1 /* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20 /* This module provides three functions: dbx_symfile_init,
21 which initializes to read a symbol file; dbx_new_init, which
22 discards existing cached information when all symbols are being
23 discarded; and dbx_symfile_read, which reads a symbol table
26 dbx_symfile_read only does the minimum work necessary for letting the
27 user "name" things symbolically; it does not read the entire symtab.
28 Instead, it reads the external and static symbols and puts them in partial
29 symbol tables. When more extensive information is requested of a
30 file, the corresponding partial symbol table is mutated into a full
31 fledged symbol table by going back and reading the symbols
32 for real. dbx_psymtab_to_symtab() is the function that does this */
40 #include <sys/types.h>
46 #include "a.out.gnu.h"
47 #include "stab.gnu.h" /* We always use GNU stabs, not native, now */
52 * Define specifically gnu symbols here.
55 /* The following type indicates the definition of a symbol as being
56 an indirect reference to another symbol. The other symbol
57 appears as an undefined reference, immediately following this symbol.
59 Indirection is asymmetrical. The other symbol's value will be used
60 to satisfy requests for the indirect symbol, but not vice versa.
61 If the other symbol does not have a definition, libraries will
62 be searched to find a definition. */
67 /* The following symbols refer to set elements.
68 All the N_SET[ATDB] symbols with the same name form one set.
69 Space is allocated for the set in the text section, and each set
70 element's value is stored into one word of the space.
71 The first word of the space is the length of the set (number of elements).
73 The address of the set is made into an N_SETV symbol
74 whose name is the same as the name of the set.
75 This symbol acts like a N_DATA global symbol
76 in that it can satisfy undefined external references. */
79 #define N_SETA 0x14 /* Absolute set element symbol */
80 #endif /* This is input to LD, in a .o file. */
83 #define N_SETT 0x16 /* Text set element symbol */
84 #endif /* This is input to LD, in a .o file. */
87 #define N_SETD 0x18 /* Data set element symbol */
88 #endif /* This is input to LD, in a .o file. */
91 #define N_SETB 0x1A /* Bss set element symbol */
92 #endif /* This is input to LD, in a .o file. */
94 /* Macros dealing with the set element symbols defined in a.out.h */
95 #define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
96 #define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
99 #define N_SETV 0x1C /* Pointer to set vector in data area. */
100 #endif /* This is output from LD. */
103 #define N_WARNING 0x1E /* Warning message to print if file included */
104 #endif /* This is input to ld */
106 #endif /* NO_GNU_STABS */
109 #include <sys/param.h>
110 #include <sys/file.h>
111 #include <sys/stat.h>
113 #include "breakpoint.h"
116 #include "gdbcore.h" /* for bfd stuff */
117 #include "libaout.h" /* FIXME Secret internal BFD stuff for a.out */
120 struct dbx_symfile_info {
121 asection *text_sect; /* Text section accessor */
122 int symcount; /* How many symbols are there in the file */
123 char *stringtab; /* The actual string table */
124 int stringtab_size; /* Its size */
125 off_t symtab_offset; /* Offset in file to symbol table */
126 int desc; /* File descriptor of symbol file */
129 extern void qsort ();
130 extern double atof ();
131 extern struct cmd_list_element *cmdlist;
133 extern void symbol_file_command ();
135 /* Forward declarations */
137 static void add_symbol_to_list ();
138 static void read_dbx_symtab ();
139 static void init_psymbol_list ();
140 static void process_one_symbol ();
141 static struct type *read_type ();
142 static struct type *read_range_type ();
143 static struct type *read_enum_type ();
144 static struct type *read_struct_type ();
145 static struct type *read_array_type ();
146 static long read_number ();
147 static void finish_block ();
148 static struct blockvector *make_blockvector ();
149 static struct symbol *define_symbol ();
150 static void start_subfile ();
151 static int hashname ();
152 static struct pending *copy_pending ();
153 static void fix_common_block ();
154 static void add_undefined_type ();
155 static void cleanup_undefined_types ();
156 static void scan_file_globals ();
157 static struct symtab *read_ofile_symtab ();
158 static void dbx_psymtab_to_symtab ();
161 static struct type **read_args ();
163 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
164 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
166 /* Macro to determine which symbols to ignore when reading the first symbol
167 of a file. Some machines override this definition. */
168 #ifndef IGNORE_SYMBOL
169 /* This code is used on Ultrix systems. Ignore it */
170 #define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
173 /* Macro for name of symbol to indicate a file compiled with gcc. */
174 #ifndef GCC_COMPILED_FLAG_SYMBOL
175 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
178 /* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
180 #ifndef STAB_REG_TO_REGNUM
181 #define STAB_REG_TO_REGNUM(VALUE) (VALUE)
184 /* Define this as 1 if a pcc declaration of a char or short argument
185 gives the correct address. Otherwise assume pcc gives the
186 address of the corresponding int, which is not the same on a
187 big-endian machine. */
189 #ifndef BELIEVE_PCC_PROMOTION
190 #define BELIEVE_PCC_PROMOTION 0
193 /* Nonzero means give verbose info on gdb action. From main.c. */
194 extern int info_verbose;
196 /* Name of source file whose symbol data we are now processing.
197 This comes from a symbol of type N_SO. */
199 static char *last_source_file;
201 /* Core address of start of text of current source file.
202 This too comes from the N_SO symbol. */
204 static CORE_ADDR last_source_start_addr;
206 /* The entry point of a file we are reading. */
207 CORE_ADDR entry_point;
209 /* The list of sub-source-files within the current individual compilation.
210 Each file gets its own symtab with its own linetable and associated info,
211 but they all share one blockvector. */
215 struct subfile *next;
218 struct linetable *line_vector;
219 int line_vector_length;
220 int line_vector_index;
221 int prev_line_number;
224 static struct subfile *subfiles;
226 static struct subfile *current_subfile;
228 /* Count symbols as they are processed, for error messages. */
230 static unsigned int symnum;
232 /* Vector of types defined so far, indexed by their dbx type numbers.
233 (In newer sun systems, dbx uses a pair of numbers in parens,
234 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
235 translated through the type_translations hash table to get
236 the index into the type vector.) */
238 static struct typevector *type_vector;
240 /* Number of elements allocated for type_vector currently. */
242 static int type_vector_length;
244 /* Vector of line number information. */
246 static struct linetable *line_vector;
248 /* Index of next entry to go in line_vector_index. */
250 static int line_vector_index;
252 /* Last line number recorded in the line vector. */
254 static int prev_line_number;
256 /* Number of elements allocated for line_vector currently. */
258 static int line_vector_length;
260 /* Hash table of global symbols whose values are not known yet.
261 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
262 have the correct data for that slot yet. */
263 /* The use of the LOC_BLOCK code in this chain is nonstandard--
264 it refers to a FORTRAN common block rather than the usual meaning. */
267 static struct symbol *global_sym_chain[HASHSIZE];
269 /* Record the symbols defined for each context in a list.
270 We don't create a struct block for the context until we
271 know how long to make it. */
273 #define PENDINGSIZE 100
277 struct pending *next;
279 struct symbol *symbol[PENDINGSIZE];
282 /* List of free `struct pending' structures for reuse. */
283 struct pending *free_pendings;
285 /* Here are the three lists that symbols are put on. */
287 struct pending *file_symbols; /* static at top level, and types */
289 struct pending *global_symbols; /* global functions and variables */
291 struct pending *local_symbols; /* everything local to lexical context */
293 /* List of symbols declared since the last BCOMM. This list is a tail
294 of local_symbols. When ECOMM is seen, the symbols on the list
295 are noted so their proper addresses can be filled in later,
296 using the common block base address gotten from the assembler
299 struct pending *common_block;
302 /* Stack representing unclosed lexical contexts
303 (that will become blocks, eventually). */
307 struct pending *locals;
308 struct pending_block *old_blocks;
310 CORE_ADDR start_addr;
311 CORE_ADDR end_addr; /* Temp slot for exception handling. */
315 struct context_stack *context_stack;
317 /* Index of first unused entry in context stack. */
318 int context_stack_depth;
320 /* Currently allocated size of context stack. */
322 int context_stack_size;
324 /* Nonzero if within a function (so symbols should be local,
325 if nothing says specifically). */
330 /* The type of the function we are currently reading in. This is
331 used by define_symbol to record the type of arguments to a function. */
333 static struct type *in_function_type;
336 /* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
341 struct pending_block *next;
345 struct pending_block *pending_blocks;
347 extern CORE_ADDR startup_file_start; /* From blockframe.c */
348 extern CORE_ADDR startup_file_end; /* From blockframe.c */
350 /* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
353 static unsigned char processing_gcc_compilation;
355 /* Make a list of forward references which haven't been defined. */
356 static struct type **undef_types;
357 static int undef_types_allocated, undef_types_length;
359 /* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
363 static char *symfile_string_table;
364 static int symfile_string_table_size;
366 /* Setup a define to deal cleanly with the underscore problem */
368 #ifdef NAMES_HAVE_UNDERSCORE
369 #define HASH_OFFSET 1
371 #define HASH_OFFSET 0
374 /* Complaints about the symbols we have encountered. */
376 struct complaint innerblock_complaint =
377 {"inner block not inside outer block in %s", 0, 0};
379 struct complaint blockvector_complaint =
380 {"block at %x out of order", 0, 0};
382 struct complaint lbrac_complaint =
383 {"bad block start address patched", 0, 0};
386 struct complaint dbx_class_complaint =
387 {"encountered DBX-style class variable debugging information.\n\
388 You seem to have compiled your program with \
389 \"g++ -g0\" instead of \"g++ -g\".\n\
390 Therefore GDB will not know about your class variables", 0, 0};
393 struct complaint string_table_offset_complaint =
394 {"bad string table offset in symbol %d", 0, 0};
396 struct complaint unknown_symtype_complaint =
397 {"unknown symbol type %s", 0, 0};
399 struct complaint lbrac_rbrac_complaint =
400 {"block start larger than block end", 0, 0};
402 struct complaint const_vol_complaint =
403 {"const/volatile indicator missing, got '%c'", 0, 0};
405 struct complaint error_type_complaint =
406 {"C++ type mismatch between compiler and debugger", 0, 0};
408 struct complaint invalid_member_complaint =
409 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
411 /* Support for Sun changes to dbx symbol format */
413 /* For each identified header file, we have a table of types defined
416 header_files maps header file names to their type tables.
417 It is a vector of n_header_files elements.
418 Each element describes one header file.
419 It contains a vector of types.
421 Sometimes it can happen that the same header file produces
422 different results when included in different places.
423 This can result from conditionals or from different
424 things done before including the file.
425 When this happens, there are multiple entries for the file in this table,
426 one entry for each distinct set of results.
427 The entries are distinguished by the INSTANCE field.
428 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
429 used to match header-file references to their corresponding data. */
433 char *name; /* Name of header file */
434 int instance; /* Numeric code distinguishing instances
435 of one header file that produced
436 different results when included.
437 It comes from the N_BINCL or N_EXCL. */
438 struct type **vector; /* Pointer to vector of types */
439 int length; /* Allocated length (# elts) of that vector */
442 static struct header_file *header_files = 0;
444 static int n_header_files;
446 static int n_allocated_header_files;
448 /* During initial symbol readin, we need to have a structure to keep
449 track of which psymtabs have which bincls in them. This structure
450 is used during readin to setup the list of dependencies within each
451 partial symbol table. */
453 struct header_file_location
455 char *name; /* Name of header file */
456 int instance; /* See above */
457 struct partial_symtab *pst; /* Partial symtab that has the
458 BINCL/EINCL defs for this file */
461 /* The actual list and controling variables */
462 static struct header_file_location *bincl_list, *next_bincl;
463 static int bincls_allocated;
465 /* Within each object file, various header files are assigned numbers.
466 A type is defined or referred to with a pair of numbers
467 (FILENUM,TYPENUM) where FILENUM is the number of the header file
468 and TYPENUM is the number within that header file.
469 TYPENUM is the index within the vector of types for that header file.
471 FILENUM == 1 is special; it refers to the main source of the object file,
472 and not to any header file. FILENUM != 1 is interpreted by looking it up
473 in the following table, which contains indices in header_files. */
475 static int *this_object_header_files = 0;
477 static int n_this_object_header_files;
479 static int n_allocated_this_object_header_files;
481 /* When a header file is getting special overriding definitions
482 for one source file, record here the header_files index
483 of its normal definition vector.
484 At other times, this is -1. */
486 static int header_file_prev_index;
488 /* Free up old header file tables, and allocate new ones.
489 We're reading a new symbol file now. */
492 free_and_init_header_files ()
495 for (i = 0; i < n_header_files; i++)
496 free (header_files[i].name);
497 if (header_files) /* First time null */
499 if (this_object_header_files) /* First time null */
500 free (this_object_header_files);
502 n_allocated_header_files = 10;
503 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
506 n_allocated_this_object_header_files = 10;
507 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
510 /* Called at the start of each object file's symbols.
511 Clear out the mapping of header file numbers to header files. */
514 new_object_header_files ()
516 /* Leave FILENUM of 0 free for builtin types and this file's types. */
517 n_this_object_header_files = 1;
518 header_file_prev_index = -1;
521 /* Add header file number I for this object file
522 at the next successive FILENUM. */
525 add_this_object_header_file (i)
528 if (n_this_object_header_files == n_allocated_this_object_header_files)
530 n_allocated_this_object_header_files *= 2;
531 this_object_header_files
532 = (int *) xrealloc (this_object_header_files,
533 n_allocated_this_object_header_files * sizeof (int));
536 this_object_header_files[n_this_object_header_files++] = i;
539 /* Add to this file an "old" header file, one already seen in
540 a previous object file. NAME is the header file's name.
541 INSTANCE is its instance code, to select among multiple
542 symbol tables for the same header file. */
545 add_old_header_file (name, instance)
549 register struct header_file *p = header_files;
552 for (i = 0; i < n_header_files; i++)
553 if (!strcmp (p[i].name, name) && instance == p[i].instance)
555 add_this_object_header_file (i);
558 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
562 /* Add to this file a "new" header file: definitions for its types follow.
563 NAME is the header file's name.
564 Most often this happens only once for each distinct header file,
565 but not necessarily. If it happens more than once, INSTANCE has
566 a different value each time, and references to the header file
567 use INSTANCE values to select among them.
569 dbx output contains "begin" and "end" markers for each new header file,
570 but at this level we just need to know which files there have been;
571 so we record the file when its "begin" is seen and ignore the "end". */
574 add_new_header_file (name, instance)
579 header_file_prev_index = -1;
581 /* Make sure there is room for one more header file. */
583 if (n_header_files == n_allocated_header_files)
585 n_allocated_header_files *= 2;
586 header_files = (struct header_file *)
587 xrealloc (header_files,
588 (n_allocated_header_files
589 * sizeof (struct header_file)));
592 /* Create an entry for this header file. */
594 i = n_header_files++;
595 header_files[i].name = savestring (name, strlen(name));
596 header_files[i].instance = instance;
597 header_files[i].length = 10;
598 header_files[i].vector
599 = (struct type **) xmalloc (10 * sizeof (struct type *));
600 bzero (header_files[i].vector, 10 * sizeof (struct type *));
602 add_this_object_header_file (i);
605 /* Look up a dbx type-number pair. Return the address of the slot
606 where the type for that number-pair is stored.
607 The number-pair is in TYPENUMS.
609 This can be used for finding the type associated with that pair
610 or for associating a new type with the pair. */
612 static struct type **
613 dbx_lookup_type (typenums)
616 register int filenum = typenums[0], index = typenums[1];
618 if (filenum < 0 || filenum >= n_this_object_header_files)
619 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
620 filenum, index, symnum);
624 /* Type is defined outside of header files.
625 Find it in this object file's type vector. */
626 if (index >= type_vector_length)
628 type_vector_length *= 2;
629 type_vector = (struct typevector *)
630 xrealloc (type_vector,
631 (sizeof (struct typevector)
632 + type_vector_length * sizeof (struct type *)));
633 bzero (&type_vector->type[type_vector_length / 2],
634 type_vector_length * sizeof (struct type *) / 2);
636 return &type_vector->type[index];
640 register int real_filenum = this_object_header_files[filenum];
641 register struct header_file *f;
644 if (real_filenum >= n_header_files)
647 f = &header_files[real_filenum];
649 f_orig_length = f->length;
650 if (index >= f_orig_length)
652 while (index >= f->length)
654 f->vector = (struct type **)
655 xrealloc (f->vector, f->length * sizeof (struct type *));
656 bzero (&f->vector[f_orig_length],
657 (f->length - f_orig_length) * sizeof (struct type *));
659 return &f->vector[index];
663 /* Create a type object. Occaisionally used when you need a type
664 which isn't going to be given a type number. */
669 register struct type *type =
670 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
672 bzero (type, sizeof (struct type));
673 TYPE_VPTR_FIELDNO (type) = -1;
674 TYPE_VPTR_BASETYPE (type) = 0;
678 /* Make sure there is a type allocated for type numbers TYPENUMS
679 and return the type object.
680 This can create an empty (zeroed) type object.
681 TYPENUMS may be (-1, -1) to return a new type object that is not
682 put into the type vector, and so may not be referred to by number. */
685 dbx_alloc_type (typenums)
688 register struct type **type_addr;
689 register struct type *type;
691 if (typenums[1] != -1)
693 type_addr = dbx_lookup_type (typenums);
702 /* If we are referring to a type not known at all yet,
703 allocate an empty type for it.
704 We will fill it in later if we find out how. */
707 type = dbx_create_type ();
716 static struct type **
717 explicit_lookup_type (real_filenum, index)
718 int real_filenum, index;
720 register struct header_file *f = &header_files[real_filenum];
722 if (index >= f->length)
725 f->vector = (struct type **)
726 xrealloc (f->vector, f->length * sizeof (struct type *));
727 bzero (&f->vector[f->length / 2],
728 f->length * sizeof (struct type *) / 2);
730 return &f->vector[index];
734 /* maintain the lists of symbols and blocks */
736 /* Add a symbol to one of the lists of symbols. */
738 add_symbol_to_list (symbol, listhead)
739 struct symbol *symbol;
740 struct pending **listhead;
742 /* We keep PENDINGSIZE symbols in each link of the list.
743 If we don't have a link with room in it, add a new link. */
744 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
746 register struct pending *link;
749 link = free_pendings;
750 free_pendings = link->next;
753 link = (struct pending *) xmalloc (sizeof (struct pending));
755 link->next = *listhead;
760 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
763 /* At end of reading syms, or in case of quit,
764 really free as many `struct pending's as we can easily find. */
768 really_free_pendings (foo)
771 struct pending *next, *next1;
773 struct pending_block *bnext, *bnext1;
776 for (next = free_pendings; next; next = next1)
783 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
784 for (bnext = pending_blocks; bnext; bnext = bnext1)
786 bnext1 = bnext->next;
792 for (next = file_symbols; next; next = next1)
799 for (next = global_symbols; next; next = next1)
807 /* Take one of the lists of symbols and make a block from it.
808 Keep the order the symbols have in the list (reversed from the input file).
809 Put the block on the list of pending blocks. */
812 finish_block (symbol, listhead, old_blocks, start, end)
813 struct symbol *symbol;
814 struct pending **listhead;
815 struct pending_block *old_blocks;
816 CORE_ADDR start, end;
818 register struct pending *next, *next1;
819 register struct block *block;
820 register struct pending_block *pblock;
821 struct pending_block *opblock;
824 /* Count the length of the list of symbols. */
826 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
829 block = (struct block *) obstack_alloc (symbol_obstack,
830 (sizeof (struct block)
832 * sizeof (struct symbol *))));
834 /* Copy the symbols into the block. */
836 BLOCK_NSYMS (block) = i;
837 for (next = *listhead; next; next = next->next)
840 for (j = next->nsyms - 1; j >= 0; j--)
841 BLOCK_SYM (block, --i) = next->symbol[j];
844 BLOCK_START (block) = start;
845 BLOCK_END (block) = end;
846 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
847 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
849 /* Put the block in as the value of the symbol that names it. */
853 SYMBOL_BLOCK_VALUE (symbol) = block;
854 BLOCK_FUNCTION (block) = symbol;
857 BLOCK_FUNCTION (block) = 0;
859 /* Now "free" the links of the list, and empty the list. */
861 for (next = *listhead; next; next = next1)
864 next->next = free_pendings;
865 free_pendings = next;
869 /* Install this block as the superblock
870 of all blocks made since the start of this scope
871 that don't have superblocks yet. */
874 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
876 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
878 /* Check to be sure the blocks are nested as we receive them.
879 If the compiler/assembler/linker work, this just burns a small
881 if (BLOCK_START (pblock->block) < BLOCK_START (block)
882 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
883 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
885 BLOCK_START (pblock->block) = BLOCK_START (block);
886 BLOCK_END (pblock->block) = BLOCK_END (block);
889 BLOCK_SUPERBLOCK (pblock->block) = block;
894 /* Record this block on the list of all blocks in the file.
895 Put it after opblock, or at the beginning if opblock is 0.
896 This puts the block in the list after all its subblocks. */
898 /* Allocate in the symbol_obstack to save time.
899 It wastes a little space. */
900 pblock = (struct pending_block *)
901 obstack_alloc (symbol_obstack,
902 sizeof (struct pending_block));
903 pblock->block = block;
906 pblock->next = opblock->next;
907 opblock->next = pblock;
911 pblock->next = pending_blocks;
912 pending_blocks = pblock;
916 static struct blockvector *
919 register struct pending_block *next;
920 register struct blockvector *blockvector;
923 /* Count the length of the list of blocks. */
925 for (next = pending_blocks, i = 0; next; next = next->next, i++);
927 blockvector = (struct blockvector *)
928 obstack_alloc (symbol_obstack,
929 (sizeof (struct blockvector)
930 + (i - 1) * sizeof (struct block *)));
932 /* Copy the blocks into the blockvector.
933 This is done in reverse order, which happens to put
934 the blocks into the proper order (ascending starting address).
935 finish_block has hair to insert each block into the list
936 after its subblocks in order to make sure this is true. */
938 BLOCKVECTOR_NBLOCKS (blockvector) = i;
939 for (next = pending_blocks; next; next = next->next) {
940 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
943 #if 0 /* Now we make the links in the obstack, so don't free them. */
944 /* Now free the links of the list, and empty the list. */
946 for (next = pending_blocks; next; next = next1)
954 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
955 /* Some compilers output blocks in the wrong order, but we depend
956 on their being in the right order so we can binary search.
957 Check the order and moan about it. FIXME. */
958 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
959 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
960 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
961 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
962 complain (&blockvector_complaint,
963 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
971 /* Manage the vector of line numbers. */
974 record_line (line, pc)
978 struct linetable_entry *e;
979 /* Ignore the dummy line number in libg.o */
984 /* Make sure line vector is big enough. */
986 if (line_vector_index + 1 >= line_vector_length)
988 line_vector_length *= 2;
989 line_vector = (struct linetable *)
990 xrealloc (line_vector,
991 (sizeof (struct linetable)
992 + line_vector_length * sizeof (struct linetable_entry)));
993 current_subfile->line_vector = line_vector;
996 e = line_vector->item + line_vector_index++;
997 e->line = line; e->pc = pc;
1000 /* Start a new symtab for a new source file.
1001 This is called when a dbx symbol of type N_SO is seen;
1002 it indicates the start of data for one original source file. */
1005 start_symtab (name, dirname, start_addr)
1008 CORE_ADDR start_addr;
1011 last_source_file = name;
1012 last_source_start_addr = start_addr;
1015 within_function = 0;
1017 /* Context stack is initially empty, with room for 10 levels. */
1019 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1020 context_stack_size = 10;
1021 context_stack_depth = 0;
1023 new_object_header_files ();
1025 type_vector_length = 160;
1026 type_vector = (struct typevector *)
1027 xmalloc (sizeof (struct typevector)
1028 + type_vector_length * sizeof (struct type *));
1029 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1031 /* Initialize the list of sub source files with one entry
1032 for this file (the top-level source file). */
1035 current_subfile = 0;
1036 start_subfile (name, dirname);
1039 /* Handle an N_SOL symbol, which indicates the start of
1040 code that came from an included (or otherwise merged-in)
1041 source file with a different name. */
1044 start_subfile (name, dirname)
1048 register struct subfile *subfile;
1050 /* Save the current subfile's line vector data. */
1052 if (current_subfile)
1054 current_subfile->line_vector_index = line_vector_index;
1055 current_subfile->line_vector_length = line_vector_length;
1056 current_subfile->prev_line_number = prev_line_number;
1059 /* See if this subfile is already known as a subfile of the
1060 current main source file. */
1062 for (subfile = subfiles; subfile; subfile = subfile->next)
1064 if (!strcmp (subfile->name, name))
1066 line_vector = subfile->line_vector;
1067 line_vector_index = subfile->line_vector_index;
1068 line_vector_length = subfile->line_vector_length;
1069 prev_line_number = subfile->prev_line_number;
1070 current_subfile = subfile;
1075 /* This subfile is not known. Add an entry for it. */
1077 line_vector_index = 0;
1078 line_vector_length = 1000;
1079 prev_line_number = -2; /* Force first line number to be explicit */
1080 line_vector = (struct linetable *)
1081 xmalloc (sizeof (struct linetable)
1082 + line_vector_length * sizeof (struct linetable_entry));
1084 /* Make an entry for this subfile in the list of all subfiles
1085 of the current main source file. */
1087 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1088 subfile->next = subfiles;
1089 subfile->name = obsavestring (name, strlen (name));
1090 if (dirname == NULL)
1091 subfile->dirname = NULL;
1093 subfile->dirname = obsavestring (dirname, strlen (dirname));
1095 subfile->line_vector = line_vector;
1097 current_subfile = subfile;
1100 /* Finish the symbol definitions for one main source file,
1101 close off all the lexical contexts for that file
1102 (creating struct block's for them), then make the struct symtab
1103 for that file and put it in the list of all such.
1105 END_ADDR is the address of the end of the file's text. */
1107 static struct symtab *
1108 end_symtab (end_addr)
1111 register struct symtab *symtab;
1112 register struct blockvector *blockvector;
1113 register struct subfile *subfile;
1114 register struct linetable *lv;
1115 struct subfile *nextsub;
1117 /* Finish the lexical context of the last function in the file;
1118 pop the context stack. */
1120 if (context_stack_depth > 0)
1122 register struct context_stack *cstk;
1123 context_stack_depth--;
1124 cstk = &context_stack[context_stack_depth];
1125 /* Make a block for the local symbols within. */
1126 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1127 cstk->start_addr, end_addr);
1130 /* Cleanup any undefined types that have been left hanging around
1131 (this needs to be done before the finish_blocks so that
1132 file_symbols is still good). */
1133 cleanup_undefined_types ();
1135 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
1136 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1137 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1138 blockvector = make_blockvector ();
1140 current_subfile->line_vector_index = line_vector_index;
1142 /* Now create the symtab objects proper, one for each subfile. */
1143 /* (The main file is the last one on the chain.) */
1145 for (subfile = subfiles; subfile; subfile = nextsub)
1147 symtab = allocate_symtab (subfile->name);
1149 /* Fill in its components. */
1150 symtab->blockvector = blockvector;
1151 lv = subfile->line_vector;
1152 lv->nitems = subfile->line_vector_index;
1153 symtab->linetable = (struct linetable *)
1154 xrealloc (lv, (sizeof (struct linetable)
1155 + lv->nitems * sizeof (struct linetable_entry)));
1156 type_vector->length = type_vector_length;
1157 symtab->typevector = type_vector;
1159 symtab->dirname = subfile->dirname;
1161 symtab->free_code = free_linetable;
1162 symtab->free_ptr = 0;
1163 if (subfile->next == 0)
1164 symtab->free_ptr = (char *) type_vector;
1166 /* There should never already be a symtab for this name, since
1167 any prev dups have been removed when the psymtab was read in.
1168 FIXME, there ought to be a way to check this here. */
1169 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
1171 /* Link the new symtab into the list of such. */
1172 symtab->next = symtab_list;
1173 symtab_list = symtab;
1175 nextsub = subfile->next;
1180 type_vector_length = -1;
1182 line_vector_length = -1;
1183 last_source_file = 0;
1188 /* Handle the N_BINCL and N_EINCL symbol types
1189 that act like N_SOL for switching source files
1190 (different subfiles, as we call them) within one object file,
1191 but using a stack rather than in an arbitrary order. */
1193 struct subfile_stack
1195 struct subfile_stack *next;
1200 struct subfile_stack *subfile_stack;
1205 register struct subfile_stack *tem
1206 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1208 tem->next = subfile_stack;
1209 subfile_stack = tem;
1210 if (current_subfile == 0 || current_subfile->name == 0)
1212 tem->name = current_subfile->name;
1213 tem->prev_index = header_file_prev_index;
1219 register char *name;
1220 register struct subfile_stack *link = subfile_stack;
1226 subfile_stack = link->next;
1227 header_file_prev_index = link->prev_index;
1234 record_misc_function (name, address, type)
1239 enum misc_function_type misc_type;
1241 switch (type &~ N_EXT) {
1242 case N_TEXT: misc_type = mf_text; break;
1243 case N_DATA: misc_type = mf_data; break;
1244 case N_BSS: misc_type = mf_bss; break;
1245 case N_ABS: misc_type = mf_abs; break;
1247 case N_SETV: misc_type = mf_data; break;
1249 default: misc_type = mf_unknown; break;
1252 prim_record_misc_function (obsavestring (name, strlen (name)),
1253 address, misc_type);
1256 /* The BFD for this file -- only good while we're actively reading
1257 symbols into a psymtab or a symtab. */
1259 static bfd *symfile_bfd;
1261 /* Scan and build partial symbols for a symbol file.
1262 We have been initialized by a call to dbx_symfile_init, which
1263 put all the relevant info into a "struct dbx_symfile_info"
1264 hung off the struct sym_fns SF.
1266 ADDR is the address relative to which the symbols in it are (e.g.
1267 the base address of the text segment).
1268 MAINLINE is true if we are reading the main symbol
1269 table (as opposed to a shared lib or dynamically loaded file). */
1272 dbx_symfile_read (sf, addr, mainline)
1275 int mainline; /* FIXME comments above */
1277 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1278 bfd *sym_bfd = sf->sym_bfd;
1280 char *filename = bfd_get_filename (sym_bfd);
1282 val = lseek (info->desc, info->symtab_offset, L_SET);
1284 perror_with_name (filename);
1286 /* If mainline, set global string table pointers, and reinitialize global
1287 partial symbol list. */
1289 symfile_string_table = info->stringtab;
1290 symfile_string_table_size = info->stringtab_size;
1293 /* If we are reinitializing, or if we have never loaded syms yet, init */
1294 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1295 init_psymbol_list (info->symcount);
1297 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1300 make_cleanup (really_free_pendings, 0);
1302 init_misc_bunches ();
1303 make_cleanup (discard_misc_bunches, 0);
1305 /* Now that the symbol table data of the executable file are all in core,
1306 process them and define symbols accordingly. */
1308 read_dbx_symtab (filename,
1309 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1310 info->desc, info->stringtab, info->stringtab_size,
1312 bfd_section_vma (sym_bfd, info->text_sect),
1313 bfd_section_size (sym_bfd, info->text_sect));
1315 /* Go over the misc symbol bunches and install them in vector. */
1317 condense_misc_bunches (!mainline);
1319 /* Free up any memory we allocated for ourselves. */
1322 free (info->stringtab); /* Stringtab is only saved for mainline */
1325 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1327 if (!partial_symtab_list) {
1329 printf_filtered ("(no debugging symbols found)...");
1334 /* Initialize anything that needs initializing when a completely new
1335 symbol file is specified (not just adding some symbols from another
1336 file, e.g. a shared library). */
1341 /* Empty the hash table of global syms looking for values. */
1342 bzero (global_sym_chain, sizeof global_sym_chain);
1348 /* Don't put these on the cleanup chain; they need to stick around
1349 until the next call to dbx_new_init. *Then* we'll free them. */
1350 if (symfile_string_table)
1352 free (symfile_string_table);
1353 symfile_string_table = 0;
1354 symfile_string_table_size = 0;
1356 free_and_init_header_files ();
1360 /* dbx_symfile_init ()
1361 is the dbx-specific initialization routine for reading symbols.
1362 It is passed a struct sym_fns which contains, among other things,
1363 the BFD for the file whose symbols are being read, and a slot for a pointer
1364 to "private data" which we fill with goodies.
1366 We read the string table into malloc'd space and stash a pointer to it.
1368 Since BFD doesn't know how to read debug symbols in a format-independent
1369 way (and may never do so...), we have to do it ourselves. We will never
1370 be called unless this is an a.out (or very similar) file.
1371 FIXME, there should be a cleaner peephole into the BFD environment here. */
1374 dbx_symfile_init (sf)
1379 struct stat statbuf;
1380 bfd *sym_bfd = sf->sym_bfd;
1381 char *name = bfd_get_filename (sym_bfd);
1382 struct dbx_symfile_info *info;
1383 unsigned char size_temp[4];
1385 /* Allocate struct to keep track of the symfile */
1386 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1387 info = (struct dbx_symfile_info *)sf->sym_private;
1389 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1390 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1391 #define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1392 #define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1393 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1396 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1397 if (!info->text_sect)
1399 info->symcount = bfd_get_symcount (sym_bfd);
1401 /* Read the string table size and check it for bogosity. */
1402 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1404 perror_with_name (name);
1405 if (fstat (desc, &statbuf) == -1)
1406 perror_with_name (name);
1408 val = myread (desc, size_temp, sizeof (long));
1410 perror_with_name (name);
1411 info->stringtab_size = bfd_h_get_32 (sym_bfd, size_temp);
1413 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1415 info->stringtab = (char *) xmalloc (info->stringtab_size);
1416 /* Caller is responsible for freeing the string table. No cleanup. */
1419 info->stringtab = NULL;
1420 if (info->stringtab == NULL && info->stringtab_size != 0)
1421 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1423 /* Now read in the string table in one big gulp. */
1425 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1427 perror_with_name (name);
1428 val = myread (desc, info->stringtab, info->stringtab_size);
1430 perror_with_name (name);
1432 /* Record the position of the symbol table for later use. */
1434 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1437 /* Buffer for reading the symbol table entries. */
1438 static struct nlist symbuf[4096];
1439 static int symbuf_idx;
1440 static int symbuf_end;
1442 /* I/O descriptor for reading the symbol table. */
1443 static int symtab_input_desc;
1445 /* The address in memory of the string table of the object file we are
1446 reading (which might not be the "main" object file, but might be a
1447 shared library or some other dynamically loaded thing). This is set
1448 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1449 when building symtabs, and is used only by next_symbol_text. */
1450 static char *stringtab_global;
1452 /* Refill the symbol table input buffer
1453 and set the variables that control fetching entries from it.
1454 Reports an error if no data available.
1455 This function can read past the end of the symbol table
1456 (into the string table) but this does no harm. */
1461 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1463 perror_with_name ("<symbol file>");
1464 else if (nbytes == 0)
1465 error ("Premature end of file reading symbol table");
1466 symbuf_end = nbytes / sizeof (struct nlist);
1471 #define SWAP_SYMBOL(symp) \
1473 (symp)->n_un.n_strx = bfd_h_get_32(symfile_bfd, \
1474 (unsigned char *)&(symp)->n_un.n_strx); \
1475 (symp)->n_desc = bfd_h_get_16 (symfile_bfd, \
1476 (unsigned char *)&(symp)->n_desc); \
1477 (symp)->n_value = bfd_h_get_32 (symfile_bfd, \
1478 (unsigned char *)&(symp)->n_value); \
1481 /* Invariant: The symbol pointed to by symbuf_idx is the first one
1482 that hasn't been swapped. Swap the symbol at the same time
1483 that symbuf_idx is incremented. */
1485 /* dbx allows the text of a symbol name to be continued into the
1486 next symbol name! When such a continuation is encountered
1487 (a \ at the end of the text of a name)
1488 call this function to get the continuation. */
1493 if (symbuf_idx == symbuf_end)
1496 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1497 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1500 /* Initializes storage for all of the partial symbols that will be
1501 created by read_dbx_symtab and subsidiaries. */
1504 init_psymbol_list (total_symbols)
1507 /* Free any previously allocated psymbol lists. */
1508 if (global_psymbols.list)
1509 free (global_psymbols.list);
1510 if (static_psymbols.list)
1511 free (static_psymbols.list);
1513 /* Current best guess is that there are approximately a twentieth
1514 of the total symbols (in a debugging file) are global or static
1516 global_psymbols.size = total_symbols / 10;
1517 static_psymbols.size = total_symbols / 10;
1518 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1519 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1520 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1521 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1524 /* Initialize the list of bincls to contain none and have some
1528 init_bincl_list (number)
1531 bincls_allocated = number;
1532 next_bincl = bincl_list = (struct header_file_location *)
1533 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1536 /* Add a bincl to the list. */
1539 add_bincl_to_list (pst, name, instance)
1540 struct partial_symtab *pst;
1544 if (next_bincl >= bincl_list + bincls_allocated)
1546 int offset = next_bincl - bincl_list;
1547 bincls_allocated *= 2;
1548 bincl_list = (struct header_file_location *)
1549 xrealloc ((char *)bincl_list,
1550 bincls_allocated * sizeof (struct header_file_location));
1551 next_bincl = bincl_list + offset;
1553 next_bincl->pst = pst;
1554 next_bincl->instance = instance;
1555 next_bincl++->name = name;
1558 /* Given a name, value pair, find the corresponding
1559 bincl in the list. Return the partial symtab associated
1560 with that header_file_location. */
1562 struct partial_symtab *
1563 find_corresponding_bincl_psymtab (name, instance)
1567 struct header_file_location *bincl;
1569 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1570 if (bincl->instance == instance
1571 && !strcmp (name, bincl->name))
1574 return (struct partial_symtab *) 0;
1577 /* Free the storage allocated for the bincl list. */
1583 bincls_allocated = 0;
1586 static struct partial_symtab *start_psymtab ();
1587 static void end_psymtab();
1590 /* This is normally a macro defined in read_dbx_symtab, but this
1591 is a lot easier to debug. */
1593 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1596 enum namespace NAMESPACE;
1597 enum address_class CLASS;
1598 struct psymbol_allocation_list *PLIST;
1599 unsigned long VALUE;
1601 register struct partial_symbol *psym;
1606 (LIST).list + (LIST).size)
1608 (LIST).list = (struct partial_symbol *)
1609 xrealloc ((LIST).list,
1611 * sizeof (struct partial_symbol)));
1612 /* Next assumes we only went one over. Should be good if
1613 program works correctly */
1615 (LIST).list + (LIST).size;
1618 psym = (LIST).next++;
1621 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1623 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1624 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1625 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1626 SYMBOL_CLASS (psym) = (CLASS);
1627 SYMBOL_VALUE (psym) = (VALUE);
1631 /* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1632 #define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1633 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1637 /* Given pointers to an a.out symbol table in core containing dbx
1638 style data, setup partial_symtab's describing each source file for
1639 which debugging information is available. NLISTLEN is the number
1640 of symbols in the symbol table. All symbol names are given as
1641 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1642 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1643 and ADDR is its relocated address (if incremental) or 0 (if not). */
1646 read_dbx_symtab (symfile_name, addr,
1647 desc, stringtab, stringtab_size, nlistlen,
1648 text_addr, text_size)
1652 register char *stringtab;
1653 register long stringtab_size;
1654 register int nlistlen;
1655 CORE_ADDR text_addr;
1658 register struct nlist *bufp;
1659 register char *namestring;
1660 register struct partial_symbol *psym;
1662 int past_first_source_file = 0;
1663 CORE_ADDR last_o_file_start = 0;
1664 struct cleanup *old_chain;
1667 /* End of the text segment of the executable file. */
1668 CORE_ADDR end_of_text_addr;
1670 /* Current partial symtab */
1671 struct partial_symtab *pst;
1673 /* List of current psymtab's include files */
1674 char **psymtab_include_list;
1675 int includes_allocated;
1678 /* Index within current psymtab dependency list */
1679 struct partial_symtab **dependency_list;
1680 int dependencies_used, dependencies_allocated;
1682 stringtab_global = stringtab;
1684 pst = (struct partial_symtab *) 0;
1686 includes_allocated = 30;
1688 psymtab_include_list = (char **) alloca (includes_allocated *
1691 dependencies_allocated = 30;
1692 dependencies_used = 0;
1694 (struct partial_symtab **) alloca (dependencies_allocated *
1695 sizeof (struct partial_symtab *));
1697 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1698 It should only blow away the psymtabs created herein. We could
1699 be reading a shared library or a dynloaded file! */
1700 old_chain = make_cleanup (free_all_psymtabs, 0);
1702 /* Init bincl list */
1703 init_bincl_list (20);
1704 make_cleanup (free_bincl_list, 0);
1706 last_source_file = 0;
1708 #ifdef END_OF_TEXT_DEFAULT
1709 end_of_text_addr = END_OF_TEXT_DEFAULT;
1711 end_of_text_addr = text_addr + text_size;
1714 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1715 symbuf_end = symbuf_idx = 0;
1717 for (symnum = 0; symnum < nlistlen; symnum++)
1719 /* Get the symbol for this run and pull out some info */
1720 QUIT; /* allow this to be interruptable */
1721 if (symbuf_idx == symbuf_end)
1723 bufp = &symbuf[symbuf_idx++];
1726 * Special case to speed up readin.
1728 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1732 /* Ok. There is a lot of code duplicated in the rest of this
1733 switch statement (for efficiency reasons). Since I don't
1734 like duplicating code, I will do my penance here, and
1735 describe the code which is duplicated:
1737 *) The assignment to namestring.
1738 *) The call to strchr.
1739 *) The addition of a partial symbol the the two partial
1740 symbol lists. This last is a large section of code, so
1741 I've imbedded it in the following macro.
1744 /* Set namestring based on bufp. If the string table index is invalid,
1745 give a fake name, and print a single error message per symbol file read,
1746 rather than abort the symbol reading or flood the user with messages. */
1747 #define SET_NAMESTRING()\
1748 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1749 complain (&string_table_offset_complaint, symnum); \
1750 namestring = "foo"; \
1752 namestring = bufp->n_un.n_strx + stringtab
1754 /* Add a symbol with an integer value to a psymtab. */
1755 /* This is a macro unless we're debugging. See above this function. */
1757 # define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1758 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1762 /* Add a symbol with a CORE_ADDR value to a psymtab. */
1763 #define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1764 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1765 SYMBOL_VALUE_ADDRESS)
1767 /* Add any kind of symbol to a psymtab. */
1768 #define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1770 if ((LIST).next >= \
1771 (LIST).list + (LIST).size) \
1773 (LIST).list = (struct partial_symbol *) \
1774 xrealloc ((LIST).list, \
1776 * sizeof (struct partial_symbol))); \
1777 /* Next assumes we only went one over. Should be good if \
1778 program works correctly */ \
1780 (LIST).list + (LIST).size; \
1783 psym = (LIST).next++; \
1785 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1786 (NAMELENGTH) + 1); \
1787 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1788 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1789 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1790 SYMBOL_CLASS (psym) = (CLASS); \
1791 VT (psym) = (VALUE); \
1794 /* End of macro definitions, now let's handle them symbols! */
1796 switch (bufp->n_type)
1799 * Standard, external, non-debugger, symbols
1802 case N_TEXT | N_EXT:
1803 case N_NBTEXT | N_EXT:
1804 case N_NBDATA | N_EXT:
1805 case N_NBBSS | N_EXT:
1806 case N_SETV | N_EXT:
1808 case N_DATA | N_EXT:
1811 bufp->n_value += addr; /* Relocate */
1816 record_misc_function (namestring, bufp->n_value,
1817 bufp->n_type); /* Always */
1821 /* Standard, local, non-debugger, symbols */
1825 /* We need to be able to deal with both N_FN or N_TEXT,
1826 because we have no way of knowing whether the sys-supplied ld
1827 or GNU ld was used to make the executable. */
1828 #if ! (N_FN & N_EXT)
1833 bufp->n_value += addr; /* Relocate */
1835 if ((namestring[0] == '-' && namestring[1] == 'l')
1836 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1837 && namestring [nsl - 2] == '.'))
1839 if (entry_point < bufp->n_value
1840 && entry_point >= last_o_file_start
1841 && addr == 0) /* FIXME nogood nomore */
1843 startup_file_start = last_o_file_start;
1844 startup_file_end = bufp->n_value;
1846 if (past_first_source_file && pst
1847 /* The gould NP1 uses low values for .o and -l symbols
1848 which are not the address. */
1849 && bufp->n_value > pst->textlow)
1851 end_psymtab (pst, psymtab_include_list, includes_used,
1852 symnum * sizeof (struct nlist), bufp->n_value,
1853 dependency_list, dependencies_used,
1854 global_psymbols.next, static_psymbols.next);
1855 pst = (struct partial_symtab *) 0;
1857 dependencies_used = 0;
1860 past_first_source_file = 1;
1861 last_o_file_start = bufp->n_value;
1866 bufp->n_value += addr; /* Relocate */
1868 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1869 Record it even if it's local, not global, so we can find it.
1870 Same with virtual function tables, both global and static. */
1871 if ((namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1872 || VTBL_PREFIX_P ((namestring+HASH_OFFSET)))
1874 /* Not really a function here, but... */
1875 record_misc_function (namestring, bufp->n_value,
1876 bufp->n_type); /* Always */
1880 case N_UNDF | N_EXT:
1881 if (bufp->n_value != 0) {
1882 /* This is a "Fortran COMMON" symbol. See if the target
1883 environment knows where it has been relocated to. */
1888 if (target_lookup_symbol (namestring, &reladdr)) {
1889 continue; /* Error in lookup; ignore symbol for now. */
1891 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1892 bufp->n_value = reladdr;
1893 goto bss_ext_symbol;
1895 continue; /* Just undefined, not COMMON */
1897 /* Lots of symbol types we can just ignore. */
1906 /* Keep going . . .*/
1909 * Special symbol types for GNU
1912 case N_INDR | N_EXT:
1914 case N_SETA | N_EXT:
1916 case N_SETT | N_EXT:
1918 case N_SETD | N_EXT:
1920 case N_SETB | N_EXT:
1929 unsigned long valu = bufp->n_value;
1930 /* Symbol number of the first symbol of this file (i.e. the N_SO
1931 if there is just one, or the first if we have a pair). */
1932 int first_symnum = symnum;
1934 /* End the current partial symtab and start a new one */
1938 /* Peek at the next symbol. If it is also an N_SO, the
1939 first one just indicates the directory. */
1940 if (symbuf_idx == symbuf_end)
1942 bufp = &symbuf[symbuf_idx];
1943 /* n_type is only a char, so swapping swapping is irrelevant. */
1944 if (bufp->n_type == (unsigned char)N_SO)
1948 valu = bufp->n_value;
1952 valu += addr; /* Relocate */
1954 if (pst && past_first_source_file)
1956 end_psymtab (pst, psymtab_include_list, includes_used,
1957 first_symnum * sizeof (struct nlist), valu,
1958 dependency_list, dependencies_used,
1959 global_psymbols.next, static_psymbols.next);
1960 pst = (struct partial_symtab *) 0;
1962 dependencies_used = 0;
1965 past_first_source_file = 1;
1967 pst = start_psymtab (symfile_name, addr,
1969 first_symnum * sizeof (struct nlist),
1970 global_psymbols.next, static_psymbols.next);
1975 /* Add this bincl to the bincl_list for future EXCLs. No
1976 need to save the string; it'll be around until
1977 read_dbx_symtab function returns */
1981 add_bincl_to_list (pst, namestring, bufp->n_value);
1983 /* Mark down an include file in the current psymtab */
1985 psymtab_include_list[includes_used++] = namestring;
1986 if (includes_used >= includes_allocated)
1988 char **orig = psymtab_include_list;
1990 psymtab_include_list = (char **)
1991 alloca ((includes_allocated *= 2) *
1993 bcopy (orig, psymtab_include_list,
1994 includes_used * sizeof (char *));
2000 /* Mark down an include file in the current psymtab */
2004 /* In C++, one may expect the same filename to come round many
2005 times, when code is coming alternately from the main file
2006 and from inline functions in other files. So I check to see
2007 if this is a file we've seen before -- either the main
2008 source file, or a previously included file.
2010 This seems to be a lot of time to be spending on N_SOL, but
2011 things like "break expread.y:435" need to work (I
2012 suppose the psymtab_include_list could be hashed or put
2013 in a binary tree, if profiling shows this is a major hog). */
2014 if (!strcmp (namestring, pst->filename))
2018 for (i = 0; i < includes_used; i++)
2019 if (!strcmp (namestring, psymtab_include_list[i]))
2028 psymtab_include_list[includes_used++] = namestring;
2029 if (includes_used >= includes_allocated)
2031 char **orig = psymtab_include_list;
2033 psymtab_include_list = (char **)
2034 alloca ((includes_allocated *= 2) *
2036 bcopy (orig, psymtab_include_list,
2037 includes_used * sizeof (char *));
2041 case N_LSYM: /* Typedef or automatic variable. */
2044 p = (char *) strchr (namestring, ':');
2046 /* Skip if there is no :. */
2052 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2053 STRUCT_NAMESPACE, LOC_TYPEDEF,
2054 static_psymbols, bufp->n_value);
2057 /* Also a typedef with the same name. */
2058 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2059 VAR_NAMESPACE, LOC_TYPEDEF,
2060 static_psymbols, bufp->n_value);
2065 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2066 VAR_NAMESPACE, LOC_TYPEDEF,
2067 static_psymbols, bufp->n_value);
2069 /* If this is an enumerated type, we need to
2070 add all the enum constants to the partial symbol
2071 table. This does not cover enums without names, e.g.
2072 "enum {a, b} c;" in C, but fortunately those are
2073 rare. There is no way for GDB to find those from the
2074 enum type without spending too much time on it. Thus
2075 to solve this problem, the compiler needs to put out separate
2076 constant symbols ('c' N_LSYMS) for enum constants in
2077 enums without names, or put out a dummy type. */
2079 /* We are looking for something of the form
2080 <name> ":" ("t" | "T") [<number> "="] "e"
2081 {<constant> ":" <value> ","} ";". */
2083 /* Skip over the colon and the 't' or 'T'. */
2085 /* This type may be given a number. Skip over it. */
2086 while ((*p >= '0' && *p <= '9')
2092 /* We have found an enumerated type. */
2093 /* According to comments in read_enum_type
2094 a comma could end it instead of a semicolon.
2095 I don't know where that happens.
2097 while (*p && *p != ';' && *p != ',')
2101 /* Check for and handle cretinous dbx symbol name
2104 p = next_symbol_text ();
2106 /* Point to the character after the name
2107 of the enum constant. */
2108 for (q = p; *q && *q != ':'; q++)
2110 /* Note that the value doesn't matter for
2111 enum constants in psymtabs, just in symtabs. */
2112 ADD_PSYMBOL_TO_LIST (p, q - p,
2113 VAR_NAMESPACE, LOC_CONST,
2114 static_psymbols, 0);
2115 /* Point past the name. */
2117 /* Skip over the value. */
2118 while (*p && *p != ',')
2120 /* Advance past the comma. */
2128 /* Constant, e.g. from "const" in Pascal. */
2129 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2130 VAR_NAMESPACE, LOC_CONST,
2131 static_psymbols, bufp->n_value);
2134 /* Skip if the thing following the : is
2135 not a letter (which indicates declaration of a local
2136 variable, which we aren't interested in). */
2141 case N_GSYM: /* Global (extern) variable; can be
2142 data or bss (sigh). */
2143 case N_STSYM: /* Data seg var -- static */
2144 case N_LCSYM: /* BSS " */
2146 case N_NBSTS: /* Gould nobase. */
2147 case N_NBLCS: /* symbols. */
2149 /* Following may probably be ignored; I'll leave them here
2150 for now (until I do Pascal and Modula 2 extensions). */
2152 case N_PC: /* I may or may not need this; I
2154 case N_M2C: /* I suspect that I can ignore this here. */
2155 case N_SCOPE: /* Same. */
2159 p = (char *) strchr (namestring, ':');
2161 continue; /* Not a debugging symbol. */
2165 /* Main processing section for debugging symbols which
2166 the initial read through the symbol tables needs to worry
2167 about. If we reach this point, the symbol which we are
2168 considering is definitely one we are interested in.
2169 p must also contain the (valid) index into the namestring
2170 which indicates the debugging type symbol. */
2175 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2176 VAR_NAMESPACE, LOC_CONST,
2177 static_psymbols, bufp->n_value);
2180 bufp->n_value += addr; /* Relocate */
2181 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2182 VAR_NAMESPACE, LOC_STATIC,
2183 static_psymbols, bufp->n_value);
2186 bufp->n_value += addr; /* Relocate */
2187 /* The addresses in these entries are reported to be
2188 wrong. See the code that reads 'G's for symtabs. */
2189 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2190 VAR_NAMESPACE, LOC_STATIC,
2191 global_psymbols, bufp->n_value);
2195 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2196 VAR_NAMESPACE, LOC_TYPEDEF,
2197 global_psymbols, bufp->n_value);
2201 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2202 VAR_NAMESPACE, LOC_BLOCK,
2203 static_psymbols, bufp->n_value);
2206 /* Global functions were ignored here, but now they
2207 are put into the global psymtab like one would expect.
2208 They're also in the misc fn vector...
2209 FIXME, why did it used to ignore these? That broke
2210 "i fun" on these functions. */
2212 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2213 VAR_NAMESPACE, LOC_BLOCK,
2214 global_psymbols, bufp->n_value);
2217 /* Two things show up here (hopefully); static symbols of
2218 local scope (static used inside braces) or extensions
2219 of structure symbols. We can ignore both. */
2235 /* Unexpected symbol. Ignore it; perhaps it is an extension
2236 that we don't know about.
2238 Someone says sun cc puts out symbols like
2239 /foo/baz/maclib::/usr/local/bin/maclib,
2240 which would get here with a symbol type of ':'. */
2248 /* Find the corresponding bincl and mark that psymtab on the
2249 psymtab dependency list */
2251 struct partial_symtab *needed_pst =
2252 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2254 /* If this include file was defined earlier in this file,
2256 if (needed_pst == pst) continue;
2263 for (i = 0; i < dependencies_used; i++)
2264 if (dependency_list[i] == needed_pst)
2270 /* If it's already in the list, skip the rest. */
2271 if (found) continue;
2273 dependency_list[dependencies_used++] = needed_pst;
2274 if (dependencies_used >= dependencies_allocated)
2276 struct partial_symtab **orig = dependency_list;
2278 (struct partial_symtab **)
2279 alloca ((dependencies_allocated *= 2)
2280 * sizeof (struct partial_symtab *));
2281 bcopy (orig, dependency_list,
2283 * sizeof (struct partial_symtab *)));
2285 fprintf (stderr, "Had to reallocate dependency list.\n");
2286 fprintf (stderr, "New dependencies allocated: %d\n",
2287 dependencies_allocated);
2292 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2300 case N_SSYM: /* Claim: Structure or union element.
2301 Hopefully, I can ignore this. */
2302 case N_ENTRY: /* Alternate entry point; can ignore. */
2303 case N_MAIN: /* Can definitely ignore this. */
2304 case N_CATCH: /* These are GNU C++ extensions */
2305 case N_EHDECL: /* that can safely be ignored here. */
2316 case N_NSYMS: /* Ultrix 4.0: symbol count */
2317 case N_DEFD: /* GNU Modula-2 */
2318 /* These symbols aren't interesting; don't worry about them */
2323 /* If we haven't found it yet, ignore it. It's probably some
2324 new type we don't know about yet. */
2325 complain (&unknown_symtype_complaint, local_hex_string(bufp->n_type));
2330 /* If there's stuff to be cleaned up, clean it up. */
2331 if (nlistlen > 0 /* We have some syms */
2332 && entry_point < bufp->n_value
2333 && entry_point >= last_o_file_start)
2335 startup_file_start = last_o_file_start;
2336 startup_file_end = bufp->n_value;
2341 end_psymtab (pst, psymtab_include_list, includes_used,
2342 symnum * sizeof (struct nlist), end_of_text_addr,
2343 dependency_list, dependencies_used,
2344 global_psymbols.next, static_psymbols.next);
2346 dependencies_used = 0;
2347 pst = (struct partial_symtab *) 0;
2351 discard_cleanups (old_chain);
2355 * Allocate and partially fill a partial symtab. It will be
2356 * completely filled at the end of the symbol list.
2358 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2359 is the address relative to which its symbols are (incremental) or 0
2361 static struct partial_symtab *
2362 start_psymtab (symfile_name, addr,
2363 filename, textlow, ldsymoff, global_syms, static_syms)
2369 struct partial_symbol *global_syms;
2370 struct partial_symbol *static_syms;
2372 struct partial_symtab *result =
2373 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2374 sizeof (struct partial_symtab));
2376 result->addr = addr;
2378 result->symfile_name =
2379 (char *) obstack_alloc (psymbol_obstack,
2380 strlen (symfile_name) + 1);
2381 strcpy (result->symfile_name, symfile_name);
2384 (char *) obstack_alloc (psymbol_obstack,
2385 strlen (filename) + 1);
2386 strcpy (result->filename, filename);
2388 result->textlow = textlow;
2389 result->ldsymoff = ldsymoff;
2393 result->read_symtab = dbx_psymtab_to_symtab;
2395 result->globals_offset = global_syms - global_psymbols.list;
2396 result->statics_offset = static_syms - static_psymbols.list;
2398 result->n_global_syms = 0;
2399 result->n_static_syms = 0;
2406 compare_psymbols (s1, s2)
2407 register struct partial_symbol *s1, *s2;
2410 *st1 = SYMBOL_NAME (s1),
2411 *st2 = SYMBOL_NAME (s2);
2413 if (st1[0] - st2[0])
2414 return st1[0] - st2[0];
2415 if (st1[1] - st2[1])
2416 return st1[1] - st2[1];
2417 return strcmp (st1 + 1, st2 + 1);
2421 /* Close off the current usage of a partial_symbol table entry. This
2422 involves setting the correct number of includes (with a realloc),
2423 setting the high text mark, setting the symbol length in the
2424 executable, and setting the length of the global and static lists
2427 The global symbols and static symbols are then seperately sorted.
2429 Then the partial symtab is put on the global list.
2430 *** List variables and peculiarities of same. ***
2433 end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2434 capping_text, dependency_list, number_dependencies,
2435 capping_global, capping_static)
2436 struct partial_symtab *pst;
2437 char **include_list;
2439 int capping_symbol_offset;
2440 CORE_ADDR capping_text;
2441 struct partial_symtab **dependency_list;
2442 int number_dependencies;
2443 struct partial_symbol *capping_global, *capping_static;
2447 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2448 pst->texthigh = capping_text;
2450 pst->n_global_syms =
2451 capping_global - (global_psymbols.list + pst->globals_offset);
2452 pst->n_static_syms =
2453 capping_static - (static_psymbols.list + pst->statics_offset);
2455 pst->number_of_dependencies = number_dependencies;
2456 if (number_dependencies)
2458 pst->dependencies = (struct partial_symtab **)
2459 obstack_alloc (psymbol_obstack,
2460 number_dependencies * sizeof (struct partial_symtab *));
2461 bcopy (dependency_list, pst->dependencies,
2462 number_dependencies * sizeof (struct partial_symtab *));
2465 pst->dependencies = 0;
2467 for (i = 0; i < num_includes; i++)
2469 /* Eventually, put this on obstack */
2470 struct partial_symtab *subpst =
2471 (struct partial_symtab *)
2472 obstack_alloc (psymbol_obstack,
2473 sizeof (struct partial_symtab));
2476 (char *) obstack_alloc (psymbol_obstack,
2477 strlen (include_list[i]) + 1);
2478 strcpy (subpst->filename, include_list[i]);
2480 subpst->symfile_name = pst->symfile_name;
2481 subpst->addr = pst->addr;
2485 subpst->texthigh = 0;
2487 /* We could save slight bits of space by only making one of these,
2488 shared by the entire set of include files. FIXME-someday. */
2489 subpst->dependencies = (struct partial_symtab **)
2490 obstack_alloc (psymbol_obstack,
2491 sizeof (struct partial_symtab *));
2492 subpst->dependencies[0] = pst;
2493 subpst->number_of_dependencies = 1;
2495 subpst->globals_offset =
2496 subpst->n_global_syms =
2497 subpst->statics_offset =
2498 subpst->n_static_syms = 0;
2502 subpst->read_symtab = dbx_psymtab_to_symtab;
2504 subpst->next = partial_symtab_list;
2505 partial_symtab_list = subpst;
2508 /* Sort the global list; don't sort the static list */
2509 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2510 sizeof (struct partial_symbol), compare_psymbols);
2512 /* If there is already a psymtab or symtab for a file of this name, remove it.
2513 (If there is a symtab, more drastic things also happen.)
2514 This happens in VxWorks. */
2515 free_named_symtabs (pst->filename);
2517 /* Put the psymtab on the psymtab list */
2518 pst->next = partial_symtab_list;
2519 partial_symtab_list = pst;
2523 psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2524 struct partial_symtab *pst;
2530 struct cleanup *old_chain;
2538 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2543 /* Read in all partial symbtabs on which this one is dependent */
2544 for (i = 0; i < pst->number_of_dependencies; i++)
2545 if (!pst->dependencies[i]->readin)
2547 /* Inform about additional files that need to be read in. */
2550 fputs_filtered (" ", stdout);
2552 fputs_filtered ("and ", stdout);
2554 printf_filtered ("%s...", pst->dependencies[i]->filename);
2555 wrap_here (""); /* Flush output */
2558 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2559 stringtab, stringtab_size, sym_offset);
2562 if (pst->ldsymlen) /* Otherwise it's a dummy */
2564 /* Init stuff necessary for reading in symbols */
2569 old_chain = make_cleanup (really_free_pendings, 0);
2571 /* Read in this files symbols */
2572 lseek (desc, sym_offset, L_SET);
2574 read_ofile_symtab (desc, stringtab, stringtab_size,
2576 pst->ldsymlen, pst->textlow,
2577 pst->texthigh - pst->textlow, pst->addr);
2578 sort_symtab_syms (pst->symtab);
2580 do_cleanups (old_chain);
2587 * Read in all of the symbols for a given psymtab for real.
2588 * Be verbose about it if the user wants that.
2591 dbx_psymtab_to_symtab (pst)
2592 struct partial_symtab *pst;
2597 struct stat statbuf;
2598 struct cleanup *old_chain;
2607 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2612 if (pst->ldsymlen || pst->number_of_dependencies)
2614 /* Print the message now, before reading the string table,
2615 to avoid disconcerting pauses. */
2618 printf_filtered ("Reading in symbols for %s...", pst->filename);
2622 /* Open symbol file and read in string table. Symbol_file_command
2623 guarantees that the symbol file name will be absolute, so there is
2624 no need for openp. */
2625 desc = open(pst->symfile_name, O_RDONLY, 0);
2628 perror_with_name (pst->symfile_name);
2630 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2634 error ("Could not open `%s' to read symbols: %s",
2635 pst->symfile_name, bfd_errmsg (bfd_error));
2637 old_chain = make_cleanup (bfd_close, sym_bfd);
2638 if (!bfd_check_format (sym_bfd, bfd_object))
2639 error ("\"%s\": can't read symbols: %s.",
2640 pst->symfile_name, bfd_errmsg (bfd_error));
2642 /* We keep the string table for symfile resident in memory, but
2643 not the string table for any other symbol files. */
2644 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
2646 /* Read in the string table */
2648 /* FIXME, this uses internal BFD variables. See above in
2649 dbx_symbol_file_open where the macro is defined! */
2650 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2652 val = myread (desc, &st_temp, sizeof st_temp);
2654 perror_with_name (pst->symfile_name);
2655 stsize = bfd_h_get_32 (sym_bfd, (unsigned char *)&st_temp);
2656 if (fstat (desc, &statbuf) < 0)
2657 perror_with_name (pst->symfile_name);
2659 if (stsize >= 0 && stsize < statbuf.st_size)
2661 #ifdef BROKEN_LARGE_ALLOCA
2662 stringtab = (char *) xmalloc (stsize);
2663 make_cleanup (free, stringtab);
2665 stringtab = (char *) alloca (stsize);
2670 if (stringtab == NULL && stsize != 0)
2671 error ("ridiculous string table size: %d bytes", stsize);
2673 /* FIXME, this uses internal BFD variables. See above in
2674 dbx_symbol_file_open where the macro is defined! */
2675 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2677 perror_with_name (pst->symfile_name);
2678 val = myread (desc, stringtab, stsize);
2680 perror_with_name (pst->symfile_name);
2684 stringtab = symfile_string_table;
2685 stsize = symfile_string_table_size;
2688 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2690 /* FIXME, this uses internal BFD variables. See above in
2691 dbx_symbol_file_open where the macro is defined! */
2692 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2693 SYMBOL_TABLE_OFFSET);
2695 /* Match with global symbols. This only needs to be done once,
2696 after all of the symtabs and dependencies have been read in. */
2697 scan_file_globals ();
2699 do_cleanups (old_chain);
2701 /* Finish up the debug error message. */
2703 printf_filtered ("done.\n");
2708 * Scan through all of the global symbols defined in the object file,
2709 * assigning values to the debugging symbols that need to be assigned
2710 * to. Get these symbols from the misc function list.
2713 scan_file_globals ()
2718 for (mf = 0; mf < misc_function_count; mf++)
2720 char *namestring = misc_function_vector[mf].name;
2721 struct symbol *sym, *prev;
2725 prev = (struct symbol *) 0;
2727 /* Get the hash index and check all the symbols
2728 under that hash index. */
2730 hash = hashname (namestring);
2732 for (sym = global_sym_chain[hash]; sym;)
2734 if (*namestring == SYMBOL_NAME (sym)[0]
2735 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2737 /* Splice this symbol out of the hash chain and
2738 assign the value we have to it. */
2740 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2742 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2744 /* Check to see whether we need to fix up a common block. */
2745 /* Note: this code might be executed several times for
2746 the same symbol if there are multiple references. */
2747 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2748 fix_common_block (sym, misc_function_vector[mf].address);
2750 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2753 sym = SYMBOL_VALUE_CHAIN (prev);
2755 sym = global_sym_chain[hash];
2760 sym = SYMBOL_VALUE_CHAIN (sym);
2766 /* Process a pair of symbols. Currently they must both be N_SO's. */
2769 process_symbol_pair (type1, desc1, value1, name1,
2770 type2, desc2, value2, name2)
2780 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2781 broken PCC's don't put out N_SO pairs. */
2782 if (last_source_file)
2783 (void)end_symtab (value2);
2784 start_symtab (name2, name1, value2);
2788 * Read in a defined section of a specific object file's symbols.
2790 * DESC is the file descriptor for the file, positioned at the
2791 * beginning of the symtab
2792 * STRINGTAB is a pointer to the files string
2793 * table, already read in
2794 * SYM_OFFSET is the offset within the file of
2795 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2796 * number of symbols to read
2797 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2798 * TEXT_SIZE is the size of the text segment read in.
2799 * OFFSET is a relocation offset which gets added to each symbol
2802 static struct symtab *
2803 read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2804 sym_size, text_offset, text_size, offset)
2806 register char *stringtab;
2807 unsigned int stringtab_size;
2810 CORE_ADDR text_offset;
2814 register char *namestring;
2819 stringtab_global = stringtab;
2820 last_source_file = 0;
2822 symtab_input_desc = desc;
2823 symbuf_end = symbuf_idx = 0;
2825 /* It is necessary to actually read one symbol *before* the start
2826 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2827 occurs before the N_SO symbol.
2829 Detecting this in read_dbx_symtab
2830 would slow down initial readin, so we look for it here instead. */
2831 if (sym_offset >= (int)sizeof (struct nlist))
2833 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2835 bufp = &symbuf[symbuf_idx++];
2838 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2839 error ("Invalid symbol data: bad string table offset: %d",
2841 namestring = bufp->n_un.n_strx + stringtab;
2843 processing_gcc_compilation =
2844 (bufp->n_type == N_TEXT
2845 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2849 /* The N_SO starting this symtab is the first symbol, so we
2850 better not check the symbol before it. I'm not this can
2851 happen, but it doesn't hurt to check for it. */
2852 lseek(desc, sym_offset, L_INCR);
2853 processing_gcc_compilation = 0;
2856 if (symbuf_idx == symbuf_end)
2858 bufp = &symbuf[symbuf_idx];
2859 if (bufp->n_type != (unsigned char)N_SO)
2860 error("First symbol in segment of executable not a source symbol");
2863 symnum < sym_size / sizeof(struct nlist);
2866 QUIT; /* Allow this to be interruptable */
2867 if (symbuf_idx == symbuf_end)
2869 bufp = &symbuf[symbuf_idx++];
2872 type = bufp->n_type & N_TYPE;
2873 if (type == (unsigned char)N_CATCH)
2875 /* N_CATCH is not fixed up by the linker, and unfortunately,
2876 there's no other place to put it in the .stab map. */
2877 bufp->n_value += text_offset + offset;
2879 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2880 bufp->n_value += offset;
2882 type = bufp->n_type;
2883 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2884 error ("Invalid symbol data: bad string table offset: %d",
2886 namestring = bufp->n_un.n_strx + stringtab;
2890 short bufp_n_desc = bufp->n_desc;
2891 unsigned long valu = bufp->n_value;
2893 /* Check for a pair of N_SO symbols. */
2894 if (type == (unsigned char)N_SO)
2896 if (symbuf_idx == symbuf_end)
2898 bufp = &symbuf[symbuf_idx];
2899 if (bufp->n_type == (unsigned char)N_SO)
2904 bufp->n_value += offset; /* Relocate */
2908 if (bufp->n_un.n_strx < 0
2909 || bufp->n_un.n_strx >= stringtab_size)
2910 error ("Invalid symbol data: bad string table offset: %d",
2912 namestring2 = bufp->n_un.n_strx + stringtab;
2914 process_symbol_pair (N_SO, bufp_n_desc, valu, namestring,
2915 N_SO, bufp->n_desc, bufp->n_value,
2919 process_one_symbol(type, bufp_n_desc, valu, namestring);
2922 process_one_symbol (type, bufp_n_desc, valu, namestring);
2924 /* We skip checking for a new .o or -l file; that should never
2925 happen in this routine. */
2926 else if (type == N_TEXT
2927 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2928 /* I don't think this code will ever be executed, because
2929 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2930 the N_SO symbol which starts this source file.
2931 However, there is no reason not to accept
2932 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2933 processing_gcc_compilation = 1;
2934 else if (type & N_EXT || type == (unsigned char)N_TEXT
2935 || type == (unsigned char)N_NBTEXT
2937 /* Global symbol: see if we came across a dbx defintion for
2938 a corresponding symbol. If so, store the value. Remove
2939 syms from the chain when their values are stored, but
2940 search the whole chain, as there may be several syms from
2941 different files with the same name. */
2942 /* This is probably not true. Since the files will be read
2943 in one at a time, each reference to a global symbol will
2944 be satisfied in each file as it appears. So we skip this
2950 return end_symtab (text_offset + text_size);
2957 register char *p = name;
2958 register int total = p[0];
2971 /* Ensure result is positive. */
2972 if (total < 0) total += (1000 << 6);
2973 return total % HASHSIZE;
2978 process_one_symbol (type, desc, valu, name)
2983 #ifndef SUN_FIXED_LBRAC_BUG
2984 /* This records the last pc address we've seen. We depend on their being
2985 an SLINE or FUN or SO before the first LBRAC, since the variable does
2986 not get reset in between reads of different symbol files. */
2987 static CORE_ADDR last_pc_address;
2989 register struct context_stack *new;
2992 /* Something is wrong if we see real data before
2993 seeing a source file name. */
2995 if (last_source_file == 0 && type != (unsigned char)N_SO)
2997 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2998 where that code is defined. */
2999 if (IGNORE_SYMBOL (type))
3002 /* FIXME, this should not be an error, since it precludes extending
3003 the symbol table information in this way... */
3004 error ("Invalid symbol data: does not start by identifying a source file.");
3011 /* Either of these types of symbols indicates the start of
3012 a new function. We must process its "name" normally for dbx,
3013 but also record the start of a new lexical context, and possibly
3014 also the end of the lexical context for the previous function. */
3015 /* This is not always true. This type of symbol may indicate a
3016 text segment variable. */
3018 #ifndef SUN_FIXED_LBRAC_BUG
3019 last_pc_address = valu; /* Save for SunOS bug circumcision */
3022 colon_pos = strchr (name, ':');
3024 || (*colon_pos != 'f' && *colon_pos != 'F'))
3026 define_symbol (valu, name, desc, type);
3030 within_function = 1;
3031 if (context_stack_depth > 0)
3033 new = &context_stack[--context_stack_depth];
3034 /* Make a block for the local symbols within. */
3035 finish_block (new->name, &local_symbols, new->old_blocks,
3036 new->start_addr, valu);
3038 /* Stack must be empty now. */
3039 if (context_stack_depth != 0)
3040 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3043 new = &context_stack[context_stack_depth++];
3044 new->old_blocks = pending_blocks;
3045 new->start_addr = valu;
3046 new->name = define_symbol (valu, name, desc, type);
3051 /* Record the address at which this catch takes place. */
3052 define_symbol (valu, name, desc, type);
3056 /* Don't know what to do with these yet. */
3057 error ("action uncertain for eh extensions");
3061 /* This "symbol" just indicates the start of an inner lexical
3062 context within a function. */
3064 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3065 /* On most machines, the block addresses are relative to the
3066 N_SO, the linker did not relocate them (sigh). */
3067 valu += last_source_start_addr;
3070 #ifndef SUN_FIXED_LBRAC_BUG
3071 if (valu < last_pc_address) {
3072 /* Patch current LBRAC pc value to match last handy pc value */
3073 complain (&lbrac_complaint, 0);
3074 valu = last_pc_address;
3077 if (context_stack_depth == context_stack_size)
3079 context_stack_size *= 2;
3080 context_stack = (struct context_stack *)
3081 xrealloc (context_stack,
3083 * sizeof (struct context_stack)));
3086 new = &context_stack[context_stack_depth++];
3088 new->locals = local_symbols;
3089 new->old_blocks = pending_blocks;
3090 new->start_addr = valu;
3096 /* This "symbol" just indicates the end of an inner lexical
3097 context that was started with N_LBRAC. */
3099 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3100 /* On most machines, the block addresses are relative to the
3101 N_SO, the linker did not relocate them (sigh). */
3102 valu += last_source_start_addr;
3105 new = &context_stack[--context_stack_depth];
3106 if (desc != new->depth)
3107 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3109 /* Some compilers put the variable decls inside of an
3110 LBRAC/RBRAC block. This macro should be nonzero if this
3111 is true. DESC is N_DESC from the N_RBRAC symbol.
3112 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3113 #if !defined (VARIABLES_INSIDE_BLOCK)
3114 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3117 /* Can only use new->locals as local symbols here if we're in
3118 gcc or on a machine that puts them before the lbrack. */
3119 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3120 local_symbols = new->locals;
3122 /* If this is not the outermost LBRAC...RBRAC pair in the
3123 function, its local symbols preceded it, and are the ones
3124 just recovered from the context stack. Defined the block for them.
3126 If this is the outermost LBRAC...RBRAC pair, there is no
3127 need to do anything; leave the symbols that preceded it
3128 to be attached to the function's own block. However, if
3129 it is so, we need to indicate that we just moved outside
3132 && (context_stack_depth
3133 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3135 /* FIXME Muzzle a compiler bug that makes end < start. */
3136 if (new->start_addr > valu)
3138 complain(&lbrac_rbrac_complaint, 0);
3139 new->start_addr = valu;
3141 /* Make a block for the local symbols within. */
3142 finish_block (0, &local_symbols, new->old_blocks,
3143 new->start_addr, valu);
3147 within_function = 0;
3149 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3150 /* Now pop locals of block just finished. */
3151 local_symbols = new->locals;
3155 /* This kind of symbol supposedly indicates the start
3156 of an object file. In fact this type does not appear. */
3160 /* This type of symbol indicates the start of data
3161 for one source file.
3162 Finish the symbol table of the previous source file
3163 (if any) and start accumulating a new symbol table. */
3164 #ifndef SUN_FIXED_LBRAC_BUG
3165 last_pc_address = valu; /* Save for SunOS bug circumcision */
3168 #ifdef PCC_SOL_BROKEN
3169 /* pcc bug, occasionally puts out SO for SOL. */
3170 if (context_stack_depth > 0)
3172 start_subfile (name, NULL);
3176 if (last_source_file)
3177 (void)end_symtab (valu);
3178 start_symtab (name, NULL, valu);
3182 /* This type of symbol indicates the start of data for
3183 a sub-source-file, one whose contents were copied or
3184 included in the compilation of the main source file
3185 (whose name was given in the N_SO symbol.) */
3186 start_subfile (name, NULL);
3191 add_new_header_file (name, valu);
3192 start_subfile (name, NULL);
3196 start_subfile (pop_subfile (), NULL);
3200 add_old_header_file (name, valu);
3204 /* This type of "symbol" really just records
3205 one line-number -- core-address correspondence.
3206 Enter it in the line list for this symbol table. */
3207 #ifndef SUN_FIXED_LBRAC_BUG
3208 last_pc_address = valu; /* Save for SunOS bug circumcision */
3210 record_line (desc, valu);
3215 error ("Invalid symbol data: common within common at symtab pos %d",
3217 common_block = local_symbols;
3218 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3222 /* Symbols declared since the BCOMM are to have the common block
3223 start address added in when we know it. common_block points to
3224 the first symbol after the BCOMM in the local_symbols list;
3225 copy the list and hang it off the symbol for the common block name
3229 struct symbol *sym =
3230 (struct symbol *) xmalloc (sizeof (struct symbol));
3231 bzero (sym, sizeof *sym);
3232 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3233 SYMBOL_CLASS (sym) = LOC_BLOCK;
3234 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3235 copy_pending (local_symbols, common_block_i, common_block));
3236 i = hashname (SYMBOL_NAME (sym));
3237 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3238 global_sym_chain[i] = sym;
3245 case N_DEFD: /* GNU Modula-2 symbol */
3250 define_symbol (valu, name, desc, type);
3254 /* Read a number by which a type is referred to in dbx data,
3255 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3256 Just a single number N is equivalent to (0,N).
3257 Return the two numbers by storing them in the vector TYPENUMS.
3258 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3261 read_type_number (pp, typenums)
3263 register int *typenums;
3268 typenums[0] = read_number (pp, ',');
3269 typenums[1] = read_number (pp, ')');
3274 typenums[1] = read_number (pp, 0);
3278 /* To handle GNU C++ typename abbreviation, we need to be able to
3279 fill in a type's name as soon as space for that type is allocated.
3280 `type_synonym_name' is the name of the type being allocated.
3281 It is cleared as soon as it is used (lest all allocated types
3283 static char *type_synonym_name;
3286 static struct symbol *
3287 define_symbol (valu, string, desc, type)
3293 register struct symbol *sym;
3294 char *p = (char *) strchr (string, ':');
3299 /* Ignore syms with empty names. */
3303 /* Ignore old-style symbols from cc -go */
3307 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3309 if (processing_gcc_compilation) {
3310 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3311 number of bytes occupied by a type or object, which we ignore. */
3312 SYMBOL_LINE(sym) = desc;
3314 SYMBOL_LINE(sym) = 0; /* unknown */
3317 if (string[0] == CPLUS_MARKER)
3319 /* Special GNU C++ names. */
3323 SYMBOL_NAME (sym) = "this";
3325 case 'v': /* $vtbl_ptr_type */
3326 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3329 SYMBOL_NAME (sym) = "eh_throw";
3333 /* This was an anonymous type that was never fixed up. */
3344 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3345 /* Open-coded bcopy--saves function call time. */
3347 register char *p1 = string;
3348 register char *p2 = SYMBOL_NAME (sym);
3355 /* Determine the type of name being defined. */
3356 /* The Acorn RISC machine's compiler can put out locals that don't
3357 start with "234=" or "(3,4)=", so assume anything other than the
3358 deftypes we know how to handle is a local. */
3359 /* (Peter Watkins @ Computervision)
3360 Handle Sun-style local fortran array types 'ar...' .
3363 if (!strchr ("cfFGpPrStTvVXC", *p))
3368 /* c is a special case, not followed by a type-number.
3369 SYMBOL:c=iVALUE for an integer constant symbol.
3370 SYMBOL:c=rVALUE for a floating constant symbol.
3371 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3372 e.g. "b:c=e6,0" for "const b = blob1"
3373 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3377 error ("Invalid symbol data at symtab pos %d.", symnum);
3382 double d = atof (p);
3385 SYMBOL_TYPE (sym) = builtin_type_double;
3387 (char *) obstack_alloc (symbol_obstack, sizeof (double));
3388 bcopy (&d, dbl_valu, sizeof (double));
3389 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
3390 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
3391 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3396 SYMBOL_TYPE (sym) = builtin_type_int;
3397 SYMBOL_VALUE (sym) = atoi (p);
3398 SYMBOL_CLASS (sym) = LOC_CONST;
3402 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3403 e.g. "b:c=e6,0" for "const b = blob1"
3404 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3408 read_type_number (&p, typenums);
3410 error ("Invalid symbol data: no comma in enum const symbol");
3412 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3413 SYMBOL_VALUE (sym) = atoi (p);
3414 SYMBOL_CLASS (sym) = LOC_CONST;
3418 error ("Invalid symbol data at symtab pos %d.", symnum);
3420 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3421 add_symbol_to_list (sym, &file_symbols);
3425 /* Now usually comes a number that says which data type,
3426 and possibly more stuff to define the type
3427 (all of which is handled by read_type) */
3429 if (deftype == 'p' && *p == 'F')
3430 /* pF is a two-letter code that means a function parameter in Fortran.
3431 The type-number specifies the type of the return value.
3432 Translate it into a pointer-to-function type. */
3436 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3440 struct type *type_read;
3441 synonym = *p == 't';
3446 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3447 strlen (SYMBOL_NAME (sym)));
3450 type_read = read_type (&p);
3452 if ((deftype == 'F' || deftype == 'f')
3453 && TYPE_CODE (type_read) != TYPE_CODE_FUNC)
3456 /* This code doesn't work -- it needs to realloc and can't. */
3457 struct type *new = (struct type *)
3458 obstack_alloc (symbol_obstack, sizeof (struct type));
3460 /* Generate a template for the type of this function. The
3461 types of the arguments will be added as we read the symbol
3463 *new = *lookup_function_type (type_read);
3464 SYMBOL_TYPE(sym) = new;
3465 in_function_type = new;
3467 SYMBOL_TYPE (sym) = lookup_function_type (type_read);
3471 SYMBOL_TYPE (sym) = type_read;
3477 /* The name of a caught exception. */
3478 SYMBOL_CLASS (sym) = LOC_LABEL;
3479 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3480 SYMBOL_VALUE_ADDRESS (sym) = valu;
3481 add_symbol_to_list (sym, &local_symbols);
3485 SYMBOL_CLASS (sym) = LOC_BLOCK;
3486 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3487 add_symbol_to_list (sym, &file_symbols);
3491 SYMBOL_CLASS (sym) = LOC_BLOCK;
3492 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3493 add_symbol_to_list (sym, &global_symbols);
3497 /* For a class G (global) symbol, it appears that the
3498 value is not correct. It is necessary to search for the
3499 corresponding linker definition to find the value.
3500 These definitions appear at the end of the namelist. */
3501 i = hashname (SYMBOL_NAME (sym));
3502 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3503 global_sym_chain[i] = sym;
3504 SYMBOL_CLASS (sym) = LOC_STATIC;
3505 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3506 add_symbol_to_list (sym, &global_symbols);
3509 /* This case is faked by a conditional above,
3510 when there is no code letter in the dbx data.
3511 Dbx data never actually contains 'l'. */
3513 SYMBOL_CLASS (sym) = LOC_LOCAL;
3514 SYMBOL_VALUE (sym) = valu;
3515 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3516 add_symbol_to_list (sym, &local_symbols);
3520 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3521 can also be a LOC_LOCAL_ARG depending on symbol type. */
3522 #ifndef DBX_PARM_SYMBOL_CLASS
3523 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3525 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3526 SYMBOL_VALUE (sym) = valu;
3527 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3529 /* This doesn't work yet. */
3530 add_param_to_type (&in_function_type, sym);
3532 add_symbol_to_list (sym, &local_symbols);
3534 /* If it's gcc-compiled, if it says `short', believe it. */
3535 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3538 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
3539 /* This macro is defined on machines (e.g. sparc) where
3540 we should believe the type of a PCC 'short' argument,
3541 but shouldn't believe the address (the address is
3542 the address of the corresponding int). Note that
3543 this is only different from the BELIEVE_PCC_PROMOTION
3544 case on big-endian machines.
3546 My guess is that this correction, as opposed to changing
3547 the parameter to an 'int' (as done below, for PCC
3548 on most machines), is the right thing to do
3549 on all machines, but I don't want to risk breaking
3550 something that already works. On most PCC machines,
3551 the sparc problem doesn't come up because the calling
3552 function has to zero the top bytes (not knowing whether
3553 the called function wants an int or a short), so there
3554 is no practical difference between an int and a short
3555 (except perhaps what happens when the GDB user types
3556 "print short_arg = 0x10000;").
3559 actually produces the correct address (we don't need to fix it
3560 up). I made this code adapt so that it will offset the symbol
3561 if it was pointing at an int-aligned location and not
3562 otherwise. This way you can use the same gdb for 4.0.x and
3565 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3567 if (SYMBOL_TYPE (sym) == builtin_type_char
3568 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3569 SYMBOL_VALUE (sym) += 3;
3570 else if (SYMBOL_TYPE (sym) == builtin_type_short
3571 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3572 SYMBOL_VALUE (sym) += 2;
3576 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3578 /* If PCC says a parameter is a short or a char,
3579 it is really an int. */
3580 if (SYMBOL_TYPE (sym) == builtin_type_char
3581 || SYMBOL_TYPE (sym) == builtin_type_short)
3582 SYMBOL_TYPE (sym) = builtin_type_int;
3583 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3584 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3585 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3588 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3591 SYMBOL_CLASS (sym) = LOC_REGPARM;
3592 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3593 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3594 add_symbol_to_list (sym, &local_symbols);
3598 SYMBOL_CLASS (sym) = LOC_REGISTER;
3599 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3600 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3601 add_symbol_to_list (sym, &local_symbols);
3605 /* Static symbol at top level of file */
3606 SYMBOL_CLASS (sym) = LOC_STATIC;
3607 SYMBOL_VALUE_ADDRESS (sym) = valu;
3608 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3609 add_symbol_to_list (sym, &file_symbols);
3613 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3614 SYMBOL_VALUE (sym) = valu;
3615 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3616 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3617 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3618 TYPE_NAME (SYMBOL_TYPE (sym)) =
3619 obsavestring (SYMBOL_NAME (sym),
3620 strlen (SYMBOL_NAME (sym)));
3621 /* C++ vagaries: we may have a type which is derived from
3622 a base type which did not have its name defined when the
3623 derived class was output. We fill in the derived class's
3624 base part member's name here in that case. */
3625 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3626 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3627 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3630 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
3631 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
3632 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
3633 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
3636 add_symbol_to_list (sym, &file_symbols);
3640 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3641 SYMBOL_VALUE (sym) = valu;
3642 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3643 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3644 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3645 TYPE_NAME (SYMBOL_TYPE (sym))
3647 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3649 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3650 ? "struct " : "union ")),
3652 add_symbol_to_list (sym, &file_symbols);
3656 register struct symbol *typedef_sym
3657 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3658 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3659 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3661 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3662 SYMBOL_VALUE (typedef_sym) = valu;
3663 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3664 add_symbol_to_list (typedef_sym, &file_symbols);
3669 /* Static symbol of local scope */
3670 SYMBOL_CLASS (sym) = LOC_STATIC;
3671 SYMBOL_VALUE_ADDRESS (sym) = valu;
3672 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3673 add_symbol_to_list (sym, &local_symbols);
3677 /* Reference parameter */
3678 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3679 SYMBOL_VALUE (sym) = valu;
3680 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3681 add_symbol_to_list (sym, &local_symbols);
3685 /* This is used by Sun FORTRAN for "function result value".
3686 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3687 that Pascal uses it too, but when I tried it Pascal used
3688 "x:3" (local symbol) instead. */
3689 SYMBOL_CLASS (sym) = LOC_LOCAL;
3690 SYMBOL_VALUE (sym) = valu;
3691 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3692 add_symbol_to_list (sym, &local_symbols);
3696 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3701 /* What about types defined as forward references inside of a small lexical
3703 /* Add a type to the list of undefined types to be checked through
3704 once this file has been read in. */
3706 add_undefined_type (type)
3709 if (undef_types_length == undef_types_allocated)
3711 undef_types_allocated *= 2;
3712 undef_types = (struct type **)
3713 xrealloc (undef_types,
3714 undef_types_allocated * sizeof (struct type *));
3716 undef_types[undef_types_length++] = type;
3719 /* Add here something to go through each undefined type, see if it's
3720 still undefined, and do a full lookup if so. */
3722 cleanup_undefined_types ()
3726 for (type = undef_types; type < undef_types + undef_types_length; type++)
3728 /* Reasonable test to see if it's been defined since. */
3729 if (TYPE_NFIELDS (*type) == 0)
3731 struct pending *ppt;
3733 /* Name of the type, without "struct" or "union" */
3734 char *typename = TYPE_NAME (*type);
3736 if (!strncmp (typename, "struct ", 7))
3738 if (!strncmp (typename, "union ", 6))
3741 for (ppt = file_symbols; ppt; ppt = ppt->next)
3742 for (i = 0; i < ppt->nsyms; i++)
3744 struct symbol *sym = ppt->symbol[i];
3746 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3747 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3748 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3750 && !strcmp (SYMBOL_NAME (sym), typename))
3751 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3755 /* It has been defined; don't mark it as a stub. */
3756 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3758 undef_types_length = 0;
3761 /* Skip rest of this symbol and return an error type.
3763 General notes on error recovery: error_type always skips to the
3764 end of the symbol (modulo cretinous dbx symbol name continuation).
3765 Thus code like this:
3767 if (*(*pp)++ != ';')
3768 return error_type (pp);
3770 is wrong because if *pp starts out pointing at '\0' (typically as the
3771 result of an earlier error), it will be incremented to point to the
3772 start of the next symbol, which might produce strange results, at least
3773 if you run off the end of the string table. Instead use
3776 return error_type (pp);
3782 foo = error_type (pp);
3786 And in case it isn't obvious, the point of all this hair is so the compiler
3787 can define new types and new syntaxes, and old versions of the
3788 debugger will be able to read the new symbol tables. */
3790 static struct type *
3794 complain (&error_type_complaint, 0);
3797 /* Skip to end of symbol. */
3798 while (**pp != '\0')
3801 /* Check for and handle cretinous dbx symbol name continuation! */
3802 if ((*pp)[-1] == '\\')
3803 *pp = next_symbol_text ();
3807 return builtin_type_error;
3810 /* Read a dbx type reference or definition;
3811 return the type that is meant.
3812 This can be just a number, in which case it references
3813 a type already defined and placed in type_vector.
3814 Or the number can be followed by an =, in which case
3815 it means to define a new type according to the text that
3823 register struct type *type = 0;
3828 /* Read type number if present. The type number may be omitted.
3829 for instance in a two-dimensional array declared with type
3830 "ar1;1;10;ar1;1;10;4". */
3831 if ((**pp >= '0' && **pp <= '9')
3834 read_type_number (pp, typenums);
3836 /* Detect random reference to type not yet defined.
3837 Allocate a type object but leave it zeroed. */
3839 return dbx_alloc_type (typenums);
3845 /* 'typenums=' not present, type is anonymous. Read and return
3846 the definition, but don't put it in the type vector. */
3847 typenums[0] = typenums[1] = -1;
3855 enum type_code code;
3857 /* Used to index through file_symbols. */
3858 struct pending *ppt;
3861 /* Name including "struct", etc. */
3864 /* Name without "struct", etc. */
3865 char *type_name_only;
3871 /* Set the type code according to the following letter. */
3875 code = TYPE_CODE_STRUCT;
3879 code = TYPE_CODE_UNION;
3883 code = TYPE_CODE_ENUM;
3887 return error_type (pp);
3890 to = type_name = (char *)
3891 obstack_alloc (symbol_obstack,
3893 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3895 /* Copy the prefix. */
3897 while (*to++ = *from++)
3901 type_name_only = to;
3903 /* Copy the name. */
3905 while ((*to++ = *from++) != ':')
3909 /* Set the pointer ahead of the name which we just read. */
3913 /* The following hack is clearly wrong, because it doesn't
3914 check whether we are in a baseclass. I tried to reproduce
3915 the case that it is trying to fix, but I couldn't get
3916 g++ to put out a cross reference to a basetype. Perhaps
3917 it doesn't do it anymore. */
3918 /* Note: for C++, the cross reference may be to a base type which
3919 has not yet been seen. In this case, we skip to the comma,
3920 which will mark the end of the base class name. (The ':'
3921 at the end of the base class name will be skipped as well.)
3922 But sometimes (ie. when the cross ref is the last thing on
3923 the line) there will be no ','. */
3924 from = (char *) strchr (*pp, ',');
3930 /* Now check to see whether the type has already been declared. */
3931 /* This is necessary at least in the case where the
3932 program says something like
3934 The compiler puts out a cross-reference; we better find
3935 set the length of the structure correctly so we can
3936 set the length of the array. */
3937 for (ppt = file_symbols; ppt; ppt = ppt->next)
3938 for (i = 0; i < ppt->nsyms; i++)
3940 struct symbol *sym = ppt->symbol[i];
3942 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3943 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3944 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3945 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3947 obstack_free (symbol_obstack, type_name);
3948 type = SYMBOL_TYPE (sym);
3953 /* Didn't find the type to which this refers, so we must
3954 be dealing with a forward reference. Allocate a type
3955 structure for it, and keep track of it so we can
3956 fill in the rest of the fields when we get the full
3958 type = dbx_alloc_type (typenums);
3959 TYPE_CODE (type) = code;
3960 TYPE_NAME (type) = type_name;
3962 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3964 add_undefined_type (type);
3980 read_type_number (pp, xtypenums);
3981 type = *dbx_lookup_type (xtypenums);
3983 type = builtin_type_void;
3984 if (typenums[0] != -1)
3985 *dbx_lookup_type (typenums) = type;
3989 type1 = read_type (pp);
3990 type = lookup_pointer_type (type1);
3991 if (typenums[0] != -1)
3992 *dbx_lookup_type (typenums) = type;
3997 struct type *domain = read_type (pp);
3998 struct type *memtype;
4001 /* Invalid member type data format. */
4002 return error_type (pp);
4005 memtype = read_type (pp);
4006 type = dbx_alloc_type (typenums);
4007 smash_to_member_type (type, domain, memtype);
4012 if ((*pp)[0] == '#')
4014 /* We'll get the parameter types from the name. */
4015 struct type *return_type;
4018 return_type = read_type (pp);
4019 if (*(*pp)++ != ';')
4020 complain (&invalid_member_complaint, symnum);
4021 type = allocate_stub_method (return_type);
4022 if (typenums[0] != -1)
4023 *dbx_lookup_type (typenums) = type;
4027 struct type *domain = read_type (pp);
4028 struct type *return_type;
4031 if (*(*pp)++ != ',')
4032 error ("invalid member type data format, at symtab pos %d.",
4035 return_type = read_type (pp);
4036 args = read_args (pp, ';');
4037 type = dbx_alloc_type (typenums);
4038 smash_to_method_type (type, domain, return_type, args);
4043 type1 = read_type (pp);
4044 type = lookup_reference_type (type1);
4045 if (typenums[0] != -1)
4046 *dbx_lookup_type (typenums) = type;
4050 type1 = read_type (pp);
4051 type = lookup_function_type (type1);
4052 if (typenums[0] != -1)
4053 *dbx_lookup_type (typenums) = type;
4057 type = read_range_type (pp, typenums);
4058 if (typenums[0] != -1)
4059 *dbx_lookup_type (typenums) = type;
4063 type = dbx_alloc_type (typenums);
4064 type = read_enum_type (pp, type);
4065 *dbx_lookup_type (typenums) = type;
4069 type = dbx_alloc_type (typenums);
4070 TYPE_NAME (type) = type_synonym_name;
4071 type_synonym_name = 0;
4072 type = read_struct_type (pp, type);
4076 type = dbx_alloc_type (typenums);
4077 TYPE_NAME (type) = type_synonym_name;
4078 type_synonym_name = 0;
4079 type = read_struct_type (pp, type);
4080 TYPE_CODE (type) = TYPE_CODE_UNION;
4085 return error_type (pp);
4088 type = dbx_alloc_type (typenums);
4089 type = read_array_type (pp, type);
4093 return error_type (pp);
4100 /* If this is an overriding temporary alteration for a header file's
4101 contents, and this type number is unknown in the global definition,
4102 put this type into the global definition at this type number. */
4103 if (header_file_prev_index >= 0)
4105 register struct type **tp
4106 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4115 /* This would be a good idea, but it doesn't really work. The problem
4116 is that in order to get the virtual context for a particular type,
4117 you need to know the virtual info from all of its basetypes,
4118 and you need to have processed its methods. Since GDB reads
4119 symbols on a file-by-file basis, this means processing the symbols
4120 of all the files that are needed for each baseclass, which
4121 means potentially reading in all the debugging info just to fill
4122 in information we may never need. */
4124 /* This page contains subroutines of read_type. */
4126 /* FOR_TYPE is a struct type defining a virtual function NAME with type
4127 FN_TYPE. The `virtual context' for this virtual function is the
4128 first base class of FOR_TYPE in which NAME is defined with signature
4129 matching FN_TYPE. OFFSET serves as a hash on matches here.
4131 TYPE is the current type in which we are searching. */
4133 static struct type *
4134 virtual_context (for_type, type, name, fn_type, offset)
4135 struct type *for_type, *type;
4137 struct type *fn_type;
4140 struct type *basetype = 0;
4143 if (for_type != type)
4145 /* Check the methods of TYPE. */
4146 /* Need to do a check_stub_type here, but that breaks
4147 things because we can get infinite regress. */
4148 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4149 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4153 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4154 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4157 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4158 return TYPE_FN_FIELD_FCONTEXT (f, j);
4161 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
4163 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4165 if (basetype != for_type)
4172 /* Read the description of a structure (or union type)
4173 and return an object describing the type. */
4175 static struct type *
4176 read_struct_type (pp, type)
4178 register struct type *type;
4180 /* Total number of methods defined in this class.
4181 If the class defines two `f' methods, and one `g' method,
4182 then this will have the value 3. */
4183 int total_length = 0;
4187 struct nextfield *next;
4188 int visibility; /* 0=public, 1=protected, 2=public */
4194 struct next_fnfield *next;
4195 int visibility; /* 0=public, 1=protected, 2=public */
4196 struct fn_field fn_field;
4199 struct next_fnfieldlist
4201 struct next_fnfieldlist *next;
4202 struct fn_fieldlist fn_fieldlist;
4205 register struct nextfield *list = 0;
4206 struct nextfield *new;
4211 register struct next_fnfieldlist *mainlist = 0;
4214 if (TYPE_MAIN_VARIANT (type) == 0)
4216 TYPE_MAIN_VARIANT (type) = type;
4219 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4221 /* First comes the total size in bytes. */
4223 TYPE_LENGTH (type) = read_number (pp, 0);
4225 /* C++: Now, if the class is a derived class, then the next character
4226 will be a '!', followed by the number of base classes derived from.
4227 Each element in the list contains visibility information,
4228 the offset of this base class in the derived structure,
4229 and then the base type. */
4232 int i, n_baseclasses, offset;
4233 struct type *baseclass;
4236 /* Nonzero if it is a virtual baseclass, i.e.,
4240 struct C : public B, public virtual A {};
4242 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4243 2.0 language feature. */
4248 n_baseclasses = read_number (pp, ',');
4249 TYPE_FIELD_VIRTUAL_BITS (type) =
4250 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4251 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4253 for (i = 0; i < n_baseclasses; i++)
4256 *pp = next_symbol_text ();
4267 /* Bad visibility format. */
4268 return error_type (pp);
4281 /* Bad visibility format. */
4282 return error_type (pp);
4285 SET_TYPE_FIELD_VIRTUAL (type, i);
4288 /* Offset of the portion of the object corresponding to
4289 this baseclass. Always zero in the absence of
4290 multiple inheritance. */
4291 offset = read_number (pp, ',');
4292 baseclass = read_type (pp);
4293 *pp += 1; /* skip trailing ';' */
4296 /* One's understanding improves, grasshopper... */
4299 static int error_printed = 0;
4304 "\nWarning: GDB has limited understanding of multiple inheritance...");
4306 fprintf(stderr, "\n");
4312 /* Make this baseclass visible for structure-printing purposes. */
4313 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4316 list->visibility = via_public;
4317 list->field.type = baseclass;
4318 list->field.name = type_name_no_tag (baseclass);
4319 list->field.bitpos = offset;
4320 list->field.bitsize = 0; /* this should be an unpacked field! */
4323 TYPE_N_BASECLASSES (type) = n_baseclasses;
4326 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4327 At the end, we see a semicolon instead of a field.
4329 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4332 The `?' is a placeholder for one of '/2' (public visibility),
4333 '/1' (protected visibility), '/0' (private visibility), or nothing
4334 (C style symbol table, public visibility). */
4336 /* We better set p right now, in case there are no fields at all... */
4341 /* Check for and handle cretinous dbx symbol name continuation! */
4342 if (**pp == '\\') *pp = next_symbol_text ();
4344 /* Get space to record the next field's data. */
4345 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4349 /* Get the field name. */
4351 if (*p == CPLUS_MARKER)
4353 /* Special GNU C++ name. */
4358 struct type *context;
4369 error ("invalid abbreviation at symtab pos %d.", symnum);
4372 context = read_type (pp);
4373 if (type_name_no_tag (context) == 0)
4376 error ("type name unknown at symtab pos %d.", symnum);
4377 /* FIXME-tiemann: when is `name' ever non-0? */
4378 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4380 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4383 error ("invalid abbreviation at symtab pos %d.", symnum);
4384 list->field.type = read_type (pp);
4385 (*pp)++; /* Skip the comma. */
4386 list->field.bitpos = read_number (pp, ';');
4387 /* This field is unpacked. */
4388 list->field.bitsize = 0;
4390 /* GNU C++ anonymous type. */
4394 error ("invalid abbreviation at symtab pos %d.", symnum);
4400 while (*p != ':') p++;
4401 list->field.name = obsavestring (*pp, p - *pp);
4403 /* C++: Check to see if we have hit the methods yet. */
4409 /* This means we have a visibility for a field coming. */
4415 list->visibility = 0; /* private */
4420 list->visibility = 1; /* protected */
4425 list->visibility = 2; /* public */
4430 else /* normal dbx-style format. */
4431 list->visibility = 2; /* public */
4433 list->field.type = read_type (pp);
4436 /* Static class member. */
4437 list->field.bitpos = (long)-1;
4439 while (*p != ';') p++;
4440 list->field.bitsize = (long) savestring (*pp, p - *pp);
4445 else if (**pp != ',')
4446 /* Bad structure-type format. */
4447 return error_type (pp);
4449 (*pp)++; /* Skip the comma. */
4450 list->field.bitpos = read_number (pp, ',');
4451 list->field.bitsize = read_number (pp, ';');
4454 /* FIXME-tiemann: Can't the compiler put out something which
4455 lets us distinguish these? (or maybe just not put out anything
4456 for the field). What is the story here? What does the compiler
4457 really do? Also, patch gdb.texinfo for this case; I document
4458 it as a possible problem there. Search for "DBX-style". */
4460 /* This is wrong because this is identical to the symbols
4461 produced for GCC 0-size arrays. For example:
4466 The code which dumped core in such circumstances should be
4467 fixed not to dump core. */
4469 /* g++ -g0 can put out bitpos & bitsize zero for a static
4470 field. This does not give us any way of getting its
4471 class, so we can't know its name. But we can just
4472 ignore the field so we don't dump core and other nasty
4474 if (list->field.bitpos == 0
4475 && list->field.bitsize == 0)
4477 complain (&dbx_class_complaint, 0);
4478 /* Ignore this field. */
4484 /* Detect an unpacked field and mark it as such.
4485 dbx gives a bit size for all fields.
4486 Note that forward refs cannot be packed,
4487 and treat enums as if they had the width of ints. */
4488 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4489 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4490 list->field.bitsize = 0;
4491 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4492 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4493 && (list->field.bitsize
4494 == 8 * TYPE_LENGTH (builtin_type_int))
4498 list->field.bitpos % 8 == 0)
4499 list->field.bitsize = 0;
4505 /* chill the list of fields: the last entry (at the head)
4506 is a partially constructed entry which we now scrub. */
4509 /* Now create the vector of fields, and record how big it is.
4510 We need this info to record proper virtual function table information
4511 for this class's virtual functions. */
4513 TYPE_NFIELDS (type) = nfields;
4514 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4515 sizeof (struct field) * nfields);
4517 TYPE_FIELD_PRIVATE_BITS (type) =
4518 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4519 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4521 TYPE_FIELD_PROTECTED_BITS (type) =
4522 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4523 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4525 /* Copy the saved-up fields into the field vector. */
4527 for (n = nfields; list; list = list->next)
4530 TYPE_FIELD (type, n) = list->field;
4531 if (list->visibility == 0)
4532 SET_TYPE_FIELD_PRIVATE (type, n);
4533 else if (list->visibility == 1)
4534 SET_TYPE_FIELD_PROTECTED (type, n);
4537 /* Now come the method fields, as NAME::methods
4538 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4539 At the end, we see a semicolon instead of a field.
4541 For the case of overloaded operators, the format is
4542 OPERATOR::*.methods, where OPERATOR is the string "operator",
4543 `*' holds the place for an operator name (such as `+=')
4544 and `.' marks the end of the operator name. */
4547 /* Now, read in the methods. To simplify matters, we
4548 "unread" the name that has been read, so that we can
4549 start from the top. */
4551 /* For each list of method lists... */
4555 struct next_fnfield *sublist = 0;
4556 struct type *look_ahead_type = NULL;
4558 struct next_fnfieldlist *new_mainlist =
4559 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4564 /* read in the name. */
4565 while (*p != ':') p++;
4566 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4568 /* This lets the user type "break operator+".
4569 We could just put in "+" as the name, but that wouldn't
4571 static char opname[32] = {'o', 'p', CPLUS_MARKER};
4572 char *o = opname + 3;
4574 /* Skip past '::'. */
4578 main_fn_name = savestring (opname, o - opname);
4585 main_fn_name = savestring (*pp, p - *pp);
4586 /* Skip past '::'. */
4589 new_mainlist->fn_fieldlist.name = main_fn_name;
4593 struct next_fnfield *new_sublist =
4594 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4596 /* Check for and handle cretinous dbx symbol name continuation! */
4597 if (look_ahead_type == NULL) /* Normal case. */
4599 if (**pp == '\\') *pp = next_symbol_text ();
4601 new_sublist->fn_field.type = read_type (pp);
4603 /* Invalid symtab info for method. */
4604 return error_type (pp);
4607 { /* g++ version 1 kludge */
4608 new_sublist->fn_field.type = look_ahead_type;
4609 look_ahead_type = NULL;
4614 while (*p != ';') p++;
4615 /* If this is just a stub, then we don't have the
4617 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4619 new_sublist->visibility = *(*pp)++ - '0';
4620 if (**pp == '\\') *pp = next_symbol_text ();
4621 /* FIXME-tiemann: need to add const/volatile info
4622 to the methods. For now, just skip the char.
4623 In future, here's what we need to implement:
4625 A for normal functions.
4626 B for `const' member functions.
4627 C for `volatile' member functions.
4628 D for `const volatile' member functions. */
4629 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4632 /* This probably just means we're processing a file compiled
4633 with g++ version 1. */
4635 complain(&const_vol_complaint, **pp);
4641 /* virtual member function, followed by index. */
4642 /* The sign bit is set to distinguish pointers-to-methods
4643 from virtual function indicies. Since the array is
4644 in words, the quantity must be shifted left by 1
4645 on 16 bit machine, and by 2 on 32 bit machine, forcing
4646 the sign bit out, and usable as a valid index into
4647 the array. Remove the sign bit here. */
4648 new_sublist->fn_field.voffset =
4649 (0x7fffffff & read_number (pp, ';')) + 1;
4651 if (**pp == '\\') *pp = next_symbol_text ();
4653 if (**pp == ';' || **pp == '\0')
4654 /* Must be g++ version 1. */
4655 new_sublist->fn_field.fcontext = 0;
4658 /* Figure out from whence this virtual function came.
4659 It may belong to virtual function table of
4660 one of its baseclasses. */
4661 look_ahead_type = read_type (pp);
4663 { /* g++ version 1 overloaded methods. */ }
4666 new_sublist->fn_field.fcontext = look_ahead_type;
4668 return error_type (pp);
4671 look_ahead_type = NULL;
4677 /* static member function. */
4678 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4682 /* normal member function. */
4683 new_sublist->fn_field.voffset = 0;
4684 new_sublist->fn_field.fcontext = 0;
4688 new_sublist->next = sublist;
4689 sublist = new_sublist;
4692 while (**pp != ';' && **pp != '\0');
4696 new_mainlist->fn_fieldlist.fn_fields =
4697 (struct fn_field *) obstack_alloc (symbol_obstack,
4698 sizeof (struct fn_field) * length);
4699 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4700 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4701 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4703 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4704 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4705 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4707 for (i = length; (i--, sublist); sublist = sublist->next)
4709 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4710 if (sublist->visibility == 0)
4711 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4712 else if (sublist->visibility == 1)
4713 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4716 new_mainlist->fn_fieldlist.length = length;
4717 new_mainlist->next = mainlist;
4718 mainlist = new_mainlist;
4720 total_length += length;
4722 while (**pp != ';');
4727 TYPE_FN_FIELDLISTS (type) =
4728 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4729 sizeof (struct fn_fieldlist) * nfn_fields);
4731 TYPE_NFN_FIELDS (type) = nfn_fields;
4732 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4736 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4737 TYPE_NFN_FIELDS_TOTAL (type) +=
4738 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4741 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4742 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4751 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4754 else if (**pp == '+')
4756 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4759 else if (**pp == '-')
4761 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4765 /* Read either a '%' or the final ';'. */
4766 if (*(*pp)++ == '%')
4768 /* Now we must record the virtual function table pointer's
4769 field information. */
4776 while (*p != '\0' && *p != ';')
4779 /* Premature end of symbol. */
4780 return error_type (pp);
4782 TYPE_VPTR_BASETYPE (type) = t;
4785 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4787 /* FIXME-tiemann: what's this? */
4789 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4794 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4795 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4796 sizeof (vptr_name) -1))
4798 TYPE_VPTR_FIELDNO (type) = i;
4802 /* Virtual function table field not found. */
4803 return error_type (pp);
4806 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4814 /* Read a definition of an array type,
4815 and create and return a suitable type object.
4816 Also creates a range type which represents the bounds of that
4818 static struct type *
4819 read_array_type (pp, type)
4821 register struct type *type;
4823 struct type *index_type, *element_type, *range_type;
4827 /* Format of an array type:
4828 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4831 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4832 for these, produce a type like float[][]. */
4834 index_type = read_type (pp);
4836 /* Improper format of array type decl. */
4837 return error_type (pp);
4840 if (!(**pp >= '0' && **pp <= '9'))
4845 lower = read_number (pp, ';');
4847 if (!(**pp >= '0' && **pp <= '9'))
4852 upper = read_number (pp, ';');
4854 element_type = read_type (pp);
4863 /* Create range type. */
4864 range_type = (struct type *) obstack_alloc (symbol_obstack,
4865 sizeof (struct type));
4866 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4867 TYPE_TARGET_TYPE (range_type) = index_type;
4869 /* This should never be needed. */
4870 TYPE_LENGTH (range_type) = sizeof (int);
4872 TYPE_NFIELDS (range_type) = 2;
4873 TYPE_FIELDS (range_type) =
4874 (struct field *) obstack_alloc (symbol_obstack,
4875 2 * sizeof (struct field));
4876 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4877 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4880 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4881 TYPE_TARGET_TYPE (type) = element_type;
4882 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4883 TYPE_NFIELDS (type) = 1;
4884 TYPE_FIELDS (type) =
4885 (struct field *) obstack_alloc (symbol_obstack,
4886 sizeof (struct field));
4887 TYPE_FIELD_TYPE (type, 0) = range_type;
4893 /* Read a definition of an enumeration type,
4894 and create and return a suitable type object.
4895 Also defines the symbols that represent the values of the type. */
4897 static struct type *
4898 read_enum_type (pp, type)
4900 register struct type *type;
4905 register struct symbol *sym;
4907 struct pending **symlist;
4908 struct pending *osyms, *syms;
4911 if (within_function)
4912 symlist = &local_symbols;
4914 symlist = &file_symbols;
4916 o_nsyms = osyms ? osyms->nsyms : 0;
4918 /* Read the value-names and their values.
4919 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4920 A semicolon or comman instead of a NAME means the end. */
4921 while (**pp && **pp != ';' && **pp != ',')
4923 /* Check for and handle cretinous dbx symbol name continuation! */
4924 if (**pp == '\\') *pp = next_symbol_text ();
4927 while (*p != ':') p++;
4928 name = obsavestring (*pp, p - *pp);
4930 n = read_number (pp, ',');
4932 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4933 bzero (sym, sizeof (struct symbol));
4934 SYMBOL_NAME (sym) = name;
4935 SYMBOL_CLASS (sym) = LOC_CONST;
4936 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4937 SYMBOL_VALUE (sym) = n;
4938 add_symbol_to_list (sym, symlist);
4943 (*pp)++; /* Skip the semicolon. */
4945 /* Now fill in the fields of the type-structure. */
4947 TYPE_LENGTH (type) = sizeof (int);
4948 TYPE_CODE (type) = TYPE_CODE_ENUM;
4949 TYPE_NFIELDS (type) = nsyms;
4950 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4952 /* Find the symbols for the values and put them into the type.
4953 The symbols can be found in the symlist that we put them on
4954 to cause them to be defined. osyms contains the old value
4955 of that symlist; everything up to there was defined by us. */
4956 /* Note that we preserve the order of the enum constants, so
4957 that in something like "enum {FOO, LAST_THING=FOO}" we print
4958 FOO, not LAST_THING. */
4960 for (syms = *symlist, n = 0; syms; syms = syms->next)
4965 for (; j < syms->nsyms; j++,n++)
4967 struct symbol *xsym = syms->symbol[j];
4968 SYMBOL_TYPE (xsym) = type;
4969 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4970 TYPE_FIELD_VALUE (type, n) = 0;
4971 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4972 TYPE_FIELD_BITSIZE (type, n) = 0;
4978 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
4979 if(TYPE_NFIELDS(type) == 2 &&
4980 ((!strcmp(TYPE_FIELD_NAME(type,0),"TRUE") &&
4981 !strcmp(TYPE_FIELD_NAME(type,1),"FALSE")) ||
4982 (!strcmp(TYPE_FIELD_NAME(type,1),"TRUE") &&
4983 !strcmp(TYPE_FIELD_NAME(type,0),"FALSE"))))
4984 TYPE_CODE(type) = TYPE_CODE_BOOL;
4989 /* Read a number from the string pointed to by *PP.
4990 The value of *PP is advanced over the number.
4991 If END is nonzero, the character that ends the
4992 number must match END, or an error happens;
4993 and that character is skipped if it does match.
4994 If END is zero, *PP is left pointing to that character.
4996 If the number fits in a long, set *VALUE and set *BITS to 0.
4997 If not, set *BITS to be the number of bits in the number.
4999 If encounter garbage, set *BITS to -1. */
5002 read_huge_number (pp, end, valu, bits)
5023 /* Leading zero means octal. GCC uses this to output values larger
5024 than an int (because that would be hard in decimal). */
5031 upper_limit = LONG_MAX / radix;
5032 while ((c = *p++) >= '0' && c <= ('0' + radix))
5034 if (n <= upper_limit)
5037 n += c - '0'; /* FIXME this overflows anyway */
5042 /* This depends on large values being output in octal, which is
5049 /* Ignore leading zeroes. */
5053 else if (c == '2' || c == '3')
5079 /* Large decimal constants are an error (because it is hard to
5080 count how many bits are in them). */
5086 /* -0x7f is the same as 0x80. So deal with it by adding one to
5087 the number of bits. */
5102 #define MAX_OF_C_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5103 #define MIN_OF_C_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5105 static struct type *
5106 read_range_type (pp, typenums)
5114 struct type *result_type;
5116 /* First comes a type we are a subrange of.
5117 In C it is usually 0, 1 or the type being defined. */
5118 read_type_number (pp, rangenums);
5119 self_subrange = (rangenums[0] == typenums[0] &&
5120 rangenums[1] == typenums[1]);
5122 /* A semicolon should now follow; skip it. */
5126 /* The remaining two operands are usually lower and upper bounds
5127 of the range. But in some special cases they mean something else. */
5128 read_huge_number (pp, ';', &n2, &n2bits);
5129 read_huge_number (pp, ';', &n3, &n3bits);
5131 if (n2bits == -1 || n3bits == -1)
5132 return error_type (pp);
5134 /* If limits are huge, must be large integral type. */
5135 if (n2bits != 0 || n3bits != 0)
5137 char got_signed = 0;
5138 char got_unsigned = 0;
5139 /* Number of bits in the type. */
5142 /* Range from 0 to <large number> is an unsigned large integral type. */
5143 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5148 /* Range from <large number> to <large number>-1 is a large signed
5150 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5156 /* Check for "long long". */
5157 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
5158 return builtin_type_long_long;
5159 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
5160 return builtin_type_unsigned_long_long;
5162 if (got_signed || got_unsigned)
5164 result_type = (struct type *) obstack_alloc (symbol_obstack,
5165 sizeof (struct type));
5166 bzero (result_type, sizeof (struct type));
5167 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5168 TYPE_MAIN_VARIANT (result_type) = result_type;
5169 TYPE_CODE (result_type) = TYPE_CODE_INT;
5171 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5175 return error_type (pp);
5178 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5179 if (self_subrange && n2 == 0 && n3 == 0)
5180 return builtin_type_void;
5182 /* If n3 is zero and n2 is not, we want a floating type,
5183 and n2 is the width in bytes.
5185 Fortran programs appear to use this for complex types also,
5186 and they give no way to distinguish between double and single-complex!
5187 We don't have complex types, so we would lose on all fortran files!
5188 So return type `double' for all of those. It won't work right
5189 for the complex values, but at least it makes the file loadable. */
5191 if (n3 == 0 && n2 > 0)
5193 if (n2 == sizeof (float))
5194 return builtin_type_float;
5195 return builtin_type_double;
5198 /* If the upper bound is -1, it must really be an unsigned int. */
5200 else if (n2 == 0 && n3 == -1)
5202 if (sizeof (int) == sizeof (long))
5203 return builtin_type_unsigned_int;
5205 return builtin_type_unsigned_long;
5208 /* Special case: char is defined (Who knows why) as a subrange of
5209 itself with range 0-127. */
5210 else if (self_subrange && n2 == 0 && n3 == 127)
5211 return builtin_type_char;
5213 /* Assumptions made here: Subrange of self is equivalent to subrange
5216 && (self_subrange ||
5217 *dbx_lookup_type (rangenums) == builtin_type_int))
5219 /* an unsigned type */
5221 if (n3 == - sizeof (long long))
5222 return builtin_type_unsigned_long_long;
5224 if (n3 == (unsigned int)~0L)
5225 return builtin_type_unsigned_int;
5226 if (n3 == (unsigned long)~0L)
5227 return builtin_type_unsigned_long;
5228 if (n3 == (unsigned short)~0L)
5229 return builtin_type_unsigned_short;
5230 if (n3 == (unsigned char)~0L)
5231 return builtin_type_unsigned_char;
5234 else if (n3 == 0 && n2 == -sizeof (long long))
5235 return builtin_type_long_long;
5237 else if (n2 == -n3 -1)
5240 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5241 return builtin_type_int;
5242 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5243 return builtin_type_long;
5244 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5245 return builtin_type_short;
5246 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5247 return builtin_type_char;
5250 /* We have a real range type on our hands. Allocate space and
5251 return a real pointer. */
5253 /* At this point I don't have the faintest idea how to deal with
5254 a self_subrange type; I'm going to assume that this is used
5255 as an idiom, and that all of them are special cases. So . . . */
5257 return error_type (pp);
5259 result_type = (struct type *) obstack_alloc (symbol_obstack,
5260 sizeof (struct type));
5261 bzero (result_type, sizeof (struct type));
5263 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5265 TYPE_TARGET_TYPE (result_type) = *dbx_lookup_type(rangenums);
5267 TYPE_NFIELDS (result_type) = 2;
5268 TYPE_FIELDS (result_type) =
5269 (struct field *) obstack_alloc (symbol_obstack,
5270 2 * sizeof (struct field));
5271 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5272 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5273 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5276 /* Note that TYPE_LENGTH (result_type) is just overridden a few
5277 statements down. What do we really need here? */
5278 /* We have to figure out how many bytes it takes to hold this
5279 range type. I'm going to assume that anything that is pushing
5280 the bounds of a long was taken care of above. */
5281 if (n2 >= MIN_OF_C_TYPE(char) && n3 <= MAX_OF_C_TYPE(char))
5282 TYPE_LENGTH (result_type) = 1;
5283 else if (n2 >= MIN_OF_C_TYPE(short) && n3 <= MAX_OF_C_TYPE(short))
5284 TYPE_LENGTH (result_type) = sizeof (short);
5285 else if (n2 >= MIN_OF_C_TYPE(int) && n3 <= MAX_OF_C_TYPE(int))
5286 TYPE_LENGTH (result_type) = sizeof (int);
5287 else if (n2 >= MIN_OF_C_TYPE(long) && n3 <= MAX_OF_C_TYPE(long))
5288 TYPE_LENGTH (result_type) = sizeof (long);
5290 /* Ranged type doesn't fit within known sizes. */
5291 /* FIXME -- use "long long" here. */
5292 return error_type (pp);
5295 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5300 /* Read a number from the string pointed to by *PP.
5301 The value of *PP is advanced over the number.
5302 If END is nonzero, the character that ends the
5303 number must match END, or an error happens;
5304 and that character is skipped if it does match.
5305 If END is zero, *PP is left pointing to that character. */
5308 read_number (pp, end)
5312 register char *p = *pp;
5313 register long n = 0;
5317 /* Handle an optional leading minus sign. */
5325 /* Read the digits, as far as they go. */
5327 while ((c = *p++) >= '0' && c <= '9')
5335 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5344 /* Read in an argument list. This is a list of types, separated by commas
5345 and terminated with END. Return the list of types read in, or (struct type
5346 **)-1 if there is an error. */
5347 static struct type **
5352 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5358 /* Invalid argument list: no ','. */
5359 return (struct type **)-1;
5362 /* Check for and handle cretinous dbx symbol name continuation! */
5364 *pp = next_symbol_text ();
5366 types[n++] = read_type (pp);
5368 *pp += 1; /* get past `end' (the ':' character) */
5372 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5374 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5376 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5377 bzero (rval + n, sizeof (struct type *));
5381 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5383 bcopy (types, rval, n * sizeof (struct type *));
5387 /* Copy a pending list, used to record the contents of a common
5388 block for later fixup. */
5389 static struct pending *
5390 copy_pending (beg, begi, end)
5391 struct pending *beg, *end;
5394 struct pending *new = 0;
5395 struct pending *next;
5397 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5398 next = next->next, begi = 0)
5401 for (j = begi; j < next->nsyms; j++)
5402 add_symbol_to_list (next->symbol[j], &new);
5407 /* Add a common block's start address to the offset of each symbol
5408 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5409 the common block name). */
5412 fix_common_block (sym, valu)
5416 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5417 for ( ; next; next = next->next)
5420 for (j = next->nsyms - 1; j >= 0; j--)
5421 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5425 /* Register our willingness to decode symbols for SunOS and a.out and
5426 b.out files handled by BFD... */
5427 static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5428 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
5430 static struct sym_fns aout_sym_fns = {"a.out", 5,
5431 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
5433 static struct sym_fns bout_sym_fns = {"b.out", 5,
5434 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
5437 _initialize_dbxread ()
5439 add_symtab_fns(&sunos_sym_fns);
5440 add_symtab_fns(&aout_sym_fns);
5441 add_symtab_fns(&bout_sym_fns);
5443 undef_types_allocated = 20;
5444 undef_types_length = 0;
5445 undef_types = (struct type **) xmalloc (undef_types_allocated *
5446 sizeof (struct type *));