1 /* Floating point routines for GDB, the GNU debugger.
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
5 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support for converting target fp numbers into host DOUBLEST format. */
24 /* XXX - This code should really be in libiberty/floatformat.c,
25 however configuration issues with libiberty made this very
26 difficult to do in the available time. */
30 #include "floatformat.h"
31 #include "gdb_assert.h"
32 #include "gdb_string.h"
34 #include <math.h> /* ldexp */
36 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
37 going to bother with trying to muck around with whether it is defined in
38 a system header, what we do if not, etc. */
39 #define FLOATFORMAT_CHAR_BIT 8
41 /* The number of bytes that the largest floating-point type that we
42 can convert to doublest will need. */
43 #define FLOATFORMAT_LARGEST_BYTES 16
45 /* Extract a field which starts at START and is LEN bytes long. DATA and
46 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
48 get_field (const bfd_byte *data, enum floatformat_byteorders order,
49 unsigned int total_len, unsigned int start, unsigned int len)
52 unsigned int cur_byte;
55 /* Caller must byte-swap words before calling this routine. */
56 gdb_assert (order == floatformat_little || order == floatformat_big);
58 /* Start at the least significant part of the field. */
59 if (order == floatformat_little)
61 /* We start counting from the other end (i.e, from the high bytes
62 rather than the low bytes). As such, we need to be concerned
63 with what happens if bit 0 doesn't start on a byte boundary.
64 I.e, we need to properly handle the case where total_len is
65 not evenly divisible by 8. So we compute ``excess'' which
66 represents the number of bits from the end of our starting
67 byte needed to get to bit 0. */
68 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
70 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
71 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
72 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
73 - FLOATFORMAT_CHAR_BIT;
77 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
79 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
81 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
82 result = *(data + cur_byte) >> (-cur_bitshift);
85 cur_bitshift += FLOATFORMAT_CHAR_BIT;
86 if (order == floatformat_little)
91 /* Move towards the most significant part of the field. */
92 while (cur_bitshift < len)
94 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
95 cur_bitshift += FLOATFORMAT_CHAR_BIT;
98 case floatformat_little:
101 case floatformat_big:
106 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
107 /* Mask out bits which are not part of the field. */
108 result &= ((1UL << len) - 1);
112 /* Normalize the byte order of FROM into TO. If no normalization is
113 needed then FMT->byteorder is returned and TO is not changed;
114 otherwise the format of the normalized form in TO is returned. */
116 static enum floatformat_byteorders
117 floatformat_normalize_byteorder (const struct floatformat *fmt,
118 const void *from, void *to)
120 const unsigned char *swapin;
121 unsigned char *swapout;
124 if (fmt->byteorder == floatformat_little
125 || fmt->byteorder == floatformat_big)
126 return fmt->byteorder;
128 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
131 swapout = (unsigned char *)to;
132 swapin = (const unsigned char *)from;
134 if (fmt->byteorder == floatformat_vax)
138 *swapout++ = swapin[1];
139 *swapout++ = swapin[0];
140 *swapout++ = swapin[3];
141 *swapout++ = swapin[2];
144 /* This may look weird, since VAX is little-endian, but it is
145 easier to translate to big-endian than to little-endian. */
146 return floatformat_big;
150 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
154 *swapout++ = swapin[3];
155 *swapout++ = swapin[2];
156 *swapout++ = swapin[1];
157 *swapout++ = swapin[0];
160 return floatformat_big;
164 /* Convert from FMT to a DOUBLEST.
165 FROM is the address of the extended float.
166 Store the DOUBLEST in *TO. */
169 convert_floatformat_to_doublest (const struct floatformat *fmt,
173 unsigned char *ufrom = (unsigned char *) from;
177 unsigned int mant_bits, mant_off;
179 int special_exponent; /* It's a NaN, denorm or zero. */
180 enum floatformat_byteorders order;
181 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
182 enum float_kind kind;
184 gdb_assert (fmt->totalsize
185 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
187 /* For non-numbers, reuse libiberty's logic to find the correct
188 format. We do not lose any precision in this case by passing
190 kind = floatformat_classify (fmt, from);
191 if (kind == float_infinite || kind == float_nan)
195 floatformat_to_double (fmt, from, &dto);
196 *to = (DOUBLEST) dto;
200 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
202 if (order != fmt->byteorder)
209 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
210 /* Preserve the sign of 0, which is the sign of the top
217 floatformat_to_doublest (fmt->split_half,
218 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
224 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
226 /* Note that if exponent indicates a NaN, we can't really do anything useful
227 (not knowing if the host has NaN's, or how to build one). So it will
228 end up as an infinity or something close; that is OK. */
230 mant_bits_left = fmt->man_len;
231 mant_off = fmt->man_start;
234 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
236 /* Don't bias NaNs. Use minimum exponent for denorms. For
237 simplicity, we don't check for zero as the exponent doesn't matter.
238 Note the cast to int; exp_bias is unsigned, so it's important to
239 make sure the operation is done in signed arithmetic. */
240 if (!special_exponent)
241 exponent -= fmt->exp_bias;
242 else if (exponent == 0)
243 exponent = 1 - fmt->exp_bias;
245 /* Build the result algebraically. Might go infinite, underflow, etc;
248 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
249 increment the exponent by one to account for the integer bit. */
251 if (!special_exponent)
253 if (fmt->intbit == floatformat_intbit_no)
254 dto = ldexp (1.0, exponent);
259 while (mant_bits_left > 0)
261 mant_bits = min (mant_bits_left, 32);
263 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
265 dto += ldexp ((double) mant, exponent - mant_bits);
266 exponent -= mant_bits;
267 mant_off += mant_bits;
268 mant_bits_left -= mant_bits;
271 /* Negate it if negative. */
272 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
277 static void put_field (unsigned char *, enum floatformat_byteorders,
279 unsigned int, unsigned int, unsigned long);
281 /* Set a field which starts at START and is LEN bytes long. DATA and
282 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
284 put_field (unsigned char *data, enum floatformat_byteorders order,
285 unsigned int total_len, unsigned int start, unsigned int len,
286 unsigned long stuff_to_put)
288 unsigned int cur_byte;
291 /* Caller must byte-swap words before calling this routine. */
292 gdb_assert (order == floatformat_little || order == floatformat_big);
294 /* Start at the least significant part of the field. */
295 if (order == floatformat_little)
297 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
299 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
300 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
301 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
302 - FLOATFORMAT_CHAR_BIT;
306 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
308 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
310 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
312 *(data + cur_byte) &=
313 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
315 *(data + cur_byte) |=
316 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
318 cur_bitshift += FLOATFORMAT_CHAR_BIT;
319 if (order == floatformat_little)
324 /* Move towards the most significant part of the field. */
325 while (cur_bitshift < len)
327 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
329 /* This is the last byte. */
330 *(data + cur_byte) &=
331 ~((1 << (len - cur_bitshift)) - 1);
332 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
335 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
336 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
337 cur_bitshift += FLOATFORMAT_CHAR_BIT;
338 if (order == floatformat_little)
345 #ifdef HAVE_LONG_DOUBLE
346 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
347 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
348 frexp, but operates on the long double data type. */
350 static long double ldfrexp (long double value, int *eptr);
353 ldfrexp (long double value, int *eptr)
358 /* Unfortunately, there are no portable functions for extracting the
359 exponent of a long double, so we have to do it iteratively by
360 multiplying or dividing by two until the fraction is between 0.5
369 if (value >= tmp) /* Value >= 1.0 */
375 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
389 #endif /* HAVE_LONG_DOUBLE */
392 /* The converse: convert the DOUBLEST *FROM to an extended float and
393 store where TO points. Neither FROM nor TO have any alignment
397 convert_doublest_to_floatformat (CONST struct floatformat *fmt,
398 const DOUBLEST *from, void *to)
403 unsigned int mant_bits, mant_off;
405 unsigned char *uto = (unsigned char *) to;
406 enum floatformat_byteorders order = fmt->byteorder;
407 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
409 if (order != floatformat_little)
410 order = floatformat_big;
412 if (order != fmt->byteorder)
415 memcpy (&dfrom, from, sizeof (dfrom));
416 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
417 / FLOATFORMAT_CHAR_BIT);
421 /* Use static volatile to ensure that any excess precision is
422 removed via storing in memory, and so the top half really is
423 the result of converting to double. */
424 static volatile double dtop, dbot;
425 DOUBLEST dtopnv, dbotnv;
427 dtop = (double) dfrom;
428 /* If the rounded top half is Inf, the bottom must be 0 not NaN
430 if (dtop + dtop == dtop && dtop != 0.0)
433 dbot = (double) (dfrom - (DOUBLEST) dtop);
436 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
437 floatformat_from_doublest (fmt->split_half, &dbotnv,
439 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
444 return; /* Result is zero */
445 if (dfrom != dfrom) /* Result is NaN */
448 put_field (uto, order, fmt->totalsize, fmt->exp_start,
449 fmt->exp_len, fmt->exp_nan);
450 /* Be sure it's not infinity, but NaN value is irrel. */
451 put_field (uto, order, fmt->totalsize, fmt->man_start,
453 goto finalize_byteorder;
456 /* If negative, set the sign bit. */
459 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
463 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
465 /* Infinity exponent is same as NaN's. */
466 put_field (uto, order, fmt->totalsize, fmt->exp_start,
467 fmt->exp_len, fmt->exp_nan);
468 /* Infinity mantissa is all zeroes. */
469 put_field (uto, order, fmt->totalsize, fmt->man_start,
471 goto finalize_byteorder;
474 #ifdef HAVE_LONG_DOUBLE
475 mant = ldfrexp (dfrom, &exponent);
477 mant = frexp (dfrom, &exponent);
480 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
481 exponent + fmt->exp_bias - 1);
483 mant_bits_left = fmt->man_len;
484 mant_off = fmt->man_start;
485 while (mant_bits_left > 0)
487 unsigned long mant_long;
489 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
491 mant *= 4294967296.0;
492 mant_long = ((unsigned long) mant) & 0xffffffffL;
495 /* If the integer bit is implicit, then we need to discard it.
496 If we are discarding a zero, we should be (but are not) creating
497 a denormalized number which means adjusting the exponent
499 if (mant_bits_left == fmt->man_len
500 && fmt->intbit == floatformat_intbit_no)
503 mant_long &= 0xffffffffL;
504 /* If we are processing the top 32 mantissa bits of a doublest
505 so as to convert to a float value with implied integer bit,
506 we will only be putting 31 of those 32 bits into the
507 final value due to the discarding of the top bit. In the
508 case of a small float value where the number of mantissa
509 bits is less than 32, discarding the top bit does not alter
510 the number of bits we will be adding to the result. */
517 /* The bits we want are in the most significant MANT_BITS bits of
518 mant_long. Move them to the least significant. */
519 mant_long >>= 32 - mant_bits;
522 put_field (uto, order, fmt->totalsize,
523 mant_off, mant_bits, mant_long);
524 mant_off += mant_bits;
525 mant_bits_left -= mant_bits;
529 /* Do we need to byte-swap the words in the result? */
530 if (order != fmt->byteorder)
531 floatformat_normalize_byteorder (fmt, newto, to);
534 /* Check if VAL (which is assumed to be a floating point number whose
535 format is described by FMT) is negative. */
538 floatformat_is_negative (const struct floatformat *fmt,
539 const bfd_byte *uval)
541 enum floatformat_byteorders order;
542 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
544 gdb_assert (fmt != NULL);
545 gdb_assert (fmt->totalsize
546 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
548 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
550 if (order != fmt->byteorder)
553 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
556 /* Check if VAL is "not a number" (NaN) for FMT. */
559 floatformat_classify (const struct floatformat *fmt,
560 const bfd_byte *uval)
564 unsigned int mant_bits, mant_off;
566 enum floatformat_byteorders order;
567 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
570 gdb_assert (fmt != NULL);
571 gdb_assert (fmt->totalsize
572 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
574 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
576 if (order != fmt->byteorder)
579 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
582 mant_bits_left = fmt->man_len;
583 mant_off = fmt->man_start;
586 while (mant_bits_left > 0)
588 mant_bits = min (mant_bits_left, 32);
590 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
592 /* If there is an explicit integer bit, mask it off. */
593 if (mant_off == fmt->man_start
594 && fmt->intbit == floatformat_intbit_yes)
595 mant &= ~(1 << (mant_bits - 1));
603 mant_off += mant_bits;
604 mant_bits_left -= mant_bits;
607 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
617 if (exponent == 0 && !mant_zero)
618 return float_subnormal;
620 if (exponent == fmt->exp_nan)
623 return float_infinite;
634 /* Convert the mantissa of VAL (which is assumed to be a floating
635 point number whose format is described by FMT) into a hexadecimal
636 and store it in a static string. Return a pointer to that string. */
639 floatformat_mantissa (const struct floatformat *fmt,
642 unsigned char *uval = (unsigned char *) val;
644 unsigned int mant_bits, mant_off;
649 enum floatformat_byteorders order;
650 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
652 gdb_assert (fmt != NULL);
653 gdb_assert (fmt->totalsize
654 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
656 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
658 if (order != fmt->byteorder)
664 /* Make sure we have enough room to store the mantissa. */
665 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
667 mant_off = fmt->man_start;
668 mant_bits_left = fmt->man_len;
669 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
671 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
673 len = xsnprintf (res, sizeof res, "%lx", mant);
675 mant_off += mant_bits;
676 mant_bits_left -= mant_bits;
678 while (mant_bits_left > 0)
680 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
682 xsnprintf (buf, sizeof buf, "%08lx", mant);
683 gdb_assert (len + strlen (buf) <= sizeof res);
687 mant_bits_left -= 32;
694 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
696 If the host and target formats agree, we just copy the raw data
697 into the appropriate type of variable and return, letting the host
698 increase precision as necessary. Otherwise, we call the conversion
699 routine and let it do the dirty work. */
701 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
702 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
703 static const struct floatformat *host_long_double_format
704 = GDB_HOST_LONG_DOUBLE_FORMAT;
707 floatformat_to_doublest (const struct floatformat *fmt,
708 const void *in, DOUBLEST *out)
710 gdb_assert (fmt != NULL);
711 if (fmt == host_float_format)
715 memcpy (&val, in, sizeof (val));
718 else if (fmt == host_double_format)
722 memcpy (&val, in, sizeof (val));
725 else if (fmt == host_long_double_format)
729 memcpy (&val, in, sizeof (val));
733 convert_floatformat_to_doublest (fmt, in, out);
737 floatformat_from_doublest (const struct floatformat *fmt,
738 const DOUBLEST *in, void *out)
740 gdb_assert (fmt != NULL);
741 if (fmt == host_float_format)
745 memcpy (out, &val, sizeof (val));
747 else if (fmt == host_double_format)
751 memcpy (out, &val, sizeof (val));
753 else if (fmt == host_long_double_format)
755 long double val = *in;
757 memcpy (out, &val, sizeof (val));
760 convert_doublest_to_floatformat (fmt, in, out);
764 /* Return a floating-point format for a floating-point variable of
765 length LEN. If no suitable floating-point format is found, an
768 We need this functionality since information about the
769 floating-point format of a type is not always available to GDB; the
770 debug information typically only tells us the size of a
773 FIXME: kettenis/2001-10-28: In many places, particularly in
774 target-dependent code, the format of floating-point types is known,
775 but not passed on by GDB. This should be fixed. */
777 static const struct floatformat *
778 floatformat_from_length (struct gdbarch *gdbarch, int len)
780 const struct floatformat *format;
782 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
783 format = gdbarch_half_format (gdbarch)
784 [gdbarch_byte_order (gdbarch)];
785 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
786 format = gdbarch_float_format (gdbarch)
787 [gdbarch_byte_order (gdbarch)];
788 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
789 format = gdbarch_double_format (gdbarch)
790 [gdbarch_byte_order (gdbarch)];
791 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
792 format = gdbarch_long_double_format (gdbarch)
793 [gdbarch_byte_order (gdbarch)];
794 /* On i386 the 'long double' type takes 96 bits,
795 while the real number of used bits is only 80,
796 both in processor and in memory.
797 The code below accepts the real bit size. */
798 else if ((gdbarch_long_double_format (gdbarch) != NULL)
799 && (len * TARGET_CHAR_BIT
800 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
801 format = gdbarch_long_double_format (gdbarch)
802 [gdbarch_byte_order (gdbarch)];
806 error (_("Unrecognized %d-bit floating-point type."),
807 len * TARGET_CHAR_BIT);
811 const struct floatformat *
812 floatformat_from_type (const struct type *type)
814 struct gdbarch *gdbarch = get_type_arch (type);
816 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
817 if (TYPE_FLOATFORMAT (type) != NULL)
818 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
820 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
823 /* Extract a floating-point number of type TYPE from a target-order
824 byte-stream at ADDR. Returns the value as type DOUBLEST. */
827 extract_typed_floating (const void *addr, const struct type *type)
829 const struct floatformat *fmt = floatformat_from_type (type);
832 floatformat_to_doublest (fmt, addr, &retval);
836 /* Store VAL as a floating-point number of type TYPE to a target-order
837 byte-stream at ADDR. */
840 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
842 const struct floatformat *fmt = floatformat_from_type (type);
844 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
845 zero out any remaining bytes in the target buffer when TYPE is
846 longer than the actual underlying floating-point format. Perhaps
847 we should store a fixed bitpattern in those remaining bytes,
848 instead of zero, or perhaps we shouldn't touch those remaining
851 NOTE: cagney/2001-10-28: With the way things currently work, it
852 isn't a good idea to leave the end bits undefined. This is
853 because GDB writes out the entire sizeof(<floating>) bits of the
854 floating-point type even though the value might only be stored
855 in, and the target processor may only refer to, the first N <
856 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
857 initialized, GDB would write undefined data to the target. An
858 errant program, refering to that undefined data, would then
859 become non-deterministic.
861 See also the function convert_typed_floating below. */
862 memset (addr, 0, TYPE_LENGTH (type));
864 floatformat_from_doublest (fmt, &val, addr);
867 /* Convert a floating-point number of type FROM_TYPE from a
868 target-order byte-stream at FROM to a floating-point number of type
869 TO_TYPE, and store it to a target-order byte-stream at TO. */
872 convert_typed_floating (const void *from, const struct type *from_type,
873 void *to, const struct type *to_type)
875 const struct floatformat *from_fmt = floatformat_from_type (from_type);
876 const struct floatformat *to_fmt = floatformat_from_type (to_type);
878 if (from_fmt == NULL || to_fmt == NULL)
880 /* If we don't know the floating-point format of FROM_TYPE or
881 TO_TYPE, there's not much we can do. We might make the
882 assumption that if the length of FROM_TYPE and TO_TYPE match,
883 their floating-point format would match too, but that
884 assumption might be wrong on targets that support
885 floating-point types that only differ in endianness for
886 example. So we warn instead, and zero out the target buffer. */
887 warning (_("Can't convert floating-point number to desired type."));
888 memset (to, 0, TYPE_LENGTH (to_type));
890 else if (from_fmt == to_fmt)
892 /* We're in business. The floating-point format of FROM_TYPE
893 and TO_TYPE match. However, even though the floating-point
894 format matches, the length of the type might still be
895 different. Make sure we don't overrun any buffers. See
896 comment in store_typed_floating for a discussion about
897 zeroing out remaining bytes in the target buffer. */
898 memset (to, 0, TYPE_LENGTH (to_type));
899 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
903 /* The floating-point types don't match. The best we can do
904 (apart from simulating the target FPU) is converting to the
905 widest floating-point type supported by the host, and then
906 again to the desired type. */
909 floatformat_to_doublest (from_fmt, from, &d);
910 floatformat_from_doublest (to_fmt, &d, to);
914 const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
915 const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
916 const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
917 const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
918 const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
920 extern void _initialize_doublest (void);
923 _initialize_doublest (void)
925 floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
926 floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
927 floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
928 floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
929 floatformat_arm_ext[BFD_ENDIAN_LITTLE]
930 = &floatformat_arm_ext_littlebyte_bigword;
931 floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
932 floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
933 floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
934 floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
935 floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;