1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dwarf2-frame.h"
39 #include "opcode/cris.h"
40 #include "arch-utils.h"
42 #include "gdb_assert.h"
44 /* To get entry_point_address. */
47 #include "solib.h" /* Support for shared libraries. */
48 #include "solib-svr4.h"
49 #include "gdb_string.h"
54 /* There are no floating point registers. Used in gdbserver low-linux.c. */
57 /* There are 16 general registers. */
60 /* There are 16 special registers. */
63 /* CRISv32 has a pseudo PC register, not noted here. */
65 /* CRISv32 has 16 support registers. */
69 /* Register numbers of various important registers.
70 CRIS_FP_REGNUM Contains address of executing stack frame.
71 STR_REGNUM Contains the address of structure return values.
72 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
73 ARG1_REGNUM Contains the first parameter to a function.
74 ARG2_REGNUM Contains the second parameter to a function.
75 ARG3_REGNUM Contains the third parameter to a function.
76 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
77 SP_REGNUM Contains address of top of stack.
78 PC_REGNUM Contains address of next instruction.
79 SRP_REGNUM Subroutine return pointer register.
80 BRP_REGNUM Breakpoint return pointer register. */
84 /* Enums with respect to the general registers, valid for all
85 CRIS versions. The frame pointer is always in R8. */
87 /* ABI related registers. */
95 /* Registers which happen to be common. */
100 /* CRISv10 et. al. specific registers. */
112 /* CRISv32 specific registers. */
125 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
127 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
147 extern const struct cris_spec_reg cris_spec_regs[];
149 /* CRIS version, set via the user command 'set cris-version'. Affects
150 register names and sizes. */
151 static int usr_cmd_cris_version;
153 /* Indicates whether to trust the above variable. */
154 static int usr_cmd_cris_version_valid = 0;
156 static const char cris_mode_normal[] = "normal";
157 static const char cris_mode_guru[] = "guru";
158 static const char *cris_modes[] = {
164 /* CRIS mode, set via the user command 'set cris-mode'. Affects
165 type of break instruction among other things. */
166 static const char *usr_cmd_cris_mode = cris_mode_normal;
168 /* Whether to make use of Dwarf-2 CFI (default on). */
169 static int usr_cmd_cris_dwarf2_cfi = 1;
171 /* CRIS architecture specific information. */
175 const char *cris_mode;
179 /* Functions for accessing target dependent data. */
184 return (gdbarch_tdep (current_gdbarch)->cris_version);
190 return (gdbarch_tdep (current_gdbarch)->cris_mode);
193 /* Sigtramp identification code copied from i386-linux-tdep.c. */
195 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
196 #define SIGTRAMP_OFFSET0 0
197 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
198 #define SIGTRAMP_OFFSET1 4
200 static const unsigned short sigtramp_code[] =
202 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
203 SIGTRAMP_INSN1 /* break 13 */
206 #define SIGTRAMP_LEN (sizeof sigtramp_code)
208 /* Note: same length as normal sigtramp code. */
210 static const unsigned short rt_sigtramp_code[] =
212 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
213 SIGTRAMP_INSN1 /* break 13 */
216 /* If PC is in a sigtramp routine, return the address of the start of
217 the routine. Otherwise, return 0. */
220 cris_sigtramp_start (struct frame_info *next_frame)
222 CORE_ADDR pc = frame_pc_unwind (next_frame);
223 gdb_byte buf[SIGTRAMP_LEN];
225 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
230 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
233 pc -= SIGTRAMP_OFFSET1;
234 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
238 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
244 /* If PC is in a RT sigtramp routine, return the address of the start of
245 the routine. Otherwise, return 0. */
248 cris_rt_sigtramp_start (struct frame_info *next_frame)
250 CORE_ADDR pc = frame_pc_unwind (next_frame);
251 gdb_byte buf[SIGTRAMP_LEN];
253 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
258 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
261 pc -= SIGTRAMP_OFFSET1;
262 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
266 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
272 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
273 routine, return the address of the associated sigcontext structure. */
276 cris_sigcontext_addr (struct frame_info *next_frame)
282 frame_unwind_register (next_frame, SP_REGNUM, buf);
283 sp = extract_unsigned_integer (buf, 4);
285 /* Look for normal sigtramp frame first. */
286 pc = cris_sigtramp_start (next_frame);
289 /* struct signal_frame (arch/cris/kernel/signal.c) contains
290 struct sigcontext as its first member, meaning the SP points to
295 pc = cris_rt_sigtramp_start (next_frame);
298 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
299 a struct ucontext, which in turn contains a struct sigcontext.
301 4 + 4 + 128 to struct ucontext, then
302 4 + 4 + 12 to struct sigcontext. */
306 error (_("Couldn't recognize signal trampoline."));
310 struct cris_unwind_cache
312 /* The previous frame's inner most stack address. Used as this
313 frame ID's stack_addr. */
315 /* The frame's base, optionally used by the high-level debug info. */
318 /* How far the SP and r8 (FP) have been offset from the start of
319 the stack frame (as defined by the previous frame's stack
325 /* From old frame_extra_info struct. */
329 /* Table indicating the location of each and every register. */
330 struct trad_frame_saved_reg *saved_regs;
333 static struct cris_unwind_cache *
334 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
338 struct cris_unwind_cache *info;
346 return (*this_cache);
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
352 /* Zero all fields. */
358 info->uses_frame = 0;
360 info->leaf_function = 0;
362 frame_unwind_register (next_frame, SP_REGNUM, buf);
363 info->base = extract_unsigned_integer (buf, 4);
365 addr = cris_sigcontext_addr (next_frame);
367 /* Layout of the sigcontext struct:
370 unsigned long oldmask;
374 if (tdep->cris_version == 10)
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
389 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
394 /* R0 to R13 are stored in order at offset (1 * 4) in
396 for (i = 0; i <= 13; i++)
397 info->saved_regs[i].addr = addr + ((i + 1) * 4);
399 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
400 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
401 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
402 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
403 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
404 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
405 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
406 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
407 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
409 /* FIXME: If ERP is in a delay slot at this point then the PC will
410 be wrong at this point. This problem manifests itself in the
411 sigaltstack.exp test case, which occasionally generates FAILs when
412 the signal is received while in a delay slot.
414 This could be solved by a couple of read_memory_unsigned_integer and a
415 trad_frame_set_value. */
416 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
418 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
425 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
426 struct frame_id *this_id)
428 struct cris_unwind_cache *cache =
429 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
430 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
433 /* Forward declaration. */
435 static void cris_frame_prev_register (struct frame_info *next_frame,
436 void **this_prologue_cache,
437 int regnum, int *optimizedp,
438 enum lval_type *lvalp, CORE_ADDR *addrp,
439 int *realnump, gdb_byte *bufferp);
441 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
443 int regnum, int *optimizedp,
444 enum lval_type *lvalp, CORE_ADDR *addrp,
445 int *realnump, gdb_byte *valuep)
447 /* Make sure we've initialized the cache. */
448 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
449 cris_frame_prev_register (next_frame, this_cache, regnum,
450 optimizedp, lvalp, addrp, realnump, valuep);
453 static const struct frame_unwind cris_sigtramp_frame_unwind =
456 cris_sigtramp_frame_this_id,
457 cris_sigtramp_frame_prev_register
460 static const struct frame_unwind *
461 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
463 if (cris_sigtramp_start (next_frame)
464 || cris_rt_sigtramp_start (next_frame))
465 return &cris_sigtramp_frame_unwind;
471 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
472 struct frame_info *this_frame)
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
479 if (cris_mode () == cris_mode_guru)
481 frame_unwind_register (this_frame, NRP_REGNUM, buf);
485 frame_unwind_register (this_frame, ERP_REGNUM, buf);
488 erp = extract_unsigned_integer (buf, 4);
492 /* In delay slot - check if there's a breakpoint at the preceding
494 if (breakpoint_here_p (erp & ~0x1))
500 /* Hardware watchpoint support. */
502 /* We support 6 hardware data watchpoints, but cannot trigger on execute
503 (any combination of read/write is fine). */
506 cris_can_use_hardware_watchpoint (int type, int count, int other)
508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
510 /* No bookkeeping is done here; it is handled by the remote debug agent. */
512 if (tdep->cris_version != 32)
515 /* CRISv32: Six data watchpoints, one for instructions. */
516 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
517 || type == bp_hardware_watchpoint) && count <= 6)
518 || (type == bp_hardware_breakpoint && count <= 1));
521 /* The CRISv32 hardware data watchpoints work by specifying ranges,
522 which have no alignment or length restrictions. */
525 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
530 /* If the inferior has some watchpoint that triggered, return the
531 address associated with that watchpoint. Otherwise, return
535 cris_stopped_data_address (void)
538 eda = read_register (EDA_REGNUM);
542 /* The instruction environment needed to find single-step breakpoints. */
545 struct instruction_environment
547 unsigned long reg[NUM_GENREGS];
548 unsigned long preg[NUM_SPECREGS];
549 unsigned long branch_break_address;
550 unsigned long delay_slot_pc;
551 unsigned long prefix_value;
556 int delay_slot_pc_active;
558 int disable_interrupt;
561 /* Machine-dependencies in CRIS for opcodes. */
563 /* Instruction sizes. */
564 enum cris_instruction_sizes
571 /* Addressing modes. */
572 enum cris_addressing_modes
579 /* Prefix addressing modes. */
580 enum cris_prefix_addressing_modes
582 PREFIX_INDEX_MODE = 2,
583 PREFIX_ASSIGN_MODE = 3,
585 /* Handle immediate byte offset addressing mode prefix format. */
586 PREFIX_OFFSET_MODE = 2
589 /* Masks for opcodes. */
590 enum cris_opcode_masks
592 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
593 SIGNED_EXTEND_BIT_MASK = 0x2,
594 SIGNED_BYTE_MASK = 0x80,
595 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
596 SIGNED_WORD_MASK = 0x8000,
597 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
598 SIGNED_DWORD_MASK = 0x80000000,
599 SIGNED_QUICK_VALUE_MASK = 0x20,
600 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
603 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
611 cris_get_operand2 (unsigned short insn)
613 return ((insn & 0xF000) >> 12);
617 cris_get_mode (unsigned short insn)
619 return ((insn & 0x0C00) >> 10);
623 cris_get_opcode (unsigned short insn)
625 return ((insn & 0x03C0) >> 6);
629 cris_get_size (unsigned short insn)
631 return ((insn & 0x0030) >> 4);
635 cris_get_operand1 (unsigned short insn)
637 return (insn & 0x000F);
640 /* Additional functions in order to handle opcodes. */
643 cris_get_quick_value (unsigned short insn)
645 return (insn & 0x003F);
649 cris_get_bdap_quick_offset (unsigned short insn)
651 return (insn & 0x00FF);
655 cris_get_branch_short_offset (unsigned short insn)
657 return (insn & 0x00FF);
661 cris_get_asr_shift_steps (unsigned long value)
663 return (value & 0x3F);
667 cris_get_clear_size (unsigned short insn)
669 return ((insn) & 0xC000);
673 cris_is_signed_extend_bit_on (unsigned short insn)
675 return (((insn) & 0x20) == 0x20);
679 cris_is_xflag_bit_on (unsigned short insn)
681 return (((insn) & 0x1000) == 0x1000);
685 cris_set_size_to_dword (unsigned short *insn)
692 cris_get_signed_offset (unsigned short insn)
694 return ((signed char) (insn & 0x00FF));
697 /* Calls an op function given the op-type, working on the insn and the
699 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
701 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
702 struct gdbarch_list *);
704 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
706 static void set_cris_version (char *ignore_args, int from_tty,
707 struct cmd_list_element *c);
709 static void set_cris_mode (char *ignore_args, int from_tty,
710 struct cmd_list_element *c);
712 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
713 struct cmd_list_element *c);
715 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
716 struct frame_info *next_frame,
717 struct cris_unwind_cache *info);
719 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
720 struct frame_info *next_frame,
721 struct cris_unwind_cache *info);
723 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
724 struct frame_info *next_frame);
726 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
727 struct frame_info *next_frame);
729 /* When arguments must be pushed onto the stack, they go on in reverse
730 order. The below implements a FILO (stack) to do this.
731 Copied from d10v-tdep.c. */
736 struct stack_item *prev;
740 static struct stack_item *
741 push_stack_item (struct stack_item *prev, void *contents, int len)
743 struct stack_item *si;
744 si = xmalloc (sizeof (struct stack_item));
745 si->data = xmalloc (len);
748 memcpy (si->data, contents, len);
752 static struct stack_item *
753 pop_stack_item (struct stack_item *si)
755 struct stack_item *dead = si;
762 /* Put here the code to store, into fi->saved_regs, the addresses of
763 the saved registers of frame described by FRAME_INFO. This
764 includes special registers such as pc and fp saved in special ways
765 in the stack frame. sp is even more special: the address we return
766 for it IS the sp for the next frame. */
768 struct cris_unwind_cache *
769 cris_frame_unwind_cache (struct frame_info *next_frame,
770 void **this_prologue_cache)
773 struct cris_unwind_cache *info;
776 if ((*this_prologue_cache))
777 return (*this_prologue_cache);
779 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
780 (*this_prologue_cache) = info;
781 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
783 /* Zero all fields. */
789 info->uses_frame = 0;
791 info->leaf_function = 0;
793 /* Prologue analysis does the rest... */
794 if (cris_version () == 32)
795 crisv32_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
798 cris_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
804 /* Given a GDB frame, determine the address of the calling function's
805 frame. This will be used to create a new GDB frame struct. */
808 cris_frame_this_id (struct frame_info *next_frame,
809 void **this_prologue_cache,
810 struct frame_id *this_id)
812 struct cris_unwind_cache *info
813 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
818 /* The FUNC is easy. */
819 func = frame_func_unwind (next_frame, NORMAL_FRAME);
821 /* Hopefully the prologue analysis either correctly determined the
822 frame's base (which is the SP from the previous frame), or set
823 that base to "NULL". */
824 base = info->prev_sp;
828 id = frame_id_build (base, func);
834 cris_frame_prev_register (struct frame_info *next_frame,
835 void **this_prologue_cache,
836 int regnum, int *optimizedp,
837 enum lval_type *lvalp, CORE_ADDR *addrp,
838 int *realnump, gdb_byte *bufferp)
840 struct cris_unwind_cache *info
841 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
842 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
843 optimizedp, lvalp, addrp, realnump, bufferp);
846 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
847 dummy frame. The frame ID's base needs to match the TOS value
848 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
851 static struct frame_id
852 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
854 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
855 frame_pc_unwind (next_frame));
859 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
861 /* Align to the size of an instruction (so that they can safely be
862 pushed onto the stack). */
867 cris_push_dummy_code (struct gdbarch *gdbarch,
868 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
869 struct value **args, int nargs,
870 struct type *value_type,
871 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
873 /* Allocate space sufficient for a breakpoint. */
875 /* Store the address of that breakpoint */
877 /* CRIS always starts the call at the callee's entry point. */
883 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
884 struct regcache *regcache, CORE_ADDR bp_addr,
885 int nargs, struct value **args, CORE_ADDR sp,
886 int struct_return, CORE_ADDR struct_addr)
895 /* The function's arguments and memory allocated by gdb for the arguments to
896 point at reside in separate areas on the stack.
897 Both frame pointers grow toward higher addresses. */
901 struct stack_item *si = NULL;
903 /* Push the return address. */
904 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
906 /* Are we returning a value using a structure return or a normal value
907 return? struct_addr is the address of the reserved space for the return
908 structure to be written on the stack. */
911 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
914 /* Now load as many as possible of the first arguments into registers,
915 and push the rest onto the stack. */
916 argreg = ARG1_REGNUM;
919 for (argnum = 0; argnum < nargs; argnum++)
926 len = TYPE_LENGTH (value_type (args[argnum]));
927 val = (char *) value_contents (args[argnum]);
929 /* How may registers worth of storage do we need for this argument? */
930 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
932 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
934 /* Data passed by value. Fits in available register(s). */
935 for (i = 0; i < reg_demand; i++)
937 regcache_cooked_write_unsigned (regcache, argreg,
938 *(unsigned long *) val);
943 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
945 /* Data passed by value. Does not fit in available register(s).
946 Use the register(s) first, then the stack. */
947 for (i = 0; i < reg_demand; i++)
949 if (argreg <= ARG4_REGNUM)
951 regcache_cooked_write_unsigned (regcache, argreg,
952 *(unsigned long *) val);
958 /* Push item for later so that pushed arguments
959 come in the right order. */
960 si = push_stack_item (si, val, 4);
965 else if (len > (2 * 4))
968 internal_error (__FILE__, __LINE__, _("We don't do this"));
972 /* Data passed by value. No available registers. Put it on
974 si = push_stack_item (si, val, len);
980 /* fp_arg must be word-aligned (i.e., don't += len) to match
981 the function prologue. */
982 sp = (sp - si->len) & ~3;
983 write_memory (sp, si->data, si->len);
984 si = pop_stack_item (si);
987 /* Finally, update the SP register. */
988 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
993 static const struct frame_unwind cris_frame_unwind =
997 cris_frame_prev_register
1000 const struct frame_unwind *
1001 cris_frame_sniffer (struct frame_info *next_frame)
1003 return &cris_frame_unwind;
1007 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1009 struct cris_unwind_cache *info
1010 = cris_frame_unwind_cache (next_frame, this_cache);
1014 static const struct frame_base cris_frame_base =
1017 cris_frame_base_address,
1018 cris_frame_base_address,
1019 cris_frame_base_address
1022 /* Frames information. The definition of the struct frame_info is
1026 enum frame_type type;
1030 If the compilation option -fno-omit-frame-pointer is present the
1031 variable frame will be set to the content of R8 which is the frame
1034 The variable pc contains the address where execution is performed
1035 in the present frame. The innermost frame contains the current content
1036 of the register PC. All other frames contain the content of the
1037 register PC in the next frame.
1039 The variable `type' indicates the frame's type: normal, SIGTRAMP
1040 (associated with a signal handler), dummy (associated with a dummy
1043 The variable return_pc contains the address where execution should be
1044 resumed when the present frame has finished, the return address.
1046 The variable leaf_function is 1 if the return address is in the register
1047 SRP, and 0 if it is on the stack.
1049 Prologue instructions C-code.
1050 The prologue may consist of (-fno-omit-frame-pointer)
1054 move.d sp,r8 move.d sp,r8
1056 movem rY,[sp] movem rY,[sp]
1057 move.S rZ,[r8-U] move.S rZ,[r8-U]
1059 where 1 is a non-terminal function, and 2 is a leaf-function.
1061 Note that this assumption is extremely brittle, and will break at the
1062 slightest change in GCC's prologue.
1064 If local variables are declared or register contents are saved on stack
1065 the subq-instruction will be present with X as the number of bytes
1066 needed for storage. The reshuffle with respect to r8 may be performed
1067 with any size S (b, w, d) and any of the general registers Z={0..13}.
1068 The offset U should be representable by a signed 8-bit value in all cases.
1069 Thus, the prefix word is assumed to be immediate byte offset mode followed
1070 by another word containing the instruction.
1079 Prologue instructions C++-code.
1080 Case 1) and 2) in the C-code may be followed by
1082 move.d r10,rS ; this
1086 move.S [r8+U],rZ ; P4
1088 if any of the call parameters are stored. The host expects these
1089 instructions to be executed in order to get the call parameters right. */
1091 /* Examine the prologue of a function. The variable ip is the address of
1092 the first instruction of the prologue. The variable limit is the address
1093 of the first instruction after the prologue. The variable fi contains the
1094 information in struct frame_info. The variable frameless_p controls whether
1095 the entire prologue is examined (0) or just enough instructions to
1096 determine that it is a prologue (1). */
1099 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1100 struct cris_unwind_cache *info)
1102 /* Present instruction. */
1103 unsigned short insn;
1105 /* Next instruction, lookahead. */
1106 unsigned short insn_next;
1109 /* Is there a push fp? */
1112 /* Number of byte on stack used for local variables and movem. */
1115 /* Highest register number in a movem. */
1118 /* move.d r<source_register>,rS */
1119 short source_register;
1124 /* This frame is with respect to a leaf until a push srp is found. */
1127 info->leaf_function = 1;
1130 /* Assume nothing on stack. */
1134 /* If we were called without a next_frame, that means we were called
1135 from cris_skip_prologue which already tried to find the end of the
1136 prologue through the symbol information. 64 instructions past current
1137 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1138 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1140 /* Find the prologue instructions. */
1141 while (pc > 0 && pc < limit)
1143 insn = read_memory_unsigned_integer (pc, 2);
1147 /* push <reg> 32 bit instruction */
1148 insn_next = read_memory_unsigned_integer (pc, 2);
1150 regno = cris_get_operand2 (insn_next);
1153 info->sp_offset += 4;
1155 /* This check, meant to recognize srp, used to be regno ==
1156 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1157 if (insn_next == 0xBE7E)
1161 info->leaf_function = 0;
1164 else if (insn_next == 0x8FEE)
1169 info->r8_offset = info->sp_offset;
1173 else if (insn == 0x866E)
1178 info->uses_frame = 1;
1182 else if (cris_get_operand2 (insn) == SP_REGNUM
1183 && cris_get_mode (insn) == 0x0000
1184 && cris_get_opcode (insn) == 0x000A)
1189 info->sp_offset += cris_get_quick_value (insn);
1192 else if (cris_get_mode (insn) == 0x0002
1193 && cris_get_opcode (insn) == 0x000F
1194 && cris_get_size (insn) == 0x0003
1195 && cris_get_operand1 (insn) == SP_REGNUM)
1197 /* movem r<regsave>,[sp] */
1198 regsave = cris_get_operand2 (insn);
1200 else if (cris_get_operand2 (insn) == SP_REGNUM
1201 && ((insn & 0x0F00) >> 8) == 0x0001
1202 && (cris_get_signed_offset (insn) < 0))
1204 /* Immediate byte offset addressing prefix word with sp as base
1205 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1206 is between 64 and 128.
1207 movem r<regsave>,[sp=sp-<val>] */
1210 info->sp_offset += -cris_get_signed_offset (insn);
1212 insn_next = read_memory_unsigned_integer (pc, 2);
1214 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1215 && cris_get_opcode (insn_next) == 0x000F
1216 && cris_get_size (insn_next) == 0x0003
1217 && cris_get_operand1 (insn_next) == SP_REGNUM)
1219 regsave = cris_get_operand2 (insn_next);
1223 /* The prologue ended before the limit was reached. */
1228 else if (cris_get_mode (insn) == 0x0001
1229 && cris_get_opcode (insn) == 0x0009
1230 && cris_get_size (insn) == 0x0002)
1232 /* move.d r<10..13>,r<0..15> */
1233 source_register = cris_get_operand1 (insn);
1235 /* FIXME? In the glibc solibs, the prologue might contain something
1236 like (this example taken from relocate_doit):
1238 sub.d 0xfffef426,$r0
1239 which isn't covered by the source_register check below. Question
1240 is whether to add a check for this combo, or make better use of
1241 the limit variable instead. */
1242 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1244 /* The prologue ended before the limit was reached. */
1249 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1250 /* The size is a fixed-size. */
1251 && ((insn & 0x0F00) >> 8) == 0x0001
1252 /* A negative offset. */
1253 && (cris_get_signed_offset (insn) < 0))
1255 /* move.S rZ,[r8-U] (?) */
1256 insn_next = read_memory_unsigned_integer (pc, 2);
1258 regno = cris_get_operand2 (insn_next);
1259 if ((regno >= 0 && regno < SP_REGNUM)
1260 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1261 && cris_get_opcode (insn_next) == 0x000F)
1263 /* move.S rZ,[r8-U] */
1268 /* The prologue ended before the limit was reached. */
1273 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1274 /* The size is a fixed-size. */
1275 && ((insn & 0x0F00) >> 8) == 0x0001
1276 /* A positive offset. */
1277 && (cris_get_signed_offset (insn) > 0))
1279 /* move.S [r8+U],rZ (?) */
1280 insn_next = read_memory_unsigned_integer (pc, 2);
1282 regno = cris_get_operand2 (insn_next);
1283 if ((regno >= 0 && regno < SP_REGNUM)
1284 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1285 && cris_get_opcode (insn_next) == 0x0009
1286 && cris_get_operand1 (insn_next) == regno)
1288 /* move.S [r8+U],rZ */
1293 /* The prologue ended before the limit was reached. */
1300 /* The prologue ended before the limit was reached. */
1306 /* We only want to know the end of the prologue when next_frame and info
1307 are NULL (called from cris_skip_prologue i.e.). */
1308 if (next_frame == NULL && info == NULL)
1313 info->size = info->sp_offset;
1315 /* Compute the previous frame's stack pointer (which is also the
1316 frame's ID's stack address), and this frame's base pointer. */
1317 if (info->uses_frame)
1320 /* The SP was moved to the FP. This indicates that a new frame
1321 was created. Get THIS frame's FP value by unwinding it from
1323 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1325 info->base = this_base;
1326 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1328 /* The FP points at the last saved register. Adjust the FP back
1329 to before the first saved register giving the SP. */
1330 info->prev_sp = info->base + info->r8_offset;
1335 /* Assume that the FP is this frame's SP but with that pushed
1336 stack space added back. */
1337 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1338 info->base = this_base;
1339 info->prev_sp = info->base + info->size;
1342 /* Calculate the addresses for the saved registers on the stack. */
1343 /* FIXME: The address calculation should really be done on the fly while
1344 we're analyzing the prologue (we only hold one regsave value as it is
1346 val = info->sp_offset;
1348 for (regno = regsave; regno >= 0; regno--)
1350 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1354 /* The previous frame's SP needed to be computed. Save the computed
1356 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1358 if (!info->leaf_function)
1360 /* SRP saved on the stack. But where? */
1361 if (info->r8_offset == 0)
1363 /* R8 not pushed yet. */
1364 info->saved_regs[SRP_REGNUM].addr = info->base;
1368 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1369 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1373 /* The PC is found in SRP (the actual register or located on the stack). */
1374 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1380 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1381 struct cris_unwind_cache *info)
1385 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1386 meant to be a full-fledged prologue scanner. It is only needed for
1387 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1389 * PLT stubs (library calls)
1391 * signal trampolines
1393 For those cases, it is assumed that there is no actual prologue; that
1394 the stack pointer is not adjusted, and (as a consequence) the return
1395 address is not pushed onto the stack. */
1397 /* We only want to know the end of the prologue when next_frame and info
1398 are NULL (called from cris_skip_prologue i.e.). */
1399 if (next_frame == NULL && info == NULL)
1404 /* The SP is assumed to be unaltered. */
1405 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1406 info->base = this_base;
1407 info->prev_sp = this_base;
1409 /* The PC is assumed to be found in SRP. */
1410 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1415 /* Advance pc beyond any function entry prologue instructions at pc
1416 to reach some "real" code. */
1418 /* Given a PC value corresponding to the start of a function, return the PC
1419 of the first instruction after the function prologue. */
1422 cris_skip_prologue (CORE_ADDR pc)
1424 CORE_ADDR func_addr, func_end;
1425 struct symtab_and_line sal;
1426 CORE_ADDR pc_after_prologue;
1428 /* If we have line debugging information, then the end of the prologue
1429 should the first assembly instruction of the first source line. */
1430 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1432 sal = find_pc_line (func_addr, 0);
1433 if (sal.end > 0 && sal.end < func_end)
1437 if (cris_version () == 32)
1438 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1440 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1442 return pc_after_prologue;
1446 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1449 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1454 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1457 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1461 /* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1467 static const unsigned char *
1468 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1470 static unsigned char break8_insn[] = {0x38, 0xe9};
1471 static unsigned char break15_insn[] = {0x3f, 0xe9};
1474 if (cris_mode () == cris_mode_guru)
1475 return break15_insn;
1480 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1484 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1486 int version = cris_version ();
1488 switch (spec_reg.applicable_version)
1490 case cris_ver_version_all:
1492 case cris_ver_warning:
1493 /* Indeterminate/obsolete. */
1496 return (version >= 0 && version <= 3);
1498 return (version >= 3);
1500 return (version == 8 || version == 9);
1502 return (version >= 8);
1503 case cris_ver_v0_10:
1504 return (version >= 0 && version <= 10);
1505 case cris_ver_v3_10:
1506 return (version >= 3 && version <= 10);
1507 case cris_ver_v8_10:
1508 return (version >= 8 && version <= 10);
1510 return (version == 10);
1512 return (version >= 10);
1514 return (version >= 32);
1516 /* Invalid cris version. */
1521 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1522 register, -1 for an invalid register. */
1525 cris_register_size (int regno)
1527 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1531 if (regno >= 0 && regno < NUM_GENREGS)
1533 /* General registers (R0 - R15) are 32 bits. */
1536 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1538 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1539 Adjust regno accordingly. */
1540 spec_regno = regno - NUM_GENREGS;
1542 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1544 if (cris_spec_regs[i].number == spec_regno
1545 && cris_spec_reg_applicable (cris_spec_regs[i]))
1546 /* Go with the first applicable register. */
1547 return cris_spec_regs[i].reg_size;
1549 /* Special register not applicable to this CRIS version. */
1552 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1554 /* This will apply to CRISv32 only where there are additional registers
1555 after the special registers (pseudo PC and support registers). */
1563 /* Nonzero if regno should not be fetched from the target. This is the case
1564 for unimplemented (size 0) and non-existant registers. */
1567 cris_cannot_fetch_register (int regno)
1569 return ((regno < 0 || regno >= NUM_REGS)
1570 || (cris_register_size (regno) == 0));
1573 /* Nonzero if regno should not be written to the target, for various
1577 cris_cannot_store_register (int regno)
1579 /* There are three kinds of registers we refuse to write to.
1580 1. Those that not implemented.
1581 2. Those that are read-only (depends on the processor mode).
1582 3. Those registers to which a write has no effect.
1585 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1586 /* Not implemented. */
1589 else if (regno == VR_REGNUM)
1593 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1594 /* Writing has no effect. */
1597 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1598 agent decide whether they are writable. */
1603 /* Nonzero if regno should not be fetched from the target. This is the case
1604 for unimplemented (size 0) and non-existant registers. */
1607 crisv32_cannot_fetch_register (int regno)
1609 return ((regno < 0 || regno >= NUM_REGS)
1610 || (cris_register_size (regno) == 0));
1613 /* Nonzero if regno should not be written to the target, for various
1617 crisv32_cannot_store_register (int regno)
1619 /* There are three kinds of registers we refuse to write to.
1620 1. Those that not implemented.
1621 2. Those that are read-only (depends on the processor mode).
1622 3. Those registers to which a write has no effect.
1625 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1626 /* Not implemented. */
1629 else if (regno == VR_REGNUM)
1633 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1634 /* Writing has no effect. */
1637 /* Many special registers are read-only in user mode. Let the debug
1638 agent decide whether they are writable. */
1643 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1644 of data in register regno. */
1646 static struct type *
1647 cris_register_type (struct gdbarch *gdbarch, int regno)
1649 if (regno == PC_REGNUM)
1650 return builtin_type_void_func_ptr;
1651 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1652 return builtin_type_void_data_ptr;
1653 else if ((regno >= 0 && regno < SP_REGNUM)
1654 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1655 /* Note: R8 taken care of previous clause. */
1656 return builtin_type_uint32;
1657 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1658 return builtin_type_uint16;
1659 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1660 return builtin_type_uint8;
1662 /* Invalid (unimplemented) register. */
1663 return builtin_type_int0;
1666 static struct type *
1667 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1669 if (regno == PC_REGNUM)
1670 return builtin_type_void_func_ptr;
1671 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1672 return builtin_type_void_data_ptr;
1673 else if ((regno >= 0 && regno <= ACR_REGNUM)
1674 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1675 || (regno == PID_REGNUM)
1676 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1677 /* Note: R8 and SP taken care of by previous clause. */
1678 return builtin_type_uint32;
1679 else if (regno == WZ_REGNUM)
1680 return builtin_type_uint16;
1681 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1682 return builtin_type_uint8;
1685 /* Invalid (unimplemented) register. Should not happen as there are
1686 no unimplemented CRISv32 registers. */
1687 warning (_("crisv32_register_type: unknown regno %d"), regno);
1688 return builtin_type_int0;
1692 /* Stores a function return value of type type, where valbuf is the address
1693 of the value to be stored. */
1695 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1698 cris_store_return_value (struct type *type, struct regcache *regcache,
1702 int len = TYPE_LENGTH (type);
1706 /* Put the return value in R10. */
1707 val = extract_unsigned_integer (valbuf, len);
1708 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1712 /* Put the return value in R10 and R11. */
1713 val = extract_unsigned_integer (valbuf, 4);
1714 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1715 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1716 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1719 error (_("cris_store_return_value: type length too large."));
1722 /* Return the name of register regno as a string. Return NULL for an invalid or
1723 unimplemented register. */
1726 cris_special_register_name (int regno)
1731 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1732 Adjust regno accordingly. */
1733 spec_regno = regno - NUM_GENREGS;
1735 /* Assume nothing about the layout of the cris_spec_regs struct
1737 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1739 if (cris_spec_regs[i].number == spec_regno
1740 && cris_spec_reg_applicable (cris_spec_regs[i]))
1741 /* Go with the first applicable register. */
1742 return cris_spec_regs[i].name;
1744 /* Special register not applicable to this CRIS version. */
1749 cris_register_name (int regno)
1751 static char *cris_genreg_names[] =
1752 { "r0", "r1", "r2", "r3", \
1753 "r4", "r5", "r6", "r7", \
1754 "r8", "r9", "r10", "r11", \
1755 "r12", "r13", "sp", "pc" };
1757 if (regno >= 0 && regno < NUM_GENREGS)
1759 /* General register. */
1760 return cris_genreg_names[regno];
1762 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1764 return cris_special_register_name (regno);
1768 /* Invalid register. */
1774 crisv32_register_name (int regno)
1776 static char *crisv32_genreg_names[] =
1777 { "r0", "r1", "r2", "r3", \
1778 "r4", "r5", "r6", "r7", \
1779 "r8", "r9", "r10", "r11", \
1780 "r12", "r13", "sp", "acr"
1783 static char *crisv32_sreg_names[] =
1784 { "s0", "s1", "s2", "s3", \
1785 "s4", "s5", "s6", "s7", \
1786 "s8", "s9", "s10", "s11", \
1787 "s12", "s13", "s14", "s15"
1790 if (regno >= 0 && regno < NUM_GENREGS)
1792 /* General register. */
1793 return crisv32_genreg_names[regno];
1795 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1797 return cris_special_register_name (regno);
1799 else if (regno == PC_REGNUM)
1803 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1805 return crisv32_sreg_names[regno - S0_REGNUM];
1809 /* Invalid register. */
1814 /* Convert DWARF register number REG to the appropriate register
1815 number used by GDB. */
1818 cris_dwarf2_reg_to_regnum (int reg)
1820 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1821 numbering, MOF is 18).
1822 Adapted from gcc/config/cris/cris.h. */
1823 static int cris_dwarf_regmap[] = {
1835 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1836 regnum = cris_dwarf_regmap[reg];
1839 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1844 /* DWARF-2 frame support. */
1847 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1848 struct dwarf2_frame_state_reg *reg,
1849 struct frame_info *next_frame)
1851 /* The return address column. */
1852 if (regnum == PC_REGNUM)
1853 reg->how = DWARF2_FRAME_REG_RA;
1855 /* The call frame address. */
1856 else if (regnum == SP_REGNUM)
1857 reg->how = DWARF2_FRAME_REG_CFA;
1860 /* Extract from an array regbuf containing the raw register state a function
1861 return value of type type, and copy that, in virtual format, into
1864 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1867 cris_extract_return_value (struct type *type, struct regcache *regcache,
1871 int len = TYPE_LENGTH (type);
1875 /* Get the return value from R10. */
1876 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1877 store_unsigned_integer (valbuf, len, val);
1881 /* Get the return value from R10 and R11. */
1882 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1883 store_unsigned_integer (valbuf, 4, val);
1884 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1885 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1888 error (_("cris_extract_return_value: type length too large"));
1891 /* Handle the CRIS return value convention. */
1893 static enum return_value_convention
1894 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1895 struct regcache *regcache, gdb_byte *readbuf,
1896 const gdb_byte *writebuf)
1898 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1899 || TYPE_CODE (type) == TYPE_CODE_UNION
1900 || TYPE_LENGTH (type) > 8)
1901 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1902 goes on the stack. */
1903 return RETURN_VALUE_STRUCT_CONVENTION;
1906 cris_extract_return_value (type, regcache, readbuf);
1908 cris_store_return_value (type, regcache, writebuf);
1910 return RETURN_VALUE_REGISTER_CONVENTION;
1913 /* Returns 1 if the given type will be passed by pointer rather than
1916 /* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1920 cris_reg_struct_has_addr (int gcc_p, struct type *type)
1922 return (TYPE_LENGTH (type) > 8);
1925 /* Calculates a value that measures how good inst_args constraints an
1926 instruction. It stems from cris_constraint, found in cris-dis.c. */
1929 constraint (unsigned int insn, const signed char *inst_args,
1930 inst_env_type *inst_env)
1935 const char *s = inst_args;
1941 if ((insn & 0x30) == 0x30)
1946 /* A prefix operand. */
1947 if (inst_env->prefix_found)
1953 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1954 valid "push" size. In case of special register, it may be != 4. */
1955 if (inst_env->prefix_found)
1961 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1969 tmp = (insn >> 0xC) & 0xF;
1971 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1973 /* Since we match four bits, we will give a value of
1974 4 - 1 = 3 in a match. If there is a corresponding
1975 exact match of a special register in another pattern, it
1976 will get a value of 4, which will be higher. This should
1977 be correct in that an exact pattern would match better that
1979 Note that there is a reason for not returning zero; the
1980 pattern for "clear" is partly matched in the bit-pattern
1981 (the two lower bits must be zero), while the bit-pattern
1982 for a move from a special register is matched in the
1983 register constraint.
1984 This also means we will will have a race condition if
1985 there is a partly match in three bits in the bit pattern. */
1986 if (tmp == cris_spec_regs[i].number)
1993 if (cris_spec_regs[i].name == NULL)
2000 /* Returns the number of bits set in the variable value. */
2003 number_of_bits (unsigned int value)
2005 int number_of_bits = 0;
2009 number_of_bits += 1;
2010 value &= (value - 1);
2012 return number_of_bits;
2015 /* Finds the address that should contain the single step breakpoint(s).
2016 It stems from code in cris-dis.c. */
2019 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2022 int max_level_of_match = -1;
2023 int max_matched = -1;
2026 for (i = 0; cris_opcodes[i].name != NULL; i++)
2028 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2029 && ((cris_opcodes[i].lose & insn) == 0)
2030 /* Only CRISv10 instructions, please. */
2031 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2033 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2034 if (level_of_match >= 0)
2037 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2038 if (level_of_match > max_level_of_match)
2041 max_level_of_match = level_of_match;
2042 if (level_of_match == 16)
2044 /* All bits matched, cannot find better. */
2054 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2055 actually an internal error. */
2058 find_step_target (inst_env_type *inst_env)
2062 unsigned short insn;
2064 /* Create a local register image and set the initial state. */
2065 for (i = 0; i < NUM_GENREGS; i++)
2067 inst_env->reg[i] = (unsigned long) read_register (i);
2069 offset = NUM_GENREGS;
2070 for (i = 0; i < NUM_SPECREGS; i++)
2072 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2074 inst_env->branch_found = 0;
2075 inst_env->slot_needed = 0;
2076 inst_env->delay_slot_pc_active = 0;
2077 inst_env->prefix_found = 0;
2078 inst_env->invalid = 0;
2079 inst_env->xflag_found = 0;
2080 inst_env->disable_interrupt = 0;
2082 /* Look for a step target. */
2085 /* Read an instruction from the client. */
2086 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2088 /* If the instruction is not in a delay slot the new content of the
2089 PC is [PC] + 2. If the instruction is in a delay slot it is not
2090 that simple. Since a instruction in a delay slot cannot change
2091 the content of the PC, it does not matter what value PC will have.
2092 Just make sure it is a valid instruction. */
2093 if (!inst_env->delay_slot_pc_active)
2095 inst_env->reg[PC_REGNUM] += 2;
2099 inst_env->delay_slot_pc_active = 0;
2100 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2102 /* Analyse the present instruction. */
2103 i = find_cris_op (insn, inst_env);
2106 inst_env->invalid = 1;
2110 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2112 } while (!inst_env->invalid
2113 && (inst_env->prefix_found || inst_env->xflag_found
2114 || inst_env->slot_needed));
2118 /* There is no hardware single-step support. The function find_step_target
2119 digs through the opcodes in order to find all possible targets.
2120 Either one ordinary target or two targets for branches may be found. */
2123 cris_software_single_step (struct regcache *regcache)
2125 inst_env_type inst_env;
2127 /* Analyse the present instruction environment and insert
2129 int status = find_step_target (&inst_env);
2132 /* Could not find a target. Things are likely to go downhill
2134 warning (_("CRIS software single step could not find a step target."));
2138 /* Insert at most two breakpoints. One for the next PC content
2139 and possibly another one for a branch, jump, etc. */
2140 CORE_ADDR next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2141 insert_single_step_breakpoint (next_pc);
2142 if (inst_env.branch_found
2143 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2145 CORE_ADDR branch_target_address
2146 = (CORE_ADDR) inst_env.branch_break_address;
2147 insert_single_step_breakpoint (branch_target_address);
2154 /* Calculates the prefix value for quick offset addressing mode. */
2157 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2159 /* It's invalid to be in a delay slot. You can't have a prefix to this
2160 instruction (not 100% sure). */
2161 if (inst_env->slot_needed || inst_env->prefix_found)
2163 inst_env->invalid = 1;
2167 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2168 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2170 /* A prefix doesn't change the xflag_found. But the rest of the flags
2172 inst_env->slot_needed = 0;
2173 inst_env->prefix_found = 1;
2176 /* Updates the autoincrement register. The size of the increment is derived
2177 from the size of the operation. The PC is always kept aligned on even
2181 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2183 if (size == INST_BYTE_SIZE)
2185 inst_env->reg[cris_get_operand1 (inst)] += 1;
2187 /* The PC must be word aligned, so increase the PC with one
2188 word even if the size is byte. */
2189 if (cris_get_operand1 (inst) == REG_PC)
2191 inst_env->reg[REG_PC] += 1;
2194 else if (size == INST_WORD_SIZE)
2196 inst_env->reg[cris_get_operand1 (inst)] += 2;
2198 else if (size == INST_DWORD_SIZE)
2200 inst_env->reg[cris_get_operand1 (inst)] += 4;
2205 inst_env->invalid = 1;
2209 /* Just a forward declaration. */
2211 static unsigned long get_data_from_address (unsigned short *inst,
2214 /* Calculates the prefix value for the general case of offset addressing
2218 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2223 /* It's invalid to be in a delay slot. */
2224 if (inst_env->slot_needed || inst_env->prefix_found)
2226 inst_env->invalid = 1;
2230 /* The calculation of prefix_value used to be after process_autoincrement,
2231 but that fails for an instruction such as jsr [$r0+12] which is encoded
2232 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2233 mustn't be incremented until we have read it and what it points at. */
2234 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2236 /* The offset is an indirection of the contents of the operand1 register. */
2237 inst_env->prefix_value +=
2238 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2240 if (cris_get_mode (inst) == AUTOINC_MODE)
2242 process_autoincrement (cris_get_size (inst), inst, inst_env);
2245 /* A prefix doesn't change the xflag_found. But the rest of the flags
2247 inst_env->slot_needed = 0;
2248 inst_env->prefix_found = 1;
2251 /* Calculates the prefix value for the index addressing mode. */
2254 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2256 /* It's invalid to be in a delay slot. I can't see that it's possible to
2257 have a prefix to this instruction. So I will treat this as invalid. */
2258 if (inst_env->slot_needed || inst_env->prefix_found)
2260 inst_env->invalid = 1;
2264 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2266 /* The offset is the operand2 value shifted the size of the instruction
2268 inst_env->prefix_value +=
2269 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2271 /* If the PC is operand1 (base) the address used is the address after
2272 the main instruction, i.e. address + 2 (the PC is already compensated
2273 for the prefix operation). */
2274 if (cris_get_operand1 (inst) == REG_PC)
2276 inst_env->prefix_value += 2;
2279 /* A prefix doesn't change the xflag_found. But the rest of the flags
2281 inst_env->slot_needed = 0;
2282 inst_env->xflag_found = 0;
2283 inst_env->prefix_found = 1;
2286 /* Calculates the prefix value for the double indirect addressing mode. */
2289 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2294 /* It's invalid to be in a delay slot. */
2295 if (inst_env->slot_needed || inst_env->prefix_found)
2297 inst_env->invalid = 1;
2301 /* The prefix value is one dereference of the contents of the operand1
2303 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2304 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2306 /* Check if the mode is autoincrement. */
2307 if (cris_get_mode (inst) == AUTOINC_MODE)
2309 inst_env->reg[cris_get_operand1 (inst)] += 4;
2312 /* A prefix doesn't change the xflag_found. But the rest of the flags
2314 inst_env->slot_needed = 0;
2315 inst_env->xflag_found = 0;
2316 inst_env->prefix_found = 1;
2319 /* Finds the destination for a branch with 8-bits offset. */
2322 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2327 /* If we have a prefix or are in a delay slot it's bad. */
2328 if (inst_env->slot_needed || inst_env->prefix_found)
2330 inst_env->invalid = 1;
2334 /* We have a branch, find out where the branch will land. */
2335 offset = cris_get_branch_short_offset (inst);
2337 /* Check if the offset is signed. */
2338 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2343 /* The offset ends with the sign bit, set it to zero. The address
2344 should always be word aligned. */
2345 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2347 inst_env->branch_found = 1;
2348 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2350 inst_env->slot_needed = 1;
2351 inst_env->prefix_found = 0;
2352 inst_env->xflag_found = 0;
2353 inst_env->disable_interrupt = 1;
2356 /* Finds the destination for a branch with 16-bits offset. */
2359 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2363 /* If we have a prefix or is in a delay slot it's bad. */
2364 if (inst_env->slot_needed || inst_env->prefix_found)
2366 inst_env->invalid = 1;
2370 /* We have a branch, find out the offset for the branch. */
2371 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2373 /* The instruction is one word longer than normal, so add one word
2375 inst_env->reg[REG_PC] += 2;
2377 inst_env->branch_found = 1;
2378 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2381 inst_env->slot_needed = 1;
2382 inst_env->prefix_found = 0;
2383 inst_env->xflag_found = 0;
2384 inst_env->disable_interrupt = 1;
2387 /* Handles the ABS instruction. */
2390 abs_op (unsigned short inst, inst_env_type *inst_env)
2395 /* ABS can't have a prefix, so it's bad if it does. */
2396 if (inst_env->prefix_found)
2398 inst_env->invalid = 1;
2402 /* Check if the operation affects the PC. */
2403 if (cris_get_operand2 (inst) == REG_PC)
2406 /* It's invalid to change to the PC if we are in a delay slot. */
2407 if (inst_env->slot_needed)
2409 inst_env->invalid = 1;
2413 value = (long) inst_env->reg[REG_PC];
2415 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2416 if (value != SIGNED_DWORD_MASK)
2419 inst_env->reg[REG_PC] = (long) value;
2423 inst_env->slot_needed = 0;
2424 inst_env->prefix_found = 0;
2425 inst_env->xflag_found = 0;
2426 inst_env->disable_interrupt = 0;
2429 /* Handles the ADDI instruction. */
2432 addi_op (unsigned short inst, inst_env_type *inst_env)
2434 /* It's invalid to have the PC as base register. And ADDI can't have
2436 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2438 inst_env->invalid = 1;
2442 inst_env->slot_needed = 0;
2443 inst_env->prefix_found = 0;
2444 inst_env->xflag_found = 0;
2445 inst_env->disable_interrupt = 0;
2448 /* Handles the ASR instruction. */
2451 asr_op (unsigned short inst, inst_env_type *inst_env)
2454 unsigned long value;
2455 unsigned long signed_extend_mask = 0;
2457 /* ASR can't have a prefix, so check that it doesn't. */
2458 if (inst_env->prefix_found)
2460 inst_env->invalid = 1;
2464 /* Check if the PC is the target register. */
2465 if (cris_get_operand2 (inst) == REG_PC)
2467 /* It's invalid to change the PC in a delay slot. */
2468 if (inst_env->slot_needed)
2470 inst_env->invalid = 1;
2473 /* Get the number of bits to shift. */
2474 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2475 value = inst_env->reg[REG_PC];
2477 /* Find out how many bits the operation should apply to. */
2478 if (cris_get_size (inst) == INST_BYTE_SIZE)
2480 if (value & SIGNED_BYTE_MASK)
2482 signed_extend_mask = 0xFF;
2483 signed_extend_mask = signed_extend_mask >> shift_steps;
2484 signed_extend_mask = ~signed_extend_mask;
2486 value = value >> shift_steps;
2487 value |= signed_extend_mask;
2489 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2490 inst_env->reg[REG_PC] |= value;
2492 else if (cris_get_size (inst) == INST_WORD_SIZE)
2494 if (value & SIGNED_WORD_MASK)
2496 signed_extend_mask = 0xFFFF;
2497 signed_extend_mask = signed_extend_mask >> shift_steps;
2498 signed_extend_mask = ~signed_extend_mask;
2500 value = value >> shift_steps;
2501 value |= signed_extend_mask;
2503 inst_env->reg[REG_PC] &= 0xFFFF0000;
2504 inst_env->reg[REG_PC] |= value;
2506 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2508 if (value & SIGNED_DWORD_MASK)
2510 signed_extend_mask = 0xFFFFFFFF;
2511 signed_extend_mask = signed_extend_mask >> shift_steps;
2512 signed_extend_mask = ~signed_extend_mask;
2514 value = value >> shift_steps;
2515 value |= signed_extend_mask;
2516 inst_env->reg[REG_PC] = value;
2519 inst_env->slot_needed = 0;
2520 inst_env->prefix_found = 0;
2521 inst_env->xflag_found = 0;
2522 inst_env->disable_interrupt = 0;
2525 /* Handles the ASRQ instruction. */
2528 asrq_op (unsigned short inst, inst_env_type *inst_env)
2532 unsigned long value;
2533 unsigned long signed_extend_mask = 0;
2535 /* ASRQ can't have a prefix, so check that it doesn't. */
2536 if (inst_env->prefix_found)
2538 inst_env->invalid = 1;
2542 /* Check if the PC is the target register. */
2543 if (cris_get_operand2 (inst) == REG_PC)
2546 /* It's invalid to change the PC in a delay slot. */
2547 if (inst_env->slot_needed)
2549 inst_env->invalid = 1;
2552 /* The shift size is given as a 5 bit quick value, i.e. we don't
2553 want the the sign bit of the quick value. */
2554 shift_steps = cris_get_asr_shift_steps (inst);
2555 value = inst_env->reg[REG_PC];
2556 if (value & SIGNED_DWORD_MASK)
2558 signed_extend_mask = 0xFFFFFFFF;
2559 signed_extend_mask = signed_extend_mask >> shift_steps;
2560 signed_extend_mask = ~signed_extend_mask;
2562 value = value >> shift_steps;
2563 value |= signed_extend_mask;
2564 inst_env->reg[REG_PC] = value;
2566 inst_env->slot_needed = 0;
2567 inst_env->prefix_found = 0;
2568 inst_env->xflag_found = 0;
2569 inst_env->disable_interrupt = 0;
2572 /* Handles the AX, EI and SETF instruction. */
2575 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2577 if (inst_env->prefix_found)
2579 inst_env->invalid = 1;
2582 /* Check if the instruction is setting the X flag. */
2583 if (cris_is_xflag_bit_on (inst))
2585 inst_env->xflag_found = 1;
2589 inst_env->xflag_found = 0;
2591 inst_env->slot_needed = 0;
2592 inst_env->prefix_found = 0;
2593 inst_env->disable_interrupt = 1;
2596 /* Checks if the instruction is in assign mode. If so, it updates the assign
2597 register. Note that check_assign assumes that the caller has checked that
2598 there is a prefix to this instruction. The mode check depends on this. */
2601 check_assign (unsigned short inst, inst_env_type *inst_env)
2603 /* Check if it's an assign addressing mode. */
2604 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2606 /* Assign the prefix value to operand 1. */
2607 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2611 /* Handles the 2-operand BOUND instruction. */
2614 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2616 /* It's invalid to have the PC as the index operand. */
2617 if (cris_get_operand2 (inst) == REG_PC)
2619 inst_env->invalid = 1;
2622 /* Check if we have a prefix. */
2623 if (inst_env->prefix_found)
2625 check_assign (inst, inst_env);
2627 /* Check if this is an autoincrement mode. */
2628 else if (cris_get_mode (inst) == AUTOINC_MODE)
2630 /* It's invalid to change the PC in a delay slot. */
2631 if (inst_env->slot_needed)
2633 inst_env->invalid = 1;
2636 process_autoincrement (cris_get_size (inst), inst, inst_env);
2638 inst_env->slot_needed = 0;
2639 inst_env->prefix_found = 0;
2640 inst_env->xflag_found = 0;
2641 inst_env->disable_interrupt = 0;
2644 /* Handles the 3-operand BOUND instruction. */
2647 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2649 /* It's an error if we haven't got a prefix. And it's also an error
2650 if the PC is the destination register. */
2651 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2653 inst_env->invalid = 1;
2656 inst_env->slot_needed = 0;
2657 inst_env->prefix_found = 0;
2658 inst_env->xflag_found = 0;
2659 inst_env->disable_interrupt = 0;
2662 /* Clears the status flags in inst_env. */
2665 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2667 /* It's an error if we have got a prefix. */
2668 if (inst_env->prefix_found)
2670 inst_env->invalid = 1;
2674 inst_env->slot_needed = 0;
2675 inst_env->prefix_found = 0;
2676 inst_env->xflag_found = 0;
2677 inst_env->disable_interrupt = 0;
2680 /* Clears the status flags in inst_env. */
2683 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2685 /* It's an error if we have got a prefix. */
2686 if (inst_env->prefix_found)
2688 inst_env->invalid = 1;
2692 inst_env->slot_needed = 0;
2693 inst_env->prefix_found = 0;
2694 inst_env->xflag_found = 0;
2695 inst_env->disable_interrupt = 1;
2698 /* Handles the CLEAR instruction if it's in register mode. */
2701 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2703 /* Check if the target is the PC. */
2704 if (cris_get_operand2 (inst) == REG_PC)
2706 /* The instruction will clear the instruction's size bits. */
2707 int clear_size = cris_get_clear_size (inst);
2708 if (clear_size == INST_BYTE_SIZE)
2710 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2712 if (clear_size == INST_WORD_SIZE)
2714 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2716 if (clear_size == INST_DWORD_SIZE)
2718 inst_env->delay_slot_pc = 0x0;
2720 /* The jump will be delayed with one delay slot. So we need a delay
2722 inst_env->slot_needed = 1;
2723 inst_env->delay_slot_pc_active = 1;
2727 /* The PC will not change => no delay slot. */
2728 inst_env->slot_needed = 0;
2730 inst_env->prefix_found = 0;
2731 inst_env->xflag_found = 0;
2732 inst_env->disable_interrupt = 0;
2735 /* Handles the TEST instruction if it's in register mode. */
2738 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2740 /* It's an error if we have got a prefix. */
2741 if (inst_env->prefix_found)
2743 inst_env->invalid = 1;
2746 inst_env->slot_needed = 0;
2747 inst_env->prefix_found = 0;
2748 inst_env->xflag_found = 0;
2749 inst_env->disable_interrupt = 0;
2753 /* Handles the CLEAR and TEST instruction if the instruction isn't
2754 in register mode. */
2757 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2759 /* Check if we are in a prefix mode. */
2760 if (inst_env->prefix_found)
2762 /* The only way the PC can change is if this instruction is in
2763 assign addressing mode. */
2764 check_assign (inst, inst_env);
2766 /* Indirect mode can't change the PC so just check if the mode is
2768 else if (cris_get_mode (inst) == AUTOINC_MODE)
2770 process_autoincrement (cris_get_size (inst), inst, inst_env);
2772 inst_env->slot_needed = 0;
2773 inst_env->prefix_found = 0;
2774 inst_env->xflag_found = 0;
2775 inst_env->disable_interrupt = 0;
2778 /* Checks that the PC isn't the destination register or the instructions has
2782 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2784 /* It's invalid to have the PC as the destination. The instruction can't
2786 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2788 inst_env->invalid = 1;
2792 inst_env->slot_needed = 0;
2793 inst_env->prefix_found = 0;
2794 inst_env->xflag_found = 0;
2795 inst_env->disable_interrupt = 0;
2798 /* Checks that the instruction doesn't have a prefix. */
2801 break_op (unsigned short inst, inst_env_type *inst_env)
2803 /* The instruction can't have a prefix. */
2804 if (inst_env->prefix_found)
2806 inst_env->invalid = 1;
2810 inst_env->slot_needed = 0;
2811 inst_env->prefix_found = 0;
2812 inst_env->xflag_found = 0;
2813 inst_env->disable_interrupt = 1;
2816 /* Checks that the PC isn't the destination register and that the instruction
2817 doesn't have a prefix. */
2820 scc_op (unsigned short inst, inst_env_type *inst_env)
2822 /* It's invalid to have the PC as the destination. The instruction can't
2824 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2826 inst_env->invalid = 1;
2830 inst_env->slot_needed = 0;
2831 inst_env->prefix_found = 0;
2832 inst_env->xflag_found = 0;
2833 inst_env->disable_interrupt = 1;
2836 /* Handles the register mode JUMP instruction. */
2839 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2841 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2842 you can't have a prefix. */
2843 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2845 inst_env->invalid = 1;
2849 /* Just change the PC. */
2850 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2851 inst_env->slot_needed = 0;
2852 inst_env->prefix_found = 0;
2853 inst_env->xflag_found = 0;
2854 inst_env->disable_interrupt = 1;
2857 /* Handles the JUMP instruction for all modes except register. */
2860 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2862 unsigned long newpc;
2865 /* It's invalid to do a JUMP in a delay slot. */
2866 if (inst_env->slot_needed)
2868 inst_env->invalid = 1;
2872 /* Check if we have a prefix. */
2873 if (inst_env->prefix_found)
2875 check_assign (inst, inst_env);
2877 /* Get the new value for the the PC. */
2879 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2884 /* Get the new value for the PC. */
2885 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2886 newpc = read_memory_unsigned_integer (address, 4);
2888 /* Check if we should increment a register. */
2889 if (cris_get_mode (inst) == AUTOINC_MODE)
2891 inst_env->reg[cris_get_operand1 (inst)] += 4;
2894 inst_env->reg[REG_PC] = newpc;
2896 inst_env->slot_needed = 0;
2897 inst_env->prefix_found = 0;
2898 inst_env->xflag_found = 0;
2899 inst_env->disable_interrupt = 1;
2902 /* Handles moves to special registers (aka P-register) for all modes. */
2905 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2907 if (inst_env->prefix_found)
2909 /* The instruction has a prefix that means we are only interested if
2910 the instruction is in assign mode. */
2911 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2913 /* The prefix handles the problem if we are in a delay slot. */
2914 if (cris_get_operand1 (inst) == REG_PC)
2916 /* Just take care of the assign. */
2917 check_assign (inst, inst_env);
2921 else if (cris_get_mode (inst) == AUTOINC_MODE)
2923 /* The instruction doesn't have a prefix, the only case left that we
2924 are interested in is the autoincrement mode. */
2925 if (cris_get_operand1 (inst) == REG_PC)
2927 /* If the PC is to be incremented it's invalid to be in a
2929 if (inst_env->slot_needed)
2931 inst_env->invalid = 1;
2935 /* The increment depends on the size of the special register. */
2936 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2938 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2940 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2942 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2946 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2950 inst_env->slot_needed = 0;
2951 inst_env->prefix_found = 0;
2952 inst_env->xflag_found = 0;
2953 inst_env->disable_interrupt = 1;
2956 /* Handles moves from special registers (aka P-register) for all modes
2960 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2962 if (inst_env->prefix_found)
2964 /* The instruction has a prefix that means we are only interested if
2965 the instruction is in assign mode. */
2966 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2968 /* The prefix handles the problem if we are in a delay slot. */
2969 if (cris_get_operand1 (inst) == REG_PC)
2971 /* Just take care of the assign. */
2972 check_assign (inst, inst_env);
2976 /* The instruction doesn't have a prefix, the only case left that we
2977 are interested in is the autoincrement mode. */
2978 else if (cris_get_mode (inst) == AUTOINC_MODE)
2980 if (cris_get_operand1 (inst) == REG_PC)
2982 /* If the PC is to be incremented it's invalid to be in a
2984 if (inst_env->slot_needed)
2986 inst_env->invalid = 1;
2990 /* The increment depends on the size of the special register. */
2991 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2993 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2995 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2997 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3001 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3005 inst_env->slot_needed = 0;
3006 inst_env->prefix_found = 0;
3007 inst_env->xflag_found = 0;
3008 inst_env->disable_interrupt = 1;
3011 /* Handles moves from special registers (aka P-register) when the mode
3015 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3017 /* Register mode move from special register can't have a prefix. */
3018 if (inst_env->prefix_found)
3020 inst_env->invalid = 1;
3024 if (cris_get_operand1 (inst) == REG_PC)
3026 /* It's invalid to change the PC in a delay slot. */
3027 if (inst_env->slot_needed)
3029 inst_env->invalid = 1;
3032 /* The destination is the PC, the jump will have a delay slot. */
3033 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3034 inst_env->slot_needed = 1;
3035 inst_env->delay_slot_pc_active = 1;
3039 /* If the destination isn't PC, there will be no jump. */
3040 inst_env->slot_needed = 0;
3042 inst_env->prefix_found = 0;
3043 inst_env->xflag_found = 0;
3044 inst_env->disable_interrupt = 1;
3047 /* Handles the MOVEM from memory to general register instruction. */
3050 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3052 if (inst_env->prefix_found)
3054 /* The prefix handles the problem if we are in a delay slot. Is the
3055 MOVEM instruction going to change the PC? */
3056 if (cris_get_operand2 (inst) >= REG_PC)
3058 inst_env->reg[REG_PC] =
3059 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3061 /* The assign value is the value after the increment. Normally, the
3062 assign value is the value before the increment. */
3063 if ((cris_get_operand1 (inst) == REG_PC)
3064 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3066 inst_env->reg[REG_PC] = inst_env->prefix_value;
3067 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3072 /* Is the MOVEM instruction going to change the PC? */
3073 if (cris_get_operand2 (inst) == REG_PC)
3075 /* It's invalid to change the PC in a delay slot. */
3076 if (inst_env->slot_needed)
3078 inst_env->invalid = 1;
3081 inst_env->reg[REG_PC] =
3082 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3085 /* The increment is not depending on the size, instead it's depending
3086 on the number of registers loaded from memory. */
3087 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3089 /* It's invalid to change the PC in a delay slot. */
3090 if (inst_env->slot_needed)
3092 inst_env->invalid = 1;
3095 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3098 inst_env->slot_needed = 0;
3099 inst_env->prefix_found = 0;
3100 inst_env->xflag_found = 0;
3101 inst_env->disable_interrupt = 0;
3104 /* Handles the MOVEM to memory from general register instruction. */
3107 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3109 if (inst_env->prefix_found)
3111 /* The assign value is the value after the increment. Normally, the
3112 assign value is the value before the increment. */
3113 if ((cris_get_operand1 (inst) == REG_PC) &&
3114 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3116 /* The prefix handles the problem if we are in a delay slot. */
3117 inst_env->reg[REG_PC] = inst_env->prefix_value;
3118 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3123 /* The increment is not depending on the size, instead it's depending
3124 on the number of registers loaded to memory. */
3125 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3127 /* It's invalid to change the PC in a delay slot. */
3128 if (inst_env->slot_needed)
3130 inst_env->invalid = 1;
3133 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3136 inst_env->slot_needed = 0;
3137 inst_env->prefix_found = 0;
3138 inst_env->xflag_found = 0;
3139 inst_env->disable_interrupt = 0;
3142 /* Handles the intructions that's not yet implemented, by setting
3143 inst_env->invalid to true. */
3146 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3148 inst_env->invalid = 1;
3151 /* Handles the XOR instruction. */
3154 xor_op (unsigned short inst, inst_env_type *inst_env)
3156 /* XOR can't have a prefix. */
3157 if (inst_env->prefix_found)
3159 inst_env->invalid = 1;
3163 /* Check if the PC is the target. */
3164 if (cris_get_operand2 (inst) == REG_PC)
3166 /* It's invalid to change the PC in a delay slot. */
3167 if (inst_env->slot_needed)
3169 inst_env->invalid = 1;
3172 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3174 inst_env->slot_needed = 0;
3175 inst_env->prefix_found = 0;
3176 inst_env->xflag_found = 0;
3177 inst_env->disable_interrupt = 0;
3180 /* Handles the MULS instruction. */
3183 muls_op (unsigned short inst, inst_env_type *inst_env)
3185 /* MULS/U can't have a prefix. */
3186 if (inst_env->prefix_found)
3188 inst_env->invalid = 1;
3192 /* Consider it invalid if the PC is the target. */
3193 if (cris_get_operand2 (inst) == REG_PC)
3195 inst_env->invalid = 1;
3198 inst_env->slot_needed = 0;
3199 inst_env->prefix_found = 0;
3200 inst_env->xflag_found = 0;
3201 inst_env->disable_interrupt = 0;
3204 /* Handles the MULU instruction. */
3207 mulu_op (unsigned short inst, inst_env_type *inst_env)
3209 /* MULS/U can't have a prefix. */
3210 if (inst_env->prefix_found)
3212 inst_env->invalid = 1;
3216 /* Consider it invalid if the PC is the target. */
3217 if (cris_get_operand2 (inst) == REG_PC)
3219 inst_env->invalid = 1;
3222 inst_env->slot_needed = 0;
3223 inst_env->prefix_found = 0;
3224 inst_env->xflag_found = 0;
3225 inst_env->disable_interrupt = 0;
3228 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3229 The MOVE instruction is the move from source to register. */
3232 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3233 unsigned long source1, unsigned long source2)
3235 unsigned long pc_mask;
3236 unsigned long operation_mask;
3238 /* Find out how many bits the operation should apply to. */
3239 if (cris_get_size (inst) == INST_BYTE_SIZE)
3241 pc_mask = 0xFFFFFF00;
3242 operation_mask = 0xFF;
3244 else if (cris_get_size (inst) == INST_WORD_SIZE)
3246 pc_mask = 0xFFFF0000;
3247 operation_mask = 0xFFFF;
3249 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3252 operation_mask = 0xFFFFFFFF;
3256 /* The size is out of range. */
3257 inst_env->invalid = 1;
3261 /* The instruction just works on uw_operation_mask bits. */
3262 source2 &= operation_mask;
3263 source1 &= operation_mask;
3265 /* Now calculate the result. The opcode's 3 first bits separates
3266 the different actions. */
3267 switch (cris_get_opcode (inst) & 7)
3277 case 2: /* subtract */
3281 case 3: /* compare */
3293 inst_env->invalid = 1;
3299 /* Make sure that the result doesn't contain more than the instruction
3301 source2 &= operation_mask;
3303 /* Calculate the new breakpoint address. */
3304 inst_env->reg[REG_PC] &= pc_mask;
3305 inst_env->reg[REG_PC] |= source1;
3309 /* Extends the value from either byte or word size to a dword. If the mode
3310 is zero extend then the value is extended with zero. If instead the mode
3311 is signed extend the sign bit of the value is taken into consideration. */
3313 static unsigned long
3314 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3316 /* The size can be either byte or word, check which one it is.
3317 Don't check the highest bit, it's indicating if it's a zero
3319 if (cris_get_size (*inst) & INST_WORD_SIZE)
3324 /* Check if the instruction is signed extend. If so, check if value has
3326 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3328 value |= SIGNED_WORD_EXTEND_MASK;
3336 /* Check if the instruction is signed extend. If so, check if value has
3338 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3340 value |= SIGNED_BYTE_EXTEND_MASK;
3343 /* The size should now be dword. */
3344 cris_set_size_to_dword (inst);
3348 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3349 instruction. The MOVE instruction is the move from source to register. */
3352 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3353 inst_env_type *inst_env)
3355 unsigned long operand1;
3356 unsigned long operand2;
3358 /* It's invalid to have a prefix to the instruction. This is a register
3359 mode instruction and can't have a prefix. */
3360 if (inst_env->prefix_found)
3362 inst_env->invalid = 1;
3365 /* Check if the instruction has PC as its target. */
3366 if (cris_get_operand2 (inst) == REG_PC)
3368 if (inst_env->slot_needed)
3370 inst_env->invalid = 1;
3373 /* The instruction has the PC as its target register. */
3374 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3375 operand2 = inst_env->reg[REG_PC];
3377 /* Check if it's a extend, signed or zero instruction. */
3378 if (cris_get_opcode (inst) < 4)
3380 operand1 = do_sign_or_zero_extend (operand1, &inst);
3382 /* Calculate the PC value after the instruction, i.e. where the
3383 breakpoint should be. The order of the udw_operands is vital. */
3384 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3386 inst_env->slot_needed = 0;
3387 inst_env->prefix_found = 0;
3388 inst_env->xflag_found = 0;
3389 inst_env->disable_interrupt = 0;
3392 /* Returns the data contained at address. The size of the data is derived from
3393 the size of the operation. If the instruction is a zero or signed
3394 extend instruction, the size field is changed in instruction. */
3396 static unsigned long
3397 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3399 int size = cris_get_size (*inst);
3400 unsigned long value;
3402 /* If it's an extend instruction we don't want the signed extend bit,
3403 because it influences the size. */
3404 if (cris_get_opcode (*inst) < 4)
3406 size &= ~SIGNED_EXTEND_BIT_MASK;
3408 /* Is there a need for checking the size? Size should contain the number of
3411 value = read_memory_unsigned_integer (address, size);
3413 /* Check if it's an extend, signed or zero instruction. */
3414 if (cris_get_opcode (*inst) < 4)
3416 value = do_sign_or_zero_extend (value, inst);
3421 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3422 instructions. The MOVE instruction is the move from source to register. */
3425 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3426 inst_env_type *inst_env)
3428 unsigned long operand2;
3429 unsigned long operand3;
3431 check_assign (inst, inst_env);
3432 if (cris_get_operand2 (inst) == REG_PC)
3434 operand2 = inst_env->reg[REG_PC];
3436 /* Get the value of the third operand. */
3437 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3439 /* Calculate the PC value after the instruction, i.e. where the
3440 breakpoint should be. The order of the udw_operands is vital. */
3441 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3443 inst_env->slot_needed = 0;
3444 inst_env->prefix_found = 0;
3445 inst_env->xflag_found = 0;
3446 inst_env->disable_interrupt = 0;
3449 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3450 OR instructions. Note that for this to work as expected, the calling
3451 function must have made sure that there is a prefix to this instruction. */
3454 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3455 inst_env_type *inst_env)
3457 unsigned long operand2;
3458 unsigned long operand3;
3460 if (cris_get_operand1 (inst) == REG_PC)
3462 /* The PC will be changed by the instruction. */
3463 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3465 /* Get the value of the third operand. */
3466 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3468 /* Calculate the PC value after the instruction, i.e. where the
3469 breakpoint should be. */
3470 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3472 inst_env->slot_needed = 0;
3473 inst_env->prefix_found = 0;
3474 inst_env->xflag_found = 0;
3475 inst_env->disable_interrupt = 0;
3478 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3479 instructions. The MOVE instruction is the move from source to register. */
3482 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3483 inst_env_type *inst_env)
3485 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3487 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3488 SUB, AND or OR something weird is going on (if everything works these
3489 instructions should end up in the three operand version). */
3490 inst_env->invalid = 1;
3495 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3497 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3499 inst_env->slot_needed = 0;
3500 inst_env->prefix_found = 0;
3501 inst_env->xflag_found = 0;
3502 inst_env->disable_interrupt = 0;
3505 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3506 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3507 source to register. */
3510 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3511 inst_env_type *inst_env)
3513 unsigned long operand1;
3514 unsigned long operand2;
3515 unsigned long operand3;
3518 /* The instruction is either an indirect or autoincrement addressing mode.
3519 Check if the destination register is the PC. */
3520 if (cris_get_operand2 (inst) == REG_PC)
3522 /* Must be done here, get_data_from_address may change the size
3524 size = cris_get_size (inst);
3525 operand2 = inst_env->reg[REG_PC];
3527 /* Get the value of the third operand, i.e. the indirect operand. */
3528 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3529 operand3 = get_data_from_address (&inst, operand1);
3531 /* Calculate the PC value after the instruction, i.e. where the
3532 breakpoint should be. The order of the udw_operands is vital. */
3533 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3535 /* If this is an autoincrement addressing mode, check if the increment
3537 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3539 /* Get the size field. */
3540 size = cris_get_size (inst);
3542 /* If it's an extend instruction we don't want the signed extend bit,
3543 because it influences the size. */
3544 if (cris_get_opcode (inst) < 4)
3546 size &= ~SIGNED_EXTEND_BIT_MASK;
3548 process_autoincrement (size, inst, inst_env);
3550 inst_env->slot_needed = 0;
3551 inst_env->prefix_found = 0;
3552 inst_env->xflag_found = 0;
3553 inst_env->disable_interrupt = 0;
3556 /* Handles the two-operand addressing mode, all modes except register, for
3557 the ADD, SUB CMP, AND and OR instruction. */
3560 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3561 inst_env_type *inst_env)
3563 if (inst_env->prefix_found)
3565 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3567 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3569 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3571 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3575 /* The mode is invalid for a prefixed base instruction. */
3576 inst_env->invalid = 1;
3582 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3586 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3589 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3591 unsigned long operand1;
3592 unsigned long operand2;
3594 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3595 instruction and can't have a prefix. */
3596 if (inst_env->prefix_found)
3598 inst_env->invalid = 1;
3602 /* Check if the instruction has PC as its target. */
3603 if (cris_get_operand2 (inst) == REG_PC)
3605 if (inst_env->slot_needed)
3607 inst_env->invalid = 1;
3610 operand1 = cris_get_quick_value (inst);
3611 operand2 = inst_env->reg[REG_PC];
3613 /* The size should now be dword. */
3614 cris_set_size_to_dword (&inst);
3616 /* Calculate the PC value after the instruction, i.e. where the
3617 breakpoint should be. */
3618 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3620 inst_env->slot_needed = 0;
3621 inst_env->prefix_found = 0;
3622 inst_env->xflag_found = 0;
3623 inst_env->disable_interrupt = 0;
3626 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3629 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3631 unsigned long operand1;
3632 unsigned long operand2;
3634 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3635 instruction and can't have a prefix. */
3636 if (inst_env->prefix_found)
3638 inst_env->invalid = 1;
3641 /* Check if the instruction has PC as its target. */
3642 if (cris_get_operand2 (inst) == REG_PC)
3644 if (inst_env->slot_needed)
3646 inst_env->invalid = 1;
3649 /* The instruction has the PC as its target register. */
3650 operand1 = cris_get_quick_value (inst);
3651 operand2 = inst_env->reg[REG_PC];
3653 /* The quick value is signed, so check if we must do a signed extend. */
3654 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3657 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3659 /* The size should now be dword. */
3660 cris_set_size_to_dword (&inst);
3662 /* Calculate the PC value after the instruction, i.e. where the
3663 breakpoint should be. */
3664 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3666 inst_env->slot_needed = 0;
3667 inst_env->prefix_found = 0;
3668 inst_env->xflag_found = 0;
3669 inst_env->disable_interrupt = 0;
3672 /* Translate op_type to a function and call it. */
3675 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3676 inst_env_type *inst_env)
3680 case cris_not_implemented_op:
3681 not_implemented_op (inst, inst_env);
3685 abs_op (inst, inst_env);
3689 addi_op (inst, inst_env);
3693 asr_op (inst, inst_env);
3697 asrq_op (inst, inst_env);
3700 case cris_ax_ei_setf_op:
3701 ax_ei_setf_op (inst, inst_env);
3704 case cris_bdap_prefix:
3705 bdap_prefix (inst, inst_env);
3708 case cris_biap_prefix:
3709 biap_prefix (inst, inst_env);
3713 break_op (inst, inst_env);
3716 case cris_btst_nop_op:
3717 btst_nop_op (inst, inst_env);
3720 case cris_clearf_di_op:
3721 clearf_di_op (inst, inst_env);
3724 case cris_dip_prefix:
3725 dip_prefix (inst, inst_env);
3728 case cris_dstep_logshift_mstep_neg_not_op:
3729 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3732 case cris_eight_bit_offset_branch_op:
3733 eight_bit_offset_branch_op (inst, inst_env);
3736 case cris_move_mem_to_reg_movem_op:
3737 move_mem_to_reg_movem_op (inst, inst_env);
3740 case cris_move_reg_to_mem_movem_op:
3741 move_reg_to_mem_movem_op (inst, inst_env);
3744 case cris_move_to_preg_op:
3745 move_to_preg_op (inst, inst_env);
3749 muls_op (inst, inst_env);
3753 mulu_op (inst, inst_env);
3756 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3757 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3760 case cris_none_reg_mode_clear_test_op:
3761 none_reg_mode_clear_test_op (inst, inst_env);
3764 case cris_none_reg_mode_jump_op:
3765 none_reg_mode_jump_op (inst, inst_env);
3768 case cris_none_reg_mode_move_from_preg_op:
3769 none_reg_mode_move_from_preg_op (inst, inst_env);
3772 case cris_quick_mode_add_sub_op:
3773 quick_mode_add_sub_op (inst, inst_env);
3776 case cris_quick_mode_and_cmp_move_or_op:
3777 quick_mode_and_cmp_move_or_op (inst, inst_env);
3780 case cris_quick_mode_bdap_prefix:
3781 quick_mode_bdap_prefix (inst, inst_env);
3784 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3785 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3788 case cris_reg_mode_clear_op:
3789 reg_mode_clear_op (inst, inst_env);
3792 case cris_reg_mode_jump_op:
3793 reg_mode_jump_op (inst, inst_env);
3796 case cris_reg_mode_move_from_preg_op:
3797 reg_mode_move_from_preg_op (inst, inst_env);
3800 case cris_reg_mode_test_op:
3801 reg_mode_test_op (inst, inst_env);
3805 scc_op (inst, inst_env);
3808 case cris_sixteen_bit_offset_branch_op:
3809 sixteen_bit_offset_branch_op (inst, inst_env);
3812 case cris_three_operand_add_sub_cmp_and_or_op:
3813 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3816 case cris_three_operand_bound_op:
3817 three_operand_bound_op (inst, inst_env);
3820 case cris_two_operand_bound_op:
3821 two_operand_bound_op (inst, inst_env);
3825 xor_op (inst, inst_env);
3830 /* This wrapper is to avoid cris_get_assembler being called before
3831 exec_bfd has been set. */
3834 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3836 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3837 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3838 disassembler, even when there is no BFD. Does something like
3839 "gdb; target remote; disassmeble *0x123" work? */
3840 gdb_assert (exec_bfd != NULL);
3841 print_insn = cris_get_disassembler (exec_bfd);
3842 gdb_assert (print_insn != NULL);
3843 return print_insn (addr, info);
3846 /* Copied from <asm/elf.h>. */
3847 typedef unsigned long elf_greg_t;
3849 /* Same as user_regs_struct struct in <asm/user.h>. */
3850 #define CRISV10_ELF_NGREG 35
3851 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3853 #define CRISV32_ELF_NGREG 32
3854 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3856 /* Unpack an elf_gregset_t into GDB's register cache. */
3859 supply_gregset (elf_gregset_t *gregsetp)
3861 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3863 elf_greg_t *regp = *gregsetp;
3864 static char zerobuf[4] = {0};
3866 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3867 knows about the actual size of each register so that's no problem. */
3868 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3870 regcache_raw_supply (current_regcache, i, (char *)®p[i]);
3873 if (tdep->cris_version == 32)
3875 /* Needed to set pseudo-register PC for CRISv32. */
3876 /* FIXME: If ERP is in a delay slot at this point then the PC will
3877 be wrong. Issue a warning to alert the user. */
3878 regcache_raw_supply (current_regcache, PC_REGNUM,
3879 (char *)®p[ERP_REGNUM]);
3881 if (*(char *)®p[ERP_REGNUM] & 0x1)
3882 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3886 /* Use a local version of this function to get the correct types for
3887 regsets, until multi-arch core support is ready. */
3890 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3891 int which, CORE_ADDR reg_addr)
3893 elf_gregset_t gregset;
3898 if (core_reg_size != sizeof (elf_gregset_t)
3899 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3901 warning (_("wrong size gregset struct in core file"));
3905 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3906 supply_gregset (&gregset);
3910 /* We've covered all the kinds of registers we know about here,
3911 so this must be something we wouldn't know what to do with
3912 anyway. Just ignore it. */
3917 static struct core_fns cris_elf_core_fns =
3919 bfd_target_elf_flavour, /* core_flavour */
3920 default_check_format, /* check_format */
3921 default_core_sniffer, /* core_sniffer */
3922 fetch_core_registers, /* core_read_registers */
3926 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3929 _initialize_cris_tdep (void)
3931 static struct cmd_list_element *cris_set_cmdlist;
3932 static struct cmd_list_element *cris_show_cmdlist;
3934 struct cmd_list_element *c;
3936 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3938 /* CRIS-specific user-commands. */
3939 add_setshow_uinteger_cmd ("cris-version", class_support,
3940 &usr_cmd_cris_version,
3941 _("Set the current CRIS version."),
3942 _("Show the current CRIS version."),
3944 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3947 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3948 &setlist, &showlist);
3950 add_setshow_enum_cmd ("cris-mode", class_support,
3951 cris_modes, &usr_cmd_cris_mode,
3952 _("Set the current CRIS mode."),
3953 _("Show the current CRIS mode."),
3955 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3956 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3958 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3959 &setlist, &showlist);
3961 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3962 &usr_cmd_cris_dwarf2_cfi,
3963 _("Set the usage of Dwarf-2 CFI for CRIS."),
3964 _("Show the usage of Dwarf-2 CFI for CRIS."),
3965 _("Set this to \"off\" if using gcc-cris < R59."),
3966 set_cris_dwarf2_cfi,
3967 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3968 &setlist, &showlist);
3970 deprecated_add_core_fns (&cris_elf_core_fns);
3973 /* Prints out all target specific values. */
3976 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3978 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3981 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3982 tdep->cris_version);
3983 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3985 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3986 tdep->cris_dwarf2_cfi);
3991 set_cris_version (char *ignore_args, int from_tty,
3992 struct cmd_list_element *c)
3994 struct gdbarch_info info;
3996 usr_cmd_cris_version_valid = 1;
3998 /* Update the current architecture, if needed. */
3999 gdbarch_info_init (&info);
4000 if (!gdbarch_update_p (info))
4001 internal_error (__FILE__, __LINE__,
4002 _("cris_gdbarch_update: failed to update architecture."));
4006 set_cris_mode (char *ignore_args, int from_tty,
4007 struct cmd_list_element *c)
4009 struct gdbarch_info info;
4011 /* Update the current architecture, if needed. */
4012 gdbarch_info_init (&info);
4013 if (!gdbarch_update_p (info))
4014 internal_error (__FILE__, __LINE__,
4015 "cris_gdbarch_update: failed to update architecture.");
4019 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4020 struct cmd_list_element *c)
4022 struct gdbarch_info info;
4024 /* Update the current architecture, if needed. */
4025 gdbarch_info_init (&info);
4026 if (!gdbarch_update_p (info))
4027 internal_error (__FILE__, __LINE__,
4028 _("cris_gdbarch_update: failed to update architecture."));
4031 static struct gdbarch *
4032 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4034 struct gdbarch *gdbarch;
4035 struct gdbarch_tdep *tdep;
4038 if (usr_cmd_cris_version_valid)
4040 /* Trust the user's CRIS version setting. */
4041 cris_version = usr_cmd_cris_version;
4043 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4049 /* Assume it's CRIS version 10. */
4053 /* Make the current settings visible to the user. */
4054 usr_cmd_cris_version = cris_version;
4056 /* Find a candidate among the list of pre-declared architectures. */
4057 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4059 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4061 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4062 == usr_cmd_cris_version)
4063 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4064 == usr_cmd_cris_mode)
4065 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4066 == usr_cmd_cris_dwarf2_cfi))
4067 return arches->gdbarch;
4070 /* No matching architecture was found. Create a new one. */
4071 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4072 gdbarch = gdbarch_alloc (&info, tdep);
4074 tdep->cris_version = usr_cmd_cris_version;
4075 tdep->cris_mode = usr_cmd_cris_mode;
4076 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4078 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4079 switch (info.byte_order)
4081 case BFD_ENDIAN_LITTLE:
4085 case BFD_ENDIAN_BIG:
4086 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4090 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4093 set_gdbarch_return_value (gdbarch, cris_return_value);
4094 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4095 cris_reg_struct_has_addr);
4096 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
4098 set_gdbarch_sp_regnum (gdbarch, 14);
4100 /* Length of ordinary registers used in push_word and a few other
4101 places. register_size() is the real way to know how big a
4104 set_gdbarch_double_bit (gdbarch, 64);
4105 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4106 which means we have to set this explicitly. */
4107 set_gdbarch_long_double_bit (gdbarch, 64);
4109 /* The total amount of space needed to store (in an array called registers)
4110 GDB's copy of the machine's register state. Note: We can not use
4111 cris_register_size at this point, since it relies on current_gdbarch
4113 switch (tdep->cris_version)
4121 /* Old versions; not supported. */
4122 internal_error (__FILE__, __LINE__,
4123 _("cris_gdbarch_init: unsupported CRIS version"));
4128 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4129 P7 (32 bits), and P15 (32 bits) have been implemented. */
4130 set_gdbarch_pc_regnum (gdbarch, 15);
4131 set_gdbarch_register_type (gdbarch, cris_register_type);
4132 /* There are 32 registers (some of which may not be implemented). */
4133 set_gdbarch_num_regs (gdbarch, 32);
4134 set_gdbarch_register_name (gdbarch, cris_register_name);
4135 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4136 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4138 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4142 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4143 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4144 and pseudo-register PC (32 bits). */
4145 set_gdbarch_pc_regnum (gdbarch, 32);
4146 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4147 /* 32 registers + pseudo-register PC + 16 support registers. */
4148 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4149 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4151 set_gdbarch_cannot_store_register
4152 (gdbarch, crisv32_cannot_store_register);
4153 set_gdbarch_cannot_fetch_register
4154 (gdbarch, crisv32_cannot_fetch_register);
4156 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4158 set_gdbarch_single_step_through_delay
4159 (gdbarch, crisv32_single_step_through_delay);
4164 internal_error (__FILE__, __LINE__,
4165 _("cris_gdbarch_init: unknown CRIS version"));
4168 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4169 have the same ABI). */
4170 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4171 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4172 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4173 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4175 /* The stack grows downward. */
4176 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4178 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4180 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4181 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4182 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4184 if (tdep->cris_dwarf2_cfi == 1)
4186 /* Hook in the Dwarf-2 frame sniffer. */
4187 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4188 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4189 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4192 if (tdep->cris_mode != cris_mode_guru)
4194 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4197 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4198 frame_base_set_default (gdbarch, &cris_frame_base);
4200 set_solib_svr4_fetch_link_map_offsets
4201 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4203 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4204 disassembler, even when there is no BFD. Does something like
4205 "gdb; target remote; disassmeble *0x123" work? */
4206 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);