1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
72 static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
75 static const char *sparc64_elf_print_symbol_all
76 PARAMS ((bfd *, PTR, asymbol *));
77 static boolean sparc64_elf_relax_section
78 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
79 static boolean sparc64_elf_relocate_section
80 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
81 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
82 static boolean sparc64_elf_finish_dynamic_symbol
83 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
85 static boolean sparc64_elf_finish_dynamic_sections
86 PARAMS ((bfd *, struct bfd_link_info *));
87 static boolean sparc64_elf_object_p PARAMS ((bfd *));
88 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
89 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
90 static boolean sparc64_elf_slurp_one_reloc_table
91 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
92 static boolean sparc64_elf_slurp_reloc_table
93 PARAMS ((bfd *, asection *, asymbol **, boolean));
94 static long sparc64_elf_canonicalize_dynamic_reloc
95 PARAMS ((bfd *, arelent **, asymbol **));
96 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
97 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
98 PARAMS ((const Elf_Internal_Rela *));
100 /* The relocation "howto" table. */
102 static bfd_reloc_status_type sparc_elf_notsup_reloc
103 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
104 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106 static bfd_reloc_status_type sparc_elf_hix22_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static bfd_reloc_status_type sparc_elf_lox10_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111 static reloc_howto_type sparc64_elf_howto_table[] =
113 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
114 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
115 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
116 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
117 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
119 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
120 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
121 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
122 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
125 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
126 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
129 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
132 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
133 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
134 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
136 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
137 #ifndef SPARC64_OLD_RELOCS
138 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
139 /* These aren't implemented yet. */
140 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
141 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
142 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
146 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
147 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
148 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
149 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
150 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
151 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
152 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
157 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
158 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
159 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
160 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
161 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
162 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
163 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
164 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
167 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
168 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
169 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
170 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
171 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
174 struct elf_reloc_map {
175 bfd_reloc_code_real_type bfd_reloc_val;
176 unsigned char elf_reloc_val;
179 static const struct elf_reloc_map sparc_reloc_map[] =
181 { BFD_RELOC_NONE, R_SPARC_NONE, },
182 { BFD_RELOC_16, R_SPARC_16, },
183 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
184 { BFD_RELOC_8, R_SPARC_8 },
185 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186 { BFD_RELOC_CTOR, R_SPARC_64 },
187 { BFD_RELOC_32, R_SPARC_32 },
188 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189 { BFD_RELOC_HI22, R_SPARC_HI22 },
190 { BFD_RELOC_LO10, R_SPARC_LO10, },
191 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
192 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
193 { BFD_RELOC_SPARC22, R_SPARC_22 },
194 { BFD_RELOC_SPARC13, R_SPARC_13 },
195 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
206 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209 { BFD_RELOC_SPARC_10, R_SPARC_10 },
210 { BFD_RELOC_SPARC_11, R_SPARC_11 },
211 { BFD_RELOC_SPARC_64, R_SPARC_64 },
212 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221 { BFD_RELOC_SPARC_7, R_SPARC_7 },
222 { BFD_RELOC_SPARC_5, R_SPARC_5 },
223 { BFD_RELOC_SPARC_6, R_SPARC_6 },
224 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
225 #ifndef SPARC64_OLD_RELOCS
226 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
228 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
229 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
230 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
231 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
232 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
233 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
234 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
237 static reloc_howto_type *
238 sparc64_elf_reloc_type_lookup (abfd, code)
239 bfd *abfd ATTRIBUTE_UNUSED;
240 bfd_reloc_code_real_type code;
243 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
245 if (sparc_reloc_map[i].bfd_reloc_val == code)
246 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
252 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
253 bfd *abfd ATTRIBUTE_UNUSED;
255 Elf64_Internal_Rela *dst;
257 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
258 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
261 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
262 section can represent up to two relocs, we must tell the user to allocate
266 sparc64_elf_get_reloc_upper_bound (abfd, sec)
267 bfd *abfd ATTRIBUTE_UNUSED;
270 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
274 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
277 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
280 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
281 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
282 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
283 for the same location, R_SPARC_LO10 and R_SPARC_13. */
286 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
289 Elf_Internal_Shdr *rel_hdr;
293 PTR allocated = NULL;
294 bfd_byte *native_relocs;
301 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
302 if (allocated == NULL)
305 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
306 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
309 native_relocs = (bfd_byte *) allocated;
311 relents = asect->relocation + asect->reloc_count;
313 entsize = rel_hdr->sh_entsize;
314 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
316 count = rel_hdr->sh_size / entsize;
318 for (i = 0, relent = relents; i < count;
319 i++, relent++, native_relocs += entsize)
321 Elf_Internal_Rela rela;
323 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
325 /* The address of an ELF reloc is section relative for an object
326 file, and absolute for an executable file or shared library.
327 The address of a normal BFD reloc is always section relative,
328 and the address of a dynamic reloc is absolute.. */
329 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
330 relent->address = rela.r_offset;
332 relent->address = rela.r_offset - asect->vma;
334 if (ELF64_R_SYM (rela.r_info) == 0)
335 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
340 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
343 /* Canonicalize ELF section symbols. FIXME: Why? */
344 if ((s->flags & BSF_SECTION_SYM) == 0)
345 relent->sym_ptr_ptr = ps;
347 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
350 relent->addend = rela.r_addend;
352 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
353 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
355 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
356 relent[1].address = relent->address;
358 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
359 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
360 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
363 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
366 asect->reloc_count += relent - relents;
368 if (allocated != NULL)
374 if (allocated != NULL)
379 /* Read in and swap the external relocs. */
382 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
388 struct bfd_elf_section_data * const d = elf_section_data (asect);
389 Elf_Internal_Shdr *rel_hdr;
390 Elf_Internal_Shdr *rel_hdr2;
393 if (asect->relocation != NULL)
398 if ((asect->flags & SEC_RELOC) == 0
399 || asect->reloc_count == 0)
402 rel_hdr = &d->rel_hdr;
403 rel_hdr2 = d->rel_hdr2;
405 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
406 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
410 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
411 case because relocations against this section may use the
412 dynamic symbol table, and in that case bfd_section_from_shdr
413 in elf.c does not update the RELOC_COUNT. */
414 if (asect->_raw_size == 0)
417 rel_hdr = &d->this_hdr;
418 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
422 amt = asect->reloc_count;
423 amt *= 2 * sizeof (arelent);
424 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
425 if (asect->relocation == NULL)
428 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
429 asect->reloc_count = 0;
431 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
436 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
443 /* Canonicalize the dynamic relocation entries. Note that we return
444 the dynamic relocations as a single block, although they are
445 actually associated with particular sections; the interface, which
446 was designed for SunOS style shared libraries, expects that there
447 is only one set of dynamic relocs. Any section that was actually
448 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
449 the dynamic symbol table, is considered to be a dynamic reloc
453 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
461 if (elf_dynsymtab (abfd) == 0)
463 bfd_set_error (bfd_error_invalid_operation);
468 for (s = abfd->sections; s != NULL; s = s->next)
470 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
471 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
476 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
478 count = s->reloc_count;
480 for (i = 0; i < count; i++)
491 /* Write out the relocs. */
494 sparc64_elf_write_relocs (abfd, sec, data)
499 boolean *failedp = (boolean *) data;
500 Elf_Internal_Shdr *rela_hdr;
501 Elf64_External_Rela *outbound_relocas, *src_rela;
502 unsigned int idx, count;
503 asymbol *last_sym = 0;
504 int last_sym_idx = 0;
506 /* If we have already failed, don't do anything. */
510 if ((sec->flags & SEC_RELOC) == 0)
513 /* The linker backend writes the relocs out itself, and sets the
514 reloc_count field to zero to inhibit writing them here. Also,
515 sometimes the SEC_RELOC flag gets set even when there aren't any
517 if (sec->reloc_count == 0)
520 /* We can combine two relocs that refer to the same address
521 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
522 latter is R_SPARC_13 with no associated symbol. */
524 for (idx = 0; idx < sec->reloc_count; idx++)
530 addr = sec->orelocation[idx]->address;
531 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
532 && idx < sec->reloc_count - 1)
534 arelent *r = sec->orelocation[idx + 1];
536 if (r->howto->type == R_SPARC_13
537 && r->address == addr
538 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
539 && (*r->sym_ptr_ptr)->value == 0)
544 rela_hdr = &elf_section_data (sec)->rel_hdr;
546 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
547 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
548 if (rela_hdr->contents == NULL)
554 /* Figure out whether the relocations are RELA or REL relocations. */
555 if (rela_hdr->sh_type != SHT_RELA)
558 /* orelocation has the data, reloc_count has the count... */
559 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
560 src_rela = outbound_relocas;
562 for (idx = 0; idx < sec->reloc_count; idx++)
564 Elf_Internal_Rela dst_rela;
569 ptr = sec->orelocation[idx];
571 /* The address of an ELF reloc is section relative for an object
572 file, and absolute for an executable file or shared library.
573 The address of a BFD reloc is always section relative. */
574 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
575 dst_rela.r_offset = ptr->address;
577 dst_rela.r_offset = ptr->address + sec->vma;
579 sym = *ptr->sym_ptr_ptr;
582 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
587 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
596 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
597 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
598 && ! _bfd_elf_validate_reloc (abfd, ptr))
604 if (ptr->howto->type == R_SPARC_LO10
605 && idx < sec->reloc_count - 1)
607 arelent *r = sec->orelocation[idx + 1];
609 if (r->howto->type == R_SPARC_13
610 && r->address == ptr->address
611 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
612 && (*r->sym_ptr_ptr)->value == 0)
616 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
620 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
623 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
625 dst_rela.r_addend = ptr->addend;
626 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
631 /* Sparc64 ELF linker hash table. */
633 struct sparc64_elf_app_reg
636 unsigned short shndx;
641 struct sparc64_elf_link_hash_table
643 struct elf_link_hash_table root;
645 struct sparc64_elf_app_reg app_regs [4];
648 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
650 #define sparc64_elf_hash_table(p) \
651 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
653 /* Create a Sparc64 ELF linker hash table. */
655 static struct bfd_link_hash_table *
656 sparc64_elf_bfd_link_hash_table_create (abfd)
659 struct sparc64_elf_link_hash_table *ret;
660 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
662 ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
663 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
666 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
667 _bfd_elf_link_hash_newfunc))
669 bfd_release (abfd, ret);
673 return &ret->root.root;
676 /* Utility for performing the standard initial work of an instruction
678 *PRELOCATION will contain the relocated item.
679 *PINSN will contain the instruction from the input stream.
680 If the result is `bfd_reloc_other' the caller can continue with
681 performing the relocation. Otherwise it must stop and return the
682 value to its caller. */
684 static bfd_reloc_status_type
685 init_insn_reloc (abfd,
694 arelent *reloc_entry;
697 asection *input_section;
699 bfd_vma *prelocation;
703 reloc_howto_type *howto = reloc_entry->howto;
705 if (output_bfd != (bfd *) NULL
706 && (symbol->flags & BSF_SECTION_SYM) == 0
707 && (! howto->partial_inplace
708 || reloc_entry->addend == 0))
710 reloc_entry->address += input_section->output_offset;
714 /* This works because partial_inplace == false. */
715 if (output_bfd != NULL)
716 return bfd_reloc_continue;
718 if (reloc_entry->address > input_section->_cooked_size)
719 return bfd_reloc_outofrange;
721 relocation = (symbol->value
722 + symbol->section->output_section->vma
723 + symbol->section->output_offset);
724 relocation += reloc_entry->addend;
725 if (howto->pc_relative)
727 relocation -= (input_section->output_section->vma
728 + input_section->output_offset);
729 relocation -= reloc_entry->address;
732 *prelocation = relocation;
733 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
734 return bfd_reloc_other;
737 /* For unsupported relocs. */
739 static bfd_reloc_status_type
740 sparc_elf_notsup_reloc (abfd,
747 bfd *abfd ATTRIBUTE_UNUSED;
748 arelent *reloc_entry ATTRIBUTE_UNUSED;
749 asymbol *symbol ATTRIBUTE_UNUSED;
750 PTR data ATTRIBUTE_UNUSED;
751 asection *input_section ATTRIBUTE_UNUSED;
752 bfd *output_bfd ATTRIBUTE_UNUSED;
753 char **error_message ATTRIBUTE_UNUSED;
755 return bfd_reloc_notsupported;
758 /* Handle the WDISP16 reloc. */
760 static bfd_reloc_status_type
761 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
762 output_bfd, error_message)
764 arelent *reloc_entry;
767 asection *input_section;
769 char **error_message ATTRIBUTE_UNUSED;
773 bfd_reloc_status_type status;
775 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
776 input_section, output_bfd, &relocation, &insn);
777 if (status != bfd_reloc_other)
780 insn &= ~ (bfd_vma) 0x303fff;
781 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
782 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
784 if ((bfd_signed_vma) relocation < - 0x40000
785 || (bfd_signed_vma) relocation > 0x3ffff)
786 return bfd_reloc_overflow;
791 /* Handle the HIX22 reloc. */
793 static bfd_reloc_status_type
794 sparc_elf_hix22_reloc (abfd,
802 arelent *reloc_entry;
805 asection *input_section;
807 char **error_message ATTRIBUTE_UNUSED;
811 bfd_reloc_status_type status;
813 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
814 input_section, output_bfd, &relocation, &insn);
815 if (status != bfd_reloc_other)
818 relocation ^= MINUS_ONE;
819 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
820 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
822 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
823 return bfd_reloc_overflow;
828 /* Handle the LOX10 reloc. */
830 static bfd_reloc_status_type
831 sparc_elf_lox10_reloc (abfd,
839 arelent *reloc_entry;
842 asection *input_section;
844 char **error_message ATTRIBUTE_UNUSED;
848 bfd_reloc_status_type status;
850 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
851 input_section, output_bfd, &relocation, &insn);
852 if (status != bfd_reloc_other)
855 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
856 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
863 /* Both the headers and the entries are icache aligned. */
864 #define PLT_ENTRY_SIZE 32
865 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
866 #define LARGE_PLT_THRESHOLD 32768
867 #define GOT_RESERVED_ENTRIES 1
869 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
871 /* Fill in the .plt section. */
874 sparc64_elf_build_plt (output_bfd, contents, nentries)
876 unsigned char *contents;
879 const unsigned int nop = 0x01000000;
882 /* The first four entries are reserved, and are initially undefined.
883 We fill them with `illtrap 0' to force ld.so to do something. */
885 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
886 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
888 /* The first 32768 entries are close enough to plt1 to get there via
889 a straight branch. */
891 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
893 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
894 unsigned int sethi, ba;
896 /* sethi (. - plt0), %g1 */
897 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
899 /* ba,a,pt %xcc, plt1 */
900 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
902 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
903 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
906 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
912 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
913 160: 160 entries and 160 pointers. This is to separate code from data,
914 which is much friendlier on the cache. */
916 for (; i < nentries; i += 160)
918 int block = (i + 160 <= nentries ? 160 : nentries - i);
919 for (j = 0; j < block; ++j)
921 unsigned char *entry, *ptr;
924 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
925 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
927 /* ldx [%o7 + ptr - (entry+4)], %g1 */
928 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
936 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
938 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
939 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
941 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
943 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
948 /* Return the offset of a particular plt entry within the .plt section. */
951 sparc64_elf_plt_entry_offset (index)
956 if (index < LARGE_PLT_THRESHOLD)
957 return index * PLT_ENTRY_SIZE;
959 /* See above for details. */
961 block = (index - LARGE_PLT_THRESHOLD) / 160;
962 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
964 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
968 sparc64_elf_plt_ptr_offset (index, max)
972 bfd_vma block, ofs, last;
974 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
976 /* See above for details. */
978 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
980 if (block + 160 > max)
981 last = (max - LARGE_PLT_THRESHOLD) % 160;
985 return (block * PLT_ENTRY_SIZE
990 /* Look through the relocs for a section during the first phase, and
991 allocate space in the global offset table or procedure linkage
995 sparc64_elf_check_relocs (abfd, info, sec, relocs)
997 struct bfd_link_info *info;
999 const Elf_Internal_Rela *relocs;
1002 Elf_Internal_Shdr *symtab_hdr;
1003 struct elf_link_hash_entry **sym_hashes;
1004 bfd_vma *local_got_offsets;
1005 const Elf_Internal_Rela *rel;
1006 const Elf_Internal_Rela *rel_end;
1011 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1014 dynobj = elf_hash_table (info)->dynobj;
1015 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1016 sym_hashes = elf_sym_hashes (abfd);
1017 local_got_offsets = elf_local_got_offsets (abfd);
1023 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1024 for (rel = relocs; rel < rel_end; rel++)
1026 unsigned long r_symndx;
1027 struct elf_link_hash_entry *h;
1029 r_symndx = ELF64_R_SYM (rel->r_info);
1030 if (r_symndx < symtab_hdr->sh_info)
1033 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1035 switch (ELF64_R_TYPE_ID (rel->r_info))
1040 /* This symbol requires a global offset table entry. */
1044 /* Create the .got section. */
1045 elf_hash_table (info)->dynobj = dynobj = abfd;
1046 if (! _bfd_elf_create_got_section (dynobj, info))
1052 sgot = bfd_get_section_by_name (dynobj, ".got");
1053 BFD_ASSERT (sgot != NULL);
1056 if (srelgot == NULL && (h != NULL || info->shared))
1058 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1059 if (srelgot == NULL)
1061 srelgot = bfd_make_section (dynobj, ".rela.got");
1063 || ! bfd_set_section_flags (dynobj, srelgot,
1068 | SEC_LINKER_CREATED
1070 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1077 if (h->got.offset != (bfd_vma) -1)
1079 /* We have already allocated space in the .got. */
1082 h->got.offset = sgot->_raw_size;
1084 /* Make sure this symbol is output as a dynamic symbol. */
1085 if (h->dynindx == -1)
1087 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1091 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1095 /* This is a global offset table entry for a local
1097 if (local_got_offsets == NULL)
1100 register unsigned int i;
1102 size = symtab_hdr->sh_info;
1103 size *= sizeof (bfd_vma);
1104 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1105 if (local_got_offsets == NULL)
1107 elf_local_got_offsets (abfd) = local_got_offsets;
1108 for (i = 0; i < symtab_hdr->sh_info; i++)
1109 local_got_offsets[i] = (bfd_vma) -1;
1111 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1113 /* We have already allocated space in the .got. */
1116 local_got_offsets[r_symndx] = sgot->_raw_size;
1120 /* If we are generating a shared object, we need to
1121 output a R_SPARC_RELATIVE reloc so that the
1122 dynamic linker can adjust this GOT entry. */
1123 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1127 sgot->_raw_size += 8;
1130 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1131 unsigned numbers. If we permit ourselves to modify
1132 code so we get sethi/xor, this could work.
1133 Question: do we consider conditionally re-enabling
1134 this for -fpic, once we know about object code models? */
1135 /* If the .got section is more than 0x1000 bytes, we add
1136 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1137 bit relocations have a greater chance of working. */
1138 if (sgot->_raw_size >= 0x1000
1139 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1140 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1145 case R_SPARC_WPLT30:
1147 case R_SPARC_HIPLT22:
1148 case R_SPARC_LOPLT10:
1149 case R_SPARC_PCPLT32:
1150 case R_SPARC_PCPLT22:
1151 case R_SPARC_PCPLT10:
1153 /* This symbol requires a procedure linkage table entry. We
1154 actually build the entry in adjust_dynamic_symbol,
1155 because this might be a case of linking PIC code without
1156 linking in any dynamic objects, in which case we don't
1157 need to generate a procedure linkage table after all. */
1161 /* It does not make sense to have a procedure linkage
1162 table entry for a local symbol. */
1163 bfd_set_error (bfd_error_bad_value);
1167 /* Make sure this symbol is output as a dynamic symbol. */
1168 if (h->dynindx == -1)
1170 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1174 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1175 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1176 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1181 case R_SPARC_PC_HH22:
1182 case R_SPARC_PC_HM10:
1183 case R_SPARC_PC_LM22:
1185 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1189 case R_SPARC_DISP16:
1190 case R_SPARC_DISP32:
1191 case R_SPARC_DISP64:
1192 case R_SPARC_WDISP30:
1193 case R_SPARC_WDISP22:
1194 case R_SPARC_WDISP19:
1195 case R_SPARC_WDISP16:
1224 /* When creating a shared object, we must copy these relocs
1225 into the output file. We create a reloc section in
1226 dynobj and make room for the reloc.
1228 But don't do this for debugging sections -- this shows up
1229 with DWARF2 -- first because they are not loaded, and
1230 second because DWARF sez the debug info is not to be
1231 biased by the load address. */
1232 if (info->shared && (sec->flags & SEC_ALLOC))
1238 name = (bfd_elf_string_from_elf_section
1240 elf_elfheader (abfd)->e_shstrndx,
1241 elf_section_data (sec)->rel_hdr.sh_name));
1245 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1246 && strcmp (bfd_get_section_name (abfd, sec),
1249 sreloc = bfd_get_section_by_name (dynobj, name);
1254 sreloc = bfd_make_section (dynobj, name);
1255 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1256 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1257 if ((sec->flags & SEC_ALLOC) != 0)
1258 flags |= SEC_ALLOC | SEC_LOAD;
1260 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1261 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1264 if (sec->flags & SEC_READONLY)
1265 info->flags |= DF_TEXTREL;
1268 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1272 case R_SPARC_REGISTER:
1273 /* Nothing to do. */
1277 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1278 bfd_archive_filename (abfd),
1279 ELF64_R_TYPE_ID (rel->r_info));
1287 /* Hook called by the linker routine which adds symbols from an object
1288 file. We use it for STT_REGISTER symbols. */
1291 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1293 struct bfd_link_info *info;
1294 const Elf_Internal_Sym *sym;
1296 flagword *flagsp ATTRIBUTE_UNUSED;
1297 asection **secp ATTRIBUTE_UNUSED;
1298 bfd_vma *valp ATTRIBUTE_UNUSED;
1300 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1302 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1305 struct sparc64_elf_app_reg *p;
1307 reg = (int)sym->st_value;
1310 case 2: reg -= 2; break;
1311 case 6: reg -= 4; break;
1313 (*_bfd_error_handler)
1314 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1315 bfd_archive_filename (abfd));
1319 if (info->hash->creator != abfd->xvec
1320 || (abfd->flags & DYNAMIC) != 0)
1322 /* STT_REGISTER only works when linking an elf64_sparc object.
1323 If STT_REGISTER comes from a dynamic object, don't put it into
1324 the output bfd. The dynamic linker will recheck it. */
1329 p = sparc64_elf_hash_table(info)->app_regs + reg;
1331 if (p->name != NULL && strcmp (p->name, *namep))
1333 (*_bfd_error_handler)
1334 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1335 (int) sym->st_value,
1336 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1337 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1341 if (p->name == NULL)
1345 struct elf_link_hash_entry *h;
1347 h = (struct elf_link_hash_entry *)
1348 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1352 unsigned char type = h->type;
1354 if (type > STT_FUNC)
1356 (*_bfd_error_handler)
1357 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1358 *namep, bfd_archive_filename (abfd),
1359 stt_types[type], bfd_archive_filename (p->abfd));
1363 p->name = bfd_hash_allocate (&info->hash->table,
1364 strlen (*namep) + 1);
1368 strcpy (p->name, *namep);
1372 p->bind = ELF_ST_BIND (sym->st_info);
1374 p->shndx = sym->st_shndx;
1378 if (p->bind == STB_WEAK
1379 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1381 p->bind = STB_GLOBAL;
1388 else if (! *namep || ! **namep)
1393 struct sparc64_elf_app_reg *p;
1395 p = sparc64_elf_hash_table(info)->app_regs;
1396 for (i = 0; i < 4; i++, p++)
1397 if (p->name != NULL && ! strcmp (p->name, *namep))
1399 unsigned char type = ELF_ST_TYPE (sym->st_info);
1401 if (type > STT_FUNC)
1403 (*_bfd_error_handler)
1404 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1405 *namep, stt_types[type], bfd_archive_filename (abfd),
1406 bfd_archive_filename (p->abfd));
1413 /* This function takes care of emiting STT_REGISTER symbols
1414 which we cannot easily keep in the symbol hash table. */
1417 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1418 bfd *output_bfd ATTRIBUTE_UNUSED;
1419 struct bfd_link_info *info;
1421 boolean (*func) PARAMS ((PTR, const char *,
1422 Elf_Internal_Sym *, asection *));
1425 struct sparc64_elf_app_reg *app_regs =
1426 sparc64_elf_hash_table(info)->app_regs;
1427 Elf_Internal_Sym sym;
1429 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1430 at the end of the dynlocal list, so they came at the end of the local
1431 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1432 to back up symtab->sh_info. */
1433 if (elf_hash_table (info)->dynlocal)
1435 bfd * dynobj = elf_hash_table (info)->dynobj;
1436 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1437 struct elf_link_local_dynamic_entry *e;
1439 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1440 if (e->input_indx == -1)
1444 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1449 if (info->strip == strip_all)
1452 for (reg = 0; reg < 4; reg++)
1453 if (app_regs [reg].name != NULL)
1455 if (info->strip == strip_some
1456 && bfd_hash_lookup (info->keep_hash,
1457 app_regs [reg].name,
1458 false, false) == NULL)
1461 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1464 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1465 sym.st_shndx = app_regs [reg].shndx;
1466 if (! (*func) (finfo, app_regs [reg].name, &sym,
1467 sym.st_shndx == SHN_ABS
1468 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1476 sparc64_elf_get_symbol_type (elf_sym, type)
1477 Elf_Internal_Sym * elf_sym;
1480 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1481 return STT_REGISTER;
1486 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1487 even in SHN_UNDEF section. */
1490 sparc64_elf_symbol_processing (abfd, asym)
1491 bfd *abfd ATTRIBUTE_UNUSED;
1494 elf_symbol_type *elfsym;
1496 elfsym = (elf_symbol_type *) asym;
1497 if (elfsym->internal_elf_sym.st_info
1498 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1500 asym->flags |= BSF_GLOBAL;
1504 /* Adjust a symbol defined by a dynamic object and referenced by a
1505 regular object. The current definition is in some section of the
1506 dynamic object, but we're not including those sections. We have to
1507 change the definition to something the rest of the link can
1511 sparc64_elf_adjust_dynamic_symbol (info, h)
1512 struct bfd_link_info *info;
1513 struct elf_link_hash_entry *h;
1517 unsigned int power_of_two;
1519 dynobj = elf_hash_table (info)->dynobj;
1521 /* Make sure we know what is going on here. */
1522 BFD_ASSERT (dynobj != NULL
1523 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1524 || h->weakdef != NULL
1525 || ((h->elf_link_hash_flags
1526 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1527 && (h->elf_link_hash_flags
1528 & ELF_LINK_HASH_REF_REGULAR) != 0
1529 && (h->elf_link_hash_flags
1530 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1532 /* If this is a function, put it in the procedure linkage table. We
1533 will fill in the contents of the procedure linkage table later
1534 (although we could actually do it here). The STT_NOTYPE
1535 condition is a hack specifically for the Oracle libraries
1536 delivered for Solaris; for some inexplicable reason, they define
1537 some of their functions as STT_NOTYPE when they really should be
1539 if (h->type == STT_FUNC
1540 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1541 || (h->type == STT_NOTYPE
1542 && (h->root.type == bfd_link_hash_defined
1543 || h->root.type == bfd_link_hash_defweak)
1544 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1546 if (! elf_hash_table (info)->dynamic_sections_created)
1548 /* This case can occur if we saw a WPLT30 reloc in an input
1549 file, but none of the input files were dynamic objects.
1550 In such a case, we don't actually need to build a
1551 procedure linkage table, and we can just do a WDISP30
1553 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1557 s = bfd_get_section_by_name (dynobj, ".plt");
1558 BFD_ASSERT (s != NULL);
1560 /* The first four bit in .plt is reserved. */
1561 if (s->_raw_size == 0)
1562 s->_raw_size = PLT_HEADER_SIZE;
1564 /* If this symbol is not defined in a regular file, and we are
1565 not generating a shared library, then set the symbol to this
1566 location in the .plt. This is required to make function
1567 pointers compare as equal between the normal executable and
1568 the shared library. */
1570 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1572 h->root.u.def.section = s;
1573 h->root.u.def.value = s->_raw_size;
1576 /* To simplify matters later, just store the plt index here. */
1577 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1579 /* Make room for this entry. */
1580 s->_raw_size += PLT_ENTRY_SIZE;
1582 /* We also need to make an entry in the .rela.plt section. */
1584 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1585 BFD_ASSERT (s != NULL);
1587 s->_raw_size += sizeof (Elf64_External_Rela);
1589 /* The procedure linkage table size is bounded by the magnitude
1590 of the offset we can describe in the entry. */
1591 if (s->_raw_size >= (bfd_vma)1 << 32)
1593 bfd_set_error (bfd_error_bad_value);
1600 /* If this is a weak symbol, and there is a real definition, the
1601 processor independent code will have arranged for us to see the
1602 real definition first, and we can just use the same value. */
1603 if (h->weakdef != NULL)
1605 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1606 || h->weakdef->root.type == bfd_link_hash_defweak);
1607 h->root.u.def.section = h->weakdef->root.u.def.section;
1608 h->root.u.def.value = h->weakdef->root.u.def.value;
1612 /* This is a reference to a symbol defined by a dynamic object which
1613 is not a function. */
1615 /* If we are creating a shared library, we must presume that the
1616 only references to the symbol are via the global offset table.
1617 For such cases we need not do anything here; the relocations will
1618 be handled correctly by relocate_section. */
1622 /* We must allocate the symbol in our .dynbss section, which will
1623 become part of the .bss section of the executable. There will be
1624 an entry for this symbol in the .dynsym section. The dynamic
1625 object will contain position independent code, so all references
1626 from the dynamic object to this symbol will go through the global
1627 offset table. The dynamic linker will use the .dynsym entry to
1628 determine the address it must put in the global offset table, so
1629 both the dynamic object and the regular object will refer to the
1630 same memory location for the variable. */
1632 s = bfd_get_section_by_name (dynobj, ".dynbss");
1633 BFD_ASSERT (s != NULL);
1635 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1636 to copy the initial value out of the dynamic object and into the
1637 runtime process image. We need to remember the offset into the
1638 .rel.bss section we are going to use. */
1639 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1643 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1644 BFD_ASSERT (srel != NULL);
1645 srel->_raw_size += sizeof (Elf64_External_Rela);
1646 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1649 /* We need to figure out the alignment required for this symbol. I
1650 have no idea how ELF linkers handle this. 16-bytes is the size
1651 of the largest type that requires hard alignment -- long double. */
1652 power_of_two = bfd_log2 (h->size);
1653 if (power_of_two > 4)
1656 /* Apply the required alignment. */
1657 s->_raw_size = BFD_ALIGN (s->_raw_size,
1658 (bfd_size_type) (1 << power_of_two));
1659 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1661 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1665 /* Define the symbol as being at this point in the section. */
1666 h->root.u.def.section = s;
1667 h->root.u.def.value = s->_raw_size;
1669 /* Increment the section size to make room for the symbol. */
1670 s->_raw_size += h->size;
1675 /* Set the sizes of the dynamic sections. */
1678 sparc64_elf_size_dynamic_sections (output_bfd, info)
1680 struct bfd_link_info *info;
1686 dynobj = elf_hash_table (info)->dynobj;
1687 BFD_ASSERT (dynobj != NULL);
1689 if (elf_hash_table (info)->dynamic_sections_created)
1691 /* Set the contents of the .interp section to the interpreter. */
1694 s = bfd_get_section_by_name (dynobj, ".interp");
1695 BFD_ASSERT (s != NULL);
1696 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1697 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1702 /* We may have created entries in the .rela.got section.
1703 However, if we are not creating the dynamic sections, we will
1704 not actually use these entries. Reset the size of .rela.got,
1705 which will cause it to get stripped from the output file
1707 s = bfd_get_section_by_name (dynobj, ".rela.got");
1712 /* The check_relocs and adjust_dynamic_symbol entry points have
1713 determined the sizes of the various dynamic sections. Allocate
1716 for (s = dynobj->sections; s != NULL; s = s->next)
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1730 if (strncmp (name, ".rela", 5) == 0)
1732 if (s->_raw_size == 0)
1734 /* If we don't need this section, strip it from the
1735 output file. This is to handle .rela.bss and
1736 .rel.plt. We must create it in
1737 create_dynamic_sections, because it must be created
1738 before the linker maps input sections to output
1739 sections. The linker does that before
1740 adjust_dynamic_symbol is called, and it is that
1741 function which decides whether anything needs to go
1742 into these sections. */
1747 if (strcmp (name, ".rela.plt") == 0)
1750 /* We use the reloc_count field as a counter if we need
1751 to copy relocs into the output file. */
1755 else if (strcmp (name, ".plt") != 0
1756 && strncmp (name, ".got", 4) != 0)
1758 /* It's not one of our sections, so don't allocate space. */
1764 _bfd_strip_section_from_output (info, s);
1768 /* Allocate memory for the section contents. Zero the memory
1769 for the benefit of .rela.plt, which has 4 unused entries
1770 at the beginning, and we don't want garbage. */
1771 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1772 if (s->contents == NULL && s->_raw_size != 0)
1776 if (elf_hash_table (info)->dynamic_sections_created)
1778 /* Add some entries to the .dynamic section. We fill in the
1779 values later, in sparc64_elf_finish_dynamic_sections, but we
1780 must add the entries now so that we get the correct size for
1781 the .dynamic section. The DT_DEBUG entry is filled in by the
1782 dynamic linker and used by the debugger. */
1783 #define add_dynamic_entry(TAG, VAL) \
1784 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1787 struct sparc64_elf_app_reg * app_regs;
1788 struct elf_strtab_hash *dynstr;
1789 struct elf_link_hash_table *eht = elf_hash_table (info);
1793 if (!add_dynamic_entry (DT_DEBUG, 0))
1799 if (!add_dynamic_entry (DT_PLTGOT, 0)
1800 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1801 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1802 || !add_dynamic_entry (DT_JMPREL, 0))
1806 if (!add_dynamic_entry (DT_RELA, 0)
1807 || !add_dynamic_entry (DT_RELASZ, 0)
1808 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1811 if (info->flags & DF_TEXTREL)
1813 if (!add_dynamic_entry (DT_TEXTREL, 0))
1817 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1818 entries if needed. */
1819 app_regs = sparc64_elf_hash_table (info)->app_regs;
1820 dynstr = eht->dynstr;
1822 for (reg = 0; reg < 4; reg++)
1823 if (app_regs [reg].name != NULL)
1825 struct elf_link_local_dynamic_entry *entry, *e;
1827 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1830 entry = (struct elf_link_local_dynamic_entry *)
1831 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1835 /* We cheat here a little bit: the symbol will not be local, so we
1836 put it at the end of the dynlocal linked list. We will fix it
1837 later on, as we have to fix other fields anyway. */
1838 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1839 entry->isym.st_size = 0;
1840 if (*app_regs [reg].name != '\0')
1842 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1844 entry->isym.st_name = 0;
1845 entry->isym.st_other = 0;
1846 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1848 entry->isym.st_shndx = app_regs [reg].shndx;
1850 entry->input_bfd = output_bfd;
1851 entry->input_indx = -1;
1853 if (eht->dynlocal == NULL)
1854 eht->dynlocal = entry;
1857 for (e = eht->dynlocal; e->next; e = e->next)
1864 #undef add_dynamic_entry
1869 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1870 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1873 sparc64_elf_relax_section (abfd, section, link_info, again)
1874 bfd *abfd ATTRIBUTE_UNUSED;
1875 asection *section ATTRIBUTE_UNUSED;
1876 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1880 SET_SEC_DO_RELAX (section);
1884 /* This is the condition under which finish_dynamic_symbol will be called
1885 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1886 routine, we'll need to do something about initializing any .plt and
1887 .got entries in relocate_section. */
1888 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1890 && ((INFO)->shared \
1891 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1892 && ((H)->dynindx != -1 \
1893 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1895 /* Relocate a SPARC64 ELF section. */
1898 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1899 contents, relocs, local_syms, local_sections)
1901 struct bfd_link_info *info;
1903 asection *input_section;
1905 Elf_Internal_Rela *relocs;
1906 Elf_Internal_Sym *local_syms;
1907 asection **local_sections;
1910 Elf_Internal_Shdr *symtab_hdr;
1911 struct elf_link_hash_entry **sym_hashes;
1912 bfd_vma *local_got_offsets;
1917 Elf_Internal_Rela *rel;
1918 Elf_Internal_Rela *relend;
1920 dynobj = elf_hash_table (info)->dynobj;
1921 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1922 sym_hashes = elf_sym_hashes (input_bfd);
1923 local_got_offsets = elf_local_got_offsets (input_bfd);
1925 if (elf_hash_table(info)->hgot == NULL)
1928 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1930 sgot = splt = sreloc = NULL;
1933 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1934 for (; rel < relend; rel++)
1937 reloc_howto_type *howto;
1938 unsigned long r_symndx;
1939 struct elf_link_hash_entry *h;
1940 Elf_Internal_Sym *sym;
1942 bfd_vma relocation, off;
1943 bfd_reloc_status_type r;
1944 boolean is_plt = false;
1945 boolean unresolved_reloc;
1947 r_type = ELF64_R_TYPE_ID (rel->r_info);
1948 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1950 bfd_set_error (bfd_error_bad_value);
1953 howto = sparc64_elf_howto_table + r_type;
1955 r_symndx = ELF64_R_SYM (rel->r_info);
1957 if (info->relocateable)
1959 /* This is a relocateable link. We don't have to change
1960 anything, unless the reloc is against a section symbol,
1961 in which case we have to adjust according to where the
1962 section symbol winds up in the output section. */
1963 if (r_symndx < symtab_hdr->sh_info)
1965 sym = local_syms + r_symndx;
1966 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1968 sec = local_sections[r_symndx];
1969 rel->r_addend += sec->output_offset + sym->st_value;
1976 /* This is a final link. */
1980 unresolved_reloc = false;
1981 if (r_symndx < symtab_hdr->sh_info)
1983 sym = local_syms + r_symndx;
1984 sec = local_sections[r_symndx];
1985 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1989 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1990 while (h->root.type == bfd_link_hash_indirect
1991 || h->root.type == bfd_link_hash_warning)
1992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1995 if (h->root.type == bfd_link_hash_defined
1996 || h->root.type == bfd_link_hash_defweak)
1998 sec = h->root.u.def.section;
1999 if (sec->output_section == NULL)
2000 /* Set a flag that will be cleared later if we find a
2001 relocation value for this symbol. output_section
2002 is typically NULL for symbols satisfied by a shared
2004 unresolved_reloc = true;
2006 relocation = (h->root.u.def.value
2007 + sec->output_section->vma
2008 + sec->output_offset);
2010 else if (h->root.type == bfd_link_hash_undefweak)
2012 else if (info->shared
2013 && (!info->symbolic || info->allow_shlib_undefined)
2014 && !info->no_undefined
2015 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2019 if (! ((*info->callbacks->undefined_symbol)
2020 (info, h->root.root.string, input_bfd,
2021 input_section, rel->r_offset,
2022 (!info->shared || info->no_undefined
2023 || ELF_ST_VISIBILITY (h->other)))))
2026 /* To avoid generating warning messages about truncated
2027 relocations, set the relocation's address to be the same as
2028 the start of this section. */
2030 if (input_section->output_section != NULL)
2031 relocation = input_section->output_section->vma;
2038 /* When generating a shared object, these relocations are copied
2039 into the output file to be resolved at run time. */
2040 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2046 case R_SPARC_PC_HH22:
2047 case R_SPARC_PC_HM10:
2048 case R_SPARC_PC_LM22:
2050 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2054 case R_SPARC_DISP16:
2055 case R_SPARC_DISP32:
2056 case R_SPARC_WDISP30:
2057 case R_SPARC_WDISP22:
2058 case R_SPARC_WDISP19:
2059 case R_SPARC_WDISP16:
2060 case R_SPARC_DISP64:
2090 Elf_Internal_Rela outrel;
2091 boolean skip, relocate;
2096 (bfd_elf_string_from_elf_section
2098 elf_elfheader (input_bfd)->e_shstrndx,
2099 elf_section_data (input_section)->rel_hdr.sh_name));
2104 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2105 && strcmp (bfd_get_section_name(input_bfd,
2109 sreloc = bfd_get_section_by_name (dynobj, name);
2110 BFD_ASSERT (sreloc != NULL);
2117 _bfd_elf_section_offset (output_bfd, info, input_section,
2119 if (outrel.r_offset == (bfd_vma) -1)
2121 else if (outrel.r_offset == (bfd_vma) -2)
2122 skip = true, relocate = true;
2124 outrel.r_offset += (input_section->output_section->vma
2125 + input_section->output_offset);
2127 /* Optimize unaligned reloc usage now that we know where
2128 it finally resides. */
2132 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2135 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2138 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2141 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2144 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2147 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2152 memset (&outrel, 0, sizeof outrel);
2153 /* h->dynindx may be -1 if the symbol was marked to
2155 else if (h != NULL && ! is_plt
2156 && ((! info->symbolic && h->dynindx != -1)
2157 || (h->elf_link_hash_flags
2158 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2160 BFD_ASSERT (h->dynindx != -1);
2162 = ELF64_R_INFO (h->dynindx,
2164 ELF64_R_TYPE_DATA (rel->r_info),
2166 outrel.r_addend = rel->r_addend;
2170 if (r_type == R_SPARC_64)
2172 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2173 outrel.r_addend = relocation + rel->r_addend;
2182 sec = local_sections[r_symndx];
2185 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2187 == bfd_link_hash_defweak));
2188 sec = h->root.u.def.section;
2190 if (sec != NULL && bfd_is_abs_section (sec))
2192 else if (sec == NULL || sec->owner == NULL)
2194 bfd_set_error (bfd_error_bad_value);
2201 osec = sec->output_section;
2202 indx = elf_section_data (osec)->dynindx;
2204 /* FIXME: we really should be able to link non-pic
2205 shared libraries. */
2209 (*_bfd_error_handler)
2210 (_("%s: probably compiled without -fPIC?"),
2211 bfd_archive_filename (input_bfd));
2212 bfd_set_error (bfd_error_bad_value);
2218 = ELF64_R_INFO (indx,
2220 ELF64_R_TYPE_DATA (rel->r_info),
2222 outrel.r_addend = relocation + rel->r_addend;
2226 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2227 (((Elf64_External_Rela *)
2229 + sreloc->reloc_count));
2230 ++sreloc->reloc_count;
2232 /* This reloc will be computed at runtime, so there's no
2233 need to do anything now. */
2246 /* Relocation is to the entry for this symbol in the global
2250 sgot = bfd_get_section_by_name (dynobj, ".got");
2251 BFD_ASSERT (sgot != NULL);
2258 off = h->got.offset;
2259 BFD_ASSERT (off != (bfd_vma) -1);
2260 dyn = elf_hash_table (info)->dynamic_sections_created;
2262 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2266 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2267 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2269 /* This is actually a static link, or it is a -Bsymbolic
2270 link and the symbol is defined locally, or the symbol
2271 was forced to be local because of a version file. We
2272 must initialize this entry in the global offset table.
2273 Since the offset must always be a multiple of 8, we
2274 use the least significant bit to record whether we
2275 have initialized it already.
2277 When doing a dynamic link, we create a .rela.got
2278 relocation entry to initialize the value. This is
2279 done in the finish_dynamic_symbol routine. */
2285 bfd_put_64 (output_bfd, relocation,
2286 sgot->contents + off);
2291 unresolved_reloc = false;
2295 BFD_ASSERT (local_got_offsets != NULL);
2296 off = local_got_offsets[r_symndx];
2297 BFD_ASSERT (off != (bfd_vma) -1);
2299 /* The offset must always be a multiple of 8. We use
2300 the least significant bit to record whether we have
2301 already processed this entry. */
2306 local_got_offsets[r_symndx] |= 1;
2311 Elf_Internal_Rela outrel;
2313 /* The Solaris 2.7 64-bit linker adds the contents
2314 of the location to the value of the reloc.
2315 Note this is different behaviour to the
2316 32-bit linker, which both adds the contents
2317 and ignores the addend. So clear the location. */
2318 bfd_put_64 (output_bfd, (bfd_vma) 0,
2319 sgot->contents + off);
2321 /* We need to generate a R_SPARC_RELATIVE reloc
2322 for the dynamic linker. */
2323 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2324 BFD_ASSERT (srelgot != NULL);
2326 outrel.r_offset = (sgot->output_section->vma
2327 + sgot->output_offset
2329 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2330 outrel.r_addend = relocation;
2331 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2332 (((Elf64_External_Rela *)
2334 + srelgot->reloc_count));
2335 ++srelgot->reloc_count;
2338 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2341 relocation = sgot->output_offset + off - got_base;
2344 case R_SPARC_WPLT30:
2346 case R_SPARC_HIPLT22:
2347 case R_SPARC_LOPLT10:
2348 case R_SPARC_PCPLT32:
2349 case R_SPARC_PCPLT22:
2350 case R_SPARC_PCPLT10:
2352 /* Relocation is to the entry for this symbol in the
2353 procedure linkage table. */
2354 BFD_ASSERT (h != NULL);
2356 if (h->plt.offset == (bfd_vma) -1)
2358 /* We didn't make a PLT entry for this symbol. This
2359 happens when statically linking PIC code, or when
2360 using -Bsymbolic. */
2366 splt = bfd_get_section_by_name (dynobj, ".plt");
2367 BFD_ASSERT (splt != NULL);
2370 relocation = (splt->output_section->vma
2371 + splt->output_offset
2372 + sparc64_elf_plt_entry_offset (h->plt.offset));
2373 unresolved_reloc = false;
2374 if (r_type == R_SPARC_WPLT30)
2376 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2378 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2388 relocation += rel->r_addend;
2389 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2391 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2392 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2393 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2395 r = bfd_check_overflow (howto->complain_on_overflow,
2396 howto->bitsize, howto->rightshift,
2397 bfd_arch_bits_per_address (input_bfd),
2402 case R_SPARC_WDISP16:
2406 relocation += rel->r_addend;
2407 /* Adjust for pc-relative-ness. */
2408 relocation -= (input_section->output_section->vma
2409 + input_section->output_offset);
2410 relocation -= rel->r_offset;
2412 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2413 x &= ~(bfd_vma) 0x303fff;
2414 x |= ((((relocation >> 2) & 0xc000) << 6)
2415 | ((relocation >> 2) & 0x3fff));
2416 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2418 r = bfd_check_overflow (howto->complain_on_overflow,
2419 howto->bitsize, howto->rightshift,
2420 bfd_arch_bits_per_address (input_bfd),
2429 relocation += rel->r_addend;
2430 relocation = relocation ^ MINUS_ONE;
2432 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2433 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2434 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2436 r = bfd_check_overflow (howto->complain_on_overflow,
2437 howto->bitsize, howto->rightshift,
2438 bfd_arch_bits_per_address (input_bfd),
2447 relocation += rel->r_addend;
2448 relocation = (relocation & 0x3ff) | 0x1c00;
2450 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2451 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2452 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2458 case R_SPARC_WDISP30:
2460 if (SEC_DO_RELAX (input_section)
2461 && rel->r_offset + 4 < input_section->_raw_size)
2465 #define XCC (2 << 20)
2466 #define COND(x) (((x)&0xf)<<25)
2467 #define CONDA COND(0x8)
2468 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2469 #define INSN_BA (F2(0,2) | CONDA)
2470 #define INSN_OR F3(2, 0x2, 0)
2471 #define INSN_NOP F2(0,4)
2475 /* If the instruction is a call with either:
2477 arithmetic instruction with rd == %o7
2478 where rs1 != %o7 and rs2 if it is register != %o7
2479 then we can optimize if the call destination is near
2480 by changing the call into a branch always. */
2481 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2482 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2483 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2485 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2486 || ((y & OP3(0x28)) == 0 /* arithmetic */
2487 && (y & RD(~0)) == RD(O7)))
2488 && (y & RS1(~0)) != RS1(O7)
2490 || (y & RS2(~0)) != RS2(O7)))
2494 reloc = relocation + rel->r_addend - rel->r_offset;
2495 reloc -= (input_section->output_section->vma
2496 + input_section->output_offset);
2500 /* Ensure the branch fits into simm22. */
2501 if ((reloc & ~(bfd_vma)0x7fffff)
2502 && ((reloc | 0x7fffff) != MINUS_ONE))
2506 /* Check whether it fits into simm19. */
2507 if ((reloc & 0x3c0000) == 0
2508 || (reloc & 0x3c0000) == 0x3c0000)
2509 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2511 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2512 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2514 if (rel->r_offset >= 4
2515 && (y & (0xffffffff ^ RS1(~0)))
2516 == (INSN_OR | RD(O7) | RS2(G0)))
2521 z = bfd_get_32 (input_bfd,
2522 contents + rel->r_offset - 4);
2523 if ((z & (0xffffffff ^ RD(~0)))
2524 != (INSN_OR | RS1(O7) | RS2(G0)))
2532 If call foo was replaced with ba, replace
2533 or %rN, %g0, %o7 with nop. */
2535 reg = (y & RS1(~0)) >> 14;
2536 if (reg != ((z & RD(~0)) >> 25)
2537 || reg == G0 || reg == O7)
2540 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2541 contents + rel->r_offset + 4);
2551 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2552 contents, rel->r_offset,
2553 relocation, rel->r_addend);
2557 if (unresolved_reloc
2559 && (input_section->flags & SEC_DEBUGGING) != 0
2560 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2561 (*_bfd_error_handler)
2562 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2563 bfd_archive_filename (input_bfd),
2564 bfd_get_section_name (input_bfd, input_section),
2565 (long) rel->r_offset,
2566 h->root.root.string);
2574 case bfd_reloc_outofrange:
2577 case bfd_reloc_overflow:
2581 /* The Solaris native linker silently disregards
2582 overflows. We don't, but this breaks stabs debugging
2583 info, whose relocations are only 32-bits wide. Ignore
2584 overflows in this case. */
2585 if (r_type == R_SPARC_32
2586 && (input_section->flags & SEC_DEBUGGING) != 0
2587 && strcmp (bfd_section_name (input_bfd, input_section),
2593 if (h->root.type == bfd_link_hash_undefweak
2594 && howto->pc_relative)
2596 /* Assume this is a call protected by other code that
2597 detect the symbol is undefined. If this is the case,
2598 we can safely ignore the overflow. If not, the
2599 program is hosed anyway, and a little warning isn't
2604 name = h->root.root.string;
2608 name = (bfd_elf_string_from_elf_section
2610 symtab_hdr->sh_link,
2615 name = bfd_section_name (input_bfd, sec);
2617 if (! ((*info->callbacks->reloc_overflow)
2618 (info, name, howto->name, (bfd_vma) 0,
2619 input_bfd, input_section, rel->r_offset)))
2629 /* Finish up dynamic symbol handling. We set the contents of various
2630 dynamic sections here. */
2633 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2635 struct bfd_link_info *info;
2636 struct elf_link_hash_entry *h;
2637 Elf_Internal_Sym *sym;
2641 dynobj = elf_hash_table (info)->dynobj;
2643 if (h->plt.offset != (bfd_vma) -1)
2647 Elf_Internal_Rela rela;
2649 /* This symbol has an entry in the PLT. Set it up. */
2651 BFD_ASSERT (h->dynindx != -1);
2653 splt = bfd_get_section_by_name (dynobj, ".plt");
2654 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2655 BFD_ASSERT (splt != NULL && srela != NULL);
2657 /* Fill in the entry in the .rela.plt section. */
2659 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2661 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2666 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2667 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2668 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2669 -(splt->output_section->vma + splt->output_offset);
2671 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2672 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2674 /* Adjust for the first 4 reserved elements in the .plt section
2675 when setting the offset in the .rela.plt section.
2676 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2677 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2679 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2680 ((Elf64_External_Rela *) srela->contents
2681 + (h->plt.offset - 4)));
2683 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2685 /* Mark the symbol as undefined, rather than as defined in
2686 the .plt section. Leave the value alone. */
2687 sym->st_shndx = SHN_UNDEF;
2688 /* If the symbol is weak, we do need to clear the value.
2689 Otherwise, the PLT entry would provide a definition for
2690 the symbol even if the symbol wasn't defined anywhere,
2691 and so the symbol would never be NULL. */
2692 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2698 if (h->got.offset != (bfd_vma) -1)
2702 Elf_Internal_Rela rela;
2704 /* This symbol has an entry in the GOT. Set it up. */
2706 sgot = bfd_get_section_by_name (dynobj, ".got");
2707 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2708 BFD_ASSERT (sgot != NULL && srela != NULL);
2710 rela.r_offset = (sgot->output_section->vma
2711 + sgot->output_offset
2712 + (h->got.offset &~ (bfd_vma) 1));
2714 /* If this is a -Bsymbolic link, and the symbol is defined
2715 locally, we just want to emit a RELATIVE reloc. Likewise if
2716 the symbol was forced to be local because of a version file.
2717 The entry in the global offset table will already have been
2718 initialized in the relocate_section function. */
2720 && (info->symbolic || h->dynindx == -1)
2721 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2723 asection *sec = h->root.u.def.section;
2724 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2725 rela.r_addend = (h->root.u.def.value
2726 + sec->output_section->vma
2727 + sec->output_offset);
2731 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2732 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2736 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2737 ((Elf64_External_Rela *) srela->contents
2738 + srela->reloc_count));
2739 ++srela->reloc_count;
2742 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2745 Elf_Internal_Rela rela;
2747 /* This symbols needs a copy reloc. Set it up. */
2749 BFD_ASSERT (h->dynindx != -1);
2751 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2753 BFD_ASSERT (s != NULL);
2755 rela.r_offset = (h->root.u.def.value
2756 + h->root.u.def.section->output_section->vma
2757 + h->root.u.def.section->output_offset);
2758 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2760 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2761 ((Elf64_External_Rela *) s->contents
2766 /* Mark some specially defined symbols as absolute. */
2767 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2768 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2769 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2770 sym->st_shndx = SHN_ABS;
2775 /* Finish up the dynamic sections. */
2778 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2780 struct bfd_link_info *info;
2783 int stt_regidx = -1;
2787 dynobj = elf_hash_table (info)->dynobj;
2789 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2791 if (elf_hash_table (info)->dynamic_sections_created)
2794 Elf64_External_Dyn *dyncon, *dynconend;
2796 splt = bfd_get_section_by_name (dynobj, ".plt");
2797 BFD_ASSERT (splt != NULL && sdyn != NULL);
2799 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2800 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2801 for (; dyncon < dynconend; dyncon++)
2803 Elf_Internal_Dyn dyn;
2807 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2811 case DT_PLTGOT: name = ".plt"; size = false; break;
2812 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2813 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2814 case DT_SPARC_REGISTER:
2815 if (stt_regidx == -1)
2818 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2819 if (stt_regidx == -1)
2822 dyn.d_un.d_val = stt_regidx++;
2823 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2825 default: name = NULL; size = false; break;
2832 s = bfd_get_section_by_name (output_bfd, name);
2838 dyn.d_un.d_ptr = s->vma;
2841 if (s->_cooked_size != 0)
2842 dyn.d_un.d_val = s->_cooked_size;
2844 dyn.d_un.d_val = s->_raw_size;
2847 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2851 /* Initialize the contents of the .plt section. */
2852 if (splt->_raw_size > 0)
2854 sparc64_elf_build_plt (output_bfd, splt->contents,
2855 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2858 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2862 /* Set the first entry in the global offset table to the address of
2863 the dynamic section. */
2864 sgot = bfd_get_section_by_name (dynobj, ".got");
2865 BFD_ASSERT (sgot != NULL);
2866 if (sgot->_raw_size > 0)
2869 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2871 bfd_put_64 (output_bfd,
2872 sdyn->output_section->vma + sdyn->output_offset,
2876 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2881 static enum elf_reloc_type_class
2882 sparc64_elf_reloc_type_class (rela)
2883 const Elf_Internal_Rela *rela;
2885 switch ((int) ELF64_R_TYPE (rela->r_info))
2887 case R_SPARC_RELATIVE:
2888 return reloc_class_relative;
2889 case R_SPARC_JMP_SLOT:
2890 return reloc_class_plt;
2892 return reloc_class_copy;
2894 return reloc_class_normal;
2898 /* Functions for dealing with the e_flags field. */
2900 /* Merge backend specific data from an object file to the output
2901 object file when linking. */
2904 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2909 flagword new_flags, old_flags;
2912 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2913 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2916 new_flags = elf_elfheader (ibfd)->e_flags;
2917 old_flags = elf_elfheader (obfd)->e_flags;
2919 if (!elf_flags_init (obfd)) /* First call, no flags set */
2921 elf_flags_init (obfd) = true;
2922 elf_elfheader (obfd)->e_flags = new_flags;
2925 else if (new_flags == old_flags) /* Compatible flags are ok */
2928 else /* Incompatible flags */
2932 #define EF_SPARC_ISA_EXTENSIONS \
2933 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2935 if ((ibfd->flags & DYNAMIC) != 0)
2937 /* We don't want dynamic objects memory ordering and
2938 architecture to have any role. That's what dynamic linker
2940 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2941 new_flags |= (old_flags
2942 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2946 /* Choose the highest architecture requirements. */
2947 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2948 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2949 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2950 && (old_flags & EF_SPARC_HAL_R1))
2953 (*_bfd_error_handler)
2954 (_("%s: linking UltraSPARC specific with HAL specific code"),
2955 bfd_archive_filename (ibfd));
2957 /* Choose the most restrictive memory ordering. */
2958 old_mm = (old_flags & EF_SPARCV9_MM);
2959 new_mm = (new_flags & EF_SPARCV9_MM);
2960 old_flags &= ~EF_SPARCV9_MM;
2961 new_flags &= ~EF_SPARCV9_MM;
2962 if (new_mm < old_mm)
2964 old_flags |= old_mm;
2965 new_flags |= old_mm;
2968 /* Warn about any other mismatches */
2969 if (new_flags != old_flags)
2972 (*_bfd_error_handler)
2973 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2974 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
2977 elf_elfheader (obfd)->e_flags = old_flags;
2981 bfd_set_error (bfd_error_bad_value);
2988 /* Print a STT_REGISTER symbol to file FILE. */
2991 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2992 bfd *abfd ATTRIBUTE_UNUSED;
2996 FILE *file = (FILE *) filep;
2999 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3003 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3004 type = symbol->flags;
3005 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3007 ? (type & BSF_GLOBAL) ? '!' : 'l'
3008 : (type & BSF_GLOBAL) ? 'g' : ' '),
3009 (type & BSF_WEAK) ? 'w' : ' ');
3010 if (symbol->name == NULL || symbol->name [0] == '\0')
3013 return symbol->name;
3016 /* Set the right machine number for a SPARC64 ELF file. */
3019 sparc64_elf_object_p (abfd)
3022 unsigned long mach = bfd_mach_sparc_v9;
3024 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3025 mach = bfd_mach_sparc_v9b;
3026 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3027 mach = bfd_mach_sparc_v9a;
3028 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3031 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3032 standard ELF, because R_SPARC_OLO10 has secondary addend in
3033 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3034 relocation handling routines. */
3036 const struct elf_size_info sparc64_elf_size_info =
3038 sizeof (Elf64_External_Ehdr),
3039 sizeof (Elf64_External_Phdr),
3040 sizeof (Elf64_External_Shdr),
3041 sizeof (Elf64_External_Rel),
3042 sizeof (Elf64_External_Rela),
3043 sizeof (Elf64_External_Sym),
3044 sizeof (Elf64_External_Dyn),
3045 sizeof (Elf_External_Note),
3046 4, /* hash-table entry size */
3047 /* internal relocations per external relocations.
3048 For link purposes we use just 1 internal per
3049 1 external, for assembly and slurp symbol table
3056 bfd_elf64_write_out_phdrs,
3057 bfd_elf64_write_shdrs_and_ehdr,
3058 sparc64_elf_write_relocs,
3059 bfd_elf64_swap_symbol_out,
3060 sparc64_elf_slurp_reloc_table,
3061 bfd_elf64_slurp_symbol_table,
3062 bfd_elf64_swap_dyn_in,
3063 bfd_elf64_swap_dyn_out,
3070 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3071 #define TARGET_BIG_NAME "elf64-sparc"
3072 #define ELF_ARCH bfd_arch_sparc
3073 #define ELF_MAXPAGESIZE 0x100000
3075 /* This is the official ABI value. */
3076 #define ELF_MACHINE_CODE EM_SPARCV9
3078 /* This is the value that we used before the ABI was released. */
3079 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3081 #define bfd_elf64_bfd_link_hash_table_create \
3082 sparc64_elf_bfd_link_hash_table_create
3084 #define elf_info_to_howto \
3085 sparc64_elf_info_to_howto
3086 #define bfd_elf64_get_reloc_upper_bound \
3087 sparc64_elf_get_reloc_upper_bound
3088 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3089 sparc64_elf_get_dynamic_reloc_upper_bound
3090 #define bfd_elf64_canonicalize_dynamic_reloc \
3091 sparc64_elf_canonicalize_dynamic_reloc
3092 #define bfd_elf64_bfd_reloc_type_lookup \
3093 sparc64_elf_reloc_type_lookup
3094 #define bfd_elf64_bfd_relax_section \
3095 sparc64_elf_relax_section
3097 #define elf_backend_create_dynamic_sections \
3098 _bfd_elf_create_dynamic_sections
3099 #define elf_backend_add_symbol_hook \
3100 sparc64_elf_add_symbol_hook
3101 #define elf_backend_get_symbol_type \
3102 sparc64_elf_get_symbol_type
3103 #define elf_backend_symbol_processing \
3104 sparc64_elf_symbol_processing
3105 #define elf_backend_check_relocs \
3106 sparc64_elf_check_relocs
3107 #define elf_backend_adjust_dynamic_symbol \
3108 sparc64_elf_adjust_dynamic_symbol
3109 #define elf_backend_size_dynamic_sections \
3110 sparc64_elf_size_dynamic_sections
3111 #define elf_backend_relocate_section \
3112 sparc64_elf_relocate_section
3113 #define elf_backend_finish_dynamic_symbol \
3114 sparc64_elf_finish_dynamic_symbol
3115 #define elf_backend_finish_dynamic_sections \
3116 sparc64_elf_finish_dynamic_sections
3117 #define elf_backend_print_symbol_all \
3118 sparc64_elf_print_symbol_all
3119 #define elf_backend_output_arch_syms \
3120 sparc64_elf_output_arch_syms
3121 #define bfd_elf64_bfd_merge_private_bfd_data \
3122 sparc64_elf_merge_private_bfd_data
3124 #define elf_backend_size_info \
3125 sparc64_elf_size_info
3126 #define elf_backend_object_p \
3127 sparc64_elf_object_p
3128 #define elf_backend_reloc_type_class \
3129 sparc64_elf_reloc_type_class
3131 #define elf_backend_want_got_plt 0
3132 #define elf_backend_plt_readonly 0
3133 #define elf_backend_want_plt_sym 1
3135 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3136 #define elf_backend_plt_alignment 8
3138 #define elf_backend_got_header_size 8
3139 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3141 #include "elf64-target.h"