]> Git Repo - binutils.git/blob - gold/layout.cc
* gold.h (reserve_unordered_map): Define, three versions, one for
[binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <[email protected]>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "layout.h"
50 #include "plugin.h"
51
52 namespace gold
53 {
54
55 // Layout_task_runner methods.
56
57 // Lay out the sections.  This is called after all the input objects
58 // have been read.
59
60 void
61 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
62 {
63   off_t file_size = this->layout_->finalize(this->input_objects_,
64                                             this->symtab_,
65                                             this->target_,
66                                             task);
67
68   // Now we know the final size of the output file and we know where
69   // each piece of information goes.
70
71   if (this->mapfile_ != NULL)
72     {
73       this->mapfile_->print_discarded_sections(this->input_objects_);
74       this->layout_->print_to_mapfile(this->mapfile_);
75     }
76
77   Output_file* of = new Output_file(parameters->options().output_file_name());
78   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
79     of->set_is_temporary();
80   of->open(file_size);
81
82   // Queue up the final set of tasks.
83   gold::queue_final_tasks(this->options_, this->input_objects_,
84                           this->symtab_, this->layout_, workqueue, of);
85 }
86
87 // Layout methods.
88
89 Layout::Layout(int number_of_input_files, Script_options* script_options)
90   : number_of_input_files_(number_of_input_files),
91     script_options_(script_options),
92     namepool_(),
93     sympool_(),
94     dynpool_(),
95     signatures_(),
96     section_name_map_(),
97     segment_list_(),
98     section_list_(),
99     unattached_section_list_(),
100     special_output_list_(),
101     section_headers_(NULL),
102     tls_segment_(NULL),
103     relro_segment_(NULL),
104     symtab_section_(NULL),
105     symtab_xindex_(NULL),
106     dynsym_section_(NULL),
107     dynsym_xindex_(NULL),
108     dynamic_section_(NULL),
109     dynamic_data_(NULL),
110     eh_frame_section_(NULL),
111     eh_frame_data_(NULL),
112     added_eh_frame_data_(false),
113     eh_frame_hdr_section_(NULL),
114     build_id_note_(NULL),
115     debug_abbrev_(NULL),
116     debug_info_(NULL),
117     group_signatures_(),
118     output_file_size_(-1),
119     sections_are_attached_(false),
120     input_requires_executable_stack_(false),
121     input_with_gnu_stack_note_(false),
122     input_without_gnu_stack_note_(false),
123     has_static_tls_(false),
124     any_postprocessing_sections_(false),
125     resized_signatures_(false)
126 {
127   // Make space for more than enough segments for a typical file.
128   // This is just for efficiency--it's OK if we wind up needing more.
129   this->segment_list_.reserve(12);
130
131   // We expect two unattached Output_data objects: the file header and
132   // the segment headers.
133   this->special_output_list_.reserve(2);
134 }
135
136 // Hash a key we use to look up an output section mapping.
137
138 size_t
139 Layout::Hash_key::operator()(const Layout::Key& k) const
140 {
141  return k.first + k.second.first + k.second.second;
142 }
143
144 // Returns whether the given section is in the list of
145 // debug-sections-used-by-some-version-of-gdb.  Currently,
146 // we've checked versions of gdb up to and including 6.7.1.
147
148 static const char* gdb_sections[] =
149 { ".debug_abbrev",
150   // ".debug_aranges",   // not used by gdb as of 6.7.1
151   ".debug_frame",
152   ".debug_info",
153   ".debug_line",
154   ".debug_loc",
155   ".debug_macinfo",
156   // ".debug_pubnames",  // not used by gdb as of 6.7.1
157   ".debug_ranges",
158   ".debug_str",
159 };
160
161 static const char* lines_only_debug_sections[] =
162 { ".debug_abbrev",
163   // ".debug_aranges",   // not used by gdb as of 6.7.1
164   // ".debug_frame",
165   ".debug_info",
166   ".debug_line",
167   // ".debug_loc",
168   // ".debug_macinfo",
169   // ".debug_pubnames",  // not used by gdb as of 6.7.1
170   // ".debug_ranges",
171   ".debug_str",
172 };
173
174 static inline bool
175 is_gdb_debug_section(const char* str)
176 {
177   // We can do this faster: binary search or a hashtable.  But why bother?
178   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
179     if (strcmp(str, gdb_sections[i]) == 0)
180       return true;
181   return false;
182 }
183
184 static inline bool
185 is_lines_only_debug_section(const char* str)
186 {
187   // We can do this faster: binary search or a hashtable.  But why bother?
188   for (size_t i = 0;
189        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
190        ++i)
191     if (strcmp(str, lines_only_debug_sections[i]) == 0)
192       return true;
193   return false;
194 }
195
196 // Whether to include this section in the link.
197
198 template<int size, bool big_endian>
199 bool
200 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
201                         const elfcpp::Shdr<size, big_endian>& shdr)
202 {
203   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
204     return false;
205
206   switch (shdr.get_sh_type())
207     {
208     case elfcpp::SHT_NULL:
209     case elfcpp::SHT_SYMTAB:
210     case elfcpp::SHT_DYNSYM:
211     case elfcpp::SHT_HASH:
212     case elfcpp::SHT_DYNAMIC:
213     case elfcpp::SHT_SYMTAB_SHNDX:
214       return false;
215
216     case elfcpp::SHT_STRTAB:
217       // Discard the sections which have special meanings in the ELF
218       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
219       // checking the sh_link fields of the appropriate sections.
220       return (strcmp(name, ".dynstr") != 0
221               && strcmp(name, ".strtab") != 0
222               && strcmp(name, ".shstrtab") != 0);
223
224     case elfcpp::SHT_RELA:
225     case elfcpp::SHT_REL:
226     case elfcpp::SHT_GROUP:
227       // If we are emitting relocations these should be handled
228       // elsewhere.
229       gold_assert(!parameters->options().relocatable()
230                   && !parameters->options().emit_relocs());
231       return false;
232
233     case elfcpp::SHT_PROGBITS:
234       if (parameters->options().strip_debug()
235           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
236         {
237           if (is_debug_info_section(name))
238             return false;
239         }
240       if (parameters->options().strip_debug_non_line()
241           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
242         {
243           // Debugging sections can only be recognized by name.
244           if (is_prefix_of(".debug", name)
245               && !is_lines_only_debug_section(name))
246             return false;
247         }
248       if (parameters->options().strip_debug_gdb()
249           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
250         {
251           // Debugging sections can only be recognized by name.
252           if (is_prefix_of(".debug", name)
253               && !is_gdb_debug_section(name))
254             return false;
255         }
256       if (parameters->options().strip_lto_sections()
257           && !parameters->options().relocatable()
258           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
259         {
260           // Ignore LTO sections containing intermediate code.
261           if (is_prefix_of(".gnu.lto_", name))
262             return false;
263         }
264       return true;
265
266     default:
267       return true;
268     }
269 }
270
271 // Return an output section named NAME, or NULL if there is none.
272
273 Output_section*
274 Layout::find_output_section(const char* name) const
275 {
276   for (Section_list::const_iterator p = this->section_list_.begin();
277        p != this->section_list_.end();
278        ++p)
279     if (strcmp((*p)->name(), name) == 0)
280       return *p;
281   return NULL;
282 }
283
284 // Return an output segment of type TYPE, with segment flags SET set
285 // and segment flags CLEAR clear.  Return NULL if there is none.
286
287 Output_segment*
288 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
289                             elfcpp::Elf_Word clear) const
290 {
291   for (Segment_list::const_iterator p = this->segment_list_.begin();
292        p != this->segment_list_.end();
293        ++p)
294     if (static_cast<elfcpp::PT>((*p)->type()) == type
295         && ((*p)->flags() & set) == set
296         && ((*p)->flags() & clear) == 0)
297       return *p;
298   return NULL;
299 }
300
301 // Return the output section to use for section NAME with type TYPE
302 // and section flags FLAGS.  NAME must be canonicalized in the string
303 // pool, and NAME_KEY is the key.
304
305 Output_section*
306 Layout::get_output_section(const char* name, Stringpool::Key name_key,
307                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
308 {
309   elfcpp::Elf_Xword lookup_flags = flags;
310
311   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
312   // read-write with read-only sections.  Some other ELF linkers do
313   // not do this.  FIXME: Perhaps there should be an option
314   // controlling this.
315   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
316
317   const Key key(name_key, std::make_pair(type, lookup_flags));
318   const std::pair<Key, Output_section*> v(key, NULL);
319   std::pair<Section_name_map::iterator, bool> ins(
320     this->section_name_map_.insert(v));
321
322   if (!ins.second)
323     return ins.first->second;
324   else
325     {
326       // This is the first time we've seen this name/type/flags
327       // combination.  For compatibility with the GNU linker, we
328       // combine sections with contents and zero flags with sections
329       // with non-zero flags.  This is a workaround for cases where
330       // assembler code forgets to set section flags.  FIXME: Perhaps
331       // there should be an option to control this.
332       Output_section* os = NULL;
333
334       if (type == elfcpp::SHT_PROGBITS)
335         {
336           if (flags == 0)
337             {
338               Output_section* same_name = this->find_output_section(name);
339               if (same_name != NULL
340                   && same_name->type() == elfcpp::SHT_PROGBITS
341                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
342                 os = same_name;
343             }
344           else if ((flags & elfcpp::SHF_TLS) == 0)
345             {
346               elfcpp::Elf_Xword zero_flags = 0;
347               const Key zero_key(name_key, std::make_pair(type, zero_flags));
348               Section_name_map::iterator p =
349                   this->section_name_map_.find(zero_key);
350               if (p != this->section_name_map_.end())
351                 os = p->second;
352             }
353         }
354
355       if (os == NULL)
356         os = this->make_output_section(name, type, flags);
357       ins.first->second = os;
358       return os;
359     }
360 }
361
362 // Pick the output section to use for section NAME, in input file
363 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
364 // linker created section.  IS_INPUT_SECTION is true if we are
365 // choosing an output section for an input section found in a input
366 // file.  This will return NULL if the input section should be
367 // discarded.
368
369 Output_section*
370 Layout::choose_output_section(const Relobj* relobj, const char* name,
371                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
372                               bool is_input_section)
373 {
374   // We should not see any input sections after we have attached
375   // sections to segments.
376   gold_assert(!is_input_section || !this->sections_are_attached_);
377
378   // Some flags in the input section should not be automatically
379   // copied to the output section.
380   flags &= ~ (elfcpp::SHF_INFO_LINK
381               | elfcpp::SHF_LINK_ORDER
382               | elfcpp::SHF_GROUP
383               | elfcpp::SHF_MERGE
384               | elfcpp::SHF_STRINGS);
385
386   if (this->script_options_->saw_sections_clause())
387     {
388       // We are using a SECTIONS clause, so the output section is
389       // chosen based only on the name.
390
391       Script_sections* ss = this->script_options_->script_sections();
392       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
393       Output_section** output_section_slot;
394       name = ss->output_section_name(file_name, name, &output_section_slot);
395       if (name == NULL)
396         {
397           // The SECTIONS clause says to discard this input section.
398           return NULL;
399         }
400
401       // If this is an orphan section--one not mentioned in the linker
402       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
403       // default processing below.
404
405       if (output_section_slot != NULL)
406         {
407           if (*output_section_slot != NULL)
408             return *output_section_slot;
409
410           // We don't put sections found in the linker script into
411           // SECTION_NAME_MAP_.  That keeps us from getting confused
412           // if an orphan section is mapped to a section with the same
413           // name as one in the linker script.
414
415           name = this->namepool_.add(name, false, NULL);
416
417           Output_section* os = this->make_output_section(name, type, flags);
418           os->set_found_in_sections_clause();
419           *output_section_slot = os;
420           return os;
421         }
422     }
423
424   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
425
426   // Turn NAME from the name of the input section into the name of the
427   // output section.
428
429   size_t len = strlen(name);
430   if (is_input_section
431       && !this->script_options_->saw_sections_clause()
432       && !parameters->options().relocatable())
433     name = Layout::output_section_name(name, &len);
434
435   Stringpool::Key name_key;
436   name = this->namepool_.add_with_length(name, len, true, &name_key);
437
438   // Find or make the output section.  The output section is selected
439   // based on the section name, type, and flags.
440   return this->get_output_section(name, name_key, type, flags);
441 }
442
443 // Return the output section to use for input section SHNDX, with name
444 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
445 // index of a relocation section which applies to this section, or 0
446 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
447 // relocation section if there is one.  Set *OFF to the offset of this
448 // input section without the output section.  Return NULL if the
449 // section should be discarded.  Set *OFF to -1 if the section
450 // contents should not be written directly to the output file, but
451 // will instead receive special handling.
452
453 template<int size, bool big_endian>
454 Output_section*
455 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
456                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
457                unsigned int reloc_shndx, unsigned int, off_t* off)
458 {
459   *off = 0;
460
461   if (!this->include_section(object, name, shdr))
462     return NULL;
463
464   Output_section* os;
465
466   // In a relocatable link a grouped section must not be combined with
467   // any other sections.
468   if (parameters->options().relocatable()
469       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
470     {
471       name = this->namepool_.add(name, true, NULL);
472       os = this->make_output_section(name, shdr.get_sh_type(),
473                                      shdr.get_sh_flags());
474     }
475   else
476     {
477       os = this->choose_output_section(object, name, shdr.get_sh_type(),
478                                        shdr.get_sh_flags(), true);
479       if (os == NULL)
480         return NULL;
481     }
482
483   // By default the GNU linker sorts input sections whose names match
484   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
485   // are sorted by name.  This is used to implement constructor
486   // priority ordering.  We are compatible.
487   if (!this->script_options_->saw_sections_clause()
488       && (is_prefix_of(".ctors.", name)
489           || is_prefix_of(".dtors.", name)
490           || is_prefix_of(".init_array.", name)
491           || is_prefix_of(".fini_array.", name)))
492     os->set_must_sort_attached_input_sections();
493
494   // FIXME: Handle SHF_LINK_ORDER somewhere.
495
496   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
497                                this->script_options_->saw_sections_clause());
498
499   return os;
500 }
501
502 // Handle a relocation section when doing a relocatable link.
503
504 template<int size, bool big_endian>
505 Output_section*
506 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
507                      unsigned int,
508                      const elfcpp::Shdr<size, big_endian>& shdr,
509                      Output_section* data_section,
510                      Relocatable_relocs* rr)
511 {
512   gold_assert(parameters->options().relocatable()
513               || parameters->options().emit_relocs());
514
515   int sh_type = shdr.get_sh_type();
516
517   std::string name;
518   if (sh_type == elfcpp::SHT_REL)
519     name = ".rel";
520   else if (sh_type == elfcpp::SHT_RELA)
521     name = ".rela";
522   else
523     gold_unreachable();
524   name += data_section->name();
525
526   Output_section* os = this->choose_output_section(object, name.c_str(),
527                                                    sh_type,
528                                                    shdr.get_sh_flags(),
529                                                    false);
530
531   os->set_should_link_to_symtab();
532   os->set_info_section(data_section);
533
534   Output_section_data* posd;
535   if (sh_type == elfcpp::SHT_REL)
536     {
537       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
538       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
539                                            size,
540                                            big_endian>(rr);
541     }
542   else if (sh_type == elfcpp::SHT_RELA)
543     {
544       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
545       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
546                                            size,
547                                            big_endian>(rr);
548     }
549   else
550     gold_unreachable();
551
552   os->add_output_section_data(posd);
553   rr->set_output_data(posd);
554
555   return os;
556 }
557
558 // Handle a group section when doing a relocatable link.
559
560 template<int size, bool big_endian>
561 void
562 Layout::layout_group(Symbol_table* symtab,
563                      Sized_relobj<size, big_endian>* object,
564                      unsigned int,
565                      const char* group_section_name,
566                      const char* signature,
567                      const elfcpp::Shdr<size, big_endian>& shdr,
568                      elfcpp::Elf_Word flags,
569                      std::vector<unsigned int>* shndxes)
570 {
571   gold_assert(parameters->options().relocatable());
572   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
573   group_section_name = this->namepool_.add(group_section_name, true, NULL);
574   Output_section* os = this->make_output_section(group_section_name,
575                                                  elfcpp::SHT_GROUP,
576                                                  shdr.get_sh_flags());
577
578   // We need to find a symbol with the signature in the symbol table.
579   // If we don't find one now, we need to look again later.
580   Symbol* sym = symtab->lookup(signature, NULL);
581   if (sym != NULL)
582     os->set_info_symndx(sym);
583   else
584     {
585       // Reserve some space to minimize reallocations.
586       if (this->group_signatures_.empty())
587         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
588
589       // We will wind up using a symbol whose name is the signature.
590       // So just put the signature in the symbol name pool to save it.
591       signature = symtab->canonicalize_name(signature);
592       this->group_signatures_.push_back(Group_signature(os, signature));
593     }
594
595   os->set_should_link_to_symtab();
596   os->set_entsize(4);
597
598   section_size_type entry_count =
599     convert_to_section_size_type(shdr.get_sh_size() / 4);
600   Output_section_data* posd =
601     new Output_data_group<size, big_endian>(object, entry_count, flags,
602                                             shndxes);
603   os->add_output_section_data(posd);
604 }
605
606 // Special GNU handling of sections name .eh_frame.  They will
607 // normally hold exception frame data as defined by the C++ ABI
608 // (http://codesourcery.com/cxx-abi/).
609
610 template<int size, bool big_endian>
611 Output_section*
612 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
613                         const unsigned char* symbols,
614                         off_t symbols_size,
615                         const unsigned char* symbol_names,
616                         off_t symbol_names_size,
617                         unsigned int shndx,
618                         const elfcpp::Shdr<size, big_endian>& shdr,
619                         unsigned int reloc_shndx, unsigned int reloc_type,
620                         off_t* off)
621 {
622   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
623   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
624
625   const char* const name = ".eh_frame";
626   Output_section* os = this->choose_output_section(object,
627                                                    name,
628                                                    elfcpp::SHT_PROGBITS,
629                                                    elfcpp::SHF_ALLOC,
630                                                    false);
631   if (os == NULL)
632     return NULL;
633
634   if (this->eh_frame_section_ == NULL)
635     {
636       this->eh_frame_section_ = os;
637       this->eh_frame_data_ = new Eh_frame();
638
639       if (parameters->options().eh_frame_hdr())
640         {
641           Output_section* hdr_os =
642             this->choose_output_section(NULL,
643                                         ".eh_frame_hdr",
644                                         elfcpp::SHT_PROGBITS,
645                                         elfcpp::SHF_ALLOC,
646                                         false);
647
648           if (hdr_os != NULL)
649             {
650               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
651                                                         this->eh_frame_data_);
652               hdr_os->add_output_section_data(hdr_posd);
653
654               hdr_os->set_after_input_sections();
655
656               if (!this->script_options_->saw_phdrs_clause())
657                 {
658                   Output_segment* hdr_oseg;
659                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
660                                                        elfcpp::PF_R);
661                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
662                 }
663
664               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
665             }
666         }
667     }
668
669   gold_assert(this->eh_frame_section_ == os);
670
671   if (this->eh_frame_data_->add_ehframe_input_section(object,
672                                                       symbols,
673                                                       symbols_size,
674                                                       symbol_names,
675                                                       symbol_names_size,
676                                                       shndx,
677                                                       reloc_shndx,
678                                                       reloc_type))
679     {
680       os->update_flags_for_input_section(shdr.get_sh_flags());
681
682       // We found a .eh_frame section we are going to optimize, so now
683       // we can add the set of optimized sections to the output
684       // section.  We need to postpone adding this until we've found a
685       // section we can optimize so that the .eh_frame section in
686       // crtbegin.o winds up at the start of the output section.
687       if (!this->added_eh_frame_data_)
688         {
689           os->add_output_section_data(this->eh_frame_data_);
690           this->added_eh_frame_data_ = true;
691         }
692       *off = -1;
693     }
694   else
695     {
696       // We couldn't handle this .eh_frame section for some reason.
697       // Add it as a normal section.
698       bool saw_sections_clause = this->script_options_->saw_sections_clause();
699       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
700                                    saw_sections_clause);
701     }
702
703   return os;
704 }
705
706 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
707 // the output section.
708
709 Output_section*
710 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
711                                 elfcpp::Elf_Xword flags,
712                                 Output_section_data* posd)
713 {
714   Output_section* os = this->choose_output_section(NULL, name, type, flags,
715                                                    false);
716   if (os != NULL)
717     os->add_output_section_data(posd);
718   return os;
719 }
720
721 // Map section flags to segment flags.
722
723 elfcpp::Elf_Word
724 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
725 {
726   elfcpp::Elf_Word ret = elfcpp::PF_R;
727   if ((flags & elfcpp::SHF_WRITE) != 0)
728     ret |= elfcpp::PF_W;
729   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
730     ret |= elfcpp::PF_X;
731   return ret;
732 }
733
734 // Sometimes we compress sections.  This is typically done for
735 // sections that are not part of normal program execution (such as
736 // .debug_* sections), and where the readers of these sections know
737 // how to deal with compressed sections.  (To make it easier for them,
738 // we will rename the ouput section in such cases from .foo to
739 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
740 // doesn't say for certain whether we'll compress -- it depends on
741 // commandline options as well -- just whether this section is a
742 // candidate for compression.
743
744 static bool
745 is_compressible_debug_section(const char* secname)
746 {
747   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
748 }
749
750 // Make a new Output_section, and attach it to segments as
751 // appropriate.
752
753 Output_section*
754 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
755                             elfcpp::Elf_Xword flags)
756 {
757   Output_section* os;
758   if ((flags & elfcpp::SHF_ALLOC) == 0
759       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
760       && is_compressible_debug_section(name))
761     os = new Output_compressed_section(&parameters->options(), name, type,
762                                        flags);
763
764   else if ((flags & elfcpp::SHF_ALLOC) == 0
765            && parameters->options().strip_debug_non_line()
766            && strcmp(".debug_abbrev", name) == 0)
767     {
768       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
769           name, type, flags);
770       if (this->debug_info_)
771         this->debug_info_->set_abbreviations(this->debug_abbrev_);
772     }
773   else if ((flags & elfcpp::SHF_ALLOC) == 0
774            && parameters->options().strip_debug_non_line()
775            && strcmp(".debug_info", name) == 0)
776     {
777       os = this->debug_info_ = new Output_reduced_debug_info_section(
778           name, type, flags);
779       if (this->debug_abbrev_)
780         this->debug_info_->set_abbreviations(this->debug_abbrev_);
781     }
782  else
783     os = new Output_section(name, type, flags);
784
785   this->section_list_.push_back(os);
786
787   // The GNU linker by default sorts some sections by priority, so we
788   // do the same.  We need to know that this might happen before we
789   // attach any input sections.
790   if (!this->script_options_->saw_sections_clause()
791       && (strcmp(name, ".ctors") == 0
792           || strcmp(name, ".dtors") == 0
793           || strcmp(name, ".init_array") == 0
794           || strcmp(name, ".fini_array") == 0))
795     os->set_may_sort_attached_input_sections();
796
797   // With -z relro, we have to recognize the special sections by name.
798   // There is no other way.
799   if (!this->script_options_->saw_sections_clause()
800       && parameters->options().relro()
801       && type == elfcpp::SHT_PROGBITS
802       && (flags & elfcpp::SHF_ALLOC) != 0
803       && (flags & elfcpp::SHF_WRITE) != 0)
804     {
805       if (strcmp(name, ".data.rel.ro") == 0)
806         os->set_is_relro();
807       else if (strcmp(name, ".data.rel.ro.local") == 0)
808         {
809           os->set_is_relro();
810           os->set_is_relro_local();
811         }
812     }
813
814   // If we have already attached the sections to segments, then we
815   // need to attach this one now.  This happens for sections created
816   // directly by the linker.
817   if (this->sections_are_attached_)
818     this->attach_section_to_segment(os);
819
820   return os;
821 }
822
823 // Attach output sections to segments.  This is called after we have
824 // seen all the input sections.
825
826 void
827 Layout::attach_sections_to_segments()
828 {
829   for (Section_list::iterator p = this->section_list_.begin();
830        p != this->section_list_.end();
831        ++p)
832     this->attach_section_to_segment(*p);
833
834   this->sections_are_attached_ = true;
835 }
836
837 // Attach an output section to a segment.
838
839 void
840 Layout::attach_section_to_segment(Output_section* os)
841 {
842   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
843     this->unattached_section_list_.push_back(os);
844   else
845     this->attach_allocated_section_to_segment(os);
846 }
847
848 // Attach an allocated output section to a segment.
849
850 void
851 Layout::attach_allocated_section_to_segment(Output_section* os)
852 {
853   elfcpp::Elf_Xword flags = os->flags();
854   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
855
856   if (parameters->options().relocatable())
857     return;
858
859   // If we have a SECTIONS clause, we can't handle the attachment to
860   // segments until after we've seen all the sections.
861   if (this->script_options_->saw_sections_clause())
862     return;
863
864   gold_assert(!this->script_options_->saw_phdrs_clause());
865
866   // This output section goes into a PT_LOAD segment.
867
868   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
869
870   // In general the only thing we really care about for PT_LOAD
871   // segments is whether or not they are writable, so that is how we
872   // search for them.  People who need segments sorted on some other
873   // basis will have to use a linker script.
874
875   Segment_list::const_iterator p;
876   for (p = this->segment_list_.begin();
877        p != this->segment_list_.end();
878        ++p)
879     {
880       if ((*p)->type() == elfcpp::PT_LOAD
881           && (parameters->options().omagic()
882               || ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W)))
883         {
884           // If -Tbss was specified, we need to separate the data
885           // and BSS segments.
886           if (parameters->options().user_set_Tbss())
887             {
888               if ((os->type() == elfcpp::SHT_NOBITS)
889                   == (*p)->has_any_data_sections())
890                 continue;
891             }
892
893           (*p)->add_output_section(os, seg_flags);
894           break;
895         }
896     }
897
898   if (p == this->segment_list_.end())
899     {
900       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
901                                                        seg_flags);
902       oseg->add_output_section(os, seg_flags);
903     }
904
905   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
906   // segment.
907   if (os->type() == elfcpp::SHT_NOTE)
908     {
909       // See if we already have an equivalent PT_NOTE segment.
910       for (p = this->segment_list_.begin();
911            p != segment_list_.end();
912            ++p)
913         {
914           if ((*p)->type() == elfcpp::PT_NOTE
915               && (((*p)->flags() & elfcpp::PF_W)
916                   == (seg_flags & elfcpp::PF_W)))
917             {
918               (*p)->add_output_section(os, seg_flags);
919               break;
920             }
921         }
922
923       if (p == this->segment_list_.end())
924         {
925           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
926                                                            seg_flags);
927           oseg->add_output_section(os, seg_flags);
928         }
929     }
930
931   // If we see a loadable SHF_TLS section, we create a PT_TLS
932   // segment.  There can only be one such segment.
933   if ((flags & elfcpp::SHF_TLS) != 0)
934     {
935       if (this->tls_segment_ == NULL)
936         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
937       this->tls_segment_->add_output_section(os, seg_flags);
938     }
939
940   // If -z relro is in effect, and we see a relro section, we create a
941   // PT_GNU_RELRO segment.  There can only be one such segment.
942   if (os->is_relro() && parameters->options().relro())
943     {
944       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
945       if (this->relro_segment_ == NULL)
946         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
947       this->relro_segment_->add_output_section(os, seg_flags);
948     }
949 }
950
951 // Make an output section for a script.
952
953 Output_section*
954 Layout::make_output_section_for_script(const char* name)
955 {
956   name = this->namepool_.add(name, false, NULL);
957   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
958                                                  elfcpp::SHF_ALLOC);
959   os->set_found_in_sections_clause();
960   return os;
961 }
962
963 // Return the number of segments we expect to see.
964
965 size_t
966 Layout::expected_segment_count() const
967 {
968   size_t ret = this->segment_list_.size();
969
970   // If we didn't see a SECTIONS clause in a linker script, we should
971   // already have the complete list of segments.  Otherwise we ask the
972   // SECTIONS clause how many segments it expects, and add in the ones
973   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
974
975   if (!this->script_options_->saw_sections_clause())
976     return ret;
977   else
978     {
979       const Script_sections* ss = this->script_options_->script_sections();
980       return ret + ss->expected_segment_count(this);
981     }
982 }
983
984 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
985 // is whether we saw a .note.GNU-stack section in the object file.
986 // GNU_STACK_FLAGS is the section flags.  The flags give the
987 // protection required for stack memory.  We record this in an
988 // executable as a PT_GNU_STACK segment.  If an object file does not
989 // have a .note.GNU-stack segment, we must assume that it is an old
990 // object.  On some targets that will force an executable stack.
991
992 void
993 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
994 {
995   if (!seen_gnu_stack)
996     this->input_without_gnu_stack_note_ = true;
997   else
998     {
999       this->input_with_gnu_stack_note_ = true;
1000       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1001         this->input_requires_executable_stack_ = true;
1002     }
1003 }
1004
1005 // Create the dynamic sections which are needed before we read the
1006 // relocs.
1007
1008 void
1009 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1010 {
1011   if (parameters->doing_static_link())
1012     return;
1013
1014   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1015                                                        elfcpp::SHT_DYNAMIC,
1016                                                        (elfcpp::SHF_ALLOC
1017                                                         | elfcpp::SHF_WRITE),
1018                                                        false);
1019   this->dynamic_section_->set_is_relro();
1020
1021   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1022                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1023                                 elfcpp::STV_HIDDEN, 0, false, false);
1024
1025   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1026
1027   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1028 }
1029
1030 // For each output section whose name can be represented as C symbol,
1031 // define __start and __stop symbols for the section.  This is a GNU
1032 // extension.
1033
1034 void
1035 Layout::define_section_symbols(Symbol_table* symtab)
1036 {
1037   for (Section_list::const_iterator p = this->section_list_.begin();
1038        p != this->section_list_.end();
1039        ++p)
1040     {
1041       const char* const name = (*p)->name();
1042       if (name[strspn(name,
1043                       ("0123456789"
1044                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1045                        "abcdefghijklmnopqrstuvwxyz"
1046                        "_"))]
1047           == '\0')
1048         {
1049           const std::string name_string(name);
1050           const std::string start_name("__start_" + name_string);
1051           const std::string stop_name("__stop_" + name_string);
1052
1053           symtab->define_in_output_data(start_name.c_str(),
1054                                         NULL, // version
1055                                         *p,
1056                                         0, // value
1057                                         0, // symsize
1058                                         elfcpp::STT_NOTYPE,
1059                                         elfcpp::STB_GLOBAL,
1060                                         elfcpp::STV_DEFAULT,
1061                                         0, // nonvis
1062                                         false, // offset_is_from_end
1063                                         true); // only_if_ref
1064
1065           symtab->define_in_output_data(stop_name.c_str(),
1066                                         NULL, // version
1067                                         *p,
1068                                         0, // value
1069                                         0, // symsize
1070                                         elfcpp::STT_NOTYPE,
1071                                         elfcpp::STB_GLOBAL,
1072                                         elfcpp::STV_DEFAULT,
1073                                         0, // nonvis
1074                                         true, // offset_is_from_end
1075                                         true); // only_if_ref
1076         }
1077     }
1078 }
1079
1080 // Define symbols for group signatures.
1081
1082 void
1083 Layout::define_group_signatures(Symbol_table* symtab)
1084 {
1085   for (Group_signatures::iterator p = this->group_signatures_.begin();
1086        p != this->group_signatures_.end();
1087        ++p)
1088     {
1089       Symbol* sym = symtab->lookup(p->signature, NULL);
1090       if (sym != NULL)
1091         p->section->set_info_symndx(sym);
1092       else
1093         {
1094           // Force the name of the group section to the group
1095           // signature, and use the group's section symbol as the
1096           // signature symbol.
1097           if (strcmp(p->section->name(), p->signature) != 0)
1098             {
1099               const char* name = this->namepool_.add(p->signature,
1100                                                      true, NULL);
1101               p->section->set_name(name);
1102             }
1103           p->section->set_needs_symtab_index();
1104           p->section->set_info_section_symndx(p->section);
1105         }
1106     }
1107
1108   this->group_signatures_.clear();
1109 }
1110
1111 // Find the first read-only PT_LOAD segment, creating one if
1112 // necessary.
1113
1114 Output_segment*
1115 Layout::find_first_load_seg()
1116 {
1117   for (Segment_list::const_iterator p = this->segment_list_.begin();
1118        p != this->segment_list_.end();
1119        ++p)
1120     {
1121       if ((*p)->type() == elfcpp::PT_LOAD
1122           && ((*p)->flags() & elfcpp::PF_R) != 0
1123           && (parameters->options().omagic()
1124               || ((*p)->flags() & elfcpp::PF_W) == 0))
1125         return *p;
1126     }
1127
1128   gold_assert(!this->script_options_->saw_phdrs_clause());
1129
1130   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1131                                                        elfcpp::PF_R);
1132   return load_seg;
1133 }
1134
1135 // Finalize the layout.  When this is called, we have created all the
1136 // output sections and all the output segments which are based on
1137 // input sections.  We have several things to do, and we have to do
1138 // them in the right order, so that we get the right results correctly
1139 // and efficiently.
1140
1141 // 1) Finalize the list of output segments and create the segment
1142 // table header.
1143
1144 // 2) Finalize the dynamic symbol table and associated sections.
1145
1146 // 3) Determine the final file offset of all the output segments.
1147
1148 // 4) Determine the final file offset of all the SHF_ALLOC output
1149 // sections.
1150
1151 // 5) Create the symbol table sections and the section name table
1152 // section.
1153
1154 // 6) Finalize the symbol table: set symbol values to their final
1155 // value and make a final determination of which symbols are going
1156 // into the output symbol table.
1157
1158 // 7) Create the section table header.
1159
1160 // 8) Determine the final file offset of all the output sections which
1161 // are not SHF_ALLOC, including the section table header.
1162
1163 // 9) Finalize the ELF file header.
1164
1165 // This function returns the size of the output file.
1166
1167 off_t
1168 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1169                  Target* target, const Task* task)
1170 {
1171   target->finalize_sections(this);
1172
1173   this->count_local_symbols(task, input_objects);
1174
1175   this->create_gold_note();
1176   this->create_executable_stack_info(target);
1177   this->create_build_id();
1178
1179   Output_segment* phdr_seg = NULL;
1180   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1181     {
1182       // There was a dynamic object in the link.  We need to create
1183       // some information for the dynamic linker.
1184
1185       // Create the PT_PHDR segment which will hold the program
1186       // headers.
1187       if (!this->script_options_->saw_phdrs_clause())
1188         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1189
1190       // Create the dynamic symbol table, including the hash table.
1191       Output_section* dynstr;
1192       std::vector<Symbol*> dynamic_symbols;
1193       unsigned int local_dynamic_count;
1194       Versions versions(*this->script_options()->version_script_info(),
1195                         &this->dynpool_);
1196       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1197                                   &local_dynamic_count, &dynamic_symbols,
1198                                   &versions);
1199
1200       // Create the .interp section to hold the name of the
1201       // interpreter, and put it in a PT_INTERP segment.
1202       if (!parameters->options().shared())
1203         this->create_interp(target);
1204
1205       // Finish the .dynamic section to hold the dynamic data, and put
1206       // it in a PT_DYNAMIC segment.
1207       this->finish_dynamic_section(input_objects, symtab);
1208
1209       // We should have added everything we need to the dynamic string
1210       // table.
1211       this->dynpool_.set_string_offsets();
1212
1213       // Create the version sections.  We can't do this until the
1214       // dynamic string table is complete.
1215       this->create_version_sections(&versions, symtab, local_dynamic_count,
1216                                     dynamic_symbols, dynstr);
1217     }
1218
1219   // If there is a SECTIONS clause, put all the input sections into
1220   // the required order.
1221   Output_segment* load_seg;
1222   if (this->script_options_->saw_sections_clause())
1223     load_seg = this->set_section_addresses_from_script(symtab);
1224   else if (parameters->options().relocatable())
1225     load_seg = NULL;
1226   else
1227     load_seg = this->find_first_load_seg();
1228
1229   if (parameters->options().oformat_enum()
1230       != General_options::OBJECT_FORMAT_ELF)
1231     load_seg = NULL;
1232
1233   gold_assert(phdr_seg == NULL || load_seg != NULL);
1234
1235   // Lay out the segment headers.
1236   Output_segment_headers* segment_headers;
1237   if (parameters->options().relocatable())
1238     segment_headers = NULL;
1239   else
1240     {
1241       segment_headers = new Output_segment_headers(this->segment_list_);
1242       if (load_seg != NULL)
1243         load_seg->add_initial_output_data(segment_headers);
1244       if (phdr_seg != NULL)
1245         phdr_seg->add_initial_output_data(segment_headers);
1246     }
1247
1248   // Lay out the file header.
1249   Output_file_header* file_header;
1250   file_header = new Output_file_header(target, symtab, segment_headers,
1251                                        parameters->options().entry());
1252   if (load_seg != NULL)
1253     load_seg->add_initial_output_data(file_header);
1254
1255   this->special_output_list_.push_back(file_header);
1256   if (segment_headers != NULL)
1257     this->special_output_list_.push_back(segment_headers);
1258
1259   if (this->script_options_->saw_phdrs_clause()
1260       && !parameters->options().relocatable())
1261     {
1262       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1263       // clause in a linker script.
1264       Script_sections* ss = this->script_options_->script_sections();
1265       ss->put_headers_in_phdrs(file_header, segment_headers);
1266     }
1267
1268   // We set the output section indexes in set_segment_offsets and
1269   // set_section_indexes.
1270   unsigned int shndx = 1;
1271
1272   // Set the file offsets of all the segments, and all the sections
1273   // they contain.
1274   off_t off;
1275   if (!parameters->options().relocatable())
1276     off = this->set_segment_offsets(target, load_seg, &shndx);
1277   else
1278     off = this->set_relocatable_section_offsets(file_header, &shndx);
1279
1280   // Set the file offsets of all the non-data sections we've seen so
1281   // far which don't have to wait for the input sections.  We need
1282   // this in order to finalize local symbols in non-allocated
1283   // sections.
1284   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1285
1286   // Set the section indexes of all unallocated sections seen so far,
1287   // in case any of them are somehow referenced by a symbol.
1288   shndx = this->set_section_indexes(shndx);
1289
1290   // Create the symbol table sections.
1291   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1292   if (!parameters->doing_static_link())
1293     this->assign_local_dynsym_offsets(input_objects);
1294
1295   // Process any symbol assignments from a linker script.  This must
1296   // be called after the symbol table has been finalized.
1297   this->script_options_->finalize_symbols(symtab, this);
1298
1299   // Create the .shstrtab section.
1300   Output_section* shstrtab_section = this->create_shstrtab();
1301
1302   // Set the file offsets of the rest of the non-data sections which
1303   // don't have to wait for the input sections.
1304   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1305
1306   // Now that all sections have been created, set the section indexes
1307   // for any sections which haven't been done yet.
1308   shndx = this->set_section_indexes(shndx);
1309
1310   // Create the section table header.
1311   this->create_shdrs(shstrtab_section, &off);
1312
1313   // If there are no sections which require postprocessing, we can
1314   // handle the section names now, and avoid a resize later.
1315   if (!this->any_postprocessing_sections_)
1316     off = this->set_section_offsets(off,
1317                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1318
1319   file_header->set_section_info(this->section_headers_, shstrtab_section);
1320
1321   // Now we know exactly where everything goes in the output file
1322   // (except for non-allocated sections which require postprocessing).
1323   Output_data::layout_complete();
1324
1325   this->output_file_size_ = off;
1326
1327   return off;
1328 }
1329
1330 // Create a note header following the format defined in the ELF ABI.
1331 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1332 // descriptor.  ALLOCATE is true if the section should be allocated in
1333 // memory.  This returns the new note section.  It sets
1334 // *TRAILING_PADDING to the number of trailing zero bytes required.
1335
1336 Output_section*
1337 Layout::create_note(const char* name, int note_type,
1338                     const char* section_name, size_t descsz,
1339                     bool allocate, size_t* trailing_padding)
1340 {
1341   // Authorities all agree that the values in a .note field should
1342   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1343   // they differ on what the alignment is for 64-bit binaries.
1344   // The GABI says unambiguously they take 8-byte alignment:
1345   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1346   // Other documentation says alignment should always be 4 bytes:
1347   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1348   // GNU ld and GNU readelf both support the latter (at least as of
1349   // version 2.16.91), and glibc always generates the latter for
1350   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1351   // here.
1352 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1353   const int size = parameters->target().get_size();
1354 #else
1355   const int size = 32;
1356 #endif
1357
1358   // The contents of the .note section.
1359   size_t namesz = strlen(name) + 1;
1360   size_t aligned_namesz = align_address(namesz, size / 8);
1361   size_t aligned_descsz = align_address(descsz, size / 8);
1362
1363   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1364
1365   unsigned char* buffer = new unsigned char[notehdrsz];
1366   memset(buffer, 0, notehdrsz);
1367
1368   bool is_big_endian = parameters->target().is_big_endian();
1369
1370   if (size == 32)
1371     {
1372       if (!is_big_endian)
1373         {
1374           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1375           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1376           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1377         }
1378       else
1379         {
1380           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1381           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1382           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1383         }
1384     }
1385   else if (size == 64)
1386     {
1387       if (!is_big_endian)
1388         {
1389           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1390           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1391           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1392         }
1393       else
1394         {
1395           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1396           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1397           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1398         }
1399     }
1400   else
1401     gold_unreachable();
1402
1403   memcpy(buffer + 3 * (size / 8), name, namesz);
1404
1405   const char *note_name = this->namepool_.add(section_name, false, NULL);
1406   elfcpp::Elf_Xword flags = 0;
1407   if (allocate)
1408     flags = elfcpp::SHF_ALLOC;
1409   Output_section* os = this->make_output_section(note_name,
1410                                                  elfcpp::SHT_NOTE,
1411                                                  flags);
1412   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1413                                                            size / 8,
1414                                                            "** note header");
1415   os->add_output_section_data(posd);
1416
1417   *trailing_padding = aligned_descsz - descsz;
1418
1419   return os;
1420 }
1421
1422 // For an executable or shared library, create a note to record the
1423 // version of gold used to create the binary.
1424
1425 void
1426 Layout::create_gold_note()
1427 {
1428   if (parameters->options().relocatable())
1429     return;
1430
1431   std::string desc = std::string("gold ") + gold::get_version_string();
1432
1433   size_t trailing_padding;
1434   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1435                                          ".note.gnu.gold-version", desc.size(),
1436                                          false, &trailing_padding);
1437
1438   Output_section_data* posd = new Output_data_const(desc, 4);
1439   os->add_output_section_data(posd);
1440
1441   if (trailing_padding > 0)
1442     {
1443       posd = new Output_data_zero_fill(trailing_padding, 0);
1444       os->add_output_section_data(posd);
1445     }
1446 }
1447
1448 // Record whether the stack should be executable.  This can be set
1449 // from the command line using the -z execstack or -z noexecstack
1450 // options.  Otherwise, if any input file has a .note.GNU-stack
1451 // section with the SHF_EXECINSTR flag set, the stack should be
1452 // executable.  Otherwise, if at least one input file a
1453 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1454 // section, we use the target default for whether the stack should be
1455 // executable.  Otherwise, we don't generate a stack note.  When
1456 // generating a object file, we create a .note.GNU-stack section with
1457 // the appropriate marking.  When generating an executable or shared
1458 // library, we create a PT_GNU_STACK segment.
1459
1460 void
1461 Layout::create_executable_stack_info(const Target* target)
1462 {
1463   bool is_stack_executable;
1464   if (parameters->options().is_execstack_set())
1465     is_stack_executable = parameters->options().is_stack_executable();
1466   else if (!this->input_with_gnu_stack_note_)
1467     return;
1468   else
1469     {
1470       if (this->input_requires_executable_stack_)
1471         is_stack_executable = true;
1472       else if (this->input_without_gnu_stack_note_)
1473         is_stack_executable = target->is_default_stack_executable();
1474       else
1475         is_stack_executable = false;
1476     }
1477
1478   if (parameters->options().relocatable())
1479     {
1480       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1481       elfcpp::Elf_Xword flags = 0;
1482       if (is_stack_executable)
1483         flags |= elfcpp::SHF_EXECINSTR;
1484       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1485     }
1486   else
1487     {
1488       if (this->script_options_->saw_phdrs_clause())
1489         return;
1490       int flags = elfcpp::PF_R | elfcpp::PF_W;
1491       if (is_stack_executable)
1492         flags |= elfcpp::PF_X;
1493       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1494     }
1495 }
1496
1497 // If --build-id was used, set up the build ID note.
1498
1499 void
1500 Layout::create_build_id()
1501 {
1502   if (!parameters->options().user_set_build_id())
1503     return;
1504
1505   const char* style = parameters->options().build_id();
1506   if (strcmp(style, "none") == 0)
1507     return;
1508
1509   // Set DESCSZ to the size of the note descriptor.  When possible,
1510   // set DESC to the note descriptor contents.
1511   size_t descsz;
1512   std::string desc;
1513   if (strcmp(style, "md5") == 0)
1514     descsz = 128 / 8;
1515   else if (strcmp(style, "sha1") == 0)
1516     descsz = 160 / 8;
1517   else if (strcmp(style, "uuid") == 0)
1518     {
1519       const size_t uuidsz = 128 / 8;
1520
1521       char buffer[uuidsz];
1522       memset(buffer, 0, uuidsz);
1523
1524       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1525       if (descriptor < 0)
1526         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1527                    strerror(errno));
1528       else
1529         {
1530           ssize_t got = ::read(descriptor, buffer, uuidsz);
1531           release_descriptor(descriptor, true);
1532           if (got < 0)
1533             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1534           else if (static_cast<size_t>(got) != uuidsz)
1535             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1536                        uuidsz, got);
1537         }
1538
1539       desc.assign(buffer, uuidsz);
1540       descsz = uuidsz;
1541     }
1542   else if (strncmp(style, "0x", 2) == 0)
1543     {
1544       hex_init();
1545       const char* p = style + 2;
1546       while (*p != '\0')
1547         {
1548           if (hex_p(p[0]) && hex_p(p[1]))
1549             {
1550               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1551               desc += c;
1552               p += 2;
1553             }
1554           else if (*p == '-' || *p == ':')
1555             ++p;
1556           else
1557             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1558                        style);
1559         }
1560       descsz = desc.size();
1561     }
1562   else
1563     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1564
1565   // Create the note.
1566   size_t trailing_padding;
1567   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1568                                          ".note.gnu.build-id", descsz, true,
1569                                          &trailing_padding);
1570
1571   if (!desc.empty())
1572     {
1573       // We know the value already, so we fill it in now.
1574       gold_assert(desc.size() == descsz);
1575
1576       Output_section_data* posd = new Output_data_const(desc, 4);
1577       os->add_output_section_data(posd);
1578
1579       if (trailing_padding != 0)
1580         {
1581           posd = new Output_data_zero_fill(trailing_padding, 0);
1582           os->add_output_section_data(posd);
1583         }
1584     }
1585   else
1586     {
1587       // We need to compute a checksum after we have completed the
1588       // link.
1589       gold_assert(trailing_padding == 0);
1590       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1591       os->add_output_section_data(this->build_id_note_);
1592       os->set_after_input_sections();
1593     }
1594 }
1595
1596 // Return whether SEG1 should be before SEG2 in the output file.  This
1597 // is based entirely on the segment type and flags.  When this is
1598 // called the segment addresses has normally not yet been set.
1599
1600 bool
1601 Layout::segment_precedes(const Output_segment* seg1,
1602                          const Output_segment* seg2)
1603 {
1604   elfcpp::Elf_Word type1 = seg1->type();
1605   elfcpp::Elf_Word type2 = seg2->type();
1606
1607   // The single PT_PHDR segment is required to precede any loadable
1608   // segment.  We simply make it always first.
1609   if (type1 == elfcpp::PT_PHDR)
1610     {
1611       gold_assert(type2 != elfcpp::PT_PHDR);
1612       return true;
1613     }
1614   if (type2 == elfcpp::PT_PHDR)
1615     return false;
1616
1617   // The single PT_INTERP segment is required to precede any loadable
1618   // segment.  We simply make it always second.
1619   if (type1 == elfcpp::PT_INTERP)
1620     {
1621       gold_assert(type2 != elfcpp::PT_INTERP);
1622       return true;
1623     }
1624   if (type2 == elfcpp::PT_INTERP)
1625     return false;
1626
1627   // We then put PT_LOAD segments before any other segments.
1628   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1629     return true;
1630   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1631     return false;
1632
1633   // We put the PT_TLS segment last except for the PT_GNU_RELRO
1634   // segment, because that is where the dynamic linker expects to find
1635   // it (this is just for efficiency; other positions would also work
1636   // correctly).
1637   if (type1 == elfcpp::PT_TLS
1638       && type2 != elfcpp::PT_TLS
1639       && type2 != elfcpp::PT_GNU_RELRO)
1640     return false;
1641   if (type2 == elfcpp::PT_TLS
1642       && type1 != elfcpp::PT_TLS
1643       && type1 != elfcpp::PT_GNU_RELRO)
1644     return true;
1645
1646   // We put the PT_GNU_RELRO segment last, because that is where the
1647   // dynamic linker expects to find it (as with PT_TLS, this is just
1648   // for efficiency).
1649   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1650     return false;
1651   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1652     return true;
1653
1654   const elfcpp::Elf_Word flags1 = seg1->flags();
1655   const elfcpp::Elf_Word flags2 = seg2->flags();
1656
1657   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1658   // by the numeric segment type and flags values.  There should not
1659   // be more than one segment with the same type and flags.
1660   if (type1 != elfcpp::PT_LOAD)
1661     {
1662       if (type1 != type2)
1663         return type1 < type2;
1664       gold_assert(flags1 != flags2);
1665       return flags1 < flags2;
1666     }
1667
1668   // If the addresses are set already, sort by load address.
1669   if (seg1->are_addresses_set())
1670     {
1671       if (!seg2->are_addresses_set())
1672         return true;
1673
1674       unsigned int section_count1 = seg1->output_section_count();
1675       unsigned int section_count2 = seg2->output_section_count();
1676       if (section_count1 == 0 && section_count2 > 0)
1677         return true;
1678       if (section_count1 > 0 && section_count2 == 0)
1679         return false;
1680
1681       uint64_t paddr1 = seg1->first_section_load_address();
1682       uint64_t paddr2 = seg2->first_section_load_address();
1683       if (paddr1 != paddr2)
1684         return paddr1 < paddr2;
1685     }
1686   else if (seg2->are_addresses_set())
1687     return false;
1688
1689   // We sort PT_LOAD segments based on the flags.  Readonly segments
1690   // come before writable segments.  Then writable segments with data
1691   // come before writable segments without data.  Then executable
1692   // segments come before non-executable segments.  Then the unlikely
1693   // case of a non-readable segment comes before the normal case of a
1694   // readable segment.  If there are multiple segments with the same
1695   // type and flags, we require that the address be set, and we sort
1696   // by virtual address and then physical address.
1697   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1698     return (flags1 & elfcpp::PF_W) == 0;
1699   if ((flags1 & elfcpp::PF_W) != 0
1700       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1701     return seg1->has_any_data_sections();
1702   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1703     return (flags1 & elfcpp::PF_X) != 0;
1704   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1705     return (flags1 & elfcpp::PF_R) == 0;
1706
1707   // We shouldn't get here--we shouldn't create segments which we
1708   // can't distinguish.
1709   gold_unreachable();
1710 }
1711
1712 // Set the file offsets of all the segments, and all the sections they
1713 // contain.  They have all been created.  LOAD_SEG must be be laid out
1714 // first.  Return the offset of the data to follow.
1715
1716 off_t
1717 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1718                             unsigned int *pshndx)
1719 {
1720   // Sort them into the final order.
1721   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1722             Layout::Compare_segments());
1723
1724   // Find the PT_LOAD segments, and set their addresses and offsets
1725   // and their section's addresses and offsets.
1726   uint64_t addr;
1727   if (parameters->options().user_set_Ttext())
1728     addr = parameters->options().Ttext();
1729   else if (parameters->options().shared())
1730     addr = 0;
1731   else
1732     addr = target->default_text_segment_address();
1733   off_t off = 0;
1734
1735   // If LOAD_SEG is NULL, then the file header and segment headers
1736   // will not be loadable.  But they still need to be at offset 0 in
1737   // the file.  Set their offsets now.
1738   if (load_seg == NULL)
1739     {
1740       for (Data_list::iterator p = this->special_output_list_.begin();
1741            p != this->special_output_list_.end();
1742            ++p)
1743         {
1744           off = align_address(off, (*p)->addralign());
1745           (*p)->set_address_and_file_offset(0, off);
1746           off += (*p)->data_size();
1747         }
1748     }
1749
1750   const bool check_sections = parameters->options().check_sections();
1751   Output_segment* last_load_segment = NULL;
1752
1753   bool was_readonly = false;
1754   for (Segment_list::iterator p = this->segment_list_.begin();
1755        p != this->segment_list_.end();
1756        ++p)
1757     {
1758       if ((*p)->type() == elfcpp::PT_LOAD)
1759         {
1760           if (load_seg != NULL && load_seg != *p)
1761             gold_unreachable();
1762           load_seg = NULL;
1763
1764           bool are_addresses_set = (*p)->are_addresses_set();
1765           if (are_addresses_set)
1766             {
1767               // When it comes to setting file offsets, we care about
1768               // the physical address.
1769               addr = (*p)->paddr();
1770             }
1771           else if (parameters->options().user_set_Tdata()
1772                    && ((*p)->flags() & elfcpp::PF_W) != 0
1773                    && (!parameters->options().user_set_Tbss()
1774                        || (*p)->has_any_data_sections()))
1775             {
1776               addr = parameters->options().Tdata();
1777               are_addresses_set = true;
1778             }
1779           else if (parameters->options().user_set_Tbss()
1780                    && ((*p)->flags() & elfcpp::PF_W) != 0
1781                    && !(*p)->has_any_data_sections())
1782             {
1783               addr = parameters->options().Tbss();
1784               are_addresses_set = true;
1785             }
1786
1787           uint64_t orig_addr = addr;
1788           uint64_t orig_off = off;
1789
1790           uint64_t aligned_addr = 0;
1791           uint64_t abi_pagesize = target->abi_pagesize();
1792           uint64_t common_pagesize = target->common_pagesize();
1793
1794           if (!parameters->options().nmagic()
1795               && !parameters->options().omagic())
1796             (*p)->set_minimum_p_align(common_pagesize);
1797
1798           if (are_addresses_set)
1799             {
1800               if (!parameters->options().nmagic()
1801                   && !parameters->options().omagic())
1802                 {
1803                   // Adjust the file offset to the same address modulo
1804                   // the page size.
1805                   uint64_t unsigned_off = off;
1806                   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1807                                           | (addr & (abi_pagesize - 1)));
1808                   if (aligned_off < unsigned_off)
1809                     aligned_off += abi_pagesize;
1810                   off = aligned_off;
1811                 }
1812             }
1813           else
1814             {
1815               // If the last segment was readonly, and this one is
1816               // not, then skip the address forward one page,
1817               // maintaining the same position within the page.  This
1818               // lets us store both segments overlapping on a single
1819               // page in the file, but the loader will put them on
1820               // different pages in memory.
1821
1822               addr = align_address(addr, (*p)->maximum_alignment());
1823               aligned_addr = addr;
1824
1825               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1826                 {
1827                   if ((addr & (abi_pagesize - 1)) != 0)
1828                     addr = addr + abi_pagesize;
1829                 }
1830
1831               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1832             }
1833
1834           unsigned int shndx_hold = *pshndx;
1835           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1836                                                           &off, pshndx);
1837
1838           // Now that we know the size of this segment, we may be able
1839           // to save a page in memory, at the cost of wasting some
1840           // file space, by instead aligning to the start of a new
1841           // page.  Here we use the real machine page size rather than
1842           // the ABI mandated page size.
1843
1844           if (!are_addresses_set && aligned_addr != addr)
1845             {
1846               uint64_t first_off = (common_pagesize
1847                                     - (aligned_addr
1848                                        & (common_pagesize - 1)));
1849               uint64_t last_off = new_addr & (common_pagesize - 1);
1850               if (first_off > 0
1851                   && last_off > 0
1852                   && ((aligned_addr & ~ (common_pagesize - 1))
1853                       != (new_addr & ~ (common_pagesize - 1)))
1854                   && first_off + last_off <= common_pagesize)
1855                 {
1856                   *pshndx = shndx_hold;
1857                   addr = align_address(aligned_addr, common_pagesize);
1858                   addr = align_address(addr, (*p)->maximum_alignment());
1859                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1860                   new_addr = (*p)->set_section_addresses(this, true, addr,
1861                                                          &off, pshndx);
1862                 }
1863             }
1864
1865           addr = new_addr;
1866
1867           if (((*p)->flags() & elfcpp::PF_W) == 0)
1868             was_readonly = true;
1869
1870           // Implement --check-sections.  We know that the segments
1871           // are sorted by LMA.
1872           if (check_sections && last_load_segment != NULL)
1873             {
1874               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
1875               if (last_load_segment->paddr() + last_load_segment->memsz()
1876                   > (*p)->paddr())
1877                 {
1878                   unsigned long long lb1 = last_load_segment->paddr();
1879                   unsigned long long le1 = lb1 + last_load_segment->memsz();
1880                   unsigned long long lb2 = (*p)->paddr();
1881                   unsigned long long le2 = lb2 + (*p)->memsz();
1882                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1883                                "[0x%llx -> 0x%llx]"),
1884                              lb1, le1, lb2, le2);
1885                 }
1886             }
1887           last_load_segment = *p;
1888         }
1889     }
1890
1891   // Handle the non-PT_LOAD segments, setting their offsets from their
1892   // section's offsets.
1893   for (Segment_list::iterator p = this->segment_list_.begin();
1894        p != this->segment_list_.end();
1895        ++p)
1896     {
1897       if ((*p)->type() != elfcpp::PT_LOAD)
1898         (*p)->set_offset();
1899     }
1900
1901   // Set the TLS offsets for each section in the PT_TLS segment.
1902   if (this->tls_segment_ != NULL)
1903     this->tls_segment_->set_tls_offsets();
1904
1905   return off;
1906 }
1907
1908 // Set the offsets of all the allocated sections when doing a
1909 // relocatable link.  This does the same jobs as set_segment_offsets,
1910 // only for a relocatable link.
1911
1912 off_t
1913 Layout::set_relocatable_section_offsets(Output_data* file_header,
1914                                         unsigned int *pshndx)
1915 {
1916   off_t off = 0;
1917
1918   file_header->set_address_and_file_offset(0, 0);
1919   off += file_header->data_size();
1920
1921   for (Section_list::iterator p = this->section_list_.begin();
1922        p != this->section_list_.end();
1923        ++p)
1924     {
1925       // We skip unallocated sections here, except that group sections
1926       // have to come first.
1927       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1928           && (*p)->type() != elfcpp::SHT_GROUP)
1929         continue;
1930
1931       off = align_address(off, (*p)->addralign());
1932
1933       // The linker script might have set the address.
1934       if (!(*p)->is_address_valid())
1935         (*p)->set_address(0);
1936       (*p)->set_file_offset(off);
1937       (*p)->finalize_data_size();
1938       off += (*p)->data_size();
1939
1940       (*p)->set_out_shndx(*pshndx);
1941       ++*pshndx;
1942     }
1943
1944   return off;
1945 }
1946
1947 // Set the file offset of all the sections not associated with a
1948 // segment.
1949
1950 off_t
1951 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1952 {
1953   for (Section_list::iterator p = this->unattached_section_list_.begin();
1954        p != this->unattached_section_list_.end();
1955        ++p)
1956     {
1957       // The symtab section is handled in create_symtab_sections.
1958       if (*p == this->symtab_section_)
1959         continue;
1960
1961       // If we've already set the data size, don't set it again.
1962       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1963         continue;
1964
1965       if (pass == BEFORE_INPUT_SECTIONS_PASS
1966           && (*p)->requires_postprocessing())
1967         {
1968           (*p)->create_postprocessing_buffer();
1969           this->any_postprocessing_sections_ = true;
1970         }
1971
1972       if (pass == BEFORE_INPUT_SECTIONS_PASS
1973           && (*p)->after_input_sections())
1974         continue;
1975       else if (pass == POSTPROCESSING_SECTIONS_PASS
1976                && (!(*p)->after_input_sections()
1977                    || (*p)->type() == elfcpp::SHT_STRTAB))
1978         continue;
1979       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1980                && (!(*p)->after_input_sections()
1981                    || (*p)->type() != elfcpp::SHT_STRTAB))
1982         continue;
1983
1984       off = align_address(off, (*p)->addralign());
1985       (*p)->set_file_offset(off);
1986       (*p)->finalize_data_size();
1987       off += (*p)->data_size();
1988
1989       // At this point the name must be set.
1990       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1991         this->namepool_.add((*p)->name(), false, NULL);
1992     }
1993   return off;
1994 }
1995
1996 // Set the section indexes of all the sections not associated with a
1997 // segment.
1998
1999 unsigned int
2000 Layout::set_section_indexes(unsigned int shndx)
2001 {
2002   for (Section_list::iterator p = this->unattached_section_list_.begin();
2003        p != this->unattached_section_list_.end();
2004        ++p)
2005     {
2006       if (!(*p)->has_out_shndx())
2007         {
2008           (*p)->set_out_shndx(shndx);
2009           ++shndx;
2010         }
2011     }
2012   return shndx;
2013 }
2014
2015 // Set the section addresses according to the linker script.  This is
2016 // only called when we see a SECTIONS clause.  This returns the
2017 // program segment which should hold the file header and segment
2018 // headers, if any.  It will return NULL if they should not be in a
2019 // segment.
2020
2021 Output_segment*
2022 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2023 {
2024   Script_sections* ss = this->script_options_->script_sections();
2025   gold_assert(ss->saw_sections_clause());
2026
2027   // Place each orphaned output section in the script.
2028   for (Section_list::iterator p = this->section_list_.begin();
2029        p != this->section_list_.end();
2030        ++p)
2031     {
2032       if (!(*p)->found_in_sections_clause())
2033         ss->place_orphan(*p);
2034     }
2035
2036   return this->script_options_->set_section_addresses(symtab, this);
2037 }
2038
2039 // Count the local symbols in the regular symbol table and the dynamic
2040 // symbol table, and build the respective string pools.
2041
2042 void
2043 Layout::count_local_symbols(const Task* task,
2044                             const Input_objects* input_objects)
2045 {
2046   // First, figure out an upper bound on the number of symbols we'll
2047   // be inserting into each pool.  This helps us create the pools with
2048   // the right size, to avoid unnecessary hashtable resizing.
2049   unsigned int symbol_count = 0;
2050   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2051        p != input_objects->relobj_end();
2052        ++p)
2053     symbol_count += (*p)->local_symbol_count();
2054
2055   // Go from "upper bound" to "estimate."  We overcount for two
2056   // reasons: we double-count symbols that occur in more than one
2057   // object file, and we count symbols that are dropped from the
2058   // output.  Add it all together and assume we overcount by 100%.
2059   symbol_count /= 2;
2060
2061   // We assume all symbols will go into both the sympool and dynpool.
2062   this->sympool_.reserve(symbol_count);
2063   this->dynpool_.reserve(symbol_count);
2064
2065   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2066        p != input_objects->relobj_end();
2067        ++p)
2068     {
2069       Task_lock_obj<Object> tlo(task, *p);
2070       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2071     }
2072 }
2073
2074 // Create the symbol table sections.  Here we also set the final
2075 // values of the symbols.  At this point all the loadable sections are
2076 // fully laid out.  SHNUM is the number of sections so far.
2077
2078 void
2079 Layout::create_symtab_sections(const Input_objects* input_objects,
2080                                Symbol_table* symtab,
2081                                unsigned int shnum,
2082                                off_t* poff)
2083 {
2084   int symsize;
2085   unsigned int align;
2086   if (parameters->target().get_size() == 32)
2087     {
2088       symsize = elfcpp::Elf_sizes<32>::sym_size;
2089       align = 4;
2090     }
2091   else if (parameters->target().get_size() == 64)
2092     {
2093       symsize = elfcpp::Elf_sizes<64>::sym_size;
2094       align = 8;
2095     }
2096   else
2097     gold_unreachable();
2098
2099   off_t off = *poff;
2100   off = align_address(off, align);
2101   off_t startoff = off;
2102
2103   // Save space for the dummy symbol at the start of the section.  We
2104   // never bother to write this out--it will just be left as zero.
2105   off += symsize;
2106   unsigned int local_symbol_index = 1;
2107
2108   // Add STT_SECTION symbols for each Output section which needs one.
2109   for (Section_list::iterator p = this->section_list_.begin();
2110        p != this->section_list_.end();
2111        ++p)
2112     {
2113       if (!(*p)->needs_symtab_index())
2114         (*p)->set_symtab_index(-1U);
2115       else
2116         {
2117           (*p)->set_symtab_index(local_symbol_index);
2118           ++local_symbol_index;
2119           off += symsize;
2120         }
2121     }
2122
2123   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2124        p != input_objects->relobj_end();
2125        ++p)
2126     {
2127       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2128                                                         off);
2129       off += (index - local_symbol_index) * symsize;
2130       local_symbol_index = index;
2131     }
2132
2133   unsigned int local_symcount = local_symbol_index;
2134   gold_assert(local_symcount * symsize == off - startoff);
2135
2136   off_t dynoff;
2137   size_t dyn_global_index;
2138   size_t dyncount;
2139   if (this->dynsym_section_ == NULL)
2140     {
2141       dynoff = 0;
2142       dyn_global_index = 0;
2143       dyncount = 0;
2144     }
2145   else
2146     {
2147       dyn_global_index = this->dynsym_section_->info();
2148       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2149       dynoff = this->dynsym_section_->offset() + locsize;
2150       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2151       gold_assert(static_cast<off_t>(dyncount * symsize)
2152                   == this->dynsym_section_->data_size() - locsize);
2153     }
2154
2155   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2156                          &this->sympool_, &local_symcount);
2157
2158   if (!parameters->options().strip_all())
2159     {
2160       this->sympool_.set_string_offsets();
2161
2162       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2163       Output_section* osymtab = this->make_output_section(symtab_name,
2164                                                           elfcpp::SHT_SYMTAB,
2165                                                           0);
2166       this->symtab_section_ = osymtab;
2167
2168       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2169                                                              align,
2170                                                              "** symtab");
2171       osymtab->add_output_section_data(pos);
2172
2173       // We generate a .symtab_shndx section if we have more than
2174       // SHN_LORESERVE sections.  Technically it is possible that we
2175       // don't need one, because it is possible that there are no
2176       // symbols in any of sections with indexes larger than
2177       // SHN_LORESERVE.  That is probably unusual, though, and it is
2178       // easier to always create one than to compute section indexes
2179       // twice (once here, once when writing out the symbols).
2180       if (shnum >= elfcpp::SHN_LORESERVE)
2181         {
2182           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2183                                                                false, NULL);
2184           Output_section* osymtab_xindex =
2185             this->make_output_section(symtab_xindex_name,
2186                                       elfcpp::SHT_SYMTAB_SHNDX, 0);
2187
2188           size_t symcount = (off - startoff) / symsize;
2189           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2190
2191           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2192
2193           osymtab_xindex->set_link_section(osymtab);
2194           osymtab_xindex->set_addralign(4);
2195           osymtab_xindex->set_entsize(4);
2196
2197           osymtab_xindex->set_after_input_sections();
2198
2199           // This tells the driver code to wait until the symbol table
2200           // has written out before writing out the postprocessing
2201           // sections, including the .symtab_shndx section.
2202           this->any_postprocessing_sections_ = true;
2203         }
2204
2205       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2206       Output_section* ostrtab = this->make_output_section(strtab_name,
2207                                                           elfcpp::SHT_STRTAB,
2208                                                           0);
2209
2210       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2211       ostrtab->add_output_section_data(pstr);
2212
2213       osymtab->set_file_offset(startoff);
2214       osymtab->finalize_data_size();
2215       osymtab->set_link_section(ostrtab);
2216       osymtab->set_info(local_symcount);
2217       osymtab->set_entsize(symsize);
2218
2219       *poff = off;
2220     }
2221 }
2222
2223 // Create the .shstrtab section, which holds the names of the
2224 // sections.  At the time this is called, we have created all the
2225 // output sections except .shstrtab itself.
2226
2227 Output_section*
2228 Layout::create_shstrtab()
2229 {
2230   // FIXME: We don't need to create a .shstrtab section if we are
2231   // stripping everything.
2232
2233   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2234
2235   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2236
2237   // We can't write out this section until we've set all the section
2238   // names, and we don't set the names of compressed output sections
2239   // until relocations are complete.
2240   os->set_after_input_sections();
2241
2242   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2243   os->add_output_section_data(posd);
2244
2245   return os;
2246 }
2247
2248 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2249 // offset.
2250
2251 void
2252 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2253 {
2254   Output_section_headers* oshdrs;
2255   oshdrs = new Output_section_headers(this,
2256                                       &this->segment_list_,
2257                                       &this->section_list_,
2258                                       &this->unattached_section_list_,
2259                                       &this->namepool_,
2260                                       shstrtab_section);
2261   off_t off = align_address(*poff, oshdrs->addralign());
2262   oshdrs->set_address_and_file_offset(0, off);
2263   off += oshdrs->data_size();
2264   *poff = off;
2265   this->section_headers_ = oshdrs;
2266 }
2267
2268 // Count the allocated sections.
2269
2270 size_t
2271 Layout::allocated_output_section_count() const
2272 {
2273   size_t section_count = 0;
2274   for (Segment_list::const_iterator p = this->segment_list_.begin();
2275        p != this->segment_list_.end();
2276        ++p)
2277     section_count += (*p)->output_section_count();
2278   return section_count;
2279 }
2280
2281 // Create the dynamic symbol table.
2282
2283 void
2284 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2285                               Symbol_table* symtab,
2286                               Output_section **pdynstr,
2287                               unsigned int* plocal_dynamic_count,
2288                               std::vector<Symbol*>* pdynamic_symbols,
2289                               Versions* pversions)
2290 {
2291   // Count all the symbols in the dynamic symbol table, and set the
2292   // dynamic symbol indexes.
2293
2294   // Skip symbol 0, which is always all zeroes.
2295   unsigned int index = 1;
2296
2297   // Add STT_SECTION symbols for each Output section which needs one.
2298   for (Section_list::iterator p = this->section_list_.begin();
2299        p != this->section_list_.end();
2300        ++p)
2301     {
2302       if (!(*p)->needs_dynsym_index())
2303         (*p)->set_dynsym_index(-1U);
2304       else
2305         {
2306           (*p)->set_dynsym_index(index);
2307           ++index;
2308         }
2309     }
2310
2311   // Count the local symbols that need to go in the dynamic symbol table,
2312   // and set the dynamic symbol indexes.
2313   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2314        p != input_objects->relobj_end();
2315        ++p)
2316     {
2317       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2318       index = new_index;
2319     }
2320
2321   unsigned int local_symcount = index;
2322   *plocal_dynamic_count = local_symcount;
2323
2324   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2325                                      &this->dynpool_, pversions);
2326
2327   int symsize;
2328   unsigned int align;
2329   const int size = parameters->target().get_size();
2330   if (size == 32)
2331     {
2332       symsize = elfcpp::Elf_sizes<32>::sym_size;
2333       align = 4;
2334     }
2335   else if (size == 64)
2336     {
2337       symsize = elfcpp::Elf_sizes<64>::sym_size;
2338       align = 8;
2339     }
2340   else
2341     gold_unreachable();
2342
2343   // Create the dynamic symbol table section.
2344
2345   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2346                                                        elfcpp::SHT_DYNSYM,
2347                                                        elfcpp::SHF_ALLOC,
2348                                                        false);
2349
2350   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2351                                                            align,
2352                                                            "** dynsym");
2353   dynsym->add_output_section_data(odata);
2354
2355   dynsym->set_info(local_symcount);
2356   dynsym->set_entsize(symsize);
2357   dynsym->set_addralign(align);
2358
2359   this->dynsym_section_ = dynsym;
2360
2361   Output_data_dynamic* const odyn = this->dynamic_data_;
2362   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2363   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2364
2365   // If there are more than SHN_LORESERVE allocated sections, we
2366   // create a .dynsym_shndx section.  It is possible that we don't
2367   // need one, because it is possible that there are no dynamic
2368   // symbols in any of the sections with indexes larger than
2369   // SHN_LORESERVE.  This is probably unusual, though, and at this
2370   // time we don't know the actual section indexes so it is
2371   // inconvenient to check.
2372   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2373     {
2374       Output_section* dynsym_xindex =
2375         this->choose_output_section(NULL, ".dynsym_shndx",
2376                                     elfcpp::SHT_SYMTAB_SHNDX,
2377                                     elfcpp::SHF_ALLOC,
2378                                     false);
2379
2380       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2381
2382       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2383
2384       dynsym_xindex->set_link_section(dynsym);
2385       dynsym_xindex->set_addralign(4);
2386       dynsym_xindex->set_entsize(4);
2387
2388       dynsym_xindex->set_after_input_sections();
2389
2390       // This tells the driver code to wait until the symbol table has
2391       // written out before writing out the postprocessing sections,
2392       // including the .dynsym_shndx section.
2393       this->any_postprocessing_sections_ = true;
2394     }
2395
2396   // Create the dynamic string table section.
2397
2398   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2399                                                        elfcpp::SHT_STRTAB,
2400                                                        elfcpp::SHF_ALLOC,
2401                                                        false);
2402
2403   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2404   dynstr->add_output_section_data(strdata);
2405
2406   dynsym->set_link_section(dynstr);
2407   this->dynamic_section_->set_link_section(dynstr);
2408
2409   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2410   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2411
2412   *pdynstr = dynstr;
2413
2414   // Create the hash tables.
2415
2416   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2417       || strcmp(parameters->options().hash_style(), "both") == 0)
2418     {
2419       unsigned char* phash;
2420       unsigned int hashlen;
2421       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2422                                     &phash, &hashlen);
2423
2424       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2425                                                             elfcpp::SHT_HASH,
2426                                                             elfcpp::SHF_ALLOC,
2427                                                             false);
2428
2429       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2430                                                                    hashlen,
2431                                                                    align,
2432                                                                    "** hash");
2433       hashsec->add_output_section_data(hashdata);
2434
2435       hashsec->set_link_section(dynsym);
2436       hashsec->set_entsize(4);
2437
2438       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2439     }
2440
2441   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2442       || strcmp(parameters->options().hash_style(), "both") == 0)
2443     {
2444       unsigned char* phash;
2445       unsigned int hashlen;
2446       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2447                                     &phash, &hashlen);
2448
2449       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2450                                                             elfcpp::SHT_GNU_HASH,
2451                                                             elfcpp::SHF_ALLOC,
2452                                                             false);
2453
2454       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2455                                                                    hashlen,
2456                                                                    align,
2457                                                                    "** hash");
2458       hashsec->add_output_section_data(hashdata);
2459
2460       hashsec->set_link_section(dynsym);
2461       hashsec->set_entsize(4);
2462
2463       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2464     }
2465 }
2466
2467 // Assign offsets to each local portion of the dynamic symbol table.
2468
2469 void
2470 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2471 {
2472   Output_section* dynsym = this->dynsym_section_;
2473   gold_assert(dynsym != NULL);
2474
2475   off_t off = dynsym->offset();
2476
2477   // Skip the dummy symbol at the start of the section.
2478   off += dynsym->entsize();
2479
2480   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2481        p != input_objects->relobj_end();
2482        ++p)
2483     {
2484       unsigned int count = (*p)->set_local_dynsym_offset(off);
2485       off += count * dynsym->entsize();
2486     }
2487 }
2488
2489 // Create the version sections.
2490
2491 void
2492 Layout::create_version_sections(const Versions* versions,
2493                                 const Symbol_table* symtab,
2494                                 unsigned int local_symcount,
2495                                 const std::vector<Symbol*>& dynamic_symbols,
2496                                 const Output_section* dynstr)
2497 {
2498   if (!versions->any_defs() && !versions->any_needs())
2499     return;
2500
2501   switch (parameters->size_and_endianness())
2502     {
2503 #ifdef HAVE_TARGET_32_LITTLE
2504     case Parameters::TARGET_32_LITTLE:
2505       this->sized_create_version_sections<32, false>(versions, symtab,
2506                                                      local_symcount,
2507                                                      dynamic_symbols, dynstr);
2508       break;
2509 #endif
2510 #ifdef HAVE_TARGET_32_BIG
2511     case Parameters::TARGET_32_BIG:
2512       this->sized_create_version_sections<32, true>(versions, symtab,
2513                                                     local_symcount,
2514                                                     dynamic_symbols, dynstr);
2515       break;
2516 #endif
2517 #ifdef HAVE_TARGET_64_LITTLE
2518     case Parameters::TARGET_64_LITTLE:
2519       this->sized_create_version_sections<64, false>(versions, symtab,
2520                                                      local_symcount,
2521                                                      dynamic_symbols, dynstr);
2522       break;
2523 #endif
2524 #ifdef HAVE_TARGET_64_BIG
2525     case Parameters::TARGET_64_BIG:
2526       this->sized_create_version_sections<64, true>(versions, symtab,
2527                                                     local_symcount,
2528                                                     dynamic_symbols, dynstr);
2529       break;
2530 #endif
2531     default:
2532       gold_unreachable();
2533     }
2534 }
2535
2536 // Create the version sections, sized version.
2537
2538 template<int size, bool big_endian>
2539 void
2540 Layout::sized_create_version_sections(
2541     const Versions* versions,
2542     const Symbol_table* symtab,
2543     unsigned int local_symcount,
2544     const std::vector<Symbol*>& dynamic_symbols,
2545     const Output_section* dynstr)
2546 {
2547   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2548                                                      elfcpp::SHT_GNU_versym,
2549                                                      elfcpp::SHF_ALLOC,
2550                                                      false);
2551
2552   unsigned char* vbuf;
2553   unsigned int vsize;
2554   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2555                                                       local_symcount,
2556                                                       dynamic_symbols,
2557                                                       &vbuf, &vsize);
2558
2559   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2560                                                             "** versions");
2561
2562   vsec->add_output_section_data(vdata);
2563   vsec->set_entsize(2);
2564   vsec->set_link_section(this->dynsym_section_);
2565
2566   Output_data_dynamic* const odyn = this->dynamic_data_;
2567   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2568
2569   if (versions->any_defs())
2570     {
2571       Output_section* vdsec;
2572       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2573                                          elfcpp::SHT_GNU_verdef,
2574                                          elfcpp::SHF_ALLOC,
2575                                          false);
2576
2577       unsigned char* vdbuf;
2578       unsigned int vdsize;
2579       unsigned int vdentries;
2580       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2581                                                        &vdsize, &vdentries);
2582
2583       Output_section_data* vddata =
2584         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2585
2586       vdsec->add_output_section_data(vddata);
2587       vdsec->set_link_section(dynstr);
2588       vdsec->set_info(vdentries);
2589
2590       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2591       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2592     }
2593
2594   if (versions->any_needs())
2595     {
2596       Output_section* vnsec;
2597       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2598                                           elfcpp::SHT_GNU_verneed,
2599                                           elfcpp::SHF_ALLOC,
2600                                           false);
2601
2602       unsigned char* vnbuf;
2603       unsigned int vnsize;
2604       unsigned int vnentries;
2605       versions->need_section_contents<size, big_endian>(&this->dynpool_,
2606                                                         &vnbuf, &vnsize,
2607                                                         &vnentries);
2608
2609       Output_section_data* vndata =
2610         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2611
2612       vnsec->add_output_section_data(vndata);
2613       vnsec->set_link_section(dynstr);
2614       vnsec->set_info(vnentries);
2615
2616       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2617       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2618     }
2619 }
2620
2621 // Create the .interp section and PT_INTERP segment.
2622
2623 void
2624 Layout::create_interp(const Target* target)
2625 {
2626   const char* interp = parameters->options().dynamic_linker();
2627   if (interp == NULL)
2628     {
2629       interp = target->dynamic_linker();
2630       gold_assert(interp != NULL);
2631     }
2632
2633   size_t len = strlen(interp) + 1;
2634
2635   Output_section_data* odata = new Output_data_const(interp, len, 1);
2636
2637   Output_section* osec = this->choose_output_section(NULL, ".interp",
2638                                                      elfcpp::SHT_PROGBITS,
2639                                                      elfcpp::SHF_ALLOC,
2640                                                      false);
2641   osec->add_output_section_data(odata);
2642
2643   if (!this->script_options_->saw_phdrs_clause())
2644     {
2645       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2646                                                        elfcpp::PF_R);
2647       oseg->add_output_section(osec, elfcpp::PF_R);
2648     }
2649 }
2650
2651 // Finish the .dynamic section and PT_DYNAMIC segment.
2652
2653 void
2654 Layout::finish_dynamic_section(const Input_objects* input_objects,
2655                                const Symbol_table* symtab)
2656 {
2657   if (!this->script_options_->saw_phdrs_clause())
2658     {
2659       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2660                                                        (elfcpp::PF_R
2661                                                         | elfcpp::PF_W));
2662       oseg->add_output_section(this->dynamic_section_,
2663                                elfcpp::PF_R | elfcpp::PF_W);
2664     }
2665
2666   Output_data_dynamic* const odyn = this->dynamic_data_;
2667
2668   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2669        p != input_objects->dynobj_end();
2670        ++p)
2671     {
2672       // FIXME: Handle --as-needed.
2673       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2674     }
2675
2676   if (parameters->options().shared())
2677     {
2678       const char* soname = parameters->options().soname();
2679       if (soname != NULL)
2680         odyn->add_string(elfcpp::DT_SONAME, soname);
2681     }
2682
2683   // FIXME: Support --init and --fini.
2684   Symbol* sym = symtab->lookup("_init");
2685   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2686     odyn->add_symbol(elfcpp::DT_INIT, sym);
2687
2688   sym = symtab->lookup("_fini");
2689   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2690     odyn->add_symbol(elfcpp::DT_FINI, sym);
2691
2692   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2693
2694   // Add a DT_RPATH entry if needed.
2695   const General_options::Dir_list& rpath(parameters->options().rpath());
2696   if (!rpath.empty())
2697     {
2698       std::string rpath_val;
2699       for (General_options::Dir_list::const_iterator p = rpath.begin();
2700            p != rpath.end();
2701            ++p)
2702         {
2703           if (rpath_val.empty())
2704             rpath_val = p->name();
2705           else
2706             {
2707               // Eliminate duplicates.
2708               General_options::Dir_list::const_iterator q;
2709               for (q = rpath.begin(); q != p; ++q)
2710                 if (q->name() == p->name())
2711                   break;
2712               if (q == p)
2713                 {
2714                   rpath_val += ':';
2715                   rpath_val += p->name();
2716                 }
2717             }
2718         }
2719
2720       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2721       if (parameters->options().enable_new_dtags())
2722         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2723     }
2724
2725   // Look for text segments that have dynamic relocations.
2726   bool have_textrel = false;
2727   if (!this->script_options_->saw_sections_clause())
2728     {
2729       for (Segment_list::const_iterator p = this->segment_list_.begin();
2730            p != this->segment_list_.end();
2731            ++p)
2732         {
2733           if (((*p)->flags() & elfcpp::PF_W) == 0
2734               && (*p)->dynamic_reloc_count() > 0)
2735             {
2736               have_textrel = true;
2737               break;
2738             }
2739         }
2740     }
2741   else
2742     {
2743       // We don't know the section -> segment mapping, so we are
2744       // conservative and just look for readonly sections with
2745       // relocations.  If those sections wind up in writable segments,
2746       // then we have created an unnecessary DT_TEXTREL entry.
2747       for (Section_list::const_iterator p = this->section_list_.begin();
2748            p != this->section_list_.end();
2749            ++p)
2750         {
2751           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2752               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2753               && ((*p)->dynamic_reloc_count() > 0))
2754             {
2755               have_textrel = true;
2756               break;
2757             }
2758         }
2759     }
2760
2761   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2762   // post-link tools can easily modify these flags if desired.
2763   unsigned int flags = 0;
2764   if (have_textrel)
2765     {
2766       // Add a DT_TEXTREL for compatibility with older loaders.
2767       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2768       flags |= elfcpp::DF_TEXTREL;
2769     }
2770   if (parameters->options().shared() && this->has_static_tls())
2771     flags |= elfcpp::DF_STATIC_TLS;
2772   if (parameters->options().origin())
2773     flags |= elfcpp::DF_ORIGIN;
2774   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2775
2776   flags = 0;
2777   if (parameters->options().initfirst())
2778     flags |= elfcpp::DF_1_INITFIRST;
2779   if (parameters->options().interpose())
2780     flags |= elfcpp::DF_1_INTERPOSE;
2781   if (parameters->options().loadfltr())
2782     flags |= elfcpp::DF_1_LOADFLTR;
2783   if (parameters->options().nodefaultlib())
2784     flags |= elfcpp::DF_1_NODEFLIB;
2785   if (parameters->options().nodelete())
2786     flags |= elfcpp::DF_1_NODELETE;
2787   if (parameters->options().nodlopen())
2788     flags |= elfcpp::DF_1_NOOPEN;
2789   if (parameters->options().nodump())
2790     flags |= elfcpp::DF_1_NODUMP;
2791   if (!parameters->options().shared())
2792     flags &= ~(elfcpp::DF_1_INITFIRST
2793                | elfcpp::DF_1_NODELETE
2794                | elfcpp::DF_1_NOOPEN);
2795   if (parameters->options().origin())
2796     flags |= elfcpp::DF_1_ORIGIN;
2797   if (flags)
2798     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2799 }
2800
2801 // The mapping of .gnu.linkonce section names to real section names.
2802
2803 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2804 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2805 {
2806   MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2807   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),             // Before "d".
2808   MAPPING_INIT("t", ".text"),
2809   MAPPING_INIT("r", ".rodata"),
2810   MAPPING_INIT("d", ".data"),
2811   MAPPING_INIT("b", ".bss"),
2812   MAPPING_INIT("s", ".sdata"),
2813   MAPPING_INIT("sb", ".sbss"),
2814   MAPPING_INIT("s2", ".sdata2"),
2815   MAPPING_INIT("sb2", ".sbss2"),
2816   MAPPING_INIT("wi", ".debug_info"),
2817   MAPPING_INIT("td", ".tdata"),
2818   MAPPING_INIT("tb", ".tbss"),
2819   MAPPING_INIT("lr", ".lrodata"),
2820   MAPPING_INIT("l", ".ldata"),
2821   MAPPING_INIT("lb", ".lbss"),
2822 };
2823 #undef MAPPING_INIT
2824
2825 const int Layout::linkonce_mapping_count =
2826   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2827
2828 // Return the name of the output section to use for a .gnu.linkonce
2829 // section.  This is based on the default ELF linker script of the old
2830 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2831 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2832 // initialized to the length of NAME.
2833
2834 const char*
2835 Layout::linkonce_output_name(const char* name, size_t *plen)
2836 {
2837   const char* s = name + sizeof(".gnu.linkonce") - 1;
2838   if (*s != '.')
2839     return name;
2840   ++s;
2841   const Linkonce_mapping* plm = linkonce_mapping;
2842   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2843     {
2844       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2845         {
2846           *plen = plm->tolen;
2847           return plm->to;
2848         }
2849     }
2850   return name;
2851 }
2852
2853 // Choose the output section name to use given an input section name.
2854 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2855 // length of NAME.
2856
2857 const char*
2858 Layout::output_section_name(const char* name, size_t* plen)
2859 {
2860   if (Layout::is_linkonce(name))
2861     {
2862       // .gnu.linkonce sections are laid out as though they were named
2863       // for the sections are placed into.
2864       return Layout::linkonce_output_name(name, plen);
2865     }
2866
2867   // gcc 4.3 generates the following sorts of section names when it
2868   // needs a section name specific to a function:
2869   //   .text.FN
2870   //   .rodata.FN
2871   //   .sdata2.FN
2872   //   .data.FN
2873   //   .data.rel.FN
2874   //   .data.rel.local.FN
2875   //   .data.rel.ro.FN
2876   //   .data.rel.ro.local.FN
2877   //   .sdata.FN
2878   //   .bss.FN
2879   //   .sbss.FN
2880   //   .tdata.FN
2881   //   .tbss.FN
2882
2883   // The GNU linker maps all of those to the part before the .FN,
2884   // except that .data.rel.local.FN is mapped to .data, and
2885   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2886   // beginning with .data.rel.ro.local are grouped together.
2887
2888   // For an anonymous namespace, the string FN can contain a '.'.
2889
2890   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2891   // GNU linker maps to .rodata.
2892
2893   // The .data.rel.ro sections enable a security feature triggered by
2894   // the -z relro option.  Section which need to be relocated at
2895   // program startup time but which may be readonly after startup are
2896   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2897   // segment.  The dynamic linker will make that segment writable,
2898   // perform relocations, and then make it read-only.  FIXME: We do
2899   // not yet implement this optimization.
2900
2901   // It is hard to handle this in a principled way.
2902
2903   // These are the rules we follow:
2904
2905   // If the section name has no initial '.', or no dot other than an
2906   // initial '.', we use the name unchanged (i.e., "mysection" and
2907   // ".text" are unchanged).
2908
2909   // If the name starts with '.note', we keep it unchanged (e.g. to
2910   // avoid truncating '.note.ABI-tag' to '.note').
2911
2912   // If the name starts with ".data.rel.ro.local" we use
2913   // ".data.rel.ro.local".
2914
2915   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2916
2917   // Otherwise, we drop the second '.' and everything that comes after
2918   // it (i.e., ".text.XXX" becomes ".text").
2919
2920   const char* s = name;
2921   if (*s != '.')
2922     return name;
2923   ++s;
2924   const char* sdot = strchr(s, '.');
2925   if (sdot == NULL)
2926     return name;
2927   if (strncmp(name, ".note.", 6) == 0)
2928     return name;
2929
2930   const char* const data_rel_ro_local = ".data.rel.ro.local";
2931   if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2932     {
2933       *plen = strlen(data_rel_ro_local);
2934       return data_rel_ro_local;
2935     }
2936
2937   const char* const data_rel_ro = ".data.rel.ro";
2938   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2939     {
2940       *plen = strlen(data_rel_ro);
2941       return data_rel_ro;
2942     }
2943
2944   *plen = sdot - name;
2945   return name;
2946 }
2947
2948 // Check if a comdat group or .gnu.linkonce section with the given
2949 // NAME is selected for the link.  If there is already a section,
2950 // *KEPT_SECTION is set to point to the signature and the function
2951 // returns false.  Otherwise, the CANDIDATE signature is recorded for
2952 // this NAME in the layout object, *KEPT_SECTION is set to the
2953 // internal copy and the function return false.  In some cases, with
2954 // CANDIDATE->GROUP_ being false, KEPT_SECTION can point back to
2955 // CANDIDATE.
2956
2957 bool
2958 Layout::find_or_add_kept_section(const std::string& name,
2959                                  Kept_section* candidate,
2960                                  Kept_section** kept_section)
2961 {
2962   // It's normal to see a couple of entries here, for the x86 thunk
2963   // sections.  If we see more than a few, we're linking a C++
2964   // program, and we resize to get more space to minimize rehashing.
2965   if (this->signatures_.size() > 4
2966       && !this->resized_signatures_)
2967     {
2968       reserve_unordered_map(&this->signatures_,
2969                             this->number_of_input_files_ * 64);
2970       this->resized_signatures_ = true;
2971     }
2972
2973   std::pair<Signatures::iterator, bool> ins(
2974     this->signatures_.insert(std::make_pair(name, *candidate)));
2975
2976   if (kept_section)
2977     *kept_section = &ins.first->second;
2978   if (ins.second)
2979     {
2980       // This is the first time we've seen this signature.
2981       return true;
2982     }
2983
2984   if (ins.first->second.is_group)
2985     {
2986       // We've already seen a real section group with this signature.
2987       // If the kept group is from a plugin object, and we're in
2988       // the replacement phase, accept the new one as a replacement.
2989       if (ins.first->second.object == NULL
2990           && parameters->options().plugins()->in_replacement_phase())
2991         {
2992           ins.first->second = *candidate;
2993           return true;
2994         }
2995       return false;
2996     }
2997   else if (candidate->is_group)
2998     {
2999       // This is a real section group, and we've already seen a
3000       // linkonce section with this signature.  Record that we've seen
3001       // a section group, and don't include this section group.
3002       ins.first->second.is_group = true;
3003       return false;
3004     }
3005   else
3006     {
3007       // We've already seen a linkonce section and this is a linkonce
3008       // section.  These don't block each other--this may be the same
3009       // symbol name with different section types.
3010       *kept_section = candidate;
3011       return true;
3012     }
3013 }
3014
3015 // Find the given comdat signature, and return the object and section
3016 // index of the kept group.
3017 Relobj*
3018 Layout::find_kept_object(const std::string& signature,
3019                          unsigned int* pshndx) const
3020 {
3021   Signatures::const_iterator p = this->signatures_.find(signature);
3022   if (p == this->signatures_.end())
3023     return NULL;
3024   if (pshndx != NULL)
3025     *pshndx = p->second.shndx;
3026   return p->second.object;
3027 }
3028
3029 // Store the allocated sections into the section list.
3030
3031 void
3032 Layout::get_allocated_sections(Section_list* section_list) const
3033 {
3034   for (Section_list::const_iterator p = this->section_list_.begin();
3035        p != this->section_list_.end();
3036        ++p)
3037     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3038       section_list->push_back(*p);
3039 }
3040
3041 // Create an output segment.
3042
3043 Output_segment*
3044 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3045 {
3046   gold_assert(!parameters->options().relocatable());
3047   Output_segment* oseg = new Output_segment(type, flags);
3048   this->segment_list_.push_back(oseg);
3049
3050   if (type == elfcpp::PT_TLS)
3051     this->tls_segment_ = oseg;
3052   else if (type == elfcpp::PT_GNU_RELRO)
3053     this->relro_segment_ = oseg;
3054
3055   return oseg;
3056 }
3057
3058 // Write out the Output_sections.  Most won't have anything to write,
3059 // since most of the data will come from input sections which are
3060 // handled elsewhere.  But some Output_sections do have Output_data.
3061
3062 void
3063 Layout::write_output_sections(Output_file* of) const
3064 {
3065   for (Section_list::const_iterator p = this->section_list_.begin();
3066        p != this->section_list_.end();
3067        ++p)
3068     {
3069       if (!(*p)->after_input_sections())
3070         (*p)->write(of);
3071     }
3072 }
3073
3074 // Write out data not associated with a section or the symbol table.
3075
3076 void
3077 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3078 {
3079   if (!parameters->options().strip_all())
3080     {
3081       const Output_section* symtab_section = this->symtab_section_;
3082       for (Section_list::const_iterator p = this->section_list_.begin();
3083            p != this->section_list_.end();
3084            ++p)
3085         {
3086           if ((*p)->needs_symtab_index())
3087             {
3088               gold_assert(symtab_section != NULL);
3089               unsigned int index = (*p)->symtab_index();
3090               gold_assert(index > 0 && index != -1U);
3091               off_t off = (symtab_section->offset()
3092                            + index * symtab_section->entsize());
3093               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3094             }
3095         }
3096     }
3097
3098   const Output_section* dynsym_section = this->dynsym_section_;
3099   for (Section_list::const_iterator p = this->section_list_.begin();
3100        p != this->section_list_.end();
3101        ++p)
3102     {
3103       if ((*p)->needs_dynsym_index())
3104         {
3105           gold_assert(dynsym_section != NULL);
3106           unsigned int index = (*p)->dynsym_index();
3107           gold_assert(index > 0 && index != -1U);
3108           off_t off = (dynsym_section->offset()
3109                        + index * dynsym_section->entsize());
3110           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3111         }
3112     }
3113
3114   // Write out the Output_data which are not in an Output_section.
3115   for (Data_list::const_iterator p = this->special_output_list_.begin();
3116        p != this->special_output_list_.end();
3117        ++p)
3118     (*p)->write(of);
3119 }
3120
3121 // Write out the Output_sections which can only be written after the
3122 // input sections are complete.
3123
3124 void
3125 Layout::write_sections_after_input_sections(Output_file* of)
3126 {
3127   // Determine the final section offsets, and thus the final output
3128   // file size.  Note we finalize the .shstrab last, to allow the
3129   // after_input_section sections to modify their section-names before
3130   // writing.
3131   if (this->any_postprocessing_sections_)
3132     {
3133       off_t off = this->output_file_size_;
3134       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3135
3136       // Now that we've finalized the names, we can finalize the shstrab.
3137       off =
3138         this->set_section_offsets(off,
3139                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3140
3141       if (off > this->output_file_size_)
3142         {
3143           of->resize(off);
3144           this->output_file_size_ = off;
3145         }
3146     }
3147
3148   for (Section_list::const_iterator p = this->section_list_.begin();
3149        p != this->section_list_.end();
3150        ++p)
3151     {
3152       if ((*p)->after_input_sections())
3153         (*p)->write(of);
3154     }
3155
3156   this->section_headers_->write(of);
3157 }
3158
3159 // If the build ID requires computing a checksum, do so here, and
3160 // write it out.  We compute a checksum over the entire file because
3161 // that is simplest.
3162
3163 void
3164 Layout::write_build_id(Output_file* of) const
3165 {
3166   if (this->build_id_note_ == NULL)
3167     return;
3168
3169   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3170
3171   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3172                                           this->build_id_note_->data_size());
3173
3174   const char* style = parameters->options().build_id();
3175   if (strcmp(style, "sha1") == 0)
3176     {
3177       sha1_ctx ctx;
3178       sha1_init_ctx(&ctx);
3179       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3180       sha1_finish_ctx(&ctx, ov);
3181     }
3182   else if (strcmp(style, "md5") == 0)
3183     {
3184       md5_ctx ctx;
3185       md5_init_ctx(&ctx);
3186       md5_process_bytes(iv, this->output_file_size_, &ctx);
3187       md5_finish_ctx(&ctx, ov);
3188     }
3189   else
3190     gold_unreachable();
3191
3192   of->write_output_view(this->build_id_note_->offset(),
3193                         this->build_id_note_->data_size(),
3194                         ov);
3195
3196   of->free_input_view(0, this->output_file_size_, iv);
3197 }
3198
3199 // Write out a binary file.  This is called after the link is
3200 // complete.  IN is the temporary output file we used to generate the
3201 // ELF code.  We simply walk through the segments, read them from
3202 // their file offset in IN, and write them to their load address in
3203 // the output file.  FIXME: with a bit more work, we could support
3204 // S-records and/or Intel hex format here.
3205
3206 void
3207 Layout::write_binary(Output_file* in) const
3208 {
3209   gold_assert(parameters->options().oformat_enum()
3210               == General_options::OBJECT_FORMAT_BINARY);
3211
3212   // Get the size of the binary file.
3213   uint64_t max_load_address = 0;
3214   for (Segment_list::const_iterator p = this->segment_list_.begin();
3215        p != this->segment_list_.end();
3216        ++p)
3217     {
3218       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3219         {
3220           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3221           if (max_paddr > max_load_address)
3222             max_load_address = max_paddr;
3223         }
3224     }
3225
3226   Output_file out(parameters->options().output_file_name());
3227   out.open(max_load_address);
3228
3229   for (Segment_list::const_iterator p = this->segment_list_.begin();
3230        p != this->segment_list_.end();
3231        ++p)
3232     {
3233       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3234         {
3235           const unsigned char* vin = in->get_input_view((*p)->offset(),
3236                                                         (*p)->filesz());
3237           unsigned char* vout = out.get_output_view((*p)->paddr(),
3238                                                     (*p)->filesz());
3239           memcpy(vout, vin, (*p)->filesz());
3240           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3241           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3242         }
3243     }
3244
3245   out.close();
3246 }
3247
3248 // Print the output sections to the map file.
3249
3250 void
3251 Layout::print_to_mapfile(Mapfile* mapfile) const
3252 {
3253   for (Segment_list::const_iterator p = this->segment_list_.begin();
3254        p != this->segment_list_.end();
3255        ++p)
3256     (*p)->print_sections_to_mapfile(mapfile);
3257 }
3258
3259 // Print statistical information to stderr.  This is used for --stats.
3260
3261 void
3262 Layout::print_stats() const
3263 {
3264   this->namepool_.print_stats("section name pool");
3265   this->sympool_.print_stats("output symbol name pool");
3266   this->dynpool_.print_stats("dynamic name pool");
3267
3268   for (Section_list::const_iterator p = this->section_list_.begin();
3269        p != this->section_list_.end();
3270        ++p)
3271     (*p)->print_merge_stats();
3272 }
3273
3274 // Write_sections_task methods.
3275
3276 // We can always run this task.
3277
3278 Task_token*
3279 Write_sections_task::is_runnable()
3280 {
3281   return NULL;
3282 }
3283
3284 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3285 // when finished.
3286
3287 void
3288 Write_sections_task::locks(Task_locker* tl)
3289 {
3290   tl->add(this, this->output_sections_blocker_);
3291   tl->add(this, this->final_blocker_);
3292 }
3293
3294 // Run the task--write out the data.
3295
3296 void
3297 Write_sections_task::run(Workqueue*)
3298 {
3299   this->layout_->write_output_sections(this->of_);
3300 }
3301
3302 // Write_data_task methods.
3303
3304 // We can always run this task.
3305
3306 Task_token*
3307 Write_data_task::is_runnable()
3308 {
3309   return NULL;
3310 }
3311
3312 // We need to unlock FINAL_BLOCKER when finished.
3313
3314 void
3315 Write_data_task::locks(Task_locker* tl)
3316 {
3317   tl->add(this, this->final_blocker_);
3318 }
3319
3320 // Run the task--write out the data.
3321
3322 void
3323 Write_data_task::run(Workqueue*)
3324 {
3325   this->layout_->write_data(this->symtab_, this->of_);
3326 }
3327
3328 // Write_symbols_task methods.
3329
3330 // We can always run this task.
3331
3332 Task_token*
3333 Write_symbols_task::is_runnable()
3334 {
3335   return NULL;
3336 }
3337
3338 // We need to unlock FINAL_BLOCKER when finished.
3339
3340 void
3341 Write_symbols_task::locks(Task_locker* tl)
3342 {
3343   tl->add(this, this->final_blocker_);
3344 }
3345
3346 // Run the task--write out the symbols.
3347
3348 void
3349 Write_symbols_task::run(Workqueue*)
3350 {
3351   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3352                                this->layout_->symtab_xindex(),
3353                                this->layout_->dynsym_xindex(), this->of_);
3354 }
3355
3356 // Write_after_input_sections_task methods.
3357
3358 // We can only run this task after the input sections have completed.
3359
3360 Task_token*
3361 Write_after_input_sections_task::is_runnable()
3362 {
3363   if (this->input_sections_blocker_->is_blocked())
3364     return this->input_sections_blocker_;
3365   return NULL;
3366 }
3367
3368 // We need to unlock FINAL_BLOCKER when finished.
3369
3370 void
3371 Write_after_input_sections_task::locks(Task_locker* tl)
3372 {
3373   tl->add(this, this->final_blocker_);
3374 }
3375
3376 // Run the task.
3377
3378 void
3379 Write_after_input_sections_task::run(Workqueue*)
3380 {
3381   this->layout_->write_sections_after_input_sections(this->of_);
3382 }
3383
3384 // Close_task_runner methods.
3385
3386 // Run the task--close the file.
3387
3388 void
3389 Close_task_runner::run(Workqueue*, const Task*)
3390 {
3391   // If we need to compute a checksum for the BUILD if, we do so here.
3392   this->layout_->write_build_id(this->of_);
3393
3394   // If we've been asked to create a binary file, we do so here.
3395   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3396     this->layout_->write_binary(this->of_);
3397
3398   this->of_->close();
3399 }
3400
3401 // Instantiate the templates we need.  We could use the configure
3402 // script to restrict this to only the ones for implemented targets.
3403
3404 #ifdef HAVE_TARGET_32_LITTLE
3405 template
3406 Output_section*
3407 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3408                           const char* name,
3409                           const elfcpp::Shdr<32, false>& shdr,
3410                           unsigned int, unsigned int, off_t*);
3411 #endif
3412
3413 #ifdef HAVE_TARGET_32_BIG
3414 template
3415 Output_section*
3416 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3417                          const char* name,
3418                          const elfcpp::Shdr<32, true>& shdr,
3419                          unsigned int, unsigned int, off_t*);
3420 #endif
3421
3422 #ifdef HAVE_TARGET_64_LITTLE
3423 template
3424 Output_section*
3425 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3426                           const char* name,
3427                           const elfcpp::Shdr<64, false>& shdr,
3428                           unsigned int, unsigned int, off_t*);
3429 #endif
3430
3431 #ifdef HAVE_TARGET_64_BIG
3432 template
3433 Output_section*
3434 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3435                          const char* name,
3436                          const elfcpp::Shdr<64, true>& shdr,
3437                          unsigned int, unsigned int, off_t*);
3438 #endif
3439
3440 #ifdef HAVE_TARGET_32_LITTLE
3441 template
3442 Output_section*
3443 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3444                                 unsigned int reloc_shndx,
3445                                 const elfcpp::Shdr<32, false>& shdr,
3446                                 Output_section* data_section,
3447                                 Relocatable_relocs* rr);
3448 #endif
3449
3450 #ifdef HAVE_TARGET_32_BIG
3451 template
3452 Output_section*
3453 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3454                                unsigned int reloc_shndx,
3455                                const elfcpp::Shdr<32, true>& shdr,
3456                                Output_section* data_section,
3457                                Relocatable_relocs* rr);
3458 #endif
3459
3460 #ifdef HAVE_TARGET_64_LITTLE
3461 template
3462 Output_section*
3463 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3464                                 unsigned int reloc_shndx,
3465                                 const elfcpp::Shdr<64, false>& shdr,
3466                                 Output_section* data_section,
3467                                 Relocatable_relocs* rr);
3468 #endif
3469
3470 #ifdef HAVE_TARGET_64_BIG
3471 template
3472 Output_section*
3473 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3474                                unsigned int reloc_shndx,
3475                                const elfcpp::Shdr<64, true>& shdr,
3476                                Output_section* data_section,
3477                                Relocatable_relocs* rr);
3478 #endif
3479
3480 #ifdef HAVE_TARGET_32_LITTLE
3481 template
3482 void
3483 Layout::layout_group<32, false>(Symbol_table* symtab,
3484                                 Sized_relobj<32, false>* object,
3485                                 unsigned int,
3486                                 const char* group_section_name,
3487                                 const char* signature,
3488                                 const elfcpp::Shdr<32, false>& shdr,
3489                                 elfcpp::Elf_Word flags,
3490                                 std::vector<unsigned int>* shndxes);
3491 #endif
3492
3493 #ifdef HAVE_TARGET_32_BIG
3494 template
3495 void
3496 Layout::layout_group<32, true>(Symbol_table* symtab,
3497                                Sized_relobj<32, true>* object,
3498                                unsigned int,
3499                                const char* group_section_name,
3500                                const char* signature,
3501                                const elfcpp::Shdr<32, true>& shdr,
3502                                elfcpp::Elf_Word flags,
3503                                std::vector<unsigned int>* shndxes);
3504 #endif
3505
3506 #ifdef HAVE_TARGET_64_LITTLE
3507 template
3508 void
3509 Layout::layout_group<64, false>(Symbol_table* symtab,
3510                                 Sized_relobj<64, false>* object,
3511                                 unsigned int,
3512                                 const char* group_section_name,
3513                                 const char* signature,
3514                                 const elfcpp::Shdr<64, false>& shdr,
3515                                 elfcpp::Elf_Word flags,
3516                                 std::vector<unsigned int>* shndxes);
3517 #endif
3518
3519 #ifdef HAVE_TARGET_64_BIG
3520 template
3521 void
3522 Layout::layout_group<64, true>(Symbol_table* symtab,
3523                                Sized_relobj<64, true>* object,
3524                                unsigned int,
3525                                const char* group_section_name,
3526                                const char* signature,
3527                                const elfcpp::Shdr<64, true>& shdr,
3528                                elfcpp::Elf_Word flags,
3529                                std::vector<unsigned int>* shndxes);
3530 #endif
3531
3532 #ifdef HAVE_TARGET_32_LITTLE
3533 template
3534 Output_section*
3535 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3536                                    const unsigned char* symbols,
3537                                    off_t symbols_size,
3538                                    const unsigned char* symbol_names,
3539                                    off_t symbol_names_size,
3540                                    unsigned int shndx,
3541                                    const elfcpp::Shdr<32, false>& shdr,
3542                                    unsigned int reloc_shndx,
3543                                    unsigned int reloc_type,
3544                                    off_t* off);
3545 #endif
3546
3547 #ifdef HAVE_TARGET_32_BIG
3548 template
3549 Output_section*
3550 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3551                                    const unsigned char* symbols,
3552                                    off_t symbols_size,
3553                                   const unsigned char* symbol_names,
3554                                   off_t symbol_names_size,
3555                                   unsigned int shndx,
3556                                   const elfcpp::Shdr<32, true>& shdr,
3557                                   unsigned int reloc_shndx,
3558                                   unsigned int reloc_type,
3559                                   off_t* off);
3560 #endif
3561
3562 #ifdef HAVE_TARGET_64_LITTLE
3563 template
3564 Output_section*
3565 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3566                                    const unsigned char* symbols,
3567                                    off_t symbols_size,
3568                                    const unsigned char* symbol_names,
3569                                    off_t symbol_names_size,
3570                                    unsigned int shndx,
3571                                    const elfcpp::Shdr<64, false>& shdr,
3572                                    unsigned int reloc_shndx,
3573                                    unsigned int reloc_type,
3574                                    off_t* off);
3575 #endif
3576
3577 #ifdef HAVE_TARGET_64_BIG
3578 template
3579 Output_section*
3580 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3581                                    const unsigned char* symbols,
3582                                    off_t symbols_size,
3583                                   const unsigned char* symbol_names,
3584                                   off_t symbol_names_size,
3585                                   unsigned int shndx,
3586                                   const elfcpp::Shdr<64, true>& shdr,
3587                                   unsigned int reloc_shndx,
3588                                   unsigned int reloc_type,
3589                                   off_t* off);
3590 #endif
3591
3592 } // End namespace gold.
This page took 0.2319 seconds and 4 git commands to generate.