1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 /* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33 #define TAGWORD_ZERO_MASK 0xff00f800
35 extern CORE_ADDR text_start; /* FIXME, kludge... */
37 /* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
41 static CORE_ADDR rstack_high_address = UINT_MAX;
43 /* Structure to hold cached info about function prologues. */
46 CORE_ADDR pc; /* First addr after fn prologue */
47 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
48 unsigned mfp_used : 1; /* memory frame pointer used */
49 unsigned rsize_valid : 1; /* Validity bits for the above */
50 unsigned msize_valid : 1;
51 unsigned mfp_valid : 1;
54 /* Examine the prologue of a function which starts at PC. Return
55 the first addess past the prologue. If MSIZE is non-NULL, then
56 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
57 then set *RSIZE to the register stack frame size (not including
58 incoming arguments and the return address & frame pointer stored
59 with them). If no prologue is found, *RSIZE is set to zero.
60 If no prologue is found, or a prologue which doesn't involve
61 allocating a memory stack frame, then set *MSIZE to zero.
63 Note that both msize and rsize are in bytes. This is not consistent
64 with the _User's Manual_ with respect to rsize, but it is much more
67 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
68 frame pointer is being used. */
70 examine_prologue (pc, rsize, msize, mfp_used)
78 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
79 struct prologue_info *mi = 0;
82 mi = (struct prologue_info *) msymbol -> info;
90 valid &= mi->rsize_valid;
95 valid &= mi->msize_valid;
99 *mfp_used = mi->mfp_used;
100 valid &= mi->mfp_valid;
110 if (mfp_used != NULL)
113 /* Prologue must start with subtracting a constant from gr1.
114 Normally this is sub gr1,gr1,<rsize * 4>. */
115 insn = read_memory_integer (p, 4);
116 if ((insn & 0xffffff00) != 0x25010100)
118 /* If the frame is large, instead of a single instruction it
119 might be a pair of instructions:
120 const <reg>, <rsize * 4>
124 /* Possible value for rsize. */
127 if ((insn & 0xff000000) != 0x03000000)
132 reg = (insn >> 8) & 0xff;
133 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
135 insn = read_memory_integer (p, 4);
136 if ((insn & 0xffffff00) != 0x24010100
137 || (insn & 0xff) != reg)
148 *rsize = (insn & 0xff);
152 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
153 * We don't check the vector number to allow for kernel debugging. The
154 * kernel will use a different trap number.
155 * If this insn is missing, we just keep going; Metaware R2.3u compiler
156 * generates prologue that intermixes initializations and puts the asgeu
159 insn = read_memory_integer (p, 4);
160 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
165 /* Next instruction usually sets the frame pointer (lr1) by adding
166 <size * 4> from gr1. However, this can (and high C does) be
167 deferred until anytime before the first function call. So it is
168 OK if we don't see anything which sets lr1.
169 To allow for alternate register sets (gcc -mkernel-registers) the msp
170 register number is a compile time constant. */
172 /* Normally this is just add lr1,gr1,<size * 4>. */
173 insn = read_memory_integer (p, 4);
174 if ((insn & 0xffffff00) == 0x15810100)
178 /* However, for large frames it can be
179 const <reg>, <size *4>
185 if ((insn & 0xff000000) == 0x03000000)
187 reg = (insn >> 8) & 0xff;
189 insn = read_memory_integer (q, 4);
190 if ((insn & 0xffffff00) == 0x14810100
191 && (insn & 0xff) == reg)
196 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
197 frame pointer is in use. We just check for add lr<anything>,msp,0;
198 we don't check this rsize against the first instruction, and
199 we don't check that the trace-back tag indicates a memory frame pointer
201 To allow for alternate register sets (gcc -mkernel-registers) the msp
202 register number is a compile time constant.
204 The recommended instruction is actually "sll lr<whatever>,msp,0".
205 We check for that, too. Originally Jim Kingdon's code seemed
206 to be looking for a "sub" instruction here, but the mask was set
207 up to lose all the time. */
208 insn = read_memory_integer (p, 4);
209 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
210 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
213 if (mfp_used != NULL)
217 /* Next comes a subtraction from msp to allocate a memory frame,
218 but only if a memory frame is
219 being used. We don't check msize against the trace-back tag.
221 To allow for alternate register sets (gcc -mkernel-registers) the msp
222 register number is a compile time constant.
224 Normally this is just
227 insn = read_memory_integer (p, 4);
228 if ((insn & 0xffffff00) ==
229 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
233 *msize = insn & 0xff;
237 /* For large frames, instead of a single instruction it might
241 consth <reg>, <msize> ; optional
248 if ((insn & 0xff000000) == 0x03000000)
250 reg = (insn >> 8) & 0xff;
251 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
253 insn = read_memory_integer (q, 4);
254 /* Check for consth. */
255 if ((insn & 0xff000000) == 0x02000000
256 && (insn & 0x0000ff00) == reg)
258 msize0 |= (insn << 8) & 0xff000000;
259 msize0 |= (insn << 16) & 0x00ff0000;
261 insn = read_memory_integer (q, 4);
263 /* Check for sub msp,msp,<reg>. */
264 if ((insn & 0xffffff00) ==
265 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
266 && (insn & 0xff) == reg)
275 /* Next instruction might be asgeu V_SPILL,gr1,rab.
276 * We don't check the vector number to allow for kernel debugging. The
277 * kernel will use a different trap number.
278 * Metaware R2.3u compiler
279 * generates prologue that intermixes initializations and puts the asgeu
280 * way down after everything else.
282 insn = read_memory_integer (p, 4);
283 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
293 /* Add a new cache entry. */
294 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
295 msymbol -> info = (char *)mi;
300 /* else, cache entry exists, but info is incomplete. */
312 if (mfp_used != NULL)
314 mi->mfp_used = *mfp_used;
321 /* Advance PC across any function entry prologue instructions
322 to reach some "real" code. */
328 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
332 * Examine the one or two word tag at the beginning of a function.
333 * The tag word is expect to be at 'p', if it is not there, we fail
334 * by returning 0. The documentation for the tag word was taken from
335 * page 7-15 of the 29050 User's Manual. We are assuming that the
336 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
337 * convention today (1/15/92).
338 * msize is return in bytes.
340 static int /* 0/1 - failure/success of finding the tag word */
341 examine_tag(p, is_trans, argcount, msize, mfp_used)
348 unsigned int tag1, tag2;
350 tag1 = read_memory_integer (p, 4);
351 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
353 if (tag1 & (1<<23)) /* A two word tag */
355 tag2 = read_memory_integer (p+4, 4);
359 else /* A one word tag */
362 *msize = tag1 & 0x7ff;
365 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
366 /* Note that this includes the frame pointer and the return address
367 register, so the actual number of registers of arguments is two less.
368 argcount can be zero, however, sometimes, for strange assembler
371 *argcount = (tag1 >> 16) & 0x1f;
373 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
377 /* Initialize the frame. In addition to setting "extra" frame info,
378 we also set ->frame because we use it in a nonstandard way, and ->pc
379 because we need to know it to get the other stuff. See the diagram
380 of stacks and the frame cache in tm-a29k.h for more detail. */
382 init_frame_info (innermost_frame, fci)
384 struct frame_info *fci;
396 fci->frame = read_register (GR1_REGNUM);
398 fci->frame = fci->next->frame + fci->next->rsize;
400 #if CALL_DUMMY_LOCATION == ON_STACK
403 if (PC_IN_CALL_DUMMY (p, 0, 0))
406 fci->rsize = DUMMY_FRAME_RSIZE;
407 /* This doesn't matter since we never try to get locals or args
408 from a dummy frame. */
410 /* Dummy frames always use a memory frame pointer. */
412 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
413 fci->flags |= (TRANSPARENT|MFP_USED);
417 func = find_pc_function (p);
419 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
422 /* Search backward to find the trace-back tag. However,
423 do not trace back beyond the start of the text segment
424 (just as a sanity check to avoid going into never-never land). */
426 while (p >= text_start
427 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
430 char pat[4] = {0, 0, 0, 0};
433 store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
434 /* Enable this once target_search is enabled and tested. */
435 target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw);
436 insn = extract_unsigned_integer (insn_raw, 4);
441 /* Couldn't find the trace-back tag.
442 Something strange is going on. */
446 fci->flags = TRANSPARENT;
450 /* Advance to the first word of the function, i.e. the word
451 after the trace-back tag. */
455 /* We've found the start of the function.
456 Try looking for a tag word that indicates whether there is a
457 memory frame pointer and what the memory stack allocation is.
458 If one doesn't exist, try using a more exhaustive search of
461 if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
462 examine_prologue (p, &rsize, 0, 0);
463 else /* No tag try prologue */
464 examine_prologue (p, &rsize, &msize, &mfp_used);
470 fci->flags |= MFP_USED;
472 fci->flags |= TRANSPARENT;
475 fci->saved_msp = read_register (MSP_REGNUM) + msize;
481 read_register_stack_integer (fci->frame + rsize - 4, 4);
483 fci->saved_msp = fci->next->saved_msp + msize;
488 init_extra_frame_info (fci)
489 struct frame_info *fci;
492 /* Assume innermost frame. May produce strange results for "info frame"
493 but there isn't any way to tell the difference. */
494 init_frame_info (1, fci);
496 /* We're in get_prev_frame_info.
497 Take care of everything in init_frame_pc. */
503 init_frame_pc (fromleaf, fci)
505 struct frame_info *fci;
507 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
508 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
509 init_frame_info (fromleaf, fci);
512 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
513 offsets being relative to the memory stack pointer (high C) or
517 frame_locals_address (fi)
518 struct frame_info *fi;
520 if (fi->flags & MFP_USED)
521 return fi->saved_msp;
523 return fi->saved_msp - fi->msize;
526 /* Routines for reading the register stack. The caller gets to treat
527 the register stack as a uniform stack in memory, from address $gr1
528 straight through $rfb and beyond. */
530 /* Analogous to read_memory except the length is understood to be 4.
531 Also, myaddr can be NULL (meaning don't bother to read), and
532 if actual_mem_addr is non-NULL, store there the address that it
533 was fetched from (or if from a register the offset within
534 registers). Set *LVAL to lval_memory or lval_register, depending
535 on where it came from. The contents written into MYADDR are in
538 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
541 CORE_ADDR *actual_mem_addr;
542 enum lval_type *lval;
544 long rfb = read_register (RFB_REGNUM);
545 long rsp = read_register (RSP_REGNUM);
547 /* If we don't do this 'info register' stops in the middle. */
548 if (memaddr >= rstack_high_address)
551 static char val[] = {~0, ~0, ~0, ~0};
552 /* It's in a local register, but off the end of the stack. */
553 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
556 /* Provide bogusness */
557 memcpy (myaddr, val, 4);
559 supply_register(regnum, val); /* More bogusness */
561 *lval = lval_register;
562 if (actual_mem_addr != NULL)
563 *actual_mem_addr = REGISTER_BYTE (regnum);
565 /* If it's in the part of the register stack that's in real registers,
566 get the value from the registers. If it's anywhere else in memory
567 (e.g. in another thread's saved stack), skip this part and get
568 it from real live memory. */
569 else if (memaddr < rfb && memaddr >= rsp)
571 /* It's in a register. */
572 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
573 if (regnum > LR0_REGNUM + 127)
574 error ("Attempt to read register stack out of range.");
576 read_register_gen (regnum, myaddr);
578 *lval = lval_register;
579 if (actual_mem_addr != NULL)
580 *actual_mem_addr = REGISTER_BYTE (regnum);
584 /* It's in the memory portion of the register stack. */
586 read_memory (memaddr, myaddr, 4);
589 if (actual_mem_addr != NULL)
590 *actual_mem_addr = memaddr;
594 /* Analogous to read_memory_integer
595 except the length is understood to be 4. */
597 read_register_stack_integer (memaddr, len)
602 read_register_stack (memaddr, buf, NULL, NULL);
603 return extract_signed_integer (buf, 4);
606 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
607 at MEMADDR and put the actual address written into in
610 write_register_stack (memaddr, myaddr, actual_mem_addr)
613 CORE_ADDR *actual_mem_addr;
615 long rfb = read_register (RFB_REGNUM);
616 long rsp = read_register (RSP_REGNUM);
617 /* If we don't do this 'info register' stops in the middle. */
618 if (memaddr >= rstack_high_address)
620 /* It's in a register, but off the end of the stack. */
621 if (actual_mem_addr != NULL)
622 *actual_mem_addr = 0;
624 else if (memaddr < rfb)
626 /* It's in a register. */
627 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
628 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
629 error ("Attempt to read register stack out of range.");
631 write_register (regnum, *(long *)myaddr);
632 if (actual_mem_addr != NULL)
633 *actual_mem_addr = 0;
637 /* It's in the memory portion of the register stack. */
639 write_memory (memaddr, myaddr, 4);
640 if (actual_mem_addr != NULL)
641 *actual_mem_addr = memaddr;
645 /* Find register number REGNUM relative to FRAME and put its
646 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
647 was optimized out (and thus can't be fetched). If the variable
648 was fetched from memory, set *ADDRP to where it was fetched from,
649 otherwise it was fetched from a register.
651 The argument RAW_BUFFER must point to aligned memory. */
653 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
659 enum lval_type *lvalp;
661 struct frame_info *fi;
668 fi = get_frame_info (frame);
670 /* Once something has a register number, it doesn't get optimized out. */
671 if (optimized != NULL)
673 if (regnum == RSP_REGNUM)
675 if (raw_buffer != NULL)
677 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->frame);
683 else if (regnum == PC_REGNUM)
685 if (raw_buffer != NULL)
687 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->pc);
690 /* Not sure we have to do this. */
696 else if (regnum == MSP_REGNUM)
698 if (raw_buffer != NULL)
700 if (fi->next != NULL)
702 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
703 fi->next->saved_msp);
706 read_register_gen (MSP_REGNUM, raw_buffer);
708 /* The value may have been computed, not fetched. */
713 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
715 /* These registers are not saved over procedure calls,
716 so just print out the current values. */
717 if (raw_buffer != NULL)
718 read_register_gen (regnum, raw_buffer);
720 *lvalp = lval_register;
722 *addrp = REGISTER_BYTE (regnum);
726 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
727 if (raw_buffer != NULL)
728 read_register_stack (addr, raw_buffer, &addr, &lval);
736 /* Discard from the stack the innermost frame,
737 restoring all saved registers. */
742 FRAME frame = get_current_frame ();
743 struct frame_info *fi = get_frame_info (frame);
744 CORE_ADDR rfb = read_register (RFB_REGNUM);
745 CORE_ADDR gr1 = fi->frame + fi->rsize;
747 CORE_ADDR original_lr0;
748 int must_fix_lr0 = 0;
751 /* If popping a dummy frame, need to restore registers. */
752 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
753 read_register (SP_REGNUM),
756 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
757 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
758 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
759 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
760 write_register (SR_REGNUM(i+160), read_register (lrnum++));
761 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
762 write_register (RETURN_REGNUM + i, read_register (lrnum++));
763 /* Restore the PCs and prepare to restore LR0. */
764 write_register(PC_REGNUM, read_register (lrnum++));
765 write_register(NPC_REGNUM, read_register (lrnum++));
766 write_register(PC2_REGNUM, read_register (lrnum++));
767 original_lr0 = read_register (lrnum++);
771 /* Restore the memory stack pointer. */
772 write_register (MSP_REGNUM, fi->saved_msp);
773 /* Restore the register stack pointer. */
774 write_register (GR1_REGNUM, gr1);
776 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
778 write_register (LR0_REGNUM, original_lr0);
780 /* Check whether we need to fill registers. */
781 lr1 = read_register (LR0_REGNUM + 1);
785 int num_bytes = lr1 - rfb;
788 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
789 write_register (RFB_REGNUM, lr1);
790 for (i = 0; i < num_bytes; i += 4)
792 /* Note: word is in host byte order. */
793 word = read_memory_integer (rfb + i, 4);
794 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
797 flush_cached_frames ();
798 set_current_frame (create_new_frame (0, read_pc()));
801 /* Push an empty stack frame, to record the current PC, etc. */
808 CORE_ADDR msp = read_register (MSP_REGNUM);
810 CORE_ADDR original_lr0;
812 /* Read original lr0 before changing gr1. This order isn't really needed
813 since GDB happens to have a snapshot of all the regs and doesn't toss
814 it when gr1 is changed. But it's The Right Thing To Do. */
815 original_lr0 = read_register (LR0_REGNUM);
817 /* Allocate the new frame. */
818 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
819 write_register (GR1_REGNUM, gr1);
821 rab = read_register (RAB_REGNUM);
824 /* We need to spill registers. */
825 int num_bytes = rab - gr1;
826 CORE_ADDR rfb = read_register (RFB_REGNUM);
830 write_register (RFB_REGNUM, rfb - num_bytes);
831 write_register (RAB_REGNUM, gr1);
832 for (i = 0; i < num_bytes; i += 4)
834 /* Note: word is in target byte order. */
835 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
836 write_memory (rfb - num_bytes + i, (char *) &word, 4);
840 /* There are no arguments in to the dummy frame, so we don't need
841 more than rsize plus the return address and lr1. */
842 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
844 /* Set the memory frame pointer. */
845 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
847 /* Allocate arg_slop. */
848 write_register (MSP_REGNUM, msp - 16 * 4);
850 /* Save registers. */
851 lrnum = LR0_REGNUM + DUMMY_ARG/4;
852 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
853 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
854 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
855 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
856 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
857 write_register (lrnum++, read_register (RETURN_REGNUM + i));
858 /* Save the PCs and LR0. */
859 write_register (lrnum++, read_register (PC_REGNUM));
860 write_register (lrnum++, read_register (NPC_REGNUM));
861 write_register (lrnum++, read_register (PC2_REGNUM));
863 /* Why are we saving LR0? What would clobber it? (the dummy frame should
864 be below it on the register stack, no?). */
865 write_register (lrnum++, original_lr0);
871 This routine takes three arguments and makes the cached frames look
872 as if these arguments defined a frame on the cache. This allows the
873 rest of `info frame' to extract the important arguments without much
874 difficulty. Since an individual frame on the 29K is determined by
875 three values (FP, PC, and MSP), we really need all three to do a
879 setup_arbitrary_frame (argc, argv)
886 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
888 fid = create_new_frame (argv[0], argv[1]);
891 fatal ("internal: create_new_frame returned invalid frame id");
893 /* Creating a new frame munges the `frame' value from the current
894 GR1, so we restore it again here. FIXME, untangle all this
895 29K frame stuff... */
896 fid->frame = argv[0];
898 /* Our MSP is in argv[2]. It'd be intelligent if we could just
899 save this value in the FRAME. But the way it's set up (FIXME),
900 we must save our caller's MSP. We compute that by adding our
901 memory stack frame size to our MSP. */
902 fid->saved_msp = argv[2] + fid->msize;
909 enum a29k_processor_types processor_type = a29k_unknown;
912 a29k_get_processor_type ()
914 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
916 /* Most of these don't have freeze mode. */
917 processor_type = a29k_no_freeze_mode;
919 switch ((cfg_reg >> 28) & 0xf)
922 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
925 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
928 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
929 processor_type = a29k_freeze_mode;
932 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
935 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
938 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
941 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
944 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
947 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
948 /* Don't bother to print the revision. */
951 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
957 extern CORE_ADDR text_end;
959 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
961 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
962 (char *)&rstack_high_address,
963 "Set top address in memory of the register stack.\n\
964 Attempts to access registers saved above this address will be ignored\n\
965 or will produce the value -1.", &setlist),
968 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
970 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
972 "Set address in memory where small amounts of RAM can be used\n\
973 when making function calls into the inferior.", &setlist),