1 // dwarf_reader.cc -- parse dwarf2/3 debug information
3 // Copyright 2007, 2008 Free Software Foundation, Inc.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
28 #include "elfcpp_swap.h"
31 #include "parameters.h"
33 #include "dwarf_reader.h"
37 // Read an unsigned LEB128 number. Each byte contains 7 bits of
38 // information, plus one bit saying whether the number continues or
42 read_unsigned_LEB_128(const unsigned char* buffer, size_t* len)
46 unsigned int shift = 0;
53 result |= (static_cast<uint64_t>(byte & 0x7f)) << shift;
63 // Read a signed LEB128 number. These are like regular LEB128
64 // numbers, except the last byte may have a sign bit set.
67 read_signed_LEB_128(const unsigned char* buffer, size_t* len)
78 result |= (static_cast<uint64_t>(byte & 0x7f) << shift);
83 if ((shift < 8 * static_cast<int>(sizeof(result))) && (byte & 0x40))
84 result |= -((static_cast<int64_t>(1)) << shift);
89 } // End anonymous namespace.
94 // This is the format of a DWARF2/3 line state machine that we process
95 // opcodes using. There is no need for anything outside the lineinfo
96 // processor to know how this works.
98 struct LineStateMachine
104 unsigned int shndx; // the section address refers to
105 bool is_stmt; // stmt means statement.
111 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
118 lsm->is_stmt = default_is_stmt;
119 lsm->basic_block = false;
120 lsm->end_sequence = false;
123 template<int size, bool big_endian>
124 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object,
126 : data_valid_(false), buffer_(NULL), symtab_buffer_(NULL),
127 directories_(), files_(), current_header_index_(-1)
129 unsigned int debug_shndx;
130 for (debug_shndx = 0; debug_shndx < object->shnum(); ++debug_shndx)
131 // FIXME: do this more efficiently: section_name() isn't super-fast
132 if (object->section_name(debug_shndx) == ".debug_line")
134 section_size_type buffer_size;
135 this->buffer_ = object->section_contents(debug_shndx, &buffer_size,
137 this->buffer_end_ = this->buffer_ + buffer_size;
140 if (this->buffer_ == NULL)
143 // Find the relocation section for ".debug_line".
144 // We expect these for relobjs (.o's) but not dynobjs (.so's).
145 bool got_relocs = false;
146 for (unsigned int reloc_shndx = 0;
147 reloc_shndx < object->shnum();
150 unsigned int reloc_sh_type = object->section_type(reloc_shndx);
151 if ((reloc_sh_type == elfcpp::SHT_REL
152 || reloc_sh_type == elfcpp::SHT_RELA)
153 && object->section_info(reloc_shndx) == debug_shndx)
155 got_relocs = this->track_relocs_.initialize(object, reloc_shndx,
161 // Finally, we need the symtab section to interpret the relocs.
164 unsigned int symtab_shndx;
165 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
166 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
168 this->symtab_buffer_ = object->section_contents(
169 symtab_shndx, &this->symtab_buffer_size_, false);
172 if (this->symtab_buffer_ == NULL)
176 // Now that we have successfully read all the data, parse the debug
178 this->data_valid_ = true;
179 this->read_line_mappings(object, read_shndx);
182 // Read the DWARF header.
184 template<int size, bool big_endian>
186 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
187 const unsigned char* lineptr)
189 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
192 // In DWARF2/3, if the initial length is all 1 bits, then the offset
193 // size is 8 and we need to read the next 8 bytes for the real length.
194 if (initial_length == 0xffffffff)
196 header_.offset_size = 8;
197 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
201 header_.offset_size = 4;
203 header_.total_length = initial_length;
205 gold_assert(lineptr + header_.total_length <= buffer_end_);
207 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
210 if (header_.offset_size == 4)
211 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
213 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
214 lineptr += header_.offset_size;
216 header_.min_insn_length = *lineptr;
219 header_.default_is_stmt = *lineptr;
222 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
225 header_.line_range = *lineptr;
228 header_.opcode_base = *lineptr;
231 header_.std_opcode_lengths.reserve(header_.opcode_base + 1);
232 header_.std_opcode_lengths[0] = 0;
233 for (int i = 1; i < header_.opcode_base; i++)
235 header_.std_opcode_lengths[i] = *lineptr;
242 // The header for a debug_line section is mildly complicated, because
243 // the line info is very tightly encoded.
245 template<int size, bool big_endian>
247 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
248 const unsigned char* lineptr)
250 ++this->current_header_index_;
252 // Create a new directories_ entry and a new files_ entry for our new
253 // header. We initialize each with a single empty element, because
254 // dwarf indexes directory and filenames starting at 1.
255 gold_assert(static_cast<int>(this->directories_.size())
256 == this->current_header_index_);
257 gold_assert(static_cast<int>(this->files_.size())
258 == this->current_header_index_);
259 this->directories_.push_back(std::vector<std::string>(1));
260 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
262 // It is legal for the directory entry table to be empty.
268 const char* dirname = reinterpret_cast<const char*>(lineptr);
270 == static_cast<int>(this->directories_.back().size()));
271 this->directories_.back().push_back(dirname);
272 lineptr += this->directories_.back().back().size() + 1;
278 // It is also legal for the file entry table to be empty.
285 const char* filename = reinterpret_cast<const char*>(lineptr);
286 lineptr += strlen(filename) + 1;
288 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
291 if (dirindex >= this->directories_.back().size())
293 int dirindexi = static_cast<int>(dirindex);
295 read_unsigned_LEB_128(lineptr, &len); // mod_time
298 read_unsigned_LEB_128(lineptr, &len); // filelength
301 gold_assert(fileindex
302 == static_cast<int>(this->files_.back().size()));
303 this->files_.back().push_back(std::make_pair(dirindexi, filename));
312 // Process a single opcode in the .debug.line structure.
314 // Templating on size and big_endian would yield more efficient (and
315 // simpler) code, but would bloat the binary. Speed isn't important
318 template<int size, bool big_endian>
320 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
321 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
325 unsigned char opcode = *start;
329 // If the opcode is great than the opcode_base, it is a special
330 // opcode. Most line programs consist mainly of special opcodes.
331 if (opcode >= header_.opcode_base)
333 opcode -= header_.opcode_base;
334 const int advance_address = ((opcode / header_.line_range)
335 * header_.min_insn_length);
336 lsm->address += advance_address;
338 const int advance_line = ((opcode % header_.line_range)
339 + header_.line_base);
340 lsm->line_num += advance_line;
341 lsm->basic_block = true;
346 // Otherwise, we have the regular opcodes
349 case elfcpp::DW_LNS_copy:
350 lsm->basic_block = false;
354 case elfcpp::DW_LNS_advance_pc:
356 const uint64_t advance_address
357 = read_unsigned_LEB_128(start, &templen);
359 lsm->address += header_.min_insn_length * advance_address;
363 case elfcpp::DW_LNS_advance_line:
365 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
367 lsm->line_num += advance_line;
371 case elfcpp::DW_LNS_set_file:
373 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
375 lsm->file_num = fileno;
379 case elfcpp::DW_LNS_set_column:
381 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
383 lsm->column_num = colno;
387 case elfcpp::DW_LNS_negate_stmt:
388 lsm->is_stmt = !lsm->is_stmt;
391 case elfcpp::DW_LNS_set_basic_block:
392 lsm->basic_block = true;
395 case elfcpp::DW_LNS_fixed_advance_pc:
398 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
400 lsm->address += advance_address;
404 case elfcpp::DW_LNS_const_add_pc:
406 const int advance_address = (header_.min_insn_length
407 * ((255 - header_.opcode_base)
408 / header_.line_range));
409 lsm->address += advance_address;
413 case elfcpp::DW_LNS_extended_op:
415 const uint64_t extended_op_len
416 = read_unsigned_LEB_128(start, &templen);
418 oplen += templen + extended_op_len;
420 const unsigned char extended_op = *start;
425 case elfcpp::DW_LNE_end_sequence:
426 // This means that the current byte is the one immediately
427 // after a set of instructions. Record the current line
428 // for up to one less than the current address.
430 lsm->end_sequence = true;
434 case elfcpp::DW_LNE_set_address:
436 lsm->address = elfcpp::Swap_unaligned<size, big_endian>::readval(start);
437 typename Reloc_map::const_iterator it
438 = reloc_map_.find(start - this->buffer_);
439 if (it != reloc_map_.end())
442 lsm->address += it->second.second;
443 lsm->shndx = it->second.first;
447 // If we're a normal .o file, with relocs, every
448 // set_address should have an associated relocation.
449 if (this->input_is_relobj())
450 this->data_valid_ = false;
454 case elfcpp::DW_LNE_define_file:
456 const char* filename = reinterpret_cast<const char*>(start);
457 templen = strlen(filename) + 1;
460 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
463 if (dirindex >= this->directories_.back().size())
465 int dirindexi = static_cast<int>(dirindex);
467 read_unsigned_LEB_128(start, &templen); // mod_time
470 read_unsigned_LEB_128(start, &templen); // filelength
473 this->files_.back().push_back(std::make_pair(dirindexi,
483 // Ignore unknown opcode silently
484 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
487 read_unsigned_LEB_128(start, &templen);
498 // Read the debug information at LINEPTR and store it in the line
501 template<int size, bool big_endian>
503 Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
506 struct LineStateMachine lsm;
508 // LENGTHSTART is the place the length field is based on. It is the
509 // point in the header after the initial length field.
510 const unsigned char* lengthstart = buffer_;
512 // In 64 bit dwarf, the initial length is 12 bytes, because of the
513 // 0xffffffff at the start.
514 if (header_.offset_size == 8)
519 while (lineptr < lengthstart + header_.total_length)
521 ResetLineStateMachine(&lsm, header_.default_is_stmt);
522 while (!lsm.end_sequence)
525 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
527 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
529 Offset_to_lineno_entry entry
530 = { lsm.address, this->current_header_index_,
531 lsm.file_num, lsm.line_num };
532 line_number_map_[lsm.shndx].push_back(entry);
538 return lengthstart + header_.total_length;
541 // Looks in the symtab to see what section a symbol is in.
543 template<int size, bool big_endian>
545 Sized_dwarf_line_info<size, big_endian>::symbol_section(
548 typename elfcpp::Elf_types<size>::Elf_Addr* value,
551 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
552 gold_assert(sym * symsize < this->symtab_buffer_size_);
553 elfcpp::Sym<size, big_endian> elfsym(this->symtab_buffer_ + sym * symsize);
554 *value = elfsym.get_st_value();
555 return object->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
558 // Read the relocations into a Reloc_map.
560 template<int size, bool big_endian>
562 Sized_dwarf_line_info<size, big_endian>::read_relocs(Object* object)
564 if (this->symtab_buffer_ == NULL)
567 typename elfcpp::Elf_types<size>::Elf_Addr value;
569 while ((reloc_offset = this->track_relocs_.next_offset()) != -1)
571 const unsigned int sym = this->track_relocs_.next_symndx();
574 const unsigned int shndx = this->symbol_section(object, sym, &value,
577 // There is no reason to record non-ordinary section indexes, or
578 // SHN_UNDEF, because they will never match the real section.
579 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
580 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
582 this->track_relocs_.advance(reloc_offset + 1);
586 // Read the line number info.
588 template<int size, bool big_endian>
590 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(Object* object,
593 gold_assert(this->data_valid_ == true);
595 this->read_relocs(object);
596 while (this->buffer_ < this->buffer_end_)
598 const unsigned char* lineptr = this->buffer_;
599 lineptr = this->read_header_prolog(lineptr);
600 lineptr = this->read_header_tables(lineptr);
601 lineptr = this->read_lines(lineptr, shndx);
602 this->buffer_ = lineptr;
605 // Sort the lines numbers, so addr2line can use binary search.
606 for (typename Lineno_map::iterator it = line_number_map_.begin();
607 it != line_number_map_.end();
609 // Each vector needs to be sorted by offset.
610 std::sort(it->second.begin(), it->second.end());
613 // Some processing depends on whether the input is a .o file or not.
614 // For instance, .o files have relocs, and have .debug_lines
615 // information on a per section basis. .so files, on the other hand,
616 // lack relocs, and offsets are unique, so we can ignore the section
619 template<int size, bool big_endian>
621 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
623 // Only .o files have relocs and the symtab buffer that goes with them.
624 return this->symtab_buffer_ != NULL;
627 // Given an Offset_to_lineno_entry vector, and an offset, figure out
628 // if the offset points into a function according to the vector (see
629 // comments below for the algorithm). If it does, return an iterator
630 // into the vector that points to the line-number that contains that
631 // offset. If not, it returns vector::end().
633 static std::vector<Offset_to_lineno_entry>::const_iterator
634 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
637 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, 0 };
639 // lower_bound() returns the smallest offset which is >= lookup_key.
640 // If no offset in offsets is >= lookup_key, returns end().
641 std::vector<Offset_to_lineno_entry>::const_iterator it
642 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
644 // This code is easiest to understand with a concrete example.
645 // Here's a possible offsets array:
646 // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16}, // 0
647 // {offset = 3224, header_num = 0, file_num = 1, line_num = 20}, // 1
648 // {offset = 3226, header_num = 0, file_num = 1, line_num = 22}, // 2
649 // {offset = 3231, header_num = 0, file_num = 1, line_num = 25}, // 3
650 // {offset = 3232, header_num = 0, file_num = 1, line_num = -1}, // 4
651 // {offset = 3232, header_num = 0, file_num = 1, line_num = 65}, // 5
652 // {offset = 3235, header_num = 0, file_num = 1, line_num = 66}, // 6
653 // {offset = 3236, header_num = 0, file_num = 1, line_num = -1}, // 7
654 // {offset = 5764, header_num = 0, file_num = 1, line_num = 47}, // 8
655 // {offset = 5765, header_num = 0, file_num = 1, line_num = 48}, // 9
656 // {offset = 5767, header_num = 0, file_num = 1, line_num = 49}, // 10
657 // {offset = 5768, header_num = 0, file_num = 1, line_num = 50}, // 11
658 // {offset = 5773, header_num = 0, file_num = 1, line_num = -1}, // 12
659 // {offset = 5787, header_num = 1, file_num = 1, line_num = 19}, // 13
660 // {offset = 5790, header_num = 1, file_num = 1, line_num = 20}, // 14
661 // {offset = 5793, header_num = 1, file_num = 1, line_num = 67}, // 15
662 // {offset = 5793, header_num = 1, file_num = 1, line_num = -1}, // 16
663 // {offset = 5795, header_num = 1, file_num = 1, line_num = 68}, // 17
664 // {offset = 5798, header_num = 1, file_num = 1, line_num = -1}, // 18
665 // The entries with line_num == -1 mark the end of a function: the
666 // associated offset is one past the last instruction in the
667 // function. This can correspond to the beginning of the next
668 // function (as is true for offset 3232); alternately, there can be
669 // a gap between the end of one function and the start of the next
670 // (as is true for some others, most obviously from 3236->5764).
672 // Case 1: lookup_key has offset == 10. lower_bound returns
673 // offsets[0]. Since it's not an exact match and we're
674 // at the beginning of offsets, we return end() (invalid).
675 // Case 2: lookup_key has offset 10000. lower_bound returns
676 // offset[19] (end()). We return end() (invalid).
677 // Case 3: lookup_key has offset == 3211. lower_bound matches
678 // offsets[0] exactly, and that's the entry we return.
679 // Case 4: lookup_key has offset == 3232. lower_bound returns
680 // offsets[4]. That's an exact match, but indicates
681 // end-of-function. We check if offsets[5] is also an
682 // exact match but not end-of-function. It is, so we
683 // return offsets[5].
684 // Case 5: lookup_key has offset == 3214. lower_bound returns
685 // offsets[1]. Since it's not an exact match, we back
686 // up to the offset that's < lookup_key, offsets[0].
687 // We note offsets[0] is a valid entry (not end-of-function),
688 // so that's the entry we return.
689 // Case 6: lookup_key has offset == 4000. lower_bound returns
690 // offsets[8]. Since it's not an exact match, we back
691 // up to offsets[7]. Since offsets[7] indicates
692 // end-of-function, we know lookup_key is between
693 // functions, so we return end() (not a valid offset).
694 // Case 7: lookup_key has offset == 5794. lower_bound returns
695 // offsets[17]. Since it's not an exact match, we back
696 // up to offsets[15]. Note we back up to the *first*
697 // entry with offset 5793, not just offsets[17-1].
698 // We note offsets[15] is a valid entry, so we return it.
699 // If offsets[15] had had line_num == -1, we would have
700 // checked offsets[16]. The reason for this is that
701 // 15 and 16 can be in an arbitrary order, since we sort
702 // only by offset. (Note it doesn't help to use line_number
703 // as a secondary sort key, since sometimes we want the -1
704 // to be first and sometimes we want it to be last.)
706 // This deals with cases (1) and (2).
707 if ((it == offsets->begin() && offset < it->offset)
708 || it == offsets->end())
709 return offsets->end();
711 // This deals with cases (3) and (4).
712 if (offset == it->offset)
714 while (it != offsets->end()
715 && it->offset == offset
716 && it->line_num == -1)
718 if (it == offsets->end() || it->offset != offset)
719 return offsets->end();
724 // This handles the first part of case (7) -- we back up to the
725 // *first* entry that has the offset that's behind us.
726 gold_assert(it != offsets->begin());
727 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
729 const off_t range_value = it->offset;
730 while (it != offsets->begin() && (it-1)->offset == range_value)
733 // This handles cases (5), (6), and (7): if any entry in the
734 // equal_range [it, range_end) has a line_num != -1, it's a valid
735 // match. If not, we're not in a function.
736 for (; it != range_end; ++it)
737 if (it->line_num != -1)
739 return offsets->end();
742 // Return a string for a file name and line number.
744 template<int size, bool big_endian>
746 Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
749 if (this->data_valid_ == false)
752 const std::vector<Offset_to_lineno_entry>* offsets;
753 // If we do not have reloc information, then our input is a .so or
754 // some similar data structure where all the information is held in
755 // the offset. In that case, we ignore the input shndx.
756 if (this->input_is_relobj())
757 offsets = &this->line_number_map_[shndx];
759 offsets = &this->line_number_map_[-1U];
760 if (offsets->empty())
763 typename std::vector<Offset_to_lineno_entry>::const_iterator it
764 = offset_to_iterator(offsets, offset);
765 if (it == offsets->end())
768 // Convert the file_num + line_num into a string.
771 gold_assert(it->header_num < static_cast<int>(this->files_.size()));
772 gold_assert(it->file_num
773 < static_cast<int>(this->files_[it->header_num].size()));
774 const std::pair<int, std::string>& filename_pair
775 = this->files_[it->header_num][it->file_num];
776 const std::string& filename = filename_pair.second;
778 gold_assert(it->header_num < static_cast<int>(this->directories_.size()));
779 gold_assert(filename_pair.first
780 < static_cast<int>(this->directories_[it->header_num].size()));
781 const std::string& dirname
782 = this->directories_[it->header_num][filename_pair.first];
784 if (!dirname.empty())
793 char buffer[64]; // enough to hold a line number
794 snprintf(buffer, sizeof(buffer), "%d", it->line_num);
801 // Dwarf_line_info routines.
803 static unsigned int next_generation_count = 0;
805 struct Addr2line_cache_entry
809 Dwarf_line_info* dwarf_line_info;
810 unsigned int generation_count;
811 unsigned int access_count;
813 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
814 : object(o), shndx(s), dwarf_line_info(d),
815 generation_count(next_generation_count), access_count(0)
817 if (next_generation_count < (1U << 31))
818 ++next_generation_count;
821 // We expect this cache to be small, so don't bother with a hashtable
822 // or priority queue or anything: just use a simple vector.
823 static std::vector<Addr2line_cache_entry> addr2line_cache;
826 Dwarf_line_info::one_addr2line(Object* object,
827 unsigned int shndx, off_t offset,
830 Dwarf_line_info* lineinfo = NULL;
831 std::vector<Addr2line_cache_entry>::iterator it;
833 // First, check the cache. If we hit, update the counts.
834 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
836 if (it->object == object && it->shndx == shndx)
838 lineinfo = it->dwarf_line_info;
839 it->generation_count = next_generation_count;
840 // We cap generation_count at 2^31 -1 to avoid overflow.
841 if (next_generation_count < (1U << 31))
842 ++next_generation_count;
843 // We cap access_count at 31 so 2^access_count doesn't overflow
844 if (it->access_count < 31)
850 // If we don't hit the cache, create a new object and insert into the
852 if (lineinfo == NULL)
854 switch (parameters->size_and_endianness())
856 #ifdef HAVE_TARGET_32_LITTLE
857 case Parameters::TARGET_32_LITTLE:
858 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
860 #ifdef HAVE_TARGET_32_BIG
861 case Parameters::TARGET_32_BIG:
862 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
864 #ifdef HAVE_TARGET_64_LITTLE
865 case Parameters::TARGET_64_LITTLE:
866 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
868 #ifdef HAVE_TARGET_64_BIG
869 case Parameters::TARGET_64_BIG:
870 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
875 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
878 // Now that we have our object, figure out the answer
879 std::string retval = lineinfo->addr2line(shndx, offset);
881 // Finally, if our cache has grown too big, delete old objects. We
882 // assume the common (probably only) case is deleting only one object.
883 // We use a pretty simple scheme to evict: function of LRU and MFU.
884 while (addr2line_cache.size() > cache_size)
886 unsigned int lowest_score = ~0U;
887 std::vector<Addr2line_cache_entry>::iterator lowest
888 = addr2line_cache.end();
889 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
891 const unsigned int score = (it->generation_count
892 + (1U << it->access_count));
893 if (score < lowest_score)
895 lowest_score = score;
899 if (lowest != addr2line_cache.end())
901 delete lowest->dwarf_line_info;
902 addr2line_cache.erase(lowest);
910 Dwarf_line_info::clear_addr2line_cache()
912 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
913 it != addr2line_cache.end();
915 delete it->dwarf_line_info;
916 addr2line_cache.clear();
919 #ifdef HAVE_TARGET_32_LITTLE
921 class Sized_dwarf_line_info<32, false>;
924 #ifdef HAVE_TARGET_32_BIG
926 class Sized_dwarf_line_info<32, true>;
929 #ifdef HAVE_TARGET_64_LITTLE
931 class Sized_dwarf_line_info<64, false>;
934 #ifdef HAVE_TARGET_64_BIG
936 class Sized_dwarf_line_info<64, true>;
939 } // End namespace gold.