1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
29 #include <sys/syscall.h>
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
38 #include "inf-ptrace.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
61 #define SPUFS_MAGIC 0x23c9b64e
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
69 #endif /* HAVE_PERSONALITY */
71 /* This comment documents high-level logic of this file.
73 Waiting for events in sync mode
74 ===============================
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without
92 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
93 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
94 blocked, the signal becomes pending and sigsuspend immediately
95 notices it and returns.
97 Waiting for events in async mode
98 ================================
100 In async mode, GDB should always be ready to handle both user input
101 and target events, so neither blocking waitpid nor sigsuspend are
102 viable options. Instead, we should asynchronously notify the GDB main
103 event loop whenever there's an unprocessed event from the target. We
104 detect asynchronous target events by handling SIGCHLD signals. To
105 notify the event loop about target events, the self-pipe trick is used
106 --- a pipe is registered as waitable event source in the event loop,
107 the event loop select/poll's on the read end of this pipe (as well on
108 other event sources, e.g., stdin), and the SIGCHLD handler writes a
109 byte to this pipe. This is more portable than relying on
110 pselect/ppoll, since on kernels that lack those syscalls, libc
111 emulates them with select/poll+sigprocmask, and that is racy
112 (a.k.a. plain broken).
114 Obviously, if we fail to notify the event loop if there's a target
115 event, it's bad. OTOH, if we notify the event loop when there's no
116 event from the target, linux_nat_wait will detect that there's no real
117 event to report, and return event of type TARGET_WAITKIND_IGNORE.
118 This is mostly harmless, but it will waste time and is better avoided.
120 The main design point is that every time GDB is outside linux-nat.c,
121 we have a SIGCHLD handler installed that is called when something
122 happens to the target and notifies the GDB event loop. Whenever GDB
123 core decides to handle the event, and calls into linux-nat.c, we
124 process things as in sync mode, except that the we never block in
127 While processing an event, we may end up momentarily blocked in
128 waitpid calls. Those waitpid calls, while blocking, are guarantied to
129 return quickly. E.g., in all-stop mode, before reporting to the core
130 that an LWP hit a breakpoint, all LWPs are stopped by sending them
131 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
132 Note that this is different from blocking indefinitely waiting for the
133 next event --- here, we're already handling an event.
138 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
139 signal is not entirely significant; we just need for a signal to be delivered,
140 so that we can intercept it. SIGSTOP's advantage is that it can not be
141 blocked. A disadvantage is that it is not a real-time signal, so it can only
142 be queued once; we do not keep track of other sources of SIGSTOP.
144 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
145 use them, because they have special behavior when the signal is generated -
146 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
147 kills the entire thread group.
149 A delivered SIGSTOP would stop the entire thread group, not just the thread we
150 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
151 cancel it (by PTRACE_CONT without passing SIGSTOP).
153 We could use a real-time signal instead. This would solve those problems; we
154 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
155 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
156 generates it, and there are races with trying to find a signal that is not
160 #define O_LARGEFILE 0
163 /* If the system headers did not provide the constants, hard-code the normal
165 #ifndef PTRACE_EVENT_FORK
167 #define PTRACE_SETOPTIONS 0x4200
168 #define PTRACE_GETEVENTMSG 0x4201
170 /* Options set using PTRACE_SETOPTIONS. */
171 #define PTRACE_O_TRACESYSGOOD 0x00000001
172 #define PTRACE_O_TRACEFORK 0x00000002
173 #define PTRACE_O_TRACEVFORK 0x00000004
174 #define PTRACE_O_TRACECLONE 0x00000008
175 #define PTRACE_O_TRACEEXEC 0x00000010
176 #define PTRACE_O_TRACEVFORKDONE 0x00000020
177 #define PTRACE_O_TRACEEXIT 0x00000040
179 /* Wait extended result codes for the above trace options. */
180 #define PTRACE_EVENT_FORK 1
181 #define PTRACE_EVENT_VFORK 2
182 #define PTRACE_EVENT_CLONE 3
183 #define PTRACE_EVENT_EXEC 4
184 #define PTRACE_EVENT_VFORK_DONE 5
185 #define PTRACE_EVENT_EXIT 6
187 #endif /* PTRACE_EVENT_FORK */
189 /* Unlike other extended result codes, WSTOPSIG (status) on
190 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
191 instead SIGTRAP with bit 7 set. */
192 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
194 /* We can't always assume that this flag is available, but all systems
195 with the ptrace event handlers also have __WALL, so it's safe to use
198 #define __WALL 0x40000000 /* Wait for any child. */
201 #ifndef PTRACE_GETSIGINFO
202 # define PTRACE_GETSIGINFO 0x4202
203 # define PTRACE_SETSIGINFO 0x4203
206 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
207 the use of the multi-threaded target. */
208 static struct target_ops *linux_ops;
209 static struct target_ops linux_ops_saved;
211 /* The method to call, if any, when a new thread is attached. */
212 static void (*linux_nat_new_thread) (ptid_t);
214 /* The method to call, if any, when the siginfo object needs to be
215 converted between the layout returned by ptrace, and the layout in
216 the architecture of the inferior. */
217 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
221 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
222 Called by our to_xfer_partial. */
223 static LONGEST (*super_xfer_partial) (struct target_ops *,
225 const char *, gdb_byte *,
229 static int debug_linux_nat;
231 show_debug_linux_nat (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
234 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
238 static int debug_linux_nat_async = 0;
240 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
241 struct cmd_list_element *c, const char *value)
243 fprintf_filtered (file,
244 _("Debugging of GNU/Linux async lwp module is %s.\n"),
248 static int disable_randomization = 1;
251 show_disable_randomization (struct ui_file *file, int from_tty,
252 struct cmd_list_element *c, const char *value)
254 #ifdef HAVE_PERSONALITY
255 fprintf_filtered (file,
256 _("Disabling randomization of debuggee's "
257 "virtual address space is %s.\n"),
259 #else /* !HAVE_PERSONALITY */
260 fputs_filtered (_("Disabling randomization of debuggee's "
261 "virtual address space is unsupported on\n"
262 "this platform.\n"), file);
263 #endif /* !HAVE_PERSONALITY */
267 set_disable_randomization (char *args, int from_tty,
268 struct cmd_list_element *c)
270 #ifndef HAVE_PERSONALITY
271 error (_("Disabling randomization of debuggee's "
272 "virtual address space is unsupported on\n"
274 #endif /* !HAVE_PERSONALITY */
277 struct simple_pid_list
281 struct simple_pid_list *next;
283 struct simple_pid_list *stopped_pids;
285 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
286 can not be used, 1 if it can. */
288 static int linux_supports_tracefork_flag = -1;
290 /* This variable is a tri-state flag: -1 for unknown, 0 if
291 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
293 static int linux_supports_tracesysgood_flag = -1;
295 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
296 PTRACE_O_TRACEVFORKDONE. */
298 static int linux_supports_tracevforkdone_flag = -1;
300 /* Async mode support. */
302 /* Zero if the async mode, although enabled, is masked, which means
303 linux_nat_wait should behave as if async mode was off. */
304 static int linux_nat_async_mask_value = 1;
306 /* Stores the current used ptrace() options. */
307 static int current_ptrace_options = 0;
309 /* The read/write ends of the pipe registered as waitable file in the
311 static int linux_nat_event_pipe[2] = { -1, -1 };
313 /* Flush the event pipe. */
316 async_file_flush (void)
323 ret = read (linux_nat_event_pipe[0], &buf, 1);
325 while (ret >= 0 || (ret == -1 && errno == EINTR));
328 /* Put something (anything, doesn't matter what, or how much) in event
329 pipe, so that the select/poll in the event-loop realizes we have
330 something to process. */
333 async_file_mark (void)
337 /* It doesn't really matter what the pipe contains, as long we end
338 up with something in it. Might as well flush the previous
344 ret = write (linux_nat_event_pipe[1], "+", 1);
346 while (ret == -1 && errno == EINTR);
348 /* Ignore EAGAIN. If the pipe is full, the event loop will already
349 be awakened anyway. */
352 static void linux_nat_async (void (*callback)
353 (enum inferior_event_type event_type,
356 static int linux_nat_async_mask (int mask);
357 static int kill_lwp (int lwpid, int signo);
359 static int stop_callback (struct lwp_info *lp, void *data);
361 static void block_child_signals (sigset_t *prev_mask);
362 static void restore_child_signals_mask (sigset_t *prev_mask);
365 static struct lwp_info *add_lwp (ptid_t ptid);
366 static void purge_lwp_list (int pid);
367 static struct lwp_info *find_lwp_pid (ptid_t ptid);
370 /* Trivial list manipulation functions to keep track of a list of
371 new stopped processes. */
373 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
375 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
378 new_pid->status = status;
379 new_pid->next = *listp;
384 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
386 struct simple_pid_list **p;
388 for (p = listp; *p != NULL; p = &(*p)->next)
389 if ((*p)->pid == pid)
391 struct simple_pid_list *next = (*p)->next;
393 *statusp = (*p)->status;
402 linux_record_stopped_pid (int pid, int status)
404 add_to_pid_list (&stopped_pids, pid, status);
408 /* A helper function for linux_test_for_tracefork, called after fork (). */
411 linux_tracefork_child (void)
413 ptrace (PTRACE_TRACEME, 0, 0, 0);
414 kill (getpid (), SIGSTOP);
419 /* Wrapper function for waitpid which handles EINTR. */
422 my_waitpid (int pid, int *statusp, int flags)
428 ret = waitpid (pid, statusp, flags);
430 while (ret == -1 && errno == EINTR);
435 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
437 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
438 we know that the feature is not available. This may change the tracing
439 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
441 However, if it succeeds, we don't know for sure that the feature is
442 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
443 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
444 fork tracing, and let it fork. If the process exits, we assume that we
445 can't use TRACEFORK; if we get the fork notification, and we can extract
446 the new child's PID, then we assume that we can. */
449 linux_test_for_tracefork (int original_pid)
451 int child_pid, ret, status;
455 /* We don't want those ptrace calls to be interrupted. */
456 block_child_signals (&prev_mask);
458 linux_supports_tracefork_flag = 0;
459 linux_supports_tracevforkdone_flag = 0;
461 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
464 restore_child_signals_mask (&prev_mask);
470 perror_with_name (("fork"));
473 linux_tracefork_child ();
475 ret = my_waitpid (child_pid, &status, 0);
477 perror_with_name (("waitpid"));
478 else if (ret != child_pid)
479 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
480 if (! WIFSTOPPED (status))
481 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
484 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
487 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
490 warning (_("linux_test_for_tracefork: failed to kill child"));
491 restore_child_signals_mask (&prev_mask);
495 ret = my_waitpid (child_pid, &status, 0);
496 if (ret != child_pid)
497 warning (_("linux_test_for_tracefork: failed "
498 "to wait for killed child"));
499 else if (!WIFSIGNALED (status))
500 warning (_("linux_test_for_tracefork: unexpected "
501 "wait status 0x%x from killed child"), status);
503 restore_child_signals_mask (&prev_mask);
507 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
508 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
509 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
510 linux_supports_tracevforkdone_flag = (ret == 0);
512 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
514 warning (_("linux_test_for_tracefork: failed to resume child"));
516 ret = my_waitpid (child_pid, &status, 0);
518 if (ret == child_pid && WIFSTOPPED (status)
519 && status >> 16 == PTRACE_EVENT_FORK)
522 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
523 if (ret == 0 && second_pid != 0)
527 linux_supports_tracefork_flag = 1;
528 my_waitpid (second_pid, &second_status, 0);
529 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
531 warning (_("linux_test_for_tracefork: "
532 "failed to kill second child"));
533 my_waitpid (second_pid, &status, 0);
537 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
538 "(%d, status 0x%x)"), ret, status);
540 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
542 warning (_("linux_test_for_tracefork: failed to kill child"));
543 my_waitpid (child_pid, &status, 0);
545 restore_child_signals_mask (&prev_mask);
548 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
550 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
551 we know that the feature is not available. This may change the tracing
552 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
555 linux_test_for_tracesysgood (int original_pid)
560 /* We don't want those ptrace calls to be interrupted. */
561 block_child_signals (&prev_mask);
563 linux_supports_tracesysgood_flag = 0;
565 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
569 linux_supports_tracesysgood_flag = 1;
571 restore_child_signals_mask (&prev_mask);
574 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
575 This function also sets linux_supports_tracesysgood_flag. */
578 linux_supports_tracesysgood (int pid)
580 if (linux_supports_tracesysgood_flag == -1)
581 linux_test_for_tracesysgood (pid);
582 return linux_supports_tracesysgood_flag;
585 /* Return non-zero iff we have tracefork functionality available.
586 This function also sets linux_supports_tracefork_flag. */
589 linux_supports_tracefork (int pid)
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracefork_flag;
597 linux_supports_tracevforkdone (int pid)
599 if (linux_supports_tracefork_flag == -1)
600 linux_test_for_tracefork (pid);
601 return linux_supports_tracevforkdone_flag;
605 linux_enable_tracesysgood (ptid_t ptid)
607 int pid = ptid_get_lwp (ptid);
610 pid = ptid_get_pid (ptid);
612 if (linux_supports_tracesysgood (pid) == 0)
615 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
617 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
622 linux_enable_event_reporting (ptid_t ptid)
624 int pid = ptid_get_lwp (ptid);
627 pid = ptid_get_pid (ptid);
629 if (! linux_supports_tracefork (pid))
632 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
633 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
635 if (linux_supports_tracevforkdone (pid))
636 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
638 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
639 read-only process state. */
641 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
645 linux_child_post_attach (int pid)
647 linux_enable_event_reporting (pid_to_ptid (pid));
648 check_for_thread_db ();
649 linux_enable_tracesysgood (pid_to_ptid (pid));
653 linux_child_post_startup_inferior (ptid_t ptid)
655 linux_enable_event_reporting (ptid);
656 check_for_thread_db ();
657 linux_enable_tracesysgood (ptid);
661 linux_child_follow_fork (struct target_ops *ops, int follow_child)
665 int parent_pid, child_pid;
667 block_child_signals (&prev_mask);
669 has_vforked = (inferior_thread ()->pending_follow.kind
670 == TARGET_WAITKIND_VFORKED);
671 parent_pid = ptid_get_lwp (inferior_ptid);
673 parent_pid = ptid_get_pid (inferior_ptid);
674 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
677 linux_enable_event_reporting (pid_to_ptid (child_pid));
680 && !non_stop /* Non-stop always resumes both branches. */
681 && (!target_is_async_p () || sync_execution)
682 && !(follow_child || detach_fork || sched_multi))
684 /* The parent stays blocked inside the vfork syscall until the
685 child execs or exits. If we don't let the child run, then
686 the parent stays blocked. If we're telling the parent to run
687 in the foreground, the user will not be able to ctrl-c to get
688 back the terminal, effectively hanging the debug session. */
689 fprintf_filtered (gdb_stderr, _("\
690 Can not resume the parent process over vfork in the foreground while\n\
691 holding the child stopped. Try \"set detach-on-fork\" or \
692 \"set schedule-multiple\".\n"));
693 /* FIXME output string > 80 columns. */
699 struct lwp_info *child_lp = NULL;
701 /* We're already attached to the parent, by default. */
703 /* Detach new forked process? */
706 /* Before detaching from the child, remove all breakpoints
707 from it. If we forked, then this has already been taken
708 care of by infrun.c. If we vforked however, any
709 breakpoint inserted in the parent is visible in the
710 child, even those added while stopped in a vfork
711 catchpoint. This will remove the breakpoints from the
712 parent also, but they'll be reinserted below. */
715 /* keep breakpoints list in sync. */
716 remove_breakpoints_pid (GET_PID (inferior_ptid));
719 if (info_verbose || debug_linux_nat)
721 target_terminal_ours ();
722 fprintf_filtered (gdb_stdlog,
723 "Detaching after fork from "
724 "child process %d.\n",
728 ptrace (PTRACE_DETACH, child_pid, 0, 0);
732 struct inferior *parent_inf, *child_inf;
733 struct cleanup *old_chain;
735 /* Add process to GDB's tables. */
736 child_inf = add_inferior (child_pid);
738 parent_inf = current_inferior ();
739 child_inf->attach_flag = parent_inf->attach_flag;
740 copy_terminal_info (child_inf, parent_inf);
742 old_chain = save_inferior_ptid ();
743 save_current_program_space ();
745 inferior_ptid = ptid_build (child_pid, child_pid, 0);
746 add_thread (inferior_ptid);
747 child_lp = add_lwp (inferior_ptid);
748 child_lp->stopped = 1;
749 child_lp->resumed = 1;
751 /* If this is a vfork child, then the address-space is
752 shared with the parent. */
755 child_inf->pspace = parent_inf->pspace;
756 child_inf->aspace = parent_inf->aspace;
758 /* The parent will be frozen until the child is done
759 with the shared region. Keep track of the
761 child_inf->vfork_parent = parent_inf;
762 child_inf->pending_detach = 0;
763 parent_inf->vfork_child = child_inf;
764 parent_inf->pending_detach = 0;
768 child_inf->aspace = new_address_space ();
769 child_inf->pspace = add_program_space (child_inf->aspace);
770 child_inf->removable = 1;
771 set_current_program_space (child_inf->pspace);
772 clone_program_space (child_inf->pspace, parent_inf->pspace);
774 /* Let the shared library layer (solib-svr4) learn about
775 this new process, relocate the cloned exec, pull in
776 shared libraries, and install the solib event
777 breakpoint. If a "cloned-VM" event was propagated
778 better throughout the core, this wouldn't be
780 solib_create_inferior_hook (0);
783 /* Let the thread_db layer learn about this new process. */
784 check_for_thread_db ();
786 do_cleanups (old_chain);
792 struct inferior *parent_inf;
794 parent_inf = current_inferior ();
796 /* If we detached from the child, then we have to be careful
797 to not insert breakpoints in the parent until the child
798 is done with the shared memory region. However, if we're
799 staying attached to the child, then we can and should
800 insert breakpoints, so that we can debug it. A
801 subsequent child exec or exit is enough to know when does
802 the child stops using the parent's address space. */
803 parent_inf->waiting_for_vfork_done = detach_fork;
804 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
806 lp = find_lwp_pid (pid_to_ptid (parent_pid));
807 gdb_assert (linux_supports_tracefork_flag >= 0);
808 if (linux_supports_tracevforkdone (0))
811 fprintf_unfiltered (gdb_stdlog,
812 "LCFF: waiting for VFORK_DONE on %d\n",
818 /* We'll handle the VFORK_DONE event like any other
819 event, in target_wait. */
823 /* We can't insert breakpoints until the child has
824 finished with the shared memory region. We need to
825 wait until that happens. Ideal would be to just
827 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
828 - waitpid (parent_pid, &status, __WALL);
829 However, most architectures can't handle a syscall
830 being traced on the way out if it wasn't traced on
833 We might also think to loop, continuing the child
834 until it exits or gets a SIGTRAP. One problem is
835 that the child might call ptrace with PTRACE_TRACEME.
837 There's no simple and reliable way to figure out when
838 the vforked child will be done with its copy of the
839 shared memory. We could step it out of the syscall,
840 two instructions, let it go, and then single-step the
841 parent once. When we have hardware single-step, this
842 would work; with software single-step it could still
843 be made to work but we'd have to be able to insert
844 single-step breakpoints in the child, and we'd have
845 to insert -just- the single-step breakpoint in the
846 parent. Very awkward.
848 In the end, the best we can do is to make sure it
849 runs for a little while. Hopefully it will be out of
850 range of any breakpoints we reinsert. Usually this
851 is only the single-step breakpoint at vfork's return
855 fprintf_unfiltered (gdb_stdlog,
856 "LCFF: no VFORK_DONE "
857 "support, sleeping a bit\n");
861 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
862 and leave it pending. The next linux_nat_resume call
863 will notice a pending event, and bypasses actually
864 resuming the inferior. */
866 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
870 /* If we're in async mode, need to tell the event loop
871 there's something here to process. */
872 if (target_can_async_p ())
879 struct inferior *parent_inf, *child_inf;
881 struct program_space *parent_pspace;
883 if (info_verbose || debug_linux_nat)
885 target_terminal_ours ();
887 fprintf_filtered (gdb_stdlog,
888 _("Attaching after process %d "
889 "vfork to child process %d.\n"),
890 parent_pid, child_pid);
892 fprintf_filtered (gdb_stdlog,
893 _("Attaching after process %d "
894 "fork to child process %d.\n"),
895 parent_pid, child_pid);
898 /* Add the new inferior first, so that the target_detach below
899 doesn't unpush the target. */
901 child_inf = add_inferior (child_pid);
903 parent_inf = current_inferior ();
904 child_inf->attach_flag = parent_inf->attach_flag;
905 copy_terminal_info (child_inf, parent_inf);
907 parent_pspace = parent_inf->pspace;
909 /* If we're vforking, we want to hold on to the parent until the
910 child exits or execs. At child exec or exit time we can
911 remove the old breakpoints from the parent and detach or
912 resume debugging it. Otherwise, detach the parent now; we'll
913 want to reuse it's program/address spaces, but we can't set
914 them to the child before removing breakpoints from the
915 parent, otherwise, the breakpoints module could decide to
916 remove breakpoints from the wrong process (since they'd be
917 assigned to the same address space). */
921 gdb_assert (child_inf->vfork_parent == NULL);
922 gdb_assert (parent_inf->vfork_child == NULL);
923 child_inf->vfork_parent = parent_inf;
924 child_inf->pending_detach = 0;
925 parent_inf->vfork_child = child_inf;
926 parent_inf->pending_detach = detach_fork;
927 parent_inf->waiting_for_vfork_done = 0;
929 else if (detach_fork)
930 target_detach (NULL, 0);
932 /* Note that the detach above makes PARENT_INF dangling. */
934 /* Add the child thread to the appropriate lists, and switch to
935 this new thread, before cloning the program space, and
936 informing the solib layer about this new process. */
938 inferior_ptid = ptid_build (child_pid, child_pid, 0);
939 add_thread (inferior_ptid);
940 lp = add_lwp (inferior_ptid);
944 /* If this is a vfork child, then the address-space is shared
945 with the parent. If we detached from the parent, then we can
946 reuse the parent's program/address spaces. */
947 if (has_vforked || detach_fork)
949 child_inf->pspace = parent_pspace;
950 child_inf->aspace = child_inf->pspace->aspace;
954 child_inf->aspace = new_address_space ();
955 child_inf->pspace = add_program_space (child_inf->aspace);
956 child_inf->removable = 1;
957 set_current_program_space (child_inf->pspace);
958 clone_program_space (child_inf->pspace, parent_pspace);
960 /* Let the shared library layer (solib-svr4) learn about
961 this new process, relocate the cloned exec, pull in
962 shared libraries, and install the solib event breakpoint.
963 If a "cloned-VM" event was propagated better throughout
964 the core, this wouldn't be required. */
965 solib_create_inferior_hook (0);
968 /* Let the thread_db layer learn about this new process. */
969 check_for_thread_db ();
972 restore_child_signals_mask (&prev_mask);
978 linux_child_insert_fork_catchpoint (int pid)
980 return !linux_supports_tracefork (pid);
984 linux_child_insert_vfork_catchpoint (int pid)
986 return !linux_supports_tracefork (pid);
990 linux_child_insert_exec_catchpoint (int pid)
992 return !linux_supports_tracefork (pid);
996 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
997 int table_size, int *table)
999 if (!linux_supports_tracesysgood (pid))
1002 /* On GNU/Linux, we ignore the arguments. It means that we only
1003 enable the syscall catchpoints, but do not disable them.
1005 Also, we do not use the `table' information because we do not
1006 filter system calls here. We let GDB do the logic for us. */
1010 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1011 are processes sharing the same VM space. A multi-threaded process
1012 is basically a group of such processes. However, such a grouping
1013 is almost entirely a user-space issue; the kernel doesn't enforce
1014 such a grouping at all (this might change in the future). In
1015 general, we'll rely on the threads library (i.e. the GNU/Linux
1016 Threads library) to provide such a grouping.
1018 It is perfectly well possible to write a multi-threaded application
1019 without the assistance of a threads library, by using the clone
1020 system call directly. This module should be able to give some
1021 rudimentary support for debugging such applications if developers
1022 specify the CLONE_PTRACE flag in the clone system call, and are
1023 using the Linux kernel 2.4 or above.
1025 Note that there are some peculiarities in GNU/Linux that affect
1028 - In general one should specify the __WCLONE flag to waitpid in
1029 order to make it report events for any of the cloned processes
1030 (and leave it out for the initial process). However, if a cloned
1031 process has exited the exit status is only reported if the
1032 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1033 we cannot use it since GDB must work on older systems too.
1035 - When a traced, cloned process exits and is waited for by the
1036 debugger, the kernel reassigns it to the original parent and
1037 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1038 library doesn't notice this, which leads to the "zombie problem":
1039 When debugged a multi-threaded process that spawns a lot of
1040 threads will run out of processes, even if the threads exit,
1041 because the "zombies" stay around. */
1043 /* List of known LWPs. */
1044 struct lwp_info *lwp_list;
1047 /* Original signal mask. */
1048 static sigset_t normal_mask;
1050 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1051 _initialize_linux_nat. */
1052 static sigset_t suspend_mask;
1054 /* Signals to block to make that sigsuspend work. */
1055 static sigset_t blocked_mask;
1057 /* SIGCHLD action. */
1058 struct sigaction sigchld_action;
1060 /* Block child signals (SIGCHLD and linux threads signals), and store
1061 the previous mask in PREV_MASK. */
1064 block_child_signals (sigset_t *prev_mask)
1066 /* Make sure SIGCHLD is blocked. */
1067 if (!sigismember (&blocked_mask, SIGCHLD))
1068 sigaddset (&blocked_mask, SIGCHLD);
1070 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1073 /* Restore child signals mask, previously returned by
1074 block_child_signals. */
1077 restore_child_signals_mask (sigset_t *prev_mask)
1079 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1083 /* Prototypes for local functions. */
1084 static int stop_wait_callback (struct lwp_info *lp, void *data);
1085 static int linux_thread_alive (ptid_t ptid);
1086 static char *linux_child_pid_to_exec_file (int pid);
1089 /* Convert wait status STATUS to a string. Used for printing debug
1093 status_to_str (int status)
1095 static char buf[64];
1097 if (WIFSTOPPED (status))
1099 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1100 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1101 strsignal (SIGTRAP));
1103 snprintf (buf, sizeof (buf), "%s (stopped)",
1104 strsignal (WSTOPSIG (status)));
1106 else if (WIFSIGNALED (status))
1107 snprintf (buf, sizeof (buf), "%s (terminated)",
1108 strsignal (WTERMSIG (status)));
1110 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1115 /* Remove all LWPs belong to PID from the lwp list. */
1118 purge_lwp_list (int pid)
1120 struct lwp_info *lp, *lpprev, *lpnext;
1124 for (lp = lwp_list; lp; lp = lpnext)
1128 if (ptid_get_pid (lp->ptid) == pid)
1131 lwp_list = lp->next;
1133 lpprev->next = lp->next;
1142 /* Return the number of known LWPs in the tgid given by PID. */
1148 struct lwp_info *lp;
1150 for (lp = lwp_list; lp; lp = lp->next)
1151 if (ptid_get_pid (lp->ptid) == pid)
1157 /* Add the LWP specified by PID to the list. Return a pointer to the
1158 structure describing the new LWP. The LWP should already be stopped
1159 (with an exception for the very first LWP). */
1161 static struct lwp_info *
1162 add_lwp (ptid_t ptid)
1164 struct lwp_info *lp;
1166 gdb_assert (is_lwp (ptid));
1168 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1170 memset (lp, 0, sizeof (struct lwp_info));
1172 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1177 lp->next = lwp_list;
1180 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1181 linux_nat_new_thread (ptid);
1186 /* Remove the LWP specified by PID from the list. */
1189 delete_lwp (ptid_t ptid)
1191 struct lwp_info *lp, *lpprev;
1195 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1196 if (ptid_equal (lp->ptid, ptid))
1203 lpprev->next = lp->next;
1205 lwp_list = lp->next;
1210 /* Return a pointer to the structure describing the LWP corresponding
1211 to PID. If no corresponding LWP could be found, return NULL. */
1213 static struct lwp_info *
1214 find_lwp_pid (ptid_t ptid)
1216 struct lwp_info *lp;
1220 lwp = GET_LWP (ptid);
1222 lwp = GET_PID (ptid);
1224 for (lp = lwp_list; lp; lp = lp->next)
1225 if (lwp == GET_LWP (lp->ptid))
1231 /* Call CALLBACK with its second argument set to DATA for every LWP in
1232 the list. If CALLBACK returns 1 for a particular LWP, return a
1233 pointer to the structure describing that LWP immediately.
1234 Otherwise return NULL. */
1237 iterate_over_lwps (ptid_t filter,
1238 int (*callback) (struct lwp_info *, void *),
1241 struct lwp_info *lp, *lpnext;
1243 for (lp = lwp_list; lp; lp = lpnext)
1247 if (ptid_match (lp->ptid, filter))
1249 if ((*callback) (lp, data))
1257 /* Update our internal state when changing from one checkpoint to
1258 another indicated by NEW_PTID. We can only switch single-threaded
1259 applications, so we only create one new LWP, and the previous list
1263 linux_nat_switch_fork (ptid_t new_ptid)
1265 struct lwp_info *lp;
1267 purge_lwp_list (GET_PID (inferior_ptid));
1269 lp = add_lwp (new_ptid);
1272 /* This changes the thread's ptid while preserving the gdb thread
1273 num. Also changes the inferior pid, while preserving the
1275 thread_change_ptid (inferior_ptid, new_ptid);
1277 /* We've just told GDB core that the thread changed target id, but,
1278 in fact, it really is a different thread, with different register
1280 registers_changed ();
1283 /* Handle the exit of a single thread LP. */
1286 exit_lwp (struct lwp_info *lp)
1288 struct thread_info *th = find_thread_ptid (lp->ptid);
1292 if (print_thread_events)
1293 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1295 delete_thread (lp->ptid);
1298 delete_lwp (lp->ptid);
1301 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1304 linux_proc_get_tgid (int lwpid)
1310 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1311 status_file = fopen (buf, "r");
1312 if (status_file != NULL)
1314 while (fgets (buf, sizeof (buf), status_file))
1316 if (strncmp (buf, "Tgid:", 5) == 0)
1318 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1323 fclose (status_file);
1329 /* Detect `T (stopped)' in `/proc/PID/status'.
1330 Other states including `T (tracing stop)' are reported as false. */
1333 pid_is_stopped (pid_t pid)
1339 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1340 status_file = fopen (buf, "r");
1341 if (status_file != NULL)
1345 while (fgets (buf, sizeof (buf), status_file))
1347 if (strncmp (buf, "State:", 6) == 0)
1353 if (have_state && strstr (buf, "T (stopped)") != NULL)
1355 fclose (status_file);
1360 /* Wait for the LWP specified by LP, which we have just attached to.
1361 Returns a wait status for that LWP, to cache. */
1364 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1367 pid_t new_pid, pid = GET_LWP (ptid);
1370 if (pid_is_stopped (pid))
1372 if (debug_linux_nat)
1373 fprintf_unfiltered (gdb_stdlog,
1374 "LNPAW: Attaching to a stopped process\n");
1376 /* The process is definitely stopped. It is in a job control
1377 stop, unless the kernel predates the TASK_STOPPED /
1378 TASK_TRACED distinction, in which case it might be in a
1379 ptrace stop. Make sure it is in a ptrace stop; from there we
1380 can kill it, signal it, et cetera.
1382 First make sure there is a pending SIGSTOP. Since we are
1383 already attached, the process can not transition from stopped
1384 to running without a PTRACE_CONT; so we know this signal will
1385 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1386 probably already in the queue (unless this kernel is old
1387 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1388 is not an RT signal, it can only be queued once. */
1389 kill_lwp (pid, SIGSTOP);
1391 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1392 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1393 ptrace (PTRACE_CONT, pid, 0, 0);
1396 /* Make sure the initial process is stopped. The user-level threads
1397 layer might want to poke around in the inferior, and that won't
1398 work if things haven't stabilized yet. */
1399 new_pid = my_waitpid (pid, &status, 0);
1400 if (new_pid == -1 && errno == ECHILD)
1403 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1405 /* Try again with __WCLONE to check cloned processes. */
1406 new_pid = my_waitpid (pid, &status, __WCLONE);
1410 gdb_assert (pid == new_pid);
1412 if (!WIFSTOPPED (status))
1414 /* The pid we tried to attach has apparently just exited. */
1415 if (debug_linux_nat)
1416 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1417 pid, status_to_str (status));
1421 if (WSTOPSIG (status) != SIGSTOP)
1424 if (debug_linux_nat)
1425 fprintf_unfiltered (gdb_stdlog,
1426 "LNPAW: Received %s after attaching\n",
1427 status_to_str (status));
1433 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1434 if the new LWP could not be attached. */
1437 lin_lwp_attach_lwp (ptid_t ptid)
1439 struct lwp_info *lp;
1442 gdb_assert (is_lwp (ptid));
1444 block_child_signals (&prev_mask);
1446 lp = find_lwp_pid (ptid);
1448 /* We assume that we're already attached to any LWP that has an id
1449 equal to the overall process id, and to any LWP that is already
1450 in our list of LWPs. If we're not seeing exit events from threads
1451 and we've had PID wraparound since we last tried to stop all threads,
1452 this assumption might be wrong; fortunately, this is very unlikely
1454 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1456 int status, cloned = 0, signalled = 0;
1458 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1460 /* If we fail to attach to the thread, issue a warning,
1461 but continue. One way this can happen is if thread
1462 creation is interrupted; as of Linux kernel 2.6.19, a
1463 bug may place threads in the thread list and then fail
1465 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1466 safe_strerror (errno));
1467 restore_child_signals_mask (&prev_mask);
1471 if (debug_linux_nat)
1472 fprintf_unfiltered (gdb_stdlog,
1473 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1474 target_pid_to_str (ptid));
1476 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1477 if (!WIFSTOPPED (status))
1480 lp = add_lwp (ptid);
1482 lp->cloned = cloned;
1483 lp->signalled = signalled;
1484 if (WSTOPSIG (status) != SIGSTOP)
1487 lp->status = status;
1490 target_post_attach (GET_LWP (lp->ptid));
1492 if (debug_linux_nat)
1494 fprintf_unfiltered (gdb_stdlog,
1495 "LLAL: waitpid %s received %s\n",
1496 target_pid_to_str (ptid),
1497 status_to_str (status));
1502 /* We assume that the LWP representing the original process is
1503 already stopped. Mark it as stopped in the data structure
1504 that the GNU/linux ptrace layer uses to keep track of
1505 threads. Note that this won't have already been done since
1506 the main thread will have, we assume, been stopped by an
1507 attach from a different layer. */
1509 lp = add_lwp (ptid);
1513 restore_child_signals_mask (&prev_mask);
1518 linux_nat_create_inferior (struct target_ops *ops,
1519 char *exec_file, char *allargs, char **env,
1522 #ifdef HAVE_PERSONALITY
1523 int personality_orig = 0, personality_set = 0;
1524 #endif /* HAVE_PERSONALITY */
1526 /* The fork_child mechanism is synchronous and calls target_wait, so
1527 we have to mask the async mode. */
1529 #ifdef HAVE_PERSONALITY
1530 if (disable_randomization)
1533 personality_orig = personality (0xffffffff);
1534 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1536 personality_set = 1;
1537 personality (personality_orig | ADDR_NO_RANDOMIZE);
1539 if (errno != 0 || (personality_set
1540 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1541 warning (_("Error disabling address space randomization: %s"),
1542 safe_strerror (errno));
1544 #endif /* HAVE_PERSONALITY */
1546 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1548 #ifdef HAVE_PERSONALITY
1549 if (personality_set)
1552 personality (personality_orig);
1554 warning (_("Error restoring address space randomization: %s"),
1555 safe_strerror (errno));
1557 #endif /* HAVE_PERSONALITY */
1561 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1563 struct lwp_info *lp;
1567 linux_ops->to_attach (ops, args, from_tty);
1569 /* The ptrace base target adds the main thread with (pid,0,0)
1570 format. Decorate it with lwp info. */
1571 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1572 thread_change_ptid (inferior_ptid, ptid);
1574 /* Add the initial process as the first LWP to the list. */
1575 lp = add_lwp (ptid);
1577 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1579 if (!WIFSTOPPED (status))
1581 if (WIFEXITED (status))
1583 int exit_code = WEXITSTATUS (status);
1585 target_terminal_ours ();
1586 target_mourn_inferior ();
1588 error (_("Unable to attach: program exited normally."));
1590 error (_("Unable to attach: program exited with code %d."),
1593 else if (WIFSIGNALED (status))
1595 enum target_signal signo;
1597 target_terminal_ours ();
1598 target_mourn_inferior ();
1600 signo = target_signal_from_host (WTERMSIG (status));
1601 error (_("Unable to attach: program terminated with signal "
1603 target_signal_to_name (signo),
1604 target_signal_to_string (signo));
1607 internal_error (__FILE__, __LINE__,
1608 _("unexpected status %d for PID %ld"),
1609 status, (long) GET_LWP (ptid));
1614 /* Save the wait status to report later. */
1616 if (debug_linux_nat)
1617 fprintf_unfiltered (gdb_stdlog,
1618 "LNA: waitpid %ld, saving status %s\n",
1619 (long) GET_PID (lp->ptid), status_to_str (status));
1621 lp->status = status;
1623 if (target_can_async_p ())
1624 target_async (inferior_event_handler, 0);
1627 /* Get pending status of LP. */
1629 get_pending_status (struct lwp_info *lp, int *status)
1631 enum target_signal signo = TARGET_SIGNAL_0;
1633 /* If we paused threads momentarily, we may have stored pending
1634 events in lp->status or lp->waitstatus (see stop_wait_callback),
1635 and GDB core hasn't seen any signal for those threads.
1636 Otherwise, the last signal reported to the core is found in the
1637 thread object's stop_signal.
1639 There's a corner case that isn't handled here at present. Only
1640 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1641 stop_signal make sense as a real signal to pass to the inferior.
1642 Some catchpoint related events, like
1643 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1644 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1645 those traps are debug API (ptrace in our case) related and
1646 induced; the inferior wouldn't see them if it wasn't being
1647 traced. Hence, we should never pass them to the inferior, even
1648 when set to pass state. Since this corner case isn't handled by
1649 infrun.c when proceeding with a signal, for consistency, neither
1650 do we handle it here (or elsewhere in the file we check for
1651 signal pass state). Normally SIGTRAP isn't set to pass state, so
1652 this is really a corner case. */
1654 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1655 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1656 else if (lp->status)
1657 signo = target_signal_from_host (WSTOPSIG (lp->status));
1658 else if (non_stop && !is_executing (lp->ptid))
1660 struct thread_info *tp = find_thread_ptid (lp->ptid);
1662 signo = tp->suspend.stop_signal;
1666 struct target_waitstatus last;
1669 get_last_target_status (&last_ptid, &last);
1671 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1673 struct thread_info *tp = find_thread_ptid (lp->ptid);
1675 signo = tp->suspend.stop_signal;
1681 if (signo == TARGET_SIGNAL_0)
1683 if (debug_linux_nat)
1684 fprintf_unfiltered (gdb_stdlog,
1685 "GPT: lwp %s has no pending signal\n",
1686 target_pid_to_str (lp->ptid));
1688 else if (!signal_pass_state (signo))
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s had signal %s, "
1693 "but it is in no pass state\n",
1694 target_pid_to_str (lp->ptid),
1695 target_signal_to_string (signo));
1699 *status = W_STOPCODE (target_signal_to_host (signo));
1701 if (debug_linux_nat)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "GPT: lwp %s has pending signal %s\n",
1704 target_pid_to_str (lp->ptid),
1705 target_signal_to_string (signo));
1712 detach_callback (struct lwp_info *lp, void *data)
1714 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1716 if (debug_linux_nat && lp->status)
1717 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1718 strsignal (WSTOPSIG (lp->status)),
1719 target_pid_to_str (lp->ptid));
1721 /* If there is a pending SIGSTOP, get rid of it. */
1724 if (debug_linux_nat)
1725 fprintf_unfiltered (gdb_stdlog,
1726 "DC: Sending SIGCONT to %s\n",
1727 target_pid_to_str (lp->ptid));
1729 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1733 /* We don't actually detach from the LWP that has an id equal to the
1734 overall process id just yet. */
1735 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1739 /* Pass on any pending signal for this LWP. */
1740 get_pending_status (lp, &status);
1743 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1744 WSTOPSIG (status)) < 0)
1745 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1746 safe_strerror (errno));
1748 if (debug_linux_nat)
1749 fprintf_unfiltered (gdb_stdlog,
1750 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1751 target_pid_to_str (lp->ptid),
1752 strsignal (WSTOPSIG (status)));
1754 delete_lwp (lp->ptid);
1761 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1765 struct lwp_info *main_lwp;
1767 pid = GET_PID (inferior_ptid);
1769 if (target_can_async_p ())
1770 linux_nat_async (NULL, 0);
1772 /* Stop all threads before detaching. ptrace requires that the
1773 thread is stopped to sucessfully detach. */
1774 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1775 /* ... and wait until all of them have reported back that
1776 they're no longer running. */
1777 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1779 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1781 /* Only the initial process should be left right now. */
1782 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1784 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1786 /* Pass on any pending signal for the last LWP. */
1787 if ((args == NULL || *args == '\0')
1788 && get_pending_status (main_lwp, &status) != -1
1789 && WIFSTOPPED (status))
1791 /* Put the signal number in ARGS so that inf_ptrace_detach will
1792 pass it along with PTRACE_DETACH. */
1794 sprintf (args, "%d", (int) WSTOPSIG (status));
1795 if (debug_linux_nat)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "LND: Sending signal %s to %s\n",
1799 target_pid_to_str (main_lwp->ptid));
1802 delete_lwp (main_lwp->ptid);
1804 if (forks_exist_p ())
1806 /* Multi-fork case. The current inferior_ptid is being detached
1807 from, but there are other viable forks to debug. Detach from
1808 the current fork, and context-switch to the first
1810 linux_fork_detach (args, from_tty);
1812 if (non_stop && target_can_async_p ())
1813 target_async (inferior_event_handler, 0);
1816 linux_ops->to_detach (ops, args, from_tty);
1822 resume_callback (struct lwp_info *lp, void *data)
1824 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1826 if (lp->stopped && inf->vfork_child != NULL)
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "RC: Not resuming %s (vfork parent)\n",
1831 target_pid_to_str (lp->ptid));
1833 else if (lp->stopped && lp->status == 0)
1835 if (debug_linux_nat)
1836 fprintf_unfiltered (gdb_stdlog,
1837 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1838 target_pid_to_str (lp->ptid));
1840 linux_ops->to_resume (linux_ops,
1841 pid_to_ptid (GET_LWP (lp->ptid)),
1842 0, TARGET_SIGNAL_0);
1843 if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog,
1845 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1846 target_pid_to_str (lp->ptid));
1849 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1850 lp->stopped_by_watchpoint = 0;
1852 else if (lp->stopped && debug_linux_nat)
1853 fprintf_unfiltered (gdb_stdlog,
1854 "RC: Not resuming sibling %s (has pending)\n",
1855 target_pid_to_str (lp->ptid));
1856 else if (debug_linux_nat)
1857 fprintf_unfiltered (gdb_stdlog,
1858 "RC: Not resuming sibling %s (not stopped)\n",
1859 target_pid_to_str (lp->ptid));
1865 resume_clear_callback (struct lwp_info *lp, void *data)
1872 resume_set_callback (struct lwp_info *lp, void *data)
1879 linux_nat_resume (struct target_ops *ops,
1880 ptid_t ptid, int step, enum target_signal signo)
1883 struct lwp_info *lp;
1886 if (debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog,
1888 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1889 step ? "step" : "resume",
1890 target_pid_to_str (ptid),
1891 (signo != TARGET_SIGNAL_0
1892 ? strsignal (target_signal_to_host (signo)) : "0"),
1893 target_pid_to_str (inferior_ptid));
1895 block_child_signals (&prev_mask);
1897 /* A specific PTID means `step only this process id'. */
1898 resume_many = (ptid_equal (minus_one_ptid, ptid)
1899 || ptid_is_pid (ptid));
1901 /* Mark the lwps we're resuming as resumed. */
1902 iterate_over_lwps (ptid, resume_set_callback, NULL);
1904 /* See if it's the current inferior that should be handled
1907 lp = find_lwp_pid (inferior_ptid);
1909 lp = find_lwp_pid (ptid);
1910 gdb_assert (lp != NULL);
1912 /* Remember if we're stepping. */
1915 /* If we have a pending wait status for this thread, there is no
1916 point in resuming the process. But first make sure that
1917 linux_nat_wait won't preemptively handle the event - we
1918 should never take this short-circuit if we are going to
1919 leave LP running, since we have skipped resuming all the
1920 other threads. This bit of code needs to be synchronized
1921 with linux_nat_wait. */
1923 if (lp->status && WIFSTOPPED (lp->status))
1925 enum target_signal saved_signo;
1926 struct inferior *inf;
1928 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1930 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1932 /* Defer to common code if we're gaining control of the
1934 if (inf->control.stop_soon == NO_STOP_QUIETLY
1935 && signal_stop_state (saved_signo) == 0
1936 && signal_print_state (saved_signo) == 0
1937 && signal_pass_state (saved_signo) == 1)
1939 if (debug_linux_nat)
1940 fprintf_unfiltered (gdb_stdlog,
1941 "LLR: Not short circuiting for ignored "
1942 "status 0x%x\n", lp->status);
1944 /* FIXME: What should we do if we are supposed to continue
1945 this thread with a signal? */
1946 gdb_assert (signo == TARGET_SIGNAL_0);
1947 signo = saved_signo;
1952 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1954 /* FIXME: What should we do if we are supposed to continue
1955 this thread with a signal? */
1956 gdb_assert (signo == TARGET_SIGNAL_0);
1958 if (debug_linux_nat)
1959 fprintf_unfiltered (gdb_stdlog,
1960 "LLR: Short circuiting for status 0x%x\n",
1963 restore_child_signals_mask (&prev_mask);
1964 if (target_can_async_p ())
1966 target_async (inferior_event_handler, 0);
1967 /* Tell the event loop we have something to process. */
1973 /* Mark LWP as not stopped to prevent it from being continued by
1978 iterate_over_lwps (ptid, resume_callback, NULL);
1980 /* Convert to something the lower layer understands. */
1981 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1983 linux_ops->to_resume (linux_ops, ptid, step, signo);
1984 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1985 lp->stopped_by_watchpoint = 0;
1987 if (debug_linux_nat)
1988 fprintf_unfiltered (gdb_stdlog,
1989 "LLR: %s %s, %s (resume event thread)\n",
1990 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1991 target_pid_to_str (ptid),
1992 (signo != TARGET_SIGNAL_0
1993 ? strsignal (target_signal_to_host (signo)) : "0"));
1995 restore_child_signals_mask (&prev_mask);
1996 if (target_can_async_p ())
1997 target_async (inferior_event_handler, 0);
2000 /* Send a signal to an LWP. */
2003 kill_lwp (int lwpid, int signo)
2005 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2006 fails, then we are not using nptl threads and we should be using kill. */
2008 #ifdef HAVE_TKILL_SYSCALL
2010 static int tkill_failed;
2017 ret = syscall (__NR_tkill, lwpid, signo);
2018 if (errno != ENOSYS)
2025 return kill (lwpid, signo);
2028 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2029 event, check if the core is interested in it: if not, ignore the
2030 event, and keep waiting; otherwise, we need to toggle the LWP's
2031 syscall entry/exit status, since the ptrace event itself doesn't
2032 indicate it, and report the trap to higher layers. */
2035 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2037 struct target_waitstatus *ourstatus = &lp->waitstatus;
2038 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2039 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2043 /* If we're stopping threads, there's a SIGSTOP pending, which
2044 makes it so that the LWP reports an immediate syscall return,
2045 followed by the SIGSTOP. Skip seeing that "return" using
2046 PTRACE_CONT directly, and let stop_wait_callback collect the
2047 SIGSTOP. Later when the thread is resumed, a new syscall
2048 entry event. If we didn't do this (and returned 0), we'd
2049 leave a syscall entry pending, and our caller, by using
2050 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2051 itself. Later, when the user re-resumes this LWP, we'd see
2052 another syscall entry event and we'd mistake it for a return.
2054 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2055 (leaving immediately with LWP->signalled set, without issuing
2056 a PTRACE_CONT), it would still be problematic to leave this
2057 syscall enter pending, as later when the thread is resumed,
2058 it would then see the same syscall exit mentioned above,
2059 followed by the delayed SIGSTOP, while the syscall didn't
2060 actually get to execute. It seems it would be even more
2061 confusing to the user. */
2063 if (debug_linux_nat)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "LHST: ignoring syscall %d "
2066 "for LWP %ld (stopping threads), "
2067 "resuming with PTRACE_CONT for SIGSTOP\n",
2069 GET_LWP (lp->ptid));
2071 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2072 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2076 if (catch_syscall_enabled ())
2078 /* Always update the entry/return state, even if this particular
2079 syscall isn't interesting to the core now. In async mode,
2080 the user could install a new catchpoint for this syscall
2081 between syscall enter/return, and we'll need to know to
2082 report a syscall return if that happens. */
2083 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2084 ? TARGET_WAITKIND_SYSCALL_RETURN
2085 : TARGET_WAITKIND_SYSCALL_ENTRY);
2087 if (catching_syscall_number (syscall_number))
2089 /* Alright, an event to report. */
2090 ourstatus->kind = lp->syscall_state;
2091 ourstatus->value.syscall_number = syscall_number;
2093 if (debug_linux_nat)
2094 fprintf_unfiltered (gdb_stdlog,
2095 "LHST: stopping for %s of syscall %d"
2098 == TARGET_WAITKIND_SYSCALL_ENTRY
2099 ? "entry" : "return",
2101 GET_LWP (lp->ptid));
2105 if (debug_linux_nat)
2106 fprintf_unfiltered (gdb_stdlog,
2107 "LHST: ignoring %s of syscall %d "
2109 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2110 ? "entry" : "return",
2112 GET_LWP (lp->ptid));
2116 /* If we had been syscall tracing, and hence used PT_SYSCALL
2117 before on this LWP, it could happen that the user removes all
2118 syscall catchpoints before we get to process this event.
2119 There are two noteworthy issues here:
2121 - When stopped at a syscall entry event, resuming with
2122 PT_STEP still resumes executing the syscall and reports a
2125 - Only PT_SYSCALL catches syscall enters. If we last
2126 single-stepped this thread, then this event can't be a
2127 syscall enter. If we last single-stepped this thread, this
2128 has to be a syscall exit.
2130 The points above mean that the next resume, be it PT_STEP or
2131 PT_CONTINUE, can not trigger a syscall trace event. */
2132 if (debug_linux_nat)
2133 fprintf_unfiltered (gdb_stdlog,
2134 "LHST: caught syscall event "
2135 "with no syscall catchpoints."
2136 " %d for LWP %ld, ignoring\n",
2138 GET_LWP (lp->ptid));
2139 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2142 /* The core isn't interested in this event. For efficiency, avoid
2143 stopping all threads only to have the core resume them all again.
2144 Since we're not stopping threads, if we're still syscall tracing
2145 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2146 subsequent syscall. Simply resume using the inf-ptrace layer,
2147 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2149 /* Note that gdbarch_get_syscall_number may access registers, hence
2151 registers_changed ();
2152 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2153 lp->step, TARGET_SIGNAL_0);
2157 /* Handle a GNU/Linux extended wait response. If we see a clone
2158 event, we need to add the new LWP to our list (and not report the
2159 trap to higher layers). This function returns non-zero if the
2160 event should be ignored and we should wait again. If STOPPING is
2161 true, the new LWP remains stopped, otherwise it is continued. */
2164 linux_handle_extended_wait (struct lwp_info *lp, int status,
2167 int pid = GET_LWP (lp->ptid);
2168 struct target_waitstatus *ourstatus = &lp->waitstatus;
2169 int event = status >> 16;
2171 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2172 || event == PTRACE_EVENT_CLONE)
2174 unsigned long new_pid;
2177 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2179 /* If we haven't already seen the new PID stop, wait for it now. */
2180 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2182 /* The new child has a pending SIGSTOP. We can't affect it until it
2183 hits the SIGSTOP, but we're already attached. */
2184 ret = my_waitpid (new_pid, &status,
2185 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2187 perror_with_name (_("waiting for new child"));
2188 else if (ret != new_pid)
2189 internal_error (__FILE__, __LINE__,
2190 _("wait returned unexpected PID %d"), ret);
2191 else if (!WIFSTOPPED (status))
2192 internal_error (__FILE__, __LINE__,
2193 _("wait returned unexpected status 0x%x"), status);
2196 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2198 if (event == PTRACE_EVENT_FORK
2199 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2201 struct fork_info *fp;
2203 /* Handle checkpointing by linux-fork.c here as a special
2204 case. We don't want the follow-fork-mode or 'catch fork'
2205 to interfere with this. */
2207 /* This won't actually modify the breakpoint list, but will
2208 physically remove the breakpoints from the child. */
2209 detach_breakpoints (new_pid);
2211 /* Retain child fork in ptrace (stopped) state. */
2212 fp = find_fork_pid (new_pid);
2214 fp = add_fork (new_pid);
2216 /* Report as spurious, so that infrun doesn't want to follow
2217 this fork. We're actually doing an infcall in
2219 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2220 linux_enable_event_reporting (pid_to_ptid (new_pid));
2222 /* Report the stop to the core. */
2226 if (event == PTRACE_EVENT_FORK)
2227 ourstatus->kind = TARGET_WAITKIND_FORKED;
2228 else if (event == PTRACE_EVENT_VFORK)
2229 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2232 struct lwp_info *new_lp;
2234 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2236 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2238 new_lp->stopped = 1;
2240 if (WSTOPSIG (status) != SIGSTOP)
2242 /* This can happen if someone starts sending signals to
2243 the new thread before it gets a chance to run, which
2244 have a lower number than SIGSTOP (e.g. SIGUSR1).
2245 This is an unlikely case, and harder to handle for
2246 fork / vfork than for clone, so we do not try - but
2247 we handle it for clone events here. We'll send
2248 the other signal on to the thread below. */
2250 new_lp->signalled = 1;
2257 /* Add the new thread to GDB's lists as soon as possible
2260 1) the frontend doesn't have to wait for a stop to
2263 2) we tag it with the correct running state. */
2265 /* If the thread_db layer is active, let it know about
2266 this new thread, and add it to GDB's list. */
2267 if (!thread_db_attach_lwp (new_lp->ptid))
2269 /* We're not using thread_db. Add it to GDB's
2271 target_post_attach (GET_LWP (new_lp->ptid));
2272 add_thread (new_lp->ptid);
2277 set_running (new_lp->ptid, 1);
2278 set_executing (new_lp->ptid, 1);
2282 /* Note the need to use the low target ops to resume, to
2283 handle resuming with PT_SYSCALL if we have syscall
2287 enum target_signal signo;
2289 new_lp->stopped = 0;
2290 new_lp->resumed = 1;
2293 ? target_signal_from_host (WSTOPSIG (status))
2296 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2303 /* We created NEW_LP so it cannot yet contain STATUS. */
2304 gdb_assert (new_lp->status == 0);
2306 /* Save the wait status to report later. */
2307 if (debug_linux_nat)
2308 fprintf_unfiltered (gdb_stdlog,
2309 "LHEW: waitpid of new LWP %ld, "
2310 "saving status %s\n",
2311 (long) GET_LWP (new_lp->ptid),
2312 status_to_str (status));
2313 new_lp->status = status;
2317 if (debug_linux_nat)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "LHEW: Got clone event "
2320 "from LWP %ld, resuming\n",
2321 GET_LWP (lp->ptid));
2322 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2323 0, TARGET_SIGNAL_0);
2331 if (event == PTRACE_EVENT_EXEC)
2333 if (debug_linux_nat)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "LHEW: Got exec event from LWP %ld\n",
2336 GET_LWP (lp->ptid));
2338 ourstatus->kind = TARGET_WAITKIND_EXECD;
2339 ourstatus->value.execd_pathname
2340 = xstrdup (linux_child_pid_to_exec_file (pid));
2345 if (event == PTRACE_EVENT_VFORK_DONE)
2347 if (current_inferior ()->waiting_for_vfork_done)
2349 if (debug_linux_nat)
2350 fprintf_unfiltered (gdb_stdlog,
2351 "LHEW: Got expected PTRACE_EVENT_"
2352 "VFORK_DONE from LWP %ld: stopping\n",
2353 GET_LWP (lp->ptid));
2355 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2359 if (debug_linux_nat)
2360 fprintf_unfiltered (gdb_stdlog,
2361 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2362 "from LWP %ld: resuming\n",
2363 GET_LWP (lp->ptid));
2364 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2368 internal_error (__FILE__, __LINE__,
2369 _("unknown ptrace event %d"), event);
2372 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2376 wait_lwp (struct lwp_info *lp)
2380 int thread_dead = 0;
2382 gdb_assert (!lp->stopped);
2383 gdb_assert (lp->status == 0);
2385 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2386 if (pid == -1 && errno == ECHILD)
2388 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2389 if (pid == -1 && errno == ECHILD)
2391 /* The thread has previously exited. We need to delete it
2392 now because, for some vendor 2.4 kernels with NPTL
2393 support backported, there won't be an exit event unless
2394 it is the main thread. 2.6 kernels will report an exit
2395 event for each thread that exits, as expected. */
2397 if (debug_linux_nat)
2398 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2399 target_pid_to_str (lp->ptid));
2405 gdb_assert (pid == GET_LWP (lp->ptid));
2407 if (debug_linux_nat)
2409 fprintf_unfiltered (gdb_stdlog,
2410 "WL: waitpid %s received %s\n",
2411 target_pid_to_str (lp->ptid),
2412 status_to_str (status));
2416 /* Check if the thread has exited. */
2417 if (WIFEXITED (status) || WIFSIGNALED (status))
2420 if (debug_linux_nat)
2421 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2422 target_pid_to_str (lp->ptid));
2431 gdb_assert (WIFSTOPPED (status));
2433 /* Handle GNU/Linux's syscall SIGTRAPs. */
2434 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2436 /* No longer need the sysgood bit. The ptrace event ends up
2437 recorded in lp->waitstatus if we care for it. We can carry
2438 on handling the event like a regular SIGTRAP from here
2440 status = W_STOPCODE (SIGTRAP);
2441 if (linux_handle_syscall_trap (lp, 1))
2442 return wait_lwp (lp);
2445 /* Handle GNU/Linux's extended waitstatus for trace events. */
2446 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2448 if (debug_linux_nat)
2449 fprintf_unfiltered (gdb_stdlog,
2450 "WL: Handling extended status 0x%06x\n",
2452 if (linux_handle_extended_wait (lp, status, 1))
2453 return wait_lwp (lp);
2459 /* Save the most recent siginfo for LP. This is currently only called
2460 for SIGTRAP; some ports use the si_addr field for
2461 target_stopped_data_address. In the future, it may also be used to
2462 restore the siginfo of requeued signals. */
2465 save_siginfo (struct lwp_info *lp)
2468 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2469 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2472 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2475 /* Send a SIGSTOP to LP. */
2478 stop_callback (struct lwp_info *lp, void *data)
2480 if (!lp->stopped && !lp->signalled)
2484 if (debug_linux_nat)
2486 fprintf_unfiltered (gdb_stdlog,
2487 "SC: kill %s **<SIGSTOP>**\n",
2488 target_pid_to_str (lp->ptid));
2491 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2492 if (debug_linux_nat)
2494 fprintf_unfiltered (gdb_stdlog,
2495 "SC: lwp kill %d %s\n",
2497 errno ? safe_strerror (errno) : "ERRNO-OK");
2501 gdb_assert (lp->status == 0);
2507 /* Return non-zero if LWP PID has a pending SIGINT. */
2510 linux_nat_has_pending_sigint (int pid)
2512 sigset_t pending, blocked, ignored;
2514 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2516 if (sigismember (&pending, SIGINT)
2517 && !sigismember (&ignored, SIGINT))
2523 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2526 set_ignore_sigint (struct lwp_info *lp, void *data)
2528 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2529 flag to consume the next one. */
2530 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2531 && WSTOPSIG (lp->status) == SIGINT)
2534 lp->ignore_sigint = 1;
2539 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2540 This function is called after we know the LWP has stopped; if the LWP
2541 stopped before the expected SIGINT was delivered, then it will never have
2542 arrived. Also, if the signal was delivered to a shared queue and consumed
2543 by a different thread, it will never be delivered to this LWP. */
2546 maybe_clear_ignore_sigint (struct lwp_info *lp)
2548 if (!lp->ignore_sigint)
2551 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2553 if (debug_linux_nat)
2554 fprintf_unfiltered (gdb_stdlog,
2555 "MCIS: Clearing bogus flag for %s\n",
2556 target_pid_to_str (lp->ptid));
2557 lp->ignore_sigint = 0;
2561 /* Fetch the possible triggered data watchpoint info and store it in
2564 On some archs, like x86, that use debug registers to set
2565 watchpoints, it's possible that the way to know which watched
2566 address trapped, is to check the register that is used to select
2567 which address to watch. Problem is, between setting the watchpoint
2568 and reading back which data address trapped, the user may change
2569 the set of watchpoints, and, as a consequence, GDB changes the
2570 debug registers in the inferior. To avoid reading back a stale
2571 stopped-data-address when that happens, we cache in LP the fact
2572 that a watchpoint trapped, and the corresponding data address, as
2573 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2574 registers meanwhile, we have the cached data we can rely on. */
2577 save_sigtrap (struct lwp_info *lp)
2579 struct cleanup *old_chain;
2581 if (linux_ops->to_stopped_by_watchpoint == NULL)
2583 lp->stopped_by_watchpoint = 0;
2587 old_chain = save_inferior_ptid ();
2588 inferior_ptid = lp->ptid;
2590 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2592 if (lp->stopped_by_watchpoint)
2594 if (linux_ops->to_stopped_data_address != NULL)
2595 lp->stopped_data_address_p =
2596 linux_ops->to_stopped_data_address (¤t_target,
2597 &lp->stopped_data_address);
2599 lp->stopped_data_address_p = 0;
2602 do_cleanups (old_chain);
2605 /* See save_sigtrap. */
2608 linux_nat_stopped_by_watchpoint (void)
2610 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2612 gdb_assert (lp != NULL);
2614 return lp->stopped_by_watchpoint;
2618 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2620 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2622 gdb_assert (lp != NULL);
2624 *addr_p = lp->stopped_data_address;
2626 return lp->stopped_data_address_p;
2629 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2632 sigtrap_is_event (int status)
2634 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2637 /* SIGTRAP-like events recognizer. */
2639 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2641 /* Check for SIGTRAP-like events in LP. */
2644 linux_nat_lp_status_is_event (struct lwp_info *lp)
2646 /* We check for lp->waitstatus in addition to lp->status, because we can
2647 have pending process exits recorded in lp->status
2648 and W_EXITCODE(0,0) == 0. We should probably have an additional
2649 lp->status_p flag. */
2651 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2652 && linux_nat_status_is_event (lp->status));
2655 /* Set alternative SIGTRAP-like events recognizer. If
2656 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2660 linux_nat_set_status_is_event (struct target_ops *t,
2661 int (*status_is_event) (int status))
2663 linux_nat_status_is_event = status_is_event;
2666 /* Wait until LP is stopped. */
2669 stop_wait_callback (struct lwp_info *lp, void *data)
2671 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2673 /* If this is a vfork parent, bail out, it is not going to report
2674 any SIGSTOP until the vfork is done with. */
2675 if (inf->vfork_child != NULL)
2682 status = wait_lwp (lp);
2686 if (lp->ignore_sigint && WIFSTOPPED (status)
2687 && WSTOPSIG (status) == SIGINT)
2689 lp->ignore_sigint = 0;
2692 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2693 if (debug_linux_nat)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "PTRACE_CONT %s, 0, 0 (%s) "
2696 "(discarding SIGINT)\n",
2697 target_pid_to_str (lp->ptid),
2698 errno ? safe_strerror (errno) : "OK");
2700 return stop_wait_callback (lp, NULL);
2703 maybe_clear_ignore_sigint (lp);
2705 if (WSTOPSIG (status) != SIGSTOP)
2707 if (linux_nat_status_is_event (status))
2709 /* If a LWP other than the LWP that we're reporting an
2710 event for has hit a GDB breakpoint (as opposed to
2711 some random trap signal), then just arrange for it to
2712 hit it again later. We don't keep the SIGTRAP status
2713 and don't forward the SIGTRAP signal to the LWP. We
2714 will handle the current event, eventually we will
2715 resume all LWPs, and this one will get its breakpoint
2718 If we do not do this, then we run the risk that the
2719 user will delete or disable the breakpoint, but the
2720 thread will have already tripped on it. */
2722 /* Save the trap's siginfo in case we need it later. */
2727 /* Now resume this LWP and get the SIGSTOP event. */
2729 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2730 if (debug_linux_nat)
2732 fprintf_unfiltered (gdb_stdlog,
2733 "PTRACE_CONT %s, 0, 0 (%s)\n",
2734 target_pid_to_str (lp->ptid),
2735 errno ? safe_strerror (errno) : "OK");
2737 fprintf_unfiltered (gdb_stdlog,
2738 "SWC: Candidate SIGTRAP event in %s\n",
2739 target_pid_to_str (lp->ptid));
2741 /* Hold this event/waitstatus while we check to see if
2742 there are any more (we still want to get that SIGSTOP). */
2743 stop_wait_callback (lp, NULL);
2745 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2746 there's another event, throw it back into the
2750 if (debug_linux_nat)
2751 fprintf_unfiltered (gdb_stdlog,
2752 "SWC: kill %s, %s\n",
2753 target_pid_to_str (lp->ptid),
2754 status_to_str ((int) status));
2755 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2758 /* Save the sigtrap event. */
2759 lp->status = status;
2764 /* The thread was stopped with a signal other than
2765 SIGSTOP, and didn't accidentally trip a breakpoint. */
2767 if (debug_linux_nat)
2769 fprintf_unfiltered (gdb_stdlog,
2770 "SWC: Pending event %s in %s\n",
2771 status_to_str ((int) status),
2772 target_pid_to_str (lp->ptid));
2774 /* Now resume this LWP and get the SIGSTOP event. */
2776 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2777 if (debug_linux_nat)
2778 fprintf_unfiltered (gdb_stdlog,
2779 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2780 target_pid_to_str (lp->ptid),
2781 errno ? safe_strerror (errno) : "OK");
2783 /* Hold this event/waitstatus while we check to see if
2784 there are any more (we still want to get that SIGSTOP). */
2785 stop_wait_callback (lp, NULL);
2787 /* If the lp->status field is still empty, use it to
2788 hold this event. If not, then this event must be
2789 returned to the event queue of the LWP. */
2792 if (debug_linux_nat)
2794 fprintf_unfiltered (gdb_stdlog,
2795 "SWC: kill %s, %s\n",
2796 target_pid_to_str (lp->ptid),
2797 status_to_str ((int) status));
2799 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2802 lp->status = status;
2808 /* We caught the SIGSTOP that we intended to catch, so
2809 there's no SIGSTOP pending. */
2818 /* Return non-zero if LP has a wait status pending. */
2821 status_callback (struct lwp_info *lp, void *data)
2823 /* Only report a pending wait status if we pretend that this has
2824 indeed been resumed. */
2828 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2830 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2831 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2832 0', so a clean process exit can not be stored pending in
2833 lp->status, it is indistinguishable from
2834 no-pending-status. */
2838 if (lp->status != 0)
2844 /* Return non-zero if LP isn't stopped. */
2847 running_callback (struct lwp_info *lp, void *data)
2849 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2852 /* Count the LWP's that have had events. */
2855 count_events_callback (struct lwp_info *lp, void *data)
2859 gdb_assert (count != NULL);
2861 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2862 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2868 /* Select the LWP (if any) that is currently being single-stepped. */
2871 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2873 if (lp->step && lp->status != 0)
2879 /* Select the Nth LWP that has had a SIGTRAP event. */
2882 select_event_lwp_callback (struct lwp_info *lp, void *data)
2884 int *selector = data;
2886 gdb_assert (selector != NULL);
2888 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2889 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2890 if ((*selector)-- == 0)
2897 cancel_breakpoint (struct lwp_info *lp)
2899 /* Arrange for a breakpoint to be hit again later. We don't keep
2900 the SIGTRAP status and don't forward the SIGTRAP signal to the
2901 LWP. We will handle the current event, eventually we will resume
2902 this LWP, and this breakpoint will trap again.
2904 If we do not do this, then we run the risk that the user will
2905 delete or disable the breakpoint, but the LWP will have already
2908 struct regcache *regcache = get_thread_regcache (lp->ptid);
2909 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2912 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2913 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2915 if (debug_linux_nat)
2916 fprintf_unfiltered (gdb_stdlog,
2917 "CB: Push back breakpoint for %s\n",
2918 target_pid_to_str (lp->ptid));
2920 /* Back up the PC if necessary. */
2921 if (gdbarch_decr_pc_after_break (gdbarch))
2922 regcache_write_pc (regcache, pc);
2930 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2932 struct lwp_info *event_lp = data;
2934 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2938 /* If a LWP other than the LWP that we're reporting an event for has
2939 hit a GDB breakpoint (as opposed to some random trap signal),
2940 then just arrange for it to hit it again later. We don't keep
2941 the SIGTRAP status and don't forward the SIGTRAP signal to the
2942 LWP. We will handle the current event, eventually we will resume
2943 all LWPs, and this one will get its breakpoint trap again.
2945 If we do not do this, then we run the risk that the user will
2946 delete or disable the breakpoint, but the LWP will have already
2949 if (linux_nat_lp_status_is_event (lp)
2950 && cancel_breakpoint (lp))
2951 /* Throw away the SIGTRAP. */
2957 /* Select one LWP out of those that have events pending. */
2960 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2963 int random_selector;
2964 struct lwp_info *event_lp;
2966 /* Record the wait status for the original LWP. */
2967 (*orig_lp)->status = *status;
2969 /* Give preference to any LWP that is being single-stepped. */
2970 event_lp = iterate_over_lwps (filter,
2971 select_singlestep_lwp_callback, NULL);
2972 if (event_lp != NULL)
2974 if (debug_linux_nat)
2975 fprintf_unfiltered (gdb_stdlog,
2976 "SEL: Select single-step %s\n",
2977 target_pid_to_str (event_lp->ptid));
2981 /* No single-stepping LWP. Select one at random, out of those
2982 which have had SIGTRAP events. */
2984 /* First see how many SIGTRAP events we have. */
2985 iterate_over_lwps (filter, count_events_callback, &num_events);
2987 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2988 random_selector = (int)
2989 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2991 if (debug_linux_nat && num_events > 1)
2992 fprintf_unfiltered (gdb_stdlog,
2993 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2994 num_events, random_selector);
2996 event_lp = iterate_over_lwps (filter,
2997 select_event_lwp_callback,
3001 if (event_lp != NULL)
3003 /* Switch the event LWP. */
3004 *orig_lp = event_lp;
3005 *status = event_lp->status;
3008 /* Flush the wait status for the event LWP. */
3009 (*orig_lp)->status = 0;
3012 /* Return non-zero if LP has been resumed. */
3015 resumed_callback (struct lwp_info *lp, void *data)
3020 /* Stop an active thread, verify it still exists, then resume it. */
3023 stop_and_resume_callback (struct lwp_info *lp, void *data)
3025 struct lwp_info *ptr;
3027 if (!lp->stopped && !lp->signalled)
3029 stop_callback (lp, NULL);
3030 stop_wait_callback (lp, NULL);
3031 /* Resume if the lwp still exists. */
3032 for (ptr = lwp_list; ptr; ptr = ptr->next)
3035 resume_callback (lp, NULL);
3036 resume_set_callback (lp, NULL);
3042 /* Check if we should go on and pass this event to common code.
3043 Return the affected lwp if we are, or NULL otherwise. */
3044 static struct lwp_info *
3045 linux_nat_filter_event (int lwpid, int status, int options)
3047 struct lwp_info *lp;
3049 lp = find_lwp_pid (pid_to_ptid (lwpid));
3051 /* Check for stop events reported by a process we didn't already
3052 know about - anything not already in our LWP list.
3054 If we're expecting to receive stopped processes after
3055 fork, vfork, and clone events, then we'll just add the
3056 new one to our list and go back to waiting for the event
3057 to be reported - the stopped process might be returned
3058 from waitpid before or after the event is. */
3059 if (WIFSTOPPED (status) && !lp)
3061 linux_record_stopped_pid (lwpid, status);
3065 /* Make sure we don't report an event for the exit of an LWP not in
3066 our list, i.e. not part of the current process. This can happen
3067 if we detach from a program we original forked and then it
3069 if (!WIFSTOPPED (status) && !lp)
3072 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3073 CLONE_PTRACE processes which do not use the thread library -
3074 otherwise we wouldn't find the new LWP this way. That doesn't
3075 currently work, and the following code is currently unreachable
3076 due to the two blocks above. If it's fixed some day, this code
3077 should be broken out into a function so that we can also pick up
3078 LWPs from the new interface. */
3081 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3082 if (options & __WCLONE)
3085 gdb_assert (WIFSTOPPED (status)
3086 && WSTOPSIG (status) == SIGSTOP);
3089 if (!in_thread_list (inferior_ptid))
3091 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3092 GET_PID (inferior_ptid));
3093 add_thread (inferior_ptid);
3096 add_thread (lp->ptid);
3099 /* Handle GNU/Linux's syscall SIGTRAPs. */
3100 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3102 /* No longer need the sysgood bit. The ptrace event ends up
3103 recorded in lp->waitstatus if we care for it. We can carry
3104 on handling the event like a regular SIGTRAP from here
3106 status = W_STOPCODE (SIGTRAP);
3107 if (linux_handle_syscall_trap (lp, 0))
3111 /* Handle GNU/Linux's extended waitstatus for trace events. */
3112 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3114 if (debug_linux_nat)
3115 fprintf_unfiltered (gdb_stdlog,
3116 "LLW: Handling extended status 0x%06x\n",
3118 if (linux_handle_extended_wait (lp, status, 0))
3122 if (linux_nat_status_is_event (status))
3124 /* Save the trap's siginfo in case we need it later. */
3130 /* Check if the thread has exited. */
3131 if ((WIFEXITED (status) || WIFSIGNALED (status))
3132 && num_lwps (GET_PID (lp->ptid)) > 1)
3134 /* If this is the main thread, we must stop all threads and verify
3135 if they are still alive. This is because in the nptl thread model
3136 on Linux 2.4, there is no signal issued for exiting LWPs
3137 other than the main thread. We only get the main thread exit
3138 signal once all child threads have already exited. If we
3139 stop all the threads and use the stop_wait_callback to check
3140 if they have exited we can determine whether this signal
3141 should be ignored or whether it means the end of the debugged
3142 application, regardless of which threading model is being
3144 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3147 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3148 stop_and_resume_callback, NULL);
3151 if (debug_linux_nat)
3152 fprintf_unfiltered (gdb_stdlog,
3153 "LLW: %s exited.\n",
3154 target_pid_to_str (lp->ptid));
3156 if (num_lwps (GET_PID (lp->ptid)) > 1)
3158 /* If there is at least one more LWP, then the exit signal
3159 was not the end of the debugged application and should be
3166 /* Check if the current LWP has previously exited. In the nptl
3167 thread model, LWPs other than the main thread do not issue
3168 signals when they exit so we must check whenever the thread has
3169 stopped. A similar check is made in stop_wait_callback(). */
3170 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3172 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3174 if (debug_linux_nat)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "LLW: %s exited.\n",
3177 target_pid_to_str (lp->ptid));
3181 /* Make sure there is at least one thread running. */
3182 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3184 /* Discard the event. */
3188 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3189 an attempt to stop an LWP. */
3191 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3193 if (debug_linux_nat)
3194 fprintf_unfiltered (gdb_stdlog,
3195 "LLW: Delayed SIGSTOP caught for %s.\n",
3196 target_pid_to_str (lp->ptid));
3198 /* This is a delayed SIGSTOP. */
3201 registers_changed ();
3203 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3204 lp->step, TARGET_SIGNAL_0);
3205 if (debug_linux_nat)
3206 fprintf_unfiltered (gdb_stdlog,
3207 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3209 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3210 target_pid_to_str (lp->ptid));
3213 gdb_assert (lp->resumed);
3215 /* Discard the event. */
3219 /* Make sure we don't report a SIGINT that we have already displayed
3220 for another thread. */
3221 if (lp->ignore_sigint
3222 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3224 if (debug_linux_nat)
3225 fprintf_unfiltered (gdb_stdlog,
3226 "LLW: Delayed SIGINT caught for %s.\n",
3227 target_pid_to_str (lp->ptid));
3229 /* This is a delayed SIGINT. */
3230 lp->ignore_sigint = 0;
3232 registers_changed ();
3233 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3234 lp->step, TARGET_SIGNAL_0);
3235 if (debug_linux_nat)
3236 fprintf_unfiltered (gdb_stdlog,
3237 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3239 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3240 target_pid_to_str (lp->ptid));
3243 gdb_assert (lp->resumed);
3245 /* Discard the event. */
3249 /* An interesting event. */
3251 lp->status = status;
3256 linux_nat_wait_1 (struct target_ops *ops,
3257 ptid_t ptid, struct target_waitstatus *ourstatus,
3260 static sigset_t prev_mask;
3261 struct lwp_info *lp = NULL;
3266 if (debug_linux_nat_async)
3267 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3269 /* The first time we get here after starting a new inferior, we may
3270 not have added it to the LWP list yet - this is the earliest
3271 moment at which we know its PID. */
3272 if (ptid_is_pid (inferior_ptid))
3274 /* Upgrade the main thread's ptid. */
3275 thread_change_ptid (inferior_ptid,
3276 BUILD_LWP (GET_PID (inferior_ptid),
3277 GET_PID (inferior_ptid)));
3279 lp = add_lwp (inferior_ptid);
3283 /* Make sure SIGCHLD is blocked. */
3284 block_child_signals (&prev_mask);
3286 if (ptid_equal (ptid, minus_one_ptid))
3288 else if (ptid_is_pid (ptid))
3289 /* A request to wait for a specific tgid. This is not possible
3290 with waitpid, so instead, we wait for any child, and leave
3291 children we're not interested in right now with a pending
3292 status to report later. */
3295 pid = GET_LWP (ptid);
3301 /* Make sure that of those LWPs we want to get an event from, there
3302 is at least one LWP that has been resumed. If there's none, just
3303 bail out. The core may just be flushing asynchronously all
3305 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3307 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3309 if (debug_linux_nat_async)
3310 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3312 restore_child_signals_mask (&prev_mask);
3313 return minus_one_ptid;
3316 /* First check if there is a LWP with a wait status pending. */
3319 /* Any LWP that's been resumed will do. */
3320 lp = iterate_over_lwps (ptid, status_callback, NULL);
3323 if (debug_linux_nat && lp->status)
3324 fprintf_unfiltered (gdb_stdlog,
3325 "LLW: Using pending wait status %s for %s.\n",
3326 status_to_str (lp->status),
3327 target_pid_to_str (lp->ptid));
3330 /* But if we don't find one, we'll have to wait, and check both
3331 cloned and uncloned processes. We start with the cloned
3333 options = __WCLONE | WNOHANG;
3335 else if (is_lwp (ptid))
3337 if (debug_linux_nat)
3338 fprintf_unfiltered (gdb_stdlog,
3339 "LLW: Waiting for specific LWP %s.\n",
3340 target_pid_to_str (ptid));
3342 /* We have a specific LWP to check. */
3343 lp = find_lwp_pid (ptid);
3346 if (debug_linux_nat && lp->status)
3347 fprintf_unfiltered (gdb_stdlog,
3348 "LLW: Using pending wait status %s for %s.\n",
3349 status_to_str (lp->status),
3350 target_pid_to_str (lp->ptid));
3352 /* If we have to wait, take into account whether PID is a cloned
3353 process or not. And we have to convert it to something that
3354 the layer beneath us can understand. */
3355 options = lp->cloned ? __WCLONE : 0;
3356 pid = GET_LWP (ptid);
3358 /* We check for lp->waitstatus in addition to lp->status,
3359 because we can have pending process exits recorded in
3360 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3361 an additional lp->status_p flag. */
3362 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3366 if (lp && lp->signalled)
3368 /* A pending SIGSTOP may interfere with the normal stream of
3369 events. In a typical case where interference is a problem,
3370 we have a SIGSTOP signal pending for LWP A while
3371 single-stepping it, encounter an event in LWP B, and take the
3372 pending SIGSTOP while trying to stop LWP A. After processing
3373 the event in LWP B, LWP A is continued, and we'll never see
3374 the SIGTRAP associated with the last time we were
3375 single-stepping LWP A. */
3377 /* Resume the thread. It should halt immediately returning the
3379 registers_changed ();
3380 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3381 lp->step, TARGET_SIGNAL_0);
3382 if (debug_linux_nat)
3383 fprintf_unfiltered (gdb_stdlog,
3384 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3385 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3386 target_pid_to_str (lp->ptid));
3388 gdb_assert (lp->resumed);
3390 /* Catch the pending SIGSTOP. */
3391 status = lp->status;
3394 stop_wait_callback (lp, NULL);
3396 /* If the lp->status field isn't empty, we caught another signal
3397 while flushing the SIGSTOP. Return it back to the event
3398 queue of the LWP, as we already have an event to handle. */
3401 if (debug_linux_nat)
3402 fprintf_unfiltered (gdb_stdlog,
3403 "LLW: kill %s, %s\n",
3404 target_pid_to_str (lp->ptid),
3405 status_to_str (lp->status));
3406 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3409 lp->status = status;
3412 if (!target_can_async_p ())
3414 /* Causes SIGINT to be passed on to the attached process. */
3418 /* Translate generic target_wait options into waitpid options. */
3419 if (target_options & TARGET_WNOHANG)
3426 lwpid = my_waitpid (pid, &status, options);
3430 gdb_assert (pid == -1 || lwpid == pid);
3432 if (debug_linux_nat)
3434 fprintf_unfiltered (gdb_stdlog,
3435 "LLW: waitpid %ld received %s\n",
3436 (long) lwpid, status_to_str (status));
3439 lp = linux_nat_filter_event (lwpid, status, options);
3441 /* STATUS is now no longer valid, use LP->STATUS instead. */
3445 && ptid_is_pid (ptid)
3446 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3448 gdb_assert (lp->resumed);
3450 if (debug_linux_nat)
3452 "LWP %ld got an event %06x, leaving pending.\n",
3453 ptid_get_lwp (lp->ptid), lp->status);
3455 if (WIFSTOPPED (lp->status))
3457 if (WSTOPSIG (lp->status) != SIGSTOP)
3459 /* Cancel breakpoint hits. The breakpoint may
3460 be removed before we fetch events from this
3461 process to report to the core. It is best
3462 not to assume the moribund breakpoints
3463 heuristic always handles these cases --- it
3464 could be too many events go through to the
3465 core before this one is handled. All-stop
3466 always cancels breakpoint hits in all
3469 && linux_nat_lp_status_is_event (lp)
3470 && cancel_breakpoint (lp))
3472 /* Throw away the SIGTRAP. */
3475 if (debug_linux_nat)
3477 "LLW: LWP %ld hit a breakpoint while"
3478 " waiting for another process;"
3480 ptid_get_lwp (lp->ptid));
3490 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3492 if (debug_linux_nat)
3494 "Process %ld exited while stopping LWPs\n",
3495 ptid_get_lwp (lp->ptid));
3497 /* This was the last lwp in the process. Since
3498 events are serialized to GDB core, and we can't
3499 report this one right now, but GDB core and the
3500 other target layers will want to be notified
3501 about the exit code/signal, leave the status
3502 pending for the next time we're able to report
3505 /* Prevent trying to stop this thread again. We'll
3506 never try to resume it because it has a pending
3510 /* Dead LWP's aren't expected to reported a pending
3514 /* Store the pending event in the waitstatus as
3515 well, because W_EXITCODE(0,0) == 0. */
3516 store_waitstatus (&lp->waitstatus, lp->status);
3530 /* waitpid did return something. Restart over. */
3531 options |= __WCLONE;
3539 /* Alternate between checking cloned and uncloned processes. */
3540 options ^= __WCLONE;
3542 /* And every time we have checked both:
3543 In async mode, return to event loop;
3544 In sync mode, suspend waiting for a SIGCHLD signal. */
3545 if (options & __WCLONE)
3547 if (target_options & TARGET_WNOHANG)
3549 /* No interesting event. */
3550 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3552 if (debug_linux_nat_async)
3553 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3555 restore_child_signals_mask (&prev_mask);
3556 return minus_one_ptid;
3559 sigsuspend (&suspend_mask);
3562 else if (target_options & TARGET_WNOHANG)
3564 /* No interesting event for PID yet. */
3565 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3567 if (debug_linux_nat_async)
3568 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3570 restore_child_signals_mask (&prev_mask);
3571 return minus_one_ptid;
3574 /* We shouldn't end up here unless we want to try again. */
3575 gdb_assert (lp == NULL);
3578 if (!target_can_async_p ())
3579 clear_sigint_trap ();
3583 status = lp->status;
3586 /* Don't report signals that GDB isn't interested in, such as
3587 signals that are neither printed nor stopped upon. Stopping all
3588 threads can be a bit time-consuming so if we want decent
3589 performance with heavily multi-threaded programs, especially when
3590 they're using a high frequency timer, we'd better avoid it if we
3593 if (WIFSTOPPED (status))
3595 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3596 struct inferior *inf;
3598 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3601 /* Defer to common code if we get a signal while
3602 single-stepping, since that may need special care, e.g. to
3603 skip the signal handler, or, if we're gaining control of the
3606 && inf->control.stop_soon == NO_STOP_QUIETLY
3607 && signal_stop_state (signo) == 0
3608 && signal_print_state (signo) == 0
3609 && signal_pass_state (signo) == 1)
3611 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3612 here? It is not clear we should. GDB may not expect
3613 other threads to run. On the other hand, not resuming
3614 newly attached threads may cause an unwanted delay in
3615 getting them running. */
3616 registers_changed ();
3617 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3619 if (debug_linux_nat)
3620 fprintf_unfiltered (gdb_stdlog,
3621 "LLW: %s %s, %s (preempt 'handle')\n",
3623 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3624 target_pid_to_str (lp->ptid),
3625 (signo != TARGET_SIGNAL_0
3626 ? strsignal (target_signal_to_host (signo))
3634 /* Only do the below in all-stop, as we currently use SIGINT
3635 to implement target_stop (see linux_nat_stop) in
3637 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3639 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3640 forwarded to the entire process group, that is, all LWPs
3641 will receive it - unless they're using CLONE_THREAD to
3642 share signals. Since we only want to report it once, we
3643 mark it as ignored for all LWPs except this one. */
3644 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3645 set_ignore_sigint, NULL);
3646 lp->ignore_sigint = 0;
3649 maybe_clear_ignore_sigint (lp);
3653 /* This LWP is stopped now. */
3656 if (debug_linux_nat)
3657 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3658 status_to_str (status), target_pid_to_str (lp->ptid));
3662 /* Now stop all other LWP's ... */
3663 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3665 /* ... and wait until all of them have reported back that
3666 they're no longer running. */
3667 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3669 /* If we're not waiting for a specific LWP, choose an event LWP
3670 from among those that have had events. Giving equal priority
3671 to all LWPs that have had events helps prevent
3674 select_event_lwp (ptid, &lp, &status);
3676 /* Now that we've selected our final event LWP, cancel any
3677 breakpoints in other LWPs that have hit a GDB breakpoint.
3678 See the comment in cancel_breakpoints_callback to find out
3680 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3682 /* In all-stop, from the core's perspective, all LWPs are now
3683 stopped until a new resume action is sent over. */
3684 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3689 if (linux_nat_status_is_event (status))
3691 if (debug_linux_nat)
3692 fprintf_unfiltered (gdb_stdlog,
3693 "LLW: trap ptid is %s.\n",
3694 target_pid_to_str (lp->ptid));
3697 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3699 *ourstatus = lp->waitstatus;
3700 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3703 store_waitstatus (ourstatus, status);
3705 if (debug_linux_nat_async)
3706 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3708 restore_child_signals_mask (&prev_mask);
3710 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3711 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3714 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3719 /* Resume LWPs that are currently stopped without any pending status
3720 to report, but are resumed from the core's perspective. */
3723 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3725 ptid_t *wait_ptid_p = data;
3730 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3732 gdb_assert (is_executing (lp->ptid));
3734 /* Don't bother if there's a breakpoint at PC that we'd hit
3735 immediately, and we're not waiting for this LWP. */
3736 if (!ptid_match (lp->ptid, *wait_ptid_p))
3738 struct regcache *regcache = get_thread_regcache (lp->ptid);
3739 CORE_ADDR pc = regcache_read_pc (regcache);
3741 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3745 if (debug_linux_nat)
3746 fprintf_unfiltered (gdb_stdlog,
3747 "RSRL: resuming stopped-resumed LWP %s\n",
3748 target_pid_to_str (lp->ptid));
3750 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3751 lp->step, TARGET_SIGNAL_0);
3753 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3754 lp->stopped_by_watchpoint = 0;
3761 linux_nat_wait (struct target_ops *ops,
3762 ptid_t ptid, struct target_waitstatus *ourstatus,
3767 if (debug_linux_nat)
3768 fprintf_unfiltered (gdb_stdlog,
3769 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3771 /* Flush the async file first. */
3772 if (target_can_async_p ())
3773 async_file_flush ();
3775 /* Resume LWPs that are currently stopped without any pending status
3776 to report, but are resumed from the core's perspective. LWPs get
3777 in this state if we find them stopping at a time we're not
3778 interested in reporting the event (target_wait on a
3779 specific_process, for example, see linux_nat_wait_1), and
3780 meanwhile the event became uninteresting. Don't bother resuming
3781 LWPs we're not going to wait for if they'd stop immediately. */
3783 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3785 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3787 /* If we requested any event, and something came out, assume there
3788 may be more. If we requested a specific lwp or process, also
3789 assume there may be more. */
3790 if (target_can_async_p ()
3791 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3792 || !ptid_equal (ptid, minus_one_ptid)))
3795 /* Get ready for the next event. */
3796 if (target_can_async_p ())
3797 target_async (inferior_event_handler, 0);
3803 kill_callback (struct lwp_info *lp, void *data)
3806 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3807 if (debug_linux_nat)
3808 fprintf_unfiltered (gdb_stdlog,
3809 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3810 target_pid_to_str (lp->ptid),
3811 errno ? safe_strerror (errno) : "OK");
3817 kill_wait_callback (struct lwp_info *lp, void *data)
3821 /* We must make sure that there are no pending events (delayed
3822 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3823 program doesn't interfere with any following debugging session. */
3825 /* For cloned processes we must check both with __WCLONE and
3826 without, since the exit status of a cloned process isn't reported
3832 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3833 if (pid != (pid_t) -1)
3835 if (debug_linux_nat)
3836 fprintf_unfiltered (gdb_stdlog,
3837 "KWC: wait %s received unknown.\n",
3838 target_pid_to_str (lp->ptid));
3839 /* The Linux kernel sometimes fails to kill a thread
3840 completely after PTRACE_KILL; that goes from the stop
3841 point in do_fork out to the one in
3842 get_signal_to_deliever and waits again. So kill it
3844 kill_callback (lp, NULL);
3847 while (pid == GET_LWP (lp->ptid));
3849 gdb_assert (pid == -1 && errno == ECHILD);
3854 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3855 if (pid != (pid_t) -1)
3857 if (debug_linux_nat)
3858 fprintf_unfiltered (gdb_stdlog,
3859 "KWC: wait %s received unk.\n",
3860 target_pid_to_str (lp->ptid));
3861 /* See the call to kill_callback above. */
3862 kill_callback (lp, NULL);
3865 while (pid == GET_LWP (lp->ptid));
3867 gdb_assert (pid == -1 && errno == ECHILD);
3872 linux_nat_kill (struct target_ops *ops)
3874 struct target_waitstatus last;
3878 /* If we're stopped while forking and we haven't followed yet,
3879 kill the other task. We need to do this first because the
3880 parent will be sleeping if this is a vfork. */
3882 get_last_target_status (&last_ptid, &last);
3884 if (last.kind == TARGET_WAITKIND_FORKED
3885 || last.kind == TARGET_WAITKIND_VFORKED)
3887 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3891 if (forks_exist_p ())
3892 linux_fork_killall ();
3895 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3897 /* Stop all threads before killing them, since ptrace requires
3898 that the thread is stopped to sucessfully PTRACE_KILL. */
3899 iterate_over_lwps (ptid, stop_callback, NULL);
3900 /* ... and wait until all of them have reported back that
3901 they're no longer running. */
3902 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3904 /* Kill all LWP's ... */
3905 iterate_over_lwps (ptid, kill_callback, NULL);
3907 /* ... and wait until we've flushed all events. */
3908 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3911 target_mourn_inferior ();
3915 linux_nat_mourn_inferior (struct target_ops *ops)
3917 purge_lwp_list (ptid_get_pid (inferior_ptid));
3919 if (! forks_exist_p ())
3920 /* Normal case, no other forks available. */
3921 linux_ops->to_mourn_inferior (ops);
3923 /* Multi-fork case. The current inferior_ptid has exited, but
3924 there are other viable forks to debug. Delete the exiting
3925 one and context-switch to the first available. */
3926 linux_fork_mourn_inferior ();
3929 /* Convert a native/host siginfo object, into/from the siginfo in the
3930 layout of the inferiors' architecture. */
3933 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3937 if (linux_nat_siginfo_fixup != NULL)
3938 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3940 /* If there was no callback, or the callback didn't do anything,
3941 then just do a straight memcpy. */
3945 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3947 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3952 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3953 const char *annex, gdb_byte *readbuf,
3954 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3957 struct siginfo siginfo;
3958 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3960 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3961 gdb_assert (readbuf || writebuf);
3963 pid = GET_LWP (inferior_ptid);
3965 pid = GET_PID (inferior_ptid);
3967 if (offset > sizeof (siginfo))
3971 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3975 /* When GDB is built as a 64-bit application, ptrace writes into
3976 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3977 inferior with a 64-bit GDB should look the same as debugging it
3978 with a 32-bit GDB, we need to convert it. GDB core always sees
3979 the converted layout, so any read/write will have to be done
3981 siginfo_fixup (&siginfo, inf_siginfo, 0);
3983 if (offset + len > sizeof (siginfo))
3984 len = sizeof (siginfo) - offset;
3986 if (readbuf != NULL)
3987 memcpy (readbuf, inf_siginfo + offset, len);
3990 memcpy (inf_siginfo + offset, writebuf, len);
3992 /* Convert back to ptrace layout before flushing it out. */
3993 siginfo_fixup (&siginfo, inf_siginfo, 1);
3996 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4005 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4006 const char *annex, gdb_byte *readbuf,
4007 const gdb_byte *writebuf,
4008 ULONGEST offset, LONGEST len)
4010 struct cleanup *old_chain;
4013 if (object == TARGET_OBJECT_SIGNAL_INFO)
4014 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4017 /* The target is connected but no live inferior is selected. Pass
4018 this request down to a lower stratum (e.g., the executable
4020 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4023 old_chain = save_inferior_ptid ();
4025 if (is_lwp (inferior_ptid))
4026 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4028 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4031 do_cleanups (old_chain);
4036 linux_thread_alive (ptid_t ptid)
4040 gdb_assert (is_lwp (ptid));
4042 /* Send signal 0 instead of anything ptrace, because ptracing a
4043 running thread errors out claiming that the thread doesn't
4045 err = kill_lwp (GET_LWP (ptid), 0);
4047 if (debug_linux_nat)
4048 fprintf_unfiltered (gdb_stdlog,
4049 "LLTA: KILL(SIG0) %s (%s)\n",
4050 target_pid_to_str (ptid),
4051 err ? safe_strerror (err) : "OK");
4060 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4062 return linux_thread_alive (ptid);
4066 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4068 static char buf[64];
4071 && (GET_PID (ptid) != GET_LWP (ptid)
4072 || num_lwps (GET_PID (ptid)) > 1))
4074 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4078 return normal_pid_to_str (ptid);
4081 /* Accepts an integer PID; Returns a string representing a file that
4082 can be opened to get the symbols for the child process. */
4085 linux_child_pid_to_exec_file (int pid)
4087 char *name1, *name2;
4089 name1 = xmalloc (MAXPATHLEN);
4090 name2 = xmalloc (MAXPATHLEN);
4091 make_cleanup (xfree, name1);
4092 make_cleanup (xfree, name2);
4093 memset (name2, 0, MAXPATHLEN);
4095 sprintf (name1, "/proc/%d/exe", pid);
4096 if (readlink (name1, name2, MAXPATHLEN) > 0)
4102 /* Service function for corefiles and info proc. */
4105 read_mapping (FILE *mapfile,
4110 char *device, long long *inode, char *filename)
4112 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4113 addr, endaddr, permissions, offset, device, inode);
4116 if (ret > 0 && ret != EOF)
4118 /* Eat everything up to EOL for the filename. This will prevent
4119 weird filenames (such as one with embedded whitespace) from
4120 confusing this code. It also makes this code more robust in
4121 respect to annotations the kernel may add after the filename.
4123 Note the filename is used for informational purposes
4125 ret += fscanf (mapfile, "%[^\n]\n", filename);
4128 return (ret != 0 && ret != EOF);
4131 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4132 regions in the inferior for a corefile. */
4135 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4137 int pid = PIDGET (inferior_ptid);
4138 char mapsfilename[MAXPATHLEN];
4140 long long addr, endaddr, size, offset, inode;
4141 char permissions[8], device[8], filename[MAXPATHLEN];
4142 int read, write, exec;
4143 struct cleanup *cleanup;
4145 /* Compose the filename for the /proc memory map, and open it. */
4146 sprintf (mapsfilename, "/proc/%d/maps", pid);
4147 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4148 error (_("Could not open %s."), mapsfilename);
4149 cleanup = make_cleanup_fclose (mapsfile);
4152 fprintf_filtered (gdb_stdout,
4153 "Reading memory regions from %s\n", mapsfilename);
4155 /* Now iterate until end-of-file. */
4156 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4157 &offset, &device[0], &inode, &filename[0]))
4159 size = endaddr - addr;
4161 /* Get the segment's permissions. */
4162 read = (strchr (permissions, 'r') != 0);
4163 write = (strchr (permissions, 'w') != 0);
4164 exec = (strchr (permissions, 'x') != 0);
4168 fprintf_filtered (gdb_stdout,
4169 "Save segment, %s bytes at %s (%c%c%c)",
4170 plongest (size), paddress (target_gdbarch, addr),
4172 write ? 'w' : ' ', exec ? 'x' : ' ');
4174 fprintf_filtered (gdb_stdout, " for %s", filename);
4175 fprintf_filtered (gdb_stdout, "\n");
4178 /* Invoke the callback function to create the corefile
4180 func (addr, size, read, write, exec, obfd);
4182 do_cleanups (cleanup);
4187 find_signalled_thread (struct thread_info *info, void *data)
4189 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4190 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4196 static enum target_signal
4197 find_stop_signal (void)
4199 struct thread_info *info =
4200 iterate_over_threads (find_signalled_thread, NULL);
4203 return info->suspend.stop_signal;
4205 return TARGET_SIGNAL_0;
4208 /* Records the thread's register state for the corefile note
4212 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4213 char *note_data, int *note_size,
4214 enum target_signal stop_signal)
4216 unsigned long lwp = ptid_get_lwp (ptid);
4217 struct gdbarch *gdbarch = target_gdbarch;
4218 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4219 const struct regset *regset;
4221 struct cleanup *old_chain;
4222 struct core_regset_section *sect_list;
4225 old_chain = save_inferior_ptid ();
4226 inferior_ptid = ptid;
4227 target_fetch_registers (regcache, -1);
4228 do_cleanups (old_chain);
4230 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4231 sect_list = gdbarch_core_regset_sections (gdbarch);
4233 /* The loop below uses the new struct core_regset_section, which stores
4234 the supported section names and sizes for the core file. Note that
4235 note PRSTATUS needs to be treated specially. But the other notes are
4236 structurally the same, so they can benefit from the new struct. */
4237 if (core_regset_p && sect_list != NULL)
4238 while (sect_list->sect_name != NULL)
4240 regset = gdbarch_regset_from_core_section (gdbarch,
4241 sect_list->sect_name,
4243 gdb_assert (regset && regset->collect_regset);
4244 gdb_regset = xmalloc (sect_list->size);
4245 regset->collect_regset (regset, regcache, -1,
4246 gdb_regset, sect_list->size);
4248 if (strcmp (sect_list->sect_name, ".reg") == 0)
4249 note_data = (char *) elfcore_write_prstatus
4250 (obfd, note_data, note_size,
4251 lwp, target_signal_to_host (stop_signal),
4254 note_data = (char *) elfcore_write_register_note
4255 (obfd, note_data, note_size,
4256 sect_list->sect_name, gdb_regset,
4262 /* For architectures that does not have the struct core_regset_section
4263 implemented, we use the old method. When all the architectures have
4264 the new support, the code below should be deleted. */
4267 gdb_gregset_t gregs;
4268 gdb_fpregset_t fpregs;
4271 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4273 != NULL && regset->collect_regset != NULL)
4274 regset->collect_regset (regset, regcache, -1,
4275 &gregs, sizeof (gregs));
4277 fill_gregset (regcache, &gregs, -1);
4279 note_data = (char *) elfcore_write_prstatus
4280 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4284 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4286 != NULL && regset->collect_regset != NULL)
4287 regset->collect_regset (regset, regcache, -1,
4288 &fpregs, sizeof (fpregs));
4290 fill_fpregset (regcache, &fpregs, -1);
4292 note_data = (char *) elfcore_write_prfpreg (obfd,
4295 &fpregs, sizeof (fpregs));
4301 struct linux_nat_corefile_thread_data
4307 enum target_signal stop_signal;
4310 /* Called by gdbthread.c once per thread. Records the thread's
4311 register state for the corefile note section. */
4314 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4316 struct linux_nat_corefile_thread_data *args = data;
4318 args->note_data = linux_nat_do_thread_registers (args->obfd,
4328 /* Enumerate spufs IDs for process PID. */
4331 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4335 struct dirent *entry;
4337 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4338 dir = opendir (path);
4343 while ((entry = readdir (dir)) != NULL)
4349 fd = atoi (entry->d_name);
4353 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4354 if (stat (path, &st) != 0)
4356 if (!S_ISDIR (st.st_mode))
4359 if (statfs (path, &stfs) != 0)
4361 if (stfs.f_type != SPUFS_MAGIC)
4364 callback (data, fd);
4370 /* Generate corefile notes for SPU contexts. */
4372 struct linux_spu_corefile_data
4380 linux_spu_corefile_callback (void *data, int fd)
4382 struct linux_spu_corefile_data *args = data;
4385 static const char *spu_files[] =
4407 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4409 char annex[32], note_name[32];
4413 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4414 spu_len = target_read_alloc (¤t_target, TARGET_OBJECT_SPU,
4418 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4419 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4420 args->note_size, note_name,
4421 NT_SPU, spu_data, spu_len);
4428 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4430 struct linux_spu_corefile_data args;
4433 args.note_data = note_data;
4434 args.note_size = note_size;
4436 iterate_over_spus (PIDGET (inferior_ptid),
4437 linux_spu_corefile_callback, &args);
4439 return args.note_data;
4442 /* Fills the "to_make_corefile_note" target vector. Builds the note
4443 section for a corefile, and returns it in a malloc buffer. */
4446 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4448 struct linux_nat_corefile_thread_data thread_args;
4449 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4450 char fname[16] = { '\0' };
4451 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4452 char psargs[80] = { '\0' };
4453 char *note_data = NULL;
4454 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4458 if (get_exec_file (0))
4460 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4461 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4462 if (get_inferior_args ())
4465 char *psargs_end = psargs + sizeof (psargs);
4467 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4469 string_end = memchr (psargs, 0, sizeof (psargs));
4470 if (string_end != NULL)
4472 *string_end++ = ' ';
4473 strncpy (string_end, get_inferior_args (),
4474 psargs_end - string_end);
4477 note_data = (char *) elfcore_write_prpsinfo (obfd,
4479 note_size, fname, psargs);
4482 /* Dump information for threads. */
4483 thread_args.obfd = obfd;
4484 thread_args.note_data = note_data;
4485 thread_args.note_size = note_size;
4486 thread_args.num_notes = 0;
4487 thread_args.stop_signal = find_stop_signal ();
4488 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4489 gdb_assert (thread_args.num_notes != 0);
4490 note_data = thread_args.note_data;
4492 auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
4496 note_data = elfcore_write_note (obfd, note_data, note_size,
4497 "CORE", NT_AUXV, auxv, auxv_len);
4501 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4503 make_cleanup (xfree, note_data);
4507 /* Implement the "info proc" command. */
4510 linux_nat_info_proc_cmd (char *args, int from_tty)
4512 /* A long is used for pid instead of an int to avoid a loss of precision
4513 compiler warning from the output of strtoul. */
4514 long pid = PIDGET (inferior_ptid);
4517 char buffer[MAXPATHLEN];
4518 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4530 /* Break up 'args' into an argv array. */
4531 argv = gdb_buildargv (args);
4532 make_cleanup_freeargv (argv);
4534 while (argv != NULL && *argv != NULL)
4536 if (isdigit (argv[0][0]))
4538 pid = strtoul (argv[0], NULL, 10);
4540 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4544 else if (strcmp (argv[0], "status") == 0)
4548 else if (strcmp (argv[0], "stat") == 0)
4552 else if (strcmp (argv[0], "cmd") == 0)
4556 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4560 else if (strcmp (argv[0], "cwd") == 0)
4564 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4570 /* [...] (future options here). */
4575 error (_("No current process: you must name one."));
4577 sprintf (fname1, "/proc/%ld", pid);
4578 if (stat (fname1, &dummy) != 0)
4579 error (_("No /proc directory: '%s'"), fname1);
4581 printf_filtered (_("process %ld\n"), pid);
4582 if (cmdline_f || all)
4584 sprintf (fname1, "/proc/%ld/cmdline", pid);
4585 if ((procfile = fopen (fname1, "r")) != NULL)
4587 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4589 if (fgets (buffer, sizeof (buffer), procfile))
4590 printf_filtered ("cmdline = '%s'\n", buffer);
4592 warning (_("unable to read '%s'"), fname1);
4593 do_cleanups (cleanup);
4596 warning (_("unable to open /proc file '%s'"), fname1);
4600 sprintf (fname1, "/proc/%ld/cwd", pid);
4601 memset (fname2, 0, sizeof (fname2));
4602 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4603 printf_filtered ("cwd = '%s'\n", fname2);
4605 warning (_("unable to read link '%s'"), fname1);
4609 sprintf (fname1, "/proc/%ld/exe", pid);
4610 memset (fname2, 0, sizeof (fname2));
4611 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4612 printf_filtered ("exe = '%s'\n", fname2);
4614 warning (_("unable to read link '%s'"), fname1);
4616 if (mappings_f || all)
4618 sprintf (fname1, "/proc/%ld/maps", pid);
4619 if ((procfile = fopen (fname1, "r")) != NULL)
4621 long long addr, endaddr, size, offset, inode;
4622 char permissions[8], device[8], filename[MAXPATHLEN];
4623 struct cleanup *cleanup;
4625 cleanup = make_cleanup_fclose (procfile);
4626 printf_filtered (_("Mapped address spaces:\n\n"));
4627 if (gdbarch_addr_bit (target_gdbarch) == 32)
4629 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4632 " Size", " Offset", "objfile");
4636 printf_filtered (" %18s %18s %10s %10s %7s\n",
4639 " Size", " Offset", "objfile");
4642 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4643 &offset, &device[0], &inode, &filename[0]))
4645 size = endaddr - addr;
4647 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4648 calls here (and possibly above) should be abstracted
4649 out into their own functions? Andrew suggests using
4650 a generic local_address_string instead to print out
4651 the addresses; that makes sense to me, too. */
4653 if (gdbarch_addr_bit (target_gdbarch) == 32)
4655 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4656 (unsigned long) addr, /* FIXME: pr_addr */
4657 (unsigned long) endaddr,
4659 (unsigned int) offset,
4660 filename[0] ? filename : "");
4664 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4665 (unsigned long) addr, /* FIXME: pr_addr */
4666 (unsigned long) endaddr,
4668 (unsigned int) offset,
4669 filename[0] ? filename : "");
4673 do_cleanups (cleanup);
4676 warning (_("unable to open /proc file '%s'"), fname1);
4678 if (status_f || all)
4680 sprintf (fname1, "/proc/%ld/status", pid);
4681 if ((procfile = fopen (fname1, "r")) != NULL)
4683 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4685 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4686 puts_filtered (buffer);
4687 do_cleanups (cleanup);
4690 warning (_("unable to open /proc file '%s'"), fname1);
4694 sprintf (fname1, "/proc/%ld/stat", pid);
4695 if ((procfile = fopen (fname1, "r")) != NULL)
4700 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4702 if (fscanf (procfile, "%d ", &itmp) > 0)
4703 printf_filtered (_("Process: %d\n"), itmp);
4704 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4705 printf_filtered (_("Exec file: %s\n"), buffer);
4706 if (fscanf (procfile, "%c ", &ctmp) > 0)
4707 printf_filtered (_("State: %c\n"), ctmp);
4708 if (fscanf (procfile, "%d ", &itmp) > 0)
4709 printf_filtered (_("Parent process: %d\n"), itmp);
4710 if (fscanf (procfile, "%d ", &itmp) > 0)
4711 printf_filtered (_("Process group: %d\n"), itmp);
4712 if (fscanf (procfile, "%d ", &itmp) > 0)
4713 printf_filtered (_("Session id: %d\n"), itmp);
4714 if (fscanf (procfile, "%d ", &itmp) > 0)
4715 printf_filtered (_("TTY: %d\n"), itmp);
4716 if (fscanf (procfile, "%d ", &itmp) > 0)
4717 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4718 if (fscanf (procfile, "%lu ", <mp) > 0)
4719 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4720 if (fscanf (procfile, "%lu ", <mp) > 0)
4721 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4722 (unsigned long) ltmp);
4723 if (fscanf (procfile, "%lu ", <mp) > 0)
4724 printf_filtered (_("Minor faults, children: %lu\n"),
4725 (unsigned long) ltmp);
4726 if (fscanf (procfile, "%lu ", <mp) > 0)
4727 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4728 (unsigned long) ltmp);
4729 if (fscanf (procfile, "%lu ", <mp) > 0)
4730 printf_filtered (_("Major faults, children: %lu\n"),
4731 (unsigned long) ltmp);
4732 if (fscanf (procfile, "%ld ", <mp) > 0)
4733 printf_filtered (_("utime: %ld\n"), ltmp);
4734 if (fscanf (procfile, "%ld ", <mp) > 0)
4735 printf_filtered (_("stime: %ld\n"), ltmp);
4736 if (fscanf (procfile, "%ld ", <mp) > 0)
4737 printf_filtered (_("utime, children: %ld\n"), ltmp);
4738 if (fscanf (procfile, "%ld ", <mp) > 0)
4739 printf_filtered (_("stime, children: %ld\n"), ltmp);
4740 if (fscanf (procfile, "%ld ", <mp) > 0)
4741 printf_filtered (_("jiffies remaining in current "
4742 "time slice: %ld\n"), ltmp);
4743 if (fscanf (procfile, "%ld ", <mp) > 0)
4744 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4745 if (fscanf (procfile, "%lu ", <mp) > 0)
4746 printf_filtered (_("jiffies until next timeout: %lu\n"),
4747 (unsigned long) ltmp);
4748 if (fscanf (procfile, "%lu ", <mp) > 0)
4749 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4750 (unsigned long) ltmp);
4751 if (fscanf (procfile, "%ld ", <mp) > 0)
4752 printf_filtered (_("start time (jiffies since "
4753 "system boot): %ld\n"), ltmp);
4754 if (fscanf (procfile, "%lu ", <mp) > 0)
4755 printf_filtered (_("Virtual memory size: %lu\n"),
4756 (unsigned long) ltmp);
4757 if (fscanf (procfile, "%lu ", <mp) > 0)
4758 printf_filtered (_("Resident set size: %lu\n"),
4759 (unsigned long) ltmp);
4760 if (fscanf (procfile, "%lu ", <mp) > 0)
4761 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4762 if (fscanf (procfile, "%lu ", <mp) > 0)
4763 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4764 if (fscanf (procfile, "%lu ", <mp) > 0)
4765 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4766 if (fscanf (procfile, "%lu ", <mp) > 0)
4767 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4768 #if 0 /* Don't know how architecture-dependent the rest is...
4769 Anyway the signal bitmap info is available from "status". */
4770 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4771 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4772 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4773 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4774 if (fscanf (procfile, "%ld ", <mp) > 0)
4775 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4776 if (fscanf (procfile, "%ld ", <mp) > 0)
4777 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4778 if (fscanf (procfile, "%ld ", <mp) > 0)
4779 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4780 if (fscanf (procfile, "%ld ", <mp) > 0)
4781 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4782 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4783 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4785 do_cleanups (cleanup);
4788 warning (_("unable to open /proc file '%s'"), fname1);
4792 /* Implement the to_xfer_partial interface for memory reads using the /proc
4793 filesystem. Because we can use a single read() call for /proc, this
4794 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4795 but it doesn't support writes. */
4798 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4799 const char *annex, gdb_byte *readbuf,
4800 const gdb_byte *writebuf,
4801 ULONGEST offset, LONGEST len)
4807 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4810 /* Don't bother for one word. */
4811 if (len < 3 * sizeof (long))
4814 /* We could keep this file open and cache it - possibly one per
4815 thread. That requires some juggling, but is even faster. */
4816 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4817 fd = open (filename, O_RDONLY | O_LARGEFILE);
4821 /* If pread64 is available, use it. It's faster if the kernel
4822 supports it (only one syscall), and it's 64-bit safe even on
4823 32-bit platforms (for instance, SPARC debugging a SPARC64
4826 if (pread64 (fd, readbuf, len, offset) != len)
4828 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4839 /* Enumerate spufs IDs for process PID. */
4841 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4843 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4845 LONGEST written = 0;
4848 struct dirent *entry;
4850 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4851 dir = opendir (path);
4856 while ((entry = readdir (dir)) != NULL)
4862 fd = atoi (entry->d_name);
4866 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4867 if (stat (path, &st) != 0)
4869 if (!S_ISDIR (st.st_mode))
4872 if (statfs (path, &stfs) != 0)
4874 if (stfs.f_type != SPUFS_MAGIC)
4877 if (pos >= offset && pos + 4 <= offset + len)
4879 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4889 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4890 object type, using the /proc file system. */
4892 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4893 const char *annex, gdb_byte *readbuf,
4894 const gdb_byte *writebuf,
4895 ULONGEST offset, LONGEST len)
4900 int pid = PIDGET (inferior_ptid);
4907 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4910 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4911 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4916 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4923 ret = write (fd, writebuf, (size_t) len);
4925 ret = read (fd, readbuf, (size_t) len);
4932 /* Parse LINE as a signal set and add its set bits to SIGS. */
4935 add_line_to_sigset (const char *line, sigset_t *sigs)
4937 int len = strlen (line) - 1;
4941 if (line[len] != '\n')
4942 error (_("Could not parse signal set: %s"), line);
4950 if (*p >= '0' && *p <= '9')
4952 else if (*p >= 'a' && *p <= 'f')
4953 digit = *p - 'a' + 10;
4955 error (_("Could not parse signal set: %s"), line);
4960 sigaddset (sigs, signum + 1);
4962 sigaddset (sigs, signum + 2);
4964 sigaddset (sigs, signum + 3);
4966 sigaddset (sigs, signum + 4);
4972 /* Find process PID's pending signals from /proc/pid/status and set
4976 linux_proc_pending_signals (int pid, sigset_t *pending,
4977 sigset_t *blocked, sigset_t *ignored)
4980 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4981 struct cleanup *cleanup;
4983 sigemptyset (pending);
4984 sigemptyset (blocked);
4985 sigemptyset (ignored);
4986 sprintf (fname, "/proc/%d/status", pid);
4987 procfile = fopen (fname, "r");
4988 if (procfile == NULL)
4989 error (_("Could not open %s"), fname);
4990 cleanup = make_cleanup_fclose (procfile);
4992 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4994 /* Normal queued signals are on the SigPnd line in the status
4995 file. However, 2.6 kernels also have a "shared" pending
4996 queue for delivering signals to a thread group, so check for
4999 Unfortunately some Red Hat kernels include the shared pending
5000 queue but not the ShdPnd status field. */
5002 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5003 add_line_to_sigset (buffer + 8, pending);
5004 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5005 add_line_to_sigset (buffer + 8, pending);
5006 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5007 add_line_to_sigset (buffer + 8, blocked);
5008 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5009 add_line_to_sigset (buffer + 8, ignored);
5012 do_cleanups (cleanup);
5016 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5017 const char *annex, gdb_byte *readbuf,
5018 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5020 /* We make the process list snapshot when the object starts to be
5022 static const char *buf;
5023 static LONGEST len_avail = -1;
5024 static struct obstack obstack;
5028 gdb_assert (object == TARGET_OBJECT_OSDATA);
5034 if (len_avail != -1 && len_avail != 0)
5035 obstack_free (&obstack, NULL);
5038 obstack_init (&obstack);
5039 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5041 obstack_xml_printf (&obstack,
5043 "<column name=\"Type\">processes</column>"
5044 "<column name=\"Description\">"
5045 "Listing of all processes</column>"
5048 obstack_grow_str0 (&obstack, "</osdata>\n");
5049 buf = obstack_finish (&obstack);
5050 len_avail = strlen (buf);
5053 if (offset >= len_avail)
5055 /* Done. Get rid of the obstack. */
5056 obstack_free (&obstack, NULL);
5062 if (len > len_avail - offset)
5063 len = len_avail - offset;
5064 memcpy (readbuf, buf + offset, len);
5069 if (strcmp (annex, "processes") != 0)
5072 gdb_assert (readbuf && !writebuf);
5076 if (len_avail != -1 && len_avail != 0)
5077 obstack_free (&obstack, NULL);
5080 obstack_init (&obstack);
5081 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5083 dirp = opendir ("/proc");
5088 while ((dp = readdir (dirp)) != NULL)
5090 struct stat statbuf;
5091 char procentry[sizeof ("/proc/4294967295")];
5093 if (!isdigit (dp->d_name[0])
5094 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5097 sprintf (procentry, "/proc/%s", dp->d_name);
5098 if (stat (procentry, &statbuf) == 0
5099 && S_ISDIR (statbuf.st_mode))
5103 char cmd[MAXPATHLEN + 1];
5104 struct passwd *entry;
5106 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5107 entry = getpwuid (statbuf.st_uid);
5109 if ((f = fopen (pathname, "r")) != NULL)
5111 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5117 for (i = 0; i < len; i++)
5122 obstack_xml_printf (
5125 "<column name=\"pid\">%s</column>"
5126 "<column name=\"user\">%s</column>"
5127 "<column name=\"command\">%s</column>"
5130 entry ? entry->pw_name : "?",
5143 obstack_grow_str0 (&obstack, "</osdata>\n");
5144 buf = obstack_finish (&obstack);
5145 len_avail = strlen (buf);
5148 if (offset >= len_avail)
5150 /* Done. Get rid of the obstack. */
5151 obstack_free (&obstack, NULL);
5157 if (len > len_avail - offset)
5158 len = len_avail - offset;
5159 memcpy (readbuf, buf + offset, len);
5165 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5166 const char *annex, gdb_byte *readbuf,
5167 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5171 if (object == TARGET_OBJECT_AUXV)
5172 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5175 if (object == TARGET_OBJECT_OSDATA)
5176 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5179 if (object == TARGET_OBJECT_SPU)
5180 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5183 /* GDB calculates all the addresses in possibly larget width of the address.
5184 Address width needs to be masked before its final use - either by
5185 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5187 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5189 if (object == TARGET_OBJECT_MEMORY)
5191 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5193 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5194 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5197 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5202 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5206 /* Create a prototype generic GNU/Linux target. The client can override
5207 it with local methods. */
5210 linux_target_install_ops (struct target_ops *t)
5212 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5213 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5214 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5215 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5216 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5217 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5218 t->to_post_attach = linux_child_post_attach;
5219 t->to_follow_fork = linux_child_follow_fork;
5220 t->to_find_memory_regions = linux_nat_find_memory_regions;
5221 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5223 super_xfer_partial = t->to_xfer_partial;
5224 t->to_xfer_partial = linux_xfer_partial;
5230 struct target_ops *t;
5232 t = inf_ptrace_target ();
5233 linux_target_install_ops (t);
5239 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5241 struct target_ops *t;
5243 t = inf_ptrace_trad_target (register_u_offset);
5244 linux_target_install_ops (t);
5249 /* target_is_async_p implementation. */
5252 linux_nat_is_async_p (void)
5254 /* NOTE: palves 2008-03-21: We're only async when the user requests
5255 it explicitly with the "set target-async" command.
5256 Someday, linux will always be async. */
5257 if (!target_async_permitted)
5260 /* See target.h/target_async_mask. */
5261 return linux_nat_async_mask_value;
5264 /* target_can_async_p implementation. */
5267 linux_nat_can_async_p (void)
5269 /* NOTE: palves 2008-03-21: We're only async when the user requests
5270 it explicitly with the "set target-async" command.
5271 Someday, linux will always be async. */
5272 if (!target_async_permitted)
5275 /* See target.h/target_async_mask. */
5276 return linux_nat_async_mask_value;
5280 linux_nat_supports_non_stop (void)
5285 /* True if we want to support multi-process. To be removed when GDB
5286 supports multi-exec. */
5288 int linux_multi_process = 1;
5291 linux_nat_supports_multi_process (void)
5293 return linux_multi_process;
5296 /* target_async_mask implementation. */
5299 linux_nat_async_mask (int new_mask)
5301 int curr_mask = linux_nat_async_mask_value;
5303 if (curr_mask != new_mask)
5307 linux_nat_async (NULL, 0);
5308 linux_nat_async_mask_value = new_mask;
5312 linux_nat_async_mask_value = new_mask;
5314 /* If we're going out of async-mask in all-stop, then the
5315 inferior is stopped. The next resume will call
5316 target_async. In non-stop, the target event source
5317 should be always registered in the event loop. Do so
5320 linux_nat_async (inferior_event_handler, 0);
5327 static int async_terminal_is_ours = 1;
5329 /* target_terminal_inferior implementation. */
5332 linux_nat_terminal_inferior (void)
5334 if (!target_is_async_p ())
5336 /* Async mode is disabled. */
5337 terminal_inferior ();
5341 terminal_inferior ();
5343 /* Calls to target_terminal_*() are meant to be idempotent. */
5344 if (!async_terminal_is_ours)
5347 delete_file_handler (input_fd);
5348 async_terminal_is_ours = 0;
5352 /* target_terminal_ours implementation. */
5355 linux_nat_terminal_ours (void)
5357 if (!target_is_async_p ())
5359 /* Async mode is disabled. */
5364 /* GDB should never give the terminal to the inferior if the
5365 inferior is running in the background (run&, continue&, etc.),
5366 but claiming it sure should. */
5369 if (async_terminal_is_ours)
5372 clear_sigint_trap ();
5373 add_file_handler (input_fd, stdin_event_handler, 0);
5374 async_terminal_is_ours = 1;
5377 static void (*async_client_callback) (enum inferior_event_type event_type,
5379 static void *async_client_context;
5381 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5382 so we notice when any child changes state, and notify the
5383 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5384 above to wait for the arrival of a SIGCHLD. */
5387 sigchld_handler (int signo)
5389 int old_errno = errno;
5391 if (debug_linux_nat_async)
5392 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5394 if (signo == SIGCHLD
5395 && linux_nat_event_pipe[0] != -1)
5396 async_file_mark (); /* Let the event loop know that there are
5397 events to handle. */
5402 /* Callback registered with the target events file descriptor. */
5405 handle_target_event (int error, gdb_client_data client_data)
5407 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5410 /* Create/destroy the target events pipe. Returns previous state. */
5413 linux_async_pipe (int enable)
5415 int previous = (linux_nat_event_pipe[0] != -1);
5417 if (previous != enable)
5421 block_child_signals (&prev_mask);
5425 if (pipe (linux_nat_event_pipe) == -1)
5426 internal_error (__FILE__, __LINE__,
5427 "creating event pipe failed.");
5429 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5430 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5434 close (linux_nat_event_pipe[0]);
5435 close (linux_nat_event_pipe[1]);
5436 linux_nat_event_pipe[0] = -1;
5437 linux_nat_event_pipe[1] = -1;
5440 restore_child_signals_mask (&prev_mask);
5446 /* target_async implementation. */
5449 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5450 void *context), void *context)
5452 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5453 internal_error (__FILE__, __LINE__,
5454 "Calling target_async when async is masked");
5456 if (callback != NULL)
5458 async_client_callback = callback;
5459 async_client_context = context;
5460 if (!linux_async_pipe (1))
5462 add_file_handler (linux_nat_event_pipe[0],
5463 handle_target_event, NULL);
5464 /* There may be pending events to handle. Tell the event loop
5471 async_client_callback = callback;
5472 async_client_context = context;
5473 delete_file_handler (linux_nat_event_pipe[0]);
5474 linux_async_pipe (0);
5479 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5483 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5487 ptid_t ptid = lwp->ptid;
5489 if (debug_linux_nat)
5490 fprintf_unfiltered (gdb_stdlog,
5491 "LNSL: running -> suspending %s\n",
5492 target_pid_to_str (lwp->ptid));
5495 stop_callback (lwp, NULL);
5496 stop_wait_callback (lwp, NULL);
5498 /* If the lwp exits while we try to stop it, there's nothing
5500 lwp = find_lwp_pid (ptid);
5504 /* If we didn't collect any signal other than SIGSTOP while
5505 stopping the LWP, push a SIGNAL_0 event. In either case, the
5506 event-loop will end up calling target_wait which will collect
5508 if (lwp->status == 0)
5509 lwp->status = W_STOPCODE (0);
5514 /* Already known to be stopped; do nothing. */
5516 if (debug_linux_nat)
5518 if (find_thread_ptid (lwp->ptid)->stop_requested)
5519 fprintf_unfiltered (gdb_stdlog,
5520 "LNSL: already stopped/stop_requested %s\n",
5521 target_pid_to_str (lwp->ptid));
5523 fprintf_unfiltered (gdb_stdlog,
5524 "LNSL: already stopped/no "
5525 "stop_requested yet %s\n",
5526 target_pid_to_str (lwp->ptid));
5533 linux_nat_stop (ptid_t ptid)
5536 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5538 linux_ops->to_stop (ptid);
5542 linux_nat_close (int quitting)
5544 /* Unregister from the event loop. */
5545 if (target_is_async_p ())
5546 target_async (NULL, 0);
5548 /* Reset the async_masking. */
5549 linux_nat_async_mask_value = 1;
5551 if (linux_ops->to_close)
5552 linux_ops->to_close (quitting);
5555 /* When requests are passed down from the linux-nat layer to the
5556 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5557 used. The address space pointer is stored in the inferior object,
5558 but the common code that is passed such ptid can't tell whether
5559 lwpid is a "main" process id or not (it assumes so). We reverse
5560 look up the "main" process id from the lwp here. */
5562 struct address_space *
5563 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5565 struct lwp_info *lwp;
5566 struct inferior *inf;
5569 pid = GET_LWP (ptid);
5570 if (GET_LWP (ptid) == 0)
5572 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5574 lwp = find_lwp_pid (ptid);
5575 pid = GET_PID (lwp->ptid);
5579 /* A (pid,lwpid,0) ptid. */
5580 pid = GET_PID (ptid);
5583 inf = find_inferior_pid (pid);
5584 gdb_assert (inf != NULL);
5589 linux_nat_core_of_thread_1 (ptid_t ptid)
5591 struct cleanup *back_to;
5594 char *content = NULL;
5597 int content_read = 0;
5601 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5602 GET_PID (ptid), GET_LWP (ptid));
5603 back_to = make_cleanup (xfree, filename);
5605 f = fopen (filename, "r");
5608 do_cleanups (back_to);
5612 make_cleanup_fclose (f);
5618 content = xrealloc (content, content_read + 1024);
5619 n = fread (content + content_read, 1, 1024, f);
5623 content[content_read] = '\0';
5628 make_cleanup (xfree, content);
5630 p = strchr (content, '(');
5634 p = strchr (p, ')');
5638 /* If the first field after program name has index 0, then core number is
5639 the field with index 36. There's no constant for that anywhere. */
5641 p = strtok_r (p, " ", &ts);
5642 for (i = 0; p != NULL && i != 36; ++i)
5643 p = strtok_r (NULL, " ", &ts);
5645 if (p == NULL || sscanf (p, "%d", &core) == 0)
5648 do_cleanups (back_to);
5653 /* Return the cached value of the processor core for thread PTID. */
5656 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5658 struct lwp_info *info = find_lwp_pid (ptid);
5666 linux_nat_add_target (struct target_ops *t)
5668 /* Save the provided single-threaded target. We save this in a separate
5669 variable because another target we've inherited from (e.g. inf-ptrace)
5670 may have saved a pointer to T; we want to use it for the final
5671 process stratum target. */
5672 linux_ops_saved = *t;
5673 linux_ops = &linux_ops_saved;
5675 /* Override some methods for multithreading. */
5676 t->to_create_inferior = linux_nat_create_inferior;
5677 t->to_attach = linux_nat_attach;
5678 t->to_detach = linux_nat_detach;
5679 t->to_resume = linux_nat_resume;
5680 t->to_wait = linux_nat_wait;
5681 t->to_xfer_partial = linux_nat_xfer_partial;
5682 t->to_kill = linux_nat_kill;
5683 t->to_mourn_inferior = linux_nat_mourn_inferior;
5684 t->to_thread_alive = linux_nat_thread_alive;
5685 t->to_pid_to_str = linux_nat_pid_to_str;
5686 t->to_has_thread_control = tc_schedlock;
5687 t->to_thread_address_space = linux_nat_thread_address_space;
5688 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5689 t->to_stopped_data_address = linux_nat_stopped_data_address;
5691 t->to_can_async_p = linux_nat_can_async_p;
5692 t->to_is_async_p = linux_nat_is_async_p;
5693 t->to_supports_non_stop = linux_nat_supports_non_stop;
5694 t->to_async = linux_nat_async;
5695 t->to_async_mask = linux_nat_async_mask;
5696 t->to_terminal_inferior = linux_nat_terminal_inferior;
5697 t->to_terminal_ours = linux_nat_terminal_ours;
5698 t->to_close = linux_nat_close;
5700 /* Methods for non-stop support. */
5701 t->to_stop = linux_nat_stop;
5703 t->to_supports_multi_process = linux_nat_supports_multi_process;
5705 t->to_core_of_thread = linux_nat_core_of_thread;
5707 /* We don't change the stratum; this target will sit at
5708 process_stratum and thread_db will set at thread_stratum. This
5709 is a little strange, since this is a multi-threaded-capable
5710 target, but we want to be on the stack below thread_db, and we
5711 also want to be used for single-threaded processes. */
5716 /* Register a method to call whenever a new thread is attached. */
5718 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5720 /* Save the pointer. We only support a single registered instance
5721 of the GNU/Linux native target, so we do not need to map this to
5723 linux_nat_new_thread = new_thread;
5726 /* Register a method that converts a siginfo object between the layout
5727 that ptrace returns, and the layout in the architecture of the
5730 linux_nat_set_siginfo_fixup (struct target_ops *t,
5731 int (*siginfo_fixup) (struct siginfo *,
5735 /* Save the pointer. */
5736 linux_nat_siginfo_fixup = siginfo_fixup;
5739 /* Return the saved siginfo associated with PTID. */
5741 linux_nat_get_siginfo (ptid_t ptid)
5743 struct lwp_info *lp = find_lwp_pid (ptid);
5745 gdb_assert (lp != NULL);
5747 return &lp->siginfo;
5750 /* Provide a prototype to silence -Wmissing-prototypes. */
5751 extern initialize_file_ftype _initialize_linux_nat;
5754 _initialize_linux_nat (void)
5756 add_info ("proc", linux_nat_info_proc_cmd, _("\
5757 Show /proc process information about any running process.\n\
5758 Specify any process id, or use the program being debugged by default.\n\
5759 Specify any of the following keywords for detailed info:\n\
5760 mappings -- list of mapped memory regions.\n\
5761 stat -- list a bunch of random process info.\n\
5762 status -- list a different bunch of random process info.\n\
5763 all -- list all available /proc info."));
5765 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5766 &debug_linux_nat, _("\
5767 Set debugging of GNU/Linux lwp module."), _("\
5768 Show debugging of GNU/Linux lwp module."), _("\
5769 Enables printf debugging output."),
5771 show_debug_linux_nat,
5772 &setdebuglist, &showdebuglist);
5774 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5775 &debug_linux_nat_async, _("\
5776 Set debugging of GNU/Linux async lwp module."), _("\
5777 Show debugging of GNU/Linux async lwp module."), _("\
5778 Enables printf debugging output."),
5780 show_debug_linux_nat_async,
5781 &setdebuglist, &showdebuglist);
5783 /* Save this mask as the default. */
5784 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5786 /* Install a SIGCHLD handler. */
5787 sigchld_action.sa_handler = sigchld_handler;
5788 sigemptyset (&sigchld_action.sa_mask);
5789 sigchld_action.sa_flags = SA_RESTART;
5791 /* Make it the default. */
5792 sigaction (SIGCHLD, &sigchld_action, NULL);
5794 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5795 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5796 sigdelset (&suspend_mask, SIGCHLD);
5798 sigemptyset (&blocked_mask);
5800 add_setshow_boolean_cmd ("disable-randomization", class_support,
5801 &disable_randomization, _("\
5802 Set disabling of debuggee's virtual address space randomization."), _("\
5803 Show disabling of debuggee's virtual address space randomization."), _("\
5804 When this mode is on (which is the default), randomization of the virtual\n\
5805 address space is disabled. Standalone programs run with the randomization\n\
5806 enabled by default on some platforms."),
5807 &set_disable_randomization,
5808 &show_disable_randomization,
5809 &setlist, &showlist);
5813 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5814 the GNU/Linux Threads library and therefore doesn't really belong
5817 /* Read variable NAME in the target and return its value if found.
5818 Otherwise return zero. It is assumed that the type of the variable
5822 get_signo (const char *name)
5824 struct minimal_symbol *ms;
5827 ms = lookup_minimal_symbol (name, NULL, NULL);
5831 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5832 sizeof (signo)) != 0)
5838 /* Return the set of signals used by the threads library in *SET. */
5841 lin_thread_get_thread_signals (sigset_t *set)
5843 struct sigaction action;
5844 int restart, cancel;
5846 sigemptyset (&blocked_mask);
5849 restart = get_signo ("__pthread_sig_restart");
5850 cancel = get_signo ("__pthread_sig_cancel");
5852 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5853 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5854 not provide any way for the debugger to query the signal numbers -
5855 fortunately they don't change! */
5858 restart = __SIGRTMIN;
5861 cancel = __SIGRTMIN + 1;
5863 sigaddset (set, restart);
5864 sigaddset (set, cancel);
5866 /* The GNU/Linux Threads library makes terminating threads send a
5867 special "cancel" signal instead of SIGCHLD. Make sure we catch
5868 those (to prevent them from terminating GDB itself, which is
5869 likely to be their default action) and treat them the same way as
5872 action.sa_handler = sigchld_handler;
5873 sigemptyset (&action.sa_mask);
5874 action.sa_flags = SA_RESTART;
5875 sigaction (cancel, &action, NULL);
5877 /* We block the "cancel" signal throughout this code ... */
5878 sigaddset (&blocked_mask, cancel);
5879 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5881 /* ... except during a sigsuspend. */
5882 sigdelset (&suspend_mask, cancel);