1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
48 @cindex options for i386
49 @cindex options for x86-64
51 @cindex x86-64 options
53 The i386 version of @code{@value{AS}} has a few machine
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
81 @cindex @samp{--divide} option, i386
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
201 @code{avx512_4fmaps},
202 @code{avx512_4vnniw},
203 @code{avx512_vpopcntdq},
206 @code{avx512_bitalg},
207 @code{avx512_vp2intersect},
218 @code{noavx512_4fmaps},
219 @code{noavx512_4vnniw},
220 @code{noavx512_vpopcntdq},
221 @code{noavx512_vbmi2},
222 @code{noavx512_vnni},
223 @code{noavx512_bitalg},
224 @code{noavx512_vp2intersect},
225 @code{noavx512_bf16},
272 Note that rather than extending a basic instruction set, the extension
273 mnemonics starting with @code{no} revoke the respective functionality.
275 When the @code{.arch} directive is used with @option{-march}, the
276 @code{.arch} directive will take precedent.
278 @cindex @samp{-mtune=} option, i386
279 @cindex @samp{-mtune=} option, x86-64
280 @item -mtune=@var{CPU}
281 This option specifies a processor to optimize for. When used in
282 conjunction with the @option{-march} option, only instructions
283 of the processor specified by the @option{-march} option will be
286 Valid @var{CPU} values are identical to the processor list of
287 @option{-march=@var{CPU}}.
289 @cindex @samp{-msse2avx} option, i386
290 @cindex @samp{-msse2avx} option, x86-64
292 This option specifies that the assembler should encode SSE instructions
295 @cindex @samp{-msse-check=} option, i386
296 @cindex @samp{-msse-check=} option, x86-64
297 @item -msse-check=@var{none}
298 @itemx -msse-check=@var{warning}
299 @itemx -msse-check=@var{error}
300 These options control if the assembler should check SSE instructions.
301 @option{-msse-check=@var{none}} will make the assembler not to check SSE
302 instructions, which is the default. @option{-msse-check=@var{warning}}
303 will make the assembler issue a warning for any SSE instruction.
304 @option{-msse-check=@var{error}} will make the assembler issue an error
305 for any SSE instruction.
307 @cindex @samp{-mavxscalar=} option, i386
308 @cindex @samp{-mavxscalar=} option, x86-64
309 @item -mavxscalar=@var{128}
310 @itemx -mavxscalar=@var{256}
311 These options control how the assembler should encode scalar AVX
312 instructions. @option{-mavxscalar=@var{128}} will encode scalar
313 AVX instructions with 128bit vector length, which is the default.
314 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
315 with 256bit vector length.
317 WARNING: Don't use this for production code - due to CPU errata the
318 resulting code may not work on certain models.
320 @cindex @samp{-mvexwig=} option, i386
321 @cindex @samp{-mvexwig=} option, x86-64
322 @item -mvexwig=@var{0}
323 @itemx -mvexwig=@var{1}
324 These options control how the assembler should encode VEX.W-ignored (WIG)
325 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
326 instructions with vex.w = 0, which is the default.
327 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
330 WARNING: Don't use this for production code - due to CPU errata the
331 resulting code may not work on certain models.
333 @cindex @samp{-mevexlig=} option, i386
334 @cindex @samp{-mevexlig=} option, x86-64
335 @item -mevexlig=@var{128}
336 @itemx -mevexlig=@var{256}
337 @itemx -mevexlig=@var{512}
338 These options control how the assembler should encode length-ignored
339 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
340 EVEX instructions with 128bit vector length, which is the default.
341 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
342 encode LIG EVEX instructions with 256bit and 512bit vector length,
345 @cindex @samp{-mevexwig=} option, i386
346 @cindex @samp{-mevexwig=} option, x86-64
347 @item -mevexwig=@var{0}
348 @itemx -mevexwig=@var{1}
349 These options control how the assembler should encode w-ignored (WIG)
350 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
351 EVEX instructions with evex.w = 0, which is the default.
352 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
355 @cindex @samp{-mmnemonic=} option, i386
356 @cindex @samp{-mmnemonic=} option, x86-64
357 @item -mmnemonic=@var{att}
358 @itemx -mmnemonic=@var{intel}
359 This option specifies instruction mnemonic for matching instructions.
360 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
363 @cindex @samp{-msyntax=} option, i386
364 @cindex @samp{-msyntax=} option, x86-64
365 @item -msyntax=@var{att}
366 @itemx -msyntax=@var{intel}
367 This option specifies instruction syntax when processing instructions.
368 The @code{.att_syntax} and @code{.intel_syntax} directives will
371 @cindex @samp{-mnaked-reg} option, i386
372 @cindex @samp{-mnaked-reg} option, x86-64
374 This option specifies that registers don't require a @samp{%} prefix.
375 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
377 @cindex @samp{-madd-bnd-prefix} option, i386
378 @cindex @samp{-madd-bnd-prefix} option, x86-64
379 @item -madd-bnd-prefix
380 This option forces the assembler to add BND prefix to all branches, even
381 if such prefix was not explicitly specified in the source code.
383 @cindex @samp{-mshared} option, i386
384 @cindex @samp{-mshared} option, x86-64
386 On ELF target, the assembler normally optimizes out non-PLT relocations
387 against defined non-weak global branch targets with default visibility.
388 The @samp{-mshared} option tells the assembler to generate code which
389 may go into a shared library where all non-weak global branch targets
390 with default visibility can be preempted. The resulting code is
391 slightly bigger. This option only affects the handling of branch
394 @cindex @samp{-mbig-obj} option, i386
395 @cindex @samp{-mbig-obj} option, x86-64
397 On PE/COFF target this option forces the use of big object file
398 format, which allows more than 32768 sections.
400 @cindex @samp{-momit-lock-prefix=} option, i386
401 @cindex @samp{-momit-lock-prefix=} option, x86-64
402 @item -momit-lock-prefix=@var{no}
403 @itemx -momit-lock-prefix=@var{yes}
404 These options control how the assembler should encode lock prefix.
405 This option is intended as a workaround for processors, that fail on
406 lock prefix. This option can only be safely used with single-core,
407 single-thread computers
408 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
409 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
410 which is the default.
412 @cindex @samp{-mfence-as-lock-add=} option, i386
413 @cindex @samp{-mfence-as-lock-add=} option, x86-64
414 @item -mfence-as-lock-add=@var{no}
415 @itemx -mfence-as-lock-add=@var{yes}
416 These options control how the assembler should encode lfence, mfence and
418 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
419 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
420 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
421 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
422 sfence as usual, which is the default.
424 @cindex @samp{-mrelax-relocations=} option, i386
425 @cindex @samp{-mrelax-relocations=} option, x86-64
426 @item -mrelax-relocations=@var{no}
427 @itemx -mrelax-relocations=@var{yes}
428 These options control whether the assembler should generate relax
429 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
430 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
431 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
432 @option{-mrelax-relocations=@var{no}} will not generate relax
433 relocations. The default can be controlled by a configure option
434 @option{--enable-x86-relax-relocations}.
436 @cindex @samp{-malign-branch-boundary=} option, i386
437 @cindex @samp{-malign-branch-boundary=} option, x86-64
438 @item -malign-branch-boundary=@var{NUM}
439 This option controls how the assembler should align branches with segment
440 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
441 no less than 16. Branches will be aligned within @var{NUM} byte
442 boundary. @option{-malign-branch-boundary=0}, which is the default,
443 doesn't align branches.
445 @cindex @samp{-malign-branch=} option, i386
446 @cindex @samp{-malign-branch=} option, x86-64
447 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
448 This option specifies types of branches to align. @var{TYPE} is
449 combination of @samp{jcc}, which aligns conditional jumps,
450 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
451 which aligns unconditional jumps, @samp{call} which aligns calls,
452 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
453 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
455 @cindex @samp{-malign-branch-prefix-size=} option, i386
456 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
457 @item -malign-branch-prefix-size=@var{NUM}
458 This option specifies the maximum number of prefixes on an instruction
459 to align branches. @var{NUM} should be between 0 and 5. The default
462 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
463 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
464 @item -mbranches-within-32B-boundaries
465 This option aligns conditional jumps, fused conditional jumps and
466 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
467 on an instruction. It is equivalent to
468 @option{-malign-branch-boundary=32}
469 @option{-malign-branch=jcc+fused+jmp}
470 @option{-malign-branch-prefix-size=5}.
471 The default doesn't align branches.
473 @cindex @samp{-mlfence-after-load=} option, i386
474 @cindex @samp{-mlfence-after-load=} option, x86-64
475 @item -mlfence-after-load=@var{no}
476 @itemx -mlfence-after-load=@var{yes}
477 These options control whether the assembler should generate lfence
478 after load instructions. @option{-mlfence-after-load=@var{yes}} will
479 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
480 lfence, which is the default.
482 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
483 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
484 @item -mlfence-before-indirect-branch=@var{none}
485 @item -mlfence-before-indirect-branch=@var{all}
486 @item -mlfence-before-indirect-branch=@var{register}
487 @itemx -mlfence-before-indirect-branch=@var{memory}
488 These options control whether the assembler should generate lfence
489 before indirect near branch instructions.
490 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
491 before indirect near branch via register and issue a warning before
492 indirect near branch via memory.
493 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
494 there's no explict @option{-mlfence-before-ret=}.
495 @option{-mlfence-before-indirect-branch=@var{register}} will generate
496 lfence before indirect near branch via register.
497 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
498 warning before indirect near branch via memory.
499 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
500 lfence nor issue warning, which is the default. Note that lfence won't
501 be generated before indirect near branch via register with
502 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
503 after loading branch target register.
505 @cindex @samp{-mlfence-before-ret=} option, i386
506 @cindex @samp{-mlfence-before-ret=} option, x86-64
507 @item -mlfence-before-ret=@var{none}
508 @item -mlfence-before-ret=@var{shl}
509 @item -mlfence-before-ret=@var{or}
510 @item -mlfence-before-ret=@var{yes}
511 @itemx -mlfence-before-ret=@var{not}
512 These options control whether the assembler should generate lfence
513 before ret. @option{-mlfence-before-ret=@var{or}} will generate
514 generate or instruction with lfence.
515 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
516 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
517 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
518 generate lfence, which is the default.
520 @cindex @samp{-mx86-used-note=} option, i386
521 @cindex @samp{-mx86-used-note=} option, x86-64
522 @item -mx86-used-note=@var{no}
523 @itemx -mx86-used-note=@var{yes}
524 These options control whether the assembler should generate
525 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
526 GNU property notes. The default can be controlled by the
527 @option{--enable-x86-used-note} configure option.
529 @cindex @samp{-mevexrcig=} option, i386
530 @cindex @samp{-mevexrcig=} option, x86-64
531 @item -mevexrcig=@var{rne}
532 @itemx -mevexrcig=@var{rd}
533 @itemx -mevexrcig=@var{ru}
534 @itemx -mevexrcig=@var{rz}
535 These options control how the assembler should encode SAE-only
536 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
537 of EVEX instruction with 00, which is the default.
538 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
539 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
540 with 01, 10 and 11 RC bits, respectively.
542 @cindex @samp{-mamd64} option, x86-64
543 @cindex @samp{-mintel64} option, x86-64
546 This option specifies that the assembler should accept only AMD64 or
547 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
550 @cindex @samp{-O0} option, i386
551 @cindex @samp{-O0} option, x86-64
552 @cindex @samp{-O} option, i386
553 @cindex @samp{-O} option, x86-64
554 @cindex @samp{-O1} option, i386
555 @cindex @samp{-O1} option, x86-64
556 @cindex @samp{-O2} option, i386
557 @cindex @samp{-O2} option, x86-64
558 @cindex @samp{-Os} option, i386
559 @cindex @samp{-Os} option, x86-64
560 @item -O0 | -O | -O1 | -O2 | -Os
561 Optimize instruction encoding with smaller instruction size. @samp{-O}
562 and @samp{-O1} encode 64-bit register load instructions with 64-bit
563 immediate as 32-bit register load instructions with 31-bit or 32-bits
564 immediates, encode 64-bit register clearing instructions with 32-bit
565 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
566 register clearing instructions with 128-bit VEX vector register
567 clearing instructions, encode 128-bit/256-bit EVEX vector
568 register load/store instructions with VEX vector register load/store
569 instructions, and encode 128-bit/256-bit EVEX packed integer logical
570 instructions with 128-bit/256-bit VEX packed integer logical.
572 @samp{-O2} includes @samp{-O1} optimization plus encodes
573 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
574 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
575 instructions with commutative source operands will also have their
576 source operands swapped if this allows using the 2-byte VEX prefix form
577 instead of the 3-byte one. Certain forms of AND as well as OR with the
578 same (register) operand specified twice will also be changed to TEST.
580 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
581 and 64-bit register tests with immediate as 8-bit register test with
582 immediate. @samp{-O0} turns off this optimization.
587 @node i386-Directives
588 @section x86 specific Directives
590 @cindex machine directives, x86
591 @cindex x86 machine directives
594 @cindex @code{lcomm} directive, COFF
595 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
596 Reserve @var{length} (an absolute expression) bytes for a local common
597 denoted by @var{symbol}. The section and value of @var{symbol} are
598 those of the new local common. The addresses are allocated in the bss
599 section, so that at run-time the bytes start off zeroed. Since
600 @var{symbol} is not declared global, it is normally not visible to
601 @code{@value{LD}}. The optional third parameter, @var{alignment},
602 specifies the desired alignment of the symbol in the bss section.
604 This directive is only available for COFF based x86 targets.
606 @cindex @code{largecomm} directive, ELF
607 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
608 This directive behaves in the same way as the @code{comm} directive
609 except that the data is placed into the @var{.lbss} section instead of
610 the @var{.bss} section @ref{Comm}.
612 The directive is intended to be used for data which requires a large
613 amount of space, and it is only available for ELF based x86_64
616 @cindex @code{value} directive
617 @item .value @var{expression} [, @var{expression}]
618 This directive behaves in the same way as the @code{.short} directive,
619 taking a series of comma separated expressions and storing them as
620 two-byte wide values into the current section.
622 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
627 @section i386 Syntactical Considerations
629 * i386-Variations:: AT&T Syntax versus Intel Syntax
630 * i386-Chars:: Special Characters
633 @node i386-Variations
634 @subsection AT&T Syntax versus Intel Syntax
636 @cindex i386 intel_syntax pseudo op
637 @cindex intel_syntax pseudo op, i386
638 @cindex i386 att_syntax pseudo op
639 @cindex att_syntax pseudo op, i386
640 @cindex i386 syntax compatibility
641 @cindex syntax compatibility, i386
642 @cindex x86-64 intel_syntax pseudo op
643 @cindex intel_syntax pseudo op, x86-64
644 @cindex x86-64 att_syntax pseudo op
645 @cindex att_syntax pseudo op, x86-64
646 @cindex x86-64 syntax compatibility
647 @cindex syntax compatibility, x86-64
649 @code{@value{AS}} now supports assembly using Intel assembler syntax.
650 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
651 back to the usual AT&T mode for compatibility with the output of
652 @code{@value{GCC}}. Either of these directives may have an optional
653 argument, @code{prefix}, or @code{noprefix} specifying whether registers
654 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
655 different from Intel syntax. We mention these differences because
656 almost all 80386 documents use Intel syntax. Notable differences
657 between the two syntaxes are:
659 @cindex immediate operands, i386
660 @cindex i386 immediate operands
661 @cindex register operands, i386
662 @cindex i386 register operands
663 @cindex jump/call operands, i386
664 @cindex i386 jump/call operands
665 @cindex operand delimiters, i386
667 @cindex immediate operands, x86-64
668 @cindex x86-64 immediate operands
669 @cindex register operands, x86-64
670 @cindex x86-64 register operands
671 @cindex jump/call operands, x86-64
672 @cindex x86-64 jump/call operands
673 @cindex operand delimiters, x86-64
676 AT&T immediate operands are preceded by @samp{$}; Intel immediate
677 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
678 AT&T register operands are preceded by @samp{%}; Intel register operands
679 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
680 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
682 @cindex i386 source, destination operands
683 @cindex source, destination operands; i386
684 @cindex x86-64 source, destination operands
685 @cindex source, destination operands; x86-64
687 AT&T and Intel syntax use the opposite order for source and destination
688 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
689 @samp{source, dest} convention is maintained for compatibility with
690 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
691 instructions with 2 immediate operands, such as the @samp{enter}
692 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
694 @cindex mnemonic suffixes, i386
695 @cindex sizes operands, i386
696 @cindex i386 size suffixes
697 @cindex mnemonic suffixes, x86-64
698 @cindex sizes operands, x86-64
699 @cindex x86-64 size suffixes
701 In AT&T syntax the size of memory operands is determined from the last
702 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
703 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
704 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
705 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
706 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
707 no other way to disambiguate an instruction. Intel syntax accomplishes this by
708 prefixing memory operands (@emph{not} the instruction mnemonics) with
709 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
710 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
711 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
712 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
713 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
715 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
716 instruction with the 64-bit displacement or immediate operand.
718 @cindex return instructions, i386
719 @cindex i386 jump, call, return
720 @cindex return instructions, x86-64
721 @cindex x86-64 jump, call, return
723 Immediate form long jumps and calls are
724 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
726 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
728 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
729 @samp{ret far @var{stack-adjust}}.
731 @cindex sections, i386
732 @cindex i386 sections
733 @cindex sections, x86-64
734 @cindex x86-64 sections
736 The AT&T assembler does not provide support for multiple section
737 programs. Unix style systems expect all programs to be single sections.
741 @subsection Special Characters
743 @cindex line comment character, i386
744 @cindex i386 line comment character
745 The presence of a @samp{#} appearing anywhere on a line indicates the
746 start of a comment that extends to the end of that line.
748 If a @samp{#} appears as the first character of a line then the whole
749 line is treated as a comment, but in this case the line can also be a
750 logical line number directive (@pxref{Comments}) or a preprocessor
751 control command (@pxref{Preprocessing}).
753 If the @option{--divide} command-line option has not been specified
754 then the @samp{/} character appearing anywhere on a line also
755 introduces a line comment.
757 @cindex line separator, i386
758 @cindex statement separator, i386
759 @cindex i386 line separator
760 The @samp{;} character can be used to separate statements on the same
764 @section i386-Mnemonics
765 @subsection Instruction Naming
767 @cindex i386 instruction naming
768 @cindex instruction naming, i386
769 @cindex x86-64 instruction naming
770 @cindex instruction naming, x86-64
772 Instruction mnemonics are suffixed with one character modifiers which
773 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
774 and @samp{q} specify byte, word, long and quadruple word operands. If
775 no suffix is specified by an instruction then @code{@value{AS}} tries to
776 fill in the missing suffix based on the destination register operand
777 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
778 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
779 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
780 assembler which assumes that a missing mnemonic suffix implies long
781 operand size. (This incompatibility does not affect compiler output
782 since compilers always explicitly specify the mnemonic suffix.)
784 When there is no sizing suffix and no (suitable) register operands to
785 deduce the size of memory operands, with a few exceptions and where long
786 operand size is possible in the first place, operand size will default
787 to long in 32- and 64-bit modes. Similarly it will default to short in
788 16-bit mode. Noteworthy exceptions are
792 Instructions with an implicit on-stack operand as well as branches,
793 which default to quad in 64-bit mode.
796 Sign- and zero-extending moves, which default to byte size source
800 Floating point insns with integer operands, which default to short (for
801 perhaps historical reasons).
804 CRC32 with a 64-bit destination, which defaults to a quad source
809 @cindex encoding options, i386
810 @cindex encoding options, x86-64
812 Different encoding options can be specified via pseudo prefixes:
816 @samp{@{disp8@}} -- prefer 8-bit displacement.
819 @samp{@{disp32@}} -- prefer 32-bit displacement.
822 @samp{@{load@}} -- prefer load-form instruction.
825 @samp{@{store@}} -- prefer store-form instruction.
828 @samp{@{vex@}} -- encode with VEX prefix.
831 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
834 @samp{@{evex@}} -- encode with EVEX prefix.
837 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
838 instructions (x86-64 only). Note that this differs from the @samp{rex}
839 prefix which generates REX prefix unconditionally.
842 @samp{@{nooptimize@}} -- disable instruction size optimization.
845 @cindex conversion instructions, i386
846 @cindex i386 conversion instructions
847 @cindex conversion instructions, x86-64
848 @cindex x86-64 conversion instructions
849 The Intel-syntax conversion instructions
853 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
856 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
859 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
862 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
865 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
869 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
870 @samp{%rdx:%rax} (x86-64 only),
874 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
875 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
878 @cindex extension instructions, i386
879 @cindex i386 extension instructions
880 @cindex extension instructions, x86-64
881 @cindex x86-64 extension instructions
882 The Intel-syntax extension instructions
886 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
889 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
892 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
896 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
899 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
903 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
907 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
910 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
913 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
917 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
920 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
925 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
926 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
927 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
928 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
929 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
931 @cindex jump instructions, i386
932 @cindex call instructions, i386
933 @cindex jump instructions, x86-64
934 @cindex call instructions, x86-64
935 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
936 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
939 @subsection AT&T Mnemonic versus Intel Mnemonic
941 @cindex i386 mnemonic compatibility
942 @cindex mnemonic compatibility, i386
944 @code{@value{AS}} supports assembly using Intel mnemonic.
945 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
946 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
947 syntax for compatibility with the output of @code{@value{GCC}}.
948 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
949 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
950 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
951 assembler with different mnemonics from those in Intel IA32 specification.
952 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
955 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
956 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
957 destination register with both AT&T and Intel mnemonics.
961 @section Register Naming
963 @cindex i386 registers
964 @cindex registers, i386
965 @cindex x86-64 registers
966 @cindex registers, x86-64
967 Register operands are always prefixed with @samp{%}. The 80386 registers
972 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
973 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
974 frame pointer), and @samp{%esp} (the stack pointer).
977 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
978 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
981 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
982 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
983 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
984 @samp{%cx}, and @samp{%dx})
987 the 6 section registers @samp{%cs} (code section), @samp{%ds}
988 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
992 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
993 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
996 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
997 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
1000 the 2 test registers @samp{%tr6} and @samp{%tr7}.
1003 the 8 floating point register stack @samp{%st} or equivalently
1004 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1005 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1006 These registers are overloaded by 8 MMX registers @samp{%mm0},
1007 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1008 @samp{%mm6} and @samp{%mm7}.
1011 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1012 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1015 The AMD x86-64 architecture extends the register set by:
1019 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1020 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1021 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1025 the 8 extended registers @samp{%r8}--@samp{%r15}.
1028 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1031 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1034 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1037 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1040 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1043 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1046 With the AVX extensions more registers were made available:
1051 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1052 available in 32-bit mode). The bottom 128 bits are overlaid with the
1053 @samp{xmm0}--@samp{xmm15} registers.
1057 The AVX512 extensions added the following registers:
1062 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1063 available in 32-bit mode). The bottom 128 bits are overlaid with the
1064 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1065 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1068 the 8 mask registers @samp{%k0}--@samp{%k7}.
1073 @section Instruction Prefixes
1075 @cindex i386 instruction prefixes
1076 @cindex instruction prefixes, i386
1077 @cindex prefixes, i386
1078 Instruction prefixes are used to modify the following instruction. They
1079 are used to repeat string instructions, to provide section overrides, to
1080 perform bus lock operations, and to change operand and address sizes.
1081 (Most instructions that normally operate on 32-bit operands will use
1082 16-bit operands if the instruction has an ``operand size'' prefix.)
1083 Instruction prefixes are best written on the same line as the instruction
1084 they act upon. For example, the @samp{scas} (scan string) instruction is
1088 repne scas %es:(%edi),%al
1091 You may also place prefixes on the lines immediately preceding the
1092 instruction, but this circumvents checks that @code{@value{AS}} does
1093 with prefixes, and will not work with all prefixes.
1095 Here is a list of instruction prefixes:
1097 @cindex section override prefixes, i386
1100 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1101 @samp{fs}, @samp{gs}. These are automatically added by specifying
1102 using the @var{section}:@var{memory-operand} form for memory references.
1104 @cindex size prefixes, i386
1106 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1107 change 32-bit operands/addresses into 16-bit operands/addresses,
1108 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1109 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1110 @emph{must} appear on the same line of code as the instruction they
1111 modify. For example, in a 16-bit @code{.code16} section, you might
1118 @cindex bus lock prefixes, i386
1119 @cindex inhibiting interrupts, i386
1121 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1122 the instruction it precedes. (This is only valid with certain
1123 instructions; see a 80386 manual for details).
1125 @cindex coprocessor wait, i386
1127 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1128 complete the current instruction. This should never be needed for the
1129 80386/80387 combination.
1131 @cindex repeat prefixes, i386
1133 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1134 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1135 times if the current address size is 16-bits).
1136 @cindex REX prefixes, i386
1138 The @samp{rex} family of prefixes is used by x86-64 to encode
1139 extensions to i386 instruction set. The @samp{rex} prefix has four
1140 bits --- an operand size overwrite (@code{64}) used to change operand size
1141 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1144 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1145 instruction emits @samp{rex} prefix with all the bits set. By omitting
1146 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1147 prefixes as well. Normally, there is no need to write the prefixes
1148 explicitly, since gas will automatically generate them based on the
1149 instruction operands.
1153 @section Memory References
1155 @cindex i386 memory references
1156 @cindex memory references, i386
1157 @cindex x86-64 memory references
1158 @cindex memory references, x86-64
1159 An Intel syntax indirect memory reference of the form
1162 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1166 is translated into the AT&T syntax
1169 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1173 where @var{base} and @var{index} are the optional 32-bit base and
1174 index registers, @var{disp} is the optional displacement, and
1175 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1176 to calculate the address of the operand. If no @var{scale} is
1177 specified, @var{scale} is taken to be 1. @var{section} specifies the
1178 optional section register for the memory operand, and may override the
1179 default section register (see a 80386 manual for section register
1180 defaults). Note that section overrides in AT&T syntax @emph{must}
1181 be preceded by a @samp{%}. If you specify a section override which
1182 coincides with the default section register, @code{@value{AS}} does @emph{not}
1183 output any section register override prefixes to assemble the given
1184 instruction. Thus, section overrides can be specified to emphasize which
1185 section register is used for a given memory operand.
1187 Here are some examples of Intel and AT&T style memory references:
1190 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1191 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1192 missing, and the default section is used (@samp{%ss} for addressing with
1193 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1195 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1196 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1197 @samp{foo}. All other fields are missing. The section register here
1198 defaults to @samp{%ds}.
1200 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1201 This uses the value pointed to by @samp{foo} as a memory operand.
1202 Note that @var{base} and @var{index} are both missing, but there is only
1203 @emph{one} @samp{,}. This is a syntactic exception.
1205 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1206 This selects the contents of the variable @samp{foo} with section
1207 register @var{section} being @samp{%gs}.
1210 Absolute (as opposed to PC relative) call and jump operands must be
1211 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1212 always chooses PC relative addressing for jump/call labels.
1214 Any instruction that has a memory operand, but no register operand,
1215 @emph{must} specify its size (byte, word, long, or quadruple) with an
1216 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1219 The x86-64 architecture adds an RIP (instruction pointer relative)
1220 addressing. This addressing mode is specified by using @samp{rip} as a
1221 base register. Only constant offsets are valid. For example:
1224 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1225 Points to the address 1234 bytes past the end of the current
1228 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1229 Points to the @code{symbol} in RIP relative way, this is shorter than
1230 the default absolute addressing.
1233 Other addressing modes remain unchanged in x86-64 architecture, except
1234 registers used are 64-bit instead of 32-bit.
1237 @section Handling of Jump Instructions
1239 @cindex jump optimization, i386
1240 @cindex i386 jump optimization
1241 @cindex jump optimization, x86-64
1242 @cindex x86-64 jump optimization
1243 Jump instructions are always optimized to use the smallest possible
1244 displacements. This is accomplished by using byte (8-bit) displacement
1245 jumps whenever the target is sufficiently close. If a byte displacement
1246 is insufficient a long displacement is used. We do not support
1247 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1248 instruction with the @samp{data16} instruction prefix), since the 80386
1249 insists upon masking @samp{%eip} to 16 bits after the word displacement
1250 is added. (See also @pxref{i386-Arch})
1252 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1253 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1254 displacements, so that if you use these instructions (@code{@value{GCC}} does
1255 not use them) you may get an error message (and incorrect code). The AT&T
1256 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1267 @section Floating Point
1269 @cindex i386 floating point
1270 @cindex floating point, i386
1271 @cindex x86-64 floating point
1272 @cindex floating point, x86-64
1273 All 80387 floating point types except packed BCD are supported.
1274 (BCD support may be added without much difficulty). These data
1275 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1276 double (64-bit), and extended (80-bit) precision floating point.
1277 Each supported type has an instruction mnemonic suffix and a constructor
1278 associated with it. Instruction mnemonic suffixes specify the operand's
1279 data type. Constructors build these data types into memory.
1281 @cindex @code{float} directive, i386
1282 @cindex @code{single} directive, i386
1283 @cindex @code{double} directive, i386
1284 @cindex @code{tfloat} directive, i386
1285 @cindex @code{float} directive, x86-64
1286 @cindex @code{single} directive, x86-64
1287 @cindex @code{double} directive, x86-64
1288 @cindex @code{tfloat} directive, x86-64
1291 Floating point constructors are @samp{.float} or @samp{.single},
1292 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1293 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1294 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1295 only supports this format via the @samp{fldt} (load 80-bit real to stack
1296 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1298 @cindex @code{word} directive, i386
1299 @cindex @code{long} directive, i386
1300 @cindex @code{int} directive, i386
1301 @cindex @code{quad} directive, i386
1302 @cindex @code{word} directive, x86-64
1303 @cindex @code{long} directive, x86-64
1304 @cindex @code{int} directive, x86-64
1305 @cindex @code{quad} directive, x86-64
1307 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1308 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1309 corresponding instruction mnemonic suffixes are @samp{s} (single),
1310 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1311 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1312 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1313 stack) instructions.
1316 Register to register operations should not use instruction mnemonic suffixes.
1317 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1318 wrote @samp{fst %st, %st(1)}, since all register to register operations
1319 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1320 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1321 then stores the result in the 4 byte location @samp{mem})
1324 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1327 @cindex 3DNow!, i386
1330 @cindex 3DNow!, x86-64
1331 @cindex SIMD, x86-64
1333 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1334 instructions for integer data), available on Intel's Pentium MMX
1335 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1336 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1337 instruction set (SIMD instructions for 32-bit floating point data)
1338 available on AMD's K6-2 processor and possibly others in the future.
1340 Currently, @code{@value{AS}} does not support Intel's floating point
1343 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1344 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1345 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1346 floating point values. The MMX registers cannot be used at the same time
1347 as the floating point stack.
1349 See Intel and AMD documentation, keeping in mind that the operand order in
1350 instructions is reversed from the Intel syntax.
1353 @section AMD's Lightweight Profiling Instructions
1358 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1359 instruction set, available on AMD's Family 15h (Orochi) processors.
1361 LWP enables applications to collect and manage performance data, and
1362 react to performance events. The collection of performance data
1363 requires no context switches. LWP runs in the context of a thread and
1364 so several counters can be used independently across multiple threads.
1365 LWP can be used in both 64-bit and legacy 32-bit modes.
1367 For detailed information on the LWP instruction set, see the
1368 @cite{AMD Lightweight Profiling Specification} available at
1369 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1372 @section Bit Manipulation Instructions
1377 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1379 BMI instructions provide several instructions implementing individual
1380 bit manipulation operations such as isolation, masking, setting, or
1383 @c Need to add a specification citation here when available.
1386 @section AMD's Trailing Bit Manipulation Instructions
1391 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1392 instruction set, available on AMD's BDVER2 processors (Trinity and
1395 TBM instructions provide instructions implementing individual bit
1396 manipulation operations such as isolating, masking, setting, resetting,
1397 complementing, and operations on trailing zeros and ones.
1399 @c Need to add a specification citation here when available.
1402 @section Writing 16-bit Code
1404 @cindex i386 16-bit code
1405 @cindex 16-bit code, i386
1406 @cindex real-mode code, i386
1407 @cindex @code{code16gcc} directive, i386
1408 @cindex @code{code16} directive, i386
1409 @cindex @code{code32} directive, i386
1410 @cindex @code{code64} directive, i386
1411 @cindex @code{code64} directive, x86-64
1412 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1413 or 64-bit x86-64 code depending on the default configuration,
1414 it also supports writing code to run in real mode or in 16-bit protected
1415 mode code segments. To do this, put a @samp{.code16} or
1416 @samp{.code16gcc} directive before the assembly language instructions to
1417 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1418 32-bit code with the @samp{.code32} directive or 64-bit code with the
1419 @samp{.code64} directive.
1421 @samp{.code16gcc} provides experimental support for generating 16-bit
1422 code from gcc, and differs from @samp{.code16} in that @samp{call},
1423 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1424 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1425 default to 32-bit size. This is so that the stack pointer is
1426 manipulated in the same way over function calls, allowing access to
1427 function parameters at the same stack offsets as in 32-bit mode.
1428 @samp{.code16gcc} also automatically adds address size prefixes where
1429 necessary to use the 32-bit addressing modes that gcc generates.
1431 The code which @code{@value{AS}} generates in 16-bit mode will not
1432 necessarily run on a 16-bit pre-80386 processor. To write code that
1433 runs on such a processor, you must refrain from using @emph{any} 32-bit
1434 constructs which require @code{@value{AS}} to output address or operand
1437 Note that writing 16-bit code instructions by explicitly specifying a
1438 prefix or an instruction mnemonic suffix within a 32-bit code section
1439 generates different machine instructions than those generated for a
1440 16-bit code segment. In a 32-bit code section, the following code
1441 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1442 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1448 The same code in a 16-bit code section would generate the machine
1449 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1450 is correct since the processor default operand size is assumed to be 16
1451 bits in a 16-bit code section.
1454 @section Specifying CPU Architecture
1456 @cindex arch directive, i386
1457 @cindex i386 arch directive
1458 @cindex arch directive, x86-64
1459 @cindex x86-64 arch directive
1461 @code{@value{AS}} may be told to assemble for a particular CPU
1462 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1463 directive enables a warning when gas detects an instruction that is not
1464 supported on the CPU specified. The choices for @var{cpu_type} are:
1466 @multitable @columnfractions .20 .20 .20 .20
1467 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1468 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1469 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1470 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1471 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1472 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1473 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1474 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1475 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1476 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1477 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1478 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1479 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1480 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1481 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1482 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1483 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1485 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1486 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1487 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1488 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1489 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1490 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1491 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1492 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1493 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1494 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1495 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1496 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1497 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1498 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1499 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1500 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1501 @item @samp{.mcommit} @tab @samp{.sev_es}
1504 Apart from the warning, there are only two other effects on
1505 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1506 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1507 will automatically use a two byte opcode sequence. The larger three
1508 byte opcode sequence is used on the 486 (and when no architecture is
1509 specified) because it executes faster on the 486. Note that you can
1510 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1511 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1512 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1513 conditional jumps will be promoted when necessary to a two instruction
1514 sequence consisting of a conditional jump of the opposite sense around
1515 an unconditional jump to the target.
1517 Following the CPU architecture (but not a sub-architecture, which are those
1518 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1519 control automatic promotion of conditional jumps. @samp{jumps} is the
1520 default, and enables jump promotion; All external jumps will be of the long
1521 variety, and file-local jumps will be promoted as necessary.
1522 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1523 byte offset jumps, and warns about file-local conditional jumps that
1524 @code{@value{AS}} promotes.
1525 Unconditional jumps are treated as for @samp{jumps}.
1534 @section AMD64 ISA vs. Intel64 ISA
1536 There are some discrepancies between AMD64 and Intel64 ISAs.
1539 @item For @samp{movsxd} with 16-bit destination register, AMD64
1540 supports 32-bit source operand and Intel64 supports 16-bit source
1543 @item For far branches (with explicit memory operand), both ISAs support
1544 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1545 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1546 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1549 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1550 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1551 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1557 @section AT&T Syntax bugs
1559 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1560 assemblers, generate floating point instructions with reversed source
1561 and destination registers in certain cases. Unfortunately, gcc and
1562 possibly many other programs use this reversed syntax, so we're stuck
1571 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1572 than the expected @samp{%st(3) - %st}. This happens with all the
1573 non-commutative arithmetic floating point operations with two register
1574 operands where the source register is @samp{%st} and the destination
1575 register is @samp{%st(i)}.
1580 @cindex i386 @code{mul}, @code{imul} instructions
1581 @cindex @code{mul} instruction, i386
1582 @cindex @code{imul} instruction, i386
1583 @cindex @code{mul} instruction, x86-64
1584 @cindex @code{imul} instruction, x86-64
1585 There is some trickery concerning the @samp{mul} and @samp{imul}
1586 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1587 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1588 for @samp{imul}) can be output only in the one operand form. Thus,
1589 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1590 the expanding multiply would clobber the @samp{%edx} register, and this
1591 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1592 64-bit product in @samp{%edx:%eax}.
1594 We have added a two operand form of @samp{imul} when the first operand
1595 is an immediate mode expression and the second operand is a register.
1596 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1597 example, can be done with @samp{imul $69, %eax} rather than @samp{imul