1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
47 @cindex options for i386
48 @cindex options for x86-64
50 @cindex x86-64 options
52 The i386 version of @code{@value{AS}} has a few machine
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80 @cindex @samp{--divide} option, i386
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
201 @code{avx512_bitalg},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
263 Note that rather than extending a basic instruction set, the extension
264 mnemonics starting with @code{no} revoke the respective functionality.
266 When the @code{.arch} directive is used with @option{-march}, the
267 @code{.arch} directive will take precedent.
269 @cindex @samp{-mtune=} option, i386
270 @cindex @samp{-mtune=} option, x86-64
271 @item -mtune=@var{CPU}
272 This option specifies a processor to optimize for. When used in
273 conjunction with the @option{-march} option, only instructions
274 of the processor specified by the @option{-march} option will be
277 Valid @var{CPU} values are identical to the processor list of
278 @option{-march=@var{CPU}}.
280 @cindex @samp{-msse2avx} option, i386
281 @cindex @samp{-msse2avx} option, x86-64
283 This option specifies that the assembler should encode SSE instructions
286 @cindex @samp{-msse-check=} option, i386
287 @cindex @samp{-msse-check=} option, x86-64
288 @item -msse-check=@var{none}
289 @itemx -msse-check=@var{warning}
290 @itemx -msse-check=@var{error}
291 These options control if the assembler should check SSE instructions.
292 @option{-msse-check=@var{none}} will make the assembler not to check SSE
293 instructions, which is the default. @option{-msse-check=@var{warning}}
294 will make the assembler issue a warning for any SSE instruction.
295 @option{-msse-check=@var{error}} will make the assembler issue an error
296 for any SSE instruction.
298 @cindex @samp{-mavxscalar=} option, i386
299 @cindex @samp{-mavxscalar=} option, x86-64
300 @item -mavxscalar=@var{128}
301 @itemx -mavxscalar=@var{256}
302 These options control how the assembler should encode scalar AVX
303 instructions. @option{-mavxscalar=@var{128}} will encode scalar
304 AVX instructions with 128bit vector length, which is the default.
305 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
306 with 256bit vector length.
308 WARNING: Don't use this for production code - due to CPU errata the
309 resulting code may not work on certain models.
311 @cindex @samp{-mvexwig=} option, i386
312 @cindex @samp{-mvexwig=} option, x86-64
313 @item -mvexwig=@var{0}
314 @itemx -mvexwig=@var{1}
315 These options control how the assembler should encode VEX.W-ignored (WIG)
316 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
317 instructions with vex.w = 0, which is the default.
318 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
321 WARNING: Don't use this for production code - due to CPU errata the
322 resulting code may not work on certain models.
324 @cindex @samp{-mevexlig=} option, i386
325 @cindex @samp{-mevexlig=} option, x86-64
326 @item -mevexlig=@var{128}
327 @itemx -mevexlig=@var{256}
328 @itemx -mevexlig=@var{512}
329 These options control how the assembler should encode length-ignored
330 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
331 EVEX instructions with 128bit vector length, which is the default.
332 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
333 encode LIG EVEX instructions with 256bit and 512bit vector length,
336 @cindex @samp{-mevexwig=} option, i386
337 @cindex @samp{-mevexwig=} option, x86-64
338 @item -mevexwig=@var{0}
339 @itemx -mevexwig=@var{1}
340 These options control how the assembler should encode w-ignored (WIG)
341 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
342 EVEX instructions with evex.w = 0, which is the default.
343 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
346 @cindex @samp{-mmnemonic=} option, i386
347 @cindex @samp{-mmnemonic=} option, x86-64
348 @item -mmnemonic=@var{att}
349 @itemx -mmnemonic=@var{intel}
350 This option specifies instruction mnemonic for matching instructions.
351 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
354 @cindex @samp{-msyntax=} option, i386
355 @cindex @samp{-msyntax=} option, x86-64
356 @item -msyntax=@var{att}
357 @itemx -msyntax=@var{intel}
358 This option specifies instruction syntax when processing instructions.
359 The @code{.att_syntax} and @code{.intel_syntax} directives will
362 @cindex @samp{-mnaked-reg} option, i386
363 @cindex @samp{-mnaked-reg} option, x86-64
365 This option specifies that registers don't require a @samp{%} prefix.
366 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
368 @cindex @samp{-madd-bnd-prefix} option, i386
369 @cindex @samp{-madd-bnd-prefix} option, x86-64
370 @item -madd-bnd-prefix
371 This option forces the assembler to add BND prefix to all branches, even
372 if such prefix was not explicitly specified in the source code.
374 @cindex @samp{-mshared} option, i386
375 @cindex @samp{-mshared} option, x86-64
377 On ELF target, the assembler normally optimizes out non-PLT relocations
378 against defined non-weak global branch targets with default visibility.
379 The @samp{-mshared} option tells the assembler to generate code which
380 may go into a shared library where all non-weak global branch targets
381 with default visibility can be preempted. The resulting code is
382 slightly bigger. This option only affects the handling of branch
385 @cindex @samp{-mbig-obj} option, x86-64
387 On x86-64 PE/COFF target this option forces the use of big object file
388 format, which allows more than 32768 sections.
390 @cindex @samp{-momit-lock-prefix=} option, i386
391 @cindex @samp{-momit-lock-prefix=} option, x86-64
392 @item -momit-lock-prefix=@var{no}
393 @itemx -momit-lock-prefix=@var{yes}
394 These options control how the assembler should encode lock prefix.
395 This option is intended as a workaround for processors, that fail on
396 lock prefix. This option can only be safely used with single-core,
397 single-thread computers
398 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
399 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
400 which is the default.
402 @cindex @samp{-mfence-as-lock-add=} option, i386
403 @cindex @samp{-mfence-as-lock-add=} option, x86-64
404 @item -mfence-as-lock-add=@var{no}
405 @itemx -mfence-as-lock-add=@var{yes}
406 These options control how the assembler should encode lfence, mfence and
408 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
409 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
410 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
411 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
412 sfence as usual, which is the default.
414 @cindex @samp{-mrelax-relocations=} option, i386
415 @cindex @samp{-mrelax-relocations=} option, x86-64
416 @item -mrelax-relocations=@var{no}
417 @itemx -mrelax-relocations=@var{yes}
418 These options control whether the assembler should generate relax
419 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
420 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
421 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
422 @option{-mrelax-relocations=@var{no}} will not generate relax
423 relocations. The default can be controlled by a configure option
424 @option{--enable-x86-relax-relocations}.
426 @cindex @samp{-malign-branch-boundary=} option, i386
427 @cindex @samp{-malign-branch-boundary=} option, x86-64
428 @item -malign-branch-boundary=@var{NUM}
429 This option controls how the assembler should align branches with segment
430 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
431 no less than 16. Branches will be aligned within @var{NUM} byte
432 boundary. @option{-malign-branch-boundary=0}, which is the default,
433 doesn't align branches.
435 @cindex @samp{-malign-branch=} option, i386
436 @cindex @samp{-malign-branch=} option, x86-64
437 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
438 This option specifies types of branches to align. @var{TYPE} is
439 combination of @samp{jcc}, which aligns conditional jumps,
440 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
441 which aligns unconditional jumps, @samp{call} which aligns calls,
442 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
443 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
445 @cindex @samp{-malign-branch-prefix-size=} option, i386
446 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
447 @item -malign-branch-prefix-size=@var{NUM}
448 This option specifies the maximum number of prefixes on an instruction
449 to align branches. @var{NUM} should be between 0 and 5. The default
452 @cindex @samp{-mx86-used-note=} option, i386
453 @cindex @samp{-mx86-used-note=} option, x86-64
454 @item -mx86-used-note=@var{no}
455 @itemx -mx86-used-note=@var{yes}
456 These options control whether the assembler should generate
457 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
458 GNU property notes. The default can be controlled by the
459 @option{--enable-x86-used-note} configure option.
461 @cindex @samp{-mevexrcig=} option, i386
462 @cindex @samp{-mevexrcig=} option, x86-64
463 @item -mevexrcig=@var{rne}
464 @itemx -mevexrcig=@var{rd}
465 @itemx -mevexrcig=@var{ru}
466 @itemx -mevexrcig=@var{rz}
467 These options control how the assembler should encode SAE-only
468 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
469 of EVEX instruction with 00, which is the default.
470 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
471 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
472 with 01, 10 and 11 RC bits, respectively.
474 @cindex @samp{-mamd64} option, x86-64
475 @cindex @samp{-mintel64} option, x86-64
478 This option specifies that the assembler should accept only AMD64 or
479 Intel64 ISA in 64-bit mode. The default is to accept both.
481 @cindex @samp{-O0} option, i386
482 @cindex @samp{-O0} option, x86-64
483 @cindex @samp{-O} option, i386
484 @cindex @samp{-O} option, x86-64
485 @cindex @samp{-O1} option, i386
486 @cindex @samp{-O1} option, x86-64
487 @cindex @samp{-O2} option, i386
488 @cindex @samp{-O2} option, x86-64
489 @cindex @samp{-Os} option, i386
490 @cindex @samp{-Os} option, x86-64
491 @item -O0 | -O | -O1 | -O2 | -Os
492 Optimize instruction encoding with smaller instruction size. @samp{-O}
493 and @samp{-O1} encode 64-bit register load instructions with 64-bit
494 immediate as 32-bit register load instructions with 31-bit or 32-bits
495 immediates, encode 64-bit register clearing instructions with 32-bit
496 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
497 register clearing instructions with 128-bit VEX vector register
498 clearing instructions, encode 128-bit/256-bit EVEX vector
499 register load/store instructions with VEX vector register load/store
500 instructions, and encode 128-bit/256-bit EVEX packed integer logical
501 instructions with 128-bit/256-bit VEX packed integer logical.
503 @samp{-O2} includes @samp{-O1} optimization plus encodes
504 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
505 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
506 instructions with commutative source operands will also have their
507 source operands swapped if this allows using the 2-byte VEX prefix form
508 instead of the 3-byte one. Certain forms of AND as well as OR with the
509 same (register) operand specified twice will also be changed to TEST.
511 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
512 and 64-bit register tests with immediate as 8-bit register test with
513 immediate. @samp{-O0} turns off this optimization.
518 @node i386-Directives
519 @section x86 specific Directives
521 @cindex machine directives, x86
522 @cindex x86 machine directives
525 @cindex @code{lcomm} directive, COFF
526 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
527 Reserve @var{length} (an absolute expression) bytes for a local common
528 denoted by @var{symbol}. The section and value of @var{symbol} are
529 those of the new local common. The addresses are allocated in the bss
530 section, so that at run-time the bytes start off zeroed. Since
531 @var{symbol} is not declared global, it is normally not visible to
532 @code{@value{LD}}. The optional third parameter, @var{alignment},
533 specifies the desired alignment of the symbol in the bss section.
535 This directive is only available for COFF based x86 targets.
537 @cindex @code{largecomm} directive, ELF
538 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
539 This directive behaves in the same way as the @code{comm} directive
540 except that the data is placed into the @var{.lbss} section instead of
541 the @var{.bss} section @ref{Comm}.
543 The directive is intended to be used for data which requires a large
544 amount of space, and it is only available for ELF based x86_64
547 @cindex @code{value} directive
548 @item .value @var{expression} [, @var{expression}]
549 This directive behaves in the same way as the @code{.short} directive,
550 taking a series of comma separated expressions and storing them as
551 two-byte wide values into the current section.
553 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
558 @section i386 Syntactical Considerations
560 * i386-Variations:: AT&T Syntax versus Intel Syntax
561 * i386-Chars:: Special Characters
564 @node i386-Variations
565 @subsection AT&T Syntax versus Intel Syntax
567 @cindex i386 intel_syntax pseudo op
568 @cindex intel_syntax pseudo op, i386
569 @cindex i386 att_syntax pseudo op
570 @cindex att_syntax pseudo op, i386
571 @cindex i386 syntax compatibility
572 @cindex syntax compatibility, i386
573 @cindex x86-64 intel_syntax pseudo op
574 @cindex intel_syntax pseudo op, x86-64
575 @cindex x86-64 att_syntax pseudo op
576 @cindex att_syntax pseudo op, x86-64
577 @cindex x86-64 syntax compatibility
578 @cindex syntax compatibility, x86-64
580 @code{@value{AS}} now supports assembly using Intel assembler syntax.
581 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
582 back to the usual AT&T mode for compatibility with the output of
583 @code{@value{GCC}}. Either of these directives may have an optional
584 argument, @code{prefix}, or @code{noprefix} specifying whether registers
585 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
586 different from Intel syntax. We mention these differences because
587 almost all 80386 documents use Intel syntax. Notable differences
588 between the two syntaxes are:
590 @cindex immediate operands, i386
591 @cindex i386 immediate operands
592 @cindex register operands, i386
593 @cindex i386 register operands
594 @cindex jump/call operands, i386
595 @cindex i386 jump/call operands
596 @cindex operand delimiters, i386
598 @cindex immediate operands, x86-64
599 @cindex x86-64 immediate operands
600 @cindex register operands, x86-64
601 @cindex x86-64 register operands
602 @cindex jump/call operands, x86-64
603 @cindex x86-64 jump/call operands
604 @cindex operand delimiters, x86-64
607 AT&T immediate operands are preceded by @samp{$}; Intel immediate
608 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
609 AT&T register operands are preceded by @samp{%}; Intel register operands
610 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
611 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
613 @cindex i386 source, destination operands
614 @cindex source, destination operands; i386
615 @cindex x86-64 source, destination operands
616 @cindex source, destination operands; x86-64
618 AT&T and Intel syntax use the opposite order for source and destination
619 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
620 @samp{source, dest} convention is maintained for compatibility with
621 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
622 instructions with 2 immediate operands, such as the @samp{enter}
623 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
625 @cindex mnemonic suffixes, i386
626 @cindex sizes operands, i386
627 @cindex i386 size suffixes
628 @cindex mnemonic suffixes, x86-64
629 @cindex sizes operands, x86-64
630 @cindex x86-64 size suffixes
632 In AT&T syntax the size of memory operands is determined from the last
633 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
634 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
635 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
636 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
637 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
638 no other way to disambiguate an instruction. Intel syntax accomplishes this by
639 prefixing memory operands (@emph{not} the instruction mnemonics) with
640 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
641 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
642 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
643 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
644 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
646 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
647 instruction with the 64-bit displacement or immediate operand.
649 @cindex return instructions, i386
650 @cindex i386 jump, call, return
651 @cindex return instructions, x86-64
652 @cindex x86-64 jump, call, return
654 Immediate form long jumps and calls are
655 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
657 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
659 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
660 @samp{ret far @var{stack-adjust}}.
662 @cindex sections, i386
663 @cindex i386 sections
664 @cindex sections, x86-64
665 @cindex x86-64 sections
667 The AT&T assembler does not provide support for multiple section
668 programs. Unix style systems expect all programs to be single sections.
672 @subsection Special Characters
674 @cindex line comment character, i386
675 @cindex i386 line comment character
676 The presence of a @samp{#} appearing anywhere on a line indicates the
677 start of a comment that extends to the end of that line.
679 If a @samp{#} appears as the first character of a line then the whole
680 line is treated as a comment, but in this case the line can also be a
681 logical line number directive (@pxref{Comments}) or a preprocessor
682 control command (@pxref{Preprocessing}).
684 If the @option{--divide} command-line option has not been specified
685 then the @samp{/} character appearing anywhere on a line also
686 introduces a line comment.
688 @cindex line separator, i386
689 @cindex statement separator, i386
690 @cindex i386 line separator
691 The @samp{;} character can be used to separate statements on the same
695 @section i386-Mnemonics
696 @subsection Instruction Naming
698 @cindex i386 instruction naming
699 @cindex instruction naming, i386
700 @cindex x86-64 instruction naming
701 @cindex instruction naming, x86-64
703 Instruction mnemonics are suffixed with one character modifiers which
704 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
705 and @samp{q} specify byte, word, long and quadruple word operands. If
706 no suffix is specified by an instruction then @code{@value{AS}} tries to
707 fill in the missing suffix based on the destination register operand
708 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
709 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
710 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
711 assembler which assumes that a missing mnemonic suffix implies long
712 operand size. (This incompatibility does not affect compiler output
713 since compilers always explicitly specify the mnemonic suffix.)
715 Almost all instructions have the same names in AT&T and Intel format.
716 There are a few exceptions. The sign extend and zero extend
717 instructions need two sizes to specify them. They need a size to
718 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
719 is accomplished by using two instruction mnemonic suffixes in AT&T
720 syntax. Base names for sign extend and zero extend are
721 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
722 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
723 are tacked on to this base name, the @emph{from} suffix before the
724 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
725 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
726 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
727 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
728 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
731 @cindex encoding options, i386
732 @cindex encoding options, x86-64
734 Different encoding options can be specified via pseudo prefixes:
738 @samp{@{disp8@}} -- prefer 8-bit displacement.
741 @samp{@{disp32@}} -- prefer 32-bit displacement.
744 @samp{@{load@}} -- prefer load-form instruction.
747 @samp{@{store@}} -- prefer store-form instruction.
750 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
753 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
756 @samp{@{evex@}} -- encode with EVEX prefix.
759 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
760 instructions (x86-64 only). Note that this differs from the @samp{rex}
761 prefix which generates REX prefix unconditionally.
764 @samp{@{nooptimize@}} -- disable instruction size optimization.
767 @cindex conversion instructions, i386
768 @cindex i386 conversion instructions
769 @cindex conversion instructions, x86-64
770 @cindex x86-64 conversion instructions
771 The Intel-syntax conversion instructions
775 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
778 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
781 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
784 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
787 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
791 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
792 @samp{%rdx:%rax} (x86-64 only),
796 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
797 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
800 @cindex jump instructions, i386
801 @cindex call instructions, i386
802 @cindex jump instructions, x86-64
803 @cindex call instructions, x86-64
804 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
805 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
808 @subsection AT&T Mnemonic versus Intel Mnemonic
810 @cindex i386 mnemonic compatibility
811 @cindex mnemonic compatibility, i386
813 @code{@value{AS}} supports assembly using Intel mnemonic.
814 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
815 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
816 syntax for compatibility with the output of @code{@value{GCC}}.
817 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
818 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
819 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
820 assembler with different mnemonics from those in Intel IA32 specification.
821 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
824 @section Register Naming
826 @cindex i386 registers
827 @cindex registers, i386
828 @cindex x86-64 registers
829 @cindex registers, x86-64
830 Register operands are always prefixed with @samp{%}. The 80386 registers
835 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
836 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
837 frame pointer), and @samp{%esp} (the stack pointer).
840 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
841 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
844 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
845 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
846 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
847 @samp{%cx}, and @samp{%dx})
850 the 6 section registers @samp{%cs} (code section), @samp{%ds}
851 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
855 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
856 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
859 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
860 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
863 the 2 test registers @samp{%tr6} and @samp{%tr7}.
866 the 8 floating point register stack @samp{%st} or equivalently
867 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
868 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
869 These registers are overloaded by 8 MMX registers @samp{%mm0},
870 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
871 @samp{%mm6} and @samp{%mm7}.
874 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
875 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
878 The AMD x86-64 architecture extends the register set by:
882 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
883 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
884 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
888 the 8 extended registers @samp{%r8}--@samp{%r15}.
891 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
894 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
897 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
900 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
903 the 8 debug registers: @samp{%db8}--@samp{%db15}.
906 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
909 With the AVX extensions more registers were made available:
914 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
915 available in 32-bit mode). The bottom 128 bits are overlaid with the
916 @samp{xmm0}--@samp{xmm15} registers.
920 The AVX2 extensions made in 64-bit mode more registers available:
925 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
926 registers @samp{%ymm16}--@samp{%ymm31}.
930 The AVX512 extensions added the following registers:
935 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
936 available in 32-bit mode). The bottom 128 bits are overlaid with the
937 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
938 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
941 the 8 mask registers @samp{%k0}--@samp{%k7}.
946 @section Instruction Prefixes
948 @cindex i386 instruction prefixes
949 @cindex instruction prefixes, i386
950 @cindex prefixes, i386
951 Instruction prefixes are used to modify the following instruction. They
952 are used to repeat string instructions, to provide section overrides, to
953 perform bus lock operations, and to change operand and address sizes.
954 (Most instructions that normally operate on 32-bit operands will use
955 16-bit operands if the instruction has an ``operand size'' prefix.)
956 Instruction prefixes are best written on the same line as the instruction
957 they act upon. For example, the @samp{scas} (scan string) instruction is
961 repne scas %es:(%edi),%al
964 You may also place prefixes on the lines immediately preceding the
965 instruction, but this circumvents checks that @code{@value{AS}} does
966 with prefixes, and will not work with all prefixes.
968 Here is a list of instruction prefixes:
970 @cindex section override prefixes, i386
973 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
974 @samp{fs}, @samp{gs}. These are automatically added by specifying
975 using the @var{section}:@var{memory-operand} form for memory references.
977 @cindex size prefixes, i386
979 Operand/Address size prefixes @samp{data16} and @samp{addr16}
980 change 32-bit operands/addresses into 16-bit operands/addresses,
981 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
982 @code{.code16} section) into 32-bit operands/addresses. These prefixes
983 @emph{must} appear on the same line of code as the instruction they
984 modify. For example, in a 16-bit @code{.code16} section, you might
991 @cindex bus lock prefixes, i386
992 @cindex inhibiting interrupts, i386
994 The bus lock prefix @samp{lock} inhibits interrupts during execution of
995 the instruction it precedes. (This is only valid with certain
996 instructions; see a 80386 manual for details).
998 @cindex coprocessor wait, i386
1000 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1001 complete the current instruction. This should never be needed for the
1002 80386/80387 combination.
1004 @cindex repeat prefixes, i386
1006 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1007 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1008 times if the current address size is 16-bits).
1009 @cindex REX prefixes, i386
1011 The @samp{rex} family of prefixes is used by x86-64 to encode
1012 extensions to i386 instruction set. The @samp{rex} prefix has four
1013 bits --- an operand size overwrite (@code{64}) used to change operand size
1014 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1017 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1018 instruction emits @samp{rex} prefix with all the bits set. By omitting
1019 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1020 prefixes as well. Normally, there is no need to write the prefixes
1021 explicitly, since gas will automatically generate them based on the
1022 instruction operands.
1026 @section Memory References
1028 @cindex i386 memory references
1029 @cindex memory references, i386
1030 @cindex x86-64 memory references
1031 @cindex memory references, x86-64
1032 An Intel syntax indirect memory reference of the form
1035 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1039 is translated into the AT&T syntax
1042 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1046 where @var{base} and @var{index} are the optional 32-bit base and
1047 index registers, @var{disp} is the optional displacement, and
1048 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1049 to calculate the address of the operand. If no @var{scale} is
1050 specified, @var{scale} is taken to be 1. @var{section} specifies the
1051 optional section register for the memory operand, and may override the
1052 default section register (see a 80386 manual for section register
1053 defaults). Note that section overrides in AT&T syntax @emph{must}
1054 be preceded by a @samp{%}. If you specify a section override which
1055 coincides with the default section register, @code{@value{AS}} does @emph{not}
1056 output any section register override prefixes to assemble the given
1057 instruction. Thus, section overrides can be specified to emphasize which
1058 section register is used for a given memory operand.
1060 Here are some examples of Intel and AT&T style memory references:
1063 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1064 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1065 missing, and the default section is used (@samp{%ss} for addressing with
1066 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1068 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1069 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1070 @samp{foo}. All other fields are missing. The section register here
1071 defaults to @samp{%ds}.
1073 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1074 This uses the value pointed to by @samp{foo} as a memory operand.
1075 Note that @var{base} and @var{index} are both missing, but there is only
1076 @emph{one} @samp{,}. This is a syntactic exception.
1078 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1079 This selects the contents of the variable @samp{foo} with section
1080 register @var{section} being @samp{%gs}.
1083 Absolute (as opposed to PC relative) call and jump operands must be
1084 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1085 always chooses PC relative addressing for jump/call labels.
1087 Any instruction that has a memory operand, but no register operand,
1088 @emph{must} specify its size (byte, word, long, or quadruple) with an
1089 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1092 The x86-64 architecture adds an RIP (instruction pointer relative)
1093 addressing. This addressing mode is specified by using @samp{rip} as a
1094 base register. Only constant offsets are valid. For example:
1097 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1098 Points to the address 1234 bytes past the end of the current
1101 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1102 Points to the @code{symbol} in RIP relative way, this is shorter than
1103 the default absolute addressing.
1106 Other addressing modes remain unchanged in x86-64 architecture, except
1107 registers used are 64-bit instead of 32-bit.
1110 @section Handling of Jump Instructions
1112 @cindex jump optimization, i386
1113 @cindex i386 jump optimization
1114 @cindex jump optimization, x86-64
1115 @cindex x86-64 jump optimization
1116 Jump instructions are always optimized to use the smallest possible
1117 displacements. This is accomplished by using byte (8-bit) displacement
1118 jumps whenever the target is sufficiently close. If a byte displacement
1119 is insufficient a long displacement is used. We do not support
1120 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1121 instruction with the @samp{data16} instruction prefix), since the 80386
1122 insists upon masking @samp{%eip} to 16 bits after the word displacement
1123 is added. (See also @pxref{i386-Arch})
1125 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1126 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1127 displacements, so that if you use these instructions (@code{@value{GCC}} does
1128 not use them) you may get an error message (and incorrect code). The AT&T
1129 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1140 @section Floating Point
1142 @cindex i386 floating point
1143 @cindex floating point, i386
1144 @cindex x86-64 floating point
1145 @cindex floating point, x86-64
1146 All 80387 floating point types except packed BCD are supported.
1147 (BCD support may be added without much difficulty). These data
1148 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1149 double (64-bit), and extended (80-bit) precision floating point.
1150 Each supported type has an instruction mnemonic suffix and a constructor
1151 associated with it. Instruction mnemonic suffixes specify the operand's
1152 data type. Constructors build these data types into memory.
1154 @cindex @code{float} directive, i386
1155 @cindex @code{single} directive, i386
1156 @cindex @code{double} directive, i386
1157 @cindex @code{tfloat} directive, i386
1158 @cindex @code{float} directive, x86-64
1159 @cindex @code{single} directive, x86-64
1160 @cindex @code{double} directive, x86-64
1161 @cindex @code{tfloat} directive, x86-64
1164 Floating point constructors are @samp{.float} or @samp{.single},
1165 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1166 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1167 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1168 only supports this format via the @samp{fldt} (load 80-bit real to stack
1169 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1171 @cindex @code{word} directive, i386
1172 @cindex @code{long} directive, i386
1173 @cindex @code{int} directive, i386
1174 @cindex @code{quad} directive, i386
1175 @cindex @code{word} directive, x86-64
1176 @cindex @code{long} directive, x86-64
1177 @cindex @code{int} directive, x86-64
1178 @cindex @code{quad} directive, x86-64
1180 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1181 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1182 corresponding instruction mnemonic suffixes are @samp{s} (single),
1183 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1184 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1185 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1186 stack) instructions.
1189 Register to register operations should not use instruction mnemonic suffixes.
1190 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1191 wrote @samp{fst %st, %st(1)}, since all register to register operations
1192 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1193 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1194 then stores the result in the 4 byte location @samp{mem})
1197 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1200 @cindex 3DNow!, i386
1203 @cindex 3DNow!, x86-64
1204 @cindex SIMD, x86-64
1206 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1207 instructions for integer data), available on Intel's Pentium MMX
1208 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1209 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1210 instruction set (SIMD instructions for 32-bit floating point data)
1211 available on AMD's K6-2 processor and possibly others in the future.
1213 Currently, @code{@value{AS}} does not support Intel's floating point
1216 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1217 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1218 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1219 floating point values. The MMX registers cannot be used at the same time
1220 as the floating point stack.
1222 See Intel and AMD documentation, keeping in mind that the operand order in
1223 instructions is reversed from the Intel syntax.
1226 @section AMD's Lightweight Profiling Instructions
1231 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1232 instruction set, available on AMD's Family 15h (Orochi) processors.
1234 LWP enables applications to collect and manage performance data, and
1235 react to performance events. The collection of performance data
1236 requires no context switches. LWP runs in the context of a thread and
1237 so several counters can be used independently across multiple threads.
1238 LWP can be used in both 64-bit and legacy 32-bit modes.
1240 For detailed information on the LWP instruction set, see the
1241 @cite{AMD Lightweight Profiling Specification} available at
1242 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1245 @section Bit Manipulation Instructions
1250 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1252 BMI instructions provide several instructions implementing individual
1253 bit manipulation operations such as isolation, masking, setting, or
1256 @c Need to add a specification citation here when available.
1259 @section AMD's Trailing Bit Manipulation Instructions
1264 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1265 instruction set, available on AMD's BDVER2 processors (Trinity and
1268 TBM instructions provide instructions implementing individual bit
1269 manipulation operations such as isolating, masking, setting, resetting,
1270 complementing, and operations on trailing zeros and ones.
1272 @c Need to add a specification citation here when available.
1275 @section Writing 16-bit Code
1277 @cindex i386 16-bit code
1278 @cindex 16-bit code, i386
1279 @cindex real-mode code, i386
1280 @cindex @code{code16gcc} directive, i386
1281 @cindex @code{code16} directive, i386
1282 @cindex @code{code32} directive, i386
1283 @cindex @code{code64} directive, i386
1284 @cindex @code{code64} directive, x86-64
1285 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1286 or 64-bit x86-64 code depending on the default configuration,
1287 it also supports writing code to run in real mode or in 16-bit protected
1288 mode code segments. To do this, put a @samp{.code16} or
1289 @samp{.code16gcc} directive before the assembly language instructions to
1290 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1291 32-bit code with the @samp{.code32} directive or 64-bit code with the
1292 @samp{.code64} directive.
1294 @samp{.code16gcc} provides experimental support for generating 16-bit
1295 code from gcc, and differs from @samp{.code16} in that @samp{call},
1296 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1297 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1298 default to 32-bit size. This is so that the stack pointer is
1299 manipulated in the same way over function calls, allowing access to
1300 function parameters at the same stack offsets as in 32-bit mode.
1301 @samp{.code16gcc} also automatically adds address size prefixes where
1302 necessary to use the 32-bit addressing modes that gcc generates.
1304 The code which @code{@value{AS}} generates in 16-bit mode will not
1305 necessarily run on a 16-bit pre-80386 processor. To write code that
1306 runs on such a processor, you must refrain from using @emph{any} 32-bit
1307 constructs which require @code{@value{AS}} to output address or operand
1310 Note that writing 16-bit code instructions by explicitly specifying a
1311 prefix or an instruction mnemonic suffix within a 32-bit code section
1312 generates different machine instructions than those generated for a
1313 16-bit code segment. In a 32-bit code section, the following code
1314 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1315 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1321 The same code in a 16-bit code section would generate the machine
1322 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1323 is correct since the processor default operand size is assumed to be 16
1324 bits in a 16-bit code section.
1327 @section Specifying CPU Architecture
1329 @cindex arch directive, i386
1330 @cindex i386 arch directive
1331 @cindex arch directive, x86-64
1332 @cindex x86-64 arch directive
1334 @code{@value{AS}} may be told to assemble for a particular CPU
1335 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1336 directive enables a warning when gas detects an instruction that is not
1337 supported on the CPU specified. The choices for @var{cpu_type} are:
1339 @multitable @columnfractions .20 .20 .20 .20
1340 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1341 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1342 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1343 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1344 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1345 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1346 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1347 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1348 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1349 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1350 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1351 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1352 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1353 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1354 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1355 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1356 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1357 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1358 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1359 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1360 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1361 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1362 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1363 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1364 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1365 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1366 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1367 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1368 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1369 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1370 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1371 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1372 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1373 @item @samp{.mcommit}
1376 Apart from the warning, there are only two other effects on
1377 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1378 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1379 will automatically use a two byte opcode sequence. The larger three
1380 byte opcode sequence is used on the 486 (and when no architecture is
1381 specified) because it executes faster on the 486. Note that you can
1382 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1383 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1384 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1385 conditional jumps will be promoted when necessary to a two instruction
1386 sequence consisting of a conditional jump of the opposite sense around
1387 an unconditional jump to the target.
1389 Following the CPU architecture (but not a sub-architecture, which are those
1390 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1391 control automatic promotion of conditional jumps. @samp{jumps} is the
1392 default, and enables jump promotion; All external jumps will be of the long
1393 variety, and file-local jumps will be promoted as necessary.
1394 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1395 byte offset jumps, and warns about file-local conditional jumps that
1396 @code{@value{AS}} promotes.
1397 Unconditional jumps are treated as for @samp{jumps}.
1406 @section AT&T Syntax bugs
1408 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1409 assemblers, generate floating point instructions with reversed source
1410 and destination registers in certain cases. Unfortunately, gcc and
1411 possibly many other programs use this reversed syntax, so we're stuck
1420 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1421 than the expected @samp{%st(3) - %st}. This happens with all the
1422 non-commutative arithmetic floating point operations with two register
1423 operands where the source register is @samp{%st} and the destination
1424 register is @samp{%st(i)}.
1429 @cindex i386 @code{mul}, @code{imul} instructions
1430 @cindex @code{mul} instruction, i386
1431 @cindex @code{imul} instruction, i386
1432 @cindex @code{mul} instruction, x86-64
1433 @cindex @code{imul} instruction, x86-64
1434 There is some trickery concerning the @samp{mul} and @samp{imul}
1435 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1436 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1437 for @samp{imul}) can be output only in the one operand form. Thus,
1438 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1439 the expanding multiply would clobber the @samp{%edx} register, and this
1440 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1441 64-bit product in @samp{%edx:%eax}.
1443 We have added a two operand form of @samp{imul} when the first operand
1444 is an immediate mode expression and the second operand is a register.
1445 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1446 example, can be done with @samp{imul $69, %eax} rather than @samp{imul