1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 static void extract_string (CORE_ADDR addr, char *buf);
70 static void modify_general_field (char *, LONGEST, int, int);
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_type_match (struct type *, struct type *, int);
102 static int ada_args_match (struct symbol *, struct value **, int);
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
106 static struct value *convert_actual (struct value *, struct type *,
109 static struct value *make_array_descriptor (struct type *, struct value *,
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
116 static int is_nonfunction (struct ada_symbol_info *, int);
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 static int num_defns_collected (struct obstack *);
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
129 static struct value *resolve_subexp (struct expression **, int *, int,
132 static void replace_operator_with_call (struct expression **, int, int, int,
133 struct symbol *, struct block *);
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
137 static char *ada_op_name (enum exp_opcode);
139 static const char *ada_decoded_op_name (enum exp_opcode);
141 static int numeric_type_p (struct type *);
143 static int integer_type_p (struct type *);
145 static int scalar_type_p (struct type *);
147 static int discrete_type_p (struct type *);
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
154 static struct symbol *find_old_style_renaming_symbol (const char *,
157 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 static struct value *evaluate_subexp_type (struct expression *, int *);
162 static int is_dynamic_field (struct type *, int);
164 static struct type *to_fixed_variant_branch_type (struct type *,
166 CORE_ADDR, struct value *);
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170 static struct type *to_fixed_range_type (char *, struct value *,
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *packed_array_type (struct type *, long *);
180 static struct type *decode_packed_array_type (struct type *);
182 static struct value *decode_packed_array (struct value *);
184 static struct value *value_subscript_packed (struct value *, int,
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
189 static struct value *coerce_unspec_val_to_type (struct value *,
192 static struct value *get_var_value (char *, char *);
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
196 static int equiv_types (struct type *, struct type *);
198 static int is_name_suffix (const char *);
200 static int wild_match (const char *, int, const char *);
202 static struct value *ada_coerce_ref (struct value *);
204 static LONGEST pos_atr (struct value *);
206 static struct value *value_pos_atr (struct type *, struct value *);
208 static struct value *value_val_atr (struct type *, struct value *);
210 static struct symbol *standard_lookup (const char *, const struct block *,
213 static struct value *ada_search_struct_field (char *, struct value *, int,
216 static struct value *ada_value_primitive_field (struct value *, int, int,
219 static int find_struct_field (char *, struct type *, int,
220 struct type **, int *, int *, int *, int *);
222 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 static struct value *ada_to_fixed_value (struct value *);
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
231 static struct value *ada_coerce_to_simple_array (struct value *);
233 static int ada_is_direct_array_type (struct type *);
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
238 static void check_size (const struct type *);
240 static struct value *ada_index_struct_field (int, struct value *, int,
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
246 static void aggregate_assign_from_choices (struct value *, struct value *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
251 static void aggregate_assign_positional (struct value *, struct value *,
253 int *, LONGEST *, int *, int,
257 static void aggregate_assign_others (struct value *, struct value *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 static void ada_forward_operator_length (struct expression *, int, int *,
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
309 /* Given DECODED_NAME a string holding a symbol name in its
310 decoded form (ie using the Ada dotted notation), returns
311 its unqualified name. */
314 ada_unqualified_name (const char *decoded_name)
316 const char *result = strrchr (decoded_name, '.');
319 result++; /* Skip the dot... */
321 result = decoded_name;
326 /* Return a string starting with '<', followed by STR, and '>'.
327 The result is good until the next call. */
330 add_angle_brackets (const char *str)
332 static char *result = NULL;
335 result = xstrprintf ("<%s>", str);
340 ada_get_gdb_completer_word_break_characters (void)
342 return ada_completer_word_break_characters;
345 /* Print an array element index using the Ada syntax. */
348 ada_print_array_index (struct value *index_value, struct ui_file *stream,
349 const struct value_print_options *options)
351 LA_VALUE_PRINT (index_value, stream, options);
352 fprintf_filtered (stream, " => ");
355 /* Read the string located at ADDR from the inferior and store the
359 extract_string (CORE_ADDR addr, char *buf)
363 /* Loop, reading one byte at a time, until we reach the '\000'
364 end-of-string marker. */
367 target_read_memory (addr + char_index * sizeof (char),
368 buf + char_index * sizeof (char), sizeof (char));
371 while (buf[char_index - 1] != '\000');
374 /* Assuming VECT points to an array of *SIZE objects of size
375 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
376 updating *SIZE as necessary and returning the (new) array. */
379 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
381 if (*size < min_size)
384 if (*size < min_size)
386 vect = xrealloc (vect, *size * element_size);
391 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
392 suffix of FIELD_NAME beginning "___". */
395 field_name_match (const char *field_name, const char *target)
397 int len = strlen (target);
399 (strncmp (field_name, target, len) == 0
400 && (field_name[len] == '\0'
401 || (strncmp (field_name + len, "___", 3) == 0
402 && strcmp (field_name + strlen (field_name) - 6,
407 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
408 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
409 and return its index. This function also handles fields whose name
410 have ___ suffixes because the compiler sometimes alters their name
411 by adding such a suffix to represent fields with certain constraints.
412 If the field could not be found, return a negative number if
413 MAYBE_MISSING is set. Otherwise raise an error. */
416 ada_get_field_index (const struct type *type, const char *field_name,
420 struct type *struct_type = check_typedef ((struct type *) type);
422 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
423 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
427 error (_("Unable to find field %s in struct %s. Aborting"),
428 field_name, TYPE_NAME (struct_type));
433 /* The length of the prefix of NAME prior to any "___" suffix. */
436 ada_name_prefix_len (const char *name)
442 const char *p = strstr (name, "___");
444 return strlen (name);
450 /* Return non-zero if SUFFIX is a suffix of STR.
451 Return zero if STR is null. */
454 is_suffix (const char *str, const char *suffix)
460 len2 = strlen (suffix);
461 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
464 /* The contents of value VAL, treated as a value of type TYPE. The
465 result is an lval in memory if VAL is. */
467 static struct value *
468 coerce_unspec_val_to_type (struct value *val, struct type *type)
470 type = ada_check_typedef (type);
471 if (value_type (val) == type)
475 struct value *result;
477 /* Make sure that the object size is not unreasonable before
478 trying to allocate some memory for it. */
481 result = allocate_value (type);
482 set_value_component_location (result, val);
483 set_value_bitsize (result, value_bitsize (val));
484 set_value_bitpos (result, value_bitpos (val));
485 set_value_address (result, value_address (val));
487 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
488 set_value_lazy (result, 1);
490 memcpy (value_contents_raw (result), value_contents (val),
496 static const gdb_byte *
497 cond_offset_host (const gdb_byte *valaddr, long offset)
502 return valaddr + offset;
506 cond_offset_target (CORE_ADDR address, long offset)
511 return address + offset;
514 /* Issue a warning (as for the definition of warning in utils.c, but
515 with exactly one argument rather than ...), unless the limit on the
516 number of warnings has passed during the evaluation of the current
519 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
520 provided by "complaint". */
521 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
524 lim_warning (const char *format, ...)
527 va_start (args, format);
529 warnings_issued += 1;
530 if (warnings_issued <= warning_limit)
531 vwarning (format, args);
536 /* Issue an error if the size of an object of type T is unreasonable,
537 i.e. if it would be a bad idea to allocate a value of this type in
541 check_size (const struct type *type)
543 if (TYPE_LENGTH (type) > varsize_limit)
544 error (_("object size is larger than varsize-limit"));
548 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
549 gdbtypes.h, but some of the necessary definitions in that file
550 seem to have gone missing. */
552 /* Maximum value of a SIZE-byte signed integer type. */
554 max_of_size (int size)
556 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
557 return top_bit | (top_bit - 1);
560 /* Minimum value of a SIZE-byte signed integer type. */
562 min_of_size (int size)
564 return -max_of_size (size) - 1;
567 /* Maximum value of a SIZE-byte unsigned integer type. */
569 umax_of_size (int size)
571 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
572 return top_bit | (top_bit - 1);
575 /* Maximum value of integral type T, as a signed quantity. */
577 max_of_type (struct type *t)
579 if (TYPE_UNSIGNED (t))
580 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
582 return max_of_size (TYPE_LENGTH (t));
585 /* Minimum value of integral type T, as a signed quantity. */
587 min_of_type (struct type *t)
589 if (TYPE_UNSIGNED (t))
592 return min_of_size (TYPE_LENGTH (t));
595 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
597 discrete_type_high_bound (struct type *type)
599 switch (TYPE_CODE (type))
601 case TYPE_CODE_RANGE:
602 return TYPE_HIGH_BOUND (type);
604 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 return max_of_type (type);
611 error (_("Unexpected type in discrete_type_high_bound."));
615 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
617 discrete_type_low_bound (struct type *type)
619 switch (TYPE_CODE (type))
621 case TYPE_CODE_RANGE:
622 return TYPE_LOW_BOUND (type);
624 return TYPE_FIELD_BITPOS (type, 0);
629 return min_of_type (type);
631 error (_("Unexpected type in discrete_type_low_bound."));
635 /* The identity on non-range types. For range types, the underlying
636 non-range scalar type. */
639 base_type (struct type *type)
641 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
643 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
645 type = TYPE_TARGET_TYPE (type);
651 /* Language Selection */
653 /* If the main program is in Ada, return language_ada, otherwise return LANG
654 (the main program is in Ada iif the adainit symbol is found).
656 MAIN_PST is not used. */
659 ada_update_initial_language (enum language lang,
660 struct partial_symtab *main_pst)
662 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
663 (struct objfile *) NULL) != NULL)
669 /* If the main procedure is written in Ada, then return its name.
670 The result is good until the next call. Return NULL if the main
671 procedure doesn't appear to be in Ada. */
676 struct minimal_symbol *msym;
677 static char *main_program_name = NULL;
679 /* For Ada, the name of the main procedure is stored in a specific
680 string constant, generated by the binder. Look for that symbol,
681 extract its address, and then read that string. If we didn't find
682 that string, then most probably the main procedure is not written
684 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
688 CORE_ADDR main_program_name_addr;
691 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
692 if (main_program_name_addr == 0)
693 error (_("Invalid address for Ada main program name."));
695 xfree (main_program_name);
696 target_read_string (main_program_name_addr, &main_program_name,
701 return main_program_name;
704 /* The main procedure doesn't seem to be in Ada. */
710 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
713 const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
738 /* The "encoded" form of DECODED, according to GNAT conventions.
739 The result is valid until the next call to ada_encode. */
742 ada_encode (const char *decoded)
744 static char *encoding_buffer = NULL;
745 static size_t encoding_buffer_size = 0;
752 GROW_VECT (encoding_buffer, encoding_buffer_size,
753 2 * strlen (decoded) + 10);
756 for (p = decoded; *p != '\0'; p += 1)
760 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
765 const struct ada_opname_map *mapping;
767 for (mapping = ada_opname_table;
768 mapping->encoded != NULL
769 && strncmp (mapping->decoded, p,
770 strlen (mapping->decoded)) != 0; mapping += 1)
772 if (mapping->encoded == NULL)
773 error (_("invalid Ada operator name: %s"), p);
774 strcpy (encoding_buffer + k, mapping->encoded);
775 k += strlen (mapping->encoded);
780 encoding_buffer[k] = *p;
785 encoding_buffer[k] = '\0';
786 return encoding_buffer;
789 /* Return NAME folded to lower case, or, if surrounded by single
790 quotes, unfolded, but with the quotes stripped away. Result good
794 ada_fold_name (const char *name)
796 static char *fold_buffer = NULL;
797 static size_t fold_buffer_size = 0;
799 int len = strlen (name);
800 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
804 strncpy (fold_buffer, name + 1, len - 2);
805 fold_buffer[len - 2] = '\000';
810 for (i = 0; i <= len; i += 1)
811 fold_buffer[i] = tolower (name[i]);
817 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
820 is_lower_alphanum (const char c)
822 return (isdigit (c) || (isalpha (c) && islower (c)));
825 /* Remove either of these suffixes:
830 These are suffixes introduced by the compiler for entities such as
831 nested subprogram for instance, in order to avoid name clashes.
832 They do not serve any purpose for the debugger. */
835 ada_remove_trailing_digits (const char *encoded, int *len)
837 if (*len > 1 && isdigit (encoded[*len - 1]))
840 while (i > 0 && isdigit (encoded[i]))
842 if (i >= 0 && encoded[i] == '.')
844 else if (i >= 0 && encoded[i] == '$')
846 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
848 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
853 /* Remove the suffix introduced by the compiler for protected object
857 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
859 /* Remove trailing N. */
861 /* Protected entry subprograms are broken into two
862 separate subprograms: The first one is unprotected, and has
863 a 'N' suffix; the second is the protected version, and has
864 the 'P' suffix. The second calls the first one after handling
865 the protection. Since the P subprograms are internally generated,
866 we leave these names undecoded, giving the user a clue that this
867 entity is internal. */
870 && encoded[*len - 1] == 'N'
871 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
875 /* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by decoding, the original string pointer
884 ada_decode (const char *encoded)
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
897 if (strncmp (encoded, "_ada_", 5) == 0)
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
903 if (encoded[0] == '_' || encoded[0] == '<')
906 len0 = strlen (encoded);
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
931 /* Remove trailing "B" suffixes. */
932 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
934 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
937 /* Make decoded big enough for possible expansion by operator name. */
939 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
940 decoded = decoding_buffer;
942 /* Remove trailing __{digit}+ or trailing ${digit}+. */
944 if (len0 > 1 && isdigit (encoded[len0 - 1]))
947 while ((i >= 0 && isdigit (encoded[i]))
948 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
950 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
952 else if (encoded[i] == '$')
956 /* The first few characters that are not alphabetic are not part
957 of any encoding we use, so we can copy them over verbatim. */
959 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
960 decoded[j] = encoded[i];
965 /* Is this a symbol function? */
966 if (at_start_name && encoded[i] == 'O')
969 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
971 int op_len = strlen (ada_opname_table[k].encoded);
972 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
974 && !isalnum (encoded[i + op_len]))
976 strcpy (decoded + j, ada_opname_table[k].decoded);
979 j += strlen (ada_opname_table[k].decoded);
983 if (ada_opname_table[k].encoded != NULL)
988 /* Replace "TK__" with "__", which will eventually be translated
989 into "." (just below). */
991 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
994 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
995 be translated into "." (just below). These are internal names
996 generated for anonymous blocks inside which our symbol is nested. */
998 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
999 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1000 && isdigit (encoded [i+4]))
1004 while (k < len0 && isdigit (encoded[k]))
1005 k++; /* Skip any extra digit. */
1007 /* Double-check that the "__B_{DIGITS}+" sequence we found
1008 is indeed followed by "__". */
1009 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1013 /* Remove _E{DIGITS}+[sb] */
1015 /* Just as for protected object subprograms, there are 2 categories
1016 of subprograms created by the compiler for each entry. The first
1017 one implements the actual entry code, and has a suffix following
1018 the convention above; the second one implements the barrier and
1019 uses the same convention as above, except that the 'E' is replaced
1022 Just as above, we do not decode the name of barrier functions
1023 to give the user a clue that the code he is debugging has been
1024 internally generated. */
1026 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1027 && isdigit (encoded[i+2]))
1031 while (k < len0 && isdigit (encoded[k]))
1035 && (encoded[k] == 'b' || encoded[k] == 's'))
1038 /* Just as an extra precaution, make sure that if this
1039 suffix is followed by anything else, it is a '_'.
1040 Otherwise, we matched this sequence by accident. */
1042 || (k < len0 && encoded[k] == '_'))
1047 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1048 the GNAT front-end in protected object subprograms. */
1051 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1053 /* Backtrack a bit up until we reach either the begining of
1054 the encoded name, or "__". Make sure that we only find
1055 digits or lowercase characters. */
1056 const char *ptr = encoded + i - 1;
1058 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1061 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1065 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1067 /* This is a X[bn]* sequence not separated from the previous
1068 part of the name with a non-alpha-numeric character (in other
1069 words, immediately following an alpha-numeric character), then
1070 verify that it is placed at the end of the encoded name. If
1071 not, then the encoding is not valid and we should abort the
1072 decoding. Otherwise, just skip it, it is used in body-nested
1076 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1080 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1082 /* Replace '__' by '.'. */
1090 /* It's a character part of the decoded name, so just copy it
1092 decoded[j] = encoded[i];
1097 decoded[j] = '\000';
1099 /* Decoded names should never contain any uppercase character.
1100 Double-check this, and abort the decoding if we find one. */
1102 for (i = 0; decoded[i] != '\0'; i += 1)
1103 if (isupper (decoded[i]) || decoded[i] == ' ')
1106 if (strcmp (decoded, encoded) == 0)
1112 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1113 decoded = decoding_buffer;
1114 if (encoded[0] == '<')
1115 strcpy (decoded, encoded);
1117 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1122 /* Table for keeping permanent unique copies of decoded names. Once
1123 allocated, names in this table are never released. While this is a
1124 storage leak, it should not be significant unless there are massive
1125 changes in the set of decoded names in successive versions of a
1126 symbol table loaded during a single session. */
1127 static struct htab *decoded_names_store;
1129 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1130 in the language-specific part of GSYMBOL, if it has not been
1131 previously computed. Tries to save the decoded name in the same
1132 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1133 in any case, the decoded symbol has a lifetime at least that of
1135 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1136 const, but nevertheless modified to a semantically equivalent form
1137 when a decoded name is cached in it.
1141 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1144 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1145 if (*resultp == NULL)
1147 const char *decoded = ada_decode (gsymbol->name);
1148 if (gsymbol->obj_section != NULL)
1150 struct objfile *objf = gsymbol->obj_section->objfile;
1151 *resultp = obsavestring (decoded, strlen (decoded),
1152 &objf->objfile_obstack);
1154 /* Sometimes, we can't find a corresponding objfile, in which
1155 case, we put the result on the heap. Since we only decode
1156 when needed, we hope this usually does not cause a
1157 significant memory leak (FIXME). */
1158 if (*resultp == NULL)
1160 char **slot = (char **) htab_find_slot (decoded_names_store,
1163 *slot = xstrdup (decoded);
1172 ada_la_decode (const char *encoded, int options)
1174 return xstrdup (ada_decode (encoded));
1177 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1178 suffixes that encode debugging information or leading _ada_ on
1179 SYM_NAME (see is_name_suffix commentary for the debugging
1180 information that is ignored). If WILD, then NAME need only match a
1181 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1182 either argument is NULL. */
1185 ada_match_name (const char *sym_name, const char *name, int wild)
1187 if (sym_name == NULL || name == NULL)
1190 return wild_match (name, strlen (name), sym_name);
1193 int len_name = strlen (name);
1194 return (strncmp (sym_name, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name))
1196 || (strncmp (sym_name, "_ada_", 5) == 0
1197 && strncmp (sym_name + 5, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name + 5));
1205 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1207 static char *bound_name[] = {
1208 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1209 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1212 /* Maximum number of array dimensions we are prepared to handle. */
1214 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1216 /* Like modify_field, but allows bitpos > wordlength. */
1219 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1221 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1225 /* The desc_* routines return primitive portions of array descriptors
1228 /* The descriptor or array type, if any, indicated by TYPE; removes
1229 level of indirection, if needed. */
1231 static struct type *
1232 desc_base_type (struct type *type)
1236 type = ada_check_typedef (type);
1238 && (TYPE_CODE (type) == TYPE_CODE_PTR
1239 || TYPE_CODE (type) == TYPE_CODE_REF))
1240 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1245 /* True iff TYPE indicates a "thin" array pointer type. */
1248 is_thin_pntr (struct type *type)
1251 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1252 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1255 /* The descriptor type for thin pointer type TYPE. */
1257 static struct type *
1258 thin_descriptor_type (struct type *type)
1260 struct type *base_type = desc_base_type (type);
1261 if (base_type == NULL)
1263 if (is_suffix (ada_type_name (base_type), "___XVE"))
1267 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1268 if (alt_type == NULL)
1275 /* A pointer to the array data for thin-pointer value VAL. */
1277 static struct value *
1278 thin_data_pntr (struct value *val)
1280 struct type *type = value_type (val);
1281 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1282 data_type = lookup_pointer_type (data_type);
1284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1285 return value_cast (data_type, value_copy (val));
1287 return value_from_longest (data_type, value_address (val));
1290 /* True iff TYPE indicates a "thick" array pointer type. */
1293 is_thick_pntr (struct type *type)
1295 type = desc_base_type (type);
1296 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1297 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1300 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1301 pointer to one, the type of its bounds data; otherwise, NULL. */
1303 static struct type *
1304 desc_bounds_type (struct type *type)
1308 type = desc_base_type (type);
1312 else if (is_thin_pntr (type))
1314 type = thin_descriptor_type (type);
1317 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1319 return ada_check_typedef (r);
1321 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1323 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1325 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1330 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1331 one, a pointer to its bounds data. Otherwise NULL. */
1333 static struct value *
1334 desc_bounds (struct value *arr)
1336 struct type *type = ada_check_typedef (value_type (arr));
1337 if (is_thin_pntr (type))
1339 struct type *bounds_type =
1340 desc_bounds_type (thin_descriptor_type (type));
1343 if (bounds_type == NULL)
1344 error (_("Bad GNAT array descriptor"));
1346 /* NOTE: The following calculation is not really kosher, but
1347 since desc_type is an XVE-encoded type (and shouldn't be),
1348 the correct calculation is a real pain. FIXME (and fix GCC). */
1349 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1350 addr = value_as_long (arr);
1352 addr = value_address (arr);
1355 value_from_longest (lookup_pointer_type (bounds_type),
1356 addr - TYPE_LENGTH (bounds_type));
1359 else if (is_thick_pntr (type))
1360 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1361 _("Bad GNAT array descriptor"));
1366 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1367 position of the field containing the address of the bounds data. */
1370 fat_pntr_bounds_bitpos (struct type *type)
1372 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1375 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1376 size of the field containing the address of the bounds data. */
1379 fat_pntr_bounds_bitsize (struct type *type)
1381 type = desc_base_type (type);
1383 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1384 return TYPE_FIELD_BITSIZE (type, 1);
1386 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1389 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1390 pointer to one, the type of its array data (a array-with-no-bounds type);
1391 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1394 static struct type *
1395 desc_data_target_type (struct type *type)
1397 type = desc_base_type (type);
1399 /* NOTE: The following is bogus; see comment in desc_bounds. */
1400 if (is_thin_pntr (type))
1401 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1402 else if (is_thick_pntr (type))
1404 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1407 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1408 return TYPE_TARGET_TYPE (data_type);
1414 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1417 static struct value *
1418 desc_data (struct value *arr)
1420 struct type *type = value_type (arr);
1421 if (is_thin_pntr (type))
1422 return thin_data_pntr (arr);
1423 else if (is_thick_pntr (type))
1424 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1425 _("Bad GNAT array descriptor"));
1431 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1432 position of the field containing the address of the data. */
1435 fat_pntr_data_bitpos (struct type *type)
1437 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1440 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1441 size of the field containing the address of the data. */
1444 fat_pntr_data_bitsize (struct type *type)
1446 type = desc_base_type (type);
1448 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1449 return TYPE_FIELD_BITSIZE (type, 0);
1451 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1454 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1455 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1456 bound, if WHICH is 1. The first bound is I=1. */
1458 static struct value *
1459 desc_one_bound (struct value *bounds, int i, int which)
1461 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1462 _("Bad GNAT array descriptor bounds"));
1465 /* If BOUNDS is an array-bounds structure type, return the bit position
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1467 bound, if WHICH is 1. The first bound is I=1. */
1470 desc_bound_bitpos (struct type *type, int i, int which)
1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1475 /* If BOUNDS is an array-bounds structure type, return the bit field size
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1477 bound, if WHICH is 1. The first bound is I=1. */
1480 desc_bound_bitsize (struct type *type, int i, int which)
1482 type = desc_base_type (type);
1484 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1485 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1487 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1490 /* If TYPE is the type of an array-bounds structure, the type of its
1491 Ith bound (numbering from 1). Otherwise, NULL. */
1493 static struct type *
1494 desc_index_type (struct type *type, int i)
1496 type = desc_base_type (type);
1498 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1499 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1504 /* The number of index positions in the array-bounds type TYPE.
1505 Return 0 if TYPE is NULL. */
1508 desc_arity (struct type *type)
1510 type = desc_base_type (type);
1513 return TYPE_NFIELDS (type) / 2;
1517 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1518 an array descriptor type (representing an unconstrained array
1522 ada_is_direct_array_type (struct type *type)
1526 type = ada_check_typedef (type);
1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 || ada_is_array_descriptor_type (type));
1531 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1535 ada_is_array_type (struct type *type)
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 type = TYPE_TARGET_TYPE (type);
1541 return ada_is_direct_array_type (type);
1544 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1547 ada_is_simple_array_type (struct type *type)
1551 type = ada_check_typedef (type);
1552 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1553 || (TYPE_CODE (type) == TYPE_CODE_PTR
1554 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1557 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1560 ada_is_array_descriptor_type (struct type *type)
1562 struct type *data_type = desc_data_target_type (type);
1566 type = ada_check_typedef (type);
1567 return (data_type != NULL
1568 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1569 && desc_arity (desc_bounds_type (type)) > 0);
1572 /* Non-zero iff type is a partially mal-formed GNAT array
1573 descriptor. FIXME: This is to compensate for some problems with
1574 debugging output from GNAT. Re-examine periodically to see if it
1578 ada_is_bogus_array_descriptor (struct type *type)
1582 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1583 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1584 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1585 && !ada_is_array_descriptor_type (type);
1589 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1590 (fat pointer) returns the type of the array data described---specifically,
1591 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1592 in from the descriptor; otherwise, they are left unspecified. If
1593 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1594 returns NULL. The result is simply the type of ARR if ARR is not
1597 ada_type_of_array (struct value *arr, int bounds)
1599 if (ada_is_packed_array_type (value_type (arr)))
1600 return decode_packed_array_type (value_type (arr));
1602 if (!ada_is_array_descriptor_type (value_type (arr)))
1603 return value_type (arr);
1607 ada_check_typedef (desc_data_target_type (value_type (arr)));
1610 struct type *elt_type;
1612 struct value *descriptor;
1613 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1615 elt_type = ada_array_element_type (value_type (arr), -1);
1616 arity = ada_array_arity (value_type (arr));
1618 if (elt_type == NULL || arity == 0)
1619 return ada_check_typedef (value_type (arr));
1621 descriptor = desc_bounds (arr);
1622 if (value_as_long (descriptor) == 0)
1626 struct type *range_type = alloc_type (objf);
1627 struct type *array_type = alloc_type (objf);
1628 struct value *low = desc_one_bound (descriptor, arity, 0);
1629 struct value *high = desc_one_bound (descriptor, arity, 1);
1632 create_range_type (range_type, value_type (low),
1633 longest_to_int (value_as_long (low)),
1634 longest_to_int (value_as_long (high)));
1635 elt_type = create_array_type (array_type, elt_type, range_type);
1638 return lookup_pointer_type (elt_type);
1642 /* If ARR does not represent an array, returns ARR unchanged.
1643 Otherwise, returns either a standard GDB array with bounds set
1644 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1645 GDB array. Returns NULL if ARR is a null fat pointer. */
1648 ada_coerce_to_simple_array_ptr (struct value *arr)
1650 if (ada_is_array_descriptor_type (value_type (arr)))
1652 struct type *arrType = ada_type_of_array (arr, 1);
1653 if (arrType == NULL)
1655 return value_cast (arrType, value_copy (desc_data (arr)));
1657 else if (ada_is_packed_array_type (value_type (arr)))
1658 return decode_packed_array (arr);
1663 /* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns a standard GDB array describing ARR (which may
1665 be ARR itself if it already is in the proper form). */
1667 static struct value *
1668 ada_coerce_to_simple_array (struct value *arr)
1670 if (ada_is_array_descriptor_type (value_type (arr)))
1672 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1674 error (_("Bounds unavailable for null array pointer."));
1675 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1676 return value_ind (arrVal);
1678 else if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array (arr);
1684 /* If TYPE represents a GNAT array type, return it translated to an
1685 ordinary GDB array type (possibly with BITSIZE fields indicating
1686 packing). For other types, is the identity. */
1689 ada_coerce_to_simple_array_type (struct type *type)
1691 if (ada_is_packed_array_type (type))
1692 return decode_packed_array_type (type);
1694 if (ada_is_array_descriptor_type (type))
1695 return ada_check_typedef (desc_data_target_type (type));
1700 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1703 ada_is_packed_array_type (struct type *type)
1707 type = desc_base_type (type);
1708 type = ada_check_typedef (type);
1710 ada_type_name (type) != NULL
1711 && strstr (ada_type_name (type), "___XP") != NULL;
1714 /* Given that TYPE is a standard GDB array type with all bounds filled
1715 in, and that the element size of its ultimate scalar constituents
1716 (that is, either its elements, or, if it is an array of arrays, its
1717 elements' elements, etc.) is *ELT_BITS, return an identical type,
1718 but with the bit sizes of its elements (and those of any
1719 constituent arrays) recorded in the BITSIZE components of its
1720 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1723 static struct type *
1724 packed_array_type (struct type *type, long *elt_bits)
1726 struct type *new_elt_type;
1727 struct type *new_type;
1728 LONGEST low_bound, high_bound;
1730 type = ada_check_typedef (type);
1731 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1734 new_type = alloc_type (TYPE_OBJFILE (type));
1735 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1737 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1738 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1739 TYPE_NAME (new_type) = ada_type_name (type);
1741 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1742 &low_bound, &high_bound) < 0)
1743 low_bound = high_bound = 0;
1744 if (high_bound < low_bound)
1745 *elt_bits = TYPE_LENGTH (new_type) = 0;
1748 *elt_bits *= (high_bound - low_bound + 1);
1749 TYPE_LENGTH (new_type) =
1750 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1753 TYPE_FIXED_INSTANCE (new_type) = 1;
1757 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1759 static struct type *
1760 decode_packed_array_type (struct type *type)
1763 struct block **blocks;
1764 char *raw_name = ada_type_name (ada_check_typedef (type));
1767 struct type *shadow_type;
1772 raw_name = ada_type_name (desc_base_type (type));
1777 name = (char *) alloca (strlen (raw_name) + 1);
1778 tail = strstr (raw_name, "___XP");
1779 type = desc_base_type (type);
1781 memcpy (name, raw_name, tail - raw_name);
1782 name[tail - raw_name] = '\000';
1784 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1785 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1787 lim_warning (_("could not find bounds information on packed array"));
1790 shadow_type = SYMBOL_TYPE (sym);
1791 CHECK_TYPEDEF (shadow_type);
1793 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1795 lim_warning (_("could not understand bounds information on packed array"));
1799 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1802 (_("could not understand bit size information on packed array"));
1806 return packed_array_type (shadow_type, &bits);
1809 /* Given that ARR is a struct value *indicating a GNAT packed array,
1810 returns a simple array that denotes that array. Its type is a
1811 standard GDB array type except that the BITSIZEs of the array
1812 target types are set to the number of bits in each element, and the
1813 type length is set appropriately. */
1815 static struct value *
1816 decode_packed_array (struct value *arr)
1820 arr = ada_coerce_ref (arr);
1822 /* If our value is a pointer, then dererence it. Make sure that
1823 this operation does not cause the target type to be fixed, as
1824 this would indirectly cause this array to be decoded. The rest
1825 of the routine assumes that the array hasn't been decoded yet,
1826 so we use the basic "value_ind" routine to perform the dereferencing,
1827 as opposed to using "ada_value_ind". */
1828 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1829 arr = value_ind (arr);
1831 type = decode_packed_array_type (value_type (arr));
1834 error (_("can't unpack array"));
1838 if (gdbarch_bits_big_endian (current_gdbarch)
1839 && ada_is_modular_type (value_type (arr)))
1841 /* This is a (right-justified) modular type representing a packed
1842 array with no wrapper. In order to interpret the value through
1843 the (left-justified) packed array type we just built, we must
1844 first left-justify it. */
1845 int bit_size, bit_pos;
1848 mod = ada_modulus (value_type (arr)) - 1;
1855 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1856 arr = ada_value_primitive_packed_val (arr, NULL,
1857 bit_pos / HOST_CHAR_BIT,
1858 bit_pos % HOST_CHAR_BIT,
1863 return coerce_unspec_val_to_type (arr, type);
1867 /* The value of the element of packed array ARR at the ARITY indices
1868 given in IND. ARR must be a simple array. */
1870 static struct value *
1871 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1874 int bits, elt_off, bit_off;
1875 long elt_total_bit_offset;
1876 struct type *elt_type;
1880 elt_total_bit_offset = 0;
1881 elt_type = ada_check_typedef (value_type (arr));
1882 for (i = 0; i < arity; i += 1)
1884 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1885 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1887 (_("attempt to do packed indexing of something other than a packed array"));
1890 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1891 LONGEST lowerbound, upperbound;
1894 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1896 lim_warning (_("don't know bounds of array"));
1897 lowerbound = upperbound = 0;
1900 idx = pos_atr (ind[i]);
1901 if (idx < lowerbound || idx > upperbound)
1902 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1903 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1904 elt_total_bit_offset += (idx - lowerbound) * bits;
1905 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1908 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1909 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1911 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1916 /* Non-zero iff TYPE includes negative integer values. */
1919 has_negatives (struct type *type)
1921 switch (TYPE_CODE (type))
1926 return !TYPE_UNSIGNED (type);
1927 case TYPE_CODE_RANGE:
1928 return TYPE_LOW_BOUND (type) < 0;
1933 /* Create a new value of type TYPE from the contents of OBJ starting
1934 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1935 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1936 assigning through the result will set the field fetched from.
1937 VALADDR is ignored unless OBJ is NULL, in which case,
1938 VALADDR+OFFSET must address the start of storage containing the
1939 packed value. The value returned in this case is never an lval.
1940 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1943 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1944 long offset, int bit_offset, int bit_size,
1948 int src, /* Index into the source area */
1949 targ, /* Index into the target area */
1950 srcBitsLeft, /* Number of source bits left to move */
1951 nsrc, ntarg, /* Number of source and target bytes */
1952 unusedLS, /* Number of bits in next significant
1953 byte of source that are unused */
1954 accumSize; /* Number of meaningful bits in accum */
1955 unsigned char *bytes; /* First byte containing data to unpack */
1956 unsigned char *unpacked;
1957 unsigned long accum; /* Staging area for bits being transferred */
1959 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1960 /* Transmit bytes from least to most significant; delta is the direction
1961 the indices move. */
1962 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1964 type = ada_check_typedef (type);
1968 v = allocate_value (type);
1969 bytes = (unsigned char *) (valaddr + offset);
1971 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1974 value_address (obj) + offset);
1975 bytes = (unsigned char *) alloca (len);
1976 read_memory (value_address (v), bytes, len);
1980 v = allocate_value (type);
1981 bytes = (unsigned char *) value_contents (obj) + offset;
1987 set_value_component_location (v, obj);
1988 new_addr = value_address (obj) + offset;
1989 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1990 set_value_bitsize (v, bit_size);
1991 if (value_bitpos (v) >= HOST_CHAR_BIT)
1994 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1996 set_value_address (v, new_addr);
1999 set_value_bitsize (v, bit_size);
2000 unpacked = (unsigned char *) value_contents (v);
2002 srcBitsLeft = bit_size;
2004 ntarg = TYPE_LENGTH (type);
2008 memset (unpacked, 0, TYPE_LENGTH (type));
2011 else if (gdbarch_bits_big_endian (current_gdbarch))
2014 if (has_negatives (type)
2015 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2019 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2022 switch (TYPE_CODE (type))
2024 case TYPE_CODE_ARRAY:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_STRUCT:
2027 /* Non-scalar values must be aligned at a byte boundary... */
2029 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2030 /* ... And are placed at the beginning (most-significant) bytes
2032 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2037 targ = TYPE_LENGTH (type) - 1;
2043 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2046 unusedLS = bit_offset;
2049 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2056 /* Mask for removing bits of the next source byte that are not
2057 part of the value. */
2058 unsigned int unusedMSMask =
2059 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2061 /* Sign-extend bits for this byte. */
2062 unsigned int signMask = sign & ~unusedMSMask;
2064 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2065 accumSize += HOST_CHAR_BIT - unusedLS;
2066 if (accumSize >= HOST_CHAR_BIT)
2068 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2069 accumSize -= HOST_CHAR_BIT;
2070 accum >>= HOST_CHAR_BIT;
2074 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2081 accum |= sign << accumSize;
2082 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2083 accumSize -= HOST_CHAR_BIT;
2084 accum >>= HOST_CHAR_BIT;
2092 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2093 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2096 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2097 int src_offset, int n)
2099 unsigned int accum, mask;
2100 int accum_bits, chunk_size;
2102 target += targ_offset / HOST_CHAR_BIT;
2103 targ_offset %= HOST_CHAR_BIT;
2104 source += src_offset / HOST_CHAR_BIT;
2105 src_offset %= HOST_CHAR_BIT;
2106 if (gdbarch_bits_big_endian (current_gdbarch))
2108 accum = (unsigned char) *source;
2110 accum_bits = HOST_CHAR_BIT - src_offset;
2115 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2116 accum_bits += HOST_CHAR_BIT;
2118 chunk_size = HOST_CHAR_BIT - targ_offset;
2121 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2122 mask = ((1 << chunk_size) - 1) << unused_right;
2125 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2127 accum_bits -= chunk_size;
2134 accum = (unsigned char) *source >> src_offset;
2136 accum_bits = HOST_CHAR_BIT - src_offset;
2140 accum = accum + ((unsigned char) *source << accum_bits);
2141 accum_bits += HOST_CHAR_BIT;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2146 mask = ((1 << chunk_size) - 1) << targ_offset;
2147 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2149 accum_bits -= chunk_size;
2150 accum >>= chunk_size;
2157 /* Store the contents of FROMVAL into the location of TOVAL.
2158 Return a new value with the location of TOVAL and contents of
2159 FROMVAL. Handles assignment into packed fields that have
2160 floating-point or non-scalar types. */
2162 static struct value *
2163 ada_value_assign (struct value *toval, struct value *fromval)
2165 struct type *type = value_type (toval);
2166 int bits = value_bitsize (toval);
2168 toval = ada_coerce_ref (toval);
2169 fromval = ada_coerce_ref (fromval);
2171 if (ada_is_direct_array_type (value_type (toval)))
2172 toval = ada_coerce_to_simple_array (toval);
2173 if (ada_is_direct_array_type (value_type (fromval)))
2174 fromval = ada_coerce_to_simple_array (fromval);
2176 if (!deprecated_value_modifiable (toval))
2177 error (_("Left operand of assignment is not a modifiable lvalue."));
2179 if (VALUE_LVAL (toval) == lval_memory
2181 && (TYPE_CODE (type) == TYPE_CODE_FLT
2182 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2184 int len = (value_bitpos (toval)
2185 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2187 char *buffer = (char *) alloca (len);
2189 CORE_ADDR to_addr = value_address (toval);
2191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2192 fromval = value_cast (type, fromval);
2194 read_memory (to_addr, buffer, len);
2195 from_size = value_bitsize (fromval);
2197 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2198 if (gdbarch_bits_big_endian (current_gdbarch))
2199 move_bits (buffer, value_bitpos (toval),
2200 value_contents (fromval), from_size - bits, bits);
2202 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2204 write_memory (to_addr, buffer, len);
2205 if (deprecated_memory_changed_hook)
2206 deprecated_memory_changed_hook (to_addr, len);
2208 val = value_copy (toval);
2209 memcpy (value_contents_raw (val), value_contents (fromval),
2210 TYPE_LENGTH (type));
2211 deprecated_set_value_type (val, type);
2216 return value_assign (toval, fromval);
2220 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2221 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2222 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2223 * COMPONENT, and not the inferior's memory. The current contents
2224 * of COMPONENT are ignored. */
2226 value_assign_to_component (struct value *container, struct value *component,
2229 LONGEST offset_in_container =
2230 (LONGEST) (value_address (component) - value_address (container));
2231 int bit_offset_in_container =
2232 value_bitpos (component) - value_bitpos (container);
2235 val = value_cast (value_type (component), val);
2237 if (value_bitsize (component) == 0)
2238 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2240 bits = value_bitsize (component);
2242 if (gdbarch_bits_big_endian (current_gdbarch))
2243 move_bits (value_contents_writeable (container) + offset_in_container,
2244 value_bitpos (container) + bit_offset_in_container,
2245 value_contents (val),
2246 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2249 move_bits (value_contents_writeable (container) + offset_in_container,
2250 value_bitpos (container) + bit_offset_in_container,
2251 value_contents (val), 0, bits);
2254 /* The value of the element of array ARR at the ARITY indices given in IND.
2255 ARR may be either a simple array, GNAT array descriptor, or pointer
2259 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2263 struct type *elt_type;
2265 elt = ada_coerce_to_simple_array (arr);
2267 elt_type = ada_check_typedef (value_type (elt));
2268 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2269 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2270 return value_subscript_packed (elt, arity, ind);
2272 for (k = 0; k < arity; k += 1)
2274 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 elt = value_subscript (elt, pos_atr (ind[k]));
2281 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2282 value of the element of *ARR at the ARITY indices given in
2283 IND. Does not read the entire array into memory. */
2285 static struct value *
2286 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2291 for (k = 0; k < arity; k += 1)
2295 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2296 error (_("too many subscripts (%d expected)"), k);
2297 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2299 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2300 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2301 type = TYPE_TARGET_TYPE (type);
2304 return value_ind (arr);
2307 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2308 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2309 elements starting at index LOW. The lower bound of this array is LOW, as
2311 static struct value *
2312 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2315 CORE_ADDR base = value_as_address (array_ptr)
2316 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2317 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2318 struct type *index_type =
2319 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2321 struct type *slice_type =
2322 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2323 return value_at_lazy (slice_type, base);
2327 static struct value *
2328 ada_value_slice (struct value *array, int low, int high)
2330 struct type *type = value_type (array);
2331 struct type *index_type =
2332 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2333 struct type *slice_type =
2334 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2335 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2338 /* If type is a record type in the form of a standard GNAT array
2339 descriptor, returns the number of dimensions for type. If arr is a
2340 simple array, returns the number of "array of"s that prefix its
2341 type designation. Otherwise, returns 0. */
2344 ada_array_arity (struct type *type)
2351 type = desc_base_type (type);
2354 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2355 return desc_arity (desc_bounds_type (type));
2357 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2360 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2366 /* If TYPE is a record type in the form of a standard GNAT array
2367 descriptor or a simple array type, returns the element type for
2368 TYPE after indexing by NINDICES indices, or by all indices if
2369 NINDICES is -1. Otherwise, returns NULL. */
2372 ada_array_element_type (struct type *type, int nindices)
2374 type = desc_base_type (type);
2376 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2379 struct type *p_array_type;
2381 p_array_type = desc_data_target_type (type);
2383 k = ada_array_arity (type);
2387 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2388 if (nindices >= 0 && k > nindices)
2390 while (k > 0 && p_array_type != NULL)
2392 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2395 return p_array_type;
2397 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2399 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2401 type = TYPE_TARGET_TYPE (type);
2410 /* The type of nth index in arrays of given type (n numbering from 1).
2411 Does not examine memory. Throws an error if N is invalid or TYPE
2412 is not an array type. NAME is the name of the Ada attribute being
2413 evaluated ('range, 'first, 'last, or 'length); it is used in building
2414 the error message. */
2416 static struct type *
2417 ada_index_type (struct type *type, int n, const char *name)
2419 struct type *result_type;
2421 type = desc_base_type (type);
2423 if (n < 0 || n > ada_array_arity (type))
2424 error (_("invalid dimension number to '%s"), name);
2426 if (ada_is_simple_array_type (type))
2430 for (i = 1; i < n; i += 1)
2431 type = TYPE_TARGET_TYPE (type);
2432 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2433 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2434 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2435 perhaps stabsread.c would make more sense. */
2436 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2441 result_type = desc_index_type (desc_bounds_type (type), n);
2442 if (result_type == NULL)
2443 error (_("attempt to take bound of something that is not an array"));
2449 /* Given that arr is an array type, returns the lower bound of the
2450 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2451 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2452 array-descriptor type. It works for other arrays with bounds supplied
2453 by run-time quantities other than discriminants. */
2456 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2458 struct type *type, *index_type_desc, *index_type;
2461 gdb_assert (which == 0 || which == 1);
2463 if (ada_is_packed_array_type (arr_type))
2464 arr_type = decode_packed_array_type (arr_type);
2466 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2467 return (LONGEST) - which;
2469 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2470 type = TYPE_TARGET_TYPE (arr_type);
2474 index_type_desc = ada_find_parallel_type (type, "___XA");
2475 if (index_type_desc != NULL)
2476 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2477 NULL, TYPE_OBJFILE (arr_type));
2482 type = TYPE_TARGET_TYPE (type);
2486 index_type = TYPE_INDEX_TYPE (type);
2489 switch (TYPE_CODE (index_type))
2491 case TYPE_CODE_RANGE:
2492 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2493 : TYPE_HIGH_BOUND (index_type);
2495 case TYPE_CODE_ENUM:
2496 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2497 : TYPE_FIELD_BITPOS (index_type,
2498 TYPE_NFIELDS (index_type) - 1);
2501 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2507 /* Given that arr is an array value, returns the lower bound of the
2508 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2509 WHICH is 1. This routine will also work for arrays with bounds
2510 supplied by run-time quantities other than discriminants. */
2513 ada_array_bound (struct value *arr, int n, int which)
2515 struct type *arr_type = value_type (arr);
2517 if (ada_is_packed_array_type (arr_type))
2518 return ada_array_bound (decode_packed_array (arr), n, which);
2519 else if (ada_is_simple_array_type (arr_type))
2520 return ada_array_bound_from_type (arr_type, n, which);
2522 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2525 /* Given that arr is an array value, returns the length of the
2526 nth index. This routine will also work for arrays with bounds
2527 supplied by run-time quantities other than discriminants.
2528 Does not work for arrays indexed by enumeration types with representation
2529 clauses at the moment. */
2532 ada_array_length (struct value *arr, int n)
2534 struct type *arr_type = ada_check_typedef (value_type (arr));
2536 if (ada_is_packed_array_type (arr_type))
2537 return ada_array_length (decode_packed_array (arr), n);
2539 if (ada_is_simple_array_type (arr_type))
2540 return (ada_array_bound_from_type (arr_type, n, 1)
2541 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2543 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2544 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2547 /* An empty array whose type is that of ARR_TYPE (an array type),
2548 with bounds LOW to LOW-1. */
2550 static struct value *
2551 empty_array (struct type *arr_type, int low)
2553 struct type *index_type =
2554 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2556 struct type *elt_type = ada_array_element_type (arr_type, 1);
2557 return allocate_value (create_array_type (NULL, elt_type, index_type));
2561 /* Name resolution */
2563 /* The "decoded" name for the user-definable Ada operator corresponding
2567 ada_decoded_op_name (enum exp_opcode op)
2571 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2573 if (ada_opname_table[i].op == op)
2574 return ada_opname_table[i].decoded;
2576 error (_("Could not find operator name for opcode"));
2580 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2581 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2582 undefined namespace) and converts operators that are
2583 user-defined into appropriate function calls. If CONTEXT_TYPE is
2584 non-null, it provides a preferred result type [at the moment, only
2585 type void has any effect---causing procedures to be preferred over
2586 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2587 return type is preferred. May change (expand) *EXP. */
2590 resolve (struct expression **expp, int void_context_p)
2594 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2597 /* Resolve the operator of the subexpression beginning at
2598 position *POS of *EXPP. "Resolving" consists of replacing
2599 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2600 with their resolutions, replacing built-in operators with
2601 function calls to user-defined operators, where appropriate, and,
2602 when DEPROCEDURE_P is non-zero, converting function-valued variables
2603 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2604 are as in ada_resolve, above. */
2606 static struct value *
2607 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2608 struct type *context_type)
2612 struct expression *exp; /* Convenience: == *expp. */
2613 enum exp_opcode op = (*expp)->elts[pc].opcode;
2614 struct value **argvec; /* Vector of operand types (alloca'ed). */
2615 int nargs; /* Number of operands. */
2622 /* Pass one: resolve operands, saving their types and updating *pos,
2627 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2628 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2633 resolve_subexp (expp, pos, 0, NULL);
2635 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2640 resolve_subexp (expp, pos, 0, NULL);
2645 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2648 case OP_ATR_MODULUS:
2658 case TERNOP_IN_RANGE:
2659 case BINOP_IN_BOUNDS:
2665 case OP_DISCRETE_RANGE:
2667 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2676 arg1 = resolve_subexp (expp, pos, 0, NULL);
2678 resolve_subexp (expp, pos, 1, NULL);
2680 resolve_subexp (expp, pos, 1, value_type (arg1));
2697 case BINOP_LOGICAL_AND:
2698 case BINOP_LOGICAL_OR:
2699 case BINOP_BITWISE_AND:
2700 case BINOP_BITWISE_IOR:
2701 case BINOP_BITWISE_XOR:
2704 case BINOP_NOTEQUAL:
2711 case BINOP_SUBSCRIPT:
2719 case UNOP_LOGICAL_NOT:
2735 case OP_INTERNALVAR:
2745 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2748 case STRUCTOP_STRUCT:
2749 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2762 error (_("Unexpected operator during name resolution"));
2765 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2766 for (i = 0; i < nargs; i += 1)
2767 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2771 /* Pass two: perform any resolution on principal operator. */
2778 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2780 struct ada_symbol_info *candidates;
2784 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2785 (exp->elts[pc + 2].symbol),
2786 exp->elts[pc + 1].block, VAR_DOMAIN,
2789 if (n_candidates > 1)
2791 /* Types tend to get re-introduced locally, so if there
2792 are any local symbols that are not types, first filter
2795 for (j = 0; j < n_candidates; j += 1)
2796 switch (SYMBOL_CLASS (candidates[j].sym))
2801 case LOC_REGPARM_ADDR:
2809 if (j < n_candidates)
2812 while (j < n_candidates)
2814 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2816 candidates[j] = candidates[n_candidates - 1];
2825 if (n_candidates == 0)
2826 error (_("No definition found for %s"),
2827 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2828 else if (n_candidates == 1)
2830 else if (deprocedure_p
2831 && !is_nonfunction (candidates, n_candidates))
2833 i = ada_resolve_function
2834 (candidates, n_candidates, NULL, 0,
2835 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2838 error (_("Could not find a match for %s"),
2839 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2843 printf_filtered (_("Multiple matches for %s\n"),
2844 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2845 user_select_syms (candidates, n_candidates, 1);
2849 exp->elts[pc + 1].block = candidates[i].block;
2850 exp->elts[pc + 2].symbol = candidates[i].sym;
2851 if (innermost_block == NULL
2852 || contained_in (candidates[i].block, innermost_block))
2853 innermost_block = candidates[i].block;
2857 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2860 replace_operator_with_call (expp, pc, 0, 0,
2861 exp->elts[pc + 2].symbol,
2862 exp->elts[pc + 1].block);
2869 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2870 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2872 struct ada_symbol_info *candidates;
2876 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2877 (exp->elts[pc + 5].symbol),
2878 exp->elts[pc + 4].block, VAR_DOMAIN,
2880 if (n_candidates == 1)
2884 i = ada_resolve_function
2885 (candidates, n_candidates,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2890 error (_("Could not find a match for %s"),
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2894 exp->elts[pc + 4].block = candidates[i].block;
2895 exp->elts[pc + 5].symbol = candidates[i].sym;
2896 if (innermost_block == NULL
2897 || contained_in (candidates[i].block, innermost_block))
2898 innermost_block = candidates[i].block;
2909 case BINOP_BITWISE_AND:
2910 case BINOP_BITWISE_IOR:
2911 case BINOP_BITWISE_XOR:
2913 case BINOP_NOTEQUAL:
2921 case UNOP_LOGICAL_NOT:
2923 if (possible_user_operator_p (op, argvec))
2925 struct ada_symbol_info *candidates;
2929 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2930 (struct block *) NULL, VAR_DOMAIN,
2932 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2933 ada_decoded_op_name (op), NULL);
2937 replace_operator_with_call (expp, pc, nargs, 1,
2938 candidates[i].sym, candidates[i].block);
2949 return evaluate_subexp_type (exp, pos);
2952 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2953 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2954 a non-pointer. A type of 'void' (which is never a valid expression type)
2955 by convention matches anything. */
2956 /* The term "match" here is rather loose. The match is heuristic and
2957 liberal. FIXME: TOO liberal, in fact. */
2960 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2962 ftype = ada_check_typedef (ftype);
2963 atype = ada_check_typedef (atype);
2965 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2966 ftype = TYPE_TARGET_TYPE (ftype);
2967 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2968 atype = TYPE_TARGET_TYPE (atype);
2970 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2971 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2974 switch (TYPE_CODE (ftype))
2979 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2980 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2981 TYPE_TARGET_TYPE (atype), 0);
2984 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2986 case TYPE_CODE_ENUM:
2987 case TYPE_CODE_RANGE:
2988 switch (TYPE_CODE (atype))
2991 case TYPE_CODE_ENUM:
2992 case TYPE_CODE_RANGE:
2998 case TYPE_CODE_ARRAY:
2999 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3000 || ada_is_array_descriptor_type (atype));
3002 case TYPE_CODE_STRUCT:
3003 if (ada_is_array_descriptor_type (ftype))
3004 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3005 || ada_is_array_descriptor_type (atype));
3007 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3008 && !ada_is_array_descriptor_type (atype));
3010 case TYPE_CODE_UNION:
3012 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3016 /* Return non-zero if the formals of FUNC "sufficiently match" the
3017 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3018 may also be an enumeral, in which case it is treated as a 0-
3019 argument function. */
3022 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3025 struct type *func_type = SYMBOL_TYPE (func);
3027 if (SYMBOL_CLASS (func) == LOC_CONST
3028 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3029 return (n_actuals == 0);
3030 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3033 if (TYPE_NFIELDS (func_type) != n_actuals)
3036 for (i = 0; i < n_actuals; i += 1)
3038 if (actuals[i] == NULL)
3042 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3043 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3045 if (!ada_type_match (ftype, atype, 1))
3052 /* False iff function type FUNC_TYPE definitely does not produce a value
3053 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3054 FUNC_TYPE is not a valid function type with a non-null return type
3055 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3058 return_match (struct type *func_type, struct type *context_type)
3060 struct type *return_type;
3062 if (func_type == NULL)
3065 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3066 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3068 return_type = base_type (func_type);
3069 if (return_type == NULL)
3072 context_type = base_type (context_type);
3074 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3075 return context_type == NULL || return_type == context_type;
3076 else if (context_type == NULL)
3077 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3079 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3083 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3084 function (if any) that matches the types of the NARGS arguments in
3085 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3086 that returns that type, then eliminate matches that don't. If
3087 CONTEXT_TYPE is void and there is at least one match that does not
3088 return void, eliminate all matches that do.
3090 Asks the user if there is more than one match remaining. Returns -1
3091 if there is no such symbol or none is selected. NAME is used
3092 solely for messages. May re-arrange and modify SYMS in
3093 the process; the index returned is for the modified vector. */
3096 ada_resolve_function (struct ada_symbol_info syms[],
3097 int nsyms, struct value **args, int nargs,
3098 const char *name, struct type *context_type)
3101 int m; /* Number of hits */
3102 struct type *fallback;
3103 struct type *return_type;
3105 return_type = context_type;
3106 if (context_type == NULL)
3107 fallback = builtin_type_void;
3114 for (k = 0; k < nsyms; k += 1)
3116 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3118 if (ada_args_match (syms[k].sym, args, nargs)
3119 && return_match (type, return_type))
3125 if (m > 0 || return_type == fallback)
3128 return_type = fallback;
3135 printf_filtered (_("Multiple matches for %s\n"), name);
3136 user_select_syms (syms, m, 1);
3142 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3143 in a listing of choices during disambiguation (see sort_choices, below).
3144 The idea is that overloadings of a subprogram name from the
3145 same package should sort in their source order. We settle for ordering
3146 such symbols by their trailing number (__N or $N). */
3149 encoded_ordered_before (char *N0, char *N1)
3153 else if (N0 == NULL)
3158 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3160 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3162 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3163 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3167 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3170 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3172 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3173 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3175 return (strcmp (N0, N1) < 0);
3179 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3183 sort_choices (struct ada_symbol_info syms[], int nsyms)
3186 for (i = 1; i < nsyms; i += 1)
3188 struct ada_symbol_info sym = syms[i];
3191 for (j = i - 1; j >= 0; j -= 1)
3193 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3194 SYMBOL_LINKAGE_NAME (sym.sym)))
3196 syms[j + 1] = syms[j];
3202 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3203 by asking the user (if necessary), returning the number selected,
3204 and setting the first elements of SYMS items. Error if no symbols
3207 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3208 to be re-integrated one of these days. */
3211 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3214 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3216 int first_choice = (max_results == 1) ? 1 : 2;
3217 const char *select_mode = multiple_symbols_select_mode ();
3219 if (max_results < 1)
3220 error (_("Request to select 0 symbols!"));
3224 if (select_mode == multiple_symbols_cancel)
3226 canceled because the command is ambiguous\n\
3227 See set/show multiple-symbol."));
3229 /* If select_mode is "all", then return all possible symbols.
3230 Only do that if more than one symbol can be selected, of course.
3231 Otherwise, display the menu as usual. */
3232 if (select_mode == multiple_symbols_all && max_results > 1)
3235 printf_unfiltered (_("[0] cancel\n"));
3236 if (max_results > 1)
3237 printf_unfiltered (_("[1] all\n"));
3239 sort_choices (syms, nsyms);
3241 for (i = 0; i < nsyms; i += 1)
3243 if (syms[i].sym == NULL)
3246 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3248 struct symtab_and_line sal =
3249 find_function_start_sal (syms[i].sym, 1);
3250 if (sal.symtab == NULL)
3251 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3253 SYMBOL_PRINT_NAME (syms[i].sym),
3256 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3257 SYMBOL_PRINT_NAME (syms[i].sym),
3258 sal.symtab->filename, sal.line);
3264 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3265 && SYMBOL_TYPE (syms[i].sym) != NULL
3266 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3267 struct symtab *symtab = syms[i].sym->symtab;
3269 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3270 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3272 SYMBOL_PRINT_NAME (syms[i].sym),
3273 symtab->filename, SYMBOL_LINE (syms[i].sym));
3274 else if (is_enumeral
3275 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3277 printf_unfiltered (("[%d] "), i + first_choice);
3278 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3280 printf_unfiltered (_("'(%s) (enumeral)\n"),
3281 SYMBOL_PRINT_NAME (syms[i].sym));
3283 else if (symtab != NULL)
3284 printf_unfiltered (is_enumeral
3285 ? _("[%d] %s in %s (enumeral)\n")
3286 : _("[%d] %s at %s:?\n"),
3288 SYMBOL_PRINT_NAME (syms[i].sym),
3291 printf_unfiltered (is_enumeral
3292 ? _("[%d] %s (enumeral)\n")
3293 : _("[%d] %s at ?\n"),
3295 SYMBOL_PRINT_NAME (syms[i].sym));
3299 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3302 for (i = 0; i < n_chosen; i += 1)
3303 syms[i] = syms[chosen[i]];
3308 /* Read and validate a set of numeric choices from the user in the
3309 range 0 .. N_CHOICES-1. Place the results in increasing
3310 order in CHOICES[0 .. N-1], and return N.
3312 The user types choices as a sequence of numbers on one line
3313 separated by blanks, encoding them as follows:
3315 + A choice of 0 means to cancel the selection, throwing an error.
3316 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3317 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3319 The user is not allowed to choose more than MAX_RESULTS values.
3321 ANNOTATION_SUFFIX, if present, is used to annotate the input
3322 prompts (for use with the -f switch). */
3325 get_selections (int *choices, int n_choices, int max_results,
3326 int is_all_choice, char *annotation_suffix)
3331 int first_choice = is_all_choice ? 2 : 1;
3333 prompt = getenv ("PS2");
3337 args = command_line_input (prompt, 0, annotation_suffix);
3340 error_no_arg (_("one or more choice numbers"));
3344 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3345 order, as given in args. Choices are validated. */
3351 while (isspace (*args))
3353 if (*args == '\0' && n_chosen == 0)
3354 error_no_arg (_("one or more choice numbers"));
3355 else if (*args == '\0')
3358 choice = strtol (args, &args2, 10);
3359 if (args == args2 || choice < 0
3360 || choice > n_choices + first_choice - 1)
3361 error (_("Argument must be choice number"));
3365 error (_("cancelled"));
3367 if (choice < first_choice)
3369 n_chosen = n_choices;
3370 for (j = 0; j < n_choices; j += 1)
3374 choice -= first_choice;
3376 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3380 if (j < 0 || choice != choices[j])
3383 for (k = n_chosen - 1; k > j; k -= 1)
3384 choices[k + 1] = choices[k];
3385 choices[j + 1] = choice;
3390 if (n_chosen > max_results)
3391 error (_("Select no more than %d of the above"), max_results);
3396 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3397 on the function identified by SYM and BLOCK, and taking NARGS
3398 arguments. Update *EXPP as needed to hold more space. */
3401 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3402 int oplen, struct symbol *sym,
3403 struct block *block)
3405 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3406 symbol, -oplen for operator being replaced). */
3407 struct expression *newexp = (struct expression *)
3408 xmalloc (sizeof (struct expression)
3409 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3410 struct expression *exp = *expp;
3412 newexp->nelts = exp->nelts + 7 - oplen;
3413 newexp->language_defn = exp->language_defn;
3414 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3415 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3416 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3418 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3419 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3421 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3422 newexp->elts[pc + 4].block = block;
3423 newexp->elts[pc + 5].symbol = sym;
3429 /* Type-class predicates */
3431 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3435 numeric_type_p (struct type *type)
3441 switch (TYPE_CODE (type))
3446 case TYPE_CODE_RANGE:
3447 return (type == TYPE_TARGET_TYPE (type)
3448 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3455 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3458 integer_type_p (struct type *type)
3464 switch (TYPE_CODE (type))
3468 case TYPE_CODE_RANGE:
3469 return (type == TYPE_TARGET_TYPE (type)
3470 || integer_type_p (TYPE_TARGET_TYPE (type)));
3477 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3480 scalar_type_p (struct type *type)
3486 switch (TYPE_CODE (type))
3489 case TYPE_CODE_RANGE:
3490 case TYPE_CODE_ENUM:
3499 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3502 discrete_type_p (struct type *type)
3508 switch (TYPE_CODE (type))
3511 case TYPE_CODE_RANGE:
3512 case TYPE_CODE_ENUM:
3520 /* Returns non-zero if OP with operands in the vector ARGS could be
3521 a user-defined function. Errs on the side of pre-defined operators
3522 (i.e., result 0). */
3525 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3527 struct type *type0 =
3528 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3529 struct type *type1 =
3530 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3544 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3548 case BINOP_BITWISE_AND:
3549 case BINOP_BITWISE_IOR:
3550 case BINOP_BITWISE_XOR:
3551 return (!(integer_type_p (type0) && integer_type_p (type1)));
3554 case BINOP_NOTEQUAL:
3559 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3562 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3565 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3569 case UNOP_LOGICAL_NOT:
3571 return (!numeric_type_p (type0));
3580 1. In the following, we assume that a renaming type's name may
3581 have an ___XD suffix. It would be nice if this went away at some
3583 2. We handle both the (old) purely type-based representation of
3584 renamings and the (new) variable-based encoding. At some point,
3585 it is devoutly to be hoped that the former goes away
3586 (FIXME: hilfinger-2007-07-09).
3587 3. Subprogram renamings are not implemented, although the XRS
3588 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3590 /* If SYM encodes a renaming,
3592 <renaming> renames <renamed entity>,
3594 sets *LEN to the length of the renamed entity's name,
3595 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3596 the string describing the subcomponent selected from the renamed
3597 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3598 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3599 are undefined). Otherwise, returns a value indicating the category
3600 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3601 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3602 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3603 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3604 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3605 may be NULL, in which case they are not assigned.
3607 [Currently, however, GCC does not generate subprogram renamings.] */
3609 enum ada_renaming_category
3610 ada_parse_renaming (struct symbol *sym,
3611 const char **renamed_entity, int *len,
3612 const char **renaming_expr)
3614 enum ada_renaming_category kind;
3619 return ADA_NOT_RENAMING;
3620 switch (SYMBOL_CLASS (sym))
3623 return ADA_NOT_RENAMING;
3625 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3626 renamed_entity, len, renaming_expr);
3630 case LOC_OPTIMIZED_OUT:
3631 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3633 return ADA_NOT_RENAMING;
3637 kind = ADA_OBJECT_RENAMING;
3641 kind = ADA_EXCEPTION_RENAMING;
3645 kind = ADA_PACKAGE_RENAMING;
3649 kind = ADA_SUBPROGRAM_RENAMING;
3653 return ADA_NOT_RENAMING;
3657 if (renamed_entity != NULL)
3658 *renamed_entity = info;
3659 suffix = strstr (info, "___XE");
3660 if (suffix == NULL || suffix == info)
3661 return ADA_NOT_RENAMING;
3663 *len = strlen (info) - strlen (suffix);
3665 if (renaming_expr != NULL)
3666 *renaming_expr = suffix;
3670 /* Assuming TYPE encodes a renaming according to the old encoding in
3671 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3672 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3673 ADA_NOT_RENAMING otherwise. */
3674 static enum ada_renaming_category
3675 parse_old_style_renaming (struct type *type,
3676 const char **renamed_entity, int *len,
3677 const char **renaming_expr)
3679 enum ada_renaming_category kind;
3684 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3685 || TYPE_NFIELDS (type) != 1)
3686 return ADA_NOT_RENAMING;
3688 name = type_name_no_tag (type);
3690 return ADA_NOT_RENAMING;
3692 name = strstr (name, "___XR");
3694 return ADA_NOT_RENAMING;
3699 kind = ADA_OBJECT_RENAMING;
3702 kind = ADA_EXCEPTION_RENAMING;
3705 kind = ADA_PACKAGE_RENAMING;
3708 kind = ADA_SUBPROGRAM_RENAMING;
3711 return ADA_NOT_RENAMING;
3714 info = TYPE_FIELD_NAME (type, 0);
3716 return ADA_NOT_RENAMING;
3717 if (renamed_entity != NULL)
3718 *renamed_entity = info;
3719 suffix = strstr (info, "___XE");
3720 if (renaming_expr != NULL)
3721 *renaming_expr = suffix + 5;
3722 if (suffix == NULL || suffix == info)
3723 return ADA_NOT_RENAMING;
3725 *len = suffix - info;
3731 /* Evaluation: Function Calls */
3733 /* Return an lvalue containing the value VAL. This is the identity on
3734 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3735 on the stack, using and updating *SP as the stack pointer, and
3736 returning an lvalue whose value_address points to the copy. */
3738 static struct value *
3739 ensure_lval (struct value *val, CORE_ADDR *sp)
3741 if (! VALUE_LVAL (val))
3743 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3745 /* The following is taken from the structure-return code in
3746 call_function_by_hand. FIXME: Therefore, some refactoring seems
3748 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3750 /* Stack grows downward. Align SP and value_address (val) after
3751 reserving sufficient space. */
3753 if (gdbarch_frame_align_p (current_gdbarch))
3754 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3755 set_value_address (val, *sp);
3759 /* Stack grows upward. Align the frame, allocate space, and
3760 then again, re-align the frame. */
3761 if (gdbarch_frame_align_p (current_gdbarch))
3762 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3763 set_value_address (val, *sp);
3765 if (gdbarch_frame_align_p (current_gdbarch))
3766 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3768 VALUE_LVAL (val) = lval_memory;
3770 write_memory (value_address (val), value_contents_raw (val), len);
3776 /* Return the value ACTUAL, converted to be an appropriate value for a
3777 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3778 allocating any necessary descriptors (fat pointers), or copies of
3779 values not residing in memory, updating it as needed. */
3782 ada_convert_actual (struct value *actual, struct type *formal_type0,
3785 struct type *actual_type = ada_check_typedef (value_type (actual));
3786 struct type *formal_type = ada_check_typedef (formal_type0);
3787 struct type *formal_target =
3788 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3789 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3790 struct type *actual_target =
3791 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3792 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3794 if (ada_is_array_descriptor_type (formal_target)
3795 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3796 return make_array_descriptor (formal_type, actual, sp);
3797 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3798 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3800 struct value *result;
3801 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3802 && ada_is_array_descriptor_type (actual_target))
3803 result = desc_data (actual);
3804 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3806 if (VALUE_LVAL (actual) != lval_memory)
3809 actual_type = ada_check_typedef (value_type (actual));
3810 val = allocate_value (actual_type);
3811 memcpy ((char *) value_contents_raw (val),
3812 (char *) value_contents (actual),
3813 TYPE_LENGTH (actual_type));
3814 actual = ensure_lval (val, sp);
3816 result = value_addr (actual);
3820 return value_cast_pointers (formal_type, result);
3822 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3823 return ada_value_ind (actual);
3829 /* Push a descriptor of type TYPE for array value ARR on the stack at
3830 *SP, updating *SP to reflect the new descriptor. Return either
3831 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3832 to-descriptor type rather than a descriptor type), a struct value *
3833 representing a pointer to this descriptor. */
3835 static struct value *
3836 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3838 struct type *bounds_type = desc_bounds_type (type);
3839 struct type *desc_type = desc_base_type (type);
3840 struct value *descriptor = allocate_value (desc_type);
3841 struct value *bounds = allocate_value (bounds_type);
3844 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3846 modify_general_field (value_contents_writeable (bounds),
3847 ada_array_bound (arr, i, 0),
3848 desc_bound_bitpos (bounds_type, i, 0),
3849 desc_bound_bitsize (bounds_type, i, 0));
3850 modify_general_field (value_contents_writeable (bounds),
3851 ada_array_bound (arr, i, 1),
3852 desc_bound_bitpos (bounds_type, i, 1),
3853 desc_bound_bitsize (bounds_type, i, 1));
3856 bounds = ensure_lval (bounds, sp);
3858 modify_general_field (value_contents_writeable (descriptor),
3859 value_address (ensure_lval (arr, sp)),
3860 fat_pntr_data_bitpos (desc_type),
3861 fat_pntr_data_bitsize (desc_type));
3863 modify_general_field (value_contents_writeable (descriptor),
3864 value_address (bounds),
3865 fat_pntr_bounds_bitpos (desc_type),
3866 fat_pntr_bounds_bitsize (desc_type));
3868 descriptor = ensure_lval (descriptor, sp);
3870 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3871 return value_addr (descriptor);
3876 /* Dummy definitions for an experimental caching module that is not
3877 * used in the public sources. */
3880 lookup_cached_symbol (const char *name, domain_enum namespace,
3881 struct symbol **sym, struct block **block)
3887 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3888 struct block *block)
3894 /* Return the result of a standard (literal, C-like) lookup of NAME in
3895 given DOMAIN, visible from lexical block BLOCK. */
3897 static struct symbol *
3898 standard_lookup (const char *name, const struct block *block,
3903 if (lookup_cached_symbol (name, domain, &sym, NULL))
3905 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3906 cache_symbol (name, domain, sym, block_found);
3911 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3912 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3913 since they contend in overloading in the same way. */
3915 is_nonfunction (struct ada_symbol_info syms[], int n)
3919 for (i = 0; i < n; i += 1)
3920 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3921 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3922 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3928 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3929 struct types. Otherwise, they may not. */
3932 equiv_types (struct type *type0, struct type *type1)
3936 if (type0 == NULL || type1 == NULL
3937 || TYPE_CODE (type0) != TYPE_CODE (type1))
3939 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3940 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3941 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3942 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3948 /* True iff SYM0 represents the same entity as SYM1, or one that is
3949 no more defined than that of SYM1. */
3952 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3956 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3957 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3960 switch (SYMBOL_CLASS (sym0))
3966 struct type *type0 = SYMBOL_TYPE (sym0);
3967 struct type *type1 = SYMBOL_TYPE (sym1);
3968 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3969 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3970 int len0 = strlen (name0);
3972 TYPE_CODE (type0) == TYPE_CODE (type1)
3973 && (equiv_types (type0, type1)
3974 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3975 && strncmp (name1 + len0, "___XV", 5) == 0));
3978 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3979 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3985 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3986 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3989 add_defn_to_vec (struct obstack *obstackp,
3991 struct block *block)
3995 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3997 /* Do not try to complete stub types, as the debugger is probably
3998 already scanning all symbols matching a certain name at the
3999 time when this function is called. Trying to replace the stub
4000 type by its associated full type will cause us to restart a scan
4001 which may lead to an infinite recursion. Instead, the client
4002 collecting the matching symbols will end up collecting several
4003 matches, with at least one of them complete. It can then filter
4004 out the stub ones if needed. */
4006 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4008 if (lesseq_defined_than (sym, prevDefns[i].sym))
4010 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4012 prevDefns[i].sym = sym;
4013 prevDefns[i].block = block;
4019 struct ada_symbol_info info;
4023 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4027 /* Number of ada_symbol_info structures currently collected in
4028 current vector in *OBSTACKP. */
4031 num_defns_collected (struct obstack *obstackp)
4033 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4036 /* Vector of ada_symbol_info structures currently collected in current
4037 vector in *OBSTACKP. If FINISH, close off the vector and return
4038 its final address. */
4040 static struct ada_symbol_info *
4041 defns_collected (struct obstack *obstackp, int finish)
4044 return obstack_finish (obstackp);
4046 return (struct ada_symbol_info *) obstack_base (obstackp);
4049 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4050 Check the global symbols if GLOBAL, the static symbols if not.
4051 Do wild-card match if WILD. */
4053 static struct partial_symbol *
4054 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4055 int global, domain_enum namespace, int wild)
4057 struct partial_symbol **start;
4058 int name_len = strlen (name);
4059 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4068 pst->objfile->global_psymbols.list + pst->globals_offset :
4069 pst->objfile->static_psymbols.list + pst->statics_offset);
4073 for (i = 0; i < length; i += 1)
4075 struct partial_symbol *psym = start[i];
4077 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4078 SYMBOL_DOMAIN (psym), namespace)
4079 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4093 int M = (U + i) >> 1;
4094 struct partial_symbol *psym = start[M];
4095 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4097 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4099 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4110 struct partial_symbol *psym = start[i];
4112 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4113 SYMBOL_DOMAIN (psym), namespace))
4115 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4123 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4137 int M = (U + i) >> 1;
4138 struct partial_symbol *psym = start[M];
4139 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4141 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4143 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4154 struct partial_symbol *psym = start[i];
4156 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4157 SYMBOL_DOMAIN (psym), namespace))
4161 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4164 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4166 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4176 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4186 /* Return a minimal symbol matching NAME according to Ada decoding
4187 rules. Returns NULL if there is no such minimal symbol. Names
4188 prefixed with "standard__" are handled specially: "standard__" is
4189 first stripped off, and only static and global symbols are searched. */
4191 struct minimal_symbol *
4192 ada_lookup_simple_minsym (const char *name)
4194 struct objfile *objfile;
4195 struct minimal_symbol *msymbol;
4198 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4200 name += sizeof ("standard__") - 1;
4204 wild_match = (strstr (name, "__") == NULL);
4206 ALL_MSYMBOLS (objfile, msymbol)
4208 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4209 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4216 /* For all subprograms that statically enclose the subprogram of the
4217 selected frame, add symbols matching identifier NAME in DOMAIN
4218 and their blocks to the list of data in OBSTACKP, as for
4219 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4223 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4224 const char *name, domain_enum namespace,
4229 /* True if TYPE is definitely an artificial type supplied to a symbol
4230 for which no debugging information was given in the symbol file. */
4233 is_nondebugging_type (struct type *type)
4235 char *name = ada_type_name (type);
4236 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4239 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4240 duplicate other symbols in the list (The only case I know of where
4241 this happens is when object files containing stabs-in-ecoff are
4242 linked with files containing ordinary ecoff debugging symbols (or no
4243 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4244 Returns the number of items in the modified list. */
4247 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4256 /* If two symbols have the same name and one of them is a stub type,
4257 the get rid of the stub. */
4259 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4260 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4262 for (j = 0; j < nsyms; j++)
4265 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4266 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4267 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4268 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4273 /* Two symbols with the same name, same class and same address
4274 should be identical. */
4276 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4277 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4278 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4280 for (j = 0; j < nsyms; j += 1)
4283 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4284 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4285 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4286 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4287 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4288 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4295 for (j = i + 1; j < nsyms; j += 1)
4296 syms[j - 1] = syms[j];
4305 /* Given a type that corresponds to a renaming entity, use the type name
4306 to extract the scope (package name or function name, fully qualified,
4307 and following the GNAT encoding convention) where this renaming has been
4308 defined. The string returned needs to be deallocated after use. */
4311 xget_renaming_scope (struct type *renaming_type)
4313 /* The renaming types adhere to the following convention:
4314 <scope>__<rename>___<XR extension>.
4315 So, to extract the scope, we search for the "___XR" extension,
4316 and then backtrack until we find the first "__". */
4318 const char *name = type_name_no_tag (renaming_type);
4319 char *suffix = strstr (name, "___XR");
4324 /* Now, backtrack a bit until we find the first "__". Start looking
4325 at suffix - 3, as the <rename> part is at least one character long. */
4327 for (last = suffix - 3; last > name; last--)
4328 if (last[0] == '_' && last[1] == '_')
4331 /* Make a copy of scope and return it. */
4333 scope_len = last - name;
4334 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4336 strncpy (scope, name, scope_len);
4337 scope[scope_len] = '\0';
4342 /* Return nonzero if NAME corresponds to a package name. */
4345 is_package_name (const char *name)
4347 /* Here, We take advantage of the fact that no symbols are generated
4348 for packages, while symbols are generated for each function.
4349 So the condition for NAME represent a package becomes equivalent
4350 to NAME not existing in our list of symbols. There is only one
4351 small complication with library-level functions (see below). */
4355 /* If it is a function that has not been defined at library level,
4356 then we should be able to look it up in the symbols. */
4357 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4360 /* Library-level function names start with "_ada_". See if function
4361 "_ada_" followed by NAME can be found. */
4363 /* Do a quick check that NAME does not contain "__", since library-level
4364 functions names cannot contain "__" in them. */
4365 if (strstr (name, "__") != NULL)
4368 fun_name = xstrprintf ("_ada_%s", name);
4370 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4373 /* Return nonzero if SYM corresponds to a renaming entity that is
4374 not visible from FUNCTION_NAME. */
4377 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4381 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4384 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4386 make_cleanup (xfree, scope);
4388 /* If the rename has been defined in a package, then it is visible. */
4389 if (is_package_name (scope))
4392 /* Check that the rename is in the current function scope by checking
4393 that its name starts with SCOPE. */
4395 /* If the function name starts with "_ada_", it means that it is
4396 a library-level function. Strip this prefix before doing the
4397 comparison, as the encoding for the renaming does not contain
4399 if (strncmp (function_name, "_ada_", 5) == 0)
4402 return (strncmp (function_name, scope, strlen (scope)) != 0);
4405 /* Remove entries from SYMS that corresponds to a renaming entity that
4406 is not visible from the function associated with CURRENT_BLOCK or
4407 that is superfluous due to the presence of more specific renaming
4408 information. Places surviving symbols in the initial entries of
4409 SYMS and returns the number of surviving symbols.
4412 First, in cases where an object renaming is implemented as a
4413 reference variable, GNAT may produce both the actual reference
4414 variable and the renaming encoding. In this case, we discard the
4417 Second, GNAT emits a type following a specified encoding for each renaming
4418 entity. Unfortunately, STABS currently does not support the definition
4419 of types that are local to a given lexical block, so all renamings types
4420 are emitted at library level. As a consequence, if an application
4421 contains two renaming entities using the same name, and a user tries to
4422 print the value of one of these entities, the result of the ada symbol
4423 lookup will also contain the wrong renaming type.
4425 This function partially covers for this limitation by attempting to
4426 remove from the SYMS list renaming symbols that should be visible
4427 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4428 method with the current information available. The implementation
4429 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4431 - When the user tries to print a rename in a function while there
4432 is another rename entity defined in a package: Normally, the
4433 rename in the function has precedence over the rename in the
4434 package, so the latter should be removed from the list. This is
4435 currently not the case.
4437 - This function will incorrectly remove valid renames if
4438 the CURRENT_BLOCK corresponds to a function which symbol name
4439 has been changed by an "Export" pragma. As a consequence,
4440 the user will be unable to print such rename entities. */
4443 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4444 int nsyms, const struct block *current_block)
4446 struct symbol *current_function;
4447 char *current_function_name;
4449 int is_new_style_renaming;
4451 /* If there is both a renaming foo___XR... encoded as a variable and
4452 a simple variable foo in the same block, discard the latter.
4453 First, zero out such symbols, then compress. */
4454 is_new_style_renaming = 0;
4455 for (i = 0; i < nsyms; i += 1)
4457 struct symbol *sym = syms[i].sym;
4458 struct block *block = syms[i].block;
4462 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4464 name = SYMBOL_LINKAGE_NAME (sym);
4465 suffix = strstr (name, "___XR");
4469 int name_len = suffix - name;
4471 is_new_style_renaming = 1;
4472 for (j = 0; j < nsyms; j += 1)
4473 if (i != j && syms[j].sym != NULL
4474 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4476 && block == syms[j].block)
4480 if (is_new_style_renaming)
4484 for (j = k = 0; j < nsyms; j += 1)
4485 if (syms[j].sym != NULL)
4493 /* Extract the function name associated to CURRENT_BLOCK.
4494 Abort if unable to do so. */
4496 if (current_block == NULL)
4499 current_function = block_linkage_function (current_block);
4500 if (current_function == NULL)
4503 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4504 if (current_function_name == NULL)
4507 /* Check each of the symbols, and remove it from the list if it is
4508 a type corresponding to a renaming that is out of the scope of
4509 the current block. */
4514 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4515 == ADA_OBJECT_RENAMING
4516 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4519 for (j = i + 1; j < nsyms; j += 1)
4520 syms[j - 1] = syms[j];
4530 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4531 whose name and domain match NAME and DOMAIN respectively.
4532 If no match was found, then extend the search to "enclosing"
4533 routines (in other words, if we're inside a nested function,
4534 search the symbols defined inside the enclosing functions).
4536 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4539 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4540 struct block *block, domain_enum domain,
4543 int block_depth = 0;
4545 while (block != NULL)
4548 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4550 /* If we found a non-function match, assume that's the one. */
4551 if (is_nonfunction (defns_collected (obstackp, 0),
4552 num_defns_collected (obstackp)))
4555 block = BLOCK_SUPERBLOCK (block);
4558 /* If no luck so far, try to find NAME as a local symbol in some lexically
4559 enclosing subprogram. */
4560 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4561 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4564 /* Add to OBSTACKP all non-local symbols whose name and domain match
4565 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4566 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4569 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4570 domain_enum domain, int global,
4573 struct objfile *objfile;
4574 struct partial_symtab *ps;
4576 ALL_PSYMTABS (objfile, ps)
4580 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4582 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4583 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4585 if (s == NULL || !s->primary)
4587 ada_add_block_symbols (obstackp,
4588 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4589 name, domain, objfile, wild_match);
4594 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4595 scope and in global scopes, returning the number of matches. Sets
4596 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4597 indicating the symbols found and the blocks and symbol tables (if
4598 any) in which they were found. This vector are transient---good only to
4599 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4600 symbol match within the nest of blocks whose innermost member is BLOCK0,
4601 is the one match returned (no other matches in that or
4602 enclosing blocks is returned). If there are any matches in or
4603 surrounding BLOCK0, then these alone are returned. Otherwise, the
4604 search extends to global and file-scope (static) symbol tables.
4605 Names prefixed with "standard__" are handled specially: "standard__"
4606 is first stripped off, and only static and global symbols are searched. */
4609 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4610 domain_enum namespace,
4611 struct ada_symbol_info **results)
4614 struct block *block;
4620 obstack_free (&symbol_list_obstack, NULL);
4621 obstack_init (&symbol_list_obstack);
4625 /* Search specified block and its superiors. */
4627 wild_match = (strstr (name0, "__") == NULL);
4629 block = (struct block *) block0; /* FIXME: No cast ought to be
4630 needed, but adding const will
4631 have a cascade effect. */
4633 /* Special case: If the user specifies a symbol name inside package
4634 Standard, do a non-wild matching of the symbol name without
4635 the "standard__" prefix. This was primarily introduced in order
4636 to allow the user to specifically access the standard exceptions
4637 using, for instance, Standard.Constraint_Error when Constraint_Error
4638 is ambiguous (due to the user defining its own Constraint_Error
4639 entity inside its program). */
4640 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4644 name = name0 + sizeof ("standard__") - 1;
4647 /* Check the non-global symbols. If we have ANY match, then we're done. */
4649 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4651 if (num_defns_collected (&symbol_list_obstack) > 0)
4654 /* No non-global symbols found. Check our cache to see if we have
4655 already performed this search before. If we have, then return
4659 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4662 add_defn_to_vec (&symbol_list_obstack, sym, block);
4666 /* Search symbols from all global blocks. */
4668 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4671 /* Now add symbols from all per-file blocks if we've gotten no hits
4672 (not strictly correct, but perhaps better than an error). */
4674 if (num_defns_collected (&symbol_list_obstack) == 0)
4675 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4679 ndefns = num_defns_collected (&symbol_list_obstack);
4680 *results = defns_collected (&symbol_list_obstack, 1);
4682 ndefns = remove_extra_symbols (*results, ndefns);
4685 cache_symbol (name0, namespace, NULL, NULL);
4687 if (ndefns == 1 && cacheIfUnique)
4688 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4690 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4696 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4697 domain_enum namespace, struct block **block_found)
4699 struct ada_symbol_info *candidates;
4702 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4704 if (n_candidates == 0)
4707 if (block_found != NULL)
4708 *block_found = candidates[0].block;
4710 return fixup_symbol_section (candidates[0].sym, NULL);
4713 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4714 scope and in global scopes, or NULL if none. NAME is folded and
4715 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4716 choosing the first symbol if there are multiple choices.
4717 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4718 table in which the symbol was found (in both cases, these
4719 assignments occur only if the pointers are non-null). */
4721 ada_lookup_symbol (const char *name, const struct block *block0,
4722 domain_enum namespace, int *is_a_field_of_this)
4724 if (is_a_field_of_this != NULL)
4725 *is_a_field_of_this = 0;
4728 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4729 block0, namespace, NULL);
4732 static struct symbol *
4733 ada_lookup_symbol_nonlocal (const char *name,
4734 const char *linkage_name,
4735 const struct block *block,
4736 const domain_enum domain)
4738 if (linkage_name == NULL)
4739 linkage_name = name;
4740 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4745 /* True iff STR is a possible encoded suffix of a normal Ada name
4746 that is to be ignored for matching purposes. Suffixes of parallel
4747 names (e.g., XVE) are not included here. Currently, the possible suffixes
4748 are given by any of the regular expressions:
4750 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4751 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4752 _E[0-9]+[bs]$ [protected object entry suffixes]
4753 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4755 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4756 match is performed. This sequence is used to differentiate homonyms,
4757 is an optional part of a valid name suffix. */
4760 is_name_suffix (const char *str)
4763 const char *matching;
4764 const int len = strlen (str);
4766 /* Skip optional leading __[0-9]+. */
4768 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4771 while (isdigit (str[0]))
4777 if (str[0] == '.' || str[0] == '$')
4780 while (isdigit (matching[0]))
4782 if (matching[0] == '\0')
4788 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4791 while (isdigit (matching[0]))
4793 if (matching[0] == '\0')
4798 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4799 with a N at the end. Unfortunately, the compiler uses the same
4800 convention for other internal types it creates. So treating
4801 all entity names that end with an "N" as a name suffix causes
4802 some regressions. For instance, consider the case of an enumerated
4803 type. To support the 'Image attribute, it creates an array whose
4805 Having a single character like this as a suffix carrying some
4806 information is a bit risky. Perhaps we should change the encoding
4807 to be something like "_N" instead. In the meantime, do not do
4808 the following check. */
4809 /* Protected Object Subprograms */
4810 if (len == 1 && str [0] == 'N')
4815 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4818 while (isdigit (matching[0]))
4820 if ((matching[0] == 'b' || matching[0] == 's')
4821 && matching [1] == '\0')
4825 /* ??? We should not modify STR directly, as we are doing below. This
4826 is fine in this case, but may become problematic later if we find
4827 that this alternative did not work, and want to try matching
4828 another one from the begining of STR. Since we modified it, we
4829 won't be able to find the begining of the string anymore! */
4833 while (str[0] != '_' && str[0] != '\0')
4835 if (str[0] != 'n' && str[0] != 'b')
4841 if (str[0] == '\000')
4846 if (str[1] != '_' || str[2] == '\000')
4850 if (strcmp (str + 3, "JM") == 0)
4852 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4853 the LJM suffix in favor of the JM one. But we will
4854 still accept LJM as a valid suffix for a reasonable
4855 amount of time, just to allow ourselves to debug programs
4856 compiled using an older version of GNAT. */
4857 if (strcmp (str + 3, "LJM") == 0)
4861 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4862 || str[4] == 'U' || str[4] == 'P')
4864 if (str[4] == 'R' && str[5] != 'T')
4868 if (!isdigit (str[2]))
4870 for (k = 3; str[k] != '\0'; k += 1)
4871 if (!isdigit (str[k]) && str[k] != '_')
4875 if (str[0] == '$' && isdigit (str[1]))
4877 for (k = 2; str[k] != '\0'; k += 1)
4878 if (!isdigit (str[k]) && str[k] != '_')
4885 /* Return non-zero if the string starting at NAME and ending before
4886 NAME_END contains no capital letters. */
4889 is_valid_name_for_wild_match (const char *name0)
4891 const char *decoded_name = ada_decode (name0);
4894 /* If the decoded name starts with an angle bracket, it means that
4895 NAME0 does not follow the GNAT encoding format. It should then
4896 not be allowed as a possible wild match. */
4897 if (decoded_name[0] == '<')
4900 for (i=0; decoded_name[i] != '\0'; i++)
4901 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4907 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4908 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4909 informational suffixes of NAME (i.e., for which is_name_suffix is
4913 wild_match (const char *patn0, int patn_len, const char *name0)
4920 match = strstr (start, patn0);
4925 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4926 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4927 && is_name_suffix (match + patn_len))
4928 return (match == name0 || is_valid_name_for_wild_match (name0));
4933 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4934 vector *defn_symbols, updating the list of symbols in OBSTACKP
4935 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4936 OBJFILE is the section containing BLOCK.
4937 SYMTAB is recorded with each symbol added. */
4940 ada_add_block_symbols (struct obstack *obstackp,
4941 struct block *block, const char *name,
4942 domain_enum domain, struct objfile *objfile,
4945 struct dict_iterator iter;
4946 int name_len = strlen (name);
4947 /* A matching argument symbol, if any. */
4948 struct symbol *arg_sym;
4949 /* Set true when we find a matching non-argument symbol. */
4958 ALL_BLOCK_SYMBOLS (block, iter, sym)
4960 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4961 SYMBOL_DOMAIN (sym), domain)
4962 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4964 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4966 else if (SYMBOL_IS_ARGUMENT (sym))
4971 add_defn_to_vec (obstackp,
4972 fixup_symbol_section (sym, objfile),
4980 ALL_BLOCK_SYMBOLS (block, iter, sym)
4982 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4983 SYMBOL_DOMAIN (sym), domain))
4985 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4987 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4989 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4991 if (SYMBOL_IS_ARGUMENT (sym))
4996 add_defn_to_vec (obstackp,
4997 fixup_symbol_section (sym, objfile),
5006 if (!found_sym && arg_sym != NULL)
5008 add_defn_to_vec (obstackp,
5009 fixup_symbol_section (arg_sym, objfile),
5018 ALL_BLOCK_SYMBOLS (block, iter, sym)
5020 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5021 SYMBOL_DOMAIN (sym), domain))
5025 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5028 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5030 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5035 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5037 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5039 if (SYMBOL_IS_ARGUMENT (sym))
5044 add_defn_to_vec (obstackp,
5045 fixup_symbol_section (sym, objfile),
5053 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5054 They aren't parameters, right? */
5055 if (!found_sym && arg_sym != NULL)
5057 add_defn_to_vec (obstackp,
5058 fixup_symbol_section (arg_sym, objfile),
5065 /* Symbol Completion */
5067 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5068 name in a form that's appropriate for the completion. The result
5069 does not need to be deallocated, but is only good until the next call.
5071 TEXT_LEN is equal to the length of TEXT.
5072 Perform a wild match if WILD_MATCH is set.
5073 ENCODED should be set if TEXT represents the start of a symbol name
5074 in its encoded form. */
5077 symbol_completion_match (const char *sym_name,
5078 const char *text, int text_len,
5079 int wild_match, int encoded)
5082 const int verbatim_match = (text[0] == '<');
5087 /* Strip the leading angle bracket. */
5092 /* First, test against the fully qualified name of the symbol. */
5094 if (strncmp (sym_name, text, text_len) == 0)
5097 if (match && !encoded)
5099 /* One needed check before declaring a positive match is to verify
5100 that iff we are doing a verbatim match, the decoded version
5101 of the symbol name starts with '<'. Otherwise, this symbol name
5102 is not a suitable completion. */
5103 const char *sym_name_copy = sym_name;
5104 int has_angle_bracket;
5106 sym_name = ada_decode (sym_name);
5107 has_angle_bracket = (sym_name[0] == '<');
5108 match = (has_angle_bracket == verbatim_match);
5109 sym_name = sym_name_copy;
5112 if (match && !verbatim_match)
5114 /* When doing non-verbatim match, another check that needs to
5115 be done is to verify that the potentially matching symbol name
5116 does not include capital letters, because the ada-mode would
5117 not be able to understand these symbol names without the
5118 angle bracket notation. */
5121 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5126 /* Second: Try wild matching... */
5128 if (!match && wild_match)
5130 /* Since we are doing wild matching, this means that TEXT
5131 may represent an unqualified symbol name. We therefore must
5132 also compare TEXT against the unqualified name of the symbol. */
5133 sym_name = ada_unqualified_name (ada_decode (sym_name));
5135 if (strncmp (sym_name, text, text_len) == 0)
5139 /* Finally: If we found a mach, prepare the result to return. */
5145 sym_name = add_angle_brackets (sym_name);
5148 sym_name = ada_decode (sym_name);
5153 typedef char *char_ptr;
5154 DEF_VEC_P (char_ptr);
5156 /* A companion function to ada_make_symbol_completion_list().
5157 Check if SYM_NAME represents a symbol which name would be suitable
5158 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5159 it is appended at the end of the given string vector SV.
5161 ORIG_TEXT is the string original string from the user command
5162 that needs to be completed. WORD is the entire command on which
5163 completion should be performed. These two parameters are used to
5164 determine which part of the symbol name should be added to the
5166 if WILD_MATCH is set, then wild matching is performed.
5167 ENCODED should be set if TEXT represents a symbol name in its
5168 encoded formed (in which case the completion should also be
5172 symbol_completion_add (VEC(char_ptr) **sv,
5173 const char *sym_name,
5174 const char *text, int text_len,
5175 const char *orig_text, const char *word,
5176 int wild_match, int encoded)
5178 const char *match = symbol_completion_match (sym_name, text, text_len,
5179 wild_match, encoded);
5185 /* We found a match, so add the appropriate completion to the given
5188 if (word == orig_text)
5190 completion = xmalloc (strlen (match) + 5);
5191 strcpy (completion, match);
5193 else if (word > orig_text)
5195 /* Return some portion of sym_name. */
5196 completion = xmalloc (strlen (match) + 5);
5197 strcpy (completion, match + (word - orig_text));
5201 /* Return some of ORIG_TEXT plus sym_name. */
5202 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5203 strncpy (completion, word, orig_text - word);
5204 completion[orig_text - word] = '\0';
5205 strcat (completion, match);
5208 VEC_safe_push (char_ptr, *sv, completion);
5211 /* Return a list of possible symbol names completing TEXT0. The list
5212 is NULL terminated. WORD is the entire command on which completion
5216 ada_make_symbol_completion_list (char *text0, char *word)
5222 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5225 struct partial_symtab *ps;
5226 struct minimal_symbol *msymbol;
5227 struct objfile *objfile;
5228 struct block *b, *surrounding_static_block = 0;
5230 struct dict_iterator iter;
5232 if (text0[0] == '<')
5234 text = xstrdup (text0);
5235 make_cleanup (xfree, text);
5236 text_len = strlen (text);
5242 text = xstrdup (ada_encode (text0));
5243 make_cleanup (xfree, text);
5244 text_len = strlen (text);
5245 for (i = 0; i < text_len; i++)
5246 text[i] = tolower (text[i]);
5248 encoded = (strstr (text0, "__") != NULL);
5249 /* If the name contains a ".", then the user is entering a fully
5250 qualified entity name, and the match must not be done in wild
5251 mode. Similarly, if the user wants to complete what looks like
5252 an encoded name, the match must not be done in wild mode. */
5253 wild_match = (strchr (text0, '.') == NULL && !encoded);
5256 /* First, look at the partial symtab symbols. */
5257 ALL_PSYMTABS (objfile, ps)
5259 struct partial_symbol **psym;
5261 /* If the psymtab's been read in we'll get it when we search
5262 through the blockvector. */
5266 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5267 psym < (objfile->global_psymbols.list + ps->globals_offset
5268 + ps->n_global_syms); psym++)
5271 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5272 text, text_len, text0, word,
5273 wild_match, encoded);
5276 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5277 psym < (objfile->static_psymbols.list + ps->statics_offset
5278 + ps->n_static_syms); psym++)
5281 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5282 text, text_len, text0, word,
5283 wild_match, encoded);
5287 /* At this point scan through the misc symbol vectors and add each
5288 symbol you find to the list. Eventually we want to ignore
5289 anything that isn't a text symbol (everything else will be
5290 handled by the psymtab code above). */
5292 ALL_MSYMBOLS (objfile, msymbol)
5295 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5296 text, text_len, text0, word, wild_match, encoded);
5299 /* Search upwards from currently selected frame (so that we can
5300 complete on local vars. */
5302 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5304 if (!BLOCK_SUPERBLOCK (b))
5305 surrounding_static_block = b; /* For elmin of dups */
5307 ALL_BLOCK_SYMBOLS (b, iter, sym)
5309 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5310 text, text_len, text0, word,
5311 wild_match, encoded);
5315 /* Go through the symtabs and check the externs and statics for
5316 symbols which match. */
5318 ALL_SYMTABS (objfile, s)
5321 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5322 ALL_BLOCK_SYMBOLS (b, iter, sym)
5324 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5325 text, text_len, text0, word,
5326 wild_match, encoded);
5330 ALL_SYMTABS (objfile, s)
5333 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5334 /* Don't do this block twice. */
5335 if (b == surrounding_static_block)
5337 ALL_BLOCK_SYMBOLS (b, iter, sym)
5339 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5340 text, text_len, text0, word,
5341 wild_match, encoded);
5345 /* Append the closing NULL entry. */
5346 VEC_safe_push (char_ptr, completions, NULL);
5348 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5349 return the copy. It's unfortunate that we have to make a copy
5350 of an array that we're about to destroy, but there is nothing much
5351 we can do about it. Fortunately, it's typically not a very large
5354 const size_t completions_size =
5355 VEC_length (char_ptr, completions) * sizeof (char *);
5356 char **result = malloc (completions_size);
5358 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5360 VEC_free (char_ptr, completions);
5367 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5368 for tagged types. */
5371 ada_is_dispatch_table_ptr_type (struct type *type)
5375 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5378 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5382 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5385 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5386 to be invisible to users. */
5389 ada_is_ignored_field (struct type *type, int field_num)
5391 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5394 /* Check the name of that field. */
5396 const char *name = TYPE_FIELD_NAME (type, field_num);
5398 /* Anonymous field names should not be printed.
5399 brobecker/2007-02-20: I don't think this can actually happen
5400 but we don't want to print the value of annonymous fields anyway. */
5404 /* A field named "_parent" is internally generated by GNAT for
5405 tagged types, and should not be printed either. */
5406 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5410 /* If this is the dispatch table of a tagged type, then ignore. */
5411 if (ada_is_tagged_type (type, 1)
5412 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5415 /* Not a special field, so it should not be ignored. */
5419 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5420 pointer or reference type whose ultimate target has a tag field. */
5423 ada_is_tagged_type (struct type *type, int refok)
5425 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5428 /* True iff TYPE represents the type of X'Tag */
5431 ada_is_tag_type (struct type *type)
5433 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5437 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5438 return (name != NULL
5439 && strcmp (name, "ada__tags__dispatch_table") == 0);
5443 /* The type of the tag on VAL. */
5446 ada_tag_type (struct value *val)
5448 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5451 /* The value of the tag on VAL. */
5454 ada_value_tag (struct value *val)
5456 return ada_value_struct_elt (val, "_tag", 0);
5459 /* The value of the tag on the object of type TYPE whose contents are
5460 saved at VALADDR, if it is non-null, or is at memory address
5463 static struct value *
5464 value_tag_from_contents_and_address (struct type *type,
5465 const gdb_byte *valaddr,
5468 int tag_byte_offset, dummy1, dummy2;
5469 struct type *tag_type;
5470 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5473 const gdb_byte *valaddr1 = ((valaddr == NULL)
5475 : valaddr + tag_byte_offset);
5476 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5478 return value_from_contents_and_address (tag_type, valaddr1, address1);
5483 static struct type *
5484 type_from_tag (struct value *tag)
5486 const char *type_name = ada_tag_name (tag);
5487 if (type_name != NULL)
5488 return ada_find_any_type (ada_encode (type_name));
5499 static int ada_tag_name_1 (void *);
5500 static int ada_tag_name_2 (struct tag_args *);
5502 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5503 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5504 The value stored in ARGS->name is valid until the next call to
5508 ada_tag_name_1 (void *args0)
5510 struct tag_args *args = (struct tag_args *) args0;
5511 static char name[1024];
5515 val = ada_value_struct_elt (args->tag, "tsd", 1);
5517 return ada_tag_name_2 (args);
5518 val = ada_value_struct_elt (val, "expanded_name", 1);
5521 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5522 for (p = name; *p != '\0'; p += 1)
5529 /* Utility function for ada_tag_name_1 that tries the second
5530 representation for the dispatch table (in which there is no
5531 explicit 'tsd' field in the referent of the tag pointer, and instead
5532 the tsd pointer is stored just before the dispatch table. */
5535 ada_tag_name_2 (struct tag_args *args)
5537 struct type *info_type;
5538 static char name[1024];
5540 struct value *val, *valp;
5543 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5544 if (info_type == NULL)
5546 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5547 valp = value_cast (info_type, args->tag);
5550 val = value_ind (value_ptradd (valp, -1));
5553 val = ada_value_struct_elt (val, "expanded_name", 1);
5556 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5557 for (p = name; *p != '\0'; p += 1)
5564 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5568 ada_tag_name (struct value *tag)
5570 struct tag_args args;
5571 if (!ada_is_tag_type (value_type (tag)))
5575 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5579 /* The parent type of TYPE, or NULL if none. */
5582 ada_parent_type (struct type *type)
5586 type = ada_check_typedef (type);
5588 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5591 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5592 if (ada_is_parent_field (type, i))
5594 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5596 /* If the _parent field is a pointer, then dereference it. */
5597 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5598 parent_type = TYPE_TARGET_TYPE (parent_type);
5599 /* If there is a parallel XVS type, get the actual base type. */
5600 parent_type = ada_get_base_type (parent_type);
5602 return ada_check_typedef (parent_type);
5608 /* True iff field number FIELD_NUM of structure type TYPE contains the
5609 parent-type (inherited) fields of a derived type. Assumes TYPE is
5610 a structure type with at least FIELD_NUM+1 fields. */
5613 ada_is_parent_field (struct type *type, int field_num)
5615 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5616 return (name != NULL
5617 && (strncmp (name, "PARENT", 6) == 0
5618 || strncmp (name, "_parent", 7) == 0));
5621 /* True iff field number FIELD_NUM of structure type TYPE is a
5622 transparent wrapper field (which should be silently traversed when doing
5623 field selection and flattened when printing). Assumes TYPE is a
5624 structure type with at least FIELD_NUM+1 fields. Such fields are always
5628 ada_is_wrapper_field (struct type *type, int field_num)
5630 const char *name = TYPE_FIELD_NAME (type, field_num);
5631 return (name != NULL
5632 && (strncmp (name, "PARENT", 6) == 0
5633 || strcmp (name, "REP") == 0
5634 || strncmp (name, "_parent", 7) == 0
5635 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5638 /* True iff field number FIELD_NUM of structure or union type TYPE
5639 is a variant wrapper. Assumes TYPE is a structure type with at least
5640 FIELD_NUM+1 fields. */
5643 ada_is_variant_part (struct type *type, int field_num)
5645 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5646 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5647 || (is_dynamic_field (type, field_num)
5648 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5649 == TYPE_CODE_UNION)));
5652 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5653 whose discriminants are contained in the record type OUTER_TYPE,
5654 returns the type of the controlling discriminant for the variant. */
5657 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5659 char *name = ada_variant_discrim_name (var_type);
5661 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5663 return builtin_type_int32;
5668 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5669 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5670 represents a 'when others' clause; otherwise 0. */
5673 ada_is_others_clause (struct type *type, int field_num)
5675 const char *name = TYPE_FIELD_NAME (type, field_num);
5676 return (name != NULL && name[0] == 'O');
5679 /* Assuming that TYPE0 is the type of the variant part of a record,
5680 returns the name of the discriminant controlling the variant.
5681 The value is valid until the next call to ada_variant_discrim_name. */
5684 ada_variant_discrim_name (struct type *type0)
5686 static char *result = NULL;
5687 static size_t result_len = 0;
5690 const char *discrim_end;
5691 const char *discrim_start;
5693 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5694 type = TYPE_TARGET_TYPE (type0);
5698 name = ada_type_name (type);
5700 if (name == NULL || name[0] == '\000')
5703 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5706 if (strncmp (discrim_end, "___XVN", 6) == 0)
5709 if (discrim_end == name)
5712 for (discrim_start = discrim_end; discrim_start != name + 3;
5715 if (discrim_start == name + 1)
5717 if ((discrim_start > name + 3
5718 && strncmp (discrim_start - 3, "___", 3) == 0)
5719 || discrim_start[-1] == '.')
5723 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5724 strncpy (result, discrim_start, discrim_end - discrim_start);
5725 result[discrim_end - discrim_start] = '\0';
5729 /* Scan STR for a subtype-encoded number, beginning at position K.
5730 Put the position of the character just past the number scanned in
5731 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5732 Return 1 if there was a valid number at the given position, and 0
5733 otherwise. A "subtype-encoded" number consists of the absolute value
5734 in decimal, followed by the letter 'm' to indicate a negative number.
5735 Assumes 0m does not occur. */
5738 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5742 if (!isdigit (str[k]))
5745 /* Do it the hard way so as not to make any assumption about
5746 the relationship of unsigned long (%lu scan format code) and
5749 while (isdigit (str[k]))
5751 RU = RU * 10 + (str[k] - '0');
5758 *R = (-(LONGEST) (RU - 1)) - 1;
5764 /* NOTE on the above: Technically, C does not say what the results of
5765 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5766 number representable as a LONGEST (although either would probably work
5767 in most implementations). When RU>0, the locution in the then branch
5768 above is always equivalent to the negative of RU. */
5775 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5776 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5777 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5780 ada_in_variant (LONGEST val, struct type *type, int field_num)
5782 const char *name = TYPE_FIELD_NAME (type, field_num);
5795 if (!ada_scan_number (name, p + 1, &W, &p))
5804 if (!ada_scan_number (name, p + 1, &L, &p)
5805 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5807 if (val >= L && val <= U)
5819 /* FIXME: Lots of redundancy below. Try to consolidate. */
5821 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5822 ARG_TYPE, extract and return the value of one of its (non-static)
5823 fields. FIELDNO says which field. Differs from value_primitive_field
5824 only in that it can handle packed values of arbitrary type. */
5826 static struct value *
5827 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5828 struct type *arg_type)
5832 arg_type = ada_check_typedef (arg_type);
5833 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5835 /* Handle packed fields. */
5837 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5839 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5840 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5842 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5843 offset + bit_pos / 8,
5844 bit_pos % 8, bit_size, type);
5847 return value_primitive_field (arg1, offset, fieldno, arg_type);
5850 /* Find field with name NAME in object of type TYPE. If found,
5851 set the following for each argument that is non-null:
5852 - *FIELD_TYPE_P to the field's type;
5853 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5854 an object of that type;
5855 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5856 - *BIT_SIZE_P to its size in bits if the field is packed, and
5858 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5859 fields up to but not including the desired field, or by the total
5860 number of fields if not found. A NULL value of NAME never
5861 matches; the function just counts visible fields in this case.
5863 Returns 1 if found, 0 otherwise. */
5866 find_struct_field (char *name, struct type *type, int offset,
5867 struct type **field_type_p,
5868 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5873 type = ada_check_typedef (type);
5875 if (field_type_p != NULL)
5876 *field_type_p = NULL;
5877 if (byte_offset_p != NULL)
5879 if (bit_offset_p != NULL)
5881 if (bit_size_p != NULL)
5884 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5886 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5887 int fld_offset = offset + bit_pos / 8;
5888 char *t_field_name = TYPE_FIELD_NAME (type, i);
5890 if (t_field_name == NULL)
5893 else if (name != NULL && field_name_match (t_field_name, name))
5895 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5896 if (field_type_p != NULL)
5897 *field_type_p = TYPE_FIELD_TYPE (type, i);
5898 if (byte_offset_p != NULL)
5899 *byte_offset_p = fld_offset;
5900 if (bit_offset_p != NULL)
5901 *bit_offset_p = bit_pos % 8;
5902 if (bit_size_p != NULL)
5903 *bit_size_p = bit_size;
5906 else if (ada_is_wrapper_field (type, i))
5908 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5909 field_type_p, byte_offset_p, bit_offset_p,
5910 bit_size_p, index_p))
5913 else if (ada_is_variant_part (type, i))
5915 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5918 struct type *field_type
5919 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5921 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5923 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5925 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5926 field_type_p, byte_offset_p,
5927 bit_offset_p, bit_size_p, index_p))
5931 else if (index_p != NULL)
5937 /* Number of user-visible fields in record type TYPE. */
5940 num_visible_fields (struct type *type)
5944 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5948 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5949 and search in it assuming it has (class) type TYPE.
5950 If found, return value, else return NULL.
5952 Searches recursively through wrapper fields (e.g., '_parent'). */
5954 static struct value *
5955 ada_search_struct_field (char *name, struct value *arg, int offset,
5959 type = ada_check_typedef (type);
5961 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5963 char *t_field_name = TYPE_FIELD_NAME (type, i);
5965 if (t_field_name == NULL)
5968 else if (field_name_match (t_field_name, name))
5969 return ada_value_primitive_field (arg, offset, i, type);
5971 else if (ada_is_wrapper_field (type, i))
5973 struct value *v = /* Do not let indent join lines here. */
5974 ada_search_struct_field (name, arg,
5975 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5976 TYPE_FIELD_TYPE (type, i));
5981 else if (ada_is_variant_part (type, i))
5983 /* PNH: Do we ever get here? See find_struct_field. */
5985 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5986 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5988 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5990 struct value *v = ada_search_struct_field /* Force line break. */
5992 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5993 TYPE_FIELD_TYPE (field_type, j));
6002 static struct value *ada_index_struct_field_1 (int *, struct value *,
6003 int, struct type *);
6006 /* Return field #INDEX in ARG, where the index is that returned by
6007 * find_struct_field through its INDEX_P argument. Adjust the address
6008 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6009 * If found, return value, else return NULL. */
6011 static struct value *
6012 ada_index_struct_field (int index, struct value *arg, int offset,
6015 return ada_index_struct_field_1 (&index, arg, offset, type);
6019 /* Auxiliary function for ada_index_struct_field. Like
6020 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6023 static struct value *
6024 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6028 type = ada_check_typedef (type);
6030 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6032 if (TYPE_FIELD_NAME (type, i) == NULL)
6034 else if (ada_is_wrapper_field (type, i))
6036 struct value *v = /* Do not let indent join lines here. */
6037 ada_index_struct_field_1 (index_p, arg,
6038 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6039 TYPE_FIELD_TYPE (type, i));
6044 else if (ada_is_variant_part (type, i))
6046 /* PNH: Do we ever get here? See ada_search_struct_field,
6047 find_struct_field. */
6048 error (_("Cannot assign this kind of variant record"));
6050 else if (*index_p == 0)
6051 return ada_value_primitive_field (arg, offset, i, type);
6058 /* Given ARG, a value of type (pointer or reference to a)*
6059 structure/union, extract the component named NAME from the ultimate
6060 target structure/union and return it as a value with its
6063 The routine searches for NAME among all members of the structure itself
6064 and (recursively) among all members of any wrapper members
6067 If NO_ERR, then simply return NULL in case of error, rather than
6071 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6073 struct type *t, *t1;
6077 t1 = t = ada_check_typedef (value_type (arg));
6078 if (TYPE_CODE (t) == TYPE_CODE_REF)
6080 t1 = TYPE_TARGET_TYPE (t);
6083 t1 = ada_check_typedef (t1);
6084 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6086 arg = coerce_ref (arg);
6091 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6093 t1 = TYPE_TARGET_TYPE (t);
6096 t1 = ada_check_typedef (t1);
6097 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6099 arg = value_ind (arg);
6106 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6110 v = ada_search_struct_field (name, arg, 0, t);
6113 int bit_offset, bit_size, byte_offset;
6114 struct type *field_type;
6117 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6118 address = value_as_address (arg);
6120 address = unpack_pointer (t, value_contents (arg));
6122 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6123 if (find_struct_field (name, t1, 0,
6124 &field_type, &byte_offset, &bit_offset,
6129 if (TYPE_CODE (t) == TYPE_CODE_REF)
6130 arg = ada_coerce_ref (arg);
6132 arg = ada_value_ind (arg);
6133 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6134 bit_offset, bit_size,
6138 v = value_at_lazy (field_type, address + byte_offset);
6142 if (v != NULL || no_err)
6145 error (_("There is no member named %s."), name);
6151 error (_("Attempt to extract a component of a value that is not a record."));
6154 /* Given a type TYPE, look up the type of the component of type named NAME.
6155 If DISPP is non-null, add its byte displacement from the beginning of a
6156 structure (pointed to by a value) of type TYPE to *DISPP (does not
6157 work for packed fields).
6159 Matches any field whose name has NAME as a prefix, possibly
6162 TYPE can be either a struct or union. If REFOK, TYPE may also
6163 be a (pointer or reference)+ to a struct or union, and the
6164 ultimate target type will be searched.
6166 Looks recursively into variant clauses and parent types.
6168 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6169 TYPE is not a type of the right kind. */
6171 static struct type *
6172 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6173 int noerr, int *dispp)
6180 if (refok && type != NULL)
6183 type = ada_check_typedef (type);
6184 if (TYPE_CODE (type) != TYPE_CODE_PTR
6185 && TYPE_CODE (type) != TYPE_CODE_REF)
6187 type = TYPE_TARGET_TYPE (type);
6191 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6192 && TYPE_CODE (type) != TYPE_CODE_UNION))
6198 target_terminal_ours ();
6199 gdb_flush (gdb_stdout);
6201 error (_("Type (null) is not a structure or union type"));
6204 /* XXX: type_sprint */
6205 fprintf_unfiltered (gdb_stderr, _("Type "));
6206 type_print (type, "", gdb_stderr, -1);
6207 error (_(" is not a structure or union type"));
6212 type = to_static_fixed_type (type);
6214 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6216 char *t_field_name = TYPE_FIELD_NAME (type, i);
6220 if (t_field_name == NULL)
6223 else if (field_name_match (t_field_name, name))
6226 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6227 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6230 else if (ada_is_wrapper_field (type, i))
6233 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6238 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6243 else if (ada_is_variant_part (type, i))
6246 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6248 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6250 /* FIXME pnh 2008/01/26: We check for a field that is
6251 NOT wrapped in a struct, since the compiler sometimes
6252 generates these for unchecked variant types. Revisit
6253 if the compiler changes this practice. */
6254 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6256 if (v_field_name != NULL
6257 && field_name_match (v_field_name, name))
6258 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6260 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6266 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6277 target_terminal_ours ();
6278 gdb_flush (gdb_stdout);
6281 /* XXX: type_sprint */
6282 fprintf_unfiltered (gdb_stderr, _("Type "));
6283 type_print (type, "", gdb_stderr, -1);
6284 error (_(" has no component named <null>"));
6288 /* XXX: type_sprint */
6289 fprintf_unfiltered (gdb_stderr, _("Type "));
6290 type_print (type, "", gdb_stderr, -1);
6291 error (_(" has no component named %s"), name);
6298 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6299 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6300 represents an unchecked union (that is, the variant part of a
6301 record that is named in an Unchecked_Union pragma). */
6304 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6306 char *discrim_name = ada_variant_discrim_name (var_type);
6307 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6312 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6313 within a value of type OUTER_TYPE that is stored in GDB at
6314 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6315 numbering from 0) is applicable. Returns -1 if none are. */
6318 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6319 const gdb_byte *outer_valaddr)
6323 char *discrim_name = ada_variant_discrim_name (var_type);
6324 struct value *outer;
6325 struct value *discrim;
6326 LONGEST discrim_val;
6328 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6329 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6330 if (discrim == NULL)
6332 discrim_val = value_as_long (discrim);
6335 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6337 if (ada_is_others_clause (var_type, i))
6339 else if (ada_in_variant (discrim_val, var_type, i))
6343 return others_clause;
6348 /* Dynamic-Sized Records */
6350 /* Strategy: The type ostensibly attached to a value with dynamic size
6351 (i.e., a size that is not statically recorded in the debugging
6352 data) does not accurately reflect the size or layout of the value.
6353 Our strategy is to convert these values to values with accurate,
6354 conventional types that are constructed on the fly. */
6356 /* There is a subtle and tricky problem here. In general, we cannot
6357 determine the size of dynamic records without its data. However,
6358 the 'struct value' data structure, which GDB uses to represent
6359 quantities in the inferior process (the target), requires the size
6360 of the type at the time of its allocation in order to reserve space
6361 for GDB's internal copy of the data. That's why the
6362 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6363 rather than struct value*s.
6365 However, GDB's internal history variables ($1, $2, etc.) are
6366 struct value*s containing internal copies of the data that are not, in
6367 general, the same as the data at their corresponding addresses in
6368 the target. Fortunately, the types we give to these values are all
6369 conventional, fixed-size types (as per the strategy described
6370 above), so that we don't usually have to perform the
6371 'to_fixed_xxx_type' conversions to look at their values.
6372 Unfortunately, there is one exception: if one of the internal
6373 history variables is an array whose elements are unconstrained
6374 records, then we will need to create distinct fixed types for each
6375 element selected. */
6377 /* The upshot of all of this is that many routines take a (type, host
6378 address, target address) triple as arguments to represent a value.
6379 The host address, if non-null, is supposed to contain an internal
6380 copy of the relevant data; otherwise, the program is to consult the
6381 target at the target address. */
6383 /* Assuming that VAL0 represents a pointer value, the result of
6384 dereferencing it. Differs from value_ind in its treatment of
6385 dynamic-sized types. */
6388 ada_value_ind (struct value *val0)
6390 struct value *val = unwrap_value (value_ind (val0));
6391 return ada_to_fixed_value (val);
6394 /* The value resulting from dereferencing any "reference to"
6395 qualifiers on VAL0. */
6397 static struct value *
6398 ada_coerce_ref (struct value *val0)
6400 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6402 struct value *val = val0;
6403 val = coerce_ref (val);
6404 val = unwrap_value (val);
6405 return ada_to_fixed_value (val);
6411 /* Return OFF rounded upward if necessary to a multiple of
6412 ALIGNMENT (a power of 2). */
6415 align_value (unsigned int off, unsigned int alignment)
6417 return (off + alignment - 1) & ~(alignment - 1);
6420 /* Return the bit alignment required for field #F of template type TYPE. */
6423 field_alignment (struct type *type, int f)
6425 const char *name = TYPE_FIELD_NAME (type, f);
6429 /* The field name should never be null, unless the debugging information
6430 is somehow malformed. In this case, we assume the field does not
6431 require any alignment. */
6435 len = strlen (name);
6437 if (!isdigit (name[len - 1]))
6440 if (isdigit (name[len - 2]))
6441 align_offset = len - 2;
6443 align_offset = len - 1;
6445 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6446 return TARGET_CHAR_BIT;
6448 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6451 /* Find a symbol named NAME. Ignores ambiguity. */
6454 ada_find_any_symbol (const char *name)
6458 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6459 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6462 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6466 /* Find a type named NAME. Ignores ambiguity. This routine will look
6467 solely for types defined by debug info, it will not search the GDB
6471 ada_find_any_type (const char *name)
6473 struct symbol *sym = ada_find_any_symbol (name);
6476 return SYMBOL_TYPE (sym);
6481 /* Given NAME and an associated BLOCK, search all symbols for
6482 NAME suffixed with "___XR", which is the ``renaming'' symbol
6483 associated to NAME. Return this symbol if found, return
6487 ada_find_renaming_symbol (const char *name, struct block *block)
6491 sym = find_old_style_renaming_symbol (name, block);
6496 /* Not right yet. FIXME pnh 7/20/2007. */
6497 sym = ada_find_any_symbol (name);
6498 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6504 static struct symbol *
6505 find_old_style_renaming_symbol (const char *name, struct block *block)
6507 const struct symbol *function_sym = block_linkage_function (block);
6510 if (function_sym != NULL)
6512 /* If the symbol is defined inside a function, NAME is not fully
6513 qualified. This means we need to prepend the function name
6514 as well as adding the ``___XR'' suffix to build the name of
6515 the associated renaming symbol. */
6516 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6517 /* Function names sometimes contain suffixes used
6518 for instance to qualify nested subprograms. When building
6519 the XR type name, we need to make sure that this suffix is
6520 not included. So do not include any suffix in the function
6521 name length below. */
6522 const int function_name_len = ada_name_prefix_len (function_name);
6523 const int rename_len = function_name_len + 2 /* "__" */
6524 + strlen (name) + 6 /* "___XR\0" */ ;
6526 /* Strip the suffix if necessary. */
6527 function_name[function_name_len] = '\0';
6529 /* Library-level functions are a special case, as GNAT adds
6530 a ``_ada_'' prefix to the function name to avoid namespace
6531 pollution. However, the renaming symbols themselves do not
6532 have this prefix, so we need to skip this prefix if present. */
6533 if (function_name_len > 5 /* "_ada_" */
6534 && strstr (function_name, "_ada_") == function_name)
6535 function_name = function_name + 5;
6537 rename = (char *) alloca (rename_len * sizeof (char));
6538 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6539 function_name, name);
6543 const int rename_len = strlen (name) + 6;
6544 rename = (char *) alloca (rename_len * sizeof (char));
6545 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6548 return ada_find_any_symbol (rename);
6551 /* Because of GNAT encoding conventions, several GDB symbols may match a
6552 given type name. If the type denoted by TYPE0 is to be preferred to
6553 that of TYPE1 for purposes of type printing, return non-zero;
6554 otherwise return 0. */
6557 ada_prefer_type (struct type *type0, struct type *type1)
6561 else if (type0 == NULL)
6563 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6565 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6567 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6569 else if (ada_is_packed_array_type (type0))
6571 else if (ada_is_array_descriptor_type (type0)
6572 && !ada_is_array_descriptor_type (type1))
6576 const char *type0_name = type_name_no_tag (type0);
6577 const char *type1_name = type_name_no_tag (type1);
6579 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6580 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6586 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6587 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6590 ada_type_name (struct type *type)
6594 else if (TYPE_NAME (type) != NULL)
6595 return TYPE_NAME (type);
6597 return TYPE_TAG_NAME (type);
6600 /* Find a parallel type to TYPE whose name is formed by appending
6601 SUFFIX to the name of TYPE. */
6604 ada_find_parallel_type (struct type *type, const char *suffix)
6607 static size_t name_len = 0;
6609 char *typename = ada_type_name (type);
6611 if (typename == NULL)
6614 len = strlen (typename);
6616 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6618 strcpy (name, typename);
6619 strcpy (name + len, suffix);
6621 return ada_find_any_type (name);
6625 /* If TYPE is a variable-size record type, return the corresponding template
6626 type describing its fields. Otherwise, return NULL. */
6628 static struct type *
6629 dynamic_template_type (struct type *type)
6631 type = ada_check_typedef (type);
6633 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6634 || ada_type_name (type) == NULL)
6638 int len = strlen (ada_type_name (type));
6639 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6642 return ada_find_parallel_type (type, "___XVE");
6646 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6647 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6650 is_dynamic_field (struct type *templ_type, int field_num)
6652 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6654 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6655 && strstr (name, "___XVL") != NULL;
6658 /* The index of the variant field of TYPE, or -1 if TYPE does not
6659 represent a variant record type. */
6662 variant_field_index (struct type *type)
6666 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6669 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6671 if (ada_is_variant_part (type, f))
6677 /* A record type with no fields. */
6679 static struct type *
6680 empty_record (struct objfile *objfile)
6682 struct type *type = alloc_type (objfile);
6683 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6684 TYPE_NFIELDS (type) = 0;
6685 TYPE_FIELDS (type) = NULL;
6686 INIT_CPLUS_SPECIFIC (type);
6687 TYPE_NAME (type) = "<empty>";
6688 TYPE_TAG_NAME (type) = NULL;
6689 TYPE_LENGTH (type) = 0;
6693 /* An ordinary record type (with fixed-length fields) that describes
6694 the value of type TYPE at VALADDR or ADDRESS (see comments at
6695 the beginning of this section) VAL according to GNAT conventions.
6696 DVAL0 should describe the (portion of a) record that contains any
6697 necessary discriminants. It should be NULL if value_type (VAL) is
6698 an outer-level type (i.e., as opposed to a branch of a variant.) A
6699 variant field (unless unchecked) is replaced by a particular branch
6702 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6703 length are not statically known are discarded. As a consequence,
6704 VALADDR, ADDRESS and DVAL0 are ignored.
6706 NOTE: Limitations: For now, we assume that dynamic fields and
6707 variants occupy whole numbers of bytes. However, they need not be
6711 ada_template_to_fixed_record_type_1 (struct type *type,
6712 const gdb_byte *valaddr,
6713 CORE_ADDR address, struct value *dval0,
6714 int keep_dynamic_fields)
6716 struct value *mark = value_mark ();
6719 int nfields, bit_len;
6722 int fld_bit_len, bit_incr;
6725 /* Compute the number of fields in this record type that are going
6726 to be processed: unless keep_dynamic_fields, this includes only
6727 fields whose position and length are static will be processed. */
6728 if (keep_dynamic_fields)
6729 nfields = TYPE_NFIELDS (type);
6733 while (nfields < TYPE_NFIELDS (type)
6734 && !ada_is_variant_part (type, nfields)
6735 && !is_dynamic_field (type, nfields))
6739 rtype = alloc_type (TYPE_OBJFILE (type));
6740 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6741 INIT_CPLUS_SPECIFIC (rtype);
6742 TYPE_NFIELDS (rtype) = nfields;
6743 TYPE_FIELDS (rtype) = (struct field *)
6744 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6745 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6746 TYPE_NAME (rtype) = ada_type_name (type);
6747 TYPE_TAG_NAME (rtype) = NULL;
6748 TYPE_FIXED_INSTANCE (rtype) = 1;
6754 for (f = 0; f < nfields; f += 1)
6756 off = align_value (off, field_alignment (type, f))
6757 + TYPE_FIELD_BITPOS (type, f);
6758 TYPE_FIELD_BITPOS (rtype, f) = off;
6759 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6761 if (ada_is_variant_part (type, f))
6764 fld_bit_len = bit_incr = 0;
6766 else if (is_dynamic_field (type, f))
6768 const gdb_byte *field_valaddr = valaddr;
6769 CORE_ADDR field_address = address;
6770 struct type *field_type =
6771 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6775 /* rtype's length is computed based on the run-time
6776 value of discriminants. If the discriminants are not
6777 initialized, the type size may be completely bogus and
6778 GDB may fail to allocate a value for it. So check the
6779 size first before creating the value. */
6781 dval = value_from_contents_and_address (rtype, valaddr, address);
6786 /* If the type referenced by this field is an aligner type, we need
6787 to unwrap that aligner type, because its size might not be set.
6788 Keeping the aligner type would cause us to compute the wrong
6789 size for this field, impacting the offset of the all the fields
6790 that follow this one. */
6791 if (ada_is_aligner_type (field_type))
6793 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6795 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6796 field_address = cond_offset_target (field_address, field_offset);
6797 field_type = ada_aligned_type (field_type);
6800 field_valaddr = cond_offset_host (field_valaddr,
6801 off / TARGET_CHAR_BIT);
6802 field_address = cond_offset_target (field_address,
6803 off / TARGET_CHAR_BIT);
6805 /* Get the fixed type of the field. Note that, in this case,
6806 we do not want to get the real type out of the tag: if
6807 the current field is the parent part of a tagged record,
6808 we will get the tag of the object. Clearly wrong: the real
6809 type of the parent is not the real type of the child. We
6810 would end up in an infinite loop. */
6811 field_type = ada_get_base_type (field_type);
6812 field_type = ada_to_fixed_type (field_type, field_valaddr,
6813 field_address, dval, 0);
6815 TYPE_FIELD_TYPE (rtype, f) = field_type;
6816 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6817 bit_incr = fld_bit_len =
6818 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6822 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6823 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6824 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6825 bit_incr = fld_bit_len =
6826 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6828 bit_incr = fld_bit_len =
6829 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6831 if (off + fld_bit_len > bit_len)
6832 bit_len = off + fld_bit_len;
6834 TYPE_LENGTH (rtype) =
6835 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6838 /* We handle the variant part, if any, at the end because of certain
6839 odd cases in which it is re-ordered so as NOT to be the last field of
6840 the record. This can happen in the presence of representation
6842 if (variant_field >= 0)
6844 struct type *branch_type;
6846 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6849 dval = value_from_contents_and_address (rtype, valaddr, address);
6854 to_fixed_variant_branch_type
6855 (TYPE_FIELD_TYPE (type, variant_field),
6856 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6857 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6858 if (branch_type == NULL)
6860 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6861 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6862 TYPE_NFIELDS (rtype) -= 1;
6866 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6867 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6869 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6871 if (off + fld_bit_len > bit_len)
6872 bit_len = off + fld_bit_len;
6873 TYPE_LENGTH (rtype) =
6874 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6878 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6879 should contain the alignment of that record, which should be a strictly
6880 positive value. If null or negative, then something is wrong, most
6881 probably in the debug info. In that case, we don't round up the size
6882 of the resulting type. If this record is not part of another structure,
6883 the current RTYPE length might be good enough for our purposes. */
6884 if (TYPE_LENGTH (type) <= 0)
6886 if (TYPE_NAME (rtype))
6887 warning (_("Invalid type size for `%s' detected: %d."),
6888 TYPE_NAME (rtype), TYPE_LENGTH (type));
6890 warning (_("Invalid type size for <unnamed> detected: %d."),
6891 TYPE_LENGTH (type));
6895 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6896 TYPE_LENGTH (type));
6899 value_free_to_mark (mark);
6900 if (TYPE_LENGTH (rtype) > varsize_limit)
6901 error (_("record type with dynamic size is larger than varsize-limit"));
6905 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6908 static struct type *
6909 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6910 CORE_ADDR address, struct value *dval0)
6912 return ada_template_to_fixed_record_type_1 (type, valaddr,
6916 /* An ordinary record type in which ___XVL-convention fields and
6917 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6918 static approximations, containing all possible fields. Uses
6919 no runtime values. Useless for use in values, but that's OK,
6920 since the results are used only for type determinations. Works on both
6921 structs and unions. Representation note: to save space, we memorize
6922 the result of this function in the TYPE_TARGET_TYPE of the
6925 static struct type *
6926 template_to_static_fixed_type (struct type *type0)
6932 if (TYPE_TARGET_TYPE (type0) != NULL)
6933 return TYPE_TARGET_TYPE (type0);
6935 nfields = TYPE_NFIELDS (type0);
6938 for (f = 0; f < nfields; f += 1)
6940 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6941 struct type *new_type;
6943 if (is_dynamic_field (type0, f))
6944 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6946 new_type = static_unwrap_type (field_type);
6947 if (type == type0 && new_type != field_type)
6949 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6950 TYPE_CODE (type) = TYPE_CODE (type0);
6951 INIT_CPLUS_SPECIFIC (type);
6952 TYPE_NFIELDS (type) = nfields;
6953 TYPE_FIELDS (type) = (struct field *)
6954 TYPE_ALLOC (type, nfields * sizeof (struct field));
6955 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6956 sizeof (struct field) * nfields);
6957 TYPE_NAME (type) = ada_type_name (type0);
6958 TYPE_TAG_NAME (type) = NULL;
6959 TYPE_FIXED_INSTANCE (type) = 1;
6960 TYPE_LENGTH (type) = 0;
6962 TYPE_FIELD_TYPE (type, f) = new_type;
6963 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6968 /* Given an object of type TYPE whose contents are at VALADDR and
6969 whose address in memory is ADDRESS, returns a revision of TYPE,
6970 which should be a non-dynamic-sized record, in which the variant
6971 part, if any, is replaced with the appropriate branch. Looks
6972 for discriminant values in DVAL0, which can be NULL if the record
6973 contains the necessary discriminant values. */
6975 static struct type *
6976 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6977 CORE_ADDR address, struct value *dval0)
6979 struct value *mark = value_mark ();
6982 struct type *branch_type;
6983 int nfields = TYPE_NFIELDS (type);
6984 int variant_field = variant_field_index (type);
6986 if (variant_field == -1)
6990 dval = value_from_contents_and_address (type, valaddr, address);
6994 rtype = alloc_type (TYPE_OBJFILE (type));
6995 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6996 INIT_CPLUS_SPECIFIC (rtype);
6997 TYPE_NFIELDS (rtype) = nfields;
6998 TYPE_FIELDS (rtype) =
6999 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7000 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7001 sizeof (struct field) * nfields);
7002 TYPE_NAME (rtype) = ada_type_name (type);
7003 TYPE_TAG_NAME (rtype) = NULL;
7004 TYPE_FIXED_INSTANCE (rtype) = 1;
7005 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7007 branch_type = to_fixed_variant_branch_type
7008 (TYPE_FIELD_TYPE (type, variant_field),
7009 cond_offset_host (valaddr,
7010 TYPE_FIELD_BITPOS (type, variant_field)
7012 cond_offset_target (address,
7013 TYPE_FIELD_BITPOS (type, variant_field)
7014 / TARGET_CHAR_BIT), dval);
7015 if (branch_type == NULL)
7018 for (f = variant_field + 1; f < nfields; f += 1)
7019 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7020 TYPE_NFIELDS (rtype) -= 1;
7024 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7025 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7026 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7027 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7029 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7031 value_free_to_mark (mark);
7035 /* An ordinary record type (with fixed-length fields) that describes
7036 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7037 beginning of this section]. Any necessary discriminants' values
7038 should be in DVAL, a record value; it may be NULL if the object
7039 at ADDR itself contains any necessary discriminant values.
7040 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7041 values from the record are needed. Except in the case that DVAL,
7042 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7043 unchecked) is replaced by a particular branch of the variant.
7045 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7046 is questionable and may be removed. It can arise during the
7047 processing of an unconstrained-array-of-record type where all the
7048 variant branches have exactly the same size. This is because in
7049 such cases, the compiler does not bother to use the XVS convention
7050 when encoding the record. I am currently dubious of this
7051 shortcut and suspect the compiler should be altered. FIXME. */
7053 static struct type *
7054 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7055 CORE_ADDR address, struct value *dval)
7057 struct type *templ_type;
7059 if (TYPE_FIXED_INSTANCE (type0))
7062 templ_type = dynamic_template_type (type0);
7064 if (templ_type != NULL)
7065 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7066 else if (variant_field_index (type0) >= 0)
7068 if (dval == NULL && valaddr == NULL && address == 0)
7070 return to_record_with_fixed_variant_part (type0, valaddr, address,
7075 TYPE_FIXED_INSTANCE (type0) = 1;
7081 /* An ordinary record type (with fixed-length fields) that describes
7082 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7083 union type. Any necessary discriminants' values should be in DVAL,
7084 a record value. That is, this routine selects the appropriate
7085 branch of the union at ADDR according to the discriminant value
7086 indicated in the union's type name. Returns VAR_TYPE0 itself if
7087 it represents a variant subject to a pragma Unchecked_Union. */
7089 static struct type *
7090 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7091 CORE_ADDR address, struct value *dval)
7094 struct type *templ_type;
7095 struct type *var_type;
7097 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7098 var_type = TYPE_TARGET_TYPE (var_type0);
7100 var_type = var_type0;
7102 templ_type = ada_find_parallel_type (var_type, "___XVU");
7104 if (templ_type != NULL)
7105 var_type = templ_type;
7107 if (is_unchecked_variant (var_type, value_type (dval)))
7110 ada_which_variant_applies (var_type,
7111 value_type (dval), value_contents (dval));
7114 return empty_record (TYPE_OBJFILE (var_type));
7115 else if (is_dynamic_field (var_type, which))
7116 return to_fixed_record_type
7117 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7118 valaddr, address, dval);
7119 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7121 to_fixed_record_type
7122 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7124 return TYPE_FIELD_TYPE (var_type, which);
7127 /* Assuming that TYPE0 is an array type describing the type of a value
7128 at ADDR, and that DVAL describes a record containing any
7129 discriminants used in TYPE0, returns a type for the value that
7130 contains no dynamic components (that is, no components whose sizes
7131 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7132 true, gives an error message if the resulting type's size is over
7135 static struct type *
7136 to_fixed_array_type (struct type *type0, struct value *dval,
7139 struct type *index_type_desc;
7140 struct type *result;
7143 if (TYPE_FIXED_INSTANCE (type0))
7146 packed_array_p = ada_is_packed_array_type (type0);
7148 type0 = decode_packed_array_type (type0);
7150 index_type_desc = ada_find_parallel_type (type0, "___XA");
7151 if (index_type_desc == NULL)
7153 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7154 /* NOTE: elt_type---the fixed version of elt_type0---should never
7155 depend on the contents of the array in properly constructed
7157 /* Create a fixed version of the array element type.
7158 We're not providing the address of an element here,
7159 and thus the actual object value cannot be inspected to do
7160 the conversion. This should not be a problem, since arrays of
7161 unconstrained objects are not allowed. In particular, all
7162 the elements of an array of a tagged type should all be of
7163 the same type specified in the debugging info. No need to
7164 consult the object tag. */
7165 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7167 /* Make sure we always create a new array type when dealing with
7168 packed array types, since we're going to fix-up the array
7169 type length and element bitsize a little further down. */
7170 if (elt_type0 == elt_type && !packed_array_p)
7173 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7174 elt_type, TYPE_INDEX_TYPE (type0));
7179 struct type *elt_type0;
7182 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7183 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7185 /* NOTE: result---the fixed version of elt_type0---should never
7186 depend on the contents of the array in properly constructed
7188 /* Create a fixed version of the array element type.
7189 We're not providing the address of an element here,
7190 and thus the actual object value cannot be inspected to do
7191 the conversion. This should not be a problem, since arrays of
7192 unconstrained objects are not allowed. In particular, all
7193 the elements of an array of a tagged type should all be of
7194 the same type specified in the debugging info. No need to
7195 consult the object tag. */
7197 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7198 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7200 struct type *range_type =
7201 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7202 dval, TYPE_OBJFILE (type0));
7203 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7204 result, range_type);
7206 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7207 error (_("array type with dynamic size is larger than varsize-limit"));
7212 /* So far, the resulting type has been created as if the original
7213 type was a regular (non-packed) array type. As a result, the
7214 bitsize of the array elements needs to be set again, and the array
7215 length needs to be recomputed based on that bitsize. */
7216 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7217 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7219 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7220 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7221 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7222 TYPE_LENGTH (result)++;
7225 TYPE_FIXED_INSTANCE (result) = 1;
7230 /* A standard type (containing no dynamically sized components)
7231 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7232 DVAL describes a record containing any discriminants used in TYPE0,
7233 and may be NULL if there are none, or if the object of type TYPE at
7234 ADDRESS or in VALADDR contains these discriminants.
7236 If CHECK_TAG is not null, in the case of tagged types, this function
7237 attempts to locate the object's tag and use it to compute the actual
7238 type. However, when ADDRESS is null, we cannot use it to determine the
7239 location of the tag, and therefore compute the tagged type's actual type.
7240 So we return the tagged type without consulting the tag. */
7242 static struct type *
7243 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7244 CORE_ADDR address, struct value *dval, int check_tag)
7246 type = ada_check_typedef (type);
7247 switch (TYPE_CODE (type))
7251 case TYPE_CODE_STRUCT:
7253 struct type *static_type = to_static_fixed_type (type);
7254 struct type *fixed_record_type =
7255 to_fixed_record_type (type, valaddr, address, NULL);
7256 /* If STATIC_TYPE is a tagged type and we know the object's address,
7257 then we can determine its tag, and compute the object's actual
7258 type from there. Note that we have to use the fixed record
7259 type (the parent part of the record may have dynamic fields
7260 and the way the location of _tag is expressed may depend on
7263 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7265 struct type *real_type =
7266 type_from_tag (value_tag_from_contents_and_address
7270 if (real_type != NULL)
7271 return to_fixed_record_type (real_type, valaddr, address, NULL);
7274 /* Check to see if there is a parallel ___XVZ variable.
7275 If there is, then it provides the actual size of our type. */
7276 else if (ada_type_name (fixed_record_type) != NULL)
7278 char *name = ada_type_name (fixed_record_type);
7279 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7283 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7284 size = get_int_var_value (xvz_name, &xvz_found);
7285 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7287 fixed_record_type = copy_type (fixed_record_type);
7288 TYPE_LENGTH (fixed_record_type) = size;
7290 /* The FIXED_RECORD_TYPE may have be a stub. We have
7291 observed this when the debugging info is STABS, and
7292 apparently it is something that is hard to fix.
7294 In practice, we don't need the actual type definition
7295 at all, because the presence of the XVZ variable allows us
7296 to assume that there must be a XVS type as well, which we
7297 should be able to use later, when we need the actual type
7300 In the meantime, pretend that the "fixed" type we are
7301 returning is NOT a stub, because this can cause trouble
7302 when using this type to create new types targeting it.
7303 Indeed, the associated creation routines often check
7304 whether the target type is a stub and will try to replace
7305 it, thus using a type with the wrong size. This, in turn,
7306 might cause the new type to have the wrong size too.
7307 Consider the case of an array, for instance, where the size
7308 of the array is computed from the number of elements in
7309 our array multiplied by the size of its element. */
7310 TYPE_STUB (fixed_record_type) = 0;
7313 return fixed_record_type;
7315 case TYPE_CODE_ARRAY:
7316 return to_fixed_array_type (type, dval, 1);
7317 case TYPE_CODE_UNION:
7321 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7325 /* The same as ada_to_fixed_type_1, except that it preserves the type
7326 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7327 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7330 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7331 CORE_ADDR address, struct value *dval, int check_tag)
7334 struct type *fixed_type =
7335 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7337 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7338 && TYPE_TARGET_TYPE (type) == fixed_type)
7344 /* A standard (static-sized) type corresponding as well as possible to
7345 TYPE0, but based on no runtime data. */
7347 static struct type *
7348 to_static_fixed_type (struct type *type0)
7355 if (TYPE_FIXED_INSTANCE (type0))
7358 type0 = ada_check_typedef (type0);
7360 switch (TYPE_CODE (type0))
7364 case TYPE_CODE_STRUCT:
7365 type = dynamic_template_type (type0);
7367 return template_to_static_fixed_type (type);
7369 return template_to_static_fixed_type (type0);
7370 case TYPE_CODE_UNION:
7371 type = ada_find_parallel_type (type0, "___XVU");
7373 return template_to_static_fixed_type (type);
7375 return template_to_static_fixed_type (type0);
7379 /* A static approximation of TYPE with all type wrappers removed. */
7381 static struct type *
7382 static_unwrap_type (struct type *type)
7384 if (ada_is_aligner_type (type))
7386 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7387 if (ada_type_name (type1) == NULL)
7388 TYPE_NAME (type1) = ada_type_name (type);
7390 return static_unwrap_type (type1);
7394 struct type *raw_real_type = ada_get_base_type (type);
7395 if (raw_real_type == type)
7398 return to_static_fixed_type (raw_real_type);
7402 /* In some cases, incomplete and private types require
7403 cross-references that are not resolved as records (for example,
7405 type FooP is access Foo;
7407 type Foo is array ...;
7408 ). In these cases, since there is no mechanism for producing
7409 cross-references to such types, we instead substitute for FooP a
7410 stub enumeration type that is nowhere resolved, and whose tag is
7411 the name of the actual type. Call these types "non-record stubs". */
7413 /* A type equivalent to TYPE that is not a non-record stub, if one
7414 exists, otherwise TYPE. */
7417 ada_check_typedef (struct type *type)
7422 CHECK_TYPEDEF (type);
7423 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7424 || !TYPE_STUB (type)
7425 || TYPE_TAG_NAME (type) == NULL)
7429 char *name = TYPE_TAG_NAME (type);
7430 struct type *type1 = ada_find_any_type (name);
7431 return (type1 == NULL) ? type : type1;
7435 /* A value representing the data at VALADDR/ADDRESS as described by
7436 type TYPE0, but with a standard (static-sized) type that correctly
7437 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7438 type, then return VAL0 [this feature is simply to avoid redundant
7439 creation of struct values]. */
7441 static struct value *
7442 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7445 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7446 if (type == type0 && val0 != NULL)
7449 return value_from_contents_and_address (type, 0, address);
7452 /* A value representing VAL, but with a standard (static-sized) type
7453 that correctly describes it. Does not necessarily create a new
7456 static struct value *
7457 ada_to_fixed_value (struct value *val)
7459 return ada_to_fixed_value_create (value_type (val),
7460 value_address (val),
7464 /* A value representing VAL, but with a standard (static-sized) type
7465 chosen to approximate the real type of VAL as well as possible, but
7466 without consulting any runtime values. For Ada dynamic-sized
7467 types, therefore, the type of the result is likely to be inaccurate. */
7469 static struct value *
7470 ada_to_static_fixed_value (struct value *val)
7473 to_static_fixed_type (static_unwrap_type (value_type (val)));
7474 if (type == value_type (val))
7477 return coerce_unspec_val_to_type (val, type);
7483 /* Table mapping attribute numbers to names.
7484 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7486 static const char *attribute_names[] = {
7504 ada_attribute_name (enum exp_opcode n)
7506 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7507 return attribute_names[n - OP_ATR_FIRST + 1];
7509 return attribute_names[0];
7512 /* Evaluate the 'POS attribute applied to ARG. */
7515 pos_atr (struct value *arg)
7517 struct value *val = coerce_ref (arg);
7518 struct type *type = value_type (val);
7520 if (!discrete_type_p (type))
7521 error (_("'POS only defined on discrete types"));
7523 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7526 LONGEST v = value_as_long (val);
7528 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7530 if (v == TYPE_FIELD_BITPOS (type, i))
7533 error (_("enumeration value is invalid: can't find 'POS"));
7536 return value_as_long (val);
7539 static struct value *
7540 value_pos_atr (struct type *type, struct value *arg)
7542 return value_from_longest (type, pos_atr (arg));
7545 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7547 static struct value *
7548 value_val_atr (struct type *type, struct value *arg)
7550 if (!discrete_type_p (type))
7551 error (_("'VAL only defined on discrete types"));
7552 if (!integer_type_p (value_type (arg)))
7553 error (_("'VAL requires integral argument"));
7555 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7557 long pos = value_as_long (arg);
7558 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7559 error (_("argument to 'VAL out of range"));
7560 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7563 return value_from_longest (type, value_as_long (arg));
7569 /* True if TYPE appears to be an Ada character type.
7570 [At the moment, this is true only for Character and Wide_Character;
7571 It is a heuristic test that could stand improvement]. */
7574 ada_is_character_type (struct type *type)
7578 /* If the type code says it's a character, then assume it really is,
7579 and don't check any further. */
7580 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7583 /* Otherwise, assume it's a character type iff it is a discrete type
7584 with a known character type name. */
7585 name = ada_type_name (type);
7586 return (name != NULL
7587 && (TYPE_CODE (type) == TYPE_CODE_INT
7588 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7589 && (strcmp (name, "character") == 0
7590 || strcmp (name, "wide_character") == 0
7591 || strcmp (name, "wide_wide_character") == 0
7592 || strcmp (name, "unsigned char") == 0));
7595 /* True if TYPE appears to be an Ada string type. */
7598 ada_is_string_type (struct type *type)
7600 type = ada_check_typedef (type);
7602 && TYPE_CODE (type) != TYPE_CODE_PTR
7603 && (ada_is_simple_array_type (type)
7604 || ada_is_array_descriptor_type (type))
7605 && ada_array_arity (type) == 1)
7607 struct type *elttype = ada_array_element_type (type, 1);
7609 return ada_is_character_type (elttype);
7616 /* True if TYPE is a struct type introduced by the compiler to force the
7617 alignment of a value. Such types have a single field with a
7618 distinctive name. */
7621 ada_is_aligner_type (struct type *type)
7623 type = ada_check_typedef (type);
7625 /* If we can find a parallel XVS type, then the XVS type should
7626 be used instead of this type. And hence, this is not an aligner
7628 if (ada_find_parallel_type (type, "___XVS") != NULL)
7631 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7632 && TYPE_NFIELDS (type) == 1
7633 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7636 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7637 the parallel type. */
7640 ada_get_base_type (struct type *raw_type)
7642 struct type *real_type_namer;
7643 struct type *raw_real_type;
7645 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7648 if (ada_is_aligner_type (raw_type))
7649 /* The encoding specifies that we should always use the aligner type.
7650 So, even if this aligner type has an associated XVS type, we should
7653 According to the compiler gurus, an XVS type parallel to an aligner
7654 type may exist because of a stabs limitation. In stabs, aligner
7655 types are empty because the field has a variable-sized type, and
7656 thus cannot actually be used as an aligner type. As a result,
7657 we need the associated parallel XVS type to decode the type.
7658 Since the policy in the compiler is to not change the internal
7659 representation based on the debugging info format, we sometimes
7660 end up having a redundant XVS type parallel to the aligner type. */
7663 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7664 if (real_type_namer == NULL
7665 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7666 || TYPE_NFIELDS (real_type_namer) != 1)
7669 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7670 if (raw_real_type == NULL)
7673 return raw_real_type;
7676 /* The type of value designated by TYPE, with all aligners removed. */
7679 ada_aligned_type (struct type *type)
7681 if (ada_is_aligner_type (type))
7682 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7684 return ada_get_base_type (type);
7688 /* The address of the aligned value in an object at address VALADDR
7689 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7692 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7694 if (ada_is_aligner_type (type))
7695 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7697 TYPE_FIELD_BITPOS (type,
7698 0) / TARGET_CHAR_BIT);
7705 /* The printed representation of an enumeration literal with encoded
7706 name NAME. The value is good to the next call of ada_enum_name. */
7708 ada_enum_name (const char *name)
7710 static char *result;
7711 static size_t result_len = 0;
7714 /* First, unqualify the enumeration name:
7715 1. Search for the last '.' character. If we find one, then skip
7716 all the preceeding characters, the unqualified name starts
7717 right after that dot.
7718 2. Otherwise, we may be debugging on a target where the compiler
7719 translates dots into "__". Search forward for double underscores,
7720 but stop searching when we hit an overloading suffix, which is
7721 of the form "__" followed by digits. */
7723 tmp = strrchr (name, '.');
7728 while ((tmp = strstr (name, "__")) != NULL)
7730 if (isdigit (tmp[2]))
7740 if (name[1] == 'U' || name[1] == 'W')
7742 if (sscanf (name + 2, "%x", &v) != 1)
7748 GROW_VECT (result, result_len, 16);
7749 if (isascii (v) && isprint (v))
7750 xsnprintf (result, result_len, "'%c'", v);
7751 else if (name[1] == 'U')
7752 xsnprintf (result, result_len, "[\"%02x\"]", v);
7754 xsnprintf (result, result_len, "[\"%04x\"]", v);
7760 tmp = strstr (name, "__");
7762 tmp = strstr (name, "$");
7765 GROW_VECT (result, result_len, tmp - name + 1);
7766 strncpy (result, name, tmp - name);
7767 result[tmp - name] = '\0';
7775 /* Evaluate the subexpression of EXP starting at *POS as for
7776 evaluate_type, updating *POS to point just past the evaluated
7779 static struct value *
7780 evaluate_subexp_type (struct expression *exp, int *pos)
7782 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7785 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7788 static struct value *
7789 unwrap_value (struct value *val)
7791 struct type *type = ada_check_typedef (value_type (val));
7792 if (ada_is_aligner_type (type))
7794 struct value *v = ada_value_struct_elt (val, "F", 0);
7795 struct type *val_type = ada_check_typedef (value_type (v));
7796 if (ada_type_name (val_type) == NULL)
7797 TYPE_NAME (val_type) = ada_type_name (type);
7799 return unwrap_value (v);
7803 struct type *raw_real_type =
7804 ada_check_typedef (ada_get_base_type (type));
7806 if (type == raw_real_type)
7810 coerce_unspec_val_to_type
7811 (val, ada_to_fixed_type (raw_real_type, 0,
7812 value_address (val),
7817 static struct value *
7818 cast_to_fixed (struct type *type, struct value *arg)
7822 if (type == value_type (arg))
7824 else if (ada_is_fixed_point_type (value_type (arg)))
7825 val = ada_float_to_fixed (type,
7826 ada_fixed_to_float (value_type (arg),
7827 value_as_long (arg)));
7830 DOUBLEST argd = value_as_double (arg);
7831 val = ada_float_to_fixed (type, argd);
7834 return value_from_longest (type, val);
7837 static struct value *
7838 cast_from_fixed (struct type *type, struct value *arg)
7840 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7841 value_as_long (arg));
7842 return value_from_double (type, val);
7845 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7846 return the converted value. */
7848 static struct value *
7849 coerce_for_assign (struct type *type, struct value *val)
7851 struct type *type2 = value_type (val);
7855 type2 = ada_check_typedef (type2);
7856 type = ada_check_typedef (type);
7858 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7859 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7861 val = ada_value_ind (val);
7862 type2 = value_type (val);
7865 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7866 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7868 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7869 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7870 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7871 error (_("Incompatible types in assignment"));
7872 deprecated_set_value_type (val, type);
7877 static struct value *
7878 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7881 struct type *type1, *type2;
7884 arg1 = coerce_ref (arg1);
7885 arg2 = coerce_ref (arg2);
7886 type1 = base_type (ada_check_typedef (value_type (arg1)));
7887 type2 = base_type (ada_check_typedef (value_type (arg2)));
7889 if (TYPE_CODE (type1) != TYPE_CODE_INT
7890 || TYPE_CODE (type2) != TYPE_CODE_INT)
7891 return value_binop (arg1, arg2, op);
7900 return value_binop (arg1, arg2, op);
7903 v2 = value_as_long (arg2);
7905 error (_("second operand of %s must not be zero."), op_string (op));
7907 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7908 return value_binop (arg1, arg2, op);
7910 v1 = value_as_long (arg1);
7915 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7916 v += v > 0 ? -1 : 1;
7924 /* Should not reach this point. */
7928 val = allocate_value (type1);
7929 store_unsigned_integer (value_contents_raw (val),
7930 TYPE_LENGTH (value_type (val)), v);
7935 ada_value_equal (struct value *arg1, struct value *arg2)
7937 if (ada_is_direct_array_type (value_type (arg1))
7938 || ada_is_direct_array_type (value_type (arg2)))
7940 /* Automatically dereference any array reference before
7941 we attempt to perform the comparison. */
7942 arg1 = ada_coerce_ref (arg1);
7943 arg2 = ada_coerce_ref (arg2);
7945 arg1 = ada_coerce_to_simple_array (arg1);
7946 arg2 = ada_coerce_to_simple_array (arg2);
7947 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7948 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7949 error (_("Attempt to compare array with non-array"));
7950 /* FIXME: The following works only for types whose
7951 representations use all bits (no padding or undefined bits)
7952 and do not have user-defined equality. */
7954 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7955 && memcmp (value_contents (arg1), value_contents (arg2),
7956 TYPE_LENGTH (value_type (arg1))) == 0;
7958 return value_equal (arg1, arg2);
7961 /* Total number of component associations in the aggregate starting at
7962 index PC in EXP. Assumes that index PC is the start of an
7966 num_component_specs (struct expression *exp, int pc)
7969 m = exp->elts[pc + 1].longconst;
7972 for (i = 0; i < m; i += 1)
7974 switch (exp->elts[pc].opcode)
7980 n += exp->elts[pc + 1].longconst;
7983 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7988 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7989 component of LHS (a simple array or a record), updating *POS past
7990 the expression, assuming that LHS is contained in CONTAINER. Does
7991 not modify the inferior's memory, nor does it modify LHS (unless
7992 LHS == CONTAINER). */
7995 assign_component (struct value *container, struct value *lhs, LONGEST index,
7996 struct expression *exp, int *pos)
7998 struct value *mark = value_mark ();
8000 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8002 struct value *index_val = value_from_longest (builtin_type_int32, index);
8003 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8007 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8008 elt = ada_to_fixed_value (unwrap_value (elt));
8011 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8012 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8014 value_assign_to_component (container, elt,
8015 ada_evaluate_subexp (NULL, exp, pos,
8018 value_free_to_mark (mark);
8021 /* Assuming that LHS represents an lvalue having a record or array
8022 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8023 of that aggregate's value to LHS, advancing *POS past the
8024 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8025 lvalue containing LHS (possibly LHS itself). Does not modify
8026 the inferior's memory, nor does it modify the contents of
8027 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8029 static struct value *
8030 assign_aggregate (struct value *container,
8031 struct value *lhs, struct expression *exp,
8032 int *pos, enum noside noside)
8034 struct type *lhs_type;
8035 int n = exp->elts[*pos+1].longconst;
8036 LONGEST low_index, high_index;
8039 int max_indices, num_indices;
8040 int is_array_aggregate;
8042 struct value *mark = value_mark ();
8045 if (noside != EVAL_NORMAL)
8048 for (i = 0; i < n; i += 1)
8049 ada_evaluate_subexp (NULL, exp, pos, noside);
8053 container = ada_coerce_ref (container);
8054 if (ada_is_direct_array_type (value_type (container)))
8055 container = ada_coerce_to_simple_array (container);
8056 lhs = ada_coerce_ref (lhs);
8057 if (!deprecated_value_modifiable (lhs))
8058 error (_("Left operand of assignment is not a modifiable lvalue."));
8060 lhs_type = value_type (lhs);
8061 if (ada_is_direct_array_type (lhs_type))
8063 lhs = ada_coerce_to_simple_array (lhs);
8064 lhs_type = value_type (lhs);
8065 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8066 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8067 is_array_aggregate = 1;
8069 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8072 high_index = num_visible_fields (lhs_type) - 1;
8073 is_array_aggregate = 0;
8076 error (_("Left-hand side must be array or record."));
8078 num_specs = num_component_specs (exp, *pos - 3);
8079 max_indices = 4 * num_specs + 4;
8080 indices = alloca (max_indices * sizeof (indices[0]));
8081 indices[0] = indices[1] = low_index - 1;
8082 indices[2] = indices[3] = high_index + 1;
8085 for (i = 0; i < n; i += 1)
8087 switch (exp->elts[*pos].opcode)
8090 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8091 &num_indices, max_indices,
8092 low_index, high_index);
8095 aggregate_assign_positional (container, lhs, exp, pos, indices,
8096 &num_indices, max_indices,
8097 low_index, high_index);
8101 error (_("Misplaced 'others' clause"));
8102 aggregate_assign_others (container, lhs, exp, pos, indices,
8103 num_indices, low_index, high_index);
8106 error (_("Internal error: bad aggregate clause"));
8113 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8114 construct at *POS, updating *POS past the construct, given that
8115 the positions are relative to lower bound LOW, where HIGH is the
8116 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8117 updating *NUM_INDICES as needed. CONTAINER is as for
8118 assign_aggregate. */
8120 aggregate_assign_positional (struct value *container,
8121 struct value *lhs, struct expression *exp,
8122 int *pos, LONGEST *indices, int *num_indices,
8123 int max_indices, LONGEST low, LONGEST high)
8125 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8127 if (ind - 1 == high)
8128 warning (_("Extra components in aggregate ignored."));
8131 add_component_interval (ind, ind, indices, num_indices, max_indices);
8133 assign_component (container, lhs, ind, exp, pos);
8136 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8139 /* Assign into the components of LHS indexed by the OP_CHOICES
8140 construct at *POS, updating *POS past the construct, given that
8141 the allowable indices are LOW..HIGH. Record the indices assigned
8142 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8143 needed. CONTAINER is as for assign_aggregate. */
8145 aggregate_assign_from_choices (struct value *container,
8146 struct value *lhs, struct expression *exp,
8147 int *pos, LONGEST *indices, int *num_indices,
8148 int max_indices, LONGEST low, LONGEST high)
8151 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8152 int choice_pos, expr_pc;
8153 int is_array = ada_is_direct_array_type (value_type (lhs));
8155 choice_pos = *pos += 3;
8157 for (j = 0; j < n_choices; j += 1)
8158 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8160 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8162 for (j = 0; j < n_choices; j += 1)
8164 LONGEST lower, upper;
8165 enum exp_opcode op = exp->elts[choice_pos].opcode;
8166 if (op == OP_DISCRETE_RANGE)
8169 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8171 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8176 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8187 name = &exp->elts[choice_pos + 2].string;
8190 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8193 error (_("Invalid record component association."));
8195 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8197 if (! find_struct_field (name, value_type (lhs), 0,
8198 NULL, NULL, NULL, NULL, &ind))
8199 error (_("Unknown component name: %s."), name);
8200 lower = upper = ind;
8203 if (lower <= upper && (lower < low || upper > high))
8204 error (_("Index in component association out of bounds."));
8206 add_component_interval (lower, upper, indices, num_indices,
8208 while (lower <= upper)
8212 assign_component (container, lhs, lower, exp, &pos1);
8218 /* Assign the value of the expression in the OP_OTHERS construct in
8219 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8220 have not been previously assigned. The index intervals already assigned
8221 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8222 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8224 aggregate_assign_others (struct value *container,
8225 struct value *lhs, struct expression *exp,
8226 int *pos, LONGEST *indices, int num_indices,
8227 LONGEST low, LONGEST high)
8230 int expr_pc = *pos+1;
8232 for (i = 0; i < num_indices - 2; i += 2)
8235 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8239 assign_component (container, lhs, ind, exp, &pos);
8242 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8245 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8246 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8247 modifying *SIZE as needed. It is an error if *SIZE exceeds
8248 MAX_SIZE. The resulting intervals do not overlap. */
8250 add_component_interval (LONGEST low, LONGEST high,
8251 LONGEST* indices, int *size, int max_size)
8254 for (i = 0; i < *size; i += 2) {
8255 if (high >= indices[i] && low <= indices[i + 1])
8258 for (kh = i + 2; kh < *size; kh += 2)
8259 if (high < indices[kh])
8261 if (low < indices[i])
8263 indices[i + 1] = indices[kh - 1];
8264 if (high > indices[i + 1])
8265 indices[i + 1] = high;
8266 memcpy (indices + i + 2, indices + kh, *size - kh);
8267 *size -= kh - i - 2;
8270 else if (high < indices[i])
8274 if (*size == max_size)
8275 error (_("Internal error: miscounted aggregate components."));
8277 for (j = *size-1; j >= i+2; j -= 1)
8278 indices[j] = indices[j - 2];
8280 indices[i + 1] = high;
8283 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8286 static struct value *
8287 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8289 if (type == ada_check_typedef (value_type (arg2)))
8292 if (ada_is_fixed_point_type (type))
8293 return (cast_to_fixed (type, arg2));
8295 if (ada_is_fixed_point_type (value_type (arg2)))
8296 return cast_from_fixed (type, arg2);
8298 return value_cast (type, arg2);
8301 /* Evaluating Ada expressions, and printing their result.
8302 ------------------------------------------------------
8304 We usually evaluate an Ada expression in order to print its value.
8305 We also evaluate an expression in order to print its type, which
8306 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8307 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8308 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8309 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8312 Evaluating expressions is a little more complicated for Ada entities
8313 than it is for entities in languages such as C. The main reason for
8314 this is that Ada provides types whose definition might be dynamic.
8315 One example of such types is variant records. Or another example
8316 would be an array whose bounds can only be known at run time.
8318 The following description is a general guide as to what should be
8319 done (and what should NOT be done) in order to evaluate an expression
8320 involving such types, and when. This does not cover how the semantic
8321 information is encoded by GNAT as this is covered separatly. For the
8322 document used as the reference for the GNAT encoding, see exp_dbug.ads
8323 in the GNAT sources.
8325 Ideally, we should embed each part of this description next to its
8326 associated code. Unfortunately, the amount of code is so vast right
8327 now that it's hard to see whether the code handling a particular
8328 situation might be duplicated or not. One day, when the code is
8329 cleaned up, this guide might become redundant with the comments
8330 inserted in the code, and we might want to remove it.
8332 When evaluating Ada expressions, the tricky issue is that they may
8333 reference entities whose type contents and size are not statically
8334 known. Consider for instance a variant record:
8336 type Rec (Empty : Boolean := True) is record
8339 when False => Value : Integer;
8342 Yes : Rec := (Empty => False, Value => 1);
8343 No : Rec := (empty => True);
8345 The size and contents of that record depends on the value of the
8346 descriminant (Rec.Empty). At this point, neither the debugging
8347 information nor the associated type structure in GDB are able to
8348 express such dynamic types. So what the debugger does is to create
8349 "fixed" versions of the type that applies to the specific object.
8350 We also informally refer to this opperation as "fixing" an object,
8351 which means creating its associated fixed type.
8353 Example: when printing the value of variable "Yes" above, its fixed
8354 type would look like this:
8361 On the other hand, if we printed the value of "No", its fixed type
8368 Things become a little more complicated when trying to fix an entity
8369 with a dynamic type that directly contains another dynamic type,
8370 such as an array of variant records, for instance. There are
8371 two possible cases: Arrays, and records.
8373 Arrays are a little simpler to handle, because the same amount of
8374 memory is allocated for each element of the array, even if the amount
8375 of space used by each element changes from element to element.
8376 Consider for instance the following array of type Rec:
8378 type Rec_Array is array (1 .. 2) of Rec;
8380 The type structure in GDB describes an array in terms of its
8381 bounds, and the type of its elements. By design, all elements
8382 in the array have the same type. So we cannot use a fixed type
8383 for the array elements in this case, since the fixed type depends
8384 on the actual value of each element.
8386 Fortunately, what happens in practice is that each element of
8387 the array has the same size, which is the maximum size that
8388 might be needed in order to hold an object of the element type.
8389 And the compiler shows it in the debugging information by wrapping
8390 the array element inside a private PAD type. This type should not
8391 be shown to the user, and must be "unwrap"'ed before printing. Note
8392 that we also use the adjective "aligner" in our code to designate
8393 these wrapper types.
8395 These wrapper types should have a constant size, which is the size
8396 of each element of the array. In the case when the size is statically
8397 known, the PAD type will already have the right size, and the array
8398 element type should remain unfixed. But there are cases when
8399 this size is not statically known. For instance, assuming that
8400 "Five" is an integer variable:
8402 type Dynamic is array (1 .. Five) of Integer;
8403 type Wrapper (Has_Length : Boolean := False) is record
8406 when True => Length : Integer;
8410 type Wrapper_Array is array (1 .. 2) of Wrapper;
8412 Hello : Wrapper_Array := (others => (Has_Length => True,
8413 Data => (others => 17),
8417 The debugging info would describe variable Hello as being an
8418 array of a PAD type. The size of that PAD type is not statically
8419 known, but can be determined using a parallel XVZ variable.
8420 In that case, a copy of the PAD type with the correct size should
8421 be used for the fixed array.
8423 However, things are slightly different in the case of dynamic
8424 record types. In this case, in order to compute the associated
8425 fixed type, we need to determine the size and offset of each of
8426 its components. This, in turn, requires us to compute the fixed
8427 type of each of these components.
8429 Consider for instance the example:
8431 type Bounded_String (Max_Size : Natural) is record
8432 Str : String (1 .. Max_Size);
8435 My_String : Bounded_String (Max_Size => 10);
8437 In that case, the position of field "Length" depends on the size
8438 of field Str, which itself depends on the value of the Max_Size
8439 discriminant. In order to fix the type of variable My_String,
8440 we need to fix the type of field Str. Therefore, fixing a variant
8441 record requires us to fix each of its components.
8443 However, if a component does not have a dynamic size, the component
8444 should not be fixed. In particular, fields that use a PAD type
8445 should not fixed. Here is an example where this might happen
8446 (assuming type Rec above):
8448 type Container (Big : Boolean) is record
8452 when True => Another : Integer;
8456 My_Container : Container := (Big => False,
8457 First => (Empty => True),
8460 In that example, the compiler creates a PAD type for component First,
8461 whose size is constant, and then positions the component After just
8462 right after it. The offset of component After is therefore constant
8465 The debugger computes the position of each field based on an algorithm
8466 that uses, among other things, the actual position and size of the field
8467 preceding it. Let's now imagine that the user is trying to print the
8468 value of My_Container. If the type fixing was recursive, we would
8469 end up computing the offset of field After based on the size of the
8470 fixed version of field First. And since in our example First has
8471 only one actual field, the size of the fixed type is actually smaller
8472 than the amount of space allocated to that field, and thus we would
8473 compute the wrong offset of field After.
8475 Unfortunately, we need to watch out for dynamic components of variant
8476 records (identified by the ___XVL suffix in the component name).
8477 Even if the target type is a PAD type, the size of that type might
8478 not be statically known. So the PAD type needs to be unwrapped and
8479 the resulting type needs to be fixed. Otherwise, we might end up
8480 with the wrong size for our component. This can be observed with
8481 the following type declarations:
8483 type Octal is new Integer range 0 .. 7;
8484 type Octal_Array is array (Positive range <>) of Octal;
8485 pragma Pack (Octal_Array);
8487 type Octal_Buffer (Size : Positive) is record
8488 Buffer : Octal_Array (1 .. Size);
8492 In that case, Buffer is a PAD type whose size is unset and needs
8493 to be computed by fixing the unwrapped type.
8495 Lastly, when should the sub-elements of a type that remained unfixed
8496 thus far, be actually fixed?
8498 The answer is: Only when referencing that element. For instance
8499 when selecting one component of a record, this specific component
8500 should be fixed at that point in time. Or when printing the value
8501 of a record, each component should be fixed before its value gets
8502 printed. Similarly for arrays, the element of the array should be
8503 fixed when printing each element of the array, or when extracting
8504 one element out of that array. On the other hand, fixing should
8505 not be performed on the elements when taking a slice of an array!
8507 Note that one of the side-effects of miscomputing the offset and
8508 size of each field is that we end up also miscomputing the size
8509 of the containing type. This can have adverse results when computing
8510 the value of an entity. GDB fetches the value of an entity based
8511 on the size of its type, and thus a wrong size causes GDB to fetch
8512 the wrong amount of memory. In the case where the computed size is
8513 too small, GDB fetches too little data to print the value of our
8514 entiry. Results in this case as unpredicatble, as we usually read
8515 past the buffer containing the data =:-o. */
8517 /* Implement the evaluate_exp routine in the exp_descriptor structure
8518 for the Ada language. */
8520 static struct value *
8521 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8522 int *pos, enum noside noside)
8525 int tem, tem2, tem3;
8527 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8530 struct value **argvec;
8534 op = exp->elts[pc].opcode;
8540 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8541 arg1 = unwrap_value (arg1);
8543 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8544 then we need to perform the conversion manually, because
8545 evaluate_subexp_standard doesn't do it. This conversion is
8546 necessary in Ada because the different kinds of float/fixed
8547 types in Ada have different representations.
8549 Similarly, we need to perform the conversion from OP_LONG
8551 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8552 arg1 = ada_value_cast (expect_type, arg1, noside);
8558 struct value *result;
8560 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8561 /* The result type will have code OP_STRING, bashed there from
8562 OP_ARRAY. Bash it back. */
8563 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8564 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8570 type = exp->elts[pc + 1].type;
8571 arg1 = evaluate_subexp (type, exp, pos, noside);
8572 if (noside == EVAL_SKIP)
8574 arg1 = ada_value_cast (type, arg1, noside);
8579 type = exp->elts[pc + 1].type;
8580 return ada_evaluate_subexp (type, exp, pos, noside);
8583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8584 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8586 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8587 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8589 return ada_value_assign (arg1, arg1);
8591 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8592 except if the lhs of our assignment is a convenience variable.
8593 In the case of assigning to a convenience variable, the lhs
8594 should be exactly the result of the evaluation of the rhs. */
8595 type = value_type (arg1);
8596 if (VALUE_LVAL (arg1) == lval_internalvar)
8598 arg2 = evaluate_subexp (type, exp, pos, noside);
8599 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8601 if (ada_is_fixed_point_type (value_type (arg1)))
8602 arg2 = cast_to_fixed (value_type (arg1), arg2);
8603 else if (ada_is_fixed_point_type (value_type (arg2)))
8605 (_("Fixed-point values must be assigned to fixed-point variables"));
8607 arg2 = coerce_for_assign (value_type (arg1), arg2);
8608 return ada_value_assign (arg1, arg2);
8611 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8612 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8613 if (noside == EVAL_SKIP)
8615 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8616 return (value_from_longest
8618 value_as_long (arg1) + value_as_long (arg2)));
8619 if ((ada_is_fixed_point_type (value_type (arg1))
8620 || ada_is_fixed_point_type (value_type (arg2)))
8621 && value_type (arg1) != value_type (arg2))
8622 error (_("Operands of fixed-point addition must have the same type"));
8623 /* Do the addition, and cast the result to the type of the first
8624 argument. We cannot cast the result to a reference type, so if
8625 ARG1 is a reference type, find its underlying type. */
8626 type = value_type (arg1);
8627 while (TYPE_CODE (type) == TYPE_CODE_REF)
8628 type = TYPE_TARGET_TYPE (type);
8629 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8630 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8633 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8634 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8635 if (noside == EVAL_SKIP)
8637 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8638 return (value_from_longest
8640 value_as_long (arg1) - value_as_long (arg2)));
8641 if ((ada_is_fixed_point_type (value_type (arg1))
8642 || ada_is_fixed_point_type (value_type (arg2)))
8643 && value_type (arg1) != value_type (arg2))
8644 error (_("Operands of fixed-point subtraction must have the same type"));
8645 /* Do the substraction, and cast the result to the type of the first
8646 argument. We cannot cast the result to a reference type, so if
8647 ARG1 is a reference type, find its underlying type. */
8648 type = value_type (arg1);
8649 while (TYPE_CODE (type) == TYPE_CODE_REF)
8650 type = TYPE_TARGET_TYPE (type);
8651 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8652 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8658 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8659 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8660 if (noside == EVAL_SKIP)
8662 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8665 return value_zero (value_type (arg1), not_lval);
8669 type = builtin_type (exp->gdbarch)->builtin_double;
8670 if (ada_is_fixed_point_type (value_type (arg1)))
8671 arg1 = cast_from_fixed (type, arg1);
8672 if (ada_is_fixed_point_type (value_type (arg2)))
8673 arg2 = cast_from_fixed (type, arg2);
8674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8675 return ada_value_binop (arg1, arg2, op);
8679 case BINOP_NOTEQUAL:
8680 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8681 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8682 if (noside == EVAL_SKIP)
8684 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8689 tem = ada_value_equal (arg1, arg2);
8691 if (op == BINOP_NOTEQUAL)
8693 type = language_bool_type (exp->language_defn, exp->gdbarch);
8694 return value_from_longest (type, (LONGEST) tem);
8697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8698 if (noside == EVAL_SKIP)
8700 else if (ada_is_fixed_point_type (value_type (arg1)))
8701 return value_cast (value_type (arg1), value_neg (arg1));
8704 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8705 return value_neg (arg1);
8708 case BINOP_LOGICAL_AND:
8709 case BINOP_LOGICAL_OR:
8710 case UNOP_LOGICAL_NOT:
8715 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8716 type = language_bool_type (exp->language_defn, exp->gdbarch);
8717 return value_cast (type, val);
8720 case BINOP_BITWISE_AND:
8721 case BINOP_BITWISE_IOR:
8722 case BINOP_BITWISE_XOR:
8726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8728 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8730 return value_cast (value_type (arg1), val);
8736 if (noside == EVAL_SKIP)
8741 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8742 /* Only encountered when an unresolved symbol occurs in a
8743 context other than a function call, in which case, it is
8745 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8746 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8747 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8749 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8750 if (ada_is_tagged_type (type, 0))
8752 /* Tagged types are a little special in the fact that the real
8753 type is dynamic and can only be determined by inspecting the
8754 object's tag. This means that we need to get the object's
8755 value first (EVAL_NORMAL) and then extract the actual object
8758 Note that we cannot skip the final step where we extract
8759 the object type from its tag, because the EVAL_NORMAL phase
8760 results in dynamic components being resolved into fixed ones.
8761 This can cause problems when trying to print the type
8762 description of tagged types whose parent has a dynamic size:
8763 We use the type name of the "_parent" component in order
8764 to print the name of the ancestor type in the type description.
8765 If that component had a dynamic size, the resolution into
8766 a fixed type would result in the loss of that type name,
8767 thus preventing us from printing the name of the ancestor
8768 type in the type description. */
8769 struct type *actual_type;
8771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8772 actual_type = type_from_tag (ada_value_tag (arg1));
8773 if (actual_type == NULL)
8774 /* If, for some reason, we were unable to determine
8775 the actual type from the tag, then use the static
8776 approximation that we just computed as a fallback.
8777 This can happen if the debugging information is
8778 incomplete, for instance. */
8781 return value_zero (actual_type, not_lval);
8786 (to_static_fixed_type
8787 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8792 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8793 arg1 = unwrap_value (arg1);
8794 return ada_to_fixed_value (arg1);
8800 /* Allocate arg vector, including space for the function to be
8801 called in argvec[0] and a terminating NULL. */
8802 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8804 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8806 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8807 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8808 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8809 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8812 for (tem = 0; tem <= nargs; tem += 1)
8813 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8816 if (noside == EVAL_SKIP)
8820 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8821 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8822 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8823 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8824 /* This is a packed array that has already been fixed, and
8825 therefore already coerced to a simple array. Nothing further
8828 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8829 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8830 && VALUE_LVAL (argvec[0]) == lval_memory))
8831 argvec[0] = value_addr (argvec[0]);
8833 type = ada_check_typedef (value_type (argvec[0]));
8834 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8836 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8838 case TYPE_CODE_FUNC:
8839 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8841 case TYPE_CODE_ARRAY:
8843 case TYPE_CODE_STRUCT:
8844 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8845 argvec[0] = ada_value_ind (argvec[0]);
8846 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8849 error (_("cannot subscript or call something of type `%s'"),
8850 ada_type_name (value_type (argvec[0])));
8855 switch (TYPE_CODE (type))
8857 case TYPE_CODE_FUNC:
8858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8859 return allocate_value (TYPE_TARGET_TYPE (type));
8860 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8861 case TYPE_CODE_STRUCT:
8865 arity = ada_array_arity (type);
8866 type = ada_array_element_type (type, nargs);
8868 error (_("cannot subscript or call a record"));
8870 error (_("wrong number of subscripts; expecting %d"), arity);
8871 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8872 return value_zero (ada_aligned_type (type), lval_memory);
8874 unwrap_value (ada_value_subscript
8875 (argvec[0], nargs, argvec + 1));
8877 case TYPE_CODE_ARRAY:
8878 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8880 type = ada_array_element_type (type, nargs);
8882 error (_("element type of array unknown"));
8884 return value_zero (ada_aligned_type (type), lval_memory);
8887 unwrap_value (ada_value_subscript
8888 (ada_coerce_to_simple_array (argvec[0]),
8889 nargs, argvec + 1));
8890 case TYPE_CODE_PTR: /* Pointer to array */
8891 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8892 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8894 type = ada_array_element_type (type, nargs);
8896 error (_("element type of array unknown"));
8898 return value_zero (ada_aligned_type (type), lval_memory);
8901 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8902 nargs, argvec + 1));
8905 error (_("Attempt to index or call something other than an "
8906 "array or function"));
8911 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8912 struct value *low_bound_val =
8913 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8914 struct value *high_bound_val =
8915 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8918 low_bound_val = coerce_ref (low_bound_val);
8919 high_bound_val = coerce_ref (high_bound_val);
8920 low_bound = pos_atr (low_bound_val);
8921 high_bound = pos_atr (high_bound_val);
8923 if (noside == EVAL_SKIP)
8926 /* If this is a reference to an aligner type, then remove all
8928 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8929 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8930 TYPE_TARGET_TYPE (value_type (array)) =
8931 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8933 if (ada_is_packed_array_type (value_type (array)))
8934 error (_("cannot slice a packed array"));
8936 /* If this is a reference to an array or an array lvalue,
8937 convert to a pointer. */
8938 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8939 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8940 && VALUE_LVAL (array) == lval_memory))
8941 array = value_addr (array);
8943 if (noside == EVAL_AVOID_SIDE_EFFECTS
8944 && ada_is_array_descriptor_type (ada_check_typedef
8945 (value_type (array))))
8946 return empty_array (ada_type_of_array (array, 0), low_bound);
8948 array = ada_coerce_to_simple_array_ptr (array);
8950 /* If we have more than one level of pointer indirection,
8951 dereference the value until we get only one level. */
8952 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8953 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8955 array = value_ind (array);
8957 /* Make sure we really do have an array type before going further,
8958 to avoid a SEGV when trying to get the index type or the target
8959 type later down the road if the debug info generated by
8960 the compiler is incorrect or incomplete. */
8961 if (!ada_is_simple_array_type (value_type (array)))
8962 error (_("cannot take slice of non-array"));
8964 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8966 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8967 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8971 struct type *arr_type0 =
8972 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8974 return ada_value_slice_from_ptr (array, arr_type0,
8975 longest_to_int (low_bound),
8976 longest_to_int (high_bound));
8979 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8981 else if (high_bound < low_bound)
8982 return empty_array (value_type (array), low_bound);
8984 return ada_value_slice (array, longest_to_int (low_bound),
8985 longest_to_int (high_bound));
8990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8991 type = check_typedef (exp->elts[pc + 1].type);
8993 if (noside == EVAL_SKIP)
8996 switch (TYPE_CODE (type))
8999 lim_warning (_("Membership test incompletely implemented; "
9000 "always returns true"));
9001 type = language_bool_type (exp->language_defn, exp->gdbarch);
9002 return value_from_longest (type, (LONGEST) 1);
9004 case TYPE_CODE_RANGE:
9005 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9006 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9009 type = language_bool_type (exp->language_defn, exp->gdbarch);
9011 value_from_longest (type,
9012 (value_less (arg1, arg3)
9013 || value_equal (arg1, arg3))
9014 && (value_less (arg2, arg1)
9015 || value_equal (arg2, arg1)));
9018 case BINOP_IN_BOUNDS:
9020 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9021 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9023 if (noside == EVAL_SKIP)
9026 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9028 type = language_bool_type (exp->language_defn, exp->gdbarch);
9029 return value_zero (type, not_lval);
9032 tem = longest_to_int (exp->elts[pc + 1].longconst);
9034 type = ada_index_type (value_type (arg2), tem, "range");
9036 type = value_type (arg1);
9038 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9039 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9041 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9042 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9043 type = language_bool_type (exp->language_defn, exp->gdbarch);
9045 value_from_longest (type,
9046 (value_less (arg1, arg3)
9047 || value_equal (arg1, arg3))
9048 && (value_less (arg2, arg1)
9049 || value_equal (arg2, arg1)));
9051 case TERNOP_IN_RANGE:
9052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9053 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9054 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9056 if (noside == EVAL_SKIP)
9059 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9060 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9061 type = language_bool_type (exp->language_defn, exp->gdbarch);
9063 value_from_longest (type,
9064 (value_less (arg1, arg3)
9065 || value_equal (arg1, arg3))
9066 && (value_less (arg2, arg1)
9067 || value_equal (arg2, arg1)));
9073 struct type *type_arg;
9074 if (exp->elts[*pos].opcode == OP_TYPE)
9076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9078 type_arg = check_typedef (exp->elts[pc + 2].type);
9082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9086 if (exp->elts[*pos].opcode != OP_LONG)
9087 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9088 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9091 if (noside == EVAL_SKIP)
9094 if (type_arg == NULL)
9096 arg1 = ada_coerce_ref (arg1);
9098 if (ada_is_packed_array_type (value_type (arg1)))
9099 arg1 = ada_coerce_to_simple_array (arg1);
9101 type = ada_index_type (value_type (arg1), tem,
9102 ada_attribute_name (op));
9104 type = builtin_type (exp->gdbarch)->builtin_int;
9106 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9107 return allocate_value (type);
9111 default: /* Should never happen. */
9112 error (_("unexpected attribute encountered"));
9114 return value_from_longest
9115 (type, ada_array_bound (arg1, tem, 0));
9117 return value_from_longest
9118 (type, ada_array_bound (arg1, tem, 1));
9120 return value_from_longest
9121 (type, ada_array_length (arg1, tem));
9124 else if (discrete_type_p (type_arg))
9126 struct type *range_type;
9127 char *name = ada_type_name (type_arg);
9129 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9131 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9132 if (range_type == NULL)
9133 range_type = type_arg;
9137 error (_("unexpected attribute encountered"));
9139 return value_from_longest
9140 (range_type, discrete_type_low_bound (range_type));
9142 return value_from_longest
9143 (range_type, discrete_type_high_bound (range_type));
9145 error (_("the 'length attribute applies only to array types"));
9148 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9149 error (_("unimplemented type attribute"));
9154 if (ada_is_packed_array_type (type_arg))
9155 type_arg = decode_packed_array_type (type_arg);
9157 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9159 type = builtin_type (exp->gdbarch)->builtin_int;
9161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9162 return allocate_value (type);
9167 error (_("unexpected attribute encountered"));
9169 low = ada_array_bound_from_type (type_arg, tem, 0);
9170 return value_from_longest (type, low);
9172 high = ada_array_bound_from_type (type_arg, tem, 1);
9173 return value_from_longest (type, high);
9175 low = ada_array_bound_from_type (type_arg, tem, 0);
9176 high = ada_array_bound_from_type (type_arg, tem, 1);
9177 return value_from_longest (type, high - low + 1);
9183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9184 if (noside == EVAL_SKIP)
9187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9188 return value_zero (ada_tag_type (arg1), not_lval);
9190 return ada_value_tag (arg1);
9194 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9196 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9197 if (noside == EVAL_SKIP)
9199 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9200 return value_zero (value_type (arg1), not_lval);
9203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9204 return value_binop (arg1, arg2,
9205 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9208 case OP_ATR_MODULUS:
9210 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9211 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9213 if (noside == EVAL_SKIP)
9216 if (!ada_is_modular_type (type_arg))
9217 error (_("'modulus must be applied to modular type"));
9219 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9220 ada_modulus (type_arg));
9225 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9227 if (noside == EVAL_SKIP)
9229 type = builtin_type (exp->gdbarch)->builtin_int;
9230 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9231 return value_zero (type, not_lval);
9233 return value_pos_atr (type, arg1);
9236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9237 type = value_type (arg1);
9239 /* If the argument is a reference, then dereference its type, since
9240 the user is really asking for the size of the actual object,
9241 not the size of the pointer. */
9242 if (TYPE_CODE (type) == TYPE_CODE_REF)
9243 type = TYPE_TARGET_TYPE (type);
9245 if (noside == EVAL_SKIP)
9247 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9248 return value_zero (builtin_type_int32, not_lval);
9250 return value_from_longest (builtin_type_int32,
9251 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9254 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9256 type = exp->elts[pc + 2].type;
9257 if (noside == EVAL_SKIP)
9259 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9260 return value_zero (type, not_lval);
9262 return value_val_atr (type, arg1);
9265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9266 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9267 if (noside == EVAL_SKIP)
9269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9270 return value_zero (value_type (arg1), not_lval);
9273 /* For integer exponentiation operations,
9274 only promote the first argument. */
9275 if (is_integral_type (value_type (arg2)))
9276 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9278 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9280 return value_binop (arg1, arg2, op);
9284 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9285 if (noside == EVAL_SKIP)
9291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9292 if (noside == EVAL_SKIP)
9294 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9295 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9296 return value_neg (arg1);
9301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9302 if (noside == EVAL_SKIP)
9304 type = ada_check_typedef (value_type (arg1));
9305 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9307 if (ada_is_array_descriptor_type (type))
9308 /* GDB allows dereferencing GNAT array descriptors. */
9310 struct type *arrType = ada_type_of_array (arg1, 0);
9311 if (arrType == NULL)
9312 error (_("Attempt to dereference null array pointer."));
9313 return value_at_lazy (arrType, 0);
9315 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9316 || TYPE_CODE (type) == TYPE_CODE_REF
9317 /* In C you can dereference an array to get the 1st elt. */
9318 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9320 type = to_static_fixed_type
9322 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9324 return value_zero (type, lval_memory);
9326 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9328 /* GDB allows dereferencing an int. */
9329 if (expect_type == NULL)
9330 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9335 to_static_fixed_type (ada_aligned_type (expect_type));
9336 return value_zero (expect_type, lval_memory);
9340 error (_("Attempt to take contents of a non-pointer value."));
9342 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9343 type = ada_check_typedef (value_type (arg1));
9345 if (TYPE_CODE (type) == TYPE_CODE_INT)
9346 /* GDB allows dereferencing an int. If we were given
9347 the expect_type, then use that as the target type.
9348 Otherwise, assume that the target type is an int. */
9350 if (expect_type != NULL)
9351 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9354 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9355 (CORE_ADDR) value_as_address (arg1));
9358 if (ada_is_array_descriptor_type (type))
9359 /* GDB allows dereferencing GNAT array descriptors. */
9360 return ada_coerce_to_simple_array (arg1);
9362 return ada_value_ind (arg1);
9364 case STRUCTOP_STRUCT:
9365 tem = longest_to_int (exp->elts[pc + 1].longconst);
9366 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9368 if (noside == EVAL_SKIP)
9370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9372 struct type *type1 = value_type (arg1);
9373 if (ada_is_tagged_type (type1, 1))
9375 type = ada_lookup_struct_elt_type (type1,
9376 &exp->elts[pc + 2].string,
9379 /* In this case, we assume that the field COULD exist
9380 in some extension of the type. Return an object of
9381 "type" void, which will match any formal
9382 (see ada_type_match). */
9383 return value_zero (builtin_type_void, lval_memory);
9387 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9390 return value_zero (ada_aligned_type (type), lval_memory);
9393 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9394 arg1 = unwrap_value (arg1);
9395 return ada_to_fixed_value (arg1);
9398 /* The value is not supposed to be used. This is here to make it
9399 easier to accommodate expressions that contain types. */
9401 if (noside == EVAL_SKIP)
9403 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9404 return allocate_value (exp->elts[pc + 1].type);
9406 error (_("Attempt to use a type name as an expression"));
9411 case OP_DISCRETE_RANGE:
9414 if (noside == EVAL_NORMAL)
9418 error (_("Undefined name, ambiguous name, or renaming used in "
9419 "component association: %s."), &exp->elts[pc+2].string);
9421 error (_("Aggregates only allowed on the right of an assignment"));
9423 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9426 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9428 for (tem = 0; tem < nargs; tem += 1)
9429 ada_evaluate_subexp (NULL, exp, pos, noside);
9434 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9440 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9441 type name that encodes the 'small and 'delta information.
9442 Otherwise, return NULL. */
9445 fixed_type_info (struct type *type)
9447 const char *name = ada_type_name (type);
9448 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9450 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9452 const char *tail = strstr (name, "___XF_");
9458 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9459 return fixed_type_info (TYPE_TARGET_TYPE (type));
9464 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9467 ada_is_fixed_point_type (struct type *type)
9469 return fixed_type_info (type) != NULL;
9472 /* Return non-zero iff TYPE represents a System.Address type. */
9475 ada_is_system_address_type (struct type *type)
9477 return (TYPE_NAME (type)
9478 && strcmp (TYPE_NAME (type), "system__address") == 0);
9481 /* Assuming that TYPE is the representation of an Ada fixed-point
9482 type, return its delta, or -1 if the type is malformed and the
9483 delta cannot be determined. */
9486 ada_delta (struct type *type)
9488 const char *encoding = fixed_type_info (type);
9491 /* Strictly speaking, num and den are encoded as integer. However,
9492 they may not fit into a long, and they will have to be converted
9493 to DOUBLEST anyway. So scan them as DOUBLEST. */
9494 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9501 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9502 factor ('SMALL value) associated with the type. */
9505 scaling_factor (struct type *type)
9507 const char *encoding = fixed_type_info (type);
9508 DOUBLEST num0, den0, num1, den1;
9511 /* Strictly speaking, num's and den's are encoded as integer. However,
9512 they may not fit into a long, and they will have to be converted
9513 to DOUBLEST anyway. So scan them as DOUBLEST. */
9514 n = sscanf (encoding,
9515 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9516 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9517 &num0, &den0, &num1, &den1);
9528 /* Assuming that X is the representation of a value of fixed-point
9529 type TYPE, return its floating-point equivalent. */
9532 ada_fixed_to_float (struct type *type, LONGEST x)
9534 return (DOUBLEST) x *scaling_factor (type);
9537 /* The representation of a fixed-point value of type TYPE
9538 corresponding to the value X. */
9541 ada_float_to_fixed (struct type *type, DOUBLEST x)
9543 return (LONGEST) (x / scaling_factor (type) + 0.5);
9547 /* VAX floating formats */
9549 /* Non-zero iff TYPE represents one of the special VAX floating-point
9553 ada_is_vax_floating_type (struct type *type)
9556 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9559 && (TYPE_CODE (type) == TYPE_CODE_INT
9560 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9561 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9564 /* The type of special VAX floating-point type this is, assuming
9565 ada_is_vax_floating_point. */
9568 ada_vax_float_type_suffix (struct type *type)
9570 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9573 /* A value representing the special debugging function that outputs
9574 VAX floating-point values of the type represented by TYPE. Assumes
9575 ada_is_vax_floating_type (TYPE). */
9578 ada_vax_float_print_function (struct type *type)
9580 switch (ada_vax_float_type_suffix (type))
9583 return get_var_value ("DEBUG_STRING_F", 0);
9585 return get_var_value ("DEBUG_STRING_D", 0);
9587 return get_var_value ("DEBUG_STRING_G", 0);
9589 error (_("invalid VAX floating-point type"));
9596 /* Scan STR beginning at position K for a discriminant name, and
9597 return the value of that discriminant field of DVAL in *PX. If
9598 PNEW_K is not null, put the position of the character beyond the
9599 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9600 not alter *PX and *PNEW_K if unsuccessful. */
9603 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9606 static char *bound_buffer = NULL;
9607 static size_t bound_buffer_len = 0;
9610 struct value *bound_val;
9612 if (dval == NULL || str == NULL || str[k] == '\0')
9615 pend = strstr (str + k, "__");
9619 k += strlen (bound);
9623 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9624 bound = bound_buffer;
9625 strncpy (bound_buffer, str + k, pend - (str + k));
9626 bound[pend - (str + k)] = '\0';
9630 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9631 if (bound_val == NULL)
9634 *px = value_as_long (bound_val);
9640 /* Value of variable named NAME in the current environment. If
9641 no such variable found, then if ERR_MSG is null, returns 0, and
9642 otherwise causes an error with message ERR_MSG. */
9644 static struct value *
9645 get_var_value (char *name, char *err_msg)
9647 struct ada_symbol_info *syms;
9650 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9655 if (err_msg == NULL)
9658 error (("%s"), err_msg);
9661 return value_of_variable (syms[0].sym, syms[0].block);
9664 /* Value of integer variable named NAME in the current environment. If
9665 no such variable found, returns 0, and sets *FLAG to 0. If
9666 successful, sets *FLAG to 1. */
9669 get_int_var_value (char *name, int *flag)
9671 struct value *var_val = get_var_value (name, 0);
9683 return value_as_long (var_val);
9688 /* Return a range type whose base type is that of the range type named
9689 NAME in the current environment, and whose bounds are calculated
9690 from NAME according to the GNAT range encoding conventions.
9691 Extract discriminant values, if needed, from DVAL. If a new type
9692 must be created, allocate in OBJFILE's space. The bounds
9693 information, in general, is encoded in NAME, the base type given in
9694 the named range type. */
9696 static struct type *
9697 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9699 struct type *raw_type = ada_find_any_type (name);
9700 struct type *base_type;
9703 /* Also search primitive types if type symbol could not be found. */
9704 if (raw_type == NULL)
9705 raw_type = language_lookup_primitive_type_by_name
9706 (language_def (language_ada), current_gdbarch, name);
9708 if (raw_type == NULL)
9709 base_type = builtin_type_int32;
9710 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9711 base_type = TYPE_TARGET_TYPE (raw_type);
9713 base_type = raw_type;
9715 subtype_info = strstr (name, "___XD");
9716 if (subtype_info == NULL)
9718 LONGEST L = discrete_type_low_bound (raw_type);
9719 LONGEST U = discrete_type_high_bound (raw_type);
9720 if (L < INT_MIN || U > INT_MAX)
9723 return create_range_type (alloc_type (objfile), raw_type,
9724 discrete_type_low_bound (raw_type),
9725 discrete_type_high_bound (raw_type));
9729 static char *name_buf = NULL;
9730 static size_t name_len = 0;
9731 int prefix_len = subtype_info - name;
9737 GROW_VECT (name_buf, name_len, prefix_len + 5);
9738 strncpy (name_buf, name, prefix_len);
9739 name_buf[prefix_len] = '\0';
9742 bounds_str = strchr (subtype_info, '_');
9745 if (*subtype_info == 'L')
9747 if (!ada_scan_number (bounds_str, n, &L, &n)
9748 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9750 if (bounds_str[n] == '_')
9752 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9759 strcpy (name_buf + prefix_len, "___L");
9760 L = get_int_var_value (name_buf, &ok);
9763 lim_warning (_("Unknown lower bound, using 1."));
9768 if (*subtype_info == 'U')
9770 if (!ada_scan_number (bounds_str, n, &U, &n)
9771 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9777 strcpy (name_buf + prefix_len, "___U");
9778 U = get_int_var_value (name_buf, &ok);
9781 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9786 if (objfile == NULL)
9787 objfile = TYPE_OBJFILE (base_type);
9788 type = create_range_type (alloc_type (objfile), base_type, L, U);
9789 TYPE_NAME (type) = name;
9794 /* True iff NAME is the name of a range type. */
9797 ada_is_range_type_name (const char *name)
9799 return (name != NULL && strstr (name, "___XD"));
9805 /* True iff TYPE is an Ada modular type. */
9808 ada_is_modular_type (struct type *type)
9810 struct type *subranged_type = base_type (type);
9812 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9813 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9814 && TYPE_UNSIGNED (subranged_type));
9817 /* Try to determine the lower and upper bounds of the given modular type
9818 using the type name only. Return non-zero and set L and U as the lower
9819 and upper bounds (respectively) if successful. */
9822 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9824 char *name = ada_type_name (type);
9832 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9833 we are looking for static bounds, which means an __XDLU suffix.
9834 Moreover, we know that the lower bound of modular types is always
9835 zero, so the actual suffix should start with "__XDLU_0__", and
9836 then be followed by the upper bound value. */
9837 suffix = strstr (name, "__XDLU_0__");
9841 if (!ada_scan_number (suffix, k, &U, NULL))
9844 *modulus = (ULONGEST) U + 1;
9848 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9851 ada_modulus (struct type *type)
9855 /* Normally, the modulus of a modular type is equal to the value of
9856 its upper bound + 1. However, the upper bound is currently stored
9857 as an int, which is not always big enough to hold the actual bound
9858 value. To workaround this, try to take advantage of the encoding
9859 that GNAT uses with with discrete types. To avoid some unnecessary
9860 parsing, we do this only when the size of TYPE is greater than
9861 the size of the field holding the bound. */
9862 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9863 && ada_modulus_from_name (type, &modulus))
9866 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9870 /* Ada exception catchpoint support:
9871 ---------------------------------
9873 We support 3 kinds of exception catchpoints:
9874 . catchpoints on Ada exceptions
9875 . catchpoints on unhandled Ada exceptions
9876 . catchpoints on failed assertions
9878 Exceptions raised during failed assertions, or unhandled exceptions
9879 could perfectly be caught with the general catchpoint on Ada exceptions.
9880 However, we can easily differentiate these two special cases, and having
9881 the option to distinguish these two cases from the rest can be useful
9882 to zero-in on certain situations.
9884 Exception catchpoints are a specialized form of breakpoint,
9885 since they rely on inserting breakpoints inside known routines
9886 of the GNAT runtime. The implementation therefore uses a standard
9887 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9890 Support in the runtime for exception catchpoints have been changed
9891 a few times already, and these changes affect the implementation
9892 of these catchpoints. In order to be able to support several
9893 variants of the runtime, we use a sniffer that will determine
9894 the runtime variant used by the program being debugged.
9896 At this time, we do not support the use of conditions on Ada exception
9897 catchpoints. The COND and COND_STRING fields are therefore set
9898 to NULL (most of the time, see below).
9900 Conditions where EXP_STRING, COND, and COND_STRING are used:
9902 When a user specifies the name of a specific exception in the case
9903 of catchpoints on Ada exceptions, we store the name of that exception
9904 in the EXP_STRING. We then translate this request into an actual
9905 condition stored in COND_STRING, and then parse it into an expression
9908 /* The different types of catchpoints that we introduced for catching
9911 enum exception_catchpoint_kind
9914 ex_catch_exception_unhandled,
9918 /* Ada's standard exceptions. */
9920 static char *standard_exc[] = {
9927 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9929 /* A structure that describes how to support exception catchpoints
9930 for a given executable. */
9932 struct exception_support_info
9934 /* The name of the symbol to break on in order to insert
9935 a catchpoint on exceptions. */
9936 const char *catch_exception_sym;
9938 /* The name of the symbol to break on in order to insert
9939 a catchpoint on unhandled exceptions. */
9940 const char *catch_exception_unhandled_sym;
9942 /* The name of the symbol to break on in order to insert
9943 a catchpoint on failed assertions. */
9944 const char *catch_assert_sym;
9946 /* Assuming that the inferior just triggered an unhandled exception
9947 catchpoint, this function is responsible for returning the address
9948 in inferior memory where the name of that exception is stored.
9949 Return zero if the address could not be computed. */
9950 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9953 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9954 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9956 /* The following exception support info structure describes how to
9957 implement exception catchpoints with the latest version of the
9958 Ada runtime (as of 2007-03-06). */
9960 static const struct exception_support_info default_exception_support_info =
9962 "__gnat_debug_raise_exception", /* catch_exception_sym */
9963 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9964 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9965 ada_unhandled_exception_name_addr
9968 /* The following exception support info structure describes how to
9969 implement exception catchpoints with a slightly older version
9970 of the Ada runtime. */
9972 static const struct exception_support_info exception_support_info_fallback =
9974 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9975 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9976 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9977 ada_unhandled_exception_name_addr_from_raise
9980 /* For each executable, we sniff which exception info structure to use
9981 and cache it in the following global variable. */
9983 static const struct exception_support_info *exception_info = NULL;
9985 /* Inspect the Ada runtime and determine which exception info structure
9986 should be used to provide support for exception catchpoints.
9988 This function will always set exception_info, or raise an error. */
9991 ada_exception_support_info_sniffer (void)
9995 /* If the exception info is already known, then no need to recompute it. */
9996 if (exception_info != NULL)
9999 /* Check the latest (default) exception support info. */
10000 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10004 exception_info = &default_exception_support_info;
10008 /* Try our fallback exception suport info. */
10009 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10013 exception_info = &exception_support_info_fallback;
10017 /* Sometimes, it is normal for us to not be able to find the routine
10018 we are looking for. This happens when the program is linked with
10019 the shared version of the GNAT runtime, and the program has not been
10020 started yet. Inform the user of these two possible causes if
10023 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10024 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10026 /* If the symbol does not exist, then check that the program is
10027 already started, to make sure that shared libraries have been
10028 loaded. If it is not started, this may mean that the symbol is
10029 in a shared library. */
10031 if (ptid_get_pid (inferior_ptid) == 0)
10032 error (_("Unable to insert catchpoint. Try to start the program first."));
10034 /* At this point, we know that we are debugging an Ada program and
10035 that the inferior has been started, but we still are not able to
10036 find the run-time symbols. That can mean that we are in
10037 configurable run time mode, or that a-except as been optimized
10038 out by the linker... In any case, at this point it is not worth
10039 supporting this feature. */
10041 error (_("Cannot insert catchpoints in this configuration."));
10044 /* An observer of "executable_changed" events.
10045 Its role is to clear certain cached values that need to be recomputed
10046 each time a new executable is loaded by GDB. */
10049 ada_executable_changed_observer (void)
10051 /* If the executable changed, then it is possible that the Ada runtime
10052 is different. So we need to invalidate the exception support info
10054 exception_info = NULL;
10057 /* Return the name of the function at PC, NULL if could not find it.
10058 This function only checks the debugging information, not the symbol
10062 function_name_from_pc (CORE_ADDR pc)
10066 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10072 /* True iff FRAME is very likely to be that of a function that is
10073 part of the runtime system. This is all very heuristic, but is
10074 intended to be used as advice as to what frames are uninteresting
10078 is_known_support_routine (struct frame_info *frame)
10080 struct symtab_and_line sal;
10084 /* If this code does not have any debugging information (no symtab),
10085 This cannot be any user code. */
10087 find_frame_sal (frame, &sal);
10088 if (sal.symtab == NULL)
10091 /* If there is a symtab, but the associated source file cannot be
10092 located, then assume this is not user code: Selecting a frame
10093 for which we cannot display the code would not be very helpful
10094 for the user. This should also take care of case such as VxWorks
10095 where the kernel has some debugging info provided for a few units. */
10097 if (symtab_to_fullname (sal.symtab) == NULL)
10100 /* Check the unit filename againt the Ada runtime file naming.
10101 We also check the name of the objfile against the name of some
10102 known system libraries that sometimes come with debugging info
10105 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10107 re_comp (known_runtime_file_name_patterns[i]);
10108 if (re_exec (sal.symtab->filename))
10110 if (sal.symtab->objfile != NULL
10111 && re_exec (sal.symtab->objfile->name))
10115 /* Check whether the function is a GNAT-generated entity. */
10117 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10118 if (func_name == NULL)
10121 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10123 re_comp (known_auxiliary_function_name_patterns[i]);
10124 if (re_exec (func_name))
10131 /* Find the first frame that contains debugging information and that is not
10132 part of the Ada run-time, starting from FI and moving upward. */
10135 ada_find_printable_frame (struct frame_info *fi)
10137 for (; fi != NULL; fi = get_prev_frame (fi))
10139 if (!is_known_support_routine (fi))
10148 /* Assuming that the inferior just triggered an unhandled exception
10149 catchpoint, return the address in inferior memory where the name
10150 of the exception is stored.
10152 Return zero if the address could not be computed. */
10155 ada_unhandled_exception_name_addr (void)
10157 return parse_and_eval_address ("e.full_name");
10160 /* Same as ada_unhandled_exception_name_addr, except that this function
10161 should be used when the inferior uses an older version of the runtime,
10162 where the exception name needs to be extracted from a specific frame
10163 several frames up in the callstack. */
10166 ada_unhandled_exception_name_addr_from_raise (void)
10169 struct frame_info *fi;
10171 /* To determine the name of this exception, we need to select
10172 the frame corresponding to RAISE_SYM_NAME. This frame is
10173 at least 3 levels up, so we simply skip the first 3 frames
10174 without checking the name of their associated function. */
10175 fi = get_current_frame ();
10176 for (frame_level = 0; frame_level < 3; frame_level += 1)
10178 fi = get_prev_frame (fi);
10182 const char *func_name =
10183 function_name_from_pc (get_frame_address_in_block (fi));
10184 if (func_name != NULL
10185 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10186 break; /* We found the frame we were looking for... */
10187 fi = get_prev_frame (fi);
10194 return parse_and_eval_address ("id.full_name");
10197 /* Assuming the inferior just triggered an Ada exception catchpoint
10198 (of any type), return the address in inferior memory where the name
10199 of the exception is stored, if applicable.
10201 Return zero if the address could not be computed, or if not relevant. */
10204 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10205 struct breakpoint *b)
10209 case ex_catch_exception:
10210 return (parse_and_eval_address ("e.full_name"));
10213 case ex_catch_exception_unhandled:
10214 return exception_info->unhandled_exception_name_addr ();
10217 case ex_catch_assert:
10218 return 0; /* Exception name is not relevant in this case. */
10222 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10226 return 0; /* Should never be reached. */
10229 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10230 any error that ada_exception_name_addr_1 might cause to be thrown.
10231 When an error is intercepted, a warning with the error message is printed,
10232 and zero is returned. */
10235 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10236 struct breakpoint *b)
10238 struct gdb_exception e;
10239 CORE_ADDR result = 0;
10241 TRY_CATCH (e, RETURN_MASK_ERROR)
10243 result = ada_exception_name_addr_1 (ex, b);
10248 warning (_("failed to get exception name: %s"), e.message);
10255 /* Implement the PRINT_IT method in the breakpoint_ops structure
10256 for all exception catchpoint kinds. */
10258 static enum print_stop_action
10259 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10261 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10262 char exception_name[256];
10266 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10267 exception_name [sizeof (exception_name) - 1] = '\0';
10270 ada_find_printable_frame (get_current_frame ());
10272 annotate_catchpoint (b->number);
10275 case ex_catch_exception:
10277 printf_filtered (_("\nCatchpoint %d, %s at "),
10278 b->number, exception_name);
10280 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10282 case ex_catch_exception_unhandled:
10284 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10285 b->number, exception_name);
10287 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10290 case ex_catch_assert:
10291 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10296 return PRINT_SRC_AND_LOC;
10299 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10300 for all exception catchpoint kinds. */
10303 print_one_exception (enum exception_catchpoint_kind ex,
10304 struct breakpoint *b, CORE_ADDR *last_addr)
10306 struct value_print_options opts;
10308 get_user_print_options (&opts);
10309 if (opts.addressprint)
10311 annotate_field (4);
10312 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10315 annotate_field (5);
10316 *last_addr = b->loc->address;
10319 case ex_catch_exception:
10320 if (b->exp_string != NULL)
10322 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10324 ui_out_field_string (uiout, "what", msg);
10328 ui_out_field_string (uiout, "what", "all Ada exceptions");
10332 case ex_catch_exception_unhandled:
10333 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10336 case ex_catch_assert:
10337 ui_out_field_string (uiout, "what", "failed Ada assertions");
10341 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10346 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10347 for all exception catchpoint kinds. */
10350 print_mention_exception (enum exception_catchpoint_kind ex,
10351 struct breakpoint *b)
10355 case ex_catch_exception:
10356 if (b->exp_string != NULL)
10357 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10358 b->number, b->exp_string);
10360 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10364 case ex_catch_exception_unhandled:
10365 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10369 case ex_catch_assert:
10370 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10374 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10379 /* Virtual table for "catch exception" breakpoints. */
10381 static enum print_stop_action
10382 print_it_catch_exception (struct breakpoint *b)
10384 return print_it_exception (ex_catch_exception, b);
10388 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10390 print_one_exception (ex_catch_exception, b, last_addr);
10394 print_mention_catch_exception (struct breakpoint *b)
10396 print_mention_exception (ex_catch_exception, b);
10399 static struct breakpoint_ops catch_exception_breakpoint_ops =
10403 NULL, /* breakpoint_hit */
10404 print_it_catch_exception,
10405 print_one_catch_exception,
10406 print_mention_catch_exception
10409 /* Virtual table for "catch exception unhandled" breakpoints. */
10411 static enum print_stop_action
10412 print_it_catch_exception_unhandled (struct breakpoint *b)
10414 return print_it_exception (ex_catch_exception_unhandled, b);
10418 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10420 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10424 print_mention_catch_exception_unhandled (struct breakpoint *b)
10426 print_mention_exception (ex_catch_exception_unhandled, b);
10429 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10432 NULL, /* breakpoint_hit */
10433 print_it_catch_exception_unhandled,
10434 print_one_catch_exception_unhandled,
10435 print_mention_catch_exception_unhandled
10438 /* Virtual table for "catch assert" breakpoints. */
10440 static enum print_stop_action
10441 print_it_catch_assert (struct breakpoint *b)
10443 return print_it_exception (ex_catch_assert, b);
10447 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10449 print_one_exception (ex_catch_assert, b, last_addr);
10453 print_mention_catch_assert (struct breakpoint *b)
10455 print_mention_exception (ex_catch_assert, b);
10458 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10461 NULL, /* breakpoint_hit */
10462 print_it_catch_assert,
10463 print_one_catch_assert,
10464 print_mention_catch_assert
10467 /* Return non-zero if B is an Ada exception catchpoint. */
10470 ada_exception_catchpoint_p (struct breakpoint *b)
10472 return (b->ops == &catch_exception_breakpoint_ops
10473 || b->ops == &catch_exception_unhandled_breakpoint_ops
10474 || b->ops == &catch_assert_breakpoint_ops);
10477 /* Return a newly allocated copy of the first space-separated token
10478 in ARGSP, and then adjust ARGSP to point immediately after that
10481 Return NULL if ARGPS does not contain any more tokens. */
10484 ada_get_next_arg (char **argsp)
10486 char *args = *argsp;
10490 /* Skip any leading white space. */
10492 while (isspace (*args))
10495 if (args[0] == '\0')
10496 return NULL; /* No more arguments. */
10498 /* Find the end of the current argument. */
10501 while (*end != '\0' && !isspace (*end))
10504 /* Adjust ARGSP to point to the start of the next argument. */
10508 /* Make a copy of the current argument and return it. */
10510 result = xmalloc (end - args + 1);
10511 strncpy (result, args, end - args);
10512 result[end - args] = '\0';
10517 /* Split the arguments specified in a "catch exception" command.
10518 Set EX to the appropriate catchpoint type.
10519 Set EXP_STRING to the name of the specific exception if
10520 specified by the user. */
10523 catch_ada_exception_command_split (char *args,
10524 enum exception_catchpoint_kind *ex,
10527 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10528 char *exception_name;
10530 exception_name = ada_get_next_arg (&args);
10531 make_cleanup (xfree, exception_name);
10533 /* Check that we do not have any more arguments. Anything else
10536 while (isspace (*args))
10539 if (args[0] != '\0')
10540 error (_("Junk at end of expression"));
10542 discard_cleanups (old_chain);
10544 if (exception_name == NULL)
10546 /* Catch all exceptions. */
10547 *ex = ex_catch_exception;
10548 *exp_string = NULL;
10550 else if (strcmp (exception_name, "unhandled") == 0)
10552 /* Catch unhandled exceptions. */
10553 *ex = ex_catch_exception_unhandled;
10554 *exp_string = NULL;
10558 /* Catch a specific exception. */
10559 *ex = ex_catch_exception;
10560 *exp_string = exception_name;
10564 /* Return the name of the symbol on which we should break in order to
10565 implement a catchpoint of the EX kind. */
10567 static const char *
10568 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10570 gdb_assert (exception_info != NULL);
10574 case ex_catch_exception:
10575 return (exception_info->catch_exception_sym);
10577 case ex_catch_exception_unhandled:
10578 return (exception_info->catch_exception_unhandled_sym);
10580 case ex_catch_assert:
10581 return (exception_info->catch_assert_sym);
10584 internal_error (__FILE__, __LINE__,
10585 _("unexpected catchpoint kind (%d)"), ex);
10589 /* Return the breakpoint ops "virtual table" used for catchpoints
10592 static struct breakpoint_ops *
10593 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10597 case ex_catch_exception:
10598 return (&catch_exception_breakpoint_ops);
10600 case ex_catch_exception_unhandled:
10601 return (&catch_exception_unhandled_breakpoint_ops);
10603 case ex_catch_assert:
10604 return (&catch_assert_breakpoint_ops);
10607 internal_error (__FILE__, __LINE__,
10608 _("unexpected catchpoint kind (%d)"), ex);
10612 /* Return the condition that will be used to match the current exception
10613 being raised with the exception that the user wants to catch. This
10614 assumes that this condition is used when the inferior just triggered
10615 an exception catchpoint.
10617 The string returned is a newly allocated string that needs to be
10618 deallocated later. */
10621 ada_exception_catchpoint_cond_string (const char *exp_string)
10625 /* The standard exceptions are a special case. They are defined in
10626 runtime units that have been compiled without debugging info; if
10627 EXP_STRING is the not-fully-qualified name of a standard
10628 exception (e.g. "constraint_error") then, during the evaluation
10629 of the condition expression, the symbol lookup on this name would
10630 *not* return this standard exception. The catchpoint condition
10631 may then be set only on user-defined exceptions which have the
10632 same not-fully-qualified name (e.g. my_package.constraint_error).
10634 To avoid this unexcepted behavior, these standard exceptions are
10635 systematically prefixed by "standard". This means that "catch
10636 exception constraint_error" is rewritten into "catch exception
10637 standard.constraint_error".
10639 If an exception named contraint_error is defined in another package of
10640 the inferior program, then the only way to specify this exception as a
10641 breakpoint condition is to use its fully-qualified named:
10642 e.g. my_package.constraint_error. */
10644 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10646 if (strcmp (standard_exc [i], exp_string) == 0)
10648 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10652 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10655 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10657 static struct expression *
10658 ada_parse_catchpoint_condition (char *cond_string,
10659 struct symtab_and_line sal)
10661 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10664 /* Return the symtab_and_line that should be used to insert an exception
10665 catchpoint of the TYPE kind.
10667 EX_STRING should contain the name of a specific exception
10668 that the catchpoint should catch, or NULL otherwise.
10670 The idea behind all the remaining parameters is that their names match
10671 the name of certain fields in the breakpoint structure that are used to
10672 handle exception catchpoints. This function returns the value to which
10673 these fields should be set, depending on the type of catchpoint we need
10676 If COND and COND_STRING are both non-NULL, any value they might
10677 hold will be free'ed, and then replaced by newly allocated ones.
10678 These parameters are left untouched otherwise. */
10680 static struct symtab_and_line
10681 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10682 char **addr_string, char **cond_string,
10683 struct expression **cond, struct breakpoint_ops **ops)
10685 const char *sym_name;
10686 struct symbol *sym;
10687 struct symtab_and_line sal;
10689 /* First, find out which exception support info to use. */
10690 ada_exception_support_info_sniffer ();
10692 /* Then lookup the function on which we will break in order to catch
10693 the Ada exceptions requested by the user. */
10695 sym_name = ada_exception_sym_name (ex);
10696 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10698 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10699 that should be compiled with debugging information. As a result, we
10700 expect to find that symbol in the symtabs. If we don't find it, then
10701 the target most likely does not support Ada exceptions, or we cannot
10702 insert exception breakpoints yet, because the GNAT runtime hasn't been
10705 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10706 in such a way that no debugging information is produced for the symbol
10707 we are looking for. In this case, we could search the minimal symbols
10708 as a fall-back mechanism. This would still be operating in degraded
10709 mode, however, as we would still be missing the debugging information
10710 that is needed in order to extract the name of the exception being
10711 raised (this name is printed in the catchpoint message, and is also
10712 used when trying to catch a specific exception). We do not handle
10713 this case for now. */
10716 error (_("Unable to break on '%s' in this configuration."), sym_name);
10718 /* Make sure that the symbol we found corresponds to a function. */
10719 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10720 error (_("Symbol \"%s\" is not a function (class = %d)"),
10721 sym_name, SYMBOL_CLASS (sym));
10723 sal = find_function_start_sal (sym, 1);
10725 /* Set ADDR_STRING. */
10727 *addr_string = xstrdup (sym_name);
10729 /* Set the COND and COND_STRING (if not NULL). */
10731 if (cond_string != NULL && cond != NULL)
10733 if (*cond_string != NULL)
10735 xfree (*cond_string);
10736 *cond_string = NULL;
10743 if (exp_string != NULL)
10745 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10746 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10751 *ops = ada_exception_breakpoint_ops (ex);
10756 /* Parse the arguments (ARGS) of the "catch exception" command.
10758 Set TYPE to the appropriate exception catchpoint type.
10759 If the user asked the catchpoint to catch only a specific
10760 exception, then save the exception name in ADDR_STRING.
10762 See ada_exception_sal for a description of all the remaining
10763 function arguments of this function. */
10765 struct symtab_and_line
10766 ada_decode_exception_location (char *args, char **addr_string,
10767 char **exp_string, char **cond_string,
10768 struct expression **cond,
10769 struct breakpoint_ops **ops)
10771 enum exception_catchpoint_kind ex;
10773 catch_ada_exception_command_split (args, &ex, exp_string);
10774 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10778 struct symtab_and_line
10779 ada_decode_assert_location (char *args, char **addr_string,
10780 struct breakpoint_ops **ops)
10782 /* Check that no argument where provided at the end of the command. */
10786 while (isspace (*args))
10789 error (_("Junk at end of arguments."));
10792 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10797 /* Information about operators given special treatment in functions
10799 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10801 #define ADA_OPERATORS \
10802 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10803 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10804 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10805 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10806 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10807 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10808 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10809 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10810 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10811 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10812 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10813 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10814 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10815 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10816 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10817 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10818 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10819 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10820 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10823 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10825 switch (exp->elts[pc - 1].opcode)
10828 operator_length_standard (exp, pc, oplenp, argsp);
10831 #define OP_DEFN(op, len, args, binop) \
10832 case op: *oplenp = len; *argsp = args; break;
10838 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10843 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10849 ada_op_name (enum exp_opcode opcode)
10854 return op_name_standard (opcode);
10856 #define OP_DEFN(op, len, args, binop) case op: return #op;
10861 return "OP_AGGREGATE";
10863 return "OP_CHOICES";
10869 /* As for operator_length, but assumes PC is pointing at the first
10870 element of the operator, and gives meaningful results only for the
10871 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10874 ada_forward_operator_length (struct expression *exp, int pc,
10875 int *oplenp, int *argsp)
10877 switch (exp->elts[pc].opcode)
10880 *oplenp = *argsp = 0;
10883 #define OP_DEFN(op, len, args, binop) \
10884 case op: *oplenp = len; *argsp = args; break;
10890 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10895 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10901 int len = longest_to_int (exp->elts[pc + 1].longconst);
10902 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10910 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10912 enum exp_opcode op = exp->elts[elt].opcode;
10917 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10921 /* Ada attributes ('Foo). */
10924 case OP_ATR_LENGTH:
10928 case OP_ATR_MODULUS:
10935 case UNOP_IN_RANGE:
10937 /* XXX: gdb_sprint_host_address, type_sprint */
10938 fprintf_filtered (stream, _("Type @"));
10939 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10940 fprintf_filtered (stream, " (");
10941 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10942 fprintf_filtered (stream, ")");
10944 case BINOP_IN_BOUNDS:
10945 fprintf_filtered (stream, " (%d)",
10946 longest_to_int (exp->elts[pc + 2].longconst));
10948 case TERNOP_IN_RANGE:
10953 case OP_DISCRETE_RANGE:
10954 case OP_POSITIONAL:
10961 char *name = &exp->elts[elt + 2].string;
10962 int len = longest_to_int (exp->elts[elt + 1].longconst);
10963 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10968 return dump_subexp_body_standard (exp, stream, elt);
10972 for (i = 0; i < nargs; i += 1)
10973 elt = dump_subexp (exp, stream, elt);
10978 /* The Ada extension of print_subexp (q.v.). */
10981 ada_print_subexp (struct expression *exp, int *pos,
10982 struct ui_file *stream, enum precedence prec)
10984 int oplen, nargs, i;
10986 enum exp_opcode op = exp->elts[pc].opcode;
10988 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10995 print_subexp_standard (exp, pos, stream, prec);
10999 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11002 case BINOP_IN_BOUNDS:
11003 /* XXX: sprint_subexp */
11004 print_subexp (exp, pos, stream, PREC_SUFFIX);
11005 fputs_filtered (" in ", stream);
11006 print_subexp (exp, pos, stream, PREC_SUFFIX);
11007 fputs_filtered ("'range", stream);
11008 if (exp->elts[pc + 1].longconst > 1)
11009 fprintf_filtered (stream, "(%ld)",
11010 (long) exp->elts[pc + 1].longconst);
11013 case TERNOP_IN_RANGE:
11014 if (prec >= PREC_EQUAL)
11015 fputs_filtered ("(", stream);
11016 /* XXX: sprint_subexp */
11017 print_subexp (exp, pos, stream, PREC_SUFFIX);
11018 fputs_filtered (" in ", stream);
11019 print_subexp (exp, pos, stream, PREC_EQUAL);
11020 fputs_filtered (" .. ", stream);
11021 print_subexp (exp, pos, stream, PREC_EQUAL);
11022 if (prec >= PREC_EQUAL)
11023 fputs_filtered (")", stream);
11028 case OP_ATR_LENGTH:
11032 case OP_ATR_MODULUS:
11037 if (exp->elts[*pos].opcode == OP_TYPE)
11039 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11040 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11044 print_subexp (exp, pos, stream, PREC_SUFFIX);
11045 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11049 for (tem = 1; tem < nargs; tem += 1)
11051 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11052 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11054 fputs_filtered (")", stream);
11059 type_print (exp->elts[pc + 1].type, "", stream, 0);
11060 fputs_filtered ("'(", stream);
11061 print_subexp (exp, pos, stream, PREC_PREFIX);
11062 fputs_filtered (")", stream);
11065 case UNOP_IN_RANGE:
11066 /* XXX: sprint_subexp */
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 fputs_filtered (" in ", stream);
11069 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11072 case OP_DISCRETE_RANGE:
11073 print_subexp (exp, pos, stream, PREC_SUFFIX);
11074 fputs_filtered ("..", stream);
11075 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 fputs_filtered ("others => ", stream);
11080 print_subexp (exp, pos, stream, PREC_SUFFIX);
11084 for (i = 0; i < nargs-1; i += 1)
11087 fputs_filtered ("|", stream);
11088 print_subexp (exp, pos, stream, PREC_SUFFIX);
11090 fputs_filtered (" => ", stream);
11091 print_subexp (exp, pos, stream, PREC_SUFFIX);
11094 case OP_POSITIONAL:
11095 print_subexp (exp, pos, stream, PREC_SUFFIX);
11099 fputs_filtered ("(", stream);
11100 for (i = 0; i < nargs; i += 1)
11103 fputs_filtered (", ", stream);
11104 print_subexp (exp, pos, stream, PREC_SUFFIX);
11106 fputs_filtered (")", stream);
11111 /* Table mapping opcodes into strings for printing operators
11112 and precedences of the operators. */
11114 static const struct op_print ada_op_print_tab[] = {
11115 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11116 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11117 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11118 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11119 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11120 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11121 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11122 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11123 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11124 {">=", BINOP_GEQ, PREC_ORDER, 0},
11125 {">", BINOP_GTR, PREC_ORDER, 0},
11126 {"<", BINOP_LESS, PREC_ORDER, 0},
11127 {">>", BINOP_RSH, PREC_SHIFT, 0},
11128 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11129 {"+", BINOP_ADD, PREC_ADD, 0},
11130 {"-", BINOP_SUB, PREC_ADD, 0},
11131 {"&", BINOP_CONCAT, PREC_ADD, 0},
11132 {"*", BINOP_MUL, PREC_MUL, 0},
11133 {"/", BINOP_DIV, PREC_MUL, 0},
11134 {"rem", BINOP_REM, PREC_MUL, 0},
11135 {"mod", BINOP_MOD, PREC_MUL, 0},
11136 {"**", BINOP_EXP, PREC_REPEAT, 0},
11137 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11138 {"-", UNOP_NEG, PREC_PREFIX, 0},
11139 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11140 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11141 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11142 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11143 {".all", UNOP_IND, PREC_SUFFIX, 1},
11144 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11145 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11149 enum ada_primitive_types {
11150 ada_primitive_type_int,
11151 ada_primitive_type_long,
11152 ada_primitive_type_short,
11153 ada_primitive_type_char,
11154 ada_primitive_type_float,
11155 ada_primitive_type_double,
11156 ada_primitive_type_void,
11157 ada_primitive_type_long_long,
11158 ada_primitive_type_long_double,
11159 ada_primitive_type_natural,
11160 ada_primitive_type_positive,
11161 ada_primitive_type_system_address,
11162 nr_ada_primitive_types
11166 ada_language_arch_info (struct gdbarch *gdbarch,
11167 struct language_arch_info *lai)
11169 const struct builtin_type *builtin = builtin_type (gdbarch);
11170 lai->primitive_type_vector
11171 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11173 lai->primitive_type_vector [ada_primitive_type_int] =
11174 init_type (TYPE_CODE_INT,
11175 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11176 0, "integer", (struct objfile *) NULL);
11177 lai->primitive_type_vector [ada_primitive_type_long] =
11178 init_type (TYPE_CODE_INT,
11179 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
11180 0, "long_integer", (struct objfile *) NULL);
11181 lai->primitive_type_vector [ada_primitive_type_short] =
11182 init_type (TYPE_CODE_INT,
11183 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
11184 0, "short_integer", (struct objfile *) NULL);
11185 lai->string_char_type =
11186 lai->primitive_type_vector [ada_primitive_type_char] =
11187 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11188 0, "character", (struct objfile *) NULL);
11189 lai->primitive_type_vector [ada_primitive_type_float] =
11190 init_type (TYPE_CODE_FLT,
11191 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
11192 0, "float", (struct objfile *) NULL);
11193 lai->primitive_type_vector [ada_primitive_type_double] =
11194 init_type (TYPE_CODE_FLT,
11195 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11196 0, "long_float", (struct objfile *) NULL);
11197 lai->primitive_type_vector [ada_primitive_type_long_long] =
11198 init_type (TYPE_CODE_INT,
11199 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
11200 0, "long_long_integer", (struct objfile *) NULL);
11201 lai->primitive_type_vector [ada_primitive_type_long_double] =
11202 init_type (TYPE_CODE_FLT,
11203 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11204 0, "long_long_float", (struct objfile *) NULL);
11205 lai->primitive_type_vector [ada_primitive_type_natural] =
11206 init_type (TYPE_CODE_INT,
11207 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11208 0, "natural", (struct objfile *) NULL);
11209 lai->primitive_type_vector [ada_primitive_type_positive] =
11210 init_type (TYPE_CODE_INT,
11211 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11212 0, "positive", (struct objfile *) NULL);
11213 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
11215 lai->primitive_type_vector [ada_primitive_type_system_address] =
11216 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11217 (struct objfile *) NULL));
11218 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11219 = "system__address";
11221 lai->bool_type_symbol = NULL;
11222 lai->bool_type_default = builtin->builtin_bool;
11225 /* Language vector */
11227 /* Not really used, but needed in the ada_language_defn. */
11230 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11232 ada_emit_char (c, type, stream, quoter, 1);
11238 warnings_issued = 0;
11239 return ada_parse ();
11242 static const struct exp_descriptor ada_exp_descriptor = {
11244 ada_operator_length,
11246 ada_dump_subexp_body,
11247 ada_evaluate_subexp
11250 const struct language_defn ada_language_defn = {
11251 "ada", /* Language name */
11255 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11256 that's not quite what this means. */
11258 macro_expansion_no,
11259 &ada_exp_descriptor,
11263 ada_printchar, /* Print a character constant */
11264 ada_printstr, /* Function to print string constant */
11265 emit_char, /* Function to print single char (not used) */
11266 ada_print_type, /* Print a type using appropriate syntax */
11267 default_print_typedef, /* Print a typedef using appropriate syntax */
11268 ada_val_print, /* Print a value using appropriate syntax */
11269 ada_value_print, /* Print a top-level value */
11270 NULL, /* Language specific skip_trampoline */
11271 NULL, /* name_of_this */
11272 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11273 basic_lookup_transparent_type, /* lookup_transparent_type */
11274 ada_la_decode, /* Language specific symbol demangler */
11275 NULL, /* Language specific class_name_from_physname */
11276 ada_op_print_tab, /* expression operators for printing */
11277 0, /* c-style arrays */
11278 1, /* String lower bound */
11279 ada_get_gdb_completer_word_break_characters,
11280 ada_make_symbol_completion_list,
11281 ada_language_arch_info,
11282 ada_print_array_index,
11283 default_pass_by_reference,
11288 /* Provide a prototype to silence -Wmissing-prototypes. */
11289 extern initialize_file_ftype _initialize_ada_language;
11292 _initialize_ada_language (void)
11294 add_language (&ada_language_defn);
11296 varsize_limit = 65536;
11298 obstack_init (&symbol_list_obstack);
11300 decoded_names_store = htab_create_alloc
11301 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11302 NULL, xcalloc, xfree);
11304 observer_attach_executable_changed (ada_executable_changed_observer);