1 /* Print values for GDB, the GNU debugger.
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_string.h"
33 #include "floatformat.h"
35 #include "exceptions.h"
37 #include "python/python.h"
42 /* Prototypes for local functions */
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
47 static void show_print (char *, int);
49 static void set_print (char *, int);
51 static void set_radix (char *, int);
53 static void show_radix (char *, int);
55 static void set_input_radix (char *, int, struct cmd_list_element *);
57 static void set_input_radix_1 (int, unsigned);
59 static void set_output_radix (char *, int, struct cmd_list_element *);
61 static void set_output_radix_1 (int, unsigned);
63 void _initialize_valprint (void);
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
67 struct value_print_options user_print_options =
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
80 0, /* stop_print_at_null */
82 0, /* print_array_indexes */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
90 /* Initialize *OPTS to be a copy of the user print options. */
92 get_user_print_options (struct value_print_options *opts)
94 *opts = user_print_options;
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
100 get_raw_print_options (struct value_print_options *opts)
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
109 get_formatted_print_options (struct value_print_options *opts,
112 *opts = user_print_options;
113 opts->format = format;
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
120 fprintf_filtered (file, _("\
121 Limit on string chars or array elements to print is %s.\n"),
126 /* Default input and output radixes, and output format letter. */
128 unsigned input_radix = 10;
130 show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
133 fprintf_filtered (file, _("\
134 Default input radix for entering numbers is %s.\n"),
138 unsigned output_radix = 10;
140 show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
143 fprintf_filtered (file, _("\
144 Default output radix for printing of values is %s.\n"),
148 /* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
152 show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
158 /* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
163 show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
170 /* If nonzero, stops printing of char arrays at first null. */
173 show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
176 fprintf_filtered (file, _("\
177 Printing of char arrays to stop at first null char is %s.\n"),
181 /* Controls pretty printing of structures. */
184 show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190 /* Controls pretty printing of arrays. */
193 show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199 /* If nonzero, causes unions inside structures or other unions to be
203 show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
206 fprintf_filtered (file, _("\
207 Printing of unions interior to structures is %s.\n"),
211 /* If nonzero, causes machine addresses to be printed in certain contexts. */
214 show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
221 /* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
226 scalar_type_p (struct type *type)
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
234 switch (TYPE_CODE (type))
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
248 /* Helper function to check the validity of some bits of a value.
250 If TYPE represents some aggregate type (e.g., a structure), return 1.
252 Otherwise, any of the bytes starting at OFFSET and extending for
253 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
254 return 0. The checking is done using FUNCS.
256 Otherwise, return 1. */
259 valprint_check_validity (struct ui_file *stream,
262 const struct value *val)
264 CHECK_TYPEDEF (type);
266 if (TYPE_CODE (type) != TYPE_CODE_UNION
267 && TYPE_CODE (type) != TYPE_CODE_STRUCT
268 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
270 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
273 fprintf_filtered (stream, _("<value optimized out>"));
281 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
282 (within GDB), which came from the inferior at address ADDRESS, onto
283 stdio stream STREAM according to OPTIONS.
285 If the data are a string pointer, returns the number of string characters
288 FIXME: The data at VALADDR is in target byte order. If gdb is ever
289 enhanced to be able to debug more than the single target it was compiled
290 for (specific CPU type and thus specific target byte ordering), then
291 either the print routines are going to have to take this into account,
292 or the data is going to have to be passed into here already converted
293 to the host byte ordering, whichever is more convenient. */
297 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
298 CORE_ADDR address, struct ui_file *stream, int recurse,
299 const struct value *val,
300 const struct value_print_options *options,
301 const struct language_defn *language)
303 volatile struct gdb_exception except;
305 struct value_print_options local_opts = *options;
306 struct type *real_type = check_typedef (type);
308 if (local_opts.pretty == Val_pretty_default)
309 local_opts.pretty = (local_opts.prettyprint_structs
310 ? Val_prettyprint : Val_no_prettyprint);
314 /* Ensure that the type is complete and not just a stub. If the type is
315 only a stub and we can't find and substitute its complete type, then
316 print appropriate string and return. */
318 if (TYPE_STUB (real_type))
320 fprintf_filtered (stream, _("<incomplete type>"));
325 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
330 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
331 address, stream, recurse,
332 val, options, language);
337 /* Handle summary mode. If the value is a scalar, print it;
338 otherwise, print an ellipsis. */
339 if (options->summary && !scalar_type_p (type))
341 fprintf_filtered (stream, "...");
345 TRY_CATCH (except, RETURN_MASK_ERROR)
347 ret = language->la_val_print (type, valaddr, embedded_offset, address,
348 stream, recurse, val,
351 if (except.reason < 0)
352 fprintf_filtered (stream, _("<error reading variable>"));
357 /* Check whether the value VAL is printable. Return 1 if it is;
358 return 0 and print an appropriate error message to STREAM if it
362 value_check_printable (struct value *val, struct ui_file *stream)
366 fprintf_filtered (stream, _("<address of value unknown>"));
370 if (value_entirely_optimized_out (val))
372 fprintf_filtered (stream, _("<value optimized out>"));
376 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
378 fprintf_filtered (stream, _("<internal function %s>"),
379 value_internal_function_name (val));
386 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
389 If the data are a string pointer, returns the number of string characters
392 This is a preferable interface to val_print, above, because it uses
393 GDB's value mechanism. */
396 common_val_print (struct value *val, struct ui_file *stream, int recurse,
397 const struct value_print_options *options,
398 const struct language_defn *language)
400 if (!value_check_printable (val, stream))
403 if (language->la_language == language_ada)
404 /* The value might have a dynamic type, which would cause trouble
405 below when trying to extract the value contents (since the value
406 size is determined from the type size which is unknown). So
407 get a fixed representation of our value. */
408 val = ada_to_fixed_value (val);
410 return val_print (value_type (val), value_contents_for_printing (val),
411 value_embedded_offset (val), value_address (val),
413 val, options, language);
416 /* Print on stream STREAM the value VAL according to OPTIONS. The value
417 is printed using the current_language syntax.
419 If the object printed is a string pointer, return the number of string
423 value_print (struct value *val, struct ui_file *stream,
424 const struct value_print_options *options)
426 if (!value_check_printable (val, stream))
431 int r = apply_val_pretty_printer (value_type (val),
432 value_contents_for_printing (val),
433 value_embedded_offset (val),
436 val, options, current_language);
442 return LA_VALUE_PRINT (val, stream, options);
445 /* Called by various <lang>_val_print routines to print
446 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
447 value. STREAM is where to print the value. */
450 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
451 struct ui_file *stream)
453 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
455 if (TYPE_LENGTH (type) > sizeof (LONGEST))
459 if (TYPE_UNSIGNED (type)
460 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
463 print_longest (stream, 'u', 0, val);
467 /* Signed, or we couldn't turn an unsigned value into a
468 LONGEST. For signed values, one could assume two's
469 complement (a reasonable assumption, I think) and do
471 print_hex_chars (stream, (unsigned char *) valaddr,
472 TYPE_LENGTH (type), byte_order);
477 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
478 unpack_long (type, valaddr));
483 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
484 struct ui_file *stream)
486 ULONGEST val = unpack_long (type, valaddr);
487 int bitpos, nfields = TYPE_NFIELDS (type);
489 fputs_filtered ("[ ", stream);
490 for (bitpos = 0; bitpos < nfields; bitpos++)
492 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
493 && (val & ((ULONGEST)1 << bitpos)))
495 if (TYPE_FIELD_NAME (type, bitpos))
496 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
498 fprintf_filtered (stream, "#%d ", bitpos);
501 fputs_filtered ("]", stream);
504 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
505 The raison d'etre of this function is to consolidate printing of
506 LONG_LONG's into this one function. The format chars b,h,w,g are
507 from print_scalar_formatted(). Numbers are printed using C
510 USE_C_FORMAT means to use C format in all cases. Without it,
511 'o' and 'x' format do not include the standard C radix prefix
514 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
515 and was intended to request formating according to the current
516 language and would be used for most integers that GDB prints. The
517 exceptional cases were things like protocols where the format of
518 the integer is a protocol thing, not a user-visible thing). The
519 parameter remains to preserve the information of what things might
520 be printed with language-specific format, should we ever resurrect
524 print_longest (struct ui_file *stream, int format, int use_c_format,
532 val = int_string (val_long, 10, 1, 0, 1); break;
534 val = int_string (val_long, 10, 0, 0, 1); break;
536 val = int_string (val_long, 16, 0, 0, use_c_format); break;
538 val = int_string (val_long, 16, 0, 2, 1); break;
540 val = int_string (val_long, 16, 0, 4, 1); break;
542 val = int_string (val_long, 16, 0, 8, 1); break;
544 val = int_string (val_long, 16, 0, 16, 1); break;
547 val = int_string (val_long, 8, 0, 0, use_c_format); break;
549 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
551 fputs_filtered (val, stream);
554 /* This used to be a macro, but I don't think it is called often enough
555 to merit such treatment. */
556 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
557 arguments to a function, number in a value history, register number, etc.)
558 where the value must not be larger than can fit in an int. */
561 longest_to_int (LONGEST arg)
563 /* Let the compiler do the work */
564 int rtnval = (int) arg;
566 /* Check for overflows or underflows */
567 if (sizeof (LONGEST) > sizeof (int))
571 error (_("Value out of range."));
577 /* Print a floating point value of type TYPE (not always a
578 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
581 print_floating (const gdb_byte *valaddr, struct type *type,
582 struct ui_file *stream)
586 const struct floatformat *fmt = NULL;
587 unsigned len = TYPE_LENGTH (type);
588 enum float_kind kind;
590 /* If it is a floating-point, check for obvious problems. */
591 if (TYPE_CODE (type) == TYPE_CODE_FLT)
592 fmt = floatformat_from_type (type);
595 kind = floatformat_classify (fmt, valaddr);
596 if (kind == float_nan)
598 if (floatformat_is_negative (fmt, valaddr))
599 fprintf_filtered (stream, "-");
600 fprintf_filtered (stream, "nan(");
601 fputs_filtered ("0x", stream);
602 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
603 fprintf_filtered (stream, ")");
606 else if (kind == float_infinite)
608 if (floatformat_is_negative (fmt, valaddr))
609 fputs_filtered ("-", stream);
610 fputs_filtered ("inf", stream);
615 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
616 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
617 needs to be used as that takes care of any necessary type
618 conversions. Such conversions are of course direct to DOUBLEST
619 and disregard any possible target floating point limitations.
620 For instance, a u64 would be converted and displayed exactly on a
621 host with 80 bit DOUBLEST but with loss of information on a host
622 with 64 bit DOUBLEST. */
624 doub = unpack_double (type, valaddr, &inv);
627 fprintf_filtered (stream, "<invalid float value>");
631 /* FIXME: kettenis/2001-01-20: The following code makes too much
632 assumptions about the host and target floating point format. */
634 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
635 not necessarily be a TYPE_CODE_FLT, the below ignores that and
636 instead uses the type's length to determine the precision of the
637 floating-point value being printed. */
639 if (len < sizeof (double))
640 fprintf_filtered (stream, "%.9g", (double) doub);
641 else if (len == sizeof (double))
642 fprintf_filtered (stream, "%.17g", (double) doub);
644 #ifdef PRINTF_HAS_LONG_DOUBLE
645 fprintf_filtered (stream, "%.35Lg", doub);
647 /* This at least wins with values that are representable as
649 fprintf_filtered (stream, "%.17g", (double) doub);
654 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
655 struct ui_file *stream)
657 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
658 char decstr[MAX_DECIMAL_STRING];
659 unsigned len = TYPE_LENGTH (type);
661 decimal_to_string (valaddr, len, byte_order, decstr);
662 fputs_filtered (decstr, stream);
667 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
668 unsigned len, enum bfd_endian byte_order)
671 #define BITS_IN_BYTES 8
677 /* Declared "int" so it will be signed.
678 * This ensures that right shift will shift in zeros.
680 const int mask = 0x080;
682 /* FIXME: We should be not printing leading zeroes in most cases. */
684 if (byte_order == BFD_ENDIAN_BIG)
690 /* Every byte has 8 binary characters; peel off
691 * and print from the MSB end.
693 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
695 if (*p & (mask >> i))
700 fprintf_filtered (stream, "%1d", b);
706 for (p = valaddr + len - 1;
710 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
712 if (*p & (mask >> i))
717 fprintf_filtered (stream, "%1d", b);
723 /* VALADDR points to an integer of LEN bytes.
724 * Print it in octal on stream or format it in buf.
727 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
728 unsigned len, enum bfd_endian byte_order)
731 unsigned char octa1, octa2, octa3, carry;
734 /* FIXME: We should be not printing leading zeroes in most cases. */
737 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
738 * the extra bits, which cycle every three bytes:
742 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
744 * Octal side: 0 1 carry 3 4 carry ...
746 * Cycle number: 0 1 2
748 * But of course we are printing from the high side, so we have to
749 * figure out where in the cycle we are so that we end up with no
750 * left over bits at the end.
752 #define BITS_IN_OCTAL 3
753 #define HIGH_ZERO 0340
754 #define LOW_ZERO 0016
755 #define CARRY_ZERO 0003
756 #define HIGH_ONE 0200
759 #define CARRY_ONE 0001
760 #define HIGH_TWO 0300
764 /* For 32 we start in cycle 2, with two bits and one bit carry;
765 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
767 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
770 fputs_filtered ("0", stream);
771 if (byte_order == BFD_ENDIAN_BIG)
780 /* No carry in, carry out two bits.
782 octa1 = (HIGH_ZERO & *p) >> 5;
783 octa2 = (LOW_ZERO & *p) >> 2;
784 carry = (CARRY_ZERO & *p);
785 fprintf_filtered (stream, "%o", octa1);
786 fprintf_filtered (stream, "%o", octa2);
790 /* Carry in two bits, carry out one bit.
792 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
793 octa2 = (MID_ONE & *p) >> 4;
794 octa3 = (LOW_ONE & *p) >> 1;
795 carry = (CARRY_ONE & *p);
796 fprintf_filtered (stream, "%o", octa1);
797 fprintf_filtered (stream, "%o", octa2);
798 fprintf_filtered (stream, "%o", octa3);
802 /* Carry in one bit, no carry out.
804 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
805 octa2 = (MID_TWO & *p) >> 3;
806 octa3 = (LOW_TWO & *p);
808 fprintf_filtered (stream, "%o", octa1);
809 fprintf_filtered (stream, "%o", octa2);
810 fprintf_filtered (stream, "%o", octa3);
814 error (_("Internal error in octal conversion;"));
818 cycle = cycle % BITS_IN_OCTAL;
823 for (p = valaddr + len - 1;
830 /* Carry out, no carry in */
831 octa1 = (HIGH_ZERO & *p) >> 5;
832 octa2 = (LOW_ZERO & *p) >> 2;
833 carry = (CARRY_ZERO & *p);
834 fprintf_filtered (stream, "%o", octa1);
835 fprintf_filtered (stream, "%o", octa2);
839 /* Carry in, carry out */
840 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
841 octa2 = (MID_ONE & *p) >> 4;
842 octa3 = (LOW_ONE & *p) >> 1;
843 carry = (CARRY_ONE & *p);
844 fprintf_filtered (stream, "%o", octa1);
845 fprintf_filtered (stream, "%o", octa2);
846 fprintf_filtered (stream, "%o", octa3);
850 /* Carry in, no carry out */
851 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
852 octa2 = (MID_TWO & *p) >> 3;
853 octa3 = (LOW_TWO & *p);
855 fprintf_filtered (stream, "%o", octa1);
856 fprintf_filtered (stream, "%o", octa2);
857 fprintf_filtered (stream, "%o", octa3);
861 error (_("Internal error in octal conversion;"));
865 cycle = cycle % BITS_IN_OCTAL;
871 /* VALADDR points to an integer of LEN bytes.
872 * Print it in decimal on stream or format it in buf.
875 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
876 unsigned len, enum bfd_endian byte_order)
879 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
880 #define CARRY_LEFT( x ) ((x) % TEN)
881 #define SHIFT( x ) ((x) << 4)
882 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
883 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
886 unsigned char *digits;
889 int i, j, decimal_digits;
893 /* Base-ten number is less than twice as many digits
894 * as the base 16 number, which is 2 digits per byte.
896 decimal_len = len * 2 * 2;
897 digits = xmalloc (decimal_len);
899 for (i = 0; i < decimal_len; i++)
904 /* Ok, we have an unknown number of bytes of data to be printed in
907 * Given a hex number (in nibbles) as XYZ, we start by taking X and
908 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
909 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
911 * The trick is that "digits" holds a base-10 number, but sometimes
912 * the individual digits are > 10.
914 * Outer loop is per nibble (hex digit) of input, from MSD end to
917 decimal_digits = 0; /* Number of decimal digits so far */
918 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
920 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
923 * Multiply current base-ten number by 16 in place.
924 * Each digit was between 0 and 9, now is between
927 for (j = 0; j < decimal_digits; j++)
929 digits[j] = SHIFT (digits[j]);
932 /* Take the next nibble off the input and add it to what
933 * we've got in the LSB position. Bottom 'digit' is now
936 * "flip" is used to run this loop twice for each byte.
942 digits[0] += HIGH_NIBBLE (*p);
947 /* Take low nibble and bump our pointer "p".
949 digits[0] += LOW_NIBBLE (*p);
950 if (byte_order == BFD_ENDIAN_BIG)
957 /* Re-decimalize. We have to do this often enough
958 * that we don't overflow, but once per nibble is
959 * overkill. Easier this way, though. Note that the
960 * carry is often larger than 10 (e.g. max initial
961 * carry out of lowest nibble is 15, could bubble all
962 * the way up greater than 10). So we have to do
963 * the carrying beyond the last current digit.
966 for (j = 0; j < decimal_len - 1; j++)
970 /* "/" won't handle an unsigned char with
971 * a value that if signed would be negative.
972 * So extend to longword int via "dummy".
975 carry = CARRY_OUT (dummy);
976 digits[j] = CARRY_LEFT (dummy);
978 if (j >= decimal_digits && carry == 0)
981 * All higher digits are 0 and we
982 * no longer have a carry.
984 * Note: "j" is 0-based, "decimal_digits" is
987 decimal_digits = j + 1;
993 /* Ok, now "digits" is the decimal representation, with
994 * the "decimal_digits" actual digits. Print!
996 for (i = decimal_digits - 1; i >= 0; i--)
998 fprintf_filtered (stream, "%1d", digits[i]);
1003 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1006 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1007 unsigned len, enum bfd_endian byte_order)
1011 /* FIXME: We should be not printing leading zeroes in most cases. */
1013 fputs_filtered ("0x", stream);
1014 if (byte_order == BFD_ENDIAN_BIG)
1020 fprintf_filtered (stream, "%02x", *p);
1025 for (p = valaddr + len - 1;
1029 fprintf_filtered (stream, "%02x", *p);
1034 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
1035 Omit any leading zero chars. */
1038 print_char_chars (struct ui_file *stream, struct type *type,
1039 const gdb_byte *valaddr,
1040 unsigned len, enum bfd_endian byte_order)
1044 if (byte_order == BFD_ENDIAN_BIG)
1047 while (p < valaddr + len - 1 && *p == 0)
1050 while (p < valaddr + len)
1052 LA_EMIT_CHAR (*p, type, stream, '\'');
1058 p = valaddr + len - 1;
1059 while (p > valaddr && *p == 0)
1062 while (p >= valaddr)
1064 LA_EMIT_CHAR (*p, type, stream, '\'');
1070 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1071 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1072 Save the high bound into HIGH_BOUND if not NULL.
1074 Return 1 if the operation was successful. Return zero otherwise,
1075 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1077 We now simply use get_discrete_bounds call to get the values
1078 of the low and high bounds.
1079 get_discrete_bounds can return three values:
1080 1, meaning that index is a range,
1081 0, meaning that index is a discrete type,
1082 or -1 for failure. */
1085 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1087 struct type *index = TYPE_INDEX_TYPE (type);
1095 res = get_discrete_bounds (index, &low, &high);
1108 /* Print on STREAM using the given OPTIONS the index for the element
1109 at INDEX of an array whose index type is INDEX_TYPE. */
1112 maybe_print_array_index (struct type *index_type, LONGEST index,
1113 struct ui_file *stream,
1114 const struct value_print_options *options)
1116 struct value *index_value;
1118 if (!options->print_array_indexes)
1121 index_value = value_from_longest (index_type, index);
1123 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1126 /* Called by various <lang>_val_print routines to print elements of an
1127 array in the form "<elem1>, <elem2>, <elem3>, ...".
1129 (FIXME?) Assumes array element separator is a comma, which is correct
1130 for all languages currently handled.
1131 (FIXME?) Some languages have a notation for repeated array elements,
1132 perhaps we should try to use that notation when appropriate.
1136 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1137 CORE_ADDR address, struct ui_file *stream,
1139 const struct value *val,
1140 const struct value_print_options *options,
1143 unsigned int things_printed = 0;
1145 struct type *elttype, *index_type;
1147 /* Position of the array element we are examining to see
1148 whether it is repeated. */
1150 /* Number of repetitions we have detected so far. */
1152 LONGEST low_bound_index = 0;
1154 elttype = TYPE_TARGET_TYPE (type);
1155 eltlen = TYPE_LENGTH (check_typedef (elttype));
1156 index_type = TYPE_INDEX_TYPE (type);
1158 /* Compute the number of elements in the array. On most arrays,
1159 the size of its elements is not zero, and so the number of elements
1160 is simply the size of the array divided by the size of the elements.
1161 But for arrays of elements whose size is zero, we need to look at
1164 len = TYPE_LENGTH (type) / eltlen;
1169 if (get_array_bounds (type, &low, &hi))
1173 warning (_("unable to get bounds of array, assuming null array"));
1178 /* Get the array low bound. This only makes sense if the array
1179 has one or more element in it. */
1180 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
1182 warning (_("unable to get low bound of array, using zero as default"));
1183 low_bound_index = 0;
1186 annotate_array_section_begin (i, elttype);
1188 for (; i < len && things_printed < options->print_max; i++)
1192 if (options->prettyprint_arrays)
1194 fprintf_filtered (stream, ",\n");
1195 print_spaces_filtered (2 + 2 * recurse, stream);
1199 fprintf_filtered (stream, ", ");
1202 wrap_here (n_spaces (2 + 2 * recurse));
1203 maybe_print_array_index (index_type, i + low_bound_index,
1208 while ((rep1 < len) &&
1209 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1215 if (reps > options->repeat_count_threshold)
1217 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1218 stream, recurse + 1, val, options, current_language);
1219 annotate_elt_rep (reps);
1220 fprintf_filtered (stream, " <repeats %u times>", reps);
1221 annotate_elt_rep_end ();
1224 things_printed += options->repeat_count_threshold;
1228 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1229 stream, recurse + 1, val, options, current_language);
1234 annotate_array_section_end ();
1237 fprintf_filtered (stream, "...");
1241 /* Read LEN bytes of target memory at address MEMADDR, placing the
1242 results in GDB's memory at MYADDR. Returns a count of the bytes
1243 actually read, and optionally an errno value in the location
1244 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1246 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1247 function be eliminated. */
1250 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1252 int nread; /* Number of bytes actually read. */
1253 int errcode; /* Error from last read. */
1255 /* First try a complete read. */
1256 errcode = target_read_memory (memaddr, myaddr, len);
1264 /* Loop, reading one byte at a time until we get as much as we can. */
1265 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1267 errcode = target_read_memory (memaddr++, myaddr++, 1);
1269 /* If an error, the last read was unsuccessful, so adjust count. */
1275 if (errnoptr != NULL)
1277 *errnoptr = errcode;
1282 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1283 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1284 allocated buffer containing the string, which the caller is responsible to
1285 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1286 success, or errno on failure.
1288 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1289 the middle or end of the string). If LEN is -1, stops at the first
1290 null character (not necessarily the first null byte) up to a maximum
1291 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1292 characters as possible from the string.
1294 Unless an exception is thrown, BUFFER will always be allocated, even on
1295 failure. In this case, some characters might have been read before the
1296 failure happened. Check BYTES_READ to recognize this situation.
1298 Note: There was a FIXME asking to make this code use target_read_string,
1299 but this function is more general (can read past null characters, up to
1300 given LEN). Besides, it is used much more often than target_read_string
1301 so it is more tested. Perhaps callers of target_read_string should use
1302 this function instead? */
1305 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1306 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1308 int found_nul; /* Non-zero if we found the nul char. */
1309 int errcode; /* Errno returned from bad reads. */
1310 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1311 unsigned int chunksize; /* Size of each fetch, in chars. */
1312 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1313 gdb_byte *limit; /* First location past end of fetch buffer. */
1314 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1316 /* Decide how large of chunks to try to read in one operation. This
1317 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1318 so we might as well read them all in one operation. If LEN is -1, we
1319 are looking for a NUL terminator to end the fetching, so we might as
1320 well read in blocks that are large enough to be efficient, but not so
1321 large as to be slow if fetchlimit happens to be large. So we choose the
1322 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1323 200 is way too big for remote debugging over a serial line. */
1325 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1327 /* Loop until we either have all the characters, or we encounter
1328 some error, such as bumping into the end of the address space. */
1333 old_chain = make_cleanup (free_current_contents, buffer);
1337 *buffer = (gdb_byte *) xmalloc (len * width);
1340 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1342 addr += nfetch * width;
1343 bufptr += nfetch * width;
1347 unsigned long bufsize = 0;
1352 nfetch = min (chunksize, fetchlimit - bufsize);
1354 if (*buffer == NULL)
1355 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1357 *buffer = (gdb_byte *) xrealloc (*buffer,
1358 (nfetch + bufsize) * width);
1360 bufptr = *buffer + bufsize * width;
1363 /* Read as much as we can. */
1364 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1367 /* Scan this chunk for the null character that terminates the string
1368 to print. If found, we don't need to fetch any more. Note
1369 that bufptr is explicitly left pointing at the next character
1370 after the null character, or at the next character after the end
1373 limit = bufptr + nfetch * width;
1374 while (bufptr < limit)
1378 c = extract_unsigned_integer (bufptr, width, byte_order);
1383 /* We don't care about any error which happened after
1384 the NUL terminator. */
1391 while (errcode == 0 /* no error */
1392 && bufptr - *buffer < fetchlimit * width /* no overrun */
1393 && !found_nul); /* haven't found NUL yet */
1396 { /* Length of string is really 0! */
1397 /* We always allocate *buffer. */
1398 *buffer = bufptr = xmalloc (1);
1402 /* bufptr and addr now point immediately beyond the last byte which we
1403 consider part of the string (including a '\0' which ends the string). */
1404 *bytes_read = bufptr - *buffer;
1408 discard_cleanups (old_chain);
1413 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1414 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1415 stops at the first null byte, otherwise printing proceeds (including null
1416 bytes) until either print_max or LEN characters have been printed,
1417 whichever is smaller. */
1420 val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1421 struct ui_file *stream,
1422 const struct value_print_options *options)
1424 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1425 int errcode; /* Errno returned from bad reads. */
1426 int found_nul; /* Non-zero if we found the nul char */
1427 unsigned int fetchlimit; /* Maximum number of chars to print. */
1429 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1430 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1431 struct gdbarch *gdbarch = get_type_arch (elttype);
1432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1433 int width = TYPE_LENGTH (elttype);
1435 /* First we need to figure out the limit on the number of characters we are
1436 going to attempt to fetch and print. This is actually pretty simple. If
1437 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1438 LEN is -1, then the limit is print_max. This is true regardless of
1439 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1440 because finding the null byte (or available memory) is what actually
1441 limits the fetch. */
1443 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1445 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1446 &buffer, &bytes_read);
1447 old_chain = make_cleanup (xfree, buffer);
1451 /* We now have either successfully filled the buffer to fetchlimit, or
1452 terminated early due to an error or finding a null char when LEN is -1. */
1454 /* Determine found_nul by looking at the last character read. */
1455 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1457 if (len == -1 && !found_nul)
1461 /* We didn't find a NUL terminator we were looking for. Attempt
1462 to peek at the next character. If not successful, or it is not
1463 a null byte, then force ellipsis to be printed. */
1465 peekbuf = (gdb_byte *) alloca (width);
1467 if (target_read_memory (addr, peekbuf, width) == 0
1468 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1471 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1473 /* Getting an error when we have a requested length, or fetching less
1474 than the number of characters actually requested, always make us
1479 /* If we get an error before fetching anything, don't print a string.
1480 But if we fetch something and then get an error, print the string
1481 and then the error message. */
1482 if (errcode == 0 || bytes_read > 0)
1484 if (options->addressprint)
1486 fputs_filtered (" ", stream);
1488 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1489 NULL, force_ellipsis, options);
1496 fprintf_filtered (stream, " <Address ");
1497 fputs_filtered (paddress (gdbarch, addr), stream);
1498 fprintf_filtered (stream, " out of bounds>");
1502 fprintf_filtered (stream, " <Error reading address ");
1503 fputs_filtered (paddress (gdbarch, addr), stream);
1504 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1509 do_cleanups (old_chain);
1511 return (bytes_read / width);
1515 /* The 'set input-radix' command writes to this auxiliary variable.
1516 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1517 it is left unchanged. */
1519 static unsigned input_radix_1 = 10;
1521 /* Validate an input or output radix setting, and make sure the user
1522 knows what they really did here. Radix setting is confusing, e.g.
1523 setting the input radix to "10" never changes it! */
1526 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1528 set_input_radix_1 (from_tty, input_radix_1);
1532 set_input_radix_1 (int from_tty, unsigned radix)
1534 /* We don't currently disallow any input radix except 0 or 1, which don't
1535 make any mathematical sense. In theory, we can deal with any input
1536 radix greater than 1, even if we don't have unique digits for every
1537 value from 0 to radix-1, but in practice we lose on large radix values.
1538 We should either fix the lossage or restrict the radix range more.
1543 input_radix_1 = input_radix;
1544 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1547 input_radix_1 = input_radix = radix;
1550 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1551 radix, radix, radix);
1555 /* The 'set output-radix' command writes to this auxiliary variable.
1556 If the requested radix is valid, OUTPUT_RADIX is updated,
1557 otherwise, it is left unchanged. */
1559 static unsigned output_radix_1 = 10;
1562 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1564 set_output_radix_1 (from_tty, output_radix_1);
1568 set_output_radix_1 (int from_tty, unsigned radix)
1570 /* Validate the radix and disallow ones that we aren't prepared to
1571 handle correctly, leaving the radix unchanged. */
1575 user_print_options.output_format = 'x'; /* hex */
1578 user_print_options.output_format = 0; /* decimal */
1581 user_print_options.output_format = 'o'; /* octal */
1584 output_radix_1 = output_radix;
1585 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1588 output_radix_1 = output_radix = radix;
1591 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1592 radix, radix, radix);
1596 /* Set both the input and output radix at once. Try to set the output radix
1597 first, since it has the most restrictive range. An radix that is valid as
1598 an output radix is also valid as an input radix.
1600 It may be useful to have an unusual input radix. If the user wishes to
1601 set an input radix that is not valid as an output radix, he needs to use
1602 the 'set input-radix' command. */
1605 set_radix (char *arg, int from_tty)
1609 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1610 set_output_radix_1 (0, radix);
1611 set_input_radix_1 (0, radix);
1614 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1615 radix, radix, radix);
1619 /* Show both the input and output radices. */
1622 show_radix (char *arg, int from_tty)
1626 if (input_radix == output_radix)
1628 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1629 input_radix, input_radix, input_radix);
1633 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1634 input_radix, input_radix, input_radix);
1635 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1636 output_radix, output_radix, output_radix);
1643 set_print (char *arg, int from_tty)
1646 "\"set print\" must be followed by the name of a print subcommand.\n");
1647 help_list (setprintlist, "set print ", -1, gdb_stdout);
1651 show_print (char *args, int from_tty)
1653 cmd_show_list (showprintlist, from_tty, "");
1657 _initialize_valprint (void)
1659 add_prefix_cmd ("print", no_class, set_print,
1660 _("Generic command for setting how things print."),
1661 &setprintlist, "set print ", 0, &setlist);
1662 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1663 /* prefer set print to set prompt */
1664 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1666 add_prefix_cmd ("print", no_class, show_print,
1667 _("Generic command for showing print settings."),
1668 &showprintlist, "show print ", 0, &showlist);
1669 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1670 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1672 add_setshow_uinteger_cmd ("elements", no_class,
1673 &user_print_options.print_max, _("\
1674 Set limit on string chars or array elements to print."), _("\
1675 Show limit on string chars or array elements to print."), _("\
1676 \"set print elements 0\" causes there to be no limit."),
1679 &setprintlist, &showprintlist);
1681 add_setshow_boolean_cmd ("null-stop", no_class,
1682 &user_print_options.stop_print_at_null, _("\
1683 Set printing of char arrays to stop at first null char."), _("\
1684 Show printing of char arrays to stop at first null char."), NULL,
1686 show_stop_print_at_null,
1687 &setprintlist, &showprintlist);
1689 add_setshow_uinteger_cmd ("repeats", no_class,
1690 &user_print_options.repeat_count_threshold, _("\
1691 Set threshold for repeated print elements."), _("\
1692 Show threshold for repeated print elements."), _("\
1693 \"set print repeats 0\" causes all elements to be individually printed."),
1695 show_repeat_count_threshold,
1696 &setprintlist, &showprintlist);
1698 add_setshow_boolean_cmd ("pretty", class_support,
1699 &user_print_options.prettyprint_structs, _("\
1700 Set prettyprinting of structures."), _("\
1701 Show prettyprinting of structures."), NULL,
1703 show_prettyprint_structs,
1704 &setprintlist, &showprintlist);
1706 add_setshow_boolean_cmd ("union", class_support,
1707 &user_print_options.unionprint, _("\
1708 Set printing of unions interior to structures."), _("\
1709 Show printing of unions interior to structures."), NULL,
1712 &setprintlist, &showprintlist);
1714 add_setshow_boolean_cmd ("array", class_support,
1715 &user_print_options.prettyprint_arrays, _("\
1716 Set prettyprinting of arrays."), _("\
1717 Show prettyprinting of arrays."), NULL,
1719 show_prettyprint_arrays,
1720 &setprintlist, &showprintlist);
1722 add_setshow_boolean_cmd ("address", class_support,
1723 &user_print_options.addressprint, _("\
1724 Set printing of addresses."), _("\
1725 Show printing of addresses."), NULL,
1728 &setprintlist, &showprintlist);
1730 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1732 Set default input radix for entering numbers."), _("\
1733 Show default input radix for entering numbers."), NULL,
1736 &setlist, &showlist);
1738 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1740 Set default output radix for printing of values."), _("\
1741 Show default output radix for printing of values."), NULL,
1744 &setlist, &showlist);
1746 /* The "set radix" and "show radix" commands are special in that
1747 they are like normal set and show commands but allow two normally
1748 independent variables to be either set or shown with a single
1749 command. So the usual deprecated_add_set_cmd() and [deleted]
1750 add_show_from_set() commands aren't really appropriate. */
1751 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1752 longer true - show can display anything. */
1753 add_cmd ("radix", class_support, set_radix, _("\
1754 Set default input and output number radices.\n\
1755 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1756 Without an argument, sets both radices back to the default value of 10."),
1758 add_cmd ("radix", class_support, show_radix, _("\
1759 Show the default input and output number radices.\n\
1760 Use 'show input-radix' or 'show output-radix' to independently show each."),
1763 add_setshow_boolean_cmd ("array-indexes", class_support,
1764 &user_print_options.print_array_indexes, _("\
1765 Set printing of array indexes."), _("\
1766 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1767 &setprintlist, &showprintlist);