1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
48 /* The tdep structure. */
51 /* SPU-specific vector type. */
52 struct type *spu_builtin_type_vec128;
56 /* SPU-specific vector type. */
58 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
60 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
62 if (!tdep->spu_builtin_type_vec128)
64 const struct builtin_type *bt = builtin_type (gdbarch);
67 t = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
68 append_composite_type_field (t, "uint128", bt->builtin_int128);
69 append_composite_type_field (t, "v2_int64",
70 init_vector_type (bt->builtin_int64, 2));
71 append_composite_type_field (t, "v4_int32",
72 init_vector_type (bt->builtin_int32, 4));
73 append_composite_type_field (t, "v8_int16",
74 init_vector_type (bt->builtin_int16, 8));
75 append_composite_type_field (t, "v16_int8",
76 init_vector_type (bt->builtin_int8, 16));
77 append_composite_type_field (t, "v2_double",
78 init_vector_type (bt->builtin_double, 2));
79 append_composite_type_field (t, "v4_float",
80 init_vector_type (bt->builtin_float, 4));
83 TYPE_NAME (t) = "spu_builtin_type_vec128";
85 tdep->spu_builtin_type_vec128 = t;
88 return tdep->spu_builtin_type_vec128;
92 /* The list of available "info spu " commands. */
93 static struct cmd_list_element *infospucmdlist = NULL;
98 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
100 static char *register_names[] =
102 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
103 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
104 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
105 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
106 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
107 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
108 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
109 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
110 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
111 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
112 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
113 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
114 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
115 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
116 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
117 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
118 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
123 if (reg_nr >= sizeof register_names / sizeof *register_names)
126 return register_names[reg_nr];
130 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
132 if (reg_nr < SPU_NUM_GPRS)
133 return spu_builtin_type_vec128 (gdbarch);
138 return builtin_type (gdbarch)->builtin_uint32;
141 return builtin_type (gdbarch)->builtin_func_ptr;
144 return builtin_type (gdbarch)->builtin_data_ptr;
146 case SPU_FPSCR_REGNUM:
147 return builtin_type (gdbarch)->builtin_uint128;
149 case SPU_SRR0_REGNUM:
150 return builtin_type (gdbarch)->builtin_uint32;
152 case SPU_LSLR_REGNUM:
153 return builtin_type (gdbarch)->builtin_uint32;
155 case SPU_DECR_REGNUM:
156 return builtin_type (gdbarch)->builtin_uint32;
158 case SPU_DECR_STATUS_REGNUM:
159 return builtin_type (gdbarch)->builtin_uint32;
162 internal_error (__FILE__, __LINE__, "invalid regnum");
166 /* Pseudo registers for preferred slots - stack pointer. */
169 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
176 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
177 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
178 memset (reg, 0, sizeof reg);
179 target_read (¤t_target, TARGET_OBJECT_SPU, annex,
182 store_unsigned_integer (buf, 4, strtoulst (reg, NULL, 16));
186 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
187 int regnum, gdb_byte *buf)
196 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
197 memcpy (buf, reg, 4);
200 case SPU_FPSCR_REGNUM:
201 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
202 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
203 target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
206 case SPU_SRR0_REGNUM:
207 spu_pseudo_register_read_spu (regcache, "srr0", buf);
210 case SPU_LSLR_REGNUM:
211 spu_pseudo_register_read_spu (regcache, "lslr", buf);
214 case SPU_DECR_REGNUM:
215 spu_pseudo_register_read_spu (regcache, "decr", buf);
218 case SPU_DECR_STATUS_REGNUM:
219 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
223 internal_error (__FILE__, __LINE__, _("invalid regnum"));
228 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
235 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
236 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
237 xsnprintf (reg, sizeof reg, "0x%s",
238 phex_nz (extract_unsigned_integer (buf, 4), 4));
239 target_write (¤t_target, TARGET_OBJECT_SPU, annex,
240 reg, 0, strlen (reg));
244 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
245 int regnum, const gdb_byte *buf)
254 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
255 memcpy (reg, buf, 4);
256 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
259 case SPU_FPSCR_REGNUM:
260 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
261 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
262 target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
265 case SPU_SRR0_REGNUM:
266 spu_pseudo_register_write_spu (regcache, "srr0", buf);
269 case SPU_LSLR_REGNUM:
270 spu_pseudo_register_write_spu (regcache, "lslr", buf);
273 case SPU_DECR_REGNUM:
274 spu_pseudo_register_write_spu (regcache, "decr", buf);
277 case SPU_DECR_STATUS_REGNUM:
278 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
282 internal_error (__FILE__, __LINE__, _("invalid regnum"));
286 /* Value conversion -- access scalar values at the preferred slot. */
288 static struct value *
289 spu_value_from_register (struct type *type, int regnum,
290 struct frame_info *frame)
292 struct value *value = default_value_from_register (type, regnum, frame);
293 int len = TYPE_LENGTH (type);
295 if (regnum < SPU_NUM_GPRS && len < 16)
297 int preferred_slot = len < 4 ? 4 - len : 0;
298 set_value_offset (value, preferred_slot);
304 /* Register groups. */
307 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
308 struct reggroup *group)
310 /* Registers displayed via 'info regs'. */
311 if (group == general_reggroup)
314 /* Registers displayed via 'info float'. */
315 if (group == float_reggroup)
318 /* Registers that need to be saved/restored in order to
319 push or pop frames. */
320 if (group == save_reggroup || group == restore_reggroup)
323 return default_register_reggroup_p (gdbarch, regnum, group);
326 /* Address conversion. */
329 spu_pointer_to_address (struct gdbarch *gdbarch,
330 struct type *type, const gdb_byte *buf)
332 ULONGEST addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
333 ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
335 if (target_has_registers && target_has_stack && target_has_memory)
336 lslr = get_frame_register_unsigned (get_selected_frame (NULL),
343 spu_integer_to_address (struct gdbarch *gdbarch,
344 struct type *type, const gdb_byte *buf)
346 ULONGEST addr = unpack_long (type, buf);
347 ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
349 if (target_has_registers && target_has_stack && target_has_memory)
350 lslr = get_frame_register_unsigned (get_selected_frame (NULL),
357 /* Decoding SPU instructions. */
394 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
396 if ((insn >> 21) == op)
399 *ra = (insn >> 7) & 127;
400 *rb = (insn >> 14) & 127;
408 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
410 if ((insn >> 28) == op)
412 *rt = (insn >> 21) & 127;
413 *ra = (insn >> 7) & 127;
414 *rb = (insn >> 14) & 127;
423 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
425 if ((insn >> 21) == op)
428 *ra = (insn >> 7) & 127;
429 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
437 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
439 if ((insn >> 24) == op)
442 *ra = (insn >> 7) & 127;
443 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
451 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
453 if ((insn >> 23) == op)
456 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
464 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
466 if ((insn >> 25) == op)
469 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
477 is_branch (unsigned int insn, int *offset, int *reg)
481 if (is_ri16 (insn, op_br, &rt, &i16)
482 || is_ri16 (insn, op_brsl, &rt, &i16)
483 || is_ri16 (insn, op_brnz, &rt, &i16)
484 || is_ri16 (insn, op_brz, &rt, &i16)
485 || is_ri16 (insn, op_brhnz, &rt, &i16)
486 || is_ri16 (insn, op_brhz, &rt, &i16))
488 *reg = SPU_PC_REGNUM;
493 if (is_ri16 (insn, op_bra, &rt, &i16)
494 || is_ri16 (insn, op_brasl, &rt, &i16))
501 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
502 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
503 || is_ri7 (insn, op_biz, &rt, reg, &i7)
504 || is_ri7 (insn, op_binz, &rt, reg, &i7)
505 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
506 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
516 /* Prolog parsing. */
518 struct spu_prologue_data
520 /* Stack frame size. -1 if analysis was unsuccessful. */
523 /* How to find the CFA. The CFA is equal to SP at function entry. */
527 /* Offset relative to CFA where a register is saved. -1 if invalid. */
528 int reg_offset[SPU_NUM_GPRS];
532 spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
533 struct spu_prologue_data *data)
538 int reg_immed[SPU_NUM_GPRS];
540 CORE_ADDR prolog_pc = start_pc;
545 /* Initialize DATA to default values. */
548 data->cfa_reg = SPU_RAW_SP_REGNUM;
549 data->cfa_offset = 0;
551 for (i = 0; i < SPU_NUM_GPRS; i++)
552 data->reg_offset[i] = -1;
554 /* Set up REG_IMMED array. This is non-zero for a register if we know its
555 preferred slot currently holds this immediate value. */
556 for (i = 0; i < SPU_NUM_GPRS; i++)
559 /* Scan instructions until the first branch.
561 The following instructions are important prolog components:
563 - The first instruction to set up the stack pointer.
564 - The first instruction to set up the frame pointer.
565 - The first instruction to save the link register.
567 We return the instruction after the latest of these three,
568 or the incoming PC if none is found. The first instruction
569 to set up the stack pointer also defines the frame size.
571 Note that instructions saving incoming arguments to their stack
572 slots are not counted as important, because they are hard to
573 identify with certainty. This should not matter much, because
574 arguments are relevant only in code compiled with debug data,
575 and in such code the GDB core will advance until the first source
576 line anyway, using SAL data.
578 For purposes of stack unwinding, we analyze the following types
579 of instructions in addition:
581 - Any instruction adding to the current frame pointer.
582 - Any instruction loading an immediate constant into a register.
583 - Any instruction storing a register onto the stack.
585 These are used to compute the CFA and REG_OFFSET output. */
587 for (pc = start_pc; pc < end_pc; pc += 4)
590 int rt, ra, rb, rc, immed;
592 if (target_read_memory (pc, buf, 4))
594 insn = extract_unsigned_integer (buf, 4);
596 /* AI is the typical instruction to set up a stack frame.
597 It is also used to initialize the frame pointer. */
598 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
600 if (rt == data->cfa_reg && ra == data->cfa_reg)
601 data->cfa_offset -= immed;
603 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
611 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
617 data->cfa_reg = SPU_FP_REGNUM;
618 data->cfa_offset -= immed;
622 /* A is used to set up stack frames of size >= 512 bytes.
623 If we have tracked the contents of the addend register,
624 we can handle this as well. */
625 else if (is_rr (insn, op_a, &rt, &ra, &rb))
627 if (rt == data->cfa_reg && ra == data->cfa_reg)
629 if (reg_immed[rb] != 0)
630 data->cfa_offset -= reg_immed[rb];
632 data->cfa_reg = -1; /* We don't know the CFA any more. */
635 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
641 if (reg_immed[rb] != 0)
642 data->size = -reg_immed[rb];
646 /* We need to track IL and ILA used to load immediate constants
647 in case they are later used as input to an A instruction. */
648 else if (is_ri16 (insn, op_il, &rt, &immed))
650 reg_immed[rt] = immed;
652 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
656 else if (is_ri18 (insn, op_ila, &rt, &immed))
658 reg_immed[rt] = immed & 0x3ffff;
660 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
664 /* STQD is used to save registers to the stack. */
665 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
667 if (ra == data->cfa_reg)
668 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
670 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
678 /* _start uses SELB to set up the stack pointer. */
679 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
681 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
685 /* We terminate if we find a branch. */
686 else if (is_branch (insn, &immed, &ra))
691 /* If we successfully parsed until here, and didn't find any instruction
692 modifying SP, we assume we have a frameless function. */
696 /* Return cooked instead of raw SP. */
697 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
698 data->cfa_reg = SPU_SP_REGNUM;
703 /* Return the first instruction after the prologue starting at PC. */
705 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
707 struct spu_prologue_data data;
708 return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
711 /* Return the frame pointer in use at address PC. */
713 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
714 int *reg, LONGEST *offset)
716 struct spu_prologue_data data;
717 spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
719 if (data.size != -1 && data.cfa_reg != -1)
721 /* The 'frame pointer' address is CFA minus frame size. */
723 *offset = data.cfa_offset - data.size;
727 /* ??? We don't really know ... */
728 *reg = SPU_SP_REGNUM;
733 /* Return true if we are in the function's epilogue, i.e. after the
734 instruction that destroyed the function's stack frame.
736 1) scan forward from the point of execution:
737 a) If you find an instruction that modifies the stack pointer
738 or transfers control (except a return), execution is not in
740 b) Stop scanning if you find a return instruction or reach the
741 end of the function or reach the hard limit for the size of
743 2) scan backward from the point of execution:
744 a) If you find an instruction that modifies the stack pointer,
745 execution *is* in an epilogue, return.
746 b) Stop scanning if you reach an instruction that transfers
747 control or the beginning of the function or reach the hard
748 limit for the size of an epilogue. */
751 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
753 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
756 int rt, ra, rb, rc, immed;
758 /* Find the search limits based on function boundaries and hard limit.
759 We assume the epilogue can be up to 64 instructions long. */
761 const int spu_max_epilogue_size = 64 * 4;
763 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
766 if (pc - func_start < spu_max_epilogue_size)
767 epilogue_start = func_start;
769 epilogue_start = pc - spu_max_epilogue_size;
771 if (func_end - pc < spu_max_epilogue_size)
772 epilogue_end = func_end;
774 epilogue_end = pc + spu_max_epilogue_size;
776 /* Scan forward until next 'bi $0'. */
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
780 if (target_read_memory (scan_pc, buf, 4))
782 insn = extract_unsigned_integer (buf, 4);
784 if (is_branch (insn, &immed, &ra))
786 if (immed == 0 && ra == SPU_LR_REGNUM)
792 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
793 || is_rr (insn, op_a, &rt, &ra, &rb)
794 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
796 if (rt == SPU_RAW_SP_REGNUM)
801 if (scan_pc >= epilogue_end)
804 /* Scan backward until adjustment to stack pointer (R1). */
806 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
808 if (target_read_memory (scan_pc, buf, 4))
810 insn = extract_unsigned_integer (buf, 4);
812 if (is_branch (insn, &immed, &ra))
815 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
816 || is_rr (insn, op_a, &rt, &ra, &rb)
817 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
819 if (rt == SPU_RAW_SP_REGNUM)
828 /* Normal stack frames. */
830 struct spu_unwind_cache
833 CORE_ADDR frame_base;
834 CORE_ADDR local_base;
836 struct trad_frame_saved_reg *saved_regs;
839 static struct spu_unwind_cache *
840 spu_frame_unwind_cache (struct frame_info *this_frame,
841 void **this_prologue_cache)
843 struct spu_unwind_cache *info;
844 struct spu_prologue_data data;
847 if (*this_prologue_cache)
848 return *this_prologue_cache;
850 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
851 *this_prologue_cache = info;
852 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
853 info->frame_base = 0;
854 info->local_base = 0;
856 /* Find the start of the current function, and analyze its prologue. */
857 info->func = get_frame_func (this_frame);
860 /* Fall back to using the current PC as frame ID. */
861 info->func = get_frame_pc (this_frame);
865 spu_analyze_prologue (info->func, get_frame_pc (this_frame), &data);
868 /* If successful, use prologue analysis data. */
869 if (data.size != -1 && data.cfa_reg != -1)
874 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
875 get_frame_register (this_frame, data.cfa_reg, buf);
876 cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
878 /* Call-saved register slots. */
879 for (i = 0; i < SPU_NUM_GPRS; i++)
880 if (i == SPU_LR_REGNUM
881 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
882 if (data.reg_offset[i] != -1)
883 info->saved_regs[i].addr = cfa - data.reg_offset[i];
886 info->frame_base = cfa;
887 info->local_base = cfa - data.size;
890 /* Otherwise, fall back to reading the backchain link. */
897 /* Get the backchain. */
898 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
899 status = safe_read_memory_integer (reg, 4, &backchain);
901 /* A zero backchain terminates the frame chain. Also, sanity
902 check against the local store size limit. */
903 if (status && backchain > 0 && backchain < SPU_LS_SIZE)
905 /* Assume the link register is saved into its slot. */
906 if (backchain + 16 < SPU_LS_SIZE)
907 info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
910 info->frame_base = backchain;
911 info->local_base = reg;
915 /* If we didn't find a frame, we cannot determine SP / return address. */
916 if (info->frame_base == 0)
919 /* The previous SP is equal to the CFA. */
920 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, info->frame_base);
922 /* Read full contents of the unwound link register in order to
923 be able to determine the return address. */
924 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
925 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
927 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
929 /* Normally, the return address is contained in the slot 0 of the
930 link register, and slots 1-3 are zero. For an overlay return,
931 slot 0 contains the address of the overlay manager return stub,
932 slot 1 contains the partition number of the overlay section to
933 be returned to, and slot 2 contains the return address within
934 that section. Return the latter address in that case. */
935 if (extract_unsigned_integer (buf + 8, 4) != 0)
936 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
937 extract_unsigned_integer (buf + 8, 4));
939 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
940 extract_unsigned_integer (buf, 4));
946 spu_frame_this_id (struct frame_info *this_frame,
947 void **this_prologue_cache, struct frame_id *this_id)
949 struct spu_unwind_cache *info =
950 spu_frame_unwind_cache (this_frame, this_prologue_cache);
952 if (info->frame_base == 0)
955 *this_id = frame_id_build (info->frame_base, info->func);
958 static struct value *
959 spu_frame_prev_register (struct frame_info *this_frame,
960 void **this_prologue_cache, int regnum)
962 struct spu_unwind_cache *info
963 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
965 /* Special-case the stack pointer. */
966 if (regnum == SPU_RAW_SP_REGNUM)
967 regnum = SPU_SP_REGNUM;
969 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
972 static const struct frame_unwind spu_frame_unwind = {
975 spu_frame_prev_register,
977 default_frame_sniffer
981 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
983 struct spu_unwind_cache *info
984 = spu_frame_unwind_cache (this_frame, this_cache);
985 return info->local_base;
988 static const struct frame_base spu_frame_base = {
990 spu_frame_base_address,
991 spu_frame_base_address,
992 spu_frame_base_address
996 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
998 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
999 /* Mask off interrupt enable bit. */
1004 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1006 return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1010 spu_read_pc (struct regcache *regcache)
1013 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1014 /* Mask off interrupt enable bit. */
1019 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1021 /* Keep interrupt enabled state unchanged. */
1023 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1024 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1025 (pc & -4) | (old_pc & 3));
1029 /* Function calling convention. */
1032 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1038 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1039 struct value **args, int nargs, struct type *value_type,
1040 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1041 struct regcache *regcache)
1043 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1044 sp = (sp - 4) & ~15;
1045 /* Store the address of that breakpoint */
1047 /* The call starts at the callee's entry point. */
1054 spu_scalar_value_p (struct type *type)
1056 switch (TYPE_CODE (type))
1059 case TYPE_CODE_ENUM:
1060 case TYPE_CODE_RANGE:
1061 case TYPE_CODE_CHAR:
1062 case TYPE_CODE_BOOL:
1065 return TYPE_LENGTH (type) <= 16;
1073 spu_value_to_regcache (struct regcache *regcache, int regnum,
1074 struct type *type, const gdb_byte *in)
1076 int len = TYPE_LENGTH (type);
1078 if (spu_scalar_value_p (type))
1080 int preferred_slot = len < 4 ? 4 - len : 0;
1081 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1087 regcache_cooked_write (regcache, regnum++, in);
1093 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1098 spu_regcache_to_value (struct regcache *regcache, int regnum,
1099 struct type *type, gdb_byte *out)
1101 int len = TYPE_LENGTH (type);
1103 if (spu_scalar_value_p (type))
1105 int preferred_slot = len < 4 ? 4 - len : 0;
1106 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1112 regcache_cooked_read (regcache, regnum++, out);
1118 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1123 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1124 struct regcache *regcache, CORE_ADDR bp_addr,
1125 int nargs, struct value **args, CORE_ADDR sp,
1126 int struct_return, CORE_ADDR struct_addr)
1130 int regnum = SPU_ARG1_REGNUM;
1134 /* Set the return address. */
1135 memset (buf, 0, sizeof buf);
1136 store_unsigned_integer (buf, 4, bp_addr);
1137 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1139 /* If STRUCT_RETURN is true, then the struct return address (in
1140 STRUCT_ADDR) will consume the first argument-passing register.
1141 Both adjust the register count and store that value. */
1144 memset (buf, 0, sizeof buf);
1145 store_unsigned_integer (buf, 4, struct_addr);
1146 regcache_cooked_write (regcache, regnum++, buf);
1149 /* Fill in argument registers. */
1150 for (i = 0; i < nargs; i++)
1152 struct value *arg = args[i];
1153 struct type *type = check_typedef (value_type (arg));
1154 const gdb_byte *contents = value_contents (arg);
1155 int len = TYPE_LENGTH (type);
1156 int n_regs = align_up (len, 16) / 16;
1158 /* If the argument doesn't wholly fit into registers, it and
1159 all subsequent arguments go to the stack. */
1160 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1166 spu_value_to_regcache (regcache, regnum, type, contents);
1170 /* Overflow arguments go to the stack. */
1171 if (stack_arg != -1)
1175 /* Allocate all required stack size. */
1176 for (i = stack_arg; i < nargs; i++)
1178 struct type *type = check_typedef (value_type (args[i]));
1179 sp -= align_up (TYPE_LENGTH (type), 16);
1182 /* Fill in stack arguments. */
1184 for (i = stack_arg; i < nargs; i++)
1186 struct value *arg = args[i];
1187 struct type *type = check_typedef (value_type (arg));
1188 int len = TYPE_LENGTH (type);
1191 if (spu_scalar_value_p (type))
1192 preferred_slot = len < 4 ? 4 - len : 0;
1196 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1197 ap += align_up (TYPE_LENGTH (type), 16);
1201 /* Allocate stack frame header. */
1204 /* Store stack back chain. */
1205 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1206 target_write_memory (sp, buf, 16);
1208 /* Finally, update all slots of the SP register. */
1209 sp_delta = sp - extract_unsigned_integer (buf, 4);
1210 for (i = 0; i < 4; i++)
1212 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4);
1213 store_unsigned_integer (buf + 4*i, 4, sp_slot + sp_delta);
1215 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1220 static struct frame_id
1221 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1223 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1224 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1225 return frame_id_build (sp, pc & -4);
1228 /* Function return value access. */
1230 static enum return_value_convention
1231 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1232 struct type *type, struct regcache *regcache,
1233 gdb_byte *out, const gdb_byte *in)
1235 enum return_value_convention rvc;
1237 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1238 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1240 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1246 case RETURN_VALUE_REGISTER_CONVENTION:
1247 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1250 case RETURN_VALUE_STRUCT_CONVENTION:
1251 error ("Cannot set function return value.");
1259 case RETURN_VALUE_REGISTER_CONVENTION:
1260 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1263 case RETURN_VALUE_STRUCT_CONVENTION:
1264 error ("Function return value unknown.");
1275 static const gdb_byte *
1276 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1278 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1280 *lenptr = sizeof breakpoint;
1285 /* Software single-stepping support. */
1288 spu_software_single_step (struct frame_info *frame)
1290 CORE_ADDR pc, next_pc;
1295 pc = get_frame_pc (frame);
1297 if (target_read_memory (pc, buf, 4))
1299 insn = extract_unsigned_integer (buf, 4);
1301 /* Next sequential instruction is at PC + 4, except if the current
1302 instruction is a PPE-assisted call, in which case it is at PC + 8.
1303 Wrap around LS limit to be on the safe side. */
1304 if ((insn & 0xffffff00) == 0x00002100)
1305 next_pc = (pc + 8) & (SPU_LS_SIZE - 1);
1307 next_pc = (pc + 4) & (SPU_LS_SIZE - 1);
1309 insert_single_step_breakpoint (next_pc);
1311 if (is_branch (insn, &offset, ®))
1313 CORE_ADDR target = offset;
1315 if (reg == SPU_PC_REGNUM)
1319 get_frame_register_bytes (frame, reg, 0, 4, buf);
1320 target += extract_unsigned_integer (buf, 4) & -4;
1323 target = target & (SPU_LS_SIZE - 1);
1324 if (target != next_pc)
1325 insert_single_step_breakpoint (target);
1332 /* Longjmp support. */
1335 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1340 /* Jump buffer is pointed to by the argument register $r3. */
1341 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
1342 jb_addr = extract_unsigned_integer (buf, 4);
1343 if (target_read_memory (jb_addr, buf, 4))
1346 *pc = extract_unsigned_integer (buf, 4);
1351 /* Target overlays for the SPU overlay manager.
1353 See the documentation of simple_overlay_update for how the
1354 interface is supposed to work.
1356 Data structures used by the overlay manager:
1364 } _ovly_table[]; -- one entry per overlay section
1366 struct ovly_buf_table
1369 } _ovly_buf_table[]; -- one entry per overlay buffer
1371 _ovly_table should never change.
1373 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1374 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1375 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1377 mapped is an index into _ovly_table. Both the mapped and buf indices start
1378 from one to reference the first entry in their respective tables. */
1380 /* Using the per-objfile private data mechanism, we store for each
1381 objfile an array of "struct spu_overlay_table" structures, one
1382 for each obj_section of the objfile. This structure holds two
1383 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1384 is *not* an overlay section. If it is non-zero, it represents
1385 a target address. The overlay section is mapped iff the target
1386 integer at this location equals MAPPED_VAL. */
1388 static const struct objfile_data *spu_overlay_data;
1390 struct spu_overlay_table
1392 CORE_ADDR mapped_ptr;
1393 CORE_ADDR mapped_val;
1396 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1397 the _ovly_table data structure from the target and initialize the
1398 spu_overlay_table data structure from it. */
1399 static struct spu_overlay_table *
1400 spu_get_overlay_table (struct objfile *objfile)
1402 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1403 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1404 unsigned ovly_table_size, ovly_buf_table_size;
1405 struct spu_overlay_table *tbl;
1406 struct obj_section *osect;
1410 tbl = objfile_data (objfile, spu_overlay_data);
1414 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1415 if (!ovly_table_msym)
1418 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1419 if (!ovly_buf_table_msym)
1422 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1423 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1425 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1426 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1428 ovly_table = xmalloc (ovly_table_size);
1429 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1431 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1432 objfile->sections_end - objfile->sections,
1433 struct spu_overlay_table);
1435 for (i = 0; i < ovly_table_size / 16; i++)
1437 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0, 4);
1438 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4, 4);
1439 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8, 4);
1440 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12, 4);
1442 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1445 ALL_OBJFILE_OSECTIONS (objfile, osect)
1446 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1447 && pos == osect->the_bfd_section->filepos)
1449 int ndx = osect - objfile->sections;
1450 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1451 tbl[ndx].mapped_val = i + 1;
1457 set_objfile_data (objfile, spu_overlay_data, tbl);
1461 /* Read _ovly_buf_table entry from the target to dermine whether
1462 OSECT is currently mapped, and update the mapped state. */
1464 spu_overlay_update_osect (struct obj_section *osect)
1466 struct spu_overlay_table *ovly_table;
1469 ovly_table = spu_get_overlay_table (osect->objfile);
1473 ovly_table += osect - osect->objfile->sections;
1474 if (ovly_table->mapped_ptr == 0)
1477 val = read_memory_unsigned_integer (ovly_table->mapped_ptr, 4);
1478 osect->ovly_mapped = (val == ovly_table->mapped_val);
1481 /* If OSECT is NULL, then update all sections' mapped state.
1482 If OSECT is non-NULL, then update only OSECT's mapped state. */
1484 spu_overlay_update (struct obj_section *osect)
1486 /* Just one section. */
1488 spu_overlay_update_osect (osect);
1493 struct objfile *objfile;
1495 ALL_OBJSECTIONS (objfile, osect)
1496 if (section_is_overlay (osect))
1497 spu_overlay_update_osect (osect);
1501 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1502 If there is one, go through all sections and make sure for non-
1503 overlay sections LMA equals VMA, while for overlay sections LMA
1504 is larger than local store size. */
1506 spu_overlay_new_objfile (struct objfile *objfile)
1508 struct spu_overlay_table *ovly_table;
1509 struct obj_section *osect;
1511 /* If we've already touched this file, do nothing. */
1512 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1515 /* Consider only SPU objfiles. */
1516 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1519 /* Check if this objfile has overlays. */
1520 ovly_table = spu_get_overlay_table (objfile);
1524 /* Now go and fiddle with all the LMAs. */
1525 ALL_OBJFILE_OSECTIONS (objfile, osect)
1527 bfd *obfd = objfile->obfd;
1528 asection *bsect = osect->the_bfd_section;
1529 int ndx = osect - objfile->sections;
1531 if (ovly_table[ndx].mapped_ptr == 0)
1532 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1534 bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
1539 /* "info spu" commands. */
1542 info_spu_event_command (char *args, int from_tty)
1544 struct frame_info *frame = get_selected_frame (NULL);
1545 ULONGEST event_status = 0;
1546 ULONGEST event_mask = 0;
1547 struct cleanup *chain;
1553 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1554 error (_("\"info spu\" is only supported on the SPU architecture."));
1556 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1558 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1559 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1560 buf, 0, (sizeof (buf) - 1));
1562 error (_("Could not read event_status."));
1564 event_status = strtoulst (buf, NULL, 16);
1566 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1567 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1568 buf, 0, (sizeof (buf) - 1));
1570 error (_("Could not read event_mask."));
1572 event_mask = strtoulst (buf, NULL, 16);
1574 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1576 if (ui_out_is_mi_like_p (uiout))
1578 ui_out_field_fmt (uiout, "event_status",
1579 "0x%s", phex_nz (event_status, 4));
1580 ui_out_field_fmt (uiout, "event_mask",
1581 "0x%s", phex_nz (event_mask, 4));
1585 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1586 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1589 do_cleanups (chain);
1593 info_spu_signal_command (char *args, int from_tty)
1595 struct frame_info *frame = get_selected_frame (NULL);
1596 ULONGEST signal1 = 0;
1597 ULONGEST signal1_type = 0;
1598 int signal1_pending = 0;
1599 ULONGEST signal2 = 0;
1600 ULONGEST signal2_type = 0;
1601 int signal2_pending = 0;
1602 struct cleanup *chain;
1608 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1609 error (_("\"info spu\" is only supported on the SPU architecture."));
1611 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1613 xsnprintf (annex, sizeof annex, "%d/signal1", id);
1614 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1616 error (_("Could not read signal1."));
1619 signal1 = extract_unsigned_integer (buf, 4);
1620 signal1_pending = 1;
1623 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
1624 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1625 buf, 0, (sizeof (buf) - 1));
1627 error (_("Could not read signal1_type."));
1629 signal1_type = strtoulst (buf, NULL, 16);
1631 xsnprintf (annex, sizeof annex, "%d/signal2", id);
1632 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1634 error (_("Could not read signal2."));
1637 signal2 = extract_unsigned_integer (buf, 4);
1638 signal2_pending = 1;
1641 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
1642 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1643 buf, 0, (sizeof (buf) - 1));
1645 error (_("Could not read signal2_type."));
1647 signal2_type = strtoulst (buf, NULL, 16);
1649 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
1651 if (ui_out_is_mi_like_p (uiout))
1653 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
1654 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
1655 ui_out_field_int (uiout, "signal1_type", signal1_type);
1656 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
1657 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
1658 ui_out_field_int (uiout, "signal2_type", signal2_type);
1662 if (signal1_pending)
1663 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
1665 printf_filtered (_("Signal 1 not pending "));
1668 printf_filtered (_("(Type Or)\n"));
1670 printf_filtered (_("(Type Overwrite)\n"));
1672 if (signal2_pending)
1673 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
1675 printf_filtered (_("Signal 2 not pending "));
1678 printf_filtered (_("(Type Or)\n"));
1680 printf_filtered (_("(Type Overwrite)\n"));
1683 do_cleanups (chain);
1687 info_spu_mailbox_list (gdb_byte *buf, int nr,
1688 const char *field, const char *msg)
1690 struct cleanup *chain;
1696 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
1698 ui_out_table_header (uiout, 32, ui_left, field, msg);
1699 ui_out_table_body (uiout);
1701 for (i = 0; i < nr; i++)
1703 struct cleanup *val_chain;
1705 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
1706 val = extract_unsigned_integer (buf + 4*i, 4);
1707 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
1708 do_cleanups (val_chain);
1710 if (!ui_out_is_mi_like_p (uiout))
1711 printf_filtered ("\n");
1714 do_cleanups (chain);
1718 info_spu_mailbox_command (char *args, int from_tty)
1720 struct frame_info *frame = get_selected_frame (NULL);
1721 struct cleanup *chain;
1727 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1728 error (_("\"info spu\" is only supported on the SPU architecture."));
1730 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1732 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
1734 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
1735 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1736 buf, 0, sizeof buf);
1738 error (_("Could not read mbox_info."));
1740 info_spu_mailbox_list (buf, len / 4, "mbox", "SPU Outbound Mailbox");
1742 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
1743 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1744 buf, 0, sizeof buf);
1746 error (_("Could not read ibox_info."));
1748 info_spu_mailbox_list (buf, len / 4, "ibox", "SPU Outbound Interrupt Mailbox");
1750 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
1751 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1752 buf, 0, sizeof buf);
1754 error (_("Could not read wbox_info."));
1756 info_spu_mailbox_list (buf, len / 4, "wbox", "SPU Inbound Mailbox");
1758 do_cleanups (chain);
1762 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
1764 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
1765 return (word >> (63 - last)) & mask;
1769 info_spu_dma_cmdlist (gdb_byte *buf, int nr)
1771 static char *spu_mfc_opcode[256] =
1773 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1774 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1775 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1776 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1777 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
1778 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
1779 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
1780 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1781 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
1782 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
1783 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1784 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1785 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1786 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1787 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1788 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1789 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
1790 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
1791 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1792 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1793 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
1794 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1795 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
1796 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1797 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1798 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
1799 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1800 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1801 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1802 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1803 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1804 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1807 int *seq = alloca (nr * sizeof (int));
1809 struct cleanup *chain;
1813 /* Determine sequence in which to display (valid) entries. */
1814 for (i = 0; i < nr; i++)
1816 /* Search for the first valid entry all of whose
1817 dependencies are met. */
1818 for (j = 0; j < nr; j++)
1820 ULONGEST mfc_cq_dw3;
1821 ULONGEST dependencies;
1823 if (done & (1 << (nr - 1 - j)))
1826 mfc_cq_dw3 = extract_unsigned_integer (buf + 32*j + 24, 8);
1827 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
1830 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
1831 if ((dependencies & done) != dependencies)
1835 done |= 1 << (nr - 1 - j);
1846 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
1848 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
1849 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
1850 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
1851 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
1852 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
1853 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
1854 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
1855 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
1856 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
1857 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
1859 ui_out_table_body (uiout);
1861 for (i = 0; i < nr; i++)
1863 struct cleanup *cmd_chain;
1864 ULONGEST mfc_cq_dw0;
1865 ULONGEST mfc_cq_dw1;
1866 ULONGEST mfc_cq_dw2;
1867 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
1868 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
1870 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
1872 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
1873 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
1875 mfc_cq_dw0 = extract_unsigned_integer (buf + 32*seq[i], 8);
1876 mfc_cq_dw1 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8);
1877 mfc_cq_dw2 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8);
1879 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
1880 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
1881 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
1882 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
1883 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
1884 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
1885 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
1887 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
1888 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
1890 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
1891 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
1892 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
1893 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
1894 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
1895 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
1897 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
1899 if (spu_mfc_opcode[mfc_cmd_opcode])
1900 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
1902 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
1904 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
1905 ui_out_field_int (uiout, "tid", tclass_id);
1906 ui_out_field_int (uiout, "rid", rclass_id);
1909 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
1911 ui_out_field_skip (uiout, "ea");
1913 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
1915 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
1917 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
1921 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
1922 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
1926 ui_out_field_skip (uiout, "lstaddr");
1927 ui_out_field_skip (uiout, "lstsize");
1931 ui_out_field_string (uiout, "error_p", "*");
1933 ui_out_field_skip (uiout, "error_p");
1935 do_cleanups (cmd_chain);
1937 if (!ui_out_is_mi_like_p (uiout))
1938 printf_filtered ("\n");
1941 do_cleanups (chain);
1945 info_spu_dma_command (char *args, int from_tty)
1947 struct frame_info *frame = get_selected_frame (NULL);
1948 ULONGEST dma_info_type;
1949 ULONGEST dma_info_mask;
1950 ULONGEST dma_info_status;
1951 ULONGEST dma_info_stall_and_notify;
1952 ULONGEST dma_info_atomic_command_status;
1953 struct cleanup *chain;
1959 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1960 error (_("\"info spu\" is only supported on the SPU architecture."));
1962 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1964 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
1965 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1966 buf, 0, 40 + 16 * 32);
1968 error (_("Could not read dma_info."));
1970 dma_info_type = extract_unsigned_integer (buf, 8);
1971 dma_info_mask = extract_unsigned_integer (buf + 8, 8);
1972 dma_info_status = extract_unsigned_integer (buf + 16, 8);
1973 dma_info_stall_and_notify = extract_unsigned_integer (buf + 24, 8);
1974 dma_info_atomic_command_status = extract_unsigned_integer (buf + 32, 8);
1976 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
1978 if (ui_out_is_mi_like_p (uiout))
1980 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
1981 phex_nz (dma_info_type, 4));
1982 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
1983 phex_nz (dma_info_mask, 4));
1984 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
1985 phex_nz (dma_info_status, 4));
1986 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
1987 phex_nz (dma_info_stall_and_notify, 4));
1988 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
1989 phex_nz (dma_info_atomic_command_status, 4));
1993 const char *query_msg = _("no query pending");
1995 if (dma_info_type & 4)
1996 switch (dma_info_type & 3)
1998 case 1: query_msg = _("'any' query pending"); break;
1999 case 2: query_msg = _("'all' query pending"); break;
2000 default: query_msg = _("undefined query type"); break;
2003 printf_filtered (_("Tag-Group Status 0x%s\n"),
2004 phex (dma_info_status, 4));
2005 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2006 phex (dma_info_mask, 4), query_msg);
2007 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2008 phex (dma_info_stall_and_notify, 4));
2009 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2010 phex (dma_info_atomic_command_status, 4));
2011 printf_filtered ("\n");
2014 info_spu_dma_cmdlist (buf + 40, 16);
2015 do_cleanups (chain);
2019 info_spu_proxydma_command (char *args, int from_tty)
2021 struct frame_info *frame = get_selected_frame (NULL);
2022 ULONGEST dma_info_type;
2023 ULONGEST dma_info_mask;
2024 ULONGEST dma_info_status;
2025 struct cleanup *chain;
2031 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2032 error (_("\"info spu\" is only supported on the SPU architecture."));
2034 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2036 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2037 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2038 buf, 0, 24 + 8 * 32);
2040 error (_("Could not read proxydma_info."));
2042 dma_info_type = extract_unsigned_integer (buf, 8);
2043 dma_info_mask = extract_unsigned_integer (buf + 8, 8);
2044 dma_info_status = extract_unsigned_integer (buf + 16, 8);
2046 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2048 if (ui_out_is_mi_like_p (uiout))
2050 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2051 phex_nz (dma_info_type, 4));
2052 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2053 phex_nz (dma_info_mask, 4));
2054 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2055 phex_nz (dma_info_status, 4));
2059 const char *query_msg;
2061 switch (dma_info_type & 3)
2063 case 0: query_msg = _("no query pending"); break;
2064 case 1: query_msg = _("'any' query pending"); break;
2065 case 2: query_msg = _("'all' query pending"); break;
2066 default: query_msg = _("undefined query type"); break;
2069 printf_filtered (_("Tag-Group Status 0x%s\n"),
2070 phex (dma_info_status, 4));
2071 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2072 phex (dma_info_mask, 4), query_msg);
2073 printf_filtered ("\n");
2076 info_spu_dma_cmdlist (buf + 24, 8);
2077 do_cleanups (chain);
2081 info_spu_command (char *args, int from_tty)
2083 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2084 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2088 /* Set up gdbarch struct. */
2090 static struct gdbarch *
2091 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2093 struct gdbarch *gdbarch;
2094 struct gdbarch_tdep *tdep;
2096 /* Find a candidate among the list of pre-declared architectures. */
2097 arches = gdbarch_list_lookup_by_info (arches, &info);
2099 return arches->gdbarch;
2102 if (info.bfd_arch_info->mach != bfd_mach_spu)
2105 /* Yes, create a new architecture. */
2106 tdep = XCALLOC (1, struct gdbarch_tdep);
2107 gdbarch = gdbarch_alloc (&info, tdep);
2110 set_gdbarch_print_insn (gdbarch, print_insn_spu);
2113 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2114 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2115 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2116 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2117 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2118 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2119 set_gdbarch_register_name (gdbarch, spu_register_name);
2120 set_gdbarch_register_type (gdbarch, spu_register_type);
2121 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2122 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2123 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2124 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2127 set_gdbarch_char_signed (gdbarch, 0);
2128 set_gdbarch_ptr_bit (gdbarch, 32);
2129 set_gdbarch_addr_bit (gdbarch, 32);
2130 set_gdbarch_short_bit (gdbarch, 16);
2131 set_gdbarch_int_bit (gdbarch, 32);
2132 set_gdbarch_long_bit (gdbarch, 32);
2133 set_gdbarch_long_long_bit (gdbarch, 64);
2134 set_gdbarch_float_bit (gdbarch, 32);
2135 set_gdbarch_double_bit (gdbarch, 64);
2136 set_gdbarch_long_double_bit (gdbarch, 64);
2137 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2138 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2139 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2141 /* Address conversion. */
2142 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2143 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2145 /* Inferior function calls. */
2146 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2147 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2148 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2149 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2150 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2151 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2152 set_gdbarch_return_value (gdbarch, spu_return_value);
2154 /* Frame handling. */
2155 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2156 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2157 frame_base_set_default (gdbarch, &spu_frame_base);
2158 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2159 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2160 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2161 set_gdbarch_frame_args_skip (gdbarch, 0);
2162 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2163 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2166 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2167 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2168 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2169 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2170 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2173 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2178 /* Provide a prototype to silence -Wmissing-prototypes. */
2179 extern initialize_file_ftype _initialize_spu_tdep;
2182 _initialize_spu_tdep (void)
2184 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2186 /* Add ourselves to objfile event chain. */
2187 observer_attach_new_objfile (spu_overlay_new_objfile);
2188 spu_overlay_data = register_objfile_data ();
2190 /* Add root prefix command for all "info spu" commands. */
2191 add_prefix_cmd ("spu", class_info, info_spu_command,
2192 _("Various SPU specific commands."),
2193 &infospucmdlist, "info spu ", 0, &infolist);
2195 /* Add various "info spu" commands. */
2196 add_cmd ("event", class_info, info_spu_event_command,
2197 _("Display SPU event facility status.\n"),
2199 add_cmd ("signal", class_info, info_spu_signal_command,
2200 _("Display SPU signal notification facility status.\n"),
2202 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2203 _("Display SPU mailbox facility status.\n"),
2205 add_cmd ("dma", class_info, info_spu_dma_command,
2206 _("Display MFC DMA status.\n"),
2208 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2209 _("Display MFC Proxy-DMA status.\n"),