1 /* Target-dependent code for the HP PA architecture, for GDB.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 Contributed by the Center for Software Science at the
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
32 #include "completer.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
43 #include <sys/types.h>
47 #include <sys/param.h>
50 #include <sys/ptrace.h>
51 #include <machine/save_state.h>
53 #ifdef COFF_ENCAPSULATE
54 #include "a.out.encap.h"
58 /*#include <sys/user.h> After a.out.h */
68 #include "hppa-tdep.h"
70 /* Some local constants. */
71 static const int hppa32_num_regs = 128;
72 static const int hppa64_num_regs = 96;
74 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
76 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
77 word on the target machine, not the size of an instruction. Since
78 a word on this target holds two instructions we have to divide the
79 instruction size by two to get the word size of the dummy. */
80 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
81 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
83 /* Get at various relevent fields of an instruction word. */
86 #define MASK_14 0x3fff
87 #define MASK_21 0x1fffff
89 /* Define offsets into the call dummy for the target function address.
90 See comments related to CALL_DUMMY for more info. */
91 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
92 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
94 /* Define offsets into the call dummy for the _sr4export address.
95 See comments related to CALL_DUMMY for more info. */
96 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
97 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
99 /* To support detection of the pseudo-initial frame
100 that threads have. */
101 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
102 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
104 /* Sizes (in bytes) of the native unwind entries. */
105 #define UNWIND_ENTRY_SIZE 16
106 #define STUB_UNWIND_ENTRY_SIZE 8
108 static int get_field (unsigned word, int from, int to);
110 static int extract_5_load (unsigned int);
112 static unsigned extract_5R_store (unsigned int);
114 static unsigned extract_5r_store (unsigned int);
116 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
118 static int find_proc_framesize (CORE_ADDR);
120 static int find_return_regnum (CORE_ADDR);
122 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
124 static int extract_17 (unsigned int);
126 static unsigned deposit_21 (unsigned int, unsigned int);
128 static int extract_21 (unsigned);
130 static unsigned deposit_14 (int, unsigned int);
132 static int extract_14 (unsigned);
134 static void unwind_command (char *, int);
136 static int low_sign_extend (unsigned int, unsigned int);
138 static int sign_extend (unsigned int, unsigned int);
140 static int restore_pc_queue (CORE_ADDR *);
142 static int hppa_alignof (struct type *);
144 static int prologue_inst_adjust_sp (unsigned long);
146 static int is_branch (unsigned long);
148 static int inst_saves_gr (unsigned long);
150 static int inst_saves_fr (unsigned long);
152 static int pc_in_interrupt_handler (CORE_ADDR);
154 static int pc_in_linker_stub (CORE_ADDR);
156 static int compare_unwind_entries (const void *, const void *);
158 static void read_unwind_info (struct objfile *);
160 static void internalize_unwinds (struct objfile *,
161 struct unwind_table_entry *,
162 asection *, unsigned int,
163 unsigned int, CORE_ADDR);
164 static void pa_print_registers (char *, int, int);
165 static void pa_strcat_registers (char *, int, int, struct ui_file *);
166 static void pa_register_look_aside (char *, int, long *);
167 static void pa_print_fp_reg (int);
168 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
169 static void record_text_segment_lowaddr (bfd *, asection *, void *);
170 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
171 following functions static, once we hppa is partially multiarched. */
172 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
173 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
174 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
175 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
176 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
177 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
178 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
179 CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
180 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
181 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
182 int hppa_instruction_nullified (void);
183 int hppa_register_raw_size (int reg_nr);
184 int hppa_register_byte (int reg_nr);
185 struct type * hppa32_register_virtual_type (int reg_nr);
186 struct type * hppa64_register_virtual_type (int reg_nr);
187 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
188 void hppa32_extract_return_value (struct type *type, char *regbuf,
190 void hppa64_extract_return_value (struct type *type, char *regbuf,
192 int hppa32_use_struct_convention (int gcc_p, struct type *type);
193 int hppa64_use_struct_convention (int gcc_p, struct type *type);
194 void hppa32_store_return_value (struct type *type, char *valbuf);
195 void hppa64_store_return_value (struct type *type, char *valbuf);
196 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
197 int hppa_cannot_store_register (int regnum);
198 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
199 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
200 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
201 int hppa_frameless_function_invocation (struct frame_info *frame);
202 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
203 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
204 int hppa_frame_num_args (struct frame_info *frame);
205 void hppa_push_dummy_frame (void);
206 void hppa_pop_frame (void);
207 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
208 int nargs, struct value **args,
209 struct type *type, int gcc_p);
210 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
211 int struct_return, CORE_ADDR struct_addr);
212 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
213 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
214 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
215 CORE_ADDR hppa_target_read_fp (void);
219 struct minimal_symbol *msym;
220 CORE_ADDR solib_handle;
221 CORE_ADDR return_val;
225 static int cover_find_stub_with_shl_get (void *);
227 static int is_pa_2 = 0; /* False */
229 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
230 extern int hp_som_som_object_present;
232 /* In breakpoint.c */
233 extern int exception_catchpoints_are_fragile;
235 /* Should call_function allocate stack space for a struct return? */
238 hppa32_use_struct_convention (int gcc_p, struct type *type)
240 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
243 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
246 hppa64_use_struct_convention (int gcc_p, struct type *type)
248 /* RM: struct upto 128 bits are returned in registers */
249 return TYPE_LENGTH (type) > 16;
252 /* Routines to extract various sized constants out of hppa
255 /* This assumes that no garbage lies outside of the lower bits of
259 sign_extend (unsigned val, unsigned bits)
261 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
264 /* For many immediate values the sign bit is the low bit! */
267 low_sign_extend (unsigned val, unsigned bits)
269 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
272 /* Extract the bits at positions between FROM and TO, using HP's numbering
276 get_field (unsigned word, int from, int to)
278 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
281 /* extract the immediate field from a ld{bhw}s instruction */
284 extract_5_load (unsigned word)
286 return low_sign_extend (word >> 16 & MASK_5, 5);
289 /* extract the immediate field from a break instruction */
292 extract_5r_store (unsigned word)
294 return (word & MASK_5);
297 /* extract the immediate field from a {sr}sm instruction */
300 extract_5R_store (unsigned word)
302 return (word >> 16 & MASK_5);
305 /* extract a 14 bit immediate field */
308 extract_14 (unsigned word)
310 return low_sign_extend (word & MASK_14, 14);
313 /* deposit a 14 bit constant in a word */
316 deposit_14 (int opnd, unsigned word)
318 unsigned sign = (opnd < 0 ? 1 : 0);
320 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
323 /* extract a 21 bit constant */
326 extract_21 (unsigned word)
332 val = get_field (word, 20, 20);
334 val |= get_field (word, 9, 19);
336 val |= get_field (word, 5, 6);
338 val |= get_field (word, 0, 4);
340 val |= get_field (word, 7, 8);
341 return sign_extend (val, 21) << 11;
344 /* deposit a 21 bit constant in a word. Although 21 bit constants are
345 usually the top 21 bits of a 32 bit constant, we assume that only
346 the low 21 bits of opnd are relevant */
349 deposit_21 (unsigned opnd, unsigned word)
353 val |= get_field (opnd, 11 + 14, 11 + 18);
355 val |= get_field (opnd, 11 + 12, 11 + 13);
357 val |= get_field (opnd, 11 + 19, 11 + 20);
359 val |= get_field (opnd, 11 + 1, 11 + 11);
361 val |= get_field (opnd, 11 + 0, 11 + 0);
365 /* extract a 17 bit constant from branch instructions, returning the
366 19 bit signed value. */
369 extract_17 (unsigned word)
371 return sign_extend (get_field (word, 19, 28) |
372 get_field (word, 29, 29) << 10 |
373 get_field (word, 11, 15) << 11 |
374 (word & 0x1) << 16, 17) << 2;
378 /* Compare the start address for two unwind entries returning 1 if
379 the first address is larger than the second, -1 if the second is
380 larger than the first, and zero if they are equal. */
383 compare_unwind_entries (const void *arg1, const void *arg2)
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
388 if (a->region_start > b->region_start)
390 else if (a->region_start < b->region_start)
396 static CORE_ADDR low_text_segment_address;
399 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
401 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
402 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
403 && section->vma < low_text_segment_address)
404 low_text_segment_address = section->vma;
408 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
409 asection *section, unsigned int entries, unsigned int size,
410 CORE_ADDR text_offset)
412 /* We will read the unwind entries into temporary memory, then
413 fill in the actual unwind table. */
418 char *buf = alloca (size);
420 low_text_segment_address = -1;
422 /* If addresses are 64 bits wide, then unwinds are supposed to
423 be segment relative offsets instead of absolute addresses.
425 Note that when loading a shared library (text_offset != 0) the
426 unwinds are already relative to the text_offset that will be
428 if (TARGET_PTR_BIT == 64 && text_offset == 0)
430 bfd_map_over_sections (objfile->obfd,
431 record_text_segment_lowaddr, NULL);
433 /* ?!? Mask off some low bits. Should this instead subtract
434 out the lowest section's filepos or something like that?
435 This looks very hokey to me. */
436 low_text_segment_address &= ~0xfff;
437 text_offset += low_text_segment_address;
440 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
442 /* Now internalize the information being careful to handle host/target
444 for (i = 0; i < entries; i++)
446 table[i].region_start = bfd_get_32 (objfile->obfd,
448 table[i].region_start += text_offset;
450 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
451 table[i].region_end += text_offset;
453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
455 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
456 table[i].Millicode = (tmp >> 30) & 0x1;
457 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
458 table[i].Region_description = (tmp >> 27) & 0x3;
459 table[i].reserved1 = (tmp >> 26) & 0x1;
460 table[i].Entry_SR = (tmp >> 25) & 0x1;
461 table[i].Entry_FR = (tmp >> 21) & 0xf;
462 table[i].Entry_GR = (tmp >> 16) & 0x1f;
463 table[i].Args_stored = (tmp >> 15) & 0x1;
464 table[i].Variable_Frame = (tmp >> 14) & 0x1;
465 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
466 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
467 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
468 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
469 table[i].Ada_Region = (tmp >> 9) & 0x1;
470 table[i].cxx_info = (tmp >> 8) & 0x1;
471 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
472 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
473 table[i].reserved2 = (tmp >> 5) & 0x1;
474 table[i].Save_SP = (tmp >> 4) & 0x1;
475 table[i].Save_RP = (tmp >> 3) & 0x1;
476 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
477 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
478 table[i].Cleanup_defined = tmp & 0x1;
479 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
481 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
482 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
483 table[i].Large_frame = (tmp >> 29) & 0x1;
484 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
485 table[i].reserved4 = (tmp >> 27) & 0x1;
486 table[i].Total_frame_size = tmp & 0x7ffffff;
488 /* Stub unwinds are handled elsewhere. */
489 table[i].stub_unwind.stub_type = 0;
490 table[i].stub_unwind.padding = 0;
495 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
496 the object file. This info is used mainly by find_unwind_entry() to find
497 out the stack frame size and frame pointer used by procedures. We put
498 everything on the psymbol obstack in the objfile so that it automatically
499 gets freed when the objfile is destroyed. */
502 read_unwind_info (struct objfile *objfile)
504 asection *unwind_sec, *stub_unwind_sec;
505 unsigned unwind_size, stub_unwind_size, total_size;
506 unsigned index, unwind_entries;
507 unsigned stub_entries, total_entries;
508 CORE_ADDR text_offset;
509 struct obj_unwind_info *ui;
510 obj_private_data_t *obj_private;
512 text_offset = ANOFFSET (objfile->section_offsets, 0);
513 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
514 sizeof (struct obj_unwind_info));
520 /* For reasons unknown the HP PA64 tools generate multiple unwinder
521 sections in a single executable. So we just iterate over every
522 section in the BFD looking for unwinder sections intead of trying
523 to do a lookup with bfd_get_section_by_name.
525 First determine the total size of the unwind tables so that we
526 can allocate memory in a nice big hunk. */
528 for (unwind_sec = objfile->obfd->sections;
530 unwind_sec = unwind_sec->next)
532 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
533 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
535 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
536 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
538 total_entries += unwind_entries;
542 /* Now compute the size of the stub unwinds. Note the ELF tools do not
543 use stub unwinds at the curren time. */
544 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
548 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
549 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
553 stub_unwind_size = 0;
557 /* Compute total number of unwind entries and their total size. */
558 total_entries += stub_entries;
559 total_size = total_entries * sizeof (struct unwind_table_entry);
561 /* Allocate memory for the unwind table. */
562 ui->table = (struct unwind_table_entry *)
563 obstack_alloc (&objfile->psymbol_obstack, total_size);
564 ui->last = total_entries - 1;
566 /* Now read in each unwind section and internalize the standard unwind
569 for (unwind_sec = objfile->obfd->sections;
571 unwind_sec = unwind_sec->next)
573 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
574 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
576 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
577 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
579 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
580 unwind_entries, unwind_size, text_offset);
581 index += unwind_entries;
585 /* Now read in and internalize the stub unwind entries. */
586 if (stub_unwind_size > 0)
589 char *buf = alloca (stub_unwind_size);
591 /* Read in the stub unwind entries. */
592 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
593 0, stub_unwind_size);
595 /* Now convert them into regular unwind entries. */
596 for (i = 0; i < stub_entries; i++, index++)
598 /* Clear out the next unwind entry. */
599 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
601 /* Convert offset & size into region_start and region_end.
602 Stuff away the stub type into "reserved" fields. */
603 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
605 ui->table[index].region_start += text_offset;
607 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
610 ui->table[index].region_end
611 = ui->table[index].region_start + 4 *
612 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
618 /* Unwind table needs to be kept sorted. */
619 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
620 compare_unwind_entries);
622 /* Keep a pointer to the unwind information. */
623 if (objfile->obj_private == NULL)
625 obj_private = (obj_private_data_t *)
626 obstack_alloc (&objfile->psymbol_obstack,
627 sizeof (obj_private_data_t));
628 obj_private->unwind_info = NULL;
629 obj_private->so_info = NULL;
632 objfile->obj_private = obj_private;
634 obj_private = (obj_private_data_t *) objfile->obj_private;
635 obj_private->unwind_info = ui;
638 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
639 of the objfiles seeking the unwind table entry for this PC. Each objfile
640 contains a sorted list of struct unwind_table_entry. Since we do a binary
641 search of the unwind tables, we depend upon them to be sorted. */
643 struct unwind_table_entry *
644 find_unwind_entry (CORE_ADDR pc)
646 int first, middle, last;
647 struct objfile *objfile;
649 /* A function at address 0? Not in HP-UX! */
650 if (pc == (CORE_ADDR) 0)
653 ALL_OBJFILES (objfile)
655 struct obj_unwind_info *ui;
657 if (objfile->obj_private)
658 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
662 read_unwind_info (objfile);
663 if (objfile->obj_private == NULL)
664 error ("Internal error reading unwind information.");
665 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
668 /* First, check the cache */
671 && pc >= ui->cache->region_start
672 && pc <= ui->cache->region_end)
675 /* Not in the cache, do a binary search */
680 while (first <= last)
682 middle = (first + last) / 2;
683 if (pc >= ui->table[middle].region_start
684 && pc <= ui->table[middle].region_end)
686 ui->cache = &ui->table[middle];
687 return &ui->table[middle];
690 if (pc < ui->table[middle].region_start)
695 } /* ALL_OBJFILES() */
699 const unsigned char *
700 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
702 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
703 (*len) = sizeof (breakpoint);
707 /* Return the name of a register. */
710 hppa32_register_name (int i)
712 static char *names[] = {
713 "flags", "r1", "rp", "r3",
714 "r4", "r5", "r6", "r7",
715 "r8", "r9", "r10", "r11",
716 "r12", "r13", "r14", "r15",
717 "r16", "r17", "r18", "r19",
718 "r20", "r21", "r22", "r23",
719 "r24", "r25", "r26", "dp",
720 "ret0", "ret1", "sp", "r31",
721 "sar", "pcoqh", "pcsqh", "pcoqt",
722 "pcsqt", "eiem", "iir", "isr",
723 "ior", "ipsw", "goto", "sr4",
724 "sr0", "sr1", "sr2", "sr3",
725 "sr5", "sr6", "sr7", "cr0",
726 "cr8", "cr9", "ccr", "cr12",
727 "cr13", "cr24", "cr25", "cr26",
728 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
729 "fpsr", "fpe1", "fpe2", "fpe3",
730 "fpe4", "fpe5", "fpe6", "fpe7",
731 "fr4", "fr4R", "fr5", "fr5R",
732 "fr6", "fr6R", "fr7", "fr7R",
733 "fr8", "fr8R", "fr9", "fr9R",
734 "fr10", "fr10R", "fr11", "fr11R",
735 "fr12", "fr12R", "fr13", "fr13R",
736 "fr14", "fr14R", "fr15", "fr15R",
737 "fr16", "fr16R", "fr17", "fr17R",
738 "fr18", "fr18R", "fr19", "fr19R",
739 "fr20", "fr20R", "fr21", "fr21R",
740 "fr22", "fr22R", "fr23", "fr23R",
741 "fr24", "fr24R", "fr25", "fr25R",
742 "fr26", "fr26R", "fr27", "fr27R",
743 "fr28", "fr28R", "fr29", "fr29R",
744 "fr30", "fr30R", "fr31", "fr31R"
746 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
753 hppa64_register_name (int i)
755 static char *names[] = {
756 "flags", "r1", "rp", "r3",
757 "r4", "r5", "r6", "r7",
758 "r8", "r9", "r10", "r11",
759 "r12", "r13", "r14", "r15",
760 "r16", "r17", "r18", "r19",
761 "r20", "r21", "r22", "r23",
762 "r24", "r25", "r26", "dp",
763 "ret0", "ret1", "sp", "r31",
764 "sar", "pcoqh", "pcsqh", "pcoqt",
765 "pcsqt", "eiem", "iir", "isr",
766 "ior", "ipsw", "goto", "sr4",
767 "sr0", "sr1", "sr2", "sr3",
768 "sr5", "sr6", "sr7", "cr0",
769 "cr8", "cr9", "ccr", "cr12",
770 "cr13", "cr24", "cr25", "cr26",
771 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
772 "fpsr", "fpe1", "fpe2", "fpe3",
773 "fr4", "fr5", "fr6", "fr7",
774 "fr8", "fr9", "fr10", "fr11",
775 "fr12", "fr13", "fr14", "fr15",
776 "fr16", "fr17", "fr18", "fr19",
777 "fr20", "fr21", "fr22", "fr23",
778 "fr24", "fr25", "fr26", "fr27",
779 "fr28", "fr29", "fr30", "fr31"
781 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
789 /* Return the adjustment necessary to make for addresses on the stack
790 as presented by hpread.c.
792 This is necessary because of the stack direction on the PA and the
793 bizarre way in which someone (?) decided they wanted to handle
794 frame pointerless code in GDB. */
796 hpread_adjust_stack_address (CORE_ADDR func_addr)
798 struct unwind_table_entry *u;
800 u = find_unwind_entry (func_addr);
804 return u->Total_frame_size << 3;
807 /* Called to determine if PC is in an interrupt handler of some
811 pc_in_interrupt_handler (CORE_ADDR pc)
813 struct unwind_table_entry *u;
814 struct minimal_symbol *msym_us;
816 u = find_unwind_entry (pc);
820 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
821 its frame isn't a pure interrupt frame. Deal with this. */
822 msym_us = lookup_minimal_symbol_by_pc (pc);
824 return (u->HP_UX_interrupt_marker
825 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
828 /* Called when no unwind descriptor was found for PC. Returns 1 if it
829 appears that PC is in a linker stub.
831 ?!? Need to handle stubs which appear in PA64 code. */
834 pc_in_linker_stub (CORE_ADDR pc)
836 int found_magic_instruction = 0;
840 /* If unable to read memory, assume pc is not in a linker stub. */
841 if (target_read_memory (pc, buf, 4) != 0)
844 /* We are looking for something like
846 ; $$dyncall jams RP into this special spot in the frame (RP')
847 ; before calling the "call stub"
850 ldsid (rp),r1 ; Get space associated with RP into r1
851 mtsp r1,sp ; Move it into space register 0
852 be,n 0(sr0),rp) ; back to your regularly scheduled program */
854 /* Maximum known linker stub size is 4 instructions. Search forward
855 from the given PC, then backward. */
856 for (i = 0; i < 4; i++)
858 /* If we hit something with an unwind, stop searching this direction. */
860 if (find_unwind_entry (pc + i * 4) != 0)
863 /* Check for ldsid (rp),r1 which is the magic instruction for a
864 return from a cross-space function call. */
865 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
867 found_magic_instruction = 1;
870 /* Add code to handle long call/branch and argument relocation stubs
874 if (found_magic_instruction != 0)
877 /* Now look backward. */
878 for (i = 0; i < 4; i++)
880 /* If we hit something with an unwind, stop searching this direction. */
882 if (find_unwind_entry (pc - i * 4) != 0)
885 /* Check for ldsid (rp),r1 which is the magic instruction for a
886 return from a cross-space function call. */
887 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
889 found_magic_instruction = 1;
892 /* Add code to handle long call/branch and argument relocation stubs
895 return found_magic_instruction;
899 find_return_regnum (CORE_ADDR pc)
901 struct unwind_table_entry *u;
903 u = find_unwind_entry (pc);
914 /* Return size of frame, or -1 if we should use a frame pointer. */
916 find_proc_framesize (CORE_ADDR pc)
918 struct unwind_table_entry *u;
919 struct minimal_symbol *msym_us;
921 /* This may indicate a bug in our callers... */
922 if (pc == (CORE_ADDR) 0)
925 u = find_unwind_entry (pc);
929 if (pc_in_linker_stub (pc))
930 /* Linker stubs have a zero size frame. */
936 msym_us = lookup_minimal_symbol_by_pc (pc);
938 /* If Save_SP is set, and we're not in an interrupt or signal caller,
939 then we have a frame pointer. Use it. */
941 && !pc_in_interrupt_handler (pc)
943 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
946 return u->Total_frame_size << 3;
949 /* Return offset from sp at which rp is saved, or 0 if not saved. */
950 static int rp_saved (CORE_ADDR);
953 rp_saved (CORE_ADDR pc)
955 struct unwind_table_entry *u;
957 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
958 if (pc == (CORE_ADDR) 0)
961 u = find_unwind_entry (pc);
965 if (pc_in_linker_stub (pc))
966 /* This is the so-called RP'. */
973 return (TARGET_PTR_BIT == 64 ? -16 : -20);
974 else if (u->stub_unwind.stub_type != 0)
976 switch (u->stub_unwind.stub_type)
981 case PARAMETER_RELOCATION:
992 hppa_frameless_function_invocation (struct frame_info *frame)
994 struct unwind_table_entry *u;
996 u = find_unwind_entry (get_frame_pc (frame));
1001 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1004 /* Immediately after a function call, return the saved pc.
1005 Can't go through the frames for this because on some machines
1006 the new frame is not set up until the new function executes
1007 some instructions. */
1010 hppa_saved_pc_after_call (struct frame_info *frame)
1014 struct unwind_table_entry *u;
1016 ret_regnum = find_return_regnum (get_frame_pc (frame));
1017 pc = read_register (ret_regnum) & ~0x3;
1019 /* If PC is in a linker stub, then we need to dig the address
1020 the stub will return to out of the stack. */
1021 u = find_unwind_entry (pc);
1022 if (u && u->stub_unwind.stub_type != 0)
1023 return DEPRECATED_FRAME_SAVED_PC (frame);
1029 hppa_frame_saved_pc (struct frame_info *frame)
1031 CORE_ADDR pc = get_frame_pc (frame);
1032 struct unwind_table_entry *u;
1033 CORE_ADDR old_pc = 0;
1034 int spun_around_loop = 0;
1037 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1038 at the base of the frame in an interrupt handler. Registers within
1039 are saved in the exact same order as GDB numbers registers. How
1041 if (pc_in_interrupt_handler (pc))
1042 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1043 TARGET_PTR_BIT / 8) & ~0x3;
1045 if ((get_frame_pc (frame) >= get_frame_base (frame)
1046 && (get_frame_pc (frame)
1047 <= (get_frame_base (frame)
1048 /* A call dummy is sized in words, but it is actually a
1049 series of instructions. Account for that scaling
1051 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1052 * DEPRECATED_CALL_DUMMY_LENGTH)
1053 /* Similarly we have to account for 64bit wide register
1055 + (32 * DEPRECATED_REGISTER_SIZE)
1056 /* We always consider FP regs 8 bytes long. */
1057 + (NUM_REGS - FP0_REGNUM) * 8
1058 /* Similarly we have to account for 64bit wide register
1060 + (6 * DEPRECATED_REGISTER_SIZE)))))
1062 return read_memory_integer ((get_frame_base (frame)
1063 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1064 TARGET_PTR_BIT / 8) & ~0x3;
1067 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1068 /* Deal with signal handler caller frames too. */
1069 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1072 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1077 if (hppa_frameless_function_invocation (frame))
1081 ret_regnum = find_return_regnum (pc);
1083 /* If the next frame is an interrupt frame or a signal
1084 handler caller, then we need to look in the saved
1085 register area to get the return pointer (the values
1086 in the registers may not correspond to anything useful). */
1087 if (get_next_frame (frame)
1088 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1089 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1091 CORE_ADDR *saved_regs;
1092 hppa_frame_init_saved_regs (get_next_frame (frame));
1093 saved_regs = get_frame_saved_regs (get_next_frame (frame));
1094 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1095 TARGET_PTR_BIT / 8) & 0x2)
1097 pc = read_memory_integer (saved_regs[31],
1098 TARGET_PTR_BIT / 8) & ~0x3;
1100 /* Syscalls are really two frames. The syscall stub itself
1101 with a return pointer in %rp and the kernel call with
1102 a return pointer in %r31. We return the %rp variant
1103 if %r31 is the same as frame->pc. */
1104 if (pc == get_frame_pc (frame))
1105 pc = read_memory_integer (saved_regs[RP_REGNUM],
1106 TARGET_PTR_BIT / 8) & ~0x3;
1109 pc = read_memory_integer (saved_regs[RP_REGNUM],
1110 TARGET_PTR_BIT / 8) & ~0x3;
1113 pc = read_register (ret_regnum) & ~0x3;
1117 spun_around_loop = 0;
1121 rp_offset = rp_saved (pc);
1123 /* Similar to code in frameless function case. If the next
1124 frame is a signal or interrupt handler, then dig the right
1125 information out of the saved register info. */
1127 && get_next_frame (frame)
1128 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1129 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1131 CORE_ADDR *saved_regs;
1132 hppa_frame_init_saved_regs (get_next_frame (frame));
1133 saved_regs = get_frame_saved_regs (get_next_frame (frame));
1134 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1135 TARGET_PTR_BIT / 8) & 0x2)
1137 pc = read_memory_integer (saved_regs[31],
1138 TARGET_PTR_BIT / 8) & ~0x3;
1140 /* Syscalls are really two frames. The syscall stub itself
1141 with a return pointer in %rp and the kernel call with
1142 a return pointer in %r31. We return the %rp variant
1143 if %r31 is the same as frame->pc. */
1144 if (pc == get_frame_pc (frame))
1145 pc = read_memory_integer (saved_regs[RP_REGNUM],
1146 TARGET_PTR_BIT / 8) & ~0x3;
1149 pc = read_memory_integer (saved_regs[RP_REGNUM],
1150 TARGET_PTR_BIT / 8) & ~0x3;
1152 else if (rp_offset == 0)
1155 pc = read_register (RP_REGNUM) & ~0x3;
1160 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1161 TARGET_PTR_BIT / 8) & ~0x3;
1165 /* If PC is inside a linker stub, then dig out the address the stub
1168 Don't do this for long branch stubs. Why? For some unknown reason
1169 _start is marked as a long branch stub in hpux10. */
1170 u = find_unwind_entry (pc);
1171 if (u && u->stub_unwind.stub_type != 0
1172 && u->stub_unwind.stub_type != LONG_BRANCH)
1176 /* If this is a dynamic executable, and we're in a signal handler,
1177 then the call chain will eventually point us into the stub for
1178 _sigreturn. Unlike most cases, we'll be pointed to the branch
1179 to the real sigreturn rather than the code after the real branch!.
1181 Else, try to dig the address the stub will return to in the normal
1183 insn = read_memory_integer (pc, 4);
1184 if ((insn & 0xfc00e000) == 0xe8000000)
1185 return (pc + extract_17 (insn) + 8) & ~0x3;
1191 if (spun_around_loop > 1)
1193 /* We're just about to go around the loop again with
1194 no more hope of success. Die. */
1195 error ("Unable to find return pc for this frame");
1205 /* We need to correct the PC and the FP for the outermost frame when we are
1206 in a system call. */
1209 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1214 if (get_next_frame (frame) && !fromleaf)
1217 /* If the next frame represents a frameless function invocation then
1218 we have to do some adjustments that are normally done by
1219 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1223 /* Find the framesize of *this* frame without peeking at the PC
1224 in the current frame structure (it isn't set yet). */
1225 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1227 /* Now adjust our base frame accordingly. If we have a frame pointer
1228 use it, else subtract the size of this frame from the current
1229 frame. (we always want frame->frame to point at the lowest address
1231 if (framesize == -1)
1232 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1234 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1238 flags = read_register (FLAGS_REGNUM);
1239 if (flags & 2) /* In system call? */
1240 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1242 /* The outermost frame is always derived from PC-framesize
1244 One might think frameless innermost frames should have
1245 a frame->frame that is the same as the parent's frame->frame.
1246 That is wrong; frame->frame in that case should be the *high*
1247 address of the parent's frame. It's complicated as hell to
1248 explain, but the parent *always* creates some stack space for
1249 the child. So the child actually does have a frame of some
1250 sorts, and its base is the high address in its parent's frame. */
1251 framesize = find_proc_framesize (get_frame_pc (frame));
1252 if (framesize == -1)
1253 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1255 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1258 /* Given a GDB frame, determine the address of the calling function's
1259 frame. This will be used to create a new GDB frame struct, and
1260 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1261 will be called for the new frame.
1263 This may involve searching through prologues for several functions
1264 at boundaries where GCC calls HP C code, or where code which has
1265 a frame pointer calls code without a frame pointer. */
1268 hppa_frame_chain (struct frame_info *frame)
1270 int my_framesize, caller_framesize;
1271 struct unwind_table_entry *u;
1272 CORE_ADDR frame_base;
1273 struct frame_info *tmp_frame;
1275 /* A frame in the current frame list, or zero. */
1276 struct frame_info *saved_regs_frame = 0;
1277 /* Where the registers were saved in saved_regs_frame. If
1278 saved_regs_frame is zero, this is garbage. */
1279 CORE_ADDR *saved_regs = NULL;
1281 CORE_ADDR caller_pc;
1283 struct minimal_symbol *min_frame_symbol;
1284 struct symbol *frame_symbol;
1285 char *frame_symbol_name;
1287 /* If this is a threaded application, and we see the
1288 routine "__pthread_exit", treat it as the stack root
1290 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1291 frame_symbol = find_pc_function (get_frame_pc (frame));
1293 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1295 /* The test above for "no user function name" would defend
1296 against the slim likelihood that a user might define a
1297 routine named "__pthread_exit" and then try to debug it.
1299 If it weren't commented out, and you tried to debug the
1300 pthread library itself, you'd get errors.
1302 So for today, we don't make that check. */
1303 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1304 if (frame_symbol_name != 0)
1306 if (0 == strncmp (frame_symbol_name,
1307 THREAD_INITIAL_FRAME_SYMBOL,
1308 THREAD_INITIAL_FRAME_SYM_LEN))
1310 /* Pretend we've reached the bottom of the stack. */
1311 return (CORE_ADDR) 0;
1314 } /* End of hacky code for threads. */
1316 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1317 are easy; at *sp we have a full save state strucutre which we can
1318 pull the old stack pointer from. Also see frame_saved_pc for
1319 code to dig a saved PC out of the save state structure. */
1320 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1321 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1322 TARGET_PTR_BIT / 8);
1323 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1324 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1326 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1330 frame_base = get_frame_base (frame);
1332 /* Get frame sizes for the current frame and the frame of the
1334 my_framesize = find_proc_framesize (get_frame_pc (frame));
1335 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1337 /* If we can't determine the caller's PC, then it's not likely we can
1338 really determine anything meaningful about its frame. We'll consider
1339 this to be stack bottom. */
1340 if (caller_pc == (CORE_ADDR) 0)
1341 return (CORE_ADDR) 0;
1343 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1345 /* If caller does not have a frame pointer, then its frame
1346 can be found at current_frame - caller_framesize. */
1347 if (caller_framesize != -1)
1349 return frame_base - caller_framesize;
1351 /* Both caller and callee have frame pointers and are GCC compiled
1352 (SAVE_SP bit in unwind descriptor is on for both functions.
1353 The previous frame pointer is found at the top of the current frame. */
1354 if (caller_framesize == -1 && my_framesize == -1)
1356 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1358 /* Caller has a frame pointer, but callee does not. This is a little
1359 more difficult as GCC and HP C lay out locals and callee register save
1360 areas very differently.
1362 The previous frame pointer could be in a register, or in one of
1363 several areas on the stack.
1365 Walk from the current frame to the innermost frame examining
1366 unwind descriptors to determine if %r3 ever gets saved into the
1367 stack. If so return whatever value got saved into the stack.
1368 If it was never saved in the stack, then the value in %r3 is still
1371 We use information from unwind descriptors to determine if %r3
1372 is saved into the stack (Entry_GR field has this information). */
1374 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1376 u = find_unwind_entry (get_frame_pc (tmp_frame));
1380 /* We could find this information by examining prologues. I don't
1381 think anyone has actually written any tools (not even "strip")
1382 which leave them out of an executable, so maybe this is a moot
1384 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1385 code that doesn't have unwind entries. For example, stepping into
1386 the dynamic linker will give you a PC that has none. Thus, I've
1387 disabled this warning. */
1389 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1391 return (CORE_ADDR) 0;
1395 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1396 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1399 /* Entry_GR specifies the number of callee-saved general registers
1400 saved in the stack. It starts at %r3, so %r3 would be 1. */
1401 if (u->Entry_GR >= 1)
1403 /* The unwind entry claims that r3 is saved here. However,
1404 in optimized code, GCC often doesn't actually save r3.
1405 We'll discover this if we look at the prologue. */
1406 hppa_frame_init_saved_regs (tmp_frame);
1407 saved_regs = get_frame_saved_regs (tmp_frame);
1408 saved_regs_frame = tmp_frame;
1410 /* If we have an address for r3, that's good. */
1411 if (saved_regs[DEPRECATED_FP_REGNUM])
1418 /* We may have walked down the chain into a function with a frame
1421 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1422 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1424 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1426 /* %r3 was saved somewhere in the stack. Dig it out. */
1431 For optimization purposes many kernels don't have the
1432 callee saved registers into the save_state structure upon
1433 entry into the kernel for a syscall; the optimization
1434 is usually turned off if the process is being traced so
1435 that the debugger can get full register state for the
1438 This scheme works well except for two cases:
1440 * Attaching to a process when the process is in the
1441 kernel performing a system call (debugger can't get
1442 full register state for the inferior process since
1443 the process wasn't being traced when it entered the
1446 * Register state is not complete if the system call
1447 causes the process to core dump.
1450 The following heinous code is an attempt to deal with
1451 the lack of register state in a core dump. It will
1452 fail miserably if the function which performs the
1453 system call has a variable sized stack frame. */
1455 if (tmp_frame != saved_regs_frame)
1457 hppa_frame_init_saved_regs (tmp_frame);
1458 saved_regs = get_frame_saved_regs (tmp_frame);
1461 /* Abominable hack. */
1462 if (current_target.to_has_execution == 0
1463 && ((saved_regs[FLAGS_REGNUM]
1464 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1467 || (saved_regs[FLAGS_REGNUM] == 0
1468 && read_register (FLAGS_REGNUM) & 0x2)))
1470 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1473 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1474 TARGET_PTR_BIT / 8);
1478 return frame_base - (u->Total_frame_size << 3);
1482 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1483 TARGET_PTR_BIT / 8);
1488 /* Get the innermost frame. */
1490 while (get_next_frame (tmp_frame) != NULL)
1491 tmp_frame = get_next_frame (tmp_frame);
1493 if (tmp_frame != saved_regs_frame)
1495 hppa_frame_init_saved_regs (tmp_frame);
1496 saved_regs = get_frame_saved_regs (tmp_frame);
1499 /* Abominable hack. See above. */
1500 if (current_target.to_has_execution == 0
1501 && ((saved_regs[FLAGS_REGNUM]
1502 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1505 || (saved_regs[FLAGS_REGNUM] == 0
1506 && read_register (FLAGS_REGNUM) & 0x2)))
1508 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1511 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1512 TARGET_PTR_BIT / 8);
1516 return frame_base - (u->Total_frame_size << 3);
1520 /* The value in %r3 was never saved into the stack (thus %r3 still
1521 holds the value of the previous frame pointer). */
1522 return deprecated_read_fp ();
1527 /* To see if a frame chain is valid, see if the caller looks like it
1528 was compiled with gcc. */
1531 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1533 struct minimal_symbol *msym_us;
1534 struct minimal_symbol *msym_start;
1535 struct unwind_table_entry *u, *next_u = NULL;
1536 struct frame_info *next;
1538 u = find_unwind_entry (get_frame_pc (thisframe));
1543 /* We can't just check that the same of msym_us is "_start", because
1544 someone idiotically decided that they were going to make a Ltext_end
1545 symbol with the same address. This Ltext_end symbol is totally
1546 indistinguishable (as nearly as I can tell) from the symbol for a function
1547 which is (legitimately, since it is in the user's namespace)
1548 named Ltext_end, so we can't just ignore it. */
1549 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1550 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1553 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1556 /* Grrrr. Some new idiot decided that they don't want _start for the
1557 PRO configurations; $START$ calls main directly.... Deal with it. */
1558 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1561 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1564 next = get_next_frame (thisframe);
1566 next_u = find_unwind_entry (get_frame_pc (next));
1568 /* If this frame does not save SP, has no stack, isn't a stub,
1569 and doesn't "call" an interrupt routine or signal handler caller,
1570 then its not valid. */
1571 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1572 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1573 || (next_u && next_u->HP_UX_interrupt_marker))
1576 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1582 /* These functions deal with saving and restoring register state
1583 around a function call in the inferior. They keep the stack
1584 double-word aligned; eventually, on an hp700, the stack will have
1585 to be aligned to a 64-byte boundary. */
1588 hppa_push_dummy_frame (void)
1590 CORE_ADDR sp, pc, pcspace;
1592 CORE_ADDR int_buffer;
1595 pc = hppa_target_read_pc (inferior_ptid);
1596 int_buffer = read_register (FLAGS_REGNUM);
1597 if (int_buffer & 0x2)
1599 const unsigned int sid = (pc >> 30) & 0x3;
1601 pcspace = read_register (SR4_REGNUM);
1603 pcspace = read_register (SR4_REGNUM + 4 + sid);
1606 pcspace = read_register (PCSQ_HEAD_REGNUM);
1608 /* Space for "arguments"; the RP goes in here. */
1609 sp = read_register (SP_REGNUM) + 48;
1610 int_buffer = read_register (RP_REGNUM) | 0x3;
1612 /* The 32bit and 64bit ABIs save the return pointer into different
1614 if (DEPRECATED_REGISTER_SIZE == 8)
1615 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1617 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1619 int_buffer = deprecated_read_fp ();
1620 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1622 write_register (DEPRECATED_FP_REGNUM, sp);
1624 sp += 2 * DEPRECATED_REGISTER_SIZE;
1626 for (regnum = 1; regnum < 32; regnum++)
1627 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1628 sp = push_word (sp, read_register (regnum));
1630 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1631 if (DEPRECATED_REGISTER_SIZE != 8)
1634 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1636 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1637 (char *) &freg_buffer, 8);
1638 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1640 sp = push_word (sp, read_register (IPSW_REGNUM));
1641 sp = push_word (sp, read_register (SAR_REGNUM));
1642 sp = push_word (sp, pc);
1643 sp = push_word (sp, pcspace);
1644 sp = push_word (sp, pc + 4);
1645 sp = push_word (sp, pcspace);
1646 write_register (SP_REGNUM, sp);
1650 find_dummy_frame_regs (struct frame_info *frame,
1651 CORE_ADDR frame_saved_regs[])
1653 CORE_ADDR fp = get_frame_base (frame);
1656 /* The 32bit and 64bit ABIs save RP into different locations. */
1657 if (DEPRECATED_REGISTER_SIZE == 8)
1658 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1660 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1662 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1664 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1666 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1668 if (i != DEPRECATED_FP_REGNUM)
1670 frame_saved_regs[i] = fp;
1671 fp += DEPRECATED_REGISTER_SIZE;
1675 /* This is not necessary or desirable for the 64bit ABI. */
1676 if (DEPRECATED_REGISTER_SIZE != 8)
1679 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1680 frame_saved_regs[i] = fp;
1682 frame_saved_regs[IPSW_REGNUM] = fp;
1683 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1684 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1685 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1686 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1687 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1691 hppa_pop_frame (void)
1693 struct frame_info *frame = get_current_frame ();
1694 CORE_ADDR fp, npc, target_pc;
1699 fp = get_frame_base (frame);
1700 hppa_frame_init_saved_regs (frame);
1701 fsr = get_frame_saved_regs (frame);
1703 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1704 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1705 restore_pc_queue (fsr);
1708 for (regnum = 31; regnum > 0; regnum--)
1710 write_register (regnum, read_memory_integer (fsr[regnum],
1711 DEPRECATED_REGISTER_SIZE));
1713 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1716 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1717 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1718 (char *) &freg_buffer, 8);
1721 if (fsr[IPSW_REGNUM])
1722 write_register (IPSW_REGNUM,
1723 read_memory_integer (fsr[IPSW_REGNUM],
1724 DEPRECATED_REGISTER_SIZE));
1726 if (fsr[SAR_REGNUM])
1727 write_register (SAR_REGNUM,
1728 read_memory_integer (fsr[SAR_REGNUM],
1729 DEPRECATED_REGISTER_SIZE));
1731 /* If the PC was explicitly saved, then just restore it. */
1732 if (fsr[PCOQ_TAIL_REGNUM])
1734 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1735 DEPRECATED_REGISTER_SIZE);
1736 write_register (PCOQ_TAIL_REGNUM, npc);
1738 /* Else use the value in %rp to set the new PC. */
1741 npc = read_register (RP_REGNUM);
1745 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1747 if (fsr[IPSW_REGNUM]) /* call dummy */
1748 write_register (SP_REGNUM, fp - 48);
1750 write_register (SP_REGNUM, fp);
1752 /* The PC we just restored may be inside a return trampoline. If so
1753 we want to restart the inferior and run it through the trampoline.
1755 Do this by setting a momentary breakpoint at the location the
1756 trampoline returns to.
1758 Don't skip through the trampoline if we're popping a dummy frame. */
1759 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1760 if (target_pc && !fsr[IPSW_REGNUM])
1762 struct symtab_and_line sal;
1763 struct breakpoint *breakpoint;
1764 struct cleanup *old_chain;
1766 /* Set up our breakpoint. Set it to be silent as the MI code
1767 for "return_command" will print the frame we returned to. */
1768 sal = find_pc_line (target_pc, 0);
1770 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1771 breakpoint->silent = 1;
1773 /* So we can clean things up. */
1774 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1776 /* Start up the inferior. */
1777 clear_proceed_status ();
1778 proceed_to_finish = 1;
1779 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1781 /* Perform our cleanups. */
1782 do_cleanups (old_chain);
1784 flush_cached_frames ();
1787 /* After returning to a dummy on the stack, restore the instruction
1788 queue space registers. */
1791 restore_pc_queue (CORE_ADDR *fsr)
1793 CORE_ADDR pc = read_pc ();
1794 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1795 TARGET_PTR_BIT / 8);
1796 struct target_waitstatus w;
1799 /* Advance past break instruction in the call dummy. */
1800 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1801 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1803 /* HPUX doesn't let us set the space registers or the space
1804 registers of the PC queue through ptrace. Boo, hiss.
1805 Conveniently, the call dummy has this sequence of instructions
1810 So, load up the registers and single step until we are in the
1813 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1814 DEPRECATED_REGISTER_SIZE));
1815 write_register (22, new_pc);
1817 for (insn_count = 0; insn_count < 3; insn_count++)
1819 /* FIXME: What if the inferior gets a signal right now? Want to
1820 merge this into wait_for_inferior (as a special kind of
1821 watchpoint? By setting a breakpoint at the end? Is there
1822 any other choice? Is there *any* way to do this stuff with
1823 ptrace() or some equivalent?). */
1825 target_wait (inferior_ptid, &w);
1827 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1829 stop_signal = w.value.sig;
1830 terminal_ours_for_output ();
1831 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1832 target_signal_to_name (stop_signal),
1833 target_signal_to_string (stop_signal));
1834 gdb_flush (gdb_stdout);
1838 target_terminal_ours ();
1839 target_fetch_registers (-1);
1844 #ifdef PA20W_CALLING_CONVENTIONS
1846 /* This function pushes a stack frame with arguments as part of the
1847 inferior function calling mechanism.
1849 This is the version for the PA64, in which later arguments appear
1850 at higher addresses. (The stack always grows towards higher
1853 We simply allocate the appropriate amount of stack space and put
1854 arguments into their proper slots. The call dummy code will copy
1855 arguments into registers as needed by the ABI.
1857 This ABI also requires that the caller provide an argument pointer
1858 to the callee, so we do that too. */
1861 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1862 int struct_return, CORE_ADDR struct_addr)
1864 /* array of arguments' offsets */
1865 int *offset = (int *) alloca (nargs * sizeof (int));
1867 /* array of arguments' lengths: real lengths in bytes, not aligned to
1869 int *lengths = (int *) alloca (nargs * sizeof (int));
1871 /* The value of SP as it was passed into this function after
1873 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1875 /* The number of stack bytes occupied by the current argument. */
1878 /* The total number of bytes reserved for the arguments. */
1879 int cum_bytes_reserved = 0;
1881 /* Similarly, but aligned. */
1882 int cum_bytes_aligned = 0;
1885 /* Iterate over each argument provided by the user. */
1886 for (i = 0; i < nargs; i++)
1888 struct type *arg_type = VALUE_TYPE (args[i]);
1890 /* Integral scalar values smaller than a register are padded on
1891 the left. We do this by promoting them to full-width,
1892 although the ABI says to pad them with garbage. */
1893 if (is_integral_type (arg_type)
1894 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1896 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1897 ? builtin_type_unsigned_long
1898 : builtin_type_long),
1900 arg_type = VALUE_TYPE (args[i]);
1903 lengths[i] = TYPE_LENGTH (arg_type);
1905 /* Align the size of the argument to the word size for this
1907 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1909 offset[i] = cum_bytes_reserved;
1911 /* Aggregates larger than eight bytes (the only types larger
1912 than eight bytes we have) are aligned on a 16-byte boundary,
1913 possibly padded on the right with garbage. This may leave an
1914 empty word on the stack, and thus an unused register, as per
1916 if (bytes_reserved > 8)
1918 /* Round up the offset to a multiple of two slots. */
1919 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1920 & -(2*DEPRECATED_REGISTER_SIZE));
1922 /* Note the space we've wasted, if any. */
1923 bytes_reserved += new_offset - offset[i];
1924 offset[i] = new_offset;
1927 cum_bytes_reserved += bytes_reserved;
1930 /* CUM_BYTES_RESERVED already accounts for all the arguments
1931 passed by the user. However, the ABIs mandate minimum stack space
1932 allocations for outgoing arguments.
1934 The ABIs also mandate minimum stack alignments which we must
1936 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
1937 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1939 /* Now write each of the args at the proper offset down the stack. */
1940 for (i = 0; i < nargs; i++)
1941 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1943 /* If a structure has to be returned, set up register 28 to hold its
1946 write_register (28, struct_addr);
1948 /* For the PA64 we must pass a pointer to the outgoing argument list.
1949 The ABI mandates that the pointer should point to the first byte of
1950 storage beyond the register flushback area.
1952 However, the call dummy expects the outgoing argument pointer to
1953 be passed in register %r4. */
1954 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1956 /* ?!? This needs further work. We need to set up the global data
1957 pointer for this procedure. This assumes the same global pointer
1958 for every procedure. The call dummy expects the dp value to
1959 be passed in register %r6. */
1960 write_register (6, read_register (27));
1962 /* The stack will have 64 bytes of additional space for a frame marker. */
1968 /* This function pushes a stack frame with arguments as part of the
1969 inferior function calling mechanism.
1971 This is the version of the function for the 32-bit PA machines, in
1972 which later arguments appear at lower addresses. (The stack always
1973 grows towards higher addresses.)
1975 We simply allocate the appropriate amount of stack space and put
1976 arguments into their proper slots. The call dummy code will copy
1977 arguments into registers as needed by the ABI. */
1980 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1981 int struct_return, CORE_ADDR struct_addr)
1983 /* array of arguments' offsets */
1984 int *offset = (int *) alloca (nargs * sizeof (int));
1986 /* array of arguments' lengths: real lengths in bytes, not aligned to
1988 int *lengths = (int *) alloca (nargs * sizeof (int));
1990 /* The number of stack bytes occupied by the current argument. */
1993 /* The total number of bytes reserved for the arguments. */
1994 int cum_bytes_reserved = 0;
1996 /* Similarly, but aligned. */
1997 int cum_bytes_aligned = 0;
2000 /* Iterate over each argument provided by the user. */
2001 for (i = 0; i < nargs; i++)
2003 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2005 /* Align the size of the argument to the word size for this
2007 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2009 offset[i] = (cum_bytes_reserved
2010 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2012 /* If the argument is a double word argument, then it needs to be
2013 double word aligned. */
2014 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2015 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2018 /* BYTES_RESERVED is already aligned to the word, so we put
2019 the argument at one word more down the stack.
2021 This will leave one empty word on the stack, and one unused
2022 register as mandated by the ABI. */
2023 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2024 & -(2 * DEPRECATED_REGISTER_SIZE));
2026 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2028 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2029 offset[i] += DEPRECATED_REGISTER_SIZE;
2033 cum_bytes_reserved += bytes_reserved;
2037 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2038 by the user. However, the ABI mandates minimum stack space
2039 allocations for outgoing arguments.
2041 The ABI also mandates minimum stack alignments which we must
2043 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2044 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2046 /* Now write each of the args at the proper offset down the stack.
2047 ?!? We need to promote values to a full register instead of skipping
2048 words in the stack. */
2049 for (i = 0; i < nargs; i++)
2050 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2052 /* If a structure has to be returned, set up register 28 to hold its
2055 write_register (28, struct_addr);
2057 /* The stack will have 32 bytes of additional space for a frame marker. */
2063 /* elz: this function returns a value which is built looking at the given address.
2064 It is called from call_function_by_hand, in case we need to return a
2065 value which is larger than 64 bits, and it is stored in the stack rather than
2066 in the registers r28 and r29 or fr4.
2067 This function does the same stuff as value_being_returned in values.c, but
2068 gets the value from the stack rather than from the buffer where all the
2069 registers were saved when the function called completed. */
2071 hppa_value_returned_from_stack (struct type *valtype, CORE_ADDR addr)
2075 val = allocate_value (valtype);
2076 CHECK_TYPEDEF (valtype);
2077 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
2084 /* elz: Used to lookup a symbol in the shared libraries.
2085 This function calls shl_findsym, indirectly through a
2086 call to __d_shl_get. __d_shl_get is in end.c, which is always
2087 linked in by the hp compilers/linkers.
2088 The call to shl_findsym cannot be made directly because it needs
2089 to be active in target address space.
2090 inputs: - minimal symbol pointer for the function we want to look up
2091 - address in target space of the descriptor for the library
2092 where we want to look the symbol up.
2093 This address is retrieved using the
2094 som_solib_get_solib_by_pc function (somsolib.c).
2095 output: - real address in the library of the function.
2096 note: the handle can be null, in which case shl_findsym will look for
2097 the symbol in all the loaded shared libraries.
2098 files to look at if you need reference on this stuff:
2099 dld.c, dld_shl_findsym.c
2101 man entry for shl_findsym */
2104 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2106 struct symbol *get_sym, *symbol2;
2107 struct minimal_symbol *buff_minsym, *msymbol;
2109 struct value **args;
2110 struct value *funcval;
2113 int x, namelen, err_value, tmp = -1;
2114 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2115 CORE_ADDR stub_addr;
2118 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2119 funcval = find_function_in_inferior ("__d_shl_get");
2120 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2121 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2122 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2123 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2124 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2125 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2126 value_return_addr = endo_buff_addr + namelen;
2127 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2130 if ((x = value_return_addr % 64) != 0)
2131 value_return_addr = value_return_addr + 64 - x;
2133 errno_return_addr = value_return_addr + 64;
2136 /* set up stuff needed by __d_shl_get in buffer in end.o */
2138 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2140 target_write_memory (value_return_addr, (char *) &tmp, 4);
2142 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2144 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2145 (char *) &handle, 4);
2147 /* now prepare the arguments for the call */
2149 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2150 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2151 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2152 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2153 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2154 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2156 /* now call the function */
2158 val = call_function_by_hand (funcval, 6, args);
2160 /* now get the results */
2162 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2164 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2166 error ("call to __d_shl_get failed, error code is %d", err_value);
2171 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2173 cover_find_stub_with_shl_get (void *args_untyped)
2175 args_for_find_stub *args = args_untyped;
2176 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2180 /* Insert the specified number of args and function address
2181 into a call sequence of the above form stored at DUMMYNAME.
2183 On the hppa we need to call the stack dummy through $$dyncall.
2184 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2185 argument, real_pc, which is the location where gdb should start up
2186 the inferior to do the function call.
2188 This has to work across several versions of hpux, bsd, osf1. It has to
2189 work regardless of what compiler was used to build the inferior program.
2190 It should work regardless of whether or not end.o is available. It has
2191 to work even if gdb can not call into the dynamic loader in the inferior
2192 to query it for symbol names and addresses.
2194 Yes, all those cases should work. Luckily code exists to handle most
2195 of them. The complexity is in selecting exactly what scheme should
2196 be used to perform the inferior call.
2198 At the current time this routine is known not to handle cases where
2199 the program was linked with HP's compiler without including end.o.
2204 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2205 struct value **args, struct type *type, int gcc_p)
2207 CORE_ADDR dyncall_addr;
2208 struct minimal_symbol *msymbol;
2209 struct minimal_symbol *trampoline;
2210 int flags = read_register (FLAGS_REGNUM);
2211 struct unwind_table_entry *u = NULL;
2212 CORE_ADDR new_stub = 0;
2213 CORE_ADDR solib_handle = 0;
2215 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2216 passed an import stub, not a PLABEL. It is also necessary to set %r19
2217 (the PIC register) before performing the call.
2219 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2220 are calling the target directly. When using __d_plt_call we want to
2221 use a PLABEL instead of an import stub. */
2222 int using_gcc_plt_call = 1;
2224 #ifdef GDB_TARGET_IS_HPPA_20W
2225 /* We currently use completely different code for the PA2.0W inferior
2226 function call sequences. This needs to be cleaned up. */
2228 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2229 struct target_waitstatus w;
2233 struct objfile *objfile;
2235 /* We can not modify the PC space queues directly, so we start
2236 up the inferior and execute a couple instructions to set the
2237 space queues so that they point to the call dummy in the stack. */
2238 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2239 sr5 = read_register (SR5_REGNUM);
2242 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2243 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2244 if (target_read_memory (pcoqh, buf, 4) != 0)
2245 error ("Couldn't modify space queue\n");
2246 inst1 = extract_unsigned_integer (buf, 4);
2248 if (target_read_memory (pcoqt, buf, 4) != 0)
2249 error ("Couldn't modify space queue\n");
2250 inst2 = extract_unsigned_integer (buf, 4);
2253 *((int *) buf) = 0xe820d000;
2254 if (target_write_memory (pcoqh, buf, 4) != 0)
2255 error ("Couldn't modify space queue\n");
2258 *((int *) buf) = 0x08000240;
2259 if (target_write_memory (pcoqt, buf, 4) != 0)
2261 *((int *) buf) = inst1;
2262 target_write_memory (pcoqh, buf, 4);
2263 error ("Couldn't modify space queue\n");
2266 write_register (1, pc);
2268 /* Single step twice, the BVE instruction will set the space queue
2269 such that it points to the PC value written immediately above
2270 (ie the call dummy). */
2272 target_wait (inferior_ptid, &w);
2274 target_wait (inferior_ptid, &w);
2276 /* Restore the two instructions at the old PC locations. */
2277 *((int *) buf) = inst1;
2278 target_write_memory (pcoqh, buf, 4);
2279 *((int *) buf) = inst2;
2280 target_write_memory (pcoqt, buf, 4);
2283 /* The call dummy wants the ultimate destination address initially
2285 write_register (5, fun);
2287 /* We need to see if this objfile has a different DP value than our
2288 own (it could be a shared library for example). */
2289 ALL_OBJFILES (objfile)
2291 struct obj_section *s;
2292 obj_private_data_t *obj_private;
2294 /* See if FUN is in any section within this shared library. */
2295 for (s = objfile->sections; s < objfile->sections_end; s++)
2296 if (s->addr <= fun && fun < s->endaddr)
2299 if (s >= objfile->sections_end)
2302 obj_private = (obj_private_data_t *) objfile->obj_private;
2304 /* The DP value may be different for each objfile. But within an
2305 objfile each function uses the same dp value. Thus we do not need
2306 to grope around the opd section looking for dp values.
2308 ?!? This is not strictly correct since we may be in a shared library
2309 and want to call back into the main program. To make that case
2310 work correctly we need to set obj_private->dp for the main program's
2311 objfile, then remove this conditional. */
2312 if (obj_private->dp)
2313 write_register (27, obj_private->dp);
2320 #ifndef GDB_TARGET_IS_HPPA_20W
2321 /* Prefer __gcc_plt_call over the HP supplied routine because
2322 __gcc_plt_call works for any number of arguments. */
2324 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2325 using_gcc_plt_call = 0;
2327 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2328 if (msymbol == NULL)
2329 error ("Can't find an address for $$dyncall trampoline");
2331 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2333 /* FUN could be a procedure label, in which case we have to get
2334 its real address and the value of its GOT/DP if we plan to
2335 call the routine via gcc_plt_call. */
2336 if ((fun & 0x2) && using_gcc_plt_call)
2338 /* Get the GOT/DP value for the target function. It's
2339 at *(fun+4). Note the call dummy is *NOT* allowed to
2340 trash %r19 before calling the target function. */
2341 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2342 DEPRECATED_REGISTER_SIZE));
2344 /* Now get the real address for the function we are calling, it's
2346 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2347 TARGET_PTR_BIT / 8);
2352 #ifndef GDB_TARGET_IS_PA_ELF
2353 /* FUN could be an export stub, the real address of a function, or
2354 a PLABEL. When using gcc's PLT call routine we must call an import
2355 stub rather than the export stub or real function for lazy binding
2358 If we are using the gcc PLT call routine, then we need to
2359 get the import stub for the target function. */
2360 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2362 struct objfile *objfile;
2363 struct minimal_symbol *funsymbol, *stub_symbol;
2364 CORE_ADDR newfun = 0;
2366 funsymbol = lookup_minimal_symbol_by_pc (fun);
2368 error ("Unable to find minimal symbol for target function.\n");
2370 /* Search all the object files for an import symbol with the
2372 ALL_OBJFILES (objfile)
2375 = lookup_minimal_symbol_solib_trampoline
2376 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2379 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2382 /* Found a symbol with the right name. */
2385 struct unwind_table_entry *u;
2386 /* It must be a shared library trampoline. */
2387 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2390 /* It must also be an import stub. */
2391 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2393 || (u->stub_unwind.stub_type != IMPORT
2394 #ifdef GDB_NATIVE_HPUX_11
2395 /* Sigh. The hpux 10.20 dynamic linker will blow
2396 chunks if we perform a call to an unbound function
2397 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2398 linker will blow chunks if we do not call the
2399 unbound function via the IMPORT_SHLIB stub.
2401 We currently have no way to select bevahior on just
2402 the target. However, we only support HPUX/SOM in
2403 native mode. So we conditinalize on a native
2404 #ifdef. Ugly. Ugly. Ugly */
2405 && u->stub_unwind.stub_type != IMPORT_SHLIB
2410 /* OK. Looks like the correct import stub. */
2411 newfun = SYMBOL_VALUE (stub_symbol);
2414 /* If we found an IMPORT stub, then we want to stop
2415 searching now. If we found an IMPORT_SHLIB, we want
2416 to continue the search in the hopes that we will find
2418 if (u->stub_unwind.stub_type == IMPORT)
2423 /* Ouch. We did not find an import stub. Make an attempt to
2424 do the right thing instead of just croaking. Most of the
2425 time this will actually work. */
2427 write_register (19, som_solib_get_got_by_pc (fun));
2429 u = find_unwind_entry (fun);
2431 && (u->stub_unwind.stub_type == IMPORT
2432 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2433 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2435 /* If we found the import stub in the shared library, then we have
2436 to set %r19 before we call the stub. */
2437 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2438 write_register (19, som_solib_get_got_by_pc (fun));
2443 /* If we are calling into another load module then have sr4export call the
2444 magic __d_plt_call routine which is linked in from end.o.
2446 You can't use _sr4export to make the call as the value in sp-24 will get
2447 fried and you end up returning to the wrong location. You can't call the
2448 target as the code to bind the PLT entry to a function can't return to a
2451 Also, query the dynamic linker in the inferior to provide a suitable
2452 PLABEL for the target function. */
2453 if (!using_gcc_plt_call)
2457 /* Get a handle for the shared library containing FUN. Given the
2458 handle we can query the shared library for a PLABEL. */
2459 solib_handle = som_solib_get_solib_by_pc (fun);
2463 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2465 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2467 if (trampoline == NULL)
2469 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2472 /* This is where sr4export will jump to. */
2473 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2475 /* If the function is in a shared library, then call __d_shl_get to
2476 get a PLABEL for the target function. */
2477 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2480 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2482 /* We have to store the address of the stub in __shlib_funcptr. */
2483 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2484 (struct objfile *) NULL);
2486 if (msymbol == NULL)
2487 error ("Can't find an address for __shlib_funcptr");
2488 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2489 (char *) &new_stub, 4);
2491 /* We want sr4export to call __d_plt_call, so we claim it is
2492 the final target. Clear trampoline. */
2498 /* Store upper 21 bits of function address into ldil. fun will either be
2499 the final target (most cases) or __d_plt_call when calling into a shared
2500 library and __gcc_plt_call is not available. */
2501 store_unsigned_integer
2502 (&dummy[FUNC_LDIL_OFFSET],
2504 deposit_21 (fun >> 11,
2505 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2506 INSTRUCTION_SIZE)));
2508 /* Store lower 11 bits of function address into ldo */
2509 store_unsigned_integer
2510 (&dummy[FUNC_LDO_OFFSET],
2512 deposit_14 (fun & MASK_11,
2513 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2514 INSTRUCTION_SIZE)));
2515 #ifdef SR4EXPORT_LDIL_OFFSET
2518 CORE_ADDR trampoline_addr;
2520 /* We may still need sr4export's address too. */
2522 if (trampoline == NULL)
2524 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2525 if (msymbol == NULL)
2526 error ("Can't find an address for _sr4export trampoline");
2528 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2531 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2534 /* Store upper 21 bits of trampoline's address into ldil */
2535 store_unsigned_integer
2536 (&dummy[SR4EXPORT_LDIL_OFFSET],
2538 deposit_21 (trampoline_addr >> 11,
2539 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2540 INSTRUCTION_SIZE)));
2542 /* Store lower 11 bits of trampoline's address into ldo */
2543 store_unsigned_integer
2544 (&dummy[SR4EXPORT_LDO_OFFSET],
2546 deposit_14 (trampoline_addr & MASK_11,
2547 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2548 INSTRUCTION_SIZE)));
2552 write_register (22, pc);
2554 /* If we are in a syscall, then we should call the stack dummy
2555 directly. $$dyncall is not needed as the kernel sets up the
2556 space id registers properly based on the value in %r31. In
2557 fact calling $$dyncall will not work because the value in %r22
2558 will be clobbered on the syscall exit path.
2560 Similarly if the current PC is in a shared library. Note however,
2561 this scheme won't work if the shared library isn't mapped into
2562 the same space as the stack. */
2565 #ifndef GDB_TARGET_IS_PA_ELF
2566 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2570 return dyncall_addr;
2574 /* If the pid is in a syscall, then the FP register is not readable.
2575 We'll return zero in that case, rather than attempting to read it
2576 and cause a warning. */
2579 hppa_read_fp (int pid)
2581 int flags = read_register (FLAGS_REGNUM);
2585 return (CORE_ADDR) 0;
2588 /* This is the only site that may directly read_register () the FP
2589 register. All others must use deprecated_read_fp (). */
2590 return read_register (DEPRECATED_FP_REGNUM);
2594 hppa_target_read_fp (void)
2596 return hppa_read_fp (PIDGET (inferior_ptid));
2599 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2603 hppa_target_read_pc (ptid_t ptid)
2605 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2607 /* The following test does not belong here. It is OS-specific, and belongs
2609 /* Test SS_INSYSCALL */
2611 return read_register_pid (31, ptid) & ~0x3;
2613 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2616 /* Write out the PC. If currently in a syscall, then also write the new
2617 PC value into %r31. */
2620 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2622 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2624 /* The following test does not belong here. It is OS-specific, and belongs
2626 /* If in a syscall, then set %r31. Also make sure to get the
2627 privilege bits set correctly. */
2628 /* Test SS_INSYSCALL */
2630 write_register_pid (31, v | 0x3, ptid);
2632 write_register_pid (PC_REGNUM, v, ptid);
2633 write_register_pid (DEPRECATED_NPC_REGNUM, v + 4, ptid);
2636 /* return the alignment of a type in bytes. Structures have the maximum
2637 alignment required by their fields. */
2640 hppa_alignof (struct type *type)
2642 int max_align, align, i;
2643 CHECK_TYPEDEF (type);
2644 switch (TYPE_CODE (type))
2649 return TYPE_LENGTH (type);
2650 case TYPE_CODE_ARRAY:
2651 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2652 case TYPE_CODE_STRUCT:
2653 case TYPE_CODE_UNION:
2655 for (i = 0; i < TYPE_NFIELDS (type); i++)
2657 /* Bit fields have no real alignment. */
2658 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2659 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2661 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2662 max_align = max (max_align, align);
2671 /* Print the register regnum, or all registers if regnum is -1 */
2674 pa_do_registers_info (int regnum, int fpregs)
2676 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2679 /* Make a copy of gdb's save area (may cause actual
2680 reads from the target). */
2681 for (i = 0; i < NUM_REGS; i++)
2682 frame_register_read (deprecated_selected_frame, i,
2683 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2686 pa_print_registers (raw_regs, regnum, fpregs);
2687 else if (regnum < FP4_REGNUM)
2691 /* Why is the value not passed through "extract_signed_integer"
2692 as in "pa_print_registers" below? */
2693 pa_register_look_aside (raw_regs, regnum, ®_val[0]);
2697 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2701 /* Fancy % formats to prevent leading zeros. */
2702 if (reg_val[0] == 0)
2703 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2705 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2706 reg_val[0], reg_val[1]);
2710 /* Note that real floating point values only start at
2711 FP4_REGNUM. FP0 and up are just status and error
2712 registers, which have integral (bit) values. */
2713 pa_print_fp_reg (regnum);
2716 /********** new function ********************/
2718 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2719 enum precision_type precision)
2721 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2724 /* Make a copy of gdb's save area (may cause actual
2725 reads from the target). */
2726 for (i = 0; i < NUM_REGS; i++)
2727 frame_register_read (deprecated_selected_frame, i,
2728 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2731 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2733 else if (regnum < FP4_REGNUM)
2737 /* Why is the value not passed through "extract_signed_integer"
2738 as in "pa_print_registers" below? */
2739 pa_register_look_aside (raw_regs, regnum, ®_val[0]);
2743 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2747 /* Fancy % formats to prevent leading zeros. */
2748 if (reg_val[0] == 0)
2749 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2752 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2753 reg_val[0], reg_val[1]);
2757 /* Note that real floating point values only start at
2758 FP4_REGNUM. FP0 and up are just status and error
2759 registers, which have integral (bit) values. */
2760 pa_strcat_fp_reg (regnum, stream, precision);
2763 /* If this is a PA2.0 machine, fetch the real 64-bit register
2764 value. Otherwise use the info from gdb's saved register area.
2766 Note that reg_val is really expected to be an array of longs,
2767 with two elements. */
2769 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2771 static int know_which = 0; /* False */
2774 unsigned int offset;
2779 char buf[MAX_REGISTER_SIZE];
2784 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2789 know_which = 1; /* True */
2797 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
2801 /* Code below copied from hppah-nat.c, with fixes for wide
2802 registers, using different area of save_state, etc. */
2803 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2804 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2806 /* Use narrow regs area of save_state and default macro. */
2807 offset = U_REGS_OFFSET;
2808 regaddr = register_addr (regnum, offset);
2813 /* Use wide regs area, and calculate registers as 8 bytes wide.
2815 We'd like to do this, but current version of "C" doesn't
2818 offset = offsetof(save_state_t, ss_wide);
2820 Note that to avoid "C" doing typed pointer arithmetic, we
2821 have to cast away the type in our offset calculation:
2822 otherwise we get an offset of 1! */
2824 /* NB: save_state_t is not available before HPUX 9.
2825 The ss_wide field is not available previous to HPUX 10.20,
2826 so to avoid compile-time warnings, we only compile this for
2827 PA 2.0 processors. This control path should only be followed
2828 if we're debugging a PA 2.0 processor, so this should not cause
2831 /* #if the following code out so that this file can still be
2832 compiled on older HPUX boxes (< 10.20) which don't have
2833 this structure/structure member. */
2834 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2837 offset = ((int) &temp.ss_wide) - ((int) &temp);
2838 regaddr = offset + regnum * 8;
2843 for (i = start; i < 2; i++)
2846 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2847 (PTRACE_ARG3_TYPE) regaddr, 0);
2850 /* Warning, not error, in case we are attached; sometimes the
2851 kernel doesn't let us at the registers. */
2852 char *err = safe_strerror (errno);
2853 char *msg = alloca (strlen (err) + 128);
2854 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2859 regaddr += sizeof (long);
2862 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2863 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2869 /* "Info all-reg" command */
2872 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2875 /* Alas, we are compiled so that "long long" is 32 bits */
2878 int rows = 48, columns = 2;
2880 for (i = 0; i < rows; i++)
2882 for (j = 0; j < columns; j++)
2884 /* We display registers in column-major order. */
2885 int regnum = i + j * rows;
2887 /* Q: Why is the value passed through "extract_signed_integer",
2888 while above, in "pa_do_registers_info" it isn't?
2890 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2892 /* Even fancier % formats to prevent leading zeros
2893 and still maintain the output in columns. */
2896 /* Being big-endian, on this machine the low bits
2897 (the ones we want to look at) are in the second longword. */
2898 long_val = extract_signed_integer (&raw_val[1], 4);
2899 printf_filtered ("%10.10s: %8lx ",
2900 REGISTER_NAME (regnum), long_val);
2904 /* raw_val = extract_signed_integer(&raw_val, 8); */
2905 if (raw_val[0] == 0)
2906 printf_filtered ("%10.10s: %8lx ",
2907 REGISTER_NAME (regnum), raw_val[1]);
2909 printf_filtered ("%10.10s: %8lx%8.8lx ",
2910 REGISTER_NAME (regnum),
2911 raw_val[0], raw_val[1]);
2914 printf_unfiltered ("\n");
2918 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2919 pa_print_fp_reg (i);
2922 /************* new function ******************/
2924 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2925 struct ui_file *stream)
2928 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2930 enum precision_type precision;
2932 precision = unspecified_precision;
2934 for (i = 0; i < 18; i++)
2936 for (j = 0; j < 4; j++)
2938 /* Q: Why is the value passed through "extract_signed_integer",
2939 while above, in "pa_do_registers_info" it isn't?
2941 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2943 /* Even fancier % formats to prevent leading zeros
2944 and still maintain the output in columns. */
2947 /* Being big-endian, on this machine the low bits
2948 (the ones we want to look at) are in the second longword. */
2949 long_val = extract_signed_integer (&raw_val[1], 4);
2950 fprintf_filtered (stream, "%8.8s: %8lx ",
2951 REGISTER_NAME (i + (j * 18)), long_val);
2955 /* raw_val = extract_signed_integer(&raw_val, 8); */
2956 if (raw_val[0] == 0)
2957 fprintf_filtered (stream, "%8.8s: %8lx ",
2958 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2960 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2961 REGISTER_NAME (i + (j * 18)), raw_val[0],
2965 fprintf_unfiltered (stream, "\n");
2969 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2970 pa_strcat_fp_reg (i, stream, precision);
2974 pa_print_fp_reg (int i)
2976 char raw_buffer[MAX_REGISTER_SIZE];
2977 char virtual_buffer[MAX_REGISTER_SIZE];
2979 /* Get 32bits of data. */
2980 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2982 /* Put it in the buffer. No conversions are ever necessary. */
2983 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2985 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2986 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2987 fputs_filtered ("(single precision) ", gdb_stdout);
2989 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2990 1, 0, Val_pretty_default);
2991 printf_filtered ("\n");
2993 /* If "i" is even, then this register can also be a double-precision
2994 FP register. Dump it out as such. */
2997 /* Get the data in raw format for the 2nd half. */
2998 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
3000 /* Copy it into the appropriate part of the virtual buffer. */
3001 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
3002 REGISTER_RAW_SIZE (i));
3004 /* Dump it as a double. */
3005 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3006 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3007 fputs_filtered ("(double precision) ", gdb_stdout);
3009 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3010 1, 0, Val_pretty_default);
3011 printf_filtered ("\n");
3015 /*************** new function ***********************/
3017 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3019 char raw_buffer[MAX_REGISTER_SIZE];
3020 char virtual_buffer[MAX_REGISTER_SIZE];
3022 fputs_filtered (REGISTER_NAME (i), stream);
3023 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3025 /* Get 32bits of data. */
3026 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3028 /* Put it in the buffer. No conversions are ever necessary. */
3029 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
3031 if (precision == double_precision && (i % 2) == 0)
3034 char raw_buf[MAX_REGISTER_SIZE];
3036 /* Get the data in raw format for the 2nd half. */
3037 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3039 /* Copy it into the appropriate part of the virtual buffer. */
3040 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
3042 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3043 1, 0, Val_pretty_default);
3048 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3049 1, 0, Val_pretty_default);
3054 /* Return one if PC is in the call path of a trampoline, else return zero.
3056 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3057 just shared library trampolines (import, export). */
3060 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3062 struct minimal_symbol *minsym;
3063 struct unwind_table_entry *u;
3064 static CORE_ADDR dyncall = 0;
3065 static CORE_ADDR sr4export = 0;
3067 #ifdef GDB_TARGET_IS_HPPA_20W
3068 /* PA64 has a completely different stub/trampoline scheme. Is it
3069 better? Maybe. It's certainly harder to determine with any
3070 certainty that we are in a stub because we can not refer to the
3073 The heuristic is simple. Try to lookup the current PC value in th
3074 minimal symbol table. If that fails, then assume we are not in a
3077 Then see if the PC value falls within the section bounds for the
3078 section containing the minimal symbol we found in the first
3079 step. If it does, then assume we are not in a stub and return.
3081 Finally peek at the instructions to see if they look like a stub. */
3083 struct minimal_symbol *minsym;
3088 minsym = lookup_minimal_symbol_by_pc (pc);
3092 sec = SYMBOL_BFD_SECTION (minsym);
3095 && sec->vma + sec->_cooked_size < pc)
3098 /* We might be in a stub. Peek at the instructions. Stubs are 3
3099 instructions long. */
3100 insn = read_memory_integer (pc, 4);
3102 /* Find out where we think we are within the stub. */
3103 if ((insn & 0xffffc00e) == 0x53610000)
3105 else if ((insn & 0xffffffff) == 0xe820d000)
3107 else if ((insn & 0xffffc00e) == 0x537b0000)
3112 /* Now verify each insn in the range looks like a stub instruction. */
3113 insn = read_memory_integer (addr, 4);
3114 if ((insn & 0xffffc00e) != 0x53610000)
3117 /* Now verify each insn in the range looks like a stub instruction. */
3118 insn = read_memory_integer (addr + 4, 4);
3119 if ((insn & 0xffffffff) != 0xe820d000)
3122 /* Now verify each insn in the range looks like a stub instruction. */
3123 insn = read_memory_integer (addr + 8, 4);
3124 if ((insn & 0xffffc00e) != 0x537b0000)
3127 /* Looks like a stub. */
3132 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3135 /* First see if PC is in one of the two C-library trampolines. */
3138 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3140 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3147 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3149 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3154 if (pc == dyncall || pc == sr4export)
3157 minsym = lookup_minimal_symbol_by_pc (pc);
3158 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3161 /* Get the unwind descriptor corresponding to PC, return zero
3162 if no unwind was found. */
3163 u = find_unwind_entry (pc);
3167 /* If this isn't a linker stub, then return now. */
3168 if (u->stub_unwind.stub_type == 0)
3171 /* By definition a long-branch stub is a call stub. */
3172 if (u->stub_unwind.stub_type == LONG_BRANCH)
3175 /* The call and return path execute the same instructions within
3176 an IMPORT stub! So an IMPORT stub is both a call and return
3178 if (u->stub_unwind.stub_type == IMPORT)
3181 /* Parameter relocation stubs always have a call path and may have a
3183 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3184 || u->stub_unwind.stub_type == EXPORT)
3188 /* Search forward from the current PC until we hit a branch
3189 or the end of the stub. */
3190 for (addr = pc; addr <= u->region_end; addr += 4)
3194 insn = read_memory_integer (addr, 4);
3196 /* Does it look like a bl? If so then it's the call path, if
3197 we find a bv or be first, then we're on the return path. */
3198 if ((insn & 0xfc00e000) == 0xe8000000)
3200 else if ((insn & 0xfc00e001) == 0xe800c000
3201 || (insn & 0xfc000000) == 0xe0000000)
3205 /* Should never happen. */
3206 warning ("Unable to find branch in parameter relocation stub.\n");
3210 /* Unknown stub type. For now, just return zero. */
3214 /* Return one if PC is in the return path of a trampoline, else return zero.
3216 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3217 just shared library trampolines (import, export). */
3220 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3222 struct unwind_table_entry *u;
3224 /* Get the unwind descriptor corresponding to PC, return zero
3225 if no unwind was found. */
3226 u = find_unwind_entry (pc);
3230 /* If this isn't a linker stub or it's just a long branch stub, then
3232 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3235 /* The call and return path execute the same instructions within
3236 an IMPORT stub! So an IMPORT stub is both a call and return
3238 if (u->stub_unwind.stub_type == IMPORT)
3241 /* Parameter relocation stubs always have a call path and may have a
3243 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3244 || u->stub_unwind.stub_type == EXPORT)
3248 /* Search forward from the current PC until we hit a branch
3249 or the end of the stub. */
3250 for (addr = pc; addr <= u->region_end; addr += 4)
3254 insn = read_memory_integer (addr, 4);
3256 /* Does it look like a bl? If so then it's the call path, if
3257 we find a bv or be first, then we're on the return path. */
3258 if ((insn & 0xfc00e000) == 0xe8000000)
3260 else if ((insn & 0xfc00e001) == 0xe800c000
3261 || (insn & 0xfc000000) == 0xe0000000)
3265 /* Should never happen. */
3266 warning ("Unable to find branch in parameter relocation stub.\n");
3270 /* Unknown stub type. For now, just return zero. */
3275 /* Figure out if PC is in a trampoline, and if so find out where
3276 the trampoline will jump to. If not in a trampoline, return zero.
3278 Simple code examination probably is not a good idea since the code
3279 sequences in trampolines can also appear in user code.
3281 We use unwinds and information from the minimal symbol table to
3282 determine when we're in a trampoline. This won't work for ELF
3283 (yet) since it doesn't create stub unwind entries. Whether or
3284 not ELF will create stub unwinds or normal unwinds for linker
3285 stubs is still being debated.
3287 This should handle simple calls through dyncall or sr4export,
3288 long calls, argument relocation stubs, and dyncall/sr4export
3289 calling an argument relocation stub. It even handles some stubs
3290 used in dynamic executables. */
3293 hppa_skip_trampoline_code (CORE_ADDR pc)
3296 long prev_inst, curr_inst, loc;
3297 static CORE_ADDR dyncall = 0;
3298 static CORE_ADDR dyncall_external = 0;
3299 static CORE_ADDR sr4export = 0;
3300 struct minimal_symbol *msym;
3301 struct unwind_table_entry *u;
3303 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3308 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3310 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3315 if (!dyncall_external)
3317 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3319 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3321 dyncall_external = -1;
3326 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3328 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3333 /* Addresses passed to dyncall may *NOT* be the actual address
3334 of the function. So we may have to do something special. */
3337 pc = (CORE_ADDR) read_register (22);
3339 /* If bit 30 (counting from the left) is on, then pc is the address of
3340 the PLT entry for this function, not the address of the function
3341 itself. Bit 31 has meaning too, but only for MPE. */
3343 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3345 if (pc == dyncall_external)
3347 pc = (CORE_ADDR) read_register (22);
3348 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3350 else if (pc == sr4export)
3351 pc = (CORE_ADDR) (read_register (22));
3353 /* Get the unwind descriptor corresponding to PC, return zero
3354 if no unwind was found. */
3355 u = find_unwind_entry (pc);
3359 /* If this isn't a linker stub, then return now. */
3360 /* elz: attention here! (FIXME) because of a compiler/linker
3361 error, some stubs which should have a non zero stub_unwind.stub_type
3362 have unfortunately a value of zero. So this function would return here
3363 as if we were not in a trampoline. To fix this, we go look at the partial
3364 symbol information, which reports this guy as a stub.
3365 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3366 partial symbol information is also wrong sometimes. This is because
3367 when it is entered (somread.c::som_symtab_read()) it can happen that
3368 if the type of the symbol (from the som) is Entry, and the symbol is
3369 in a shared library, then it can also be a trampoline. This would
3370 be OK, except that I believe the way they decide if we are ina shared library
3371 does not work. SOOOO..., even if we have a regular function w/o trampolines
3372 its minimal symbol can be assigned type mst_solib_trampoline.
3373 Also, if we find that the symbol is a real stub, then we fix the unwind
3374 descriptor, and define the stub type to be EXPORT.
3375 Hopefully this is correct most of the times. */
3376 if (u->stub_unwind.stub_type == 0)
3379 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3380 we can delete all the code which appears between the lines */
3381 /*--------------------------------------------------------------------------*/
3382 msym = lookup_minimal_symbol_by_pc (pc);
3384 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3385 return orig_pc == pc ? 0 : pc & ~0x3;
3387 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3389 struct objfile *objfile;
3390 struct minimal_symbol *msymbol;
3391 int function_found = 0;
3393 /* go look if there is another minimal symbol with the same name as
3394 this one, but with type mst_text. This would happen if the msym
3395 is an actual trampoline, in which case there would be another
3396 symbol with the same name corresponding to the real function */
3398 ALL_MSYMBOLS (objfile, msymbol)
3400 if (MSYMBOL_TYPE (msymbol) == mst_text
3401 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3409 /* the type of msym is correct (mst_solib_trampoline), but
3410 the unwind info is wrong, so set it to the correct value */
3411 u->stub_unwind.stub_type = EXPORT;
3413 /* the stub type info in the unwind is correct (this is not a
3414 trampoline), but the msym type information is wrong, it
3415 should be mst_text. So we need to fix the msym, and also
3416 get out of this function */
3418 MSYMBOL_TYPE (msym) = mst_text;
3419 return orig_pc == pc ? 0 : pc & ~0x3;
3423 /*--------------------------------------------------------------------------*/
3426 /* It's a stub. Search for a branch and figure out where it goes.
3427 Note we have to handle multi insn branch sequences like ldil;ble.
3428 Most (all?) other branches can be determined by examining the contents
3429 of certain registers and the stack. */
3436 /* Make sure we haven't walked outside the range of this stub. */
3437 if (u != find_unwind_entry (loc))
3439 warning ("Unable to find branch in linker stub");
3440 return orig_pc == pc ? 0 : pc & ~0x3;
3443 prev_inst = curr_inst;
3444 curr_inst = read_memory_integer (loc, 4);
3446 /* Does it look like a branch external using %r1? Then it's the
3447 branch from the stub to the actual function. */
3448 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3450 /* Yup. See if the previous instruction loaded
3451 a value into %r1. If so compute and return the jump address. */
3452 if ((prev_inst & 0xffe00000) == 0x20200000)
3453 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3456 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3457 return orig_pc == pc ? 0 : pc & ~0x3;
3461 /* Does it look like a be 0(sr0,%r21)? OR
3462 Does it look like a be, n 0(sr0,%r21)? OR
3463 Does it look like a bve (r21)? (this is on PA2.0)
3464 Does it look like a bve, n(r21)? (this is also on PA2.0)
3465 That's the branch from an
3466 import stub to an export stub.
3468 It is impossible to determine the target of the branch via
3469 simple examination of instructions and/or data (consider
3470 that the address in the plabel may be the address of the
3471 bind-on-reference routine in the dynamic loader).
3473 So we have try an alternative approach.
3475 Get the name of the symbol at our current location; it should
3476 be a stub symbol with the same name as the symbol in the
3479 Then lookup a minimal symbol with the same name; we should
3480 get the minimal symbol for the target routine in the shared
3481 library as those take precedence of import/export stubs. */
3482 if ((curr_inst == 0xe2a00000) ||
3483 (curr_inst == 0xe2a00002) ||
3484 (curr_inst == 0xeaa0d000) ||
3485 (curr_inst == 0xeaa0d002))
3487 struct minimal_symbol *stubsym, *libsym;
3489 stubsym = lookup_minimal_symbol_by_pc (loc);
3490 if (stubsym == NULL)
3492 warning ("Unable to find symbol for 0x%lx", loc);
3493 return orig_pc == pc ? 0 : pc & ~0x3;
3496 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3499 warning ("Unable to find library symbol for %s\n",
3500 DEPRECATED_SYMBOL_NAME (stubsym));
3501 return orig_pc == pc ? 0 : pc & ~0x3;
3504 return SYMBOL_VALUE (libsym);
3507 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3508 branch from the stub to the actual function. */
3510 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3511 || (curr_inst & 0xffe0e000) == 0xe8000000
3512 || (curr_inst & 0xffe0e000) == 0xe800A000)
3513 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3515 /* Does it look like bv (rp)? Note this depends on the
3516 current stack pointer being the same as the stack
3517 pointer in the stub itself! This is a branch on from the
3518 stub back to the original caller. */
3519 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3520 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3522 /* Yup. See if the previous instruction loaded
3524 if (prev_inst == 0x4bc23ff1)
3525 return (read_memory_integer
3526 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3529 warning ("Unable to find restore of %%rp before bv (%%rp).");
3530 return orig_pc == pc ? 0 : pc & ~0x3;
3534 /* elz: added this case to capture the new instruction
3535 at the end of the return part of an export stub used by
3536 the PA2.0: BVE, n (rp) */
3537 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3539 return (read_memory_integer
3540 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3543 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3544 the original caller from the stub. Used in dynamic executables. */
3545 else if (curr_inst == 0xe0400002)
3547 /* The value we jump to is sitting in sp - 24. But that's
3548 loaded several instructions before the be instruction.
3549 I guess we could check for the previous instruction being
3550 mtsp %r1,%sr0 if we want to do sanity checking. */
3551 return (read_memory_integer
3552 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3555 /* Haven't found the branch yet, but we're still in the stub.
3562 /* For the given instruction (INST), return any adjustment it makes
3563 to the stack pointer or zero for no adjustment.
3565 This only handles instructions commonly found in prologues. */
3568 prologue_inst_adjust_sp (unsigned long inst)
3570 /* This must persist across calls. */
3571 static int save_high21;
3573 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3574 if ((inst & 0xffffc000) == 0x37de0000)
3575 return extract_14 (inst);
3578 if ((inst & 0xffe00000) == 0x6fc00000)
3579 return extract_14 (inst);
3581 /* std,ma X,D(sp) */
3582 if ((inst & 0xffe00008) == 0x73c00008)
3583 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3585 /* addil high21,%r1; ldo low11,(%r1),%r30)
3586 save high bits in save_high21 for later use. */
3587 if ((inst & 0xffe00000) == 0x28200000)
3589 save_high21 = extract_21 (inst);
3593 if ((inst & 0xffff0000) == 0x343e0000)
3594 return save_high21 + extract_14 (inst);
3596 /* fstws as used by the HP compilers. */
3597 if ((inst & 0xffffffe0) == 0x2fd01220)
3598 return extract_5_load (inst);
3600 /* No adjustment. */
3604 /* Return nonzero if INST is a branch of some kind, else return zero. */
3607 is_branch (unsigned long inst)
3636 /* Return the register number for a GR which is saved by INST or
3637 zero it INST does not save a GR. */
3640 inst_saves_gr (unsigned long inst)
3642 /* Does it look like a stw? */
3643 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3644 || (inst >> 26) == 0x1f
3645 || ((inst >> 26) == 0x1f
3646 && ((inst >> 6) == 0xa)))
3647 return extract_5R_store (inst);
3649 /* Does it look like a std? */
3650 if ((inst >> 26) == 0x1c
3651 || ((inst >> 26) == 0x03
3652 && ((inst >> 6) & 0xf) == 0xb))
3653 return extract_5R_store (inst);
3655 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3656 if ((inst >> 26) == 0x1b)
3657 return extract_5R_store (inst);
3659 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3661 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3662 || ((inst >> 26) == 0x3
3663 && (((inst >> 6) & 0xf) == 0x8
3664 || (inst >> 6) & 0xf) == 0x9))
3665 return extract_5R_store (inst);
3670 /* Return the register number for a FR which is saved by INST or
3671 zero it INST does not save a FR.
3673 Note we only care about full 64bit register stores (that's the only
3674 kind of stores the prologue will use).
3676 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3679 inst_saves_fr (unsigned long inst)
3681 /* is this an FSTD ? */
3682 if ((inst & 0xfc00dfc0) == 0x2c001200)
3683 return extract_5r_store (inst);
3684 if ((inst & 0xfc000002) == 0x70000002)
3685 return extract_5R_store (inst);
3686 /* is this an FSTW ? */
3687 if ((inst & 0xfc00df80) == 0x24001200)
3688 return extract_5r_store (inst);
3689 if ((inst & 0xfc000002) == 0x7c000000)
3690 return extract_5R_store (inst);
3694 /* Advance PC across any function entry prologue instructions
3695 to reach some "real" code.
3697 Use information in the unwind table to determine what exactly should
3698 be in the prologue. */
3702 skip_prologue_hard_way (CORE_ADDR pc)
3705 CORE_ADDR orig_pc = pc;
3706 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3707 unsigned long args_stored, status, i, restart_gr, restart_fr;
3708 struct unwind_table_entry *u;
3714 u = find_unwind_entry (pc);
3718 /* If we are not at the beginning of a function, then return now. */
3719 if ((pc & ~0x3) != u->region_start)
3722 /* This is how much of a frame adjustment we need to account for. */
3723 stack_remaining = u->Total_frame_size << 3;
3725 /* Magic register saves we want to know about. */
3726 save_rp = u->Save_RP;
3727 save_sp = u->Save_SP;
3729 /* An indication that args may be stored into the stack. Unfortunately
3730 the HPUX compilers tend to set this in cases where no args were
3734 /* Turn the Entry_GR field into a bitmask. */
3736 for (i = 3; i < u->Entry_GR + 3; i++)
3738 /* Frame pointer gets saved into a special location. */
3739 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3742 save_gr |= (1 << i);
3744 save_gr &= ~restart_gr;
3746 /* Turn the Entry_FR field into a bitmask too. */
3748 for (i = 12; i < u->Entry_FR + 12; i++)
3749 save_fr |= (1 << i);
3750 save_fr &= ~restart_fr;
3752 /* Loop until we find everything of interest or hit a branch.
3754 For unoptimized GCC code and for any HP CC code this will never ever
3755 examine any user instructions.
3757 For optimzied GCC code we're faced with problems. GCC will schedule
3758 its prologue and make prologue instructions available for delay slot
3759 filling. The end result is user code gets mixed in with the prologue
3760 and a prologue instruction may be in the delay slot of the first branch
3763 Some unexpected things are expected with debugging optimized code, so
3764 we allow this routine to walk past user instructions in optimized
3766 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3769 unsigned int reg_num;
3770 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3771 unsigned long old_save_rp, old_save_sp, next_inst;
3773 /* Save copies of all the triggers so we can compare them later
3775 old_save_gr = save_gr;
3776 old_save_fr = save_fr;
3777 old_save_rp = save_rp;
3778 old_save_sp = save_sp;
3779 old_stack_remaining = stack_remaining;
3781 status = target_read_memory (pc, buf, 4);
3782 inst = extract_unsigned_integer (buf, 4);
3788 /* Note the interesting effects of this instruction. */
3789 stack_remaining -= prologue_inst_adjust_sp (inst);
3791 /* There are limited ways to store the return pointer into the
3793 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3796 /* These are the only ways we save SP into the stack. At this time
3797 the HP compilers never bother to save SP into the stack. */
3798 if ((inst & 0xffffc000) == 0x6fc10000
3799 || (inst & 0xffffc00c) == 0x73c10008)
3802 /* Are we loading some register with an offset from the argument
3804 if ((inst & 0xffe00000) == 0x37a00000
3805 || (inst & 0xffffffe0) == 0x081d0240)
3811 /* Account for general and floating-point register saves. */
3812 reg_num = inst_saves_gr (inst);
3813 save_gr &= ~(1 << reg_num);
3815 /* Ugh. Also account for argument stores into the stack.
3816 Unfortunately args_stored only tells us that some arguments
3817 where stored into the stack. Not how many or what kind!
3819 This is a kludge as on the HP compiler sets this bit and it
3820 never does prologue scheduling. So once we see one, skip past
3821 all of them. We have similar code for the fp arg stores below.
3823 FIXME. Can still die if we have a mix of GR and FR argument
3825 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3827 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3830 status = target_read_memory (pc, buf, 4);
3831 inst = extract_unsigned_integer (buf, 4);
3834 reg_num = inst_saves_gr (inst);
3840 reg_num = inst_saves_fr (inst);
3841 save_fr &= ~(1 << reg_num);
3843 status = target_read_memory (pc + 4, buf, 4);
3844 next_inst = extract_unsigned_integer (buf, 4);
3850 /* We've got to be read to handle the ldo before the fp register
3852 if ((inst & 0xfc000000) == 0x34000000
3853 && inst_saves_fr (next_inst) >= 4
3854 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3856 /* So we drop into the code below in a reasonable state. */
3857 reg_num = inst_saves_fr (next_inst);
3861 /* Ugh. Also account for argument stores into the stack.
3862 This is a kludge as on the HP compiler sets this bit and it
3863 never does prologue scheduling. So once we see one, skip past
3865 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3867 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3870 status = target_read_memory (pc, buf, 4);
3871 inst = extract_unsigned_integer (buf, 4);
3874 if ((inst & 0xfc000000) != 0x34000000)
3876 status = target_read_memory (pc + 4, buf, 4);
3877 next_inst = extract_unsigned_integer (buf, 4);
3880 reg_num = inst_saves_fr (next_inst);
3886 /* Quit if we hit any kind of branch. This can happen if a prologue
3887 instruction is in the delay slot of the first call/branch. */
3888 if (is_branch (inst))
3891 /* What a crock. The HP compilers set args_stored even if no
3892 arguments were stored into the stack (boo hiss). This could
3893 cause this code to then skip a bunch of user insns (up to the
3896 To combat this we try to identify when args_stored was bogusly
3897 set and clear it. We only do this when args_stored is nonzero,
3898 all other resources are accounted for, and nothing changed on
3901 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3902 && old_save_gr == save_gr && old_save_fr == save_fr
3903 && old_save_rp == save_rp && old_save_sp == save_sp
3904 && old_stack_remaining == stack_remaining)
3911 /* We've got a tenative location for the end of the prologue. However
3912 because of limitations in the unwind descriptor mechanism we may
3913 have went too far into user code looking for the save of a register
3914 that does not exist. So, if there registers we expected to be saved
3915 but never were, mask them out and restart.
3917 This should only happen in optimized code, and should be very rare. */
3918 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3921 restart_gr = save_gr;
3922 restart_fr = save_fr;
3930 /* Return the address of the PC after the last prologue instruction if
3931 we can determine it from the debug symbols. Else return zero. */
3934 after_prologue (CORE_ADDR pc)
3936 struct symtab_and_line sal;
3937 CORE_ADDR func_addr, func_end;
3940 /* If we can not find the symbol in the partial symbol table, then
3941 there is no hope we can determine the function's start address
3943 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3946 /* Get the line associated with FUNC_ADDR. */
3947 sal = find_pc_line (func_addr, 0);
3949 /* There are only two cases to consider. First, the end of the source line
3950 is within the function bounds. In that case we return the end of the
3951 source line. Second is the end of the source line extends beyond the
3952 bounds of the current function. We need to use the slow code to
3953 examine instructions in that case.
3955 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3956 the wrong thing to do. In fact, it should be entirely possible for this
3957 function to always return zero since the slow instruction scanning code
3958 is supposed to *always* work. If it does not, then it is a bug. */
3959 if (sal.end < func_end)
3965 /* To skip prologues, I use this predicate. Returns either PC itself
3966 if the code at PC does not look like a function prologue; otherwise
3967 returns an address that (if we're lucky) follows the prologue. If
3968 LENIENT, then we must skip everything which is involved in setting
3969 up the frame (it's OK to skip more, just so long as we don't skip
3970 anything which might clobber the registers which are being saved.
3971 Currently we must not skip more on the alpha, but we might the lenient
3975 hppa_skip_prologue (CORE_ADDR pc)
3979 CORE_ADDR post_prologue_pc;
3982 /* See if we can determine the end of the prologue via the symbol table.
3983 If so, then return either PC, or the PC after the prologue, whichever
3986 post_prologue_pc = after_prologue (pc);
3988 /* If after_prologue returned a useful address, then use it. Else
3989 fall back on the instruction skipping code.
3991 Some folks have claimed this causes problems because the breakpoint
3992 may be the first instruction of the prologue. If that happens, then
3993 the instruction skipping code has a bug that needs to be fixed. */
3994 if (post_prologue_pc != 0)
3995 return max (pc, post_prologue_pc);
3997 return (skip_prologue_hard_way (pc));
4000 /* Put here the code to store, into the SAVED_REGS, the addresses of
4001 the saved registers of frame described by FRAME_INFO. This
4002 includes special registers such as pc and fp saved in special ways
4003 in the stack frame. sp is even more special: the address we return
4004 for it IS the sp for the next frame. */
4007 hppa_frame_find_saved_regs (struct frame_info *frame_info,
4008 CORE_ADDR frame_saved_regs[])
4011 struct unwind_table_entry *u;
4012 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4016 int final_iteration;
4018 /* Zero out everything. */
4019 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4021 /* Call dummy frames always look the same, so there's no need to
4022 examine the dummy code to determine locations of saved registers;
4023 instead, let find_dummy_frame_regs fill in the correct offsets
4024 for the saved registers. */
4025 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4026 && (get_frame_pc (frame_info)
4027 <= (get_frame_base (frame_info)
4028 /* A call dummy is sized in words, but it is actually a
4029 series of instructions. Account for that scaling
4031 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4032 * DEPRECATED_CALL_DUMMY_LENGTH)
4033 /* Similarly we have to account for 64bit wide register
4035 + (32 * DEPRECATED_REGISTER_SIZE)
4036 /* We always consider FP regs 8 bytes long. */
4037 + (NUM_REGS - FP0_REGNUM) * 8
4038 /* Similarly we have to account for 64bit wide register
4040 + (6 * DEPRECATED_REGISTER_SIZE)))))
4041 find_dummy_frame_regs (frame_info, frame_saved_regs);
4043 /* Interrupt handlers are special too. They lay out the register
4044 state in the exact same order as the register numbers in GDB. */
4045 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4047 for (i = 0; i < NUM_REGS; i++)
4049 /* SP is a little special. */
4051 frame_saved_regs[SP_REGNUM]
4052 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4053 TARGET_PTR_BIT / 8);
4055 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4060 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4061 /* Handle signal handler callers. */
4062 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4064 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4069 /* Get the starting address of the function referred to by the PC
4071 pc = get_frame_func (frame_info);
4074 u = find_unwind_entry (pc);
4078 /* This is how much of a frame adjustment we need to account for. */
4079 stack_remaining = u->Total_frame_size << 3;
4081 /* Magic register saves we want to know about. */
4082 save_rp = u->Save_RP;
4083 save_sp = u->Save_SP;
4085 /* Turn the Entry_GR field into a bitmask. */
4087 for (i = 3; i < u->Entry_GR + 3; i++)
4089 /* Frame pointer gets saved into a special location. */
4090 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4093 save_gr |= (1 << i);
4096 /* Turn the Entry_FR field into a bitmask too. */
4098 for (i = 12; i < u->Entry_FR + 12; i++)
4099 save_fr |= (1 << i);
4101 /* The frame always represents the value of %sp at entry to the
4102 current function (and is thus equivalent to the "saved" stack
4104 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4106 /* Loop until we find everything of interest or hit a branch.
4108 For unoptimized GCC code and for any HP CC code this will never ever
4109 examine any user instructions.
4111 For optimized GCC code we're faced with problems. GCC will schedule
4112 its prologue and make prologue instructions available for delay slot
4113 filling. The end result is user code gets mixed in with the prologue
4114 and a prologue instruction may be in the delay slot of the first branch
4117 Some unexpected things are expected with debugging optimized code, so
4118 we allow this routine to walk past user instructions in optimized
4120 final_iteration = 0;
4121 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4122 && pc <= get_frame_pc (frame_info))
4124 status = target_read_memory (pc, buf, 4);
4125 inst = extract_unsigned_integer (buf, 4);
4131 /* Note the interesting effects of this instruction. */
4132 stack_remaining -= prologue_inst_adjust_sp (inst);
4134 /* There are limited ways to store the return pointer into the
4136 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4139 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4141 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4144 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4147 /* Note if we saved SP into the stack. This also happens to indicate
4148 the location of the saved frame pointer. */
4149 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4150 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4152 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4156 /* Account for general and floating-point register saves. */
4157 reg = inst_saves_gr (inst);
4158 if (reg >= 3 && reg <= 18
4159 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4161 save_gr &= ~(1 << reg);
4163 /* stwm with a positive displacement is a *post modify*. */
4164 if ((inst >> 26) == 0x1b
4165 && extract_14 (inst) >= 0)
4166 frame_saved_regs[reg] = get_frame_base (frame_info);
4167 /* A std has explicit post_modify forms. */
4168 else if ((inst & 0xfc00000c0) == 0x70000008)
4169 frame_saved_regs[reg] = get_frame_base (frame_info);
4174 if ((inst >> 26) == 0x1c)
4175 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4176 else if ((inst >> 26) == 0x03)
4177 offset = low_sign_extend (inst & 0x1f, 5);
4179 offset = extract_14 (inst);
4181 /* Handle code with and without frame pointers. */
4183 frame_saved_regs[reg]
4184 = get_frame_base (frame_info) + offset;
4186 frame_saved_regs[reg]
4187 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4193 /* GCC handles callee saved FP regs a little differently.
4195 It emits an instruction to put the value of the start of
4196 the FP store area into %r1. It then uses fstds,ma with
4197 a basereg of %r1 for the stores.
4199 HP CC emits them at the current stack pointer modifying
4200 the stack pointer as it stores each register. */
4202 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4203 if ((inst & 0xffffc000) == 0x34610000
4204 || (inst & 0xffffc000) == 0x37c10000)
4205 fp_loc = extract_14 (inst);
4207 reg = inst_saves_fr (inst);
4208 if (reg >= 12 && reg <= 21)
4210 /* Note +4 braindamage below is necessary because the FP status
4211 registers are internally 8 registers rather than the expected
4213 save_fr &= ~(1 << reg);
4216 /* 1st HP CC FP register store. After this instruction
4217 we've set enough state that the GCC and HPCC code are
4218 both handled in the same manner. */
4219 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4224 frame_saved_regs[reg + FP0_REGNUM + 4]
4225 = get_frame_base (frame_info) + fp_loc;
4230 /* Quit if we hit any kind of branch the previous iteration. */
4231 if (final_iteration)
4234 /* We want to look precisely one instruction beyond the branch
4235 if we have not found everything yet. */
4236 if (is_branch (inst))
4237 final_iteration = 1;
4244 /* XXX - deprecated. This is a compatibility function for targets
4245 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4246 /* Find the addresses in which registers are saved in FRAME. */
4249 hppa_frame_init_saved_regs (struct frame_info *frame)
4251 if (get_frame_saved_regs (frame) == NULL)
4252 frame_saved_regs_zalloc (frame);
4253 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4256 /* Exception handling support for the HP-UX ANSI C++ compiler.
4257 The compiler (aCC) provides a callback for exception events;
4258 GDB can set a breakpoint on this callback and find out what
4259 exception event has occurred. */
4261 /* The name of the hook to be set to point to the callback function */
4262 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4263 /* The name of the function to be used to set the hook value */
4264 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4265 /* The name of the callback function in end.o */
4266 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4267 /* Name of function in end.o on which a break is set (called by above) */
4268 static char HP_ACC_EH_break[] = "__d_eh_break";
4269 /* Name of flag (in end.o) that enables catching throws */
4270 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4271 /* Name of flag (in end.o) that enables catching catching */
4272 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4273 /* The enum used by aCC */
4281 /* Is exception-handling support available with this executable? */
4282 static int hp_cxx_exception_support = 0;
4283 /* Has the initialize function been run? */
4284 int hp_cxx_exception_support_initialized = 0;
4285 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4286 extern int exception_support_initialized;
4287 /* Address of __eh_notify_hook */
4288 static CORE_ADDR eh_notify_hook_addr = 0;
4289 /* Address of __d_eh_notify_callback */
4290 static CORE_ADDR eh_notify_callback_addr = 0;
4291 /* Address of __d_eh_break */
4292 static CORE_ADDR eh_break_addr = 0;
4293 /* Address of __d_eh_catch_catch */
4294 static CORE_ADDR eh_catch_catch_addr = 0;
4295 /* Address of __d_eh_catch_throw */
4296 static CORE_ADDR eh_catch_throw_addr = 0;
4297 /* Sal for __d_eh_break */
4298 static struct symtab_and_line *break_callback_sal = 0;
4300 /* Code in end.c expects __d_pid to be set in the inferior,
4301 otherwise __d_eh_notify_callback doesn't bother to call
4302 __d_eh_break! So we poke the pid into this symbol
4307 setup_d_pid_in_inferior (void)
4310 struct minimal_symbol *msymbol;
4311 char buf[4]; /* FIXME 32x64? */
4313 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4314 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4315 if (msymbol == NULL)
4317 warning ("Unable to find __d_pid symbol in object file.");
4318 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4322 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4323 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4324 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4326 warning ("Unable to write __d_pid");
4327 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4333 /* Initialize exception catchpoint support by looking for the
4334 necessary hooks/callbacks in end.o, etc., and set the hook value to
4335 point to the required debug function
4341 initialize_hp_cxx_exception_support (void)
4343 struct symtabs_and_lines sals;
4344 struct cleanup *old_chain;
4345 struct cleanup *canonical_strings_chain = NULL;
4348 char *addr_end = NULL;
4349 char **canonical = (char **) NULL;
4351 struct symbol *sym = NULL;
4352 struct minimal_symbol *msym = NULL;
4353 struct objfile *objfile;
4354 asection *shlib_info;
4356 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4357 recursion is a possibility because finding the hook for exception
4358 callbacks involves making a call in the inferior, which means
4359 re-inserting breakpoints which can re-invoke this code */
4361 static int recurse = 0;
4364 hp_cxx_exception_support_initialized = 0;
4365 exception_support_initialized = 0;
4369 hp_cxx_exception_support = 0;
4371 /* First check if we have seen any HP compiled objects; if not,
4372 it is very unlikely that HP's idiosyncratic callback mechanism
4373 for exception handling debug support will be available!
4374 This will percolate back up to breakpoint.c, where our callers
4375 will decide to try the g++ exception-handling support instead. */
4376 if (!hp_som_som_object_present)
4379 /* We have a SOM executable with SOM debug info; find the hooks */
4381 /* First look for the notify hook provided by aCC runtime libs */
4382 /* If we find this symbol, we conclude that the executable must
4383 have HP aCC exception support built in. If this symbol is not
4384 found, even though we're a HP SOM-SOM file, we may have been
4385 built with some other compiler (not aCC). This results percolates
4386 back up to our callers in breakpoint.c which can decide to
4387 try the g++ style of exception support instead.
4388 If this symbol is found but the other symbols we require are
4389 not found, there is something weird going on, and g++ support
4390 should *not* be tried as an alternative.
4392 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4393 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4395 /* libCsup has this hook; it'll usually be non-debuggable */
4396 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4399 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4400 hp_cxx_exception_support = 1;
4404 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4405 warning ("Executable may not have been compiled debuggable with HP aCC.");
4406 warning ("GDB will be unable to intercept exception events.");
4407 eh_notify_hook_addr = 0;
4408 hp_cxx_exception_support = 0;
4412 /* Next look for the notify callback routine in end.o */
4413 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4414 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4417 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4418 hp_cxx_exception_support = 1;
4422 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4423 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4424 warning ("GDB will be unable to intercept exception events.");
4425 eh_notify_callback_addr = 0;
4429 #ifndef GDB_TARGET_IS_HPPA_20W
4430 /* Check whether the executable is dynamically linked or archive bound */
4431 /* With an archive-bound executable we can use the raw addresses we find
4432 for the callback function, etc. without modification. For an executable
4433 with shared libraries, we have to do more work to find the plabel, which
4434 can be the target of a call through $$dyncall from the aCC runtime support
4435 library (libCsup) which is linked shared by default by aCC. */
4436 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4437 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4438 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4439 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4441 /* The minsym we have has the local code address, but that's not the
4442 plabel that can be used by an inter-load-module call. */
4443 /* Find solib handle for main image (which has end.o), and use that
4444 and the min sym as arguments to __d_shl_get() (which does the equivalent
4445 of shl_findsym()) to find the plabel. */
4447 args_for_find_stub args;
4448 static char message[] = "Error while finding exception callback hook:\n";
4450 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4452 args.return_val = 0;
4455 catch_errors (cover_find_stub_with_shl_get, &args, message,
4457 eh_notify_callback_addr = args.return_val;
4460 exception_catchpoints_are_fragile = 1;
4462 if (!eh_notify_callback_addr)
4464 /* We can get here either if there is no plabel in the export list
4465 for the main image, or if something strange happened (?) */
4466 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4467 warning ("GDB will not be able to intercept exception events.");
4472 exception_catchpoints_are_fragile = 0;
4475 /* Now, look for the breakpointable routine in end.o */
4476 /* This should also be available in the SOM symbol dict. if end.o linked in */
4477 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4480 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4481 hp_cxx_exception_support = 1;
4485 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4486 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4487 warning ("GDB will be unable to intercept exception events.");
4492 /* Next look for the catch enable flag provided in end.o */
4493 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4494 VAR_DOMAIN, 0, (struct symtab **) NULL);
4495 if (sym) /* sometimes present in debug info */
4497 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4498 hp_cxx_exception_support = 1;
4501 /* otherwise look in SOM symbol dict. */
4503 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4506 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4507 hp_cxx_exception_support = 1;
4511 warning ("Unable to enable interception of exception catches.");
4512 warning ("Executable may not have been compiled debuggable with HP aCC.");
4513 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4518 /* Next look for the catch enable flag provided end.o */
4519 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4520 VAR_DOMAIN, 0, (struct symtab **) NULL);
4521 if (sym) /* sometimes present in debug info */
4523 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4524 hp_cxx_exception_support = 1;
4527 /* otherwise look in SOM symbol dict. */
4529 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4532 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4533 hp_cxx_exception_support = 1;
4537 warning ("Unable to enable interception of exception throws.");
4538 warning ("Executable may not have been compiled debuggable with HP aCC.");
4539 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4545 hp_cxx_exception_support = 2; /* everything worked so far */
4546 hp_cxx_exception_support_initialized = 1;
4547 exception_support_initialized = 1;
4552 /* Target operation for enabling or disabling interception of
4554 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4555 ENABLE is either 0 (disable) or 1 (enable).
4556 Return value is NULL if no support found;
4557 -1 if something went wrong,
4558 or a pointer to a symtab/line struct if the breakpointable
4559 address was found. */
4561 struct symtab_and_line *
4562 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4566 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4567 if (!initialize_hp_cxx_exception_support ())
4570 switch (hp_cxx_exception_support)
4573 /* Assuming no HP support at all */
4576 /* HP support should be present, but something went wrong */
4577 return (struct symtab_and_line *) -1; /* yuck! */
4578 /* there may be other cases in the future */
4581 /* Set the EH hook to point to the callback routine */
4582 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4583 /* pai: (temp) FIXME should there be a pack operation first? */
4584 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4586 warning ("Could not write to target memory for exception event callback.");
4587 warning ("Interception of exception events may not work.");
4588 return (struct symtab_and_line *) -1;
4592 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4593 if (PIDGET (inferior_ptid) > 0)
4595 if (setup_d_pid_in_inferior ())
4596 return (struct symtab_and_line *) -1;
4600 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4601 return (struct symtab_and_line *) -1;
4607 case EX_EVENT_THROW:
4608 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4609 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4611 warning ("Couldn't enable exception throw interception.");
4612 return (struct symtab_and_line *) -1;
4615 case EX_EVENT_CATCH:
4616 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4617 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4619 warning ("Couldn't enable exception catch interception.");
4620 return (struct symtab_and_line *) -1;
4624 error ("Request to enable unknown or unsupported exception event.");
4627 /* Copy break address into new sal struct, malloc'ing if needed. */
4628 if (!break_callback_sal)
4630 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4632 init_sal (break_callback_sal);
4633 break_callback_sal->symtab = NULL;
4634 break_callback_sal->pc = eh_break_addr;
4635 break_callback_sal->line = 0;
4636 break_callback_sal->end = eh_break_addr;
4638 return break_callback_sal;
4641 /* Record some information about the current exception event */
4642 static struct exception_event_record current_ex_event;
4643 /* Convenience struct */
4644 static struct symtab_and_line null_symtab_and_line =
4647 /* Report current exception event. Returns a pointer to a record
4648 that describes the kind of the event, where it was thrown from,
4649 and where it will be caught. More information may be reported
4651 struct exception_event_record *
4652 child_get_current_exception_event (void)
4654 CORE_ADDR event_kind;
4655 CORE_ADDR throw_addr;
4656 CORE_ADDR catch_addr;
4657 struct frame_info *fi, *curr_frame;
4660 curr_frame = get_current_frame ();
4662 return (struct exception_event_record *) NULL;
4664 /* Go up one frame to __d_eh_notify_callback, because at the
4665 point when this code is executed, there's garbage in the
4666 arguments of __d_eh_break. */
4667 fi = find_relative_frame (curr_frame, &level);
4669 return (struct exception_event_record *) NULL;
4673 /* Read in the arguments */
4674 /* __d_eh_notify_callback() is called with 3 arguments:
4675 1. event kind catch or throw
4676 2. the target address if known
4677 3. a flag -- not sure what this is. pai/1997-07-17 */
4678 event_kind = read_register (ARG0_REGNUM);
4679 catch_addr = read_register (ARG1_REGNUM);
4681 /* Now go down to a user frame */
4682 /* For a throw, __d_eh_break is called by
4683 __d_eh_notify_callback which is called by
4684 __notify_throw which is called
4686 For a catch, __d_eh_break is called by
4687 __d_eh_notify_callback which is called by
4688 <stackwalking stuff> which is called by
4689 __throw__<stuff> or __rethrow_<stuff> which is called
4691 /* FIXME: Don't use such magic numbers; search for the frames */
4692 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4693 fi = find_relative_frame (curr_frame, &level);
4695 return (struct exception_event_record *) NULL;
4698 throw_addr = get_frame_pc (fi);
4700 /* Go back to original (top) frame */
4701 select_frame (curr_frame);
4703 current_ex_event.kind = (enum exception_event_kind) event_kind;
4704 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4705 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4707 return ¤t_ex_event;
4710 /* Instead of this nasty cast, add a method pvoid() that prints out a
4711 host VOID data type (remember %p isn't portable). */
4714 hppa_pointer_to_address_hack (void *ptr)
4716 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4717 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4721 unwind_command (char *exp, int from_tty)
4724 struct unwind_table_entry *u;
4726 /* If we have an expression, evaluate it and use it as the address. */
4728 if (exp != 0 && *exp != 0)
4729 address = parse_and_eval_address (exp);
4733 u = find_unwind_entry (address);
4737 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4741 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4742 paddr_nz (hppa_pointer_to_address_hack (u)));
4744 printf_unfiltered ("\tregion_start = ");
4745 print_address (u->region_start, gdb_stdout);
4747 printf_unfiltered ("\n\tregion_end = ");
4748 print_address (u->region_end, gdb_stdout);
4750 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4752 printf_unfiltered ("\n\tflags =");
4753 pif (Cannot_unwind);
4755 pif (Millicode_save_sr0);
4758 pif (Variable_Frame);
4759 pif (Separate_Package_Body);
4760 pif (Frame_Extension_Millicode);
4761 pif (Stack_Overflow_Check);
4762 pif (Two_Instruction_SP_Increment);
4766 pif (Save_MRP_in_frame);
4767 pif (extn_ptr_defined);
4768 pif (Cleanup_defined);
4769 pif (MPE_XL_interrupt_marker);
4770 pif (HP_UX_interrupt_marker);
4773 putchar_unfiltered ('\n');
4775 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4777 pin (Region_description);
4780 pin (Total_frame_size);
4784 hppa_skip_permanent_breakpoint (void)
4786 /* To step over a breakpoint instruction on the PA takes some
4787 fiddling with the instruction address queue.
4789 When we stop at a breakpoint, the IA queue front (the instruction
4790 we're executing now) points at the breakpoint instruction, and
4791 the IA queue back (the next instruction to execute) points to
4792 whatever instruction we would execute after the breakpoint, if it
4793 were an ordinary instruction. This is the case even if the
4794 breakpoint is in the delay slot of a branch instruction.
4796 Clearly, to step past the breakpoint, we need to set the queue
4797 front to the back. But what do we put in the back? What
4798 instruction comes after that one? Because of the branch delay
4799 slot, the next insn is always at the back + 4. */
4800 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4801 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4803 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4804 /* We can leave the tail's space the same, since there's no jump. */
4807 /* Copy the function value from VALBUF into the proper location
4808 for a function return.
4810 Called only in the context of the "return" command. */
4813 hppa32_store_return_value (struct type *type, char *valbuf)
4815 /* For software floating point, the return value goes into the
4816 integer registers. But we do not have any flag to key this on,
4817 so we always store the value into the integer registers.
4819 If its a float value, then we also store it into the floating
4821 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
4822 + (TYPE_LENGTH (type) > 4
4823 ? (8 - TYPE_LENGTH (type))
4824 : (4 - TYPE_LENGTH (type))),
4825 valbuf, TYPE_LENGTH (type));
4826 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4827 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
4828 valbuf, TYPE_LENGTH (type));
4831 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4834 hppa64_store_return_value (struct type *type, char *valbuf)
4836 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4837 deprecated_write_register_bytes
4838 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4839 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4840 valbuf, TYPE_LENGTH (type));
4841 else if (is_integral_type(type))
4842 deprecated_write_register_bytes
4843 (DEPRECATED_REGISTER_BYTE (28)
4844 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4845 valbuf, TYPE_LENGTH (type));
4846 else if (TYPE_LENGTH (type) <= 8)
4847 deprecated_write_register_bytes
4848 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
4849 else if (TYPE_LENGTH (type) <= 16)
4851 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
4852 deprecated_write_register_bytes
4853 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
4857 /* Copy the function's return value into VALBUF.
4859 This function is called only in the context of "target function calls",
4860 ie. when the debugger forces a function to be called in the child, and
4861 when the debugger forces a fucntion to return prematurely via the
4862 "return" command. */
4865 hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4867 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4868 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
4872 + DEPRECATED_REGISTER_BYTE (28)
4873 + (TYPE_LENGTH (type) > 4
4874 ? (8 - TYPE_LENGTH (type))
4875 : (4 - TYPE_LENGTH (type)))),
4876 TYPE_LENGTH (type));
4879 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4882 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4884 /* RM: Floats are returned in FR4R, doubles in FR4.
4885 Integral values are in r28, padded on the left.
4886 Aggregates less that 65 bits are in r28, right padded.
4887 Aggregates upto 128 bits are in r28 and r29, right padded. */
4888 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4890 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4891 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4892 TYPE_LENGTH (type));
4893 else if (is_integral_type(type))
4895 regbuf + DEPRECATED_REGISTER_BYTE (28)
4896 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4897 TYPE_LENGTH (type));
4898 else if (TYPE_LENGTH (type) <= 8)
4899 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
4900 TYPE_LENGTH (type));
4901 else if (TYPE_LENGTH (type) <= 16)
4903 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
4904 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
4905 TYPE_LENGTH (type) - 8);
4910 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4912 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4913 via a pointer regardless of its type or the compiler used. */
4914 return (TYPE_LENGTH (type) > 8);
4918 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4920 /* Stack grows upward */
4925 hppa32_stack_align (CORE_ADDR sp)
4927 /* elz: adjust the quantity to the next highest value which is
4928 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4929 On hppa the sp must always be kept 64-bit aligned */
4930 return ((sp % 8) ? (sp + 7) & -8 : sp);
4934 hppa64_stack_align (CORE_ADDR sp)
4936 /* The PA64 ABI mandates a 16 byte stack alignment. */
4937 return ((sp % 16) ? (sp + 15) & -16 : sp);
4941 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4943 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4945 An example of this occurs when an a.out is linked against a foo.sl.
4946 The foo.sl defines a global bar(), and the a.out declares a signature
4947 for bar(). However, the a.out doesn't directly call bar(), but passes
4948 its address in another call.
4950 If you have this scenario and attempt to "break bar" before running,
4951 gdb will find a minimal symbol for bar() in the a.out. But that
4952 symbol's address will be negative. What this appears to denote is
4953 an index backwards from the base of the procedure linkage table (PLT)
4954 into the data linkage table (DLT), the end of which is contiguous
4955 with the start of the PLT. This is clearly not a valid address for
4956 us to set a breakpoint on.
4958 Note that one must be careful in how one checks for a negative address.
4959 0xc0000000 is a legitimate address of something in a shared text
4960 segment, for example. Since I don't know what the possible range
4961 is of these "really, truly negative" addresses that come from the
4962 minimal symbols, I'm resorting to the gross hack of checking the
4963 top byte of the address for all 1's. Sigh. */
4965 return (!target_has_stack && (pc & 0xFF000000));
4969 hppa_instruction_nullified (void)
4971 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4972 avoid the type cast. I'm leaving it as is for now as I'm doing
4973 semi-mechanical multiarching-related changes. */
4974 const int ipsw = (int) read_register (IPSW_REGNUM);
4975 const int flags = (int) read_register (FLAGS_REGNUM);
4977 return ((ipsw & 0x00200000) && !(flags & 0x2));
4981 hppa_register_raw_size (int reg_nr)
4983 /* All registers have the same size. */
4984 return DEPRECATED_REGISTER_SIZE;
4987 /* Index within the register vector of the first byte of the space i
4988 used for register REG_NR. */
4991 hppa_register_byte (int reg_nr)
4993 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4995 return reg_nr * tdep->bytes_per_address;
4998 /* Return the GDB type object for the "standard" data type of data
5002 hppa32_register_virtual_type (int reg_nr)
5004 if (reg_nr < FP4_REGNUM)
5005 return builtin_type_int;
5007 return builtin_type_float;
5010 /* Return the GDB type object for the "standard" data type of data
5011 in register N. hppa64 version. */
5014 hppa64_register_virtual_type (int reg_nr)
5016 if (reg_nr < FP4_REGNUM)
5017 return builtin_type_unsigned_long_long;
5019 return builtin_type_double;
5022 /* Store the address of the place in which to copy the structure the
5023 subroutine will return. This is called from call_function. */
5026 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5028 write_register (28, addr);
5032 hppa_extract_struct_value_address (char *regbuf)
5034 /* Extract from an array REGBUF containing the (raw) register state
5035 the address in which a function should return its structure value,
5036 as a CORE_ADDR (or an expression that can be used as one). */
5037 /* FIXME: brobecker 2002-12-26.
5038 The current implementation is historical, but we should eventually
5039 implement it in a more robust manner as it relies on the fact that
5040 the address size is equal to the size of an int* _on the host_...
5041 One possible implementation that crossed my mind is to use
5043 return (*(int *)(regbuf + DEPRECATED_REGISTER_BYTE (28)));
5046 /* Return True if REGNUM is not a register available to the user
5047 through ptrace(). */
5050 hppa_cannot_store_register (int regnum)
5053 || regnum == PCSQ_HEAD_REGNUM
5054 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5055 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5060 hppa_smash_text_address (CORE_ADDR addr)
5062 /* The low two bits of the PC on the PA contain the privilege level.
5063 Some genius implementing a (non-GCC) compiler apparently decided
5064 this means that "addresses" in a text section therefore include a
5065 privilege level, and thus symbol tables should contain these bits.
5066 This seems like a bonehead thing to do--anyway, it seems to work
5067 for our purposes to just ignore those bits. */
5069 return (addr &= ~0x3);
5072 /* Get the ith function argument for the current function. */
5074 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5078 frame_read_register (frame, R0_REGNUM + 26 - argi, &addr);
5082 static struct gdbarch *
5083 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5085 struct gdbarch_tdep *tdep;
5086 struct gdbarch *gdbarch;
5088 /* Try to determine the ABI of the object we are loading. */
5089 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5091 /* If it's a SOM file, assume it's HP/UX SOM. */
5092 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5093 info.osabi = GDB_OSABI_HPUX_SOM;
5096 /* find a candidate among the list of pre-declared architectures. */
5097 arches = gdbarch_list_lookup_by_info (arches, &info);
5099 return (arches->gdbarch);
5101 /* If none found, then allocate and initialize one. */
5102 tdep = XMALLOC (struct gdbarch_tdep);
5103 gdbarch = gdbarch_alloc (&info, tdep);
5105 /* Determine from the bfd_arch_info structure if we are dealing with
5106 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5107 then default to a 32bit machine. */
5108 if (info.bfd_arch_info != NULL)
5109 tdep->bytes_per_address =
5110 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5112 tdep->bytes_per_address = 4;
5114 /* Some parts of the gdbarch vector depend on whether we are running
5115 on a 32 bits or 64 bits target. */
5116 switch (tdep->bytes_per_address)
5119 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5120 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5121 set_gdbarch_deprecated_register_virtual_type
5122 (gdbarch, hppa32_register_virtual_type);
5123 set_gdbarch_deprecated_call_dummy_length
5124 (gdbarch, hppa32_call_dummy_length);
5125 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5126 set_gdbarch_deprecated_reg_struct_has_addr
5127 (gdbarch, hppa_reg_struct_has_addr);
5128 set_gdbarch_deprecated_extract_return_value
5129 (gdbarch, hppa32_extract_return_value);
5130 set_gdbarch_use_struct_convention
5131 (gdbarch, hppa32_use_struct_convention);
5132 set_gdbarch_deprecated_store_return_value
5133 (gdbarch, hppa32_store_return_value);
5136 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5137 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5138 set_gdbarch_deprecated_register_virtual_type
5139 (gdbarch, hppa64_register_virtual_type);
5140 set_gdbarch_deprecated_call_dummy_breakpoint_offset
5141 (gdbarch, hppa64_call_dummy_breakpoint_offset);
5142 set_gdbarch_deprecated_call_dummy_length
5143 (gdbarch, hppa64_call_dummy_length);
5144 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5145 set_gdbarch_deprecated_extract_return_value
5146 (gdbarch, hppa64_extract_return_value);
5147 set_gdbarch_use_struct_convention
5148 (gdbarch, hppa64_use_struct_convention);
5149 set_gdbarch_deprecated_store_return_value
5150 (gdbarch, hppa64_store_return_value);
5153 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5154 tdep->bytes_per_address);
5157 /* The following gdbarch vector elements depend on other parts of this
5158 vector which have been set above, depending on the ABI. */
5159 set_gdbarch_deprecated_register_bytes
5160 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5161 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5162 set_gdbarch_long_long_bit (gdbarch, 64);
5163 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5165 /* The following gdbarch vector elements do not depend on the address
5166 size, or in any other gdbarch element previously set. */
5167 set_gdbarch_function_start_offset (gdbarch, 0);
5168 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5169 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5170 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5171 set_gdbarch_in_solib_return_trampoline (gdbarch,
5172 hppa_in_solib_return_trampoline);
5173 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5174 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5175 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5176 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5177 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5178 set_gdbarch_sp_regnum (gdbarch, 30);
5179 set_gdbarch_fp0_regnum (gdbarch, 64);
5180 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5181 set_gdbarch_deprecated_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
5182 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5183 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5184 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5185 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5186 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5187 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5188 set_gdbarch_deprecated_extract_struct_value_address
5189 (gdbarch, hppa_extract_struct_value_address);
5190 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5191 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5192 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5193 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5194 set_gdbarch_frameless_function_invocation
5195 (gdbarch, hppa_frameless_function_invocation);
5196 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5197 set_gdbarch_frame_args_skip (gdbarch, 0);
5198 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5199 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5200 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5201 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5202 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5203 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5204 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5205 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5206 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5207 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5209 /* Helper for function argument information. */
5210 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5212 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5214 /* When a hardware watchpoint triggers, we'll move the inferior past
5215 it by removing all eventpoints; stepping past the instruction
5216 that caused the trigger; reinserting eventpoints; and checking
5217 whether any watched location changed. */
5218 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5220 /* Hook in ABI-specific overrides, if they have been registered. */
5221 gdbarch_init_osabi (info, gdbarch);
5227 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5229 /* Nothing to print for the moment. */
5233 _initialize_hppa_tdep (void)
5235 struct cmd_list_element *c;
5236 void break_at_finish_command (char *arg, int from_tty);
5237 void tbreak_at_finish_command (char *arg, int from_tty);
5238 void break_at_finish_at_depth_command (char *arg, int from_tty);
5240 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5242 add_cmd ("unwind", class_maintenance, unwind_command,
5243 "Print unwind table entry at given address.",
5244 &maintenanceprintlist);
5246 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5247 break_at_finish_command,
5248 concat ("Set breakpoint at procedure exit. \n\
5249 Argument may be function name, or \"*\" and an address.\n\
5250 If function is specified, break at end of code for that function.\n\
5251 If an address is specified, break at the end of the function that contains \n\
5252 that exact address.\n",
5253 "With no arg, uses current execution address of selected stack frame.\n\
5254 This is useful for breaking on return to a stack frame.\n\
5256 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5258 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5259 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5260 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5261 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5262 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5264 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5265 tbreak_at_finish_command,
5266 "Set temporary breakpoint at procedure exit. Either there should\n\
5267 be no argument or the argument must be a depth.\n"), NULL);
5268 set_cmd_completer (c, location_completer);
5271 deprecate_cmd (add_com ("bx", class_breakpoint,
5272 break_at_finish_at_depth_command,
5273 "Set breakpoint at procedure exit. Either there should\n\
5274 be no argument or the argument must be a depth.\n"), NULL);