1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
55 // Layout_task_runner methods.
57 // Lay out the sections. This is called after all the input objects
61 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
63 off_t file_size = this->layout_->finalize(this->input_objects_,
68 // Now we know the final size of the output file and we know where
69 // each piece of information goes.
71 if (this->mapfile_ != NULL)
73 this->mapfile_->print_discarded_sections(this->input_objects_);
74 this->layout_->print_to_mapfile(this->mapfile_);
77 Output_file* of = new Output_file(parameters->options().output_file_name());
78 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
79 of->set_is_temporary();
82 // Queue up the final set of tasks.
83 gold::queue_final_tasks(this->options_, this->input_objects_,
84 this->symtab_, this->layout_, workqueue, of);
89 Layout::Layout(int number_of_input_files, Script_options* script_options)
90 : number_of_input_files_(number_of_input_files),
91 script_options_(script_options),
99 unattached_section_list_(),
100 special_output_list_(),
101 section_headers_(NULL),
103 relro_segment_(NULL),
104 symtab_section_(NULL),
105 symtab_xindex_(NULL),
106 dynsym_section_(NULL),
107 dynsym_xindex_(NULL),
108 dynamic_section_(NULL),
110 eh_frame_section_(NULL),
111 eh_frame_data_(NULL),
112 added_eh_frame_data_(false),
113 eh_frame_hdr_section_(NULL),
114 build_id_note_(NULL),
118 output_file_size_(-1),
119 sections_are_attached_(false),
120 input_requires_executable_stack_(false),
121 input_with_gnu_stack_note_(false),
122 input_without_gnu_stack_note_(false),
123 has_static_tls_(false),
124 any_postprocessing_sections_(false),
125 resized_signatures_(false)
127 // Make space for more than enough segments for a typical file.
128 // This is just for efficiency--it's OK if we wind up needing more.
129 this->segment_list_.reserve(12);
131 // We expect two unattached Output_data objects: the file header and
132 // the segment headers.
133 this->special_output_list_.reserve(2);
136 // Hash a key we use to look up an output section mapping.
139 Layout::Hash_key::operator()(const Layout::Key& k) const
141 return k.first + k.second.first + k.second.second;
144 // Returns whether the given section is in the list of
145 // debug-sections-used-by-some-version-of-gdb. Currently,
146 // we've checked versions of gdb up to and including 6.7.1.
148 static const char* gdb_sections[] =
150 // ".debug_aranges", // not used by gdb as of 6.7.1
156 // ".debug_pubnames", // not used by gdb as of 6.7.1
161 static const char* lines_only_debug_sections[] =
163 // ".debug_aranges", // not used by gdb as of 6.7.1
169 // ".debug_pubnames", // not used by gdb as of 6.7.1
175 is_gdb_debug_section(const char* str)
177 // We can do this faster: binary search or a hashtable. But why bother?
178 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
179 if (strcmp(str, gdb_sections[i]) == 0)
185 is_lines_only_debug_section(const char* str)
187 // We can do this faster: binary search or a hashtable. But why bother?
189 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
191 if (strcmp(str, lines_only_debug_sections[i]) == 0)
196 // Whether to include this section in the link.
198 template<int size, bool big_endian>
200 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
201 const elfcpp::Shdr<size, big_endian>& shdr)
203 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
206 switch (shdr.get_sh_type())
208 case elfcpp::SHT_NULL:
209 case elfcpp::SHT_SYMTAB:
210 case elfcpp::SHT_DYNSYM:
211 case elfcpp::SHT_HASH:
212 case elfcpp::SHT_DYNAMIC:
213 case elfcpp::SHT_SYMTAB_SHNDX:
216 case elfcpp::SHT_STRTAB:
217 // Discard the sections which have special meanings in the ELF
218 // ABI. Keep others (e.g., .stabstr). We could also do this by
219 // checking the sh_link fields of the appropriate sections.
220 return (strcmp(name, ".dynstr") != 0
221 && strcmp(name, ".strtab") != 0
222 && strcmp(name, ".shstrtab") != 0);
224 case elfcpp::SHT_RELA:
225 case elfcpp::SHT_REL:
226 case elfcpp::SHT_GROUP:
227 // If we are emitting relocations these should be handled
229 gold_assert(!parameters->options().relocatable()
230 && !parameters->options().emit_relocs());
233 case elfcpp::SHT_PROGBITS:
234 if (parameters->options().strip_debug()
235 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
237 if (is_debug_info_section(name))
240 if (parameters->options().strip_debug_non_line()
241 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
243 // Debugging sections can only be recognized by name.
244 if (is_prefix_of(".debug", name)
245 && !is_lines_only_debug_section(name))
248 if (parameters->options().strip_debug_gdb()
249 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
251 // Debugging sections can only be recognized by name.
252 if (is_prefix_of(".debug", name)
253 && !is_gdb_debug_section(name))
256 if (parameters->options().strip_lto_sections()
257 && !parameters->options().relocatable()
258 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
260 // Ignore LTO sections containing intermediate code.
261 if (is_prefix_of(".gnu.lto_", name))
271 // Return an output section named NAME, or NULL if there is none.
274 Layout::find_output_section(const char* name) const
276 for (Section_list::const_iterator p = this->section_list_.begin();
277 p != this->section_list_.end();
279 if (strcmp((*p)->name(), name) == 0)
284 // Return an output segment of type TYPE, with segment flags SET set
285 // and segment flags CLEAR clear. Return NULL if there is none.
288 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
289 elfcpp::Elf_Word clear) const
291 for (Segment_list::const_iterator p = this->segment_list_.begin();
292 p != this->segment_list_.end();
294 if (static_cast<elfcpp::PT>((*p)->type()) == type
295 && ((*p)->flags() & set) == set
296 && ((*p)->flags() & clear) == 0)
301 // Return the output section to use for section NAME with type TYPE
302 // and section flags FLAGS. NAME must be canonicalized in the string
303 // pool, and NAME_KEY is the key.
306 Layout::get_output_section(const char* name, Stringpool::Key name_key,
307 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
309 elfcpp::Elf_Xword lookup_flags = flags;
311 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
312 // read-write with read-only sections. Some other ELF linkers do
313 // not do this. FIXME: Perhaps there should be an option
315 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
317 const Key key(name_key, std::make_pair(type, lookup_flags));
318 const std::pair<Key, Output_section*> v(key, NULL);
319 std::pair<Section_name_map::iterator, bool> ins(
320 this->section_name_map_.insert(v));
323 return ins.first->second;
326 // This is the first time we've seen this name/type/flags
327 // combination. For compatibility with the GNU linker, we
328 // combine sections with contents and zero flags with sections
329 // with non-zero flags. This is a workaround for cases where
330 // assembler code forgets to set section flags. FIXME: Perhaps
331 // there should be an option to control this.
332 Output_section* os = NULL;
334 if (type == elfcpp::SHT_PROGBITS)
338 Output_section* same_name = this->find_output_section(name);
339 if (same_name != NULL
340 && same_name->type() == elfcpp::SHT_PROGBITS
341 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
344 else if ((flags & elfcpp::SHF_TLS) == 0)
346 elfcpp::Elf_Xword zero_flags = 0;
347 const Key zero_key(name_key, std::make_pair(type, zero_flags));
348 Section_name_map::iterator p =
349 this->section_name_map_.find(zero_key);
350 if (p != this->section_name_map_.end())
356 os = this->make_output_section(name, type, flags);
357 ins.first->second = os;
362 // Pick the output section to use for section NAME, in input file
363 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
364 // linker created section. IS_INPUT_SECTION is true if we are
365 // choosing an output section for an input section found in a input
366 // file. This will return NULL if the input section should be
370 Layout::choose_output_section(const Relobj* relobj, const char* name,
371 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
372 bool is_input_section)
374 // We should not see any input sections after we have attached
375 // sections to segments.
376 gold_assert(!is_input_section || !this->sections_are_attached_);
378 // Some flags in the input section should not be automatically
379 // copied to the output section.
380 flags &= ~ (elfcpp::SHF_INFO_LINK
381 | elfcpp::SHF_LINK_ORDER
384 | elfcpp::SHF_STRINGS);
386 if (this->script_options_->saw_sections_clause())
388 // We are using a SECTIONS clause, so the output section is
389 // chosen based only on the name.
391 Script_sections* ss = this->script_options_->script_sections();
392 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
393 Output_section** output_section_slot;
394 name = ss->output_section_name(file_name, name, &output_section_slot);
397 // The SECTIONS clause says to discard this input section.
401 // If this is an orphan section--one not mentioned in the linker
402 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
403 // default processing below.
405 if (output_section_slot != NULL)
407 if (*output_section_slot != NULL)
408 return *output_section_slot;
410 // We don't put sections found in the linker script into
411 // SECTION_NAME_MAP_. That keeps us from getting confused
412 // if an orphan section is mapped to a section with the same
413 // name as one in the linker script.
415 name = this->namepool_.add(name, false, NULL);
417 Output_section* os = this->make_output_section(name, type, flags);
418 os->set_found_in_sections_clause();
419 *output_section_slot = os;
424 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
426 // Turn NAME from the name of the input section into the name of the
429 size_t len = strlen(name);
431 && !this->script_options_->saw_sections_clause()
432 && !parameters->options().relocatable())
433 name = Layout::output_section_name(name, &len);
435 Stringpool::Key name_key;
436 name = this->namepool_.add_with_length(name, len, true, &name_key);
438 // Find or make the output section. The output section is selected
439 // based on the section name, type, and flags.
440 return this->get_output_section(name, name_key, type, flags);
443 // Return the output section to use for input section SHNDX, with name
444 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
445 // index of a relocation section which applies to this section, or 0
446 // if none, or -1U if more than one. RELOC_TYPE is the type of the
447 // relocation section if there is one. Set *OFF to the offset of this
448 // input section without the output section. Return NULL if the
449 // section should be discarded. Set *OFF to -1 if the section
450 // contents should not be written directly to the output file, but
451 // will instead receive special handling.
453 template<int size, bool big_endian>
455 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
456 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
457 unsigned int reloc_shndx, unsigned int, off_t* off)
461 if (!this->include_section(object, name, shdr))
466 // In a relocatable link a grouped section must not be combined with
467 // any other sections.
468 if (parameters->options().relocatable()
469 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
471 name = this->namepool_.add(name, true, NULL);
472 os = this->make_output_section(name, shdr.get_sh_type(),
473 shdr.get_sh_flags());
477 os = this->choose_output_section(object, name, shdr.get_sh_type(),
478 shdr.get_sh_flags(), true);
483 // By default the GNU linker sorts input sections whose names match
484 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
485 // are sorted by name. This is used to implement constructor
486 // priority ordering. We are compatible.
487 if (!this->script_options_->saw_sections_clause()
488 && (is_prefix_of(".ctors.", name)
489 || is_prefix_of(".dtors.", name)
490 || is_prefix_of(".init_array.", name)
491 || is_prefix_of(".fini_array.", name)))
492 os->set_must_sort_attached_input_sections();
494 // FIXME: Handle SHF_LINK_ORDER somewhere.
496 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
497 this->script_options_->saw_sections_clause());
502 // Handle a relocation section when doing a relocatable link.
504 template<int size, bool big_endian>
506 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
508 const elfcpp::Shdr<size, big_endian>& shdr,
509 Output_section* data_section,
510 Relocatable_relocs* rr)
512 gold_assert(parameters->options().relocatable()
513 || parameters->options().emit_relocs());
515 int sh_type = shdr.get_sh_type();
518 if (sh_type == elfcpp::SHT_REL)
520 else if (sh_type == elfcpp::SHT_RELA)
524 name += data_section->name();
526 Output_section* os = this->choose_output_section(object, name.c_str(),
531 os->set_should_link_to_symtab();
532 os->set_info_section(data_section);
534 Output_section_data* posd;
535 if (sh_type == elfcpp::SHT_REL)
537 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
538 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
542 else if (sh_type == elfcpp::SHT_RELA)
544 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
545 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
552 os->add_output_section_data(posd);
553 rr->set_output_data(posd);
558 // Handle a group section when doing a relocatable link.
560 template<int size, bool big_endian>
562 Layout::layout_group(Symbol_table* symtab,
563 Sized_relobj<size, big_endian>* object,
565 const char* group_section_name,
566 const char* signature,
567 const elfcpp::Shdr<size, big_endian>& shdr,
568 elfcpp::Elf_Word flags,
569 std::vector<unsigned int>* shndxes)
571 gold_assert(parameters->options().relocatable());
572 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
573 group_section_name = this->namepool_.add(group_section_name, true, NULL);
574 Output_section* os = this->make_output_section(group_section_name,
576 shdr.get_sh_flags());
578 // We need to find a symbol with the signature in the symbol table.
579 // If we don't find one now, we need to look again later.
580 Symbol* sym = symtab->lookup(signature, NULL);
582 os->set_info_symndx(sym);
585 // Reserve some space to minimize reallocations.
586 if (this->group_signatures_.empty())
587 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
589 // We will wind up using a symbol whose name is the signature.
590 // So just put the signature in the symbol name pool to save it.
591 signature = symtab->canonicalize_name(signature);
592 this->group_signatures_.push_back(Group_signature(os, signature));
595 os->set_should_link_to_symtab();
598 section_size_type entry_count =
599 convert_to_section_size_type(shdr.get_sh_size() / 4);
600 Output_section_data* posd =
601 new Output_data_group<size, big_endian>(object, entry_count, flags,
603 os->add_output_section_data(posd);
606 // Special GNU handling of sections name .eh_frame. They will
607 // normally hold exception frame data as defined by the C++ ABI
608 // (http://codesourcery.com/cxx-abi/).
610 template<int size, bool big_endian>
612 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
613 const unsigned char* symbols,
615 const unsigned char* symbol_names,
616 off_t symbol_names_size,
618 const elfcpp::Shdr<size, big_endian>& shdr,
619 unsigned int reloc_shndx, unsigned int reloc_type,
622 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
623 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
625 const char* const name = ".eh_frame";
626 Output_section* os = this->choose_output_section(object,
628 elfcpp::SHT_PROGBITS,
634 if (this->eh_frame_section_ == NULL)
636 this->eh_frame_section_ = os;
637 this->eh_frame_data_ = new Eh_frame();
639 if (parameters->options().eh_frame_hdr())
641 Output_section* hdr_os =
642 this->choose_output_section(NULL,
644 elfcpp::SHT_PROGBITS,
650 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
651 this->eh_frame_data_);
652 hdr_os->add_output_section_data(hdr_posd);
654 hdr_os->set_after_input_sections();
656 if (!this->script_options_->saw_phdrs_clause())
658 Output_segment* hdr_oseg;
659 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
661 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
664 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
669 gold_assert(this->eh_frame_section_ == os);
671 if (this->eh_frame_data_->add_ehframe_input_section(object,
680 os->update_flags_for_input_section(shdr.get_sh_flags());
682 // We found a .eh_frame section we are going to optimize, so now
683 // we can add the set of optimized sections to the output
684 // section. We need to postpone adding this until we've found a
685 // section we can optimize so that the .eh_frame section in
686 // crtbegin.o winds up at the start of the output section.
687 if (!this->added_eh_frame_data_)
689 os->add_output_section_data(this->eh_frame_data_);
690 this->added_eh_frame_data_ = true;
696 // We couldn't handle this .eh_frame section for some reason.
697 // Add it as a normal section.
698 bool saw_sections_clause = this->script_options_->saw_sections_clause();
699 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
700 saw_sections_clause);
706 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
707 // the output section.
710 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
711 elfcpp::Elf_Xword flags,
712 Output_section_data* posd)
714 Output_section* os = this->choose_output_section(NULL, name, type, flags,
717 os->add_output_section_data(posd);
721 // Map section flags to segment flags.
724 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
726 elfcpp::Elf_Word ret = elfcpp::PF_R;
727 if ((flags & elfcpp::SHF_WRITE) != 0)
729 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
734 // Sometimes we compress sections. This is typically done for
735 // sections that are not part of normal program execution (such as
736 // .debug_* sections), and where the readers of these sections know
737 // how to deal with compressed sections. (To make it easier for them,
738 // we will rename the ouput section in such cases from .foo to
739 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
740 // doesn't say for certain whether we'll compress -- it depends on
741 // commandline options as well -- just whether this section is a
742 // candidate for compression.
745 is_compressible_debug_section(const char* secname)
747 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
750 // Make a new Output_section, and attach it to segments as
754 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
755 elfcpp::Elf_Xword flags)
758 if ((flags & elfcpp::SHF_ALLOC) == 0
759 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
760 && is_compressible_debug_section(name))
761 os = new Output_compressed_section(¶meters->options(), name, type,
764 else if ((flags & elfcpp::SHF_ALLOC) == 0
765 && parameters->options().strip_debug_non_line()
766 && strcmp(".debug_abbrev", name) == 0)
768 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
770 if (this->debug_info_)
771 this->debug_info_->set_abbreviations(this->debug_abbrev_);
773 else if ((flags & elfcpp::SHF_ALLOC) == 0
774 && parameters->options().strip_debug_non_line()
775 && strcmp(".debug_info", name) == 0)
777 os = this->debug_info_ = new Output_reduced_debug_info_section(
779 if (this->debug_abbrev_)
780 this->debug_info_->set_abbreviations(this->debug_abbrev_);
783 os = new Output_section(name, type, flags);
785 this->section_list_.push_back(os);
787 // The GNU linker by default sorts some sections by priority, so we
788 // do the same. We need to know that this might happen before we
789 // attach any input sections.
790 if (!this->script_options_->saw_sections_clause()
791 && (strcmp(name, ".ctors") == 0
792 || strcmp(name, ".dtors") == 0
793 || strcmp(name, ".init_array") == 0
794 || strcmp(name, ".fini_array") == 0))
795 os->set_may_sort_attached_input_sections();
797 // With -z relro, we have to recognize the special sections by name.
798 // There is no other way.
799 if (!this->script_options_->saw_sections_clause()
800 && parameters->options().relro()
801 && type == elfcpp::SHT_PROGBITS
802 && (flags & elfcpp::SHF_ALLOC) != 0
803 && (flags & elfcpp::SHF_WRITE) != 0)
805 if (strcmp(name, ".data.rel.ro") == 0)
807 else if (strcmp(name, ".data.rel.ro.local") == 0)
810 os->set_is_relro_local();
814 // If we have already attached the sections to segments, then we
815 // need to attach this one now. This happens for sections created
816 // directly by the linker.
817 if (this->sections_are_attached_)
818 this->attach_section_to_segment(os);
823 // Attach output sections to segments. This is called after we have
824 // seen all the input sections.
827 Layout::attach_sections_to_segments()
829 for (Section_list::iterator p = this->section_list_.begin();
830 p != this->section_list_.end();
832 this->attach_section_to_segment(*p);
834 this->sections_are_attached_ = true;
837 // Attach an output section to a segment.
840 Layout::attach_section_to_segment(Output_section* os)
842 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
843 this->unattached_section_list_.push_back(os);
845 this->attach_allocated_section_to_segment(os);
848 // Attach an allocated output section to a segment.
851 Layout::attach_allocated_section_to_segment(Output_section* os)
853 elfcpp::Elf_Xword flags = os->flags();
854 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
856 if (parameters->options().relocatable())
859 // If we have a SECTIONS clause, we can't handle the attachment to
860 // segments until after we've seen all the sections.
861 if (this->script_options_->saw_sections_clause())
864 gold_assert(!this->script_options_->saw_phdrs_clause());
866 // This output section goes into a PT_LOAD segment.
868 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
870 // In general the only thing we really care about for PT_LOAD
871 // segments is whether or not they are writable, so that is how we
872 // search for them. People who need segments sorted on some other
873 // basis will have to use a linker script.
875 Segment_list::const_iterator p;
876 for (p = this->segment_list_.begin();
877 p != this->segment_list_.end();
880 if ((*p)->type() == elfcpp::PT_LOAD
881 && (parameters->options().omagic()
882 || ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W)))
884 // If -Tbss was specified, we need to separate the data
886 if (parameters->options().user_set_Tbss())
888 if ((os->type() == elfcpp::SHT_NOBITS)
889 == (*p)->has_any_data_sections())
893 (*p)->add_output_section(os, seg_flags);
898 if (p == this->segment_list_.end())
900 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
902 oseg->add_output_section(os, seg_flags);
905 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
907 if (os->type() == elfcpp::SHT_NOTE)
909 // See if we already have an equivalent PT_NOTE segment.
910 for (p = this->segment_list_.begin();
911 p != segment_list_.end();
914 if ((*p)->type() == elfcpp::PT_NOTE
915 && (((*p)->flags() & elfcpp::PF_W)
916 == (seg_flags & elfcpp::PF_W)))
918 (*p)->add_output_section(os, seg_flags);
923 if (p == this->segment_list_.end())
925 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
927 oseg->add_output_section(os, seg_flags);
931 // If we see a loadable SHF_TLS section, we create a PT_TLS
932 // segment. There can only be one such segment.
933 if ((flags & elfcpp::SHF_TLS) != 0)
935 if (this->tls_segment_ == NULL)
936 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
937 this->tls_segment_->add_output_section(os, seg_flags);
940 // If -z relro is in effect, and we see a relro section, we create a
941 // PT_GNU_RELRO segment. There can only be one such segment.
942 if (os->is_relro() && parameters->options().relro())
944 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
945 if (this->relro_segment_ == NULL)
946 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
947 this->relro_segment_->add_output_section(os, seg_flags);
951 // Make an output section for a script.
954 Layout::make_output_section_for_script(const char* name)
956 name = this->namepool_.add(name, false, NULL);
957 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
959 os->set_found_in_sections_clause();
963 // Return the number of segments we expect to see.
966 Layout::expected_segment_count() const
968 size_t ret = this->segment_list_.size();
970 // If we didn't see a SECTIONS clause in a linker script, we should
971 // already have the complete list of segments. Otherwise we ask the
972 // SECTIONS clause how many segments it expects, and add in the ones
973 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
975 if (!this->script_options_->saw_sections_clause())
979 const Script_sections* ss = this->script_options_->script_sections();
980 return ret + ss->expected_segment_count(this);
984 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
985 // is whether we saw a .note.GNU-stack section in the object file.
986 // GNU_STACK_FLAGS is the section flags. The flags give the
987 // protection required for stack memory. We record this in an
988 // executable as a PT_GNU_STACK segment. If an object file does not
989 // have a .note.GNU-stack segment, we must assume that it is an old
990 // object. On some targets that will force an executable stack.
993 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
996 this->input_without_gnu_stack_note_ = true;
999 this->input_with_gnu_stack_note_ = true;
1000 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1001 this->input_requires_executable_stack_ = true;
1005 // Create the dynamic sections which are needed before we read the
1009 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1011 if (parameters->doing_static_link())
1014 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1015 elfcpp::SHT_DYNAMIC,
1017 | elfcpp::SHF_WRITE),
1019 this->dynamic_section_->set_is_relro();
1021 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1022 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1023 elfcpp::STV_HIDDEN, 0, false, false);
1025 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1027 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1030 // For each output section whose name can be represented as C symbol,
1031 // define __start and __stop symbols for the section. This is a GNU
1035 Layout::define_section_symbols(Symbol_table* symtab)
1037 for (Section_list::const_iterator p = this->section_list_.begin();
1038 p != this->section_list_.end();
1041 const char* const name = (*p)->name();
1042 if (name[strspn(name,
1044 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1045 "abcdefghijklmnopqrstuvwxyz"
1049 const std::string name_string(name);
1050 const std::string start_name("__start_" + name_string);
1051 const std::string stop_name("__stop_" + name_string);
1053 symtab->define_in_output_data(start_name.c_str(),
1060 elfcpp::STV_DEFAULT,
1062 false, // offset_is_from_end
1063 true); // only_if_ref
1065 symtab->define_in_output_data(stop_name.c_str(),
1072 elfcpp::STV_DEFAULT,
1074 true, // offset_is_from_end
1075 true); // only_if_ref
1080 // Define symbols for group signatures.
1083 Layout::define_group_signatures(Symbol_table* symtab)
1085 for (Group_signatures::iterator p = this->group_signatures_.begin();
1086 p != this->group_signatures_.end();
1089 Symbol* sym = symtab->lookup(p->signature, NULL);
1091 p->section->set_info_symndx(sym);
1094 // Force the name of the group section to the group
1095 // signature, and use the group's section symbol as the
1096 // signature symbol.
1097 if (strcmp(p->section->name(), p->signature) != 0)
1099 const char* name = this->namepool_.add(p->signature,
1101 p->section->set_name(name);
1103 p->section->set_needs_symtab_index();
1104 p->section->set_info_section_symndx(p->section);
1108 this->group_signatures_.clear();
1111 // Find the first read-only PT_LOAD segment, creating one if
1115 Layout::find_first_load_seg()
1117 for (Segment_list::const_iterator p = this->segment_list_.begin();
1118 p != this->segment_list_.end();
1121 if ((*p)->type() == elfcpp::PT_LOAD
1122 && ((*p)->flags() & elfcpp::PF_R) != 0
1123 && (parameters->options().omagic()
1124 || ((*p)->flags() & elfcpp::PF_W) == 0))
1128 gold_assert(!this->script_options_->saw_phdrs_clause());
1130 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1135 // Finalize the layout. When this is called, we have created all the
1136 // output sections and all the output segments which are based on
1137 // input sections. We have several things to do, and we have to do
1138 // them in the right order, so that we get the right results correctly
1141 // 1) Finalize the list of output segments and create the segment
1144 // 2) Finalize the dynamic symbol table and associated sections.
1146 // 3) Determine the final file offset of all the output segments.
1148 // 4) Determine the final file offset of all the SHF_ALLOC output
1151 // 5) Create the symbol table sections and the section name table
1154 // 6) Finalize the symbol table: set symbol values to their final
1155 // value and make a final determination of which symbols are going
1156 // into the output symbol table.
1158 // 7) Create the section table header.
1160 // 8) Determine the final file offset of all the output sections which
1161 // are not SHF_ALLOC, including the section table header.
1163 // 9) Finalize the ELF file header.
1165 // This function returns the size of the output file.
1168 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1169 Target* target, const Task* task)
1171 target->finalize_sections(this);
1173 this->count_local_symbols(task, input_objects);
1175 this->create_gold_note();
1176 this->create_executable_stack_info(target);
1177 this->create_build_id();
1179 Output_segment* phdr_seg = NULL;
1180 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1182 // There was a dynamic object in the link. We need to create
1183 // some information for the dynamic linker.
1185 // Create the PT_PHDR segment which will hold the program
1187 if (!this->script_options_->saw_phdrs_clause())
1188 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1190 // Create the dynamic symbol table, including the hash table.
1191 Output_section* dynstr;
1192 std::vector<Symbol*> dynamic_symbols;
1193 unsigned int local_dynamic_count;
1194 Versions versions(*this->script_options()->version_script_info(),
1196 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1197 &local_dynamic_count, &dynamic_symbols,
1200 // Create the .interp section to hold the name of the
1201 // interpreter, and put it in a PT_INTERP segment.
1202 if (!parameters->options().shared())
1203 this->create_interp(target);
1205 // Finish the .dynamic section to hold the dynamic data, and put
1206 // it in a PT_DYNAMIC segment.
1207 this->finish_dynamic_section(input_objects, symtab);
1209 // We should have added everything we need to the dynamic string
1211 this->dynpool_.set_string_offsets();
1213 // Create the version sections. We can't do this until the
1214 // dynamic string table is complete.
1215 this->create_version_sections(&versions, symtab, local_dynamic_count,
1216 dynamic_symbols, dynstr);
1219 // If there is a SECTIONS clause, put all the input sections into
1220 // the required order.
1221 Output_segment* load_seg;
1222 if (this->script_options_->saw_sections_clause())
1223 load_seg = this->set_section_addresses_from_script(symtab);
1224 else if (parameters->options().relocatable())
1227 load_seg = this->find_first_load_seg();
1229 if (parameters->options().oformat_enum()
1230 != General_options::OBJECT_FORMAT_ELF)
1233 gold_assert(phdr_seg == NULL || load_seg != NULL);
1235 // Lay out the segment headers.
1236 Output_segment_headers* segment_headers;
1237 if (parameters->options().relocatable())
1238 segment_headers = NULL;
1241 segment_headers = new Output_segment_headers(this->segment_list_);
1242 if (load_seg != NULL)
1243 load_seg->add_initial_output_data(segment_headers);
1244 if (phdr_seg != NULL)
1245 phdr_seg->add_initial_output_data(segment_headers);
1248 // Lay out the file header.
1249 Output_file_header* file_header;
1250 file_header = new Output_file_header(target, symtab, segment_headers,
1251 parameters->options().entry());
1252 if (load_seg != NULL)
1253 load_seg->add_initial_output_data(file_header);
1255 this->special_output_list_.push_back(file_header);
1256 if (segment_headers != NULL)
1257 this->special_output_list_.push_back(segment_headers);
1259 if (this->script_options_->saw_phdrs_clause()
1260 && !parameters->options().relocatable())
1262 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1263 // clause in a linker script.
1264 Script_sections* ss = this->script_options_->script_sections();
1265 ss->put_headers_in_phdrs(file_header, segment_headers);
1268 // We set the output section indexes in set_segment_offsets and
1269 // set_section_indexes.
1270 unsigned int shndx = 1;
1272 // Set the file offsets of all the segments, and all the sections
1275 if (!parameters->options().relocatable())
1276 off = this->set_segment_offsets(target, load_seg, &shndx);
1278 off = this->set_relocatable_section_offsets(file_header, &shndx);
1280 // Set the file offsets of all the non-data sections we've seen so
1281 // far which don't have to wait for the input sections. We need
1282 // this in order to finalize local symbols in non-allocated
1284 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1286 // Set the section indexes of all unallocated sections seen so far,
1287 // in case any of them are somehow referenced by a symbol.
1288 shndx = this->set_section_indexes(shndx);
1290 // Create the symbol table sections.
1291 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1292 if (!parameters->doing_static_link())
1293 this->assign_local_dynsym_offsets(input_objects);
1295 // Process any symbol assignments from a linker script. This must
1296 // be called after the symbol table has been finalized.
1297 this->script_options_->finalize_symbols(symtab, this);
1299 // Create the .shstrtab section.
1300 Output_section* shstrtab_section = this->create_shstrtab();
1302 // Set the file offsets of the rest of the non-data sections which
1303 // don't have to wait for the input sections.
1304 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1306 // Now that all sections have been created, set the section indexes
1307 // for any sections which haven't been done yet.
1308 shndx = this->set_section_indexes(shndx);
1310 // Create the section table header.
1311 this->create_shdrs(shstrtab_section, &off);
1313 // If there are no sections which require postprocessing, we can
1314 // handle the section names now, and avoid a resize later.
1315 if (!this->any_postprocessing_sections_)
1316 off = this->set_section_offsets(off,
1317 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1319 file_header->set_section_info(this->section_headers_, shstrtab_section);
1321 // Now we know exactly where everything goes in the output file
1322 // (except for non-allocated sections which require postprocessing).
1323 Output_data::layout_complete();
1325 this->output_file_size_ = off;
1330 // Create a note header following the format defined in the ELF ABI.
1331 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1332 // descriptor. ALLOCATE is true if the section should be allocated in
1333 // memory. This returns the new note section. It sets
1334 // *TRAILING_PADDING to the number of trailing zero bytes required.
1337 Layout::create_note(const char* name, int note_type,
1338 const char* section_name, size_t descsz,
1339 bool allocate, size_t* trailing_padding)
1341 // Authorities all agree that the values in a .note field should
1342 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1343 // they differ on what the alignment is for 64-bit binaries.
1344 // The GABI says unambiguously they take 8-byte alignment:
1345 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1346 // Other documentation says alignment should always be 4 bytes:
1347 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1348 // GNU ld and GNU readelf both support the latter (at least as of
1349 // version 2.16.91), and glibc always generates the latter for
1350 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1352 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1353 const int size = parameters->target().get_size();
1355 const int size = 32;
1358 // The contents of the .note section.
1359 size_t namesz = strlen(name) + 1;
1360 size_t aligned_namesz = align_address(namesz, size / 8);
1361 size_t aligned_descsz = align_address(descsz, size / 8);
1363 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1365 unsigned char* buffer = new unsigned char[notehdrsz];
1366 memset(buffer, 0, notehdrsz);
1368 bool is_big_endian = parameters->target().is_big_endian();
1374 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1375 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1376 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1380 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1381 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1382 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1385 else if (size == 64)
1389 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1390 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1391 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1395 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1396 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1397 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1403 memcpy(buffer + 3 * (size / 8), name, namesz);
1405 const char *note_name = this->namepool_.add(section_name, false, NULL);
1406 elfcpp::Elf_Xword flags = 0;
1408 flags = elfcpp::SHF_ALLOC;
1409 Output_section* os = this->make_output_section(note_name,
1412 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1415 os->add_output_section_data(posd);
1417 *trailing_padding = aligned_descsz - descsz;
1422 // For an executable or shared library, create a note to record the
1423 // version of gold used to create the binary.
1426 Layout::create_gold_note()
1428 if (parameters->options().relocatable())
1431 std::string desc = std::string("gold ") + gold::get_version_string();
1433 size_t trailing_padding;
1434 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1435 ".note.gnu.gold-version", desc.size(),
1436 false, &trailing_padding);
1438 Output_section_data* posd = new Output_data_const(desc, 4);
1439 os->add_output_section_data(posd);
1441 if (trailing_padding > 0)
1443 posd = new Output_data_zero_fill(trailing_padding, 0);
1444 os->add_output_section_data(posd);
1448 // Record whether the stack should be executable. This can be set
1449 // from the command line using the -z execstack or -z noexecstack
1450 // options. Otherwise, if any input file has a .note.GNU-stack
1451 // section with the SHF_EXECINSTR flag set, the stack should be
1452 // executable. Otherwise, if at least one input file a
1453 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1454 // section, we use the target default for whether the stack should be
1455 // executable. Otherwise, we don't generate a stack note. When
1456 // generating a object file, we create a .note.GNU-stack section with
1457 // the appropriate marking. When generating an executable or shared
1458 // library, we create a PT_GNU_STACK segment.
1461 Layout::create_executable_stack_info(const Target* target)
1463 bool is_stack_executable;
1464 if (parameters->options().is_execstack_set())
1465 is_stack_executable = parameters->options().is_stack_executable();
1466 else if (!this->input_with_gnu_stack_note_)
1470 if (this->input_requires_executable_stack_)
1471 is_stack_executable = true;
1472 else if (this->input_without_gnu_stack_note_)
1473 is_stack_executable = target->is_default_stack_executable();
1475 is_stack_executable = false;
1478 if (parameters->options().relocatable())
1480 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1481 elfcpp::Elf_Xword flags = 0;
1482 if (is_stack_executable)
1483 flags |= elfcpp::SHF_EXECINSTR;
1484 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1488 if (this->script_options_->saw_phdrs_clause())
1490 int flags = elfcpp::PF_R | elfcpp::PF_W;
1491 if (is_stack_executable)
1492 flags |= elfcpp::PF_X;
1493 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1497 // If --build-id was used, set up the build ID note.
1500 Layout::create_build_id()
1502 if (!parameters->options().user_set_build_id())
1505 const char* style = parameters->options().build_id();
1506 if (strcmp(style, "none") == 0)
1509 // Set DESCSZ to the size of the note descriptor. When possible,
1510 // set DESC to the note descriptor contents.
1513 if (strcmp(style, "md5") == 0)
1515 else if (strcmp(style, "sha1") == 0)
1517 else if (strcmp(style, "uuid") == 0)
1519 const size_t uuidsz = 128 / 8;
1521 char buffer[uuidsz];
1522 memset(buffer, 0, uuidsz);
1524 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1526 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1530 ssize_t got = ::read(descriptor, buffer, uuidsz);
1531 release_descriptor(descriptor, true);
1533 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1534 else if (static_cast<size_t>(got) != uuidsz)
1535 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1539 desc.assign(buffer, uuidsz);
1542 else if (strncmp(style, "0x", 2) == 0)
1545 const char* p = style + 2;
1548 if (hex_p(p[0]) && hex_p(p[1]))
1550 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1554 else if (*p == '-' || *p == ':')
1557 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1560 descsz = desc.size();
1563 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1566 size_t trailing_padding;
1567 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1568 ".note.gnu.build-id", descsz, true,
1573 // We know the value already, so we fill it in now.
1574 gold_assert(desc.size() == descsz);
1576 Output_section_data* posd = new Output_data_const(desc, 4);
1577 os->add_output_section_data(posd);
1579 if (trailing_padding != 0)
1581 posd = new Output_data_zero_fill(trailing_padding, 0);
1582 os->add_output_section_data(posd);
1587 // We need to compute a checksum after we have completed the
1589 gold_assert(trailing_padding == 0);
1590 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1591 os->add_output_section_data(this->build_id_note_);
1592 os->set_after_input_sections();
1596 // Return whether SEG1 should be before SEG2 in the output file. This
1597 // is based entirely on the segment type and flags. When this is
1598 // called the segment addresses has normally not yet been set.
1601 Layout::segment_precedes(const Output_segment* seg1,
1602 const Output_segment* seg2)
1604 elfcpp::Elf_Word type1 = seg1->type();
1605 elfcpp::Elf_Word type2 = seg2->type();
1607 // The single PT_PHDR segment is required to precede any loadable
1608 // segment. We simply make it always first.
1609 if (type1 == elfcpp::PT_PHDR)
1611 gold_assert(type2 != elfcpp::PT_PHDR);
1614 if (type2 == elfcpp::PT_PHDR)
1617 // The single PT_INTERP segment is required to precede any loadable
1618 // segment. We simply make it always second.
1619 if (type1 == elfcpp::PT_INTERP)
1621 gold_assert(type2 != elfcpp::PT_INTERP);
1624 if (type2 == elfcpp::PT_INTERP)
1627 // We then put PT_LOAD segments before any other segments.
1628 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1630 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1633 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1634 // segment, because that is where the dynamic linker expects to find
1635 // it (this is just for efficiency; other positions would also work
1637 if (type1 == elfcpp::PT_TLS
1638 && type2 != elfcpp::PT_TLS
1639 && type2 != elfcpp::PT_GNU_RELRO)
1641 if (type2 == elfcpp::PT_TLS
1642 && type1 != elfcpp::PT_TLS
1643 && type1 != elfcpp::PT_GNU_RELRO)
1646 // We put the PT_GNU_RELRO segment last, because that is where the
1647 // dynamic linker expects to find it (as with PT_TLS, this is just
1649 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1651 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1654 const elfcpp::Elf_Word flags1 = seg1->flags();
1655 const elfcpp::Elf_Word flags2 = seg2->flags();
1657 // The order of non-PT_LOAD segments is unimportant. We simply sort
1658 // by the numeric segment type and flags values. There should not
1659 // be more than one segment with the same type and flags.
1660 if (type1 != elfcpp::PT_LOAD)
1663 return type1 < type2;
1664 gold_assert(flags1 != flags2);
1665 return flags1 < flags2;
1668 // If the addresses are set already, sort by load address.
1669 if (seg1->are_addresses_set())
1671 if (!seg2->are_addresses_set())
1674 unsigned int section_count1 = seg1->output_section_count();
1675 unsigned int section_count2 = seg2->output_section_count();
1676 if (section_count1 == 0 && section_count2 > 0)
1678 if (section_count1 > 0 && section_count2 == 0)
1681 uint64_t paddr1 = seg1->first_section_load_address();
1682 uint64_t paddr2 = seg2->first_section_load_address();
1683 if (paddr1 != paddr2)
1684 return paddr1 < paddr2;
1686 else if (seg2->are_addresses_set())
1689 // We sort PT_LOAD segments based on the flags. Readonly segments
1690 // come before writable segments. Then writable segments with data
1691 // come before writable segments without data. Then executable
1692 // segments come before non-executable segments. Then the unlikely
1693 // case of a non-readable segment comes before the normal case of a
1694 // readable segment. If there are multiple segments with the same
1695 // type and flags, we require that the address be set, and we sort
1696 // by virtual address and then physical address.
1697 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1698 return (flags1 & elfcpp::PF_W) == 0;
1699 if ((flags1 & elfcpp::PF_W) != 0
1700 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1701 return seg1->has_any_data_sections();
1702 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1703 return (flags1 & elfcpp::PF_X) != 0;
1704 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1705 return (flags1 & elfcpp::PF_R) == 0;
1707 // We shouldn't get here--we shouldn't create segments which we
1708 // can't distinguish.
1712 // Set the file offsets of all the segments, and all the sections they
1713 // contain. They have all been created. LOAD_SEG must be be laid out
1714 // first. Return the offset of the data to follow.
1717 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1718 unsigned int *pshndx)
1720 // Sort them into the final order.
1721 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1722 Layout::Compare_segments());
1724 // Find the PT_LOAD segments, and set their addresses and offsets
1725 // and their section's addresses and offsets.
1727 if (parameters->options().user_set_Ttext())
1728 addr = parameters->options().Ttext();
1729 else if (parameters->options().shared())
1732 addr = target->default_text_segment_address();
1735 // If LOAD_SEG is NULL, then the file header and segment headers
1736 // will not be loadable. But they still need to be at offset 0 in
1737 // the file. Set their offsets now.
1738 if (load_seg == NULL)
1740 for (Data_list::iterator p = this->special_output_list_.begin();
1741 p != this->special_output_list_.end();
1744 off = align_address(off, (*p)->addralign());
1745 (*p)->set_address_and_file_offset(0, off);
1746 off += (*p)->data_size();
1750 const bool check_sections = parameters->options().check_sections();
1751 Output_segment* last_load_segment = NULL;
1753 bool was_readonly = false;
1754 for (Segment_list::iterator p = this->segment_list_.begin();
1755 p != this->segment_list_.end();
1758 if ((*p)->type() == elfcpp::PT_LOAD)
1760 if (load_seg != NULL && load_seg != *p)
1764 bool are_addresses_set = (*p)->are_addresses_set();
1765 if (are_addresses_set)
1767 // When it comes to setting file offsets, we care about
1768 // the physical address.
1769 addr = (*p)->paddr();
1771 else if (parameters->options().user_set_Tdata()
1772 && ((*p)->flags() & elfcpp::PF_W) != 0
1773 && (!parameters->options().user_set_Tbss()
1774 || (*p)->has_any_data_sections()))
1776 addr = parameters->options().Tdata();
1777 are_addresses_set = true;
1779 else if (parameters->options().user_set_Tbss()
1780 && ((*p)->flags() & elfcpp::PF_W) != 0
1781 && !(*p)->has_any_data_sections())
1783 addr = parameters->options().Tbss();
1784 are_addresses_set = true;
1787 uint64_t orig_addr = addr;
1788 uint64_t orig_off = off;
1790 uint64_t aligned_addr = 0;
1791 uint64_t abi_pagesize = target->abi_pagesize();
1792 uint64_t common_pagesize = target->common_pagesize();
1794 if (!parameters->options().nmagic()
1795 && !parameters->options().omagic())
1796 (*p)->set_minimum_p_align(common_pagesize);
1798 if (are_addresses_set)
1800 if (!parameters->options().nmagic()
1801 && !parameters->options().omagic())
1803 // Adjust the file offset to the same address modulo
1805 uint64_t unsigned_off = off;
1806 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1807 | (addr & (abi_pagesize - 1)));
1808 if (aligned_off < unsigned_off)
1809 aligned_off += abi_pagesize;
1815 // If the last segment was readonly, and this one is
1816 // not, then skip the address forward one page,
1817 // maintaining the same position within the page. This
1818 // lets us store both segments overlapping on a single
1819 // page in the file, but the loader will put them on
1820 // different pages in memory.
1822 addr = align_address(addr, (*p)->maximum_alignment());
1823 aligned_addr = addr;
1825 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1827 if ((addr & (abi_pagesize - 1)) != 0)
1828 addr = addr + abi_pagesize;
1831 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1834 unsigned int shndx_hold = *pshndx;
1835 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1838 // Now that we know the size of this segment, we may be able
1839 // to save a page in memory, at the cost of wasting some
1840 // file space, by instead aligning to the start of a new
1841 // page. Here we use the real machine page size rather than
1842 // the ABI mandated page size.
1844 if (!are_addresses_set && aligned_addr != addr)
1846 uint64_t first_off = (common_pagesize
1848 & (common_pagesize - 1)));
1849 uint64_t last_off = new_addr & (common_pagesize - 1);
1852 && ((aligned_addr & ~ (common_pagesize - 1))
1853 != (new_addr & ~ (common_pagesize - 1)))
1854 && first_off + last_off <= common_pagesize)
1856 *pshndx = shndx_hold;
1857 addr = align_address(aligned_addr, common_pagesize);
1858 addr = align_address(addr, (*p)->maximum_alignment());
1859 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1860 new_addr = (*p)->set_section_addresses(this, true, addr,
1867 if (((*p)->flags() & elfcpp::PF_W) == 0)
1868 was_readonly = true;
1870 // Implement --check-sections. We know that the segments
1871 // are sorted by LMA.
1872 if (check_sections && last_load_segment != NULL)
1874 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
1875 if (last_load_segment->paddr() + last_load_segment->memsz()
1878 unsigned long long lb1 = last_load_segment->paddr();
1879 unsigned long long le1 = lb1 + last_load_segment->memsz();
1880 unsigned long long lb2 = (*p)->paddr();
1881 unsigned long long le2 = lb2 + (*p)->memsz();
1882 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1883 "[0x%llx -> 0x%llx]"),
1884 lb1, le1, lb2, le2);
1887 last_load_segment = *p;
1891 // Handle the non-PT_LOAD segments, setting their offsets from their
1892 // section's offsets.
1893 for (Segment_list::iterator p = this->segment_list_.begin();
1894 p != this->segment_list_.end();
1897 if ((*p)->type() != elfcpp::PT_LOAD)
1901 // Set the TLS offsets for each section in the PT_TLS segment.
1902 if (this->tls_segment_ != NULL)
1903 this->tls_segment_->set_tls_offsets();
1908 // Set the offsets of all the allocated sections when doing a
1909 // relocatable link. This does the same jobs as set_segment_offsets,
1910 // only for a relocatable link.
1913 Layout::set_relocatable_section_offsets(Output_data* file_header,
1914 unsigned int *pshndx)
1918 file_header->set_address_and_file_offset(0, 0);
1919 off += file_header->data_size();
1921 for (Section_list::iterator p = this->section_list_.begin();
1922 p != this->section_list_.end();
1925 // We skip unallocated sections here, except that group sections
1926 // have to come first.
1927 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1928 && (*p)->type() != elfcpp::SHT_GROUP)
1931 off = align_address(off, (*p)->addralign());
1933 // The linker script might have set the address.
1934 if (!(*p)->is_address_valid())
1935 (*p)->set_address(0);
1936 (*p)->set_file_offset(off);
1937 (*p)->finalize_data_size();
1938 off += (*p)->data_size();
1940 (*p)->set_out_shndx(*pshndx);
1947 // Set the file offset of all the sections not associated with a
1951 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1953 for (Section_list::iterator p = this->unattached_section_list_.begin();
1954 p != this->unattached_section_list_.end();
1957 // The symtab section is handled in create_symtab_sections.
1958 if (*p == this->symtab_section_)
1961 // If we've already set the data size, don't set it again.
1962 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1965 if (pass == BEFORE_INPUT_SECTIONS_PASS
1966 && (*p)->requires_postprocessing())
1968 (*p)->create_postprocessing_buffer();
1969 this->any_postprocessing_sections_ = true;
1972 if (pass == BEFORE_INPUT_SECTIONS_PASS
1973 && (*p)->after_input_sections())
1975 else if (pass == POSTPROCESSING_SECTIONS_PASS
1976 && (!(*p)->after_input_sections()
1977 || (*p)->type() == elfcpp::SHT_STRTAB))
1979 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1980 && (!(*p)->after_input_sections()
1981 || (*p)->type() != elfcpp::SHT_STRTAB))
1984 off = align_address(off, (*p)->addralign());
1985 (*p)->set_file_offset(off);
1986 (*p)->finalize_data_size();
1987 off += (*p)->data_size();
1989 // At this point the name must be set.
1990 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1991 this->namepool_.add((*p)->name(), false, NULL);
1996 // Set the section indexes of all the sections not associated with a
2000 Layout::set_section_indexes(unsigned int shndx)
2002 for (Section_list::iterator p = this->unattached_section_list_.begin();
2003 p != this->unattached_section_list_.end();
2006 if (!(*p)->has_out_shndx())
2008 (*p)->set_out_shndx(shndx);
2015 // Set the section addresses according to the linker script. This is
2016 // only called when we see a SECTIONS clause. This returns the
2017 // program segment which should hold the file header and segment
2018 // headers, if any. It will return NULL if they should not be in a
2022 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2024 Script_sections* ss = this->script_options_->script_sections();
2025 gold_assert(ss->saw_sections_clause());
2027 // Place each orphaned output section in the script.
2028 for (Section_list::iterator p = this->section_list_.begin();
2029 p != this->section_list_.end();
2032 if (!(*p)->found_in_sections_clause())
2033 ss->place_orphan(*p);
2036 return this->script_options_->set_section_addresses(symtab, this);
2039 // Count the local symbols in the regular symbol table and the dynamic
2040 // symbol table, and build the respective string pools.
2043 Layout::count_local_symbols(const Task* task,
2044 const Input_objects* input_objects)
2046 // First, figure out an upper bound on the number of symbols we'll
2047 // be inserting into each pool. This helps us create the pools with
2048 // the right size, to avoid unnecessary hashtable resizing.
2049 unsigned int symbol_count = 0;
2050 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2051 p != input_objects->relobj_end();
2053 symbol_count += (*p)->local_symbol_count();
2055 // Go from "upper bound" to "estimate." We overcount for two
2056 // reasons: we double-count symbols that occur in more than one
2057 // object file, and we count symbols that are dropped from the
2058 // output. Add it all together and assume we overcount by 100%.
2061 // We assume all symbols will go into both the sympool and dynpool.
2062 this->sympool_.reserve(symbol_count);
2063 this->dynpool_.reserve(symbol_count);
2065 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2066 p != input_objects->relobj_end();
2069 Task_lock_obj<Object> tlo(task, *p);
2070 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2074 // Create the symbol table sections. Here we also set the final
2075 // values of the symbols. At this point all the loadable sections are
2076 // fully laid out. SHNUM is the number of sections so far.
2079 Layout::create_symtab_sections(const Input_objects* input_objects,
2080 Symbol_table* symtab,
2086 if (parameters->target().get_size() == 32)
2088 symsize = elfcpp::Elf_sizes<32>::sym_size;
2091 else if (parameters->target().get_size() == 64)
2093 symsize = elfcpp::Elf_sizes<64>::sym_size;
2100 off = align_address(off, align);
2101 off_t startoff = off;
2103 // Save space for the dummy symbol at the start of the section. We
2104 // never bother to write this out--it will just be left as zero.
2106 unsigned int local_symbol_index = 1;
2108 // Add STT_SECTION symbols for each Output section which needs one.
2109 for (Section_list::iterator p = this->section_list_.begin();
2110 p != this->section_list_.end();
2113 if (!(*p)->needs_symtab_index())
2114 (*p)->set_symtab_index(-1U);
2117 (*p)->set_symtab_index(local_symbol_index);
2118 ++local_symbol_index;
2123 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2124 p != input_objects->relobj_end();
2127 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2129 off += (index - local_symbol_index) * symsize;
2130 local_symbol_index = index;
2133 unsigned int local_symcount = local_symbol_index;
2134 gold_assert(local_symcount * symsize == off - startoff);
2137 size_t dyn_global_index;
2139 if (this->dynsym_section_ == NULL)
2142 dyn_global_index = 0;
2147 dyn_global_index = this->dynsym_section_->info();
2148 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2149 dynoff = this->dynsym_section_->offset() + locsize;
2150 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2151 gold_assert(static_cast<off_t>(dyncount * symsize)
2152 == this->dynsym_section_->data_size() - locsize);
2155 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2156 &this->sympool_, &local_symcount);
2158 if (!parameters->options().strip_all())
2160 this->sympool_.set_string_offsets();
2162 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2163 Output_section* osymtab = this->make_output_section(symtab_name,
2166 this->symtab_section_ = osymtab;
2168 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2171 osymtab->add_output_section_data(pos);
2173 // We generate a .symtab_shndx section if we have more than
2174 // SHN_LORESERVE sections. Technically it is possible that we
2175 // don't need one, because it is possible that there are no
2176 // symbols in any of sections with indexes larger than
2177 // SHN_LORESERVE. That is probably unusual, though, and it is
2178 // easier to always create one than to compute section indexes
2179 // twice (once here, once when writing out the symbols).
2180 if (shnum >= elfcpp::SHN_LORESERVE)
2182 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2184 Output_section* osymtab_xindex =
2185 this->make_output_section(symtab_xindex_name,
2186 elfcpp::SHT_SYMTAB_SHNDX, 0);
2188 size_t symcount = (off - startoff) / symsize;
2189 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2191 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2193 osymtab_xindex->set_link_section(osymtab);
2194 osymtab_xindex->set_addralign(4);
2195 osymtab_xindex->set_entsize(4);
2197 osymtab_xindex->set_after_input_sections();
2199 // This tells the driver code to wait until the symbol table
2200 // has written out before writing out the postprocessing
2201 // sections, including the .symtab_shndx section.
2202 this->any_postprocessing_sections_ = true;
2205 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2206 Output_section* ostrtab = this->make_output_section(strtab_name,
2210 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2211 ostrtab->add_output_section_data(pstr);
2213 osymtab->set_file_offset(startoff);
2214 osymtab->finalize_data_size();
2215 osymtab->set_link_section(ostrtab);
2216 osymtab->set_info(local_symcount);
2217 osymtab->set_entsize(symsize);
2223 // Create the .shstrtab section, which holds the names of the
2224 // sections. At the time this is called, we have created all the
2225 // output sections except .shstrtab itself.
2228 Layout::create_shstrtab()
2230 // FIXME: We don't need to create a .shstrtab section if we are
2231 // stripping everything.
2233 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2235 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2237 // We can't write out this section until we've set all the section
2238 // names, and we don't set the names of compressed output sections
2239 // until relocations are complete.
2240 os->set_after_input_sections();
2242 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2243 os->add_output_section_data(posd);
2248 // Create the section headers. SIZE is 32 or 64. OFF is the file
2252 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2254 Output_section_headers* oshdrs;
2255 oshdrs = new Output_section_headers(this,
2256 &this->segment_list_,
2257 &this->section_list_,
2258 &this->unattached_section_list_,
2261 off_t off = align_address(*poff, oshdrs->addralign());
2262 oshdrs->set_address_and_file_offset(0, off);
2263 off += oshdrs->data_size();
2265 this->section_headers_ = oshdrs;
2268 // Count the allocated sections.
2271 Layout::allocated_output_section_count() const
2273 size_t section_count = 0;
2274 for (Segment_list::const_iterator p = this->segment_list_.begin();
2275 p != this->segment_list_.end();
2277 section_count += (*p)->output_section_count();
2278 return section_count;
2281 // Create the dynamic symbol table.
2284 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2285 Symbol_table* symtab,
2286 Output_section **pdynstr,
2287 unsigned int* plocal_dynamic_count,
2288 std::vector<Symbol*>* pdynamic_symbols,
2289 Versions* pversions)
2291 // Count all the symbols in the dynamic symbol table, and set the
2292 // dynamic symbol indexes.
2294 // Skip symbol 0, which is always all zeroes.
2295 unsigned int index = 1;
2297 // Add STT_SECTION symbols for each Output section which needs one.
2298 for (Section_list::iterator p = this->section_list_.begin();
2299 p != this->section_list_.end();
2302 if (!(*p)->needs_dynsym_index())
2303 (*p)->set_dynsym_index(-1U);
2306 (*p)->set_dynsym_index(index);
2311 // Count the local symbols that need to go in the dynamic symbol table,
2312 // and set the dynamic symbol indexes.
2313 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2314 p != input_objects->relobj_end();
2317 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2321 unsigned int local_symcount = index;
2322 *plocal_dynamic_count = local_symcount;
2324 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2325 &this->dynpool_, pversions);
2329 const int size = parameters->target().get_size();
2332 symsize = elfcpp::Elf_sizes<32>::sym_size;
2335 else if (size == 64)
2337 symsize = elfcpp::Elf_sizes<64>::sym_size;
2343 // Create the dynamic symbol table section.
2345 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2350 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2353 dynsym->add_output_section_data(odata);
2355 dynsym->set_info(local_symcount);
2356 dynsym->set_entsize(symsize);
2357 dynsym->set_addralign(align);
2359 this->dynsym_section_ = dynsym;
2361 Output_data_dynamic* const odyn = this->dynamic_data_;
2362 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2363 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2365 // If there are more than SHN_LORESERVE allocated sections, we
2366 // create a .dynsym_shndx section. It is possible that we don't
2367 // need one, because it is possible that there are no dynamic
2368 // symbols in any of the sections with indexes larger than
2369 // SHN_LORESERVE. This is probably unusual, though, and at this
2370 // time we don't know the actual section indexes so it is
2371 // inconvenient to check.
2372 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2374 Output_section* dynsym_xindex =
2375 this->choose_output_section(NULL, ".dynsym_shndx",
2376 elfcpp::SHT_SYMTAB_SHNDX,
2380 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2382 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2384 dynsym_xindex->set_link_section(dynsym);
2385 dynsym_xindex->set_addralign(4);
2386 dynsym_xindex->set_entsize(4);
2388 dynsym_xindex->set_after_input_sections();
2390 // This tells the driver code to wait until the symbol table has
2391 // written out before writing out the postprocessing sections,
2392 // including the .dynsym_shndx section.
2393 this->any_postprocessing_sections_ = true;
2396 // Create the dynamic string table section.
2398 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2403 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2404 dynstr->add_output_section_data(strdata);
2406 dynsym->set_link_section(dynstr);
2407 this->dynamic_section_->set_link_section(dynstr);
2409 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2410 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2414 // Create the hash tables.
2416 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2417 || strcmp(parameters->options().hash_style(), "both") == 0)
2419 unsigned char* phash;
2420 unsigned int hashlen;
2421 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2424 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2429 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2433 hashsec->add_output_section_data(hashdata);
2435 hashsec->set_link_section(dynsym);
2436 hashsec->set_entsize(4);
2438 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2441 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2442 || strcmp(parameters->options().hash_style(), "both") == 0)
2444 unsigned char* phash;
2445 unsigned int hashlen;
2446 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2449 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2450 elfcpp::SHT_GNU_HASH,
2454 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2458 hashsec->add_output_section_data(hashdata);
2460 hashsec->set_link_section(dynsym);
2461 hashsec->set_entsize(4);
2463 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2467 // Assign offsets to each local portion of the dynamic symbol table.
2470 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2472 Output_section* dynsym = this->dynsym_section_;
2473 gold_assert(dynsym != NULL);
2475 off_t off = dynsym->offset();
2477 // Skip the dummy symbol at the start of the section.
2478 off += dynsym->entsize();
2480 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2481 p != input_objects->relobj_end();
2484 unsigned int count = (*p)->set_local_dynsym_offset(off);
2485 off += count * dynsym->entsize();
2489 // Create the version sections.
2492 Layout::create_version_sections(const Versions* versions,
2493 const Symbol_table* symtab,
2494 unsigned int local_symcount,
2495 const std::vector<Symbol*>& dynamic_symbols,
2496 const Output_section* dynstr)
2498 if (!versions->any_defs() && !versions->any_needs())
2501 switch (parameters->size_and_endianness())
2503 #ifdef HAVE_TARGET_32_LITTLE
2504 case Parameters::TARGET_32_LITTLE:
2505 this->sized_create_version_sections<32, false>(versions, symtab,
2507 dynamic_symbols, dynstr);
2510 #ifdef HAVE_TARGET_32_BIG
2511 case Parameters::TARGET_32_BIG:
2512 this->sized_create_version_sections<32, true>(versions, symtab,
2514 dynamic_symbols, dynstr);
2517 #ifdef HAVE_TARGET_64_LITTLE
2518 case Parameters::TARGET_64_LITTLE:
2519 this->sized_create_version_sections<64, false>(versions, symtab,
2521 dynamic_symbols, dynstr);
2524 #ifdef HAVE_TARGET_64_BIG
2525 case Parameters::TARGET_64_BIG:
2526 this->sized_create_version_sections<64, true>(versions, symtab,
2528 dynamic_symbols, dynstr);
2536 // Create the version sections, sized version.
2538 template<int size, bool big_endian>
2540 Layout::sized_create_version_sections(
2541 const Versions* versions,
2542 const Symbol_table* symtab,
2543 unsigned int local_symcount,
2544 const std::vector<Symbol*>& dynamic_symbols,
2545 const Output_section* dynstr)
2547 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2548 elfcpp::SHT_GNU_versym,
2552 unsigned char* vbuf;
2554 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2559 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2562 vsec->add_output_section_data(vdata);
2563 vsec->set_entsize(2);
2564 vsec->set_link_section(this->dynsym_section_);
2566 Output_data_dynamic* const odyn = this->dynamic_data_;
2567 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2569 if (versions->any_defs())
2571 Output_section* vdsec;
2572 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2573 elfcpp::SHT_GNU_verdef,
2577 unsigned char* vdbuf;
2578 unsigned int vdsize;
2579 unsigned int vdentries;
2580 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2581 &vdsize, &vdentries);
2583 Output_section_data* vddata =
2584 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2586 vdsec->add_output_section_data(vddata);
2587 vdsec->set_link_section(dynstr);
2588 vdsec->set_info(vdentries);
2590 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2591 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2594 if (versions->any_needs())
2596 Output_section* vnsec;
2597 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2598 elfcpp::SHT_GNU_verneed,
2602 unsigned char* vnbuf;
2603 unsigned int vnsize;
2604 unsigned int vnentries;
2605 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2609 Output_section_data* vndata =
2610 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2612 vnsec->add_output_section_data(vndata);
2613 vnsec->set_link_section(dynstr);
2614 vnsec->set_info(vnentries);
2616 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2617 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2621 // Create the .interp section and PT_INTERP segment.
2624 Layout::create_interp(const Target* target)
2626 const char* interp = parameters->options().dynamic_linker();
2629 interp = target->dynamic_linker();
2630 gold_assert(interp != NULL);
2633 size_t len = strlen(interp) + 1;
2635 Output_section_data* odata = new Output_data_const(interp, len, 1);
2637 Output_section* osec = this->choose_output_section(NULL, ".interp",
2638 elfcpp::SHT_PROGBITS,
2641 osec->add_output_section_data(odata);
2643 if (!this->script_options_->saw_phdrs_clause())
2645 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2647 oseg->add_output_section(osec, elfcpp::PF_R);
2651 // Finish the .dynamic section and PT_DYNAMIC segment.
2654 Layout::finish_dynamic_section(const Input_objects* input_objects,
2655 const Symbol_table* symtab)
2657 if (!this->script_options_->saw_phdrs_clause())
2659 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2662 oseg->add_output_section(this->dynamic_section_,
2663 elfcpp::PF_R | elfcpp::PF_W);
2666 Output_data_dynamic* const odyn = this->dynamic_data_;
2668 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2669 p != input_objects->dynobj_end();
2672 // FIXME: Handle --as-needed.
2673 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2676 if (parameters->options().shared())
2678 const char* soname = parameters->options().soname();
2680 odyn->add_string(elfcpp::DT_SONAME, soname);
2683 // FIXME: Support --init and --fini.
2684 Symbol* sym = symtab->lookup("_init");
2685 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2686 odyn->add_symbol(elfcpp::DT_INIT, sym);
2688 sym = symtab->lookup("_fini");
2689 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2690 odyn->add_symbol(elfcpp::DT_FINI, sym);
2692 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2694 // Add a DT_RPATH entry if needed.
2695 const General_options::Dir_list& rpath(parameters->options().rpath());
2698 std::string rpath_val;
2699 for (General_options::Dir_list::const_iterator p = rpath.begin();
2703 if (rpath_val.empty())
2704 rpath_val = p->name();
2707 // Eliminate duplicates.
2708 General_options::Dir_list::const_iterator q;
2709 for (q = rpath.begin(); q != p; ++q)
2710 if (q->name() == p->name())
2715 rpath_val += p->name();
2720 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2721 if (parameters->options().enable_new_dtags())
2722 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2725 // Look for text segments that have dynamic relocations.
2726 bool have_textrel = false;
2727 if (!this->script_options_->saw_sections_clause())
2729 for (Segment_list::const_iterator p = this->segment_list_.begin();
2730 p != this->segment_list_.end();
2733 if (((*p)->flags() & elfcpp::PF_W) == 0
2734 && (*p)->dynamic_reloc_count() > 0)
2736 have_textrel = true;
2743 // We don't know the section -> segment mapping, so we are
2744 // conservative and just look for readonly sections with
2745 // relocations. If those sections wind up in writable segments,
2746 // then we have created an unnecessary DT_TEXTREL entry.
2747 for (Section_list::const_iterator p = this->section_list_.begin();
2748 p != this->section_list_.end();
2751 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2752 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2753 && ((*p)->dynamic_reloc_count() > 0))
2755 have_textrel = true;
2761 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2762 // post-link tools can easily modify these flags if desired.
2763 unsigned int flags = 0;
2766 // Add a DT_TEXTREL for compatibility with older loaders.
2767 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2768 flags |= elfcpp::DF_TEXTREL;
2770 if (parameters->options().shared() && this->has_static_tls())
2771 flags |= elfcpp::DF_STATIC_TLS;
2772 if (parameters->options().origin())
2773 flags |= elfcpp::DF_ORIGIN;
2774 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2777 if (parameters->options().initfirst())
2778 flags |= elfcpp::DF_1_INITFIRST;
2779 if (parameters->options().interpose())
2780 flags |= elfcpp::DF_1_INTERPOSE;
2781 if (parameters->options().loadfltr())
2782 flags |= elfcpp::DF_1_LOADFLTR;
2783 if (parameters->options().nodefaultlib())
2784 flags |= elfcpp::DF_1_NODEFLIB;
2785 if (parameters->options().nodelete())
2786 flags |= elfcpp::DF_1_NODELETE;
2787 if (parameters->options().nodlopen())
2788 flags |= elfcpp::DF_1_NOOPEN;
2789 if (parameters->options().nodump())
2790 flags |= elfcpp::DF_1_NODUMP;
2791 if (!parameters->options().shared())
2792 flags &= ~(elfcpp::DF_1_INITFIRST
2793 | elfcpp::DF_1_NODELETE
2794 | elfcpp::DF_1_NOOPEN);
2795 if (parameters->options().origin())
2796 flags |= elfcpp::DF_1_ORIGIN;
2798 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2801 // The mapping of .gnu.linkonce section names to real section names.
2803 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2804 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2806 MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2807 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Before "d".
2808 MAPPING_INIT("t", ".text"),
2809 MAPPING_INIT("r", ".rodata"),
2810 MAPPING_INIT("d", ".data"),
2811 MAPPING_INIT("b", ".bss"),
2812 MAPPING_INIT("s", ".sdata"),
2813 MAPPING_INIT("sb", ".sbss"),
2814 MAPPING_INIT("s2", ".sdata2"),
2815 MAPPING_INIT("sb2", ".sbss2"),
2816 MAPPING_INIT("wi", ".debug_info"),
2817 MAPPING_INIT("td", ".tdata"),
2818 MAPPING_INIT("tb", ".tbss"),
2819 MAPPING_INIT("lr", ".lrodata"),
2820 MAPPING_INIT("l", ".ldata"),
2821 MAPPING_INIT("lb", ".lbss"),
2825 const int Layout::linkonce_mapping_count =
2826 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2828 // Return the name of the output section to use for a .gnu.linkonce
2829 // section. This is based on the default ELF linker script of the old
2830 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2831 // to ".text". Set *PLEN to the length of the name. *PLEN is
2832 // initialized to the length of NAME.
2835 Layout::linkonce_output_name(const char* name, size_t *plen)
2837 const char* s = name + sizeof(".gnu.linkonce") - 1;
2841 const Linkonce_mapping* plm = linkonce_mapping;
2842 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2844 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2853 // Choose the output section name to use given an input section name.
2854 // Set *PLEN to the length of the name. *PLEN is initialized to the
2858 Layout::output_section_name(const char* name, size_t* plen)
2860 if (Layout::is_linkonce(name))
2862 // .gnu.linkonce sections are laid out as though they were named
2863 // for the sections are placed into.
2864 return Layout::linkonce_output_name(name, plen);
2867 // gcc 4.3 generates the following sorts of section names when it
2868 // needs a section name specific to a function:
2874 // .data.rel.local.FN
2876 // .data.rel.ro.local.FN
2883 // The GNU linker maps all of those to the part before the .FN,
2884 // except that .data.rel.local.FN is mapped to .data, and
2885 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2886 // beginning with .data.rel.ro.local are grouped together.
2888 // For an anonymous namespace, the string FN can contain a '.'.
2890 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2891 // GNU linker maps to .rodata.
2893 // The .data.rel.ro sections enable a security feature triggered by
2894 // the -z relro option. Section which need to be relocated at
2895 // program startup time but which may be readonly after startup are
2896 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2897 // segment. The dynamic linker will make that segment writable,
2898 // perform relocations, and then make it read-only. FIXME: We do
2899 // not yet implement this optimization.
2901 // It is hard to handle this in a principled way.
2903 // These are the rules we follow:
2905 // If the section name has no initial '.', or no dot other than an
2906 // initial '.', we use the name unchanged (i.e., "mysection" and
2907 // ".text" are unchanged).
2909 // If the name starts with '.note', we keep it unchanged (e.g. to
2910 // avoid truncating '.note.ABI-tag' to '.note').
2912 // If the name starts with ".data.rel.ro.local" we use
2913 // ".data.rel.ro.local".
2915 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2917 // Otherwise, we drop the second '.' and everything that comes after
2918 // it (i.e., ".text.XXX" becomes ".text").
2920 const char* s = name;
2924 const char* sdot = strchr(s, '.');
2927 if (strncmp(name, ".note.", 6) == 0)
2930 const char* const data_rel_ro_local = ".data.rel.ro.local";
2931 if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2933 *plen = strlen(data_rel_ro_local);
2934 return data_rel_ro_local;
2937 const char* const data_rel_ro = ".data.rel.ro";
2938 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2940 *plen = strlen(data_rel_ro);
2944 *plen = sdot - name;
2948 // Check if a comdat group or .gnu.linkonce section with the given
2949 // NAME is selected for the link. If there is already a section,
2950 // *KEPT_SECTION is set to point to the signature and the function
2951 // returns false. Otherwise, the CANDIDATE signature is recorded for
2952 // this NAME in the layout object, *KEPT_SECTION is set to the
2953 // internal copy and the function return false. In some cases, with
2954 // CANDIDATE->GROUP_ being false, KEPT_SECTION can point back to
2958 Layout::find_or_add_kept_section(const std::string& name,
2959 Kept_section* candidate,
2960 Kept_section** kept_section)
2962 // It's normal to see a couple of entries here, for the x86 thunk
2963 // sections. If we see more than a few, we're linking a C++
2964 // program, and we resize to get more space to minimize rehashing.
2965 if (this->signatures_.size() > 4
2966 && !this->resized_signatures_)
2968 reserve_unordered_map(&this->signatures_,
2969 this->number_of_input_files_ * 64);
2970 this->resized_signatures_ = true;
2973 std::pair<Signatures::iterator, bool> ins(
2974 this->signatures_.insert(std::make_pair(name, *candidate)));
2977 *kept_section = &ins.first->second;
2980 // This is the first time we've seen this signature.
2984 if (ins.first->second.is_group)
2986 // We've already seen a real section group with this signature.
2987 // If the kept group is from a plugin object, and we're in
2988 // the replacement phase, accept the new one as a replacement.
2989 if (ins.first->second.object == NULL
2990 && parameters->options().plugins()->in_replacement_phase())
2992 ins.first->second = *candidate;
2997 else if (candidate->is_group)
2999 // This is a real section group, and we've already seen a
3000 // linkonce section with this signature. Record that we've seen
3001 // a section group, and don't include this section group.
3002 ins.first->second.is_group = true;
3007 // We've already seen a linkonce section and this is a linkonce
3008 // section. These don't block each other--this may be the same
3009 // symbol name with different section types.
3010 *kept_section = candidate;
3015 // Find the given comdat signature, and return the object and section
3016 // index of the kept group.
3018 Layout::find_kept_object(const std::string& signature,
3019 unsigned int* pshndx) const
3021 Signatures::const_iterator p = this->signatures_.find(signature);
3022 if (p == this->signatures_.end())
3025 *pshndx = p->second.shndx;
3026 return p->second.object;
3029 // Store the allocated sections into the section list.
3032 Layout::get_allocated_sections(Section_list* section_list) const
3034 for (Section_list::const_iterator p = this->section_list_.begin();
3035 p != this->section_list_.end();
3037 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3038 section_list->push_back(*p);
3041 // Create an output segment.
3044 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3046 gold_assert(!parameters->options().relocatable());
3047 Output_segment* oseg = new Output_segment(type, flags);
3048 this->segment_list_.push_back(oseg);
3050 if (type == elfcpp::PT_TLS)
3051 this->tls_segment_ = oseg;
3052 else if (type == elfcpp::PT_GNU_RELRO)
3053 this->relro_segment_ = oseg;
3058 // Write out the Output_sections. Most won't have anything to write,
3059 // since most of the data will come from input sections which are
3060 // handled elsewhere. But some Output_sections do have Output_data.
3063 Layout::write_output_sections(Output_file* of) const
3065 for (Section_list::const_iterator p = this->section_list_.begin();
3066 p != this->section_list_.end();
3069 if (!(*p)->after_input_sections())
3074 // Write out data not associated with a section or the symbol table.
3077 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3079 if (!parameters->options().strip_all())
3081 const Output_section* symtab_section = this->symtab_section_;
3082 for (Section_list::const_iterator p = this->section_list_.begin();
3083 p != this->section_list_.end();
3086 if ((*p)->needs_symtab_index())
3088 gold_assert(symtab_section != NULL);
3089 unsigned int index = (*p)->symtab_index();
3090 gold_assert(index > 0 && index != -1U);
3091 off_t off = (symtab_section->offset()
3092 + index * symtab_section->entsize());
3093 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3098 const Output_section* dynsym_section = this->dynsym_section_;
3099 for (Section_list::const_iterator p = this->section_list_.begin();
3100 p != this->section_list_.end();
3103 if ((*p)->needs_dynsym_index())
3105 gold_assert(dynsym_section != NULL);
3106 unsigned int index = (*p)->dynsym_index();
3107 gold_assert(index > 0 && index != -1U);
3108 off_t off = (dynsym_section->offset()
3109 + index * dynsym_section->entsize());
3110 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3114 // Write out the Output_data which are not in an Output_section.
3115 for (Data_list::const_iterator p = this->special_output_list_.begin();
3116 p != this->special_output_list_.end();
3121 // Write out the Output_sections which can only be written after the
3122 // input sections are complete.
3125 Layout::write_sections_after_input_sections(Output_file* of)
3127 // Determine the final section offsets, and thus the final output
3128 // file size. Note we finalize the .shstrab last, to allow the
3129 // after_input_section sections to modify their section-names before
3131 if (this->any_postprocessing_sections_)
3133 off_t off = this->output_file_size_;
3134 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3136 // Now that we've finalized the names, we can finalize the shstrab.
3138 this->set_section_offsets(off,
3139 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3141 if (off > this->output_file_size_)
3144 this->output_file_size_ = off;
3148 for (Section_list::const_iterator p = this->section_list_.begin();
3149 p != this->section_list_.end();
3152 if ((*p)->after_input_sections())
3156 this->section_headers_->write(of);
3159 // If the build ID requires computing a checksum, do so here, and
3160 // write it out. We compute a checksum over the entire file because
3161 // that is simplest.
3164 Layout::write_build_id(Output_file* of) const
3166 if (this->build_id_note_ == NULL)
3169 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3171 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3172 this->build_id_note_->data_size());
3174 const char* style = parameters->options().build_id();
3175 if (strcmp(style, "sha1") == 0)
3178 sha1_init_ctx(&ctx);
3179 sha1_process_bytes(iv, this->output_file_size_, &ctx);
3180 sha1_finish_ctx(&ctx, ov);
3182 else if (strcmp(style, "md5") == 0)
3186 md5_process_bytes(iv, this->output_file_size_, &ctx);
3187 md5_finish_ctx(&ctx, ov);
3192 of->write_output_view(this->build_id_note_->offset(),
3193 this->build_id_note_->data_size(),
3196 of->free_input_view(0, this->output_file_size_, iv);
3199 // Write out a binary file. This is called after the link is
3200 // complete. IN is the temporary output file we used to generate the
3201 // ELF code. We simply walk through the segments, read them from
3202 // their file offset in IN, and write them to their load address in
3203 // the output file. FIXME: with a bit more work, we could support
3204 // S-records and/or Intel hex format here.
3207 Layout::write_binary(Output_file* in) const
3209 gold_assert(parameters->options().oformat_enum()
3210 == General_options::OBJECT_FORMAT_BINARY);
3212 // Get the size of the binary file.
3213 uint64_t max_load_address = 0;
3214 for (Segment_list::const_iterator p = this->segment_list_.begin();
3215 p != this->segment_list_.end();
3218 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3220 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3221 if (max_paddr > max_load_address)
3222 max_load_address = max_paddr;
3226 Output_file out(parameters->options().output_file_name());
3227 out.open(max_load_address);
3229 for (Segment_list::const_iterator p = this->segment_list_.begin();
3230 p != this->segment_list_.end();
3233 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3235 const unsigned char* vin = in->get_input_view((*p)->offset(),
3237 unsigned char* vout = out.get_output_view((*p)->paddr(),
3239 memcpy(vout, vin, (*p)->filesz());
3240 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3241 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3248 // Print the output sections to the map file.
3251 Layout::print_to_mapfile(Mapfile* mapfile) const
3253 for (Segment_list::const_iterator p = this->segment_list_.begin();
3254 p != this->segment_list_.end();
3256 (*p)->print_sections_to_mapfile(mapfile);
3259 // Print statistical information to stderr. This is used for --stats.
3262 Layout::print_stats() const
3264 this->namepool_.print_stats("section name pool");
3265 this->sympool_.print_stats("output symbol name pool");
3266 this->dynpool_.print_stats("dynamic name pool");
3268 for (Section_list::const_iterator p = this->section_list_.begin();
3269 p != this->section_list_.end();
3271 (*p)->print_merge_stats();
3274 // Write_sections_task methods.
3276 // We can always run this task.
3279 Write_sections_task::is_runnable()
3284 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3288 Write_sections_task::locks(Task_locker* tl)
3290 tl->add(this, this->output_sections_blocker_);
3291 tl->add(this, this->final_blocker_);
3294 // Run the task--write out the data.
3297 Write_sections_task::run(Workqueue*)
3299 this->layout_->write_output_sections(this->of_);
3302 // Write_data_task methods.
3304 // We can always run this task.
3307 Write_data_task::is_runnable()
3312 // We need to unlock FINAL_BLOCKER when finished.
3315 Write_data_task::locks(Task_locker* tl)
3317 tl->add(this, this->final_blocker_);
3320 // Run the task--write out the data.
3323 Write_data_task::run(Workqueue*)
3325 this->layout_->write_data(this->symtab_, this->of_);
3328 // Write_symbols_task methods.
3330 // We can always run this task.
3333 Write_symbols_task::is_runnable()
3338 // We need to unlock FINAL_BLOCKER when finished.
3341 Write_symbols_task::locks(Task_locker* tl)
3343 tl->add(this, this->final_blocker_);
3346 // Run the task--write out the symbols.
3349 Write_symbols_task::run(Workqueue*)
3351 this->symtab_->write_globals(this->sympool_, this->dynpool_,
3352 this->layout_->symtab_xindex(),
3353 this->layout_->dynsym_xindex(), this->of_);
3356 // Write_after_input_sections_task methods.
3358 // We can only run this task after the input sections have completed.
3361 Write_after_input_sections_task::is_runnable()
3363 if (this->input_sections_blocker_->is_blocked())
3364 return this->input_sections_blocker_;
3368 // We need to unlock FINAL_BLOCKER when finished.
3371 Write_after_input_sections_task::locks(Task_locker* tl)
3373 tl->add(this, this->final_blocker_);
3379 Write_after_input_sections_task::run(Workqueue*)
3381 this->layout_->write_sections_after_input_sections(this->of_);
3384 // Close_task_runner methods.
3386 // Run the task--close the file.
3389 Close_task_runner::run(Workqueue*, const Task*)
3391 // If we need to compute a checksum for the BUILD if, we do so here.
3392 this->layout_->write_build_id(this->of_);
3394 // If we've been asked to create a binary file, we do so here.
3395 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3396 this->layout_->write_binary(this->of_);
3401 // Instantiate the templates we need. We could use the configure
3402 // script to restrict this to only the ones for implemented targets.
3404 #ifdef HAVE_TARGET_32_LITTLE
3407 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3409 const elfcpp::Shdr<32, false>& shdr,
3410 unsigned int, unsigned int, off_t*);
3413 #ifdef HAVE_TARGET_32_BIG
3416 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3418 const elfcpp::Shdr<32, true>& shdr,
3419 unsigned int, unsigned int, off_t*);
3422 #ifdef HAVE_TARGET_64_LITTLE
3425 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3427 const elfcpp::Shdr<64, false>& shdr,
3428 unsigned int, unsigned int, off_t*);
3431 #ifdef HAVE_TARGET_64_BIG
3434 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3436 const elfcpp::Shdr<64, true>& shdr,
3437 unsigned int, unsigned int, off_t*);
3440 #ifdef HAVE_TARGET_32_LITTLE
3443 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3444 unsigned int reloc_shndx,
3445 const elfcpp::Shdr<32, false>& shdr,
3446 Output_section* data_section,
3447 Relocatable_relocs* rr);
3450 #ifdef HAVE_TARGET_32_BIG
3453 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3454 unsigned int reloc_shndx,
3455 const elfcpp::Shdr<32, true>& shdr,
3456 Output_section* data_section,
3457 Relocatable_relocs* rr);
3460 #ifdef HAVE_TARGET_64_LITTLE
3463 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3464 unsigned int reloc_shndx,
3465 const elfcpp::Shdr<64, false>& shdr,
3466 Output_section* data_section,
3467 Relocatable_relocs* rr);
3470 #ifdef HAVE_TARGET_64_BIG
3473 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3474 unsigned int reloc_shndx,
3475 const elfcpp::Shdr<64, true>& shdr,
3476 Output_section* data_section,
3477 Relocatable_relocs* rr);
3480 #ifdef HAVE_TARGET_32_LITTLE
3483 Layout::layout_group<32, false>(Symbol_table* symtab,
3484 Sized_relobj<32, false>* object,
3486 const char* group_section_name,
3487 const char* signature,
3488 const elfcpp::Shdr<32, false>& shdr,
3489 elfcpp::Elf_Word flags,
3490 std::vector<unsigned int>* shndxes);
3493 #ifdef HAVE_TARGET_32_BIG
3496 Layout::layout_group<32, true>(Symbol_table* symtab,
3497 Sized_relobj<32, true>* object,
3499 const char* group_section_name,
3500 const char* signature,
3501 const elfcpp::Shdr<32, true>& shdr,
3502 elfcpp::Elf_Word flags,
3503 std::vector<unsigned int>* shndxes);
3506 #ifdef HAVE_TARGET_64_LITTLE
3509 Layout::layout_group<64, false>(Symbol_table* symtab,
3510 Sized_relobj<64, false>* object,
3512 const char* group_section_name,
3513 const char* signature,
3514 const elfcpp::Shdr<64, false>& shdr,
3515 elfcpp::Elf_Word flags,
3516 std::vector<unsigned int>* shndxes);
3519 #ifdef HAVE_TARGET_64_BIG
3522 Layout::layout_group<64, true>(Symbol_table* symtab,
3523 Sized_relobj<64, true>* object,
3525 const char* group_section_name,
3526 const char* signature,
3527 const elfcpp::Shdr<64, true>& shdr,
3528 elfcpp::Elf_Word flags,
3529 std::vector<unsigned int>* shndxes);
3532 #ifdef HAVE_TARGET_32_LITTLE
3535 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3536 const unsigned char* symbols,
3538 const unsigned char* symbol_names,
3539 off_t symbol_names_size,
3541 const elfcpp::Shdr<32, false>& shdr,
3542 unsigned int reloc_shndx,
3543 unsigned int reloc_type,
3547 #ifdef HAVE_TARGET_32_BIG
3550 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3551 const unsigned char* symbols,
3553 const unsigned char* symbol_names,
3554 off_t symbol_names_size,
3556 const elfcpp::Shdr<32, true>& shdr,
3557 unsigned int reloc_shndx,
3558 unsigned int reloc_type,
3562 #ifdef HAVE_TARGET_64_LITTLE
3565 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3566 const unsigned char* symbols,
3568 const unsigned char* symbol_names,
3569 off_t symbol_names_size,
3571 const elfcpp::Shdr<64, false>& shdr,
3572 unsigned int reloc_shndx,
3573 unsigned int reloc_type,
3577 #ifdef HAVE_TARGET_64_BIG
3580 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3581 const unsigned char* symbols,
3583 const unsigned char* symbol_names,
3584 off_t symbol_names_size,
3586 const elfcpp::Shdr<64, true>& shdr,
3587 unsigned int reloc_shndx,
3588 unsigned int reloc_type,
3592 } // End namespace gold.