10418 "constraint_error",
10424 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10426 /* A structure that describes how to support exception catchpoints
10427 for a given executable. */
10429 struct exception_support_info
10431 /* The name of the symbol to break on in order to insert
10432 a catchpoint on exceptions. */
10433 const char *catch_exception_sym;
10435 /* The name of the symbol to break on in order to insert
10436 a catchpoint on unhandled exceptions. */
10437 const char *catch_exception_unhandled_sym;
10439 /* The name of the symbol to break on in order to insert
10440 a catchpoint on failed assertions. */
10441 const char *catch_assert_sym;
10443 /* Assuming that the inferior just triggered an unhandled exception
10444 catchpoint, this function is responsible for returning the address
10445 in inferior memory where the name of that exception is stored.
10446 Return zero if the address could not be computed. */
10447 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10450 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10451 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10453 /* The following exception support info structure describes how to
10454 implement exception catchpoints with the latest version of the
10455 Ada runtime (as of 2007-03-06). */
10457 static const struct exception_support_info default_exception_support_info =
10459 "__gnat_debug_raise_exception", /* catch_exception_sym */
10460 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10461 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10462 ada_unhandled_exception_name_addr
10465 /* The following exception support info structure describes how to
10466 implement exception catchpoints with a slightly older version
10467 of the Ada runtime. */
10469 static const struct exception_support_info exception_support_info_fallback =
10471 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10472 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10473 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10474 ada_unhandled_exception_name_addr_from_raise
10477 /* For each executable, we sniff which exception info structure to use
10478 and cache it in the following global variable. */
10480 static const struct exception_support_info *exception_info = NULL;
10482 /* Inspect the Ada runtime and determine which exception info structure
10483 should be used to provide support for exception catchpoints.
10485 This function will always set exception_info, or raise an error. */
10488 ada_exception_support_info_sniffer (void)
10490 struct symbol *sym;
10492 /* If the exception info is already known, then no need to recompute it. */
10493 if (exception_info != NULL)
10496 /* Check the latest (default) exception support info. */
10497 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10501 exception_info = &default_exception_support_info;
10505 /* Try our fallback exception suport info. */
10506 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10510 exception_info = &exception_support_info_fallback;
10514 /* Sometimes, it is normal for us to not be able to find the routine
10515 we are looking for. This happens when the program is linked with
10516 the shared version of the GNAT runtime, and the program has not been
10517 started yet. Inform the user of these two possible causes if
10520 if (ada_update_initial_language (language_unknown) != language_ada)
10521 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10523 /* If the symbol does not exist, then check that the program is
10524 already started, to make sure that shared libraries have been
10525 loaded. If it is not started, this may mean that the symbol is
10526 in a shared library. */
10528 if (ptid_get_pid (inferior_ptid) == 0)
10529 error (_("Unable to insert catchpoint. Try to start the program first."));
10531 /* At this point, we know that we are debugging an Ada program and
10532 that the inferior has been started, but we still are not able to
10533 find the run-time symbols. That can mean that we are in
10534 configurable run time mode, or that a-except as been optimized
10535 out by the linker... In any case, at this point it is not worth
10536 supporting this feature. */
10538 error (_("Cannot insert catchpoints in this configuration."));
10541 /* An observer of "executable_changed" events.
10542 Its role is to clear certain cached values that need to be recomputed
10543 each time a new executable is loaded by GDB. */
10546 ada_executable_changed_observer (void)
10548 /* If the executable changed, then it is possible that the Ada runtime
10549 is different. So we need to invalidate the exception support info
10551 exception_info = NULL;
10554 /* True iff FRAME is very likely to be that of a function that is
10555 part of the runtime system. This is all very heuristic, but is
10556 intended to be used as advice as to what frames are uninteresting
10560 is_known_support_routine (struct frame_info *frame)
10562 struct symtab_and_line sal;
10564 enum language func_lang;
10567 /* If this code does not have any debugging information (no symtab),
10568 This cannot be any user code. */
10570 find_frame_sal (frame, &sal);
10571 if (sal.symtab == NULL)
10574 /* If there is a symtab, but the associated source file cannot be
10575 located, then assume this is not user code: Selecting a frame
10576 for which we cannot display the code would not be very helpful
10577 for the user. This should also take care of case such as VxWorks
10578 where the kernel has some debugging info provided for a few units. */
10580 if (symtab_to_fullname (sal.symtab) == NULL)
10583 /* Check the unit filename againt the Ada runtime file naming.
10584 We also check the name of the objfile against the name of some
10585 known system libraries that sometimes come with debugging info
10588 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10590 re_comp (known_runtime_file_name_patterns[i]);
10591 if (re_exec (sal.symtab->filename))
10593 if (sal.symtab->objfile != NULL
10594 && re_exec (sal.symtab->objfile->name))
10598 /* Check whether the function is a GNAT-generated entity. */
10600 find_frame_funname (frame, &func_name, &func_lang, NULL);
10601 if (func_name == NULL)
10604 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10606 re_comp (known_auxiliary_function_name_patterns[i]);
10607 if (re_exec (func_name))
10614 /* Find the first frame that contains debugging information and that is not
10615 part of the Ada run-time, starting from FI and moving upward. */
10618 ada_find_printable_frame (struct frame_info *fi)
10620 for (; fi != NULL; fi = get_prev_frame (fi))
10622 if (!is_known_support_routine (fi))
10631 /* Assuming that the inferior just triggered an unhandled exception
10632 catchpoint, return the address in inferior memory where the name
10633 of the exception is stored.
10635 Return zero if the address could not be computed. */
10638 ada_unhandled_exception_name_addr (void)
10640 return parse_and_eval_address ("e.full_name");
10643 /* Same as ada_unhandled_exception_name_addr, except that this function
10644 should be used when the inferior uses an older version of the runtime,
10645 where the exception name needs to be extracted from a specific frame
10646 several frames up in the callstack. */
10649 ada_unhandled_exception_name_addr_from_raise (void)
10652 struct frame_info *fi;
10654 /* To determine the name of this exception, we need to select
10655 the frame corresponding to RAISE_SYM_NAME. This frame is
10656 at least 3 levels up, so we simply skip the first 3 frames
10657 without checking the name of their associated function. */
10658 fi = get_current_frame ();
10659 for (frame_level = 0; frame_level < 3; frame_level += 1)
10661 fi = get_prev_frame (fi);
10666 enum language func_lang;
10668 find_frame_funname (fi, &func_name, &func_lang, NULL);
10669 if (func_name != NULL
10670 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10671 break; /* We found the frame we were looking for... */
10672 fi = get_prev_frame (fi);
10679 return parse_and_eval_address ("id.full_name");
10682 /* Assuming the inferior just triggered an Ada exception catchpoint
10683 (of any type), return the address in inferior memory where the name
10684 of the exception is stored, if applicable.
10686 Return zero if the address could not be computed, or if not relevant. */
10689 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10690 struct breakpoint *b)
10694 case ex_catch_exception:
10695 return (parse_and_eval_address ("e.full_name"));
10698 case ex_catch_exception_unhandled:
10699 return exception_info->unhandled_exception_name_addr ();
10702 case ex_catch_assert:
10703 return 0; /* Exception name is not relevant in this case. */
10707 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10711 return 0; /* Should never be reached. */
10714 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10715 any error that ada_exception_name_addr_1 might cause to be thrown.
10716 When an error is intercepted, a warning with the error message is printed,
10717 and zero is returned. */
10720 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10721 struct breakpoint *b)
10723 struct gdb_exception e;
10724 CORE_ADDR result = 0;
10726 TRY_CATCH (e, RETURN_MASK_ERROR)
10728 result = ada_exception_name_addr_1 (ex, b);
10733 warning (_("failed to get exception name: %s"), e.message);
10740 /* Implement the PRINT_IT method in the breakpoint_ops structure
10741 for all exception catchpoint kinds. */
10743 static enum print_stop_action
10744 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10746 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10747 char exception_name[256];
10751 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10752 exception_name [sizeof (exception_name) - 1] = '\0';
10755 ada_find_printable_frame (get_current_frame ());
10757 annotate_catchpoint (b->number);
10760 case ex_catch_exception:
10762 printf_filtered (_("\nCatchpoint %d, %s at "),
10763 b->number, exception_name);
10765 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10767 case ex_catch_exception_unhandled:
10769 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10770 b->number, exception_name);
10772 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10775 case ex_catch_assert:
10776 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10781 return PRINT_SRC_AND_LOC;
10784 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10785 for all exception catchpoint kinds. */
10788 print_one_exception (enum exception_catchpoint_kind ex,
10789 struct breakpoint *b, struct bp_location **last_loc)
10791 struct value_print_options opts;
10793 get_user_print_options (&opts);
10794 if (opts.addressprint)
10796 annotate_field (4);
10797 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10800 annotate_field (5);
10801 *last_loc = b->loc;
10804 case ex_catch_exception:
10805 if (b->exp_string != NULL)
10807 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10809 ui_out_field_string (uiout, "what", msg);
10813 ui_out_field_string (uiout, "what", "all Ada exceptions");
10817 case ex_catch_exception_unhandled:
10818 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10821 case ex_catch_assert:
10822 ui_out_field_string (uiout, "what", "failed Ada assertions");
10826 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10831 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10832 for all exception catchpoint kinds. */
10835 print_mention_exception (enum exception_catchpoint_kind ex,
10836 struct breakpoint *b)
10840 case ex_catch_exception:
10841 if (b->exp_string != NULL)
10842 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10843 b->number, b->exp_string);
10845 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10849 case ex_catch_exception_unhandled:
10850 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10854 case ex_catch_assert:
10855 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10859 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10864 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10865 for all exception catchpoint kinds. */
10868 print_recreate_exception (enum exception_catchpoint_kind ex,
10869 struct breakpoint *b, struct ui_file *fp)
10873 case ex_catch_exception:
10874 fprintf_filtered (fp, "catch exception");
10875 if (b->exp_string != NULL)
10876 fprintf_filtered (fp, " %s", b->exp_string);
10879 case ex_catch_exception_unhandled:
10880 fprintf_filtered (fp, "catch exception unhandled");
10883 case ex_catch_assert:
10884 fprintf_filtered (fp, "catch assert");
10888 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10892 /* Virtual table for "catch exception" breakpoints. */
10894 static enum print_stop_action
10895 print_it_catch_exception (struct breakpoint *b)
10897 return print_it_exception (ex_catch_exception, b);
10901 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10903 print_one_exception (ex_catch_exception, b, last_loc);
10907 print_mention_catch_exception (struct breakpoint *b)
10909 print_mention_exception (ex_catch_exception, b);
10913 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10915 print_recreate_exception (ex_catch_exception, b, fp);
10918 static struct breakpoint_ops catch_exception_breakpoint_ops =
10922 NULL, /* breakpoint_hit */
10923 NULL, /* resources_needed */
10924 print_it_catch_exception,
10925 print_one_catch_exception,
10926 print_mention_catch_exception,
10927 print_recreate_catch_exception
10930 /* Virtual table for "catch exception unhandled" breakpoints. */
10932 static enum print_stop_action
10933 print_it_catch_exception_unhandled (struct breakpoint *b)
10935 return print_it_exception (ex_catch_exception_unhandled, b);
10939 print_one_catch_exception_unhandled (struct breakpoint *b,
10940 struct bp_location **last_loc)
10942 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10946 print_mention_catch_exception_unhandled (struct breakpoint *b)
10948 print_mention_exception (ex_catch_exception_unhandled, b);
10952 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10953 struct ui_file *fp)
10955 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10958 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10961 NULL, /* breakpoint_hit */
10962 NULL, /* resources_needed */
10963 print_it_catch_exception_unhandled,
10964 print_one_catch_exception_unhandled,
10965 print_mention_catch_exception_unhandled,
10966 print_recreate_catch_exception_unhandled
10969 /* Virtual table for "catch assert" breakpoints. */
10971 static enum print_stop_action
10972 print_it_catch_assert (struct breakpoint *b)
10974 return print_it_exception (ex_catch_assert, b);
10978 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10980 print_one_exception (ex_catch_assert, b, last_loc);
10984 print_mention_catch_assert (struct breakpoint *b)
10986 print_mention_exception (ex_catch_assert, b);
10990 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10992 print_recreate_exception (ex_catch_assert, b, fp);
10995 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10998 NULL, /* breakpoint_hit */
10999 NULL, /* resources_needed */
11000 print_it_catch_assert,
11001 print_one_catch_assert,
11002 print_mention_catch_assert,
11003 print_recreate_catch_assert
11006 /* Return non-zero if B is an Ada exception catchpoint. */
11009 ada_exception_catchpoint_p (struct breakpoint *b)
11011 return (b->ops == &catch_exception_breakpoint_ops
11012 || b->ops == &catch_exception_unhandled_breakpoint_ops
11013 || b->ops == &catch_assert_breakpoint_ops);
11016 /* Return a newly allocated copy of the first space-separated token
11017 in ARGSP, and then adjust ARGSP to point immediately after that
11020 Return NULL if ARGPS does not contain any more tokens. */
11023 ada_get_next_arg (char **argsp)
11025 char *args = *argsp;
11029 /* Skip any leading white space. */
11031 while (isspace (*args))
11034 if (args[0] == '\0')
11035 return NULL; /* No more arguments. */
11037 /* Find the end of the current argument. */
11040 while (*end != '\0' && !isspace (*end))
11043 /* Adjust ARGSP to point to the start of the next argument. */
11047 /* Make a copy of the current argument and return it. */
11049 result = xmalloc (end - args + 1);
11050 strncpy (result, args, end - args);
11051 result[end - args] = '\0';
11056 /* Split the arguments specified in a "catch exception" command.
11057 Set EX to the appropriate catchpoint type.
11058 Set EXP_STRING to the name of the specific exception if
11059 specified by the user. */
11062 catch_ada_exception_command_split (char *args,
11063 enum exception_catchpoint_kind *ex,
11066 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11067 char *exception_name;
11069 exception_name = ada_get_next_arg (&args);
11070 make_cleanup (xfree, exception_name);
11072 /* Check that we do not have any more arguments. Anything else
11075 while (isspace (*args))
11078 if (args[0] != '\0')
11079 error (_("Junk at end of expression"));
11081 discard_cleanups (old_chain);
11083 if (exception_name == NULL)
11085 /* Catch all exceptions. */
11086 *ex = ex_catch_exception;
11087 *exp_string = NULL;
11089 else if (strcmp (exception_name, "unhandled") == 0)
11091 /* Catch unhandled exceptions. */
11092 *ex = ex_catch_exception_unhandled;
11093 *exp_string = NULL;
11097 /* Catch a specific exception. */
11098 *ex = ex_catch_exception;
11099 *exp_string = exception_name;
11103 /* Return the name of the symbol on which we should break in order to
11104 implement a catchpoint of the EX kind. */
11106 static const char *
11107 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11109 gdb_assert (exception_info != NULL);
11113 case ex_catch_exception:
11114 return (exception_info->catch_exception_sym);
11116 case ex_catch_exception_unhandled:
11117 return (exception_info->catch_exception_unhandled_sym);
11119 case ex_catch_assert:
11120 return (exception_info->catch_assert_sym);
11123 internal_error (__FILE__, __LINE__,
11124 _("unexpected catchpoint kind (%d)"), ex);
11128 /* Return the breakpoint ops "virtual table" used for catchpoints
11131 static struct breakpoint_ops *
11132 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11136 case ex_catch_exception:
11137 return (&catch_exception_breakpoint_ops);
11139 case ex_catch_exception_unhandled:
11140 return (&catch_exception_unhandled_breakpoint_ops);
11142 case ex_catch_assert:
11143 return (&catch_assert_breakpoint_ops);
11146 internal_error (__FILE__, __LINE__,
11147 _("unexpected catchpoint kind (%d)"), ex);
11151 /* Return the condition that will be used to match the current exception
11152 being raised with the exception that the user wants to catch. This
11153 assumes that this condition is used when the inferior just triggered
11154 an exception catchpoint.
11156 The string returned is a newly allocated string that needs to be
11157 deallocated later. */
11160 ada_exception_catchpoint_cond_string (const char *exp_string)
11164 /* The standard exceptions are a special case. They are defined in
11165 runtime units that have been compiled without debugging info; if
11166 EXP_STRING is the not-fully-qualified name of a standard
11167 exception (e.g. "constraint_error") then, during the evaluation
11168 of the condition expression, the symbol lookup on this name would
11169 *not* return this standard exception. The catchpoint condition
11170 may then be set only on user-defined exceptions which have the
11171 same not-fully-qualified name (e.g. my_package.constraint_error).
11173 To avoid this unexcepted behavior, these standard exceptions are
11174 systematically prefixed by "standard". This means that "catch
11175 exception constraint_error" is rewritten into "catch exception
11176 standard.constraint_error".
11178 If an exception named contraint_error is defined in another package of
11179 the inferior program, then the only way to specify this exception as a
11180 breakpoint condition is to use its fully-qualified named:
11181 e.g. my_package.constraint_error. */
11183 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11185 if (strcmp (standard_exc [i], exp_string) == 0)
11187 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11191 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11194 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11196 static struct expression *
11197 ada_parse_catchpoint_condition (char *cond_string,
11198 struct symtab_and_line sal)
11200 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11203 /* Return the symtab_and_line that should be used to insert an exception
11204 catchpoint of the TYPE kind.
11206 EX_STRING should contain the name of a specific exception
11207 that the catchpoint should catch, or NULL otherwise.
11209 The idea behind all the remaining parameters is that their names match
11210 the name of certain fields in the breakpoint structure that are used to
11211 handle exception catchpoints. This function returns the value to which
11212 these fields should be set, depending on the type of catchpoint we need
11215 If COND and COND_STRING are both non-NULL, any value they might
11216 hold will be free'ed, and then replaced by newly allocated ones.
11217 These parameters are left untouched otherwise. */
11219 static struct symtab_and_line
11220 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11221 char **addr_string, char **cond_string,
11222 struct expression **cond, struct breakpoint_ops **ops)
11224 const char *sym_name;
11225 struct symbol *sym;
11226 struct symtab_and_line sal;
11228 /* First, find out which exception support info to use. */
11229 ada_exception_support_info_sniffer ();
11231 /* Then lookup the function on which we will break in order to catch
11232 the Ada exceptions requested by the user. */
11234 sym_name = ada_exception_sym_name (ex);
11235 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11237 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11238 that should be compiled with debugging information. As a result, we
11239 expect to find that symbol in the symtabs. If we don't find it, then
11240 the target most likely does not support Ada exceptions, or we cannot
11241 insert exception breakpoints yet, because the GNAT runtime hasn't been
11244 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11245 in such a way that no debugging information is produced for the symbol
11246 we are looking for. In this case, we could search the minimal symbols
11247 as a fall-back mechanism. This would still be operating in degraded
11248 mode, however, as we would still be missing the debugging information
11249 that is needed in order to extract the name of the exception being
11250 raised (this name is printed in the catchpoint message, and is also
11251 used when trying to catch a specific exception). We do not handle
11252 this case for now. */
11255 error (_("Unable to break on '%s' in this configuration."), sym_name);
11257 /* Make sure that the symbol we found corresponds to a function. */
11258 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11259 error (_("Symbol \"%s\" is not a function (class = %d)"),
11260 sym_name, SYMBOL_CLASS (sym));
11262 sal = find_function_start_sal (sym, 1);
11264 /* Set ADDR_STRING. */
11266 *addr_string = xstrdup (sym_name);
11268 /* Set the COND and COND_STRING (if not NULL). */
11270 if (cond_string != NULL && cond != NULL)
11272 if (*cond_string != NULL)
11274 xfree (*cond_string);
11275 *cond_string = NULL;
11282 if (exp_string != NULL)
11284 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11285 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11290 *ops = ada_exception_breakpoint_ops (ex);
11295 /* Parse the arguments (ARGS) of the "catch exception" command.
11297 Set TYPE to the appropriate exception catchpoint type.
11298 If the user asked the catchpoint to catch only a specific
11299 exception, then save the exception name in ADDR_STRING.
11301 See ada_exception_sal for a description of all the remaining
11302 function arguments of this function. */
11304 struct symtab_and_line
11305 ada_decode_exception_location (char *args, char **addr_string,
11306 char **exp_string, char **cond_string,
11307 struct expression **cond,
11308 struct breakpoint_ops **ops)
11310 enum exception_catchpoint_kind ex;
11312 catch_ada_exception_command_split (args, &ex, exp_string);
11313 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11317 struct symtab_and_line
11318 ada_decode_assert_location (char *args, char **addr_string,
11319 struct breakpoint_ops **ops)
11321 /* Check that no argument where provided at the end of the command. */
11325 while (isspace (*args))
11328 error (_("Junk at end of arguments."));
11331 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11336 /* Information about operators given special treatment in functions
11338 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11340 #define ADA_OPERATORS \
11341 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11342 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11343 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11344 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11345 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11346 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11347 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11348 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11349 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11350 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11351 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11352 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11353 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11354 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11355 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11356 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11357 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11358 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11359 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11362 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11365 switch (exp->elts[pc - 1].opcode)
11368 operator_length_standard (exp, pc, oplenp, argsp);
11371 #define OP_DEFN(op, len, args, binop) \
11372 case op: *oplenp = len; *argsp = args; break;
11378 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11383 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11388 /* Implementation of the exp_descriptor method operator_check. */
11391 ada_operator_check (struct expression *exp, int pos,
11392 int (*objfile_func) (struct objfile *objfile, void *data),
11395 const union exp_element *const elts = exp->elts;
11396 struct type *type = NULL;
11398 switch (elts[pos].opcode)
11400 case UNOP_IN_RANGE:
11402 type = elts[pos + 1].type;
11406 return operator_check_standard (exp, pos, objfile_func, data);
11409 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11411 if (type && TYPE_OBJFILE (type)
11412 && (*objfile_func) (TYPE_OBJFILE (type), data))
11419 ada_op_name (enum exp_opcode opcode)
11424 return op_name_standard (opcode);
11426 #define OP_DEFN(op, len, args, binop) case op: return #op;
11431 return "OP_AGGREGATE";
11433 return "OP_CHOICES";
11439 /* As for operator_length, but assumes PC is pointing at the first
11440 element of the operator, and gives meaningful results only for the
11441 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11444 ada_forward_operator_length (struct expression *exp, int pc,
11445 int *oplenp, int *argsp)
11447 switch (exp->elts[pc].opcode)
11450 *oplenp = *argsp = 0;
11453 #define OP_DEFN(op, len, args, binop) \
11454 case op: *oplenp = len; *argsp = args; break;
11460 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11465 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11471 int len = longest_to_int (exp->elts[pc + 1].longconst);
11473 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11481 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11483 enum exp_opcode op = exp->elts[elt].opcode;
11488 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11492 /* Ada attributes ('Foo). */
11495 case OP_ATR_LENGTH:
11499 case OP_ATR_MODULUS:
11506 case UNOP_IN_RANGE:
11508 /* XXX: gdb_sprint_host_address, type_sprint */
11509 fprintf_filtered (stream, _("Type @"));
11510 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11511 fprintf_filtered (stream, " (");
11512 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11513 fprintf_filtered (stream, ")");
11515 case BINOP_IN_BOUNDS:
11516 fprintf_filtered (stream, " (%d)",
11517 longest_to_int (exp->elts[pc + 2].longconst));
11519 case TERNOP_IN_RANGE:
11524 case OP_DISCRETE_RANGE:
11525 case OP_POSITIONAL:
11532 char *name = &exp->elts[elt + 2].string;
11533 int len = longest_to_int (exp->elts[elt + 1].longconst);
11535 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11540 return dump_subexp_body_standard (exp, stream, elt);
11544 for (i = 0; i < nargs; i += 1)
11545 elt = dump_subexp (exp, stream, elt);
11550 /* The Ada extension of print_subexp (q.v.). */
11553 ada_print_subexp (struct expression *exp, int *pos,
11554 struct ui_file *stream, enum precedence prec)
11556 int oplen, nargs, i;
11558 enum exp_opcode op = exp->elts[pc].opcode;
11560 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11567 print_subexp_standard (exp, pos, stream, prec);
11571 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11574 case BINOP_IN_BOUNDS:
11575 /* XXX: sprint_subexp */
11576 print_subexp (exp, pos, stream, PREC_SUFFIX);
11577 fputs_filtered (" in ", stream);
11578 print_subexp (exp, pos, stream, PREC_SUFFIX);
11579 fputs_filtered ("'range", stream);
11580 if (exp->elts[pc + 1].longconst > 1)
11581 fprintf_filtered (stream, "(%ld)",
11582 (long) exp->elts[pc + 1].longconst);
11585 case TERNOP_IN_RANGE:
11586 if (prec >= PREC_EQUAL)
11587 fputs_filtered ("(", stream);
11588 /* XXX: sprint_subexp */
11589 print_subexp (exp, pos, stream, PREC_SUFFIX);
11590 fputs_filtered (" in ", stream);
11591 print_subexp (exp, pos, stream, PREC_EQUAL);
11592 fputs_filtered (" .. ", stream);
11593 print_subexp (exp, pos, stream, PREC_EQUAL);
11594 if (prec >= PREC_EQUAL)
11595 fputs_filtered (")", stream);
11600 case OP_ATR_LENGTH:
11604 case OP_ATR_MODULUS:
11609 if (exp->elts[*pos].opcode == OP_TYPE)
11611 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11612 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11616 print_subexp (exp, pos, stream, PREC_SUFFIX);
11617 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11622 for (tem = 1; tem < nargs; tem += 1)
11624 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11625 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11627 fputs_filtered (")", stream);
11632 type_print (exp->elts[pc + 1].type, "", stream, 0);
11633 fputs_filtered ("'(", stream);
11634 print_subexp (exp, pos, stream, PREC_PREFIX);
11635 fputs_filtered (")", stream);
11638 case UNOP_IN_RANGE:
11639 /* XXX: sprint_subexp */
11640 print_subexp (exp, pos, stream, PREC_SUFFIX);
11641 fputs_filtered (" in ", stream);
11642 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11645 case OP_DISCRETE_RANGE:
11646 print_subexp (exp, pos, stream, PREC_SUFFIX);
11647 fputs_filtered ("..", stream);
11648 print_subexp (exp, pos, stream, PREC_SUFFIX);
11652 fputs_filtered ("others => ", stream);
11653 print_subexp (exp, pos, stream, PREC_SUFFIX);
11657 for (i = 0; i < nargs-1; i += 1)
11660 fputs_filtered ("|", stream);
11661 print_subexp (exp, pos, stream, PREC_SUFFIX);
11663 fputs_filtered (" => ", stream);
11664 print_subexp (exp, pos, stream, PREC_SUFFIX);
11667 case OP_POSITIONAL:
11668 print_subexp (exp, pos, stream, PREC_SUFFIX);
11672 fputs_filtered ("(", stream);
11673 for (i = 0; i < nargs; i += 1)
11676 fputs_filtered (", ", stream);
11677 print_subexp (exp, pos, stream, PREC_SUFFIX);
11679 fputs_filtered (")", stream);
11684 /* Table mapping opcodes into strings for printing operators
11685 and precedences of the operators. */
11687 static const struct op_print ada_op_print_tab[] = {
11688 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11689 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11690 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11691 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11692 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11693 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11694 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11695 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11696 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11697 {">=", BINOP_GEQ, PREC_ORDER, 0},
11698 {">", BINOP_GTR, PREC_ORDER, 0},
11699 {"<", BINOP_LESS, PREC_ORDER, 0},
11700 {">>", BINOP_RSH, PREC_SHIFT, 0},
11701 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11702 {"+", BINOP_ADD, PREC_ADD, 0},
11703 {"-", BINOP_SUB, PREC_ADD, 0},
11704 {"&", BINOP_CONCAT, PREC_ADD, 0},
11705 {"*", BINOP_MUL, PREC_MUL, 0},
11706 {"/", BINOP_DIV, PREC_MUL, 0},
11707 {"rem", BINOP_REM, PREC_MUL, 0},
11708 {"mod", BINOP_MOD, PREC_MUL, 0},
11709 {"**", BINOP_EXP, PREC_REPEAT, 0},
11710 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11711 {"-", UNOP_NEG, PREC_PREFIX, 0},
11712 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11713 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11714 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11715 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11716 {".all", UNOP_IND, PREC_SUFFIX, 1},
11717 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11718 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11722 enum ada_primitive_types {
11723 ada_primitive_type_int,
11724 ada_primitive_type_long,
11725 ada_primitive_type_short,
11726 ada_primitive_type_char,
11727 ada_primitive_type_float,
11728 ada_primitive_type_double,
11729 ada_primitive_type_void,
11730 ada_primitive_type_long_long,
11731 ada_primitive_type_long_double,
11732 ada_primitive_type_natural,
11733 ada_primitive_type_positive,
11734 ada_primitive_type_system_address,
11735 nr_ada_primitive_types
11739 ada_language_arch_info (struct gdbarch *gdbarch,
11740 struct language_arch_info *lai)
11742 const struct builtin_type *builtin = builtin_type (gdbarch);
11744 lai->primitive_type_vector
11745 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11748 lai->primitive_type_vector [ada_primitive_type_int]
11749 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11751 lai->primitive_type_vector [ada_primitive_type_long]
11752 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11753 0, "long_integer");
11754 lai->primitive_type_vector [ada_primitive_type_short]
11755 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11756 0, "short_integer");
11757 lai->string_char_type
11758 = lai->primitive_type_vector [ada_primitive_type_char]
11759 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11760 lai->primitive_type_vector [ada_primitive_type_float]
11761 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11763 lai->primitive_type_vector [ada_primitive_type_double]
11764 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11765 "long_float", NULL);
11766 lai->primitive_type_vector [ada_primitive_type_long_long]
11767 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11768 0, "long_long_integer");
11769 lai->primitive_type_vector [ada_primitive_type_long_double]
11770 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11771 "long_long_float", NULL);
11772 lai->primitive_type_vector [ada_primitive_type_natural]
11773 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11775 lai->primitive_type_vector [ada_primitive_type_positive]
11776 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11778 lai->primitive_type_vector [ada_primitive_type_void]
11779 = builtin->builtin_void;
11781 lai->primitive_type_vector [ada_primitive_type_system_address]
11782 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11783 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11784 = "system__address";
11786 lai->bool_type_symbol = NULL;
11787 lai->bool_type_default = builtin->builtin_bool;
11790 /* Language vector */
11792 /* Not really used, but needed in the ada_language_defn. */
11795 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11797 ada_emit_char (c, type, stream, quoter, 1);
11803 warnings_issued = 0;
11804 return ada_parse ();
11807 static const struct exp_descriptor ada_exp_descriptor = {
11809 ada_operator_length,
11810 ada_operator_check,
11812 ada_dump_subexp_body,
11813 ada_evaluate_subexp
11816 const struct language_defn ada_language_defn = {
11817 "ada", /* Language name */
11821 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11822 that's not quite what this means. */
11824 macro_expansion_no,
11825 &ada_exp_descriptor,
11829 ada_printchar, /* Print a character constant */
11830 ada_printstr, /* Function to print string constant */
11831 emit_char, /* Function to print single char (not used) */
11832 ada_print_type, /* Print a type using appropriate syntax */
11833 ada_print_typedef, /* Print a typedef using appropriate syntax */
11834 ada_val_print, /* Print a value using appropriate syntax */
11835 ada_value_print, /* Print a top-level value */
11836 NULL, /* Language specific skip_trampoline */
11837 NULL, /* name_of_this */
11838 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11839 basic_lookup_transparent_type, /* lookup_transparent_type */
11840 ada_la_decode, /* Language specific symbol demangler */
11841 NULL, /* Language specific
11842 class_name_from_physname */
11843 ada_op_print_tab, /* expression operators for printing */
11844 0, /* c-style arrays */
11845 1, /* String lower bound */
11846 ada_get_gdb_completer_word_break_characters,
11847 ada_make_symbol_completion_list,
11848 ada_language_arch_info,
11849 ada_print_array_index,
11850 default_pass_by_reference,
11855 /* Provide a prototype to silence -Wmissing-prototypes. */
11856 extern initialize_file_ftype _initialize_ada_language;
11858 /* Command-list for the "set/show ada" prefix command. */
11859 static struct cmd_list_element *set_ada_list;
11860 static struct cmd_list_element *show_ada_list;
11862 /* Implement the "set ada" prefix command. */
11865 set_ada_command (char *arg, int from_tty)
11867 printf_unfiltered (_(\
11868 "\"set ada\" must be followed by the name of a setting.\n"));
11869 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11872 /* Implement the "show ada" prefix command. */
11875 show_ada_command (char *args, int from_tty)
11877 cmd_show_list (show_ada_list, from_tty, "");
11881 _initialize_ada_language (void)
11883 add_language (&ada_language_defn);
11885 add_prefix_cmd ("ada", no_class, set_ada_command,
11886 _("Prefix command for changing Ada-specfic settings"),
11887 &set_ada_list, "set ada ", 0, &setlist);
11889 add_prefix_cmd ("ada", no_class, show_ada_command,
11890 _("Generic command for showing Ada-specific settings."),
11891 &show_ada_list, "show ada ", 0, &showlist);
11893 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11894 &trust_pad_over_xvs, _("\
11895 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11896 Show whether an optimization trusting PAD types over XVS types is activated"),
11898 This is related to the encoding used by the GNAT compiler. The debugger\n\
11899 should normally trust the contents of PAD types, but certain older versions\n\
11900 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11901 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11902 work around this bug. It is always safe to turn this option \"off\", but\n\
11903 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11904 this option to \"off\" unless necessary."),
11905 NULL, NULL, &set_ada_list, &show_ada_list);
11907 varsize_limit = 65536;
11909 obstack_init (&symbol_list_obstack);
11911 decoded_names_store = htab_create_alloc
11912 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11913 NULL, xcalloc, xfree);
11915 observer_attach_executable_changed (ada_executable_changed_observer);
11917 /* Setup per-inferior data. */
11918 observer_attach_inferior_exit (ada_inferior_exit);
11920 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);