1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
48 #include "gdb_obstack.h"
50 #include "dictionary.h"
52 #include <sys/types.h>
54 #include "gdb_string.h"
58 #include "cp-support.h"
60 #include "gdb_assert.h"
63 #include "macroscope.h"
67 /* Prototypes for local functions */
69 static void rbreak_command (char *, int);
71 static void types_info (char *, int);
73 static void functions_info (char *, int);
75 static void variables_info (char *, int);
77 static void sources_info (char *, int);
79 static void output_source_filename (const char *, int *);
81 static int find_line_common (struct linetable *, int, int *, int);
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 int *is_a_field_of_this);
90 struct symbol *lookup_symbol_aux_local (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
96 struct symbol *lookup_symbol_aux_symtabs (int block_index,
98 const domain_enum domain,
99 struct objfile *exclude_objfile);
102 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
105 const domain_enum domain);
107 static void print_msymbol_info (struct minimal_symbol *);
109 void _initialize_symtab (void);
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
132 static const char *multiple_symbols_mode = multiple_symbols_all;
134 /* Read-only accessor to AUTO_SELECT_MODE. */
137 multiple_symbols_select_mode (void)
139 return multiple_symbols_mode;
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
146 const struct block *block_found;
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
155 compare_filenames_for_search (const char *filename, const char *search_name,
158 int len = strlen (filename);
160 if (len < search_len)
163 /* The tail of FILENAME must match. */
164 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
167 /* Either the names must completely match, or the character
168 preceding the trailing SEARCH_NAME segment of FILENAME must be a
169 directory separator. */
170 return (len == search_len
171 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
172 || (HAS_DRIVE_SPEC (filename)
173 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
176 /* Check for a symtab of a specific name by searching some symtabs.
177 This is a helper function for callbacks of iterate_over_symtabs.
179 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
180 are identical to the `map_symtabs_matching_filename' method of
181 quick_symbol_functions.
183 FIRST and AFTER_LAST indicate the range of symtabs to search.
184 AFTER_LAST is one past the last symtab to search; NULL means to
185 search until the end of the list. */
188 iterate_over_some_symtabs (const char *name,
189 const char *full_path,
190 const char *real_path,
191 int (*callback) (struct symtab *symtab,
194 struct symtab *first,
195 struct symtab *after_last)
197 struct symtab *s = NULL;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
202 for (s = first; s != NULL && s != after_last; s = s->next)
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
207 if (callback (s, data))
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
213 if (callback (s, data))
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
226 if (full_path != NULL)
228 const char *fp = symtab_to_fullname (s);
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
232 if (callback (s, data))
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
239 if (callback (s, data))
244 if (real_path != NULL)
246 char *fullname = symtab_to_fullname (s);
248 if (fullname != NULL)
250 char *rp = gdb_realpath (fullname);
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
255 if (callback (s, data))
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
261 if (callback (s, data))
271 /* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
279 iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
300 ALL_OBJFILES (objfile)
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
305 do_cleanups (cleanups);
310 /* Same search rules as above apply here, but now we look thru the
313 ALL_OBJFILES (objfile)
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
323 do_cleanups (cleanups);
328 do_cleanups (cleanups);
331 /* The callback function used by lookup_symtab. */
334 lookup_symtab_callback (struct symtab *symtab, void *data)
336 struct symtab **result_ptr = data;
338 *result_ptr = symtab;
342 /* A wrapper for iterate_over_symtabs that returns the first matching
346 lookup_symtab (const char *name)
348 struct symtab *result = NULL;
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
355 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
361 gdb_mangle_name (struct type *type, int method_id, int signature_id)
363 int mangled_name_len;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
381 int len = (newname == NULL ? 0 : strlen (newname));
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
389 is_full_physname_constructor = is_constructor_name (physname);
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
397 if (is_destructor || is_full_physname_constructor)
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
406 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
408 else if (physname[0] == 't' || physname[0] == 'Q')
410 /* The physname for template and qualified methods already includes
412 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
418 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
420 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
421 + strlen (buf) + len + strlen (physname) + 1);
423 mangled_name = (char *) xmalloc (mangled_name_len);
425 mangled_name[0] = '\0';
427 strcpy (mangled_name, field_name);
429 strcat (mangled_name, buf);
430 /* If the class doesn't have a name, i.e. newname NULL, then we just
431 mangle it using 0 for the length of the class. Thus it gets mangled
432 as something starting with `::' rather than `classname::'. */
434 strcat (mangled_name, newname);
436 strcat (mangled_name, physname);
437 return (mangled_name);
440 /* Initialize the cplus_specific structure. 'cplus_specific' should
441 only be allocated for use with cplus symbols. */
444 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
445 struct objfile *objfile)
447 /* A language_specific structure should not have been previously
449 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
450 gdb_assert (objfile != NULL);
452 gsymbol->language_specific.cplus_specific =
453 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
456 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
457 correctly allocated. For C++ symbols a cplus_specific struct is
458 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
459 OBJFILE can be NULL. */
462 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 struct objfile *objfile)
466 if (gsymbol->language == language_cplus)
468 if (gsymbol->language_specific.cplus_specific == NULL)
469 symbol_init_cplus_specific (gsymbol, objfile);
471 gsymbol->language_specific.cplus_specific->demangled_name = name;
474 gsymbol->language_specific.mangled_lang.demangled_name = name;
477 /* Return the demangled name of GSYMBOL. */
480 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
482 if (gsymbol->language == language_cplus)
484 if (gsymbol->language_specific.cplus_specific != NULL)
485 return gsymbol->language_specific.cplus_specific->demangled_name;
490 return gsymbol->language_specific.mangled_lang.demangled_name;
494 /* Initialize the language dependent portion of a symbol
495 depending upon the language for the symbol. */
498 symbol_set_language (struct general_symbol_info *gsymbol,
499 enum language language)
501 gsymbol->language = language;
502 if (gsymbol->language == language_d
503 || gsymbol->language == language_go
504 || gsymbol->language == language_java
505 || gsymbol->language == language_objc
506 || gsymbol->language == language_fortran)
508 symbol_set_demangled_name (gsymbol, NULL, NULL);
510 else if (gsymbol->language == language_cplus)
511 gsymbol->language_specific.cplus_specific = NULL;
514 memset (&gsymbol->language_specific, 0,
515 sizeof (gsymbol->language_specific));
519 /* Functions to initialize a symbol's mangled name. */
521 /* Objects of this type are stored in the demangled name hash table. */
522 struct demangled_name_entry
528 /* Hash function for the demangled name hash. */
531 hash_demangled_name_entry (const void *data)
533 const struct demangled_name_entry *e = data;
535 return htab_hash_string (e->mangled);
538 /* Equality function for the demangled name hash. */
541 eq_demangled_name_entry (const void *a, const void *b)
543 const struct demangled_name_entry *da = a;
544 const struct demangled_name_entry *db = b;
546 return strcmp (da->mangled, db->mangled) == 0;
549 /* Create the hash table used for demangled names. Each hash entry is
550 a pair of strings; one for the mangled name and one for the demangled
551 name. The entry is hashed via just the mangled name. */
554 create_demangled_names_hash (struct objfile *objfile)
556 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
557 The hash table code will round this up to the next prime number.
558 Choosing a much larger table size wastes memory, and saves only about
559 1% in symbol reading. */
561 objfile->demangled_names_hash = htab_create_alloc
562 (256, hash_demangled_name_entry, eq_demangled_name_entry,
563 NULL, xcalloc, xfree);
566 /* Try to determine the demangled name for a symbol, based on the
567 language of that symbol. If the language is set to language_auto,
568 it will attempt to find any demangling algorithm that works and
569 then set the language appropriately. The returned name is allocated
570 by the demangler and should be xfree'd. */
573 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
576 char *demangled = NULL;
578 if (gsymbol->language == language_unknown)
579 gsymbol->language = language_auto;
581 if (gsymbol->language == language_objc
582 || gsymbol->language == language_auto)
585 objc_demangle (mangled, 0);
586 if (demangled != NULL)
588 gsymbol->language = language_objc;
592 if (gsymbol->language == language_cplus
593 || gsymbol->language == language_auto)
596 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
597 if (demangled != NULL)
599 gsymbol->language = language_cplus;
603 if (gsymbol->language == language_java)
606 cplus_demangle (mangled,
607 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
608 if (demangled != NULL)
610 gsymbol->language = language_java;
614 if (gsymbol->language == language_d
615 || gsymbol->language == language_auto)
617 demangled = d_demangle(mangled, 0);
618 if (demangled != NULL)
620 gsymbol->language = language_d;
624 /* FIXME(dje): Continually adding languages here is clumsy.
625 Better to just call la_demangle if !auto, and if auto then call
626 a utility routine that tries successive languages in turn and reports
627 which one it finds. I realize the la_demangle options may be different
628 for different languages but there's already a FIXME for that. */
629 if (gsymbol->language == language_go
630 || gsymbol->language == language_auto)
632 demangled = go_demangle (mangled, 0);
633 if (demangled != NULL)
635 gsymbol->language = language_go;
640 /* We could support `gsymbol->language == language_fortran' here to provide
641 module namespaces also for inferiors with only minimal symbol table (ELF
642 symbols). Just the mangling standard is not standardized across compilers
643 and there is no DW_AT_producer available for inferiors with only the ELF
644 symbols to check the mangling kind. */
648 /* Set both the mangled and demangled (if any) names for GSYMBOL based
649 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
650 objfile's obstack; but if COPY_NAME is 0 and if NAME is
651 NUL-terminated, then this function assumes that NAME is already
652 correctly saved (either permanently or with a lifetime tied to the
653 objfile), and it will not be copied.
655 The hash table corresponding to OBJFILE is used, and the memory
656 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
657 so the pointer can be discarded after calling this function. */
659 /* We have to be careful when dealing with Java names: when we run
660 into a Java minimal symbol, we don't know it's a Java symbol, so it
661 gets demangled as a C++ name. This is unfortunate, but there's not
662 much we can do about it: but when demangling partial symbols and
663 regular symbols, we'd better not reuse the wrong demangled name.
664 (See PR gdb/1039.) We solve this by putting a distinctive prefix
665 on Java names when storing them in the hash table. */
667 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
668 don't mind the Java prefix so much: different languages have
669 different demangling requirements, so it's only natural that we
670 need to keep language data around in our demangling cache. But
671 it's not good that the minimal symbol has the wrong demangled name.
672 Unfortunately, I can't think of any easy solution to that
675 #define JAVA_PREFIX "##JAVA$$"
676 #define JAVA_PREFIX_LEN 8
679 symbol_set_names (struct general_symbol_info *gsymbol,
680 const char *linkage_name, int len, int copy_name,
681 struct objfile *objfile)
683 struct demangled_name_entry **slot;
684 /* A 0-terminated copy of the linkage name. */
685 const char *linkage_name_copy;
686 /* A copy of the linkage name that might have a special Java prefix
687 added to it, for use when looking names up in the hash table. */
688 const char *lookup_name;
689 /* The length of lookup_name. */
691 struct demangled_name_entry entry;
693 if (gsymbol->language == language_ada)
695 /* In Ada, we do the symbol lookups using the mangled name, so
696 we can save some space by not storing the demangled name.
698 As a side note, we have also observed some overlap between
699 the C++ mangling and Ada mangling, similarly to what has
700 been observed with Java. Because we don't store the demangled
701 name with the symbol, we don't need to use the same trick
704 gsymbol->name = linkage_name;
707 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
709 memcpy (name, linkage_name, len);
711 gsymbol->name = name;
713 symbol_set_demangled_name (gsymbol, NULL, NULL);
718 if (objfile->demangled_names_hash == NULL)
719 create_demangled_names_hash (objfile);
721 /* The stabs reader generally provides names that are not
722 NUL-terminated; most of the other readers don't do this, so we
723 can just use the given copy, unless we're in the Java case. */
724 if (gsymbol->language == language_java)
728 lookup_len = len + JAVA_PREFIX_LEN;
729 alloc_name = alloca (lookup_len + 1);
730 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
731 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
732 alloc_name[lookup_len] = '\0';
734 lookup_name = alloc_name;
735 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
737 else if (linkage_name[len] != '\0')
742 alloc_name = alloca (lookup_len + 1);
743 memcpy (alloc_name, linkage_name, len);
744 alloc_name[lookup_len] = '\0';
746 lookup_name = alloc_name;
747 linkage_name_copy = alloc_name;
752 lookup_name = linkage_name;
753 linkage_name_copy = linkage_name;
756 entry.mangled = (char *) lookup_name;
757 slot = ((struct demangled_name_entry **)
758 htab_find_slot (objfile->demangled_names_hash,
761 /* If this name is not in the hash table, add it. */
763 /* A C version of the symbol may have already snuck into the table.
764 This happens to, e.g., main.init (__go_init_main). Cope. */
765 || (gsymbol->language == language_go
766 && (*slot)->demangled[0] == '\0'))
768 char *demangled_name = symbol_find_demangled_name (gsymbol,
770 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
772 /* Suppose we have demangled_name==NULL, copy_name==0, and
773 lookup_name==linkage_name. In this case, we already have the
774 mangled name saved, and we don't have a demangled name. So,
775 you might think we could save a little space by not recording
776 this in the hash table at all.
778 It turns out that it is actually important to still save such
779 an entry in the hash table, because storing this name gives
780 us better bcache hit rates for partial symbols. */
781 if (!copy_name && lookup_name == linkage_name)
783 *slot = obstack_alloc (&objfile->objfile_obstack,
784 offsetof (struct demangled_name_entry,
786 + demangled_len + 1);
787 (*slot)->mangled = (char *) lookup_name;
791 /* If we must copy the mangled name, put it directly after
792 the demangled name so we can have a single
794 *slot = obstack_alloc (&objfile->objfile_obstack,
795 offsetof (struct demangled_name_entry,
797 + lookup_len + demangled_len + 2);
798 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
799 strcpy ((*slot)->mangled, lookup_name);
802 if (demangled_name != NULL)
804 strcpy ((*slot)->demangled, demangled_name);
805 xfree (demangled_name);
808 (*slot)->demangled[0] = '\0';
811 gsymbol->name = (*slot)->mangled + lookup_len - len;
812 if ((*slot)->demangled[0] != '\0')
813 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
815 symbol_set_demangled_name (gsymbol, NULL, objfile);
818 /* Return the source code name of a symbol. In languages where
819 demangling is necessary, this is the demangled name. */
822 symbol_natural_name (const struct general_symbol_info *gsymbol)
824 switch (gsymbol->language)
831 case language_fortran:
832 if (symbol_get_demangled_name (gsymbol) != NULL)
833 return symbol_get_demangled_name (gsymbol);
836 if (symbol_get_demangled_name (gsymbol) != NULL)
837 return symbol_get_demangled_name (gsymbol);
839 return ada_decode_symbol (gsymbol);
844 return gsymbol->name;
847 /* Return the demangled name for a symbol based on the language for
848 that symbol. If no demangled name exists, return NULL. */
851 symbol_demangled_name (const struct general_symbol_info *gsymbol)
853 const char *dem_name = NULL;
855 switch (gsymbol->language)
862 case language_fortran:
863 dem_name = symbol_get_demangled_name (gsymbol);
866 dem_name = symbol_get_demangled_name (gsymbol);
867 if (dem_name == NULL)
868 dem_name = ada_decode_symbol (gsymbol);
876 /* Return the search name of a symbol---generally the demangled or
877 linkage name of the symbol, depending on how it will be searched for.
878 If there is no distinct demangled name, then returns the same value
879 (same pointer) as SYMBOL_LINKAGE_NAME. */
882 symbol_search_name (const struct general_symbol_info *gsymbol)
884 if (gsymbol->language == language_ada)
885 return gsymbol->name;
887 return symbol_natural_name (gsymbol);
890 /* Initialize the structure fields to zero values. */
893 init_sal (struct symtab_and_line *sal)
901 sal->explicit_pc = 0;
902 sal->explicit_line = 0;
907 /* Return 1 if the two sections are the same, or if they could
908 plausibly be copies of each other, one in an original object
909 file and another in a separated debug file. */
912 matching_obj_sections (struct obj_section *obj_first,
913 struct obj_section *obj_second)
915 asection *first = obj_first? obj_first->the_bfd_section : NULL;
916 asection *second = obj_second? obj_second->the_bfd_section : NULL;
919 /* If they're the same section, then they match. */
923 /* If either is NULL, give up. */
924 if (first == NULL || second == NULL)
927 /* This doesn't apply to absolute symbols. */
928 if (first->owner == NULL || second->owner == NULL)
931 /* If they're in the same object file, they must be different sections. */
932 if (first->owner == second->owner)
935 /* Check whether the two sections are potentially corresponding. They must
936 have the same size, address, and name. We can't compare section indexes,
937 which would be more reliable, because some sections may have been
939 if (bfd_get_section_size (first) != bfd_get_section_size (second))
942 /* In-memory addresses may start at a different offset, relativize them. */
943 if (bfd_get_section_vma (first->owner, first)
944 - bfd_get_start_address (first->owner)
945 != bfd_get_section_vma (second->owner, second)
946 - bfd_get_start_address (second->owner))
949 if (bfd_get_section_name (first->owner, first) == NULL
950 || bfd_get_section_name (second->owner, second) == NULL
951 || strcmp (bfd_get_section_name (first->owner, first),
952 bfd_get_section_name (second->owner, second)) != 0)
955 /* Otherwise check that they are in corresponding objfiles. */
958 if (obj->obfd == first->owner)
960 gdb_assert (obj != NULL);
962 if (obj->separate_debug_objfile != NULL
963 && obj->separate_debug_objfile->obfd == second->owner)
965 if (obj->separate_debug_objfile_backlink != NULL
966 && obj->separate_debug_objfile_backlink->obfd == second->owner)
973 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 struct objfile *objfile;
976 struct minimal_symbol *msymbol;
978 /* If we know that this is not a text address, return failure. This is
979 necessary because we loop based on texthigh and textlow, which do
980 not include the data ranges. */
981 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
983 && (MSYMBOL_TYPE (msymbol) == mst_data
984 || MSYMBOL_TYPE (msymbol) == mst_bss
985 || MSYMBOL_TYPE (msymbol) == mst_abs
986 || MSYMBOL_TYPE (msymbol) == mst_file_data
987 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
990 ALL_OBJFILES (objfile)
992 struct symtab *result = NULL;
995 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1004 /* Debug symbols usually don't have section information. We need to dig that
1005 out of the minimal symbols and stash that in the debug symbol. */
1008 fixup_section (struct general_symbol_info *ginfo,
1009 CORE_ADDR addr, struct objfile *objfile)
1011 struct minimal_symbol *msym;
1013 /* First, check whether a minimal symbol with the same name exists
1014 and points to the same address. The address check is required
1015 e.g. on PowerPC64, where the minimal symbol for a function will
1016 point to the function descriptor, while the debug symbol will
1017 point to the actual function code. */
1018 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1021 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1022 ginfo->section = SYMBOL_SECTION (msym);
1026 /* Static, function-local variables do appear in the linker
1027 (minimal) symbols, but are frequently given names that won't
1028 be found via lookup_minimal_symbol(). E.g., it has been
1029 observed in frv-uclinux (ELF) executables that a static,
1030 function-local variable named "foo" might appear in the
1031 linker symbols as "foo.6" or "foo.3". Thus, there is no
1032 point in attempting to extend the lookup-by-name mechanism to
1033 handle this case due to the fact that there can be multiple
1036 So, instead, search the section table when lookup by name has
1037 failed. The ``addr'' and ``endaddr'' fields may have already
1038 been relocated. If so, the relocation offset (i.e. the
1039 ANOFFSET value) needs to be subtracted from these values when
1040 performing the comparison. We unconditionally subtract it,
1041 because, when no relocation has been performed, the ANOFFSET
1042 value will simply be zero.
1044 The address of the symbol whose section we're fixing up HAS
1045 NOT BEEN adjusted (relocated) yet. It can't have been since
1046 the section isn't yet known and knowing the section is
1047 necessary in order to add the correct relocation value. In
1048 other words, we wouldn't even be in this function (attempting
1049 to compute the section) if it were already known.
1051 Note that it is possible to search the minimal symbols
1052 (subtracting the relocation value if necessary) to find the
1053 matching minimal symbol, but this is overkill and much less
1054 efficient. It is not necessary to find the matching minimal
1055 symbol, only its section.
1057 Note that this technique (of doing a section table search)
1058 can fail when unrelocated section addresses overlap. For
1059 this reason, we still attempt a lookup by name prior to doing
1060 a search of the section table. */
1062 struct obj_section *s;
1064 ALL_OBJFILE_OSECTIONS (objfile, s)
1066 int idx = s->the_bfd_section->index;
1067 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1069 if (obj_section_addr (s) - offset <= addr
1070 && addr < obj_section_endaddr (s) - offset)
1072 ginfo->obj_section = s;
1073 ginfo->section = idx;
1081 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1088 if (SYMBOL_OBJ_SECTION (sym))
1091 /* We either have an OBJFILE, or we can get at it from the sym's
1092 symtab. Anything else is a bug. */
1093 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1095 if (objfile == NULL)
1096 objfile = SYMBOL_SYMTAB (sym)->objfile;
1098 /* We should have an objfile by now. */
1099 gdb_assert (objfile);
1101 switch (SYMBOL_CLASS (sym))
1105 addr = SYMBOL_VALUE_ADDRESS (sym);
1108 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1112 /* Nothing else will be listed in the minsyms -- no use looking
1117 fixup_section (&sym->ginfo, addr, objfile);
1122 /* Compute the demangled form of NAME as used by the various symbol
1123 lookup functions. The result is stored in *RESULT_NAME. Returns a
1124 cleanup which can be used to clean up the result.
1126 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1127 Normally, Ada symbol lookups are performed using the encoded name
1128 rather than the demangled name, and so it might seem to make sense
1129 for this function to return an encoded version of NAME.
1130 Unfortunately, we cannot do this, because this function is used in
1131 circumstances where it is not appropriate to try to encode NAME.
1132 For instance, when displaying the frame info, we demangle the name
1133 of each parameter, and then perform a symbol lookup inside our
1134 function using that demangled name. In Ada, certain functions
1135 have internally-generated parameters whose name contain uppercase
1136 characters. Encoding those name would result in those uppercase
1137 characters to become lowercase, and thus cause the symbol lookup
1141 demangle_for_lookup (const char *name, enum language lang,
1142 const char **result_name)
1144 char *demangled_name = NULL;
1145 const char *modified_name = NULL;
1146 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1148 modified_name = name;
1150 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1151 lookup, so we can always binary search. */
1152 if (lang == language_cplus)
1154 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1157 modified_name = demangled_name;
1158 make_cleanup (xfree, demangled_name);
1162 /* If we were given a non-mangled name, canonicalize it
1163 according to the language (so far only for C++). */
1164 demangled_name = cp_canonicalize_string (name);
1167 modified_name = demangled_name;
1168 make_cleanup (xfree, demangled_name);
1172 else if (lang == language_java)
1174 demangled_name = cplus_demangle (name,
1175 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1178 modified_name = demangled_name;
1179 make_cleanup (xfree, demangled_name);
1182 else if (lang == language_d)
1184 demangled_name = d_demangle (name, 0);
1187 modified_name = demangled_name;
1188 make_cleanup (xfree, demangled_name);
1191 else if (lang == language_go)
1193 demangled_name = go_demangle (name, 0);
1196 modified_name = demangled_name;
1197 make_cleanup (xfree, demangled_name);
1201 *result_name = modified_name;
1205 /* Find the definition for a specified symbol name NAME
1206 in domain DOMAIN, visible from lexical block BLOCK.
1207 Returns the struct symbol pointer, or zero if no symbol is found.
1208 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1209 NAME is a field of the current implied argument `this'. If so set
1210 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1211 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1212 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1214 /* This function (or rather its subordinates) have a bunch of loops and
1215 it would seem to be attractive to put in some QUIT's (though I'm not really
1216 sure whether it can run long enough to be really important). But there
1217 are a few calls for which it would appear to be bad news to quit
1218 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1219 that there is C++ code below which can error(), but that probably
1220 doesn't affect these calls since they are looking for a known
1221 variable and thus can probably assume it will never hit the C++
1225 lookup_symbol_in_language (const char *name, const struct block *block,
1226 const domain_enum domain, enum language lang,
1227 int *is_a_field_of_this)
1229 const char *modified_name;
1230 struct symbol *returnval;
1231 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1233 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1234 is_a_field_of_this);
1235 do_cleanups (cleanup);
1240 /* Behave like lookup_symbol_in_language, but performed with the
1241 current language. */
1244 lookup_symbol (const char *name, const struct block *block,
1245 domain_enum domain, int *is_a_field_of_this)
1247 return lookup_symbol_in_language (name, block, domain,
1248 current_language->la_language,
1249 is_a_field_of_this);
1252 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1253 found, or NULL if not found. */
1256 lookup_language_this (const struct language_defn *lang,
1257 const struct block *block)
1259 if (lang->la_name_of_this == NULL || block == NULL)
1266 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1269 block_found = block;
1272 if (BLOCK_FUNCTION (block))
1274 block = BLOCK_SUPERBLOCK (block);
1280 /* Behave like lookup_symbol except that NAME is the natural name
1281 (e.g., demangled name) of the symbol that we're looking for. */
1283 static struct symbol *
1284 lookup_symbol_aux (const char *name, const struct block *block,
1285 const domain_enum domain, enum language language,
1286 int *is_a_field_of_this)
1289 const struct language_defn *langdef;
1291 /* Make sure we do something sensible with is_a_field_of_this, since
1292 the callers that set this parameter to some non-null value will
1293 certainly use it later and expect it to be either 0 or 1.
1294 If we don't set it, the contents of is_a_field_of_this are
1296 if (is_a_field_of_this != NULL)
1297 *is_a_field_of_this = 0;
1299 /* Search specified block and its superiors. Don't search
1300 STATIC_BLOCK or GLOBAL_BLOCK. */
1302 sym = lookup_symbol_aux_local (name, block, domain, language);
1306 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1307 check to see if NAME is a field of `this'. */
1309 langdef = language_def (language);
1311 if (is_a_field_of_this != NULL)
1313 struct symbol *sym = lookup_language_this (langdef, block);
1317 struct type *t = sym->type;
1319 /* I'm not really sure that type of this can ever
1320 be typedefed; just be safe. */
1322 if (TYPE_CODE (t) == TYPE_CODE_PTR
1323 || TYPE_CODE (t) == TYPE_CODE_REF)
1324 t = TYPE_TARGET_TYPE (t);
1326 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1327 && TYPE_CODE (t) != TYPE_CODE_UNION)
1328 error (_("Internal error: `%s' is not an aggregate"),
1329 langdef->la_name_of_this);
1331 if (check_field (t, name))
1333 *is_a_field_of_this = 1;
1339 /* Now do whatever is appropriate for LANGUAGE to look
1340 up static and global variables. */
1342 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1346 /* Now search all static file-level symbols. Not strictly correct,
1347 but more useful than an error. */
1349 return lookup_static_symbol_aux (name, domain);
1352 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1353 first, then check the psymtabs. If a psymtab indicates the existence of the
1354 desired name as a file-level static, then do psymtab-to-symtab conversion on
1355 the fly and return the found symbol. */
1358 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1360 struct objfile *objfile;
1363 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain, NULL);
1367 ALL_OBJFILES (objfile)
1369 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1377 /* Check to see if the symbol is defined in BLOCK or its superiors.
1378 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1380 static struct symbol *
1381 lookup_symbol_aux_local (const char *name, const struct block *block,
1382 const domain_enum domain,
1383 enum language language)
1386 const struct block *static_block = block_static_block (block);
1387 const char *scope = block_scope (block);
1389 /* Check if either no block is specified or it's a global block. */
1391 if (static_block == NULL)
1394 while (block != static_block)
1396 sym = lookup_symbol_aux_block (name, block, domain);
1400 if (language == language_cplus || language == language_fortran)
1402 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1408 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1410 block = BLOCK_SUPERBLOCK (block);
1413 /* We've reached the edge of the function without finding a result. */
1418 /* Look up OBJFILE to BLOCK. */
1421 lookup_objfile_from_block (const struct block *block)
1423 struct objfile *obj;
1429 block = block_global_block (block);
1430 /* Go through SYMTABS. */
1431 ALL_SYMTABS (obj, s)
1432 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1434 if (obj->separate_debug_objfile_backlink)
1435 obj = obj->separate_debug_objfile_backlink;
1443 /* Look up a symbol in a block; if found, fixup the symbol, and set
1444 block_found appropriately. */
1447 lookup_symbol_aux_block (const char *name, const struct block *block,
1448 const domain_enum domain)
1452 sym = lookup_block_symbol (block, name, domain);
1455 block_found = block;
1456 return fixup_symbol_section (sym, NULL);
1462 /* Check all global symbols in OBJFILE in symtabs and
1466 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1468 const domain_enum domain)
1470 const struct objfile *objfile;
1472 struct blockvector *bv;
1473 const struct block *block;
1476 for (objfile = main_objfile;
1478 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1480 /* Go through symtabs. */
1481 ALL_OBJFILE_SYMTABS (objfile, s)
1483 bv = BLOCKVECTOR (s);
1484 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1485 sym = lookup_block_symbol (block, name, domain);
1488 block_found = block;
1489 return fixup_symbol_section (sym, (struct objfile *)objfile);
1493 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1502 /* Check to see if the symbol is defined in one of the OBJFILE's
1503 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1504 depending on whether or not we want to search global symbols or
1507 static struct symbol *
1508 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1509 const char *name, const domain_enum domain)
1511 struct symbol *sym = NULL;
1512 struct blockvector *bv;
1513 const struct block *block;
1517 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1520 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1522 bv = BLOCKVECTOR (s);
1523 block = BLOCKVECTOR_BLOCK (bv, block_index);
1524 sym = lookup_block_symbol (block, name, domain);
1527 block_found = block;
1528 return fixup_symbol_section (sym, objfile);
1535 /* Same as lookup_symbol_aux_objfile, except that it searches all
1536 objfiles except for EXCLUDE_OBJFILE. Return the first match found.
1538 If EXCLUDE_OBJFILE is NULL, then all objfiles are searched. */
1540 static struct symbol *
1541 lookup_symbol_aux_symtabs (int block_index, const char *name,
1542 const domain_enum domain,
1543 struct objfile *exclude_objfile)
1546 struct objfile *objfile;
1548 ALL_OBJFILES (objfile)
1550 if (objfile != exclude_objfile)
1552 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1561 /* A helper function for lookup_symbol_aux that interfaces with the
1562 "quick" symbol table functions. */
1564 static struct symbol *
1565 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1566 const char *name, const domain_enum domain)
1568 struct symtab *symtab;
1569 struct blockvector *bv;
1570 const struct block *block;
1575 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1579 bv = BLOCKVECTOR (symtab);
1580 block = BLOCKVECTOR_BLOCK (bv, kind);
1581 sym = lookup_block_symbol (block, name, domain);
1584 /* This shouldn't be necessary, but as a last resort try
1585 looking in the statics even though the psymtab claimed
1586 the symbol was global, or vice-versa. It's possible
1587 that the psymtab gets it wrong in some cases. */
1589 /* FIXME: carlton/2002-09-30: Should we really do that?
1590 If that happens, isn't it likely to be a GDB error, in
1591 which case we should fix the GDB error rather than
1592 silently dealing with it here? So I'd vote for
1593 removing the check for the symbol in the other
1595 block = BLOCKVECTOR_BLOCK (bv,
1596 kind == GLOBAL_BLOCK ?
1597 STATIC_BLOCK : GLOBAL_BLOCK);
1598 sym = lookup_block_symbol (block, name, domain);
1601 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1602 %s may be an inlined function, or may be a template function\n\
1603 (if a template, try specifying an instantiation: %s<type>)."),
1604 kind == GLOBAL_BLOCK ? "global" : "static",
1605 name, symtab->filename, name, name);
1607 return fixup_symbol_section (sym, objfile);
1610 /* A default version of lookup_symbol_nonlocal for use by languages
1611 that can't think of anything better to do. This implements the C
1615 basic_lookup_symbol_nonlocal (const char *name,
1616 const struct block *block,
1617 const domain_enum domain)
1621 /* NOTE: carlton/2003-05-19: The comments below were written when
1622 this (or what turned into this) was part of lookup_symbol_aux;
1623 I'm much less worried about these questions now, since these
1624 decisions have turned out well, but I leave these comments here
1627 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1628 not it would be appropriate to search the current global block
1629 here as well. (That's what this code used to do before the
1630 is_a_field_of_this check was moved up.) On the one hand, it's
1631 redundant with the lookup_symbol_aux_symtabs search that happens
1632 next. On the other hand, if decode_line_1 is passed an argument
1633 like filename:var, then the user presumably wants 'var' to be
1634 searched for in filename. On the third hand, there shouldn't be
1635 multiple global variables all of which are named 'var', and it's
1636 not like decode_line_1 has ever restricted its search to only
1637 global variables in a single filename. All in all, only
1638 searching the static block here seems best: it's correct and it's
1641 /* NOTE: carlton/2002-12-05: There's also a possible performance
1642 issue here: if you usually search for global symbols in the
1643 current file, then it would be slightly better to search the
1644 current global block before searching all the symtabs. But there
1645 are other factors that have a much greater effect on performance
1646 than that one, so I don't think we should worry about that for
1649 sym = lookup_symbol_static (name, block, domain);
1653 return lookup_symbol_global (name, block, domain);
1656 /* Lookup a symbol in the static block associated to BLOCK, if there
1657 is one; do nothing if BLOCK is NULL or a global block. */
1660 lookup_symbol_static (const char *name,
1661 const struct block *block,
1662 const domain_enum domain)
1664 const struct block *static_block = block_static_block (block);
1666 if (static_block != NULL)
1667 return lookup_symbol_aux_block (name, static_block, domain);
1672 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1676 lookup_symbol_global (const char *name,
1677 const struct block *block,
1678 const domain_enum domain)
1680 struct symbol *sym = NULL;
1681 struct objfile *block_objfile = NULL;
1682 struct objfile *objfile = NULL;
1684 /* Call library-specific lookup procedure. */
1685 block_objfile = lookup_objfile_from_block (block);
1686 if (block_objfile != NULL)
1687 sym = solib_global_lookup (block_objfile, name, domain);
1691 /* If BLOCK_OBJFILE is not NULL, then search this objfile first.
1692 In case the global symbol is defined in multiple objfiles,
1693 we have a better chance of finding the most relevant symbol. */
1695 if (block_objfile != NULL)
1697 sym = lookup_symbol_aux_objfile (block_objfile, GLOBAL_BLOCK,
1700 sym = lookup_symbol_aux_quick (block_objfile, GLOBAL_BLOCK,
1706 /* Symbol not found in the BLOCK_OBJFILE, so try all the other
1707 objfiles, starting with symtabs first, and then partial symtabs. */
1709 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain, block_objfile);
1713 ALL_OBJFILES (objfile)
1715 if (objfile != block_objfile)
1717 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1727 symbol_matches_domain (enum language symbol_language,
1728 domain_enum symbol_domain,
1731 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1732 A Java class declaration also defines a typedef for the class.
1733 Similarly, any Ada type declaration implicitly defines a typedef. */
1734 if (symbol_language == language_cplus
1735 || symbol_language == language_d
1736 || symbol_language == language_java
1737 || symbol_language == language_ada)
1739 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1740 && symbol_domain == STRUCT_DOMAIN)
1743 /* For all other languages, strict match is required. */
1744 return (symbol_domain == domain);
1747 /* Look up a type named NAME in the struct_domain. The type returned
1748 must not be opaque -- i.e., must have at least one field
1752 lookup_transparent_type (const char *name)
1754 return current_language->la_lookup_transparent_type (name);
1757 /* A helper for basic_lookup_transparent_type that interfaces with the
1758 "quick" symbol table functions. */
1760 static struct type *
1761 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1764 struct symtab *symtab;
1765 struct blockvector *bv;
1766 struct block *block;
1771 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1775 bv = BLOCKVECTOR (symtab);
1776 block = BLOCKVECTOR_BLOCK (bv, kind);
1777 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1780 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1782 /* This shouldn't be necessary, but as a last resort
1783 * try looking in the 'other kind' even though the psymtab
1784 * claimed the symbol was one thing. It's possible that
1785 * the psymtab gets it wrong in some cases.
1787 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1788 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1790 /* FIXME; error is wrong in one case. */
1792 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1793 %s may be an inlined function, or may be a template function\n\
1794 (if a template, try specifying an instantiation: %s<type>)."),
1795 name, symtab->filename, name, name);
1797 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1798 return SYMBOL_TYPE (sym);
1803 /* The standard implementation of lookup_transparent_type. This code
1804 was modeled on lookup_symbol -- the parts not relevant to looking
1805 up types were just left out. In particular it's assumed here that
1806 types are available in struct_domain and only at file-static or
1810 basic_lookup_transparent_type (const char *name)
1813 struct symtab *s = NULL;
1814 struct blockvector *bv;
1815 struct objfile *objfile;
1816 struct block *block;
1819 /* Now search all the global symbols. Do the symtab's first, then
1820 check the psymtab's. If a psymtab indicates the existence
1821 of the desired name as a global, then do psymtab-to-symtab
1822 conversion on the fly and return the found symbol. */
1824 ALL_OBJFILES (objfile)
1827 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1829 name, STRUCT_DOMAIN);
1831 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1833 bv = BLOCKVECTOR (s);
1834 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1835 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1836 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1838 return SYMBOL_TYPE (sym);
1843 ALL_OBJFILES (objfile)
1845 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1850 /* Now search the static file-level symbols.
1851 Not strictly correct, but more useful than an error.
1852 Do the symtab's first, then
1853 check the psymtab's. If a psymtab indicates the existence
1854 of the desired name as a file-level static, then do psymtab-to-symtab
1855 conversion on the fly and return the found symbol. */
1857 ALL_OBJFILES (objfile)
1860 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1861 name, STRUCT_DOMAIN);
1863 ALL_OBJFILE_SYMTABS (objfile, s)
1865 bv = BLOCKVECTOR (s);
1866 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1867 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1868 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1870 return SYMBOL_TYPE (sym);
1875 ALL_OBJFILES (objfile)
1877 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1882 return (struct type *) 0;
1885 /* Find the name of the file containing main(). */
1886 /* FIXME: What about languages without main() or specially linked
1887 executables that have no main() ? */
1890 find_main_filename (void)
1892 struct objfile *objfile;
1893 char *name = main_name ();
1895 ALL_OBJFILES (objfile)
1901 result = objfile->sf->qf->find_symbol_file (objfile, name);
1908 /* Search BLOCK for symbol NAME in DOMAIN.
1910 Note that if NAME is the demangled form of a C++ symbol, we will fail
1911 to find a match during the binary search of the non-encoded names, but
1912 for now we don't worry about the slight inefficiency of looking for
1913 a match we'll never find, since it will go pretty quick. Once the
1914 binary search terminates, we drop through and do a straight linear
1915 search on the symbols. Each symbol which is marked as being a ObjC/C++
1916 symbol (language_cplus or language_objc set) has both the encoded and
1917 non-encoded names tested for a match. */
1920 lookup_block_symbol (const struct block *block, const char *name,
1921 const domain_enum domain)
1923 struct block_iterator iter;
1926 if (!BLOCK_FUNCTION (block))
1928 for (sym = block_iter_name_first (block, name, &iter);
1930 sym = block_iter_name_next (name, &iter))
1932 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1933 SYMBOL_DOMAIN (sym), domain))
1940 /* Note that parameter symbols do not always show up last in the
1941 list; this loop makes sure to take anything else other than
1942 parameter symbols first; it only uses parameter symbols as a
1943 last resort. Note that this only takes up extra computation
1946 struct symbol *sym_found = NULL;
1948 for (sym = block_iter_name_first (block, name, &iter);
1950 sym = block_iter_name_next (name, &iter))
1952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1953 SYMBOL_DOMAIN (sym), domain))
1956 if (!SYMBOL_IS_ARGUMENT (sym))
1962 return (sym_found); /* Will be NULL if not found. */
1966 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1969 For each symbol that matches, CALLBACK is called. The symbol and
1970 DATA are passed to the callback.
1972 If CALLBACK returns zero, the iteration ends. Otherwise, the
1973 search continues. This function iterates upward through blocks.
1974 When the outermost block has been finished, the function
1978 iterate_over_symbols (const struct block *block, const char *name,
1979 const domain_enum domain,
1980 symbol_found_callback_ftype *callback,
1985 struct block_iterator iter;
1988 for (sym = block_iter_name_first (block, name, &iter);
1990 sym = block_iter_name_next (name, &iter))
1992 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1993 SYMBOL_DOMAIN (sym), domain))
1995 if (!callback (sym, data))
2000 block = BLOCK_SUPERBLOCK (block);
2004 /* Find the symtab associated with PC and SECTION. Look through the
2005 psymtabs and read in another symtab if necessary. */
2008 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2011 struct blockvector *bv;
2012 struct symtab *s = NULL;
2013 struct symtab *best_s = NULL;
2014 struct objfile *objfile;
2015 struct program_space *pspace;
2016 CORE_ADDR distance = 0;
2017 struct minimal_symbol *msymbol;
2019 pspace = current_program_space;
2021 /* If we know that this is not a text address, return failure. This is
2022 necessary because we loop based on the block's high and low code
2023 addresses, which do not include the data ranges, and because
2024 we call find_pc_sect_psymtab which has a similar restriction based
2025 on the partial_symtab's texthigh and textlow. */
2026 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2028 && (MSYMBOL_TYPE (msymbol) == mst_data
2029 || MSYMBOL_TYPE (msymbol) == mst_bss
2030 || MSYMBOL_TYPE (msymbol) == mst_abs
2031 || MSYMBOL_TYPE (msymbol) == mst_file_data
2032 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2035 /* Search all symtabs for the one whose file contains our address, and which
2036 is the smallest of all the ones containing the address. This is designed
2037 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2038 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2039 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2041 This happens for native ecoff format, where code from included files
2042 gets its own symtab. The symtab for the included file should have
2043 been read in already via the dependency mechanism.
2044 It might be swifter to create several symtabs with the same name
2045 like xcoff does (I'm not sure).
2047 It also happens for objfiles that have their functions reordered.
2048 For these, the symtab we are looking for is not necessarily read in. */
2050 ALL_PRIMARY_SYMTABS (objfile, s)
2052 bv = BLOCKVECTOR (s);
2053 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2055 if (BLOCK_START (b) <= pc
2056 && BLOCK_END (b) > pc
2058 || BLOCK_END (b) - BLOCK_START (b) < distance))
2060 /* For an objfile that has its functions reordered,
2061 find_pc_psymtab will find the proper partial symbol table
2062 and we simply return its corresponding symtab. */
2063 /* In order to better support objfiles that contain both
2064 stabs and coff debugging info, we continue on if a psymtab
2066 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2068 struct symtab *result;
2071 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2080 struct block_iterator iter;
2081 struct symbol *sym = NULL;
2083 ALL_BLOCK_SYMBOLS (b, iter, sym)
2085 fixup_symbol_section (sym, objfile);
2086 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2090 continue; /* No symbol in this symtab matches
2093 distance = BLOCK_END (b) - BLOCK_START (b);
2101 ALL_OBJFILES (objfile)
2103 struct symtab *result;
2107 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2118 /* Find the symtab associated with PC. Look through the psymtabs and read
2119 in another symtab if necessary. Backward compatibility, no section. */
2122 find_pc_symtab (CORE_ADDR pc)
2124 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2128 /* Find the source file and line number for a given PC value and SECTION.
2129 Return a structure containing a symtab pointer, a line number,
2130 and a pc range for the entire source line.
2131 The value's .pc field is NOT the specified pc.
2132 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2133 use the line that ends there. Otherwise, in that case, the line
2134 that begins there is used. */
2136 /* The big complication here is that a line may start in one file, and end just
2137 before the start of another file. This usually occurs when you #include
2138 code in the middle of a subroutine. To properly find the end of a line's PC
2139 range, we must search all symtabs associated with this compilation unit, and
2140 find the one whose first PC is closer than that of the next line in this
2143 /* If it's worth the effort, we could be using a binary search. */
2145 struct symtab_and_line
2146 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2149 struct linetable *l;
2152 struct linetable_entry *item;
2153 struct symtab_and_line val;
2154 struct blockvector *bv;
2155 struct minimal_symbol *msymbol;
2156 struct minimal_symbol *mfunsym;
2157 struct objfile *objfile;
2159 /* Info on best line seen so far, and where it starts, and its file. */
2161 struct linetable_entry *best = NULL;
2162 CORE_ADDR best_end = 0;
2163 struct symtab *best_symtab = 0;
2165 /* Store here the first line number
2166 of a file which contains the line at the smallest pc after PC.
2167 If we don't find a line whose range contains PC,
2168 we will use a line one less than this,
2169 with a range from the start of that file to the first line's pc. */
2170 struct linetable_entry *alt = NULL;
2171 struct symtab *alt_symtab = 0;
2173 /* Info on best line seen in this file. */
2175 struct linetable_entry *prev;
2177 /* If this pc is not from the current frame,
2178 it is the address of the end of a call instruction.
2179 Quite likely that is the start of the following statement.
2180 But what we want is the statement containing the instruction.
2181 Fudge the pc to make sure we get that. */
2183 init_sal (&val); /* initialize to zeroes */
2185 val.pspace = current_program_space;
2187 /* It's tempting to assume that, if we can't find debugging info for
2188 any function enclosing PC, that we shouldn't search for line
2189 number info, either. However, GAS can emit line number info for
2190 assembly files --- very helpful when debugging hand-written
2191 assembly code. In such a case, we'd have no debug info for the
2192 function, but we would have line info. */
2197 /* elz: added this because this function returned the wrong
2198 information if the pc belongs to a stub (import/export)
2199 to call a shlib function. This stub would be anywhere between
2200 two functions in the target, and the line info was erroneously
2201 taken to be the one of the line before the pc. */
2203 /* RT: Further explanation:
2205 * We have stubs (trampolines) inserted between procedures.
2207 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2208 * exists in the main image.
2210 * In the minimal symbol table, we have a bunch of symbols
2211 * sorted by start address. The stubs are marked as "trampoline",
2212 * the others appear as text. E.g.:
2214 * Minimal symbol table for main image
2215 * main: code for main (text symbol)
2216 * shr1: stub (trampoline symbol)
2217 * foo: code for foo (text symbol)
2219 * Minimal symbol table for "shr1" image:
2221 * shr1: code for shr1 (text symbol)
2224 * So the code below is trying to detect if we are in the stub
2225 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2226 * and if found, do the symbolization from the real-code address
2227 * rather than the stub address.
2229 * Assumptions being made about the minimal symbol table:
2230 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2231 * if we're really in the trampoline.s If we're beyond it (say
2232 * we're in "foo" in the above example), it'll have a closer
2233 * symbol (the "foo" text symbol for example) and will not
2234 * return the trampoline.
2235 * 2. lookup_minimal_symbol_text() will find a real text symbol
2236 * corresponding to the trampoline, and whose address will
2237 * be different than the trampoline address. I put in a sanity
2238 * check for the address being the same, to avoid an
2239 * infinite recursion.
2241 msymbol = lookup_minimal_symbol_by_pc (pc);
2242 if (msymbol != NULL)
2243 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2245 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2247 if (mfunsym == NULL)
2248 /* I eliminated this warning since it is coming out
2249 * in the following situation:
2250 * gdb shmain // test program with shared libraries
2251 * (gdb) break shr1 // function in shared lib
2252 * Warning: In stub for ...
2253 * In the above situation, the shared lib is not loaded yet,
2254 * so of course we can't find the real func/line info,
2255 * but the "break" still works, and the warning is annoying.
2256 * So I commented out the warning. RT */
2257 /* warning ("In stub for %s; unable to find real function/line info",
2258 SYMBOL_LINKAGE_NAME (msymbol)); */
2261 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2262 == SYMBOL_VALUE_ADDRESS (msymbol))
2263 /* Avoid infinite recursion */
2264 /* See above comment about why warning is commented out. */
2265 /* warning ("In stub for %s; unable to find real function/line info",
2266 SYMBOL_LINKAGE_NAME (msymbol)); */
2270 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2274 s = find_pc_sect_symtab (pc, section);
2277 /* If no symbol information, return previous pc. */
2284 bv = BLOCKVECTOR (s);
2285 objfile = s->objfile;
2287 /* Look at all the symtabs that share this blockvector.
2288 They all have the same apriori range, that we found was right;
2289 but they have different line tables. */
2291 ALL_OBJFILE_SYMTABS (objfile, s)
2293 if (BLOCKVECTOR (s) != bv)
2296 /* Find the best line in this symtab. */
2303 /* I think len can be zero if the symtab lacks line numbers
2304 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2305 I'm not sure which, and maybe it depends on the symbol
2311 item = l->item; /* Get first line info. */
2313 /* Is this file's first line closer than the first lines of other files?
2314 If so, record this file, and its first line, as best alternate. */
2315 if (item->pc > pc && (!alt || item->pc < alt->pc))
2321 for (i = 0; i < len; i++, item++)
2323 /* Leave prev pointing to the linetable entry for the last line
2324 that started at or before PC. */
2331 /* At this point, prev points at the line whose start addr is <= pc, and
2332 item points at the next line. If we ran off the end of the linetable
2333 (pc >= start of the last line), then prev == item. If pc < start of
2334 the first line, prev will not be set. */
2336 /* Is this file's best line closer than the best in the other files?
2337 If so, record this file, and its best line, as best so far. Don't
2338 save prev if it represents the end of a function (i.e. line number
2339 0) instead of a real line. */
2341 if (prev && prev->line && (!best || prev->pc > best->pc))
2346 /* Discard BEST_END if it's before the PC of the current BEST. */
2347 if (best_end <= best->pc)
2351 /* If another line (denoted by ITEM) is in the linetable and its
2352 PC is after BEST's PC, but before the current BEST_END, then
2353 use ITEM's PC as the new best_end. */
2354 if (best && i < len && item->pc > best->pc
2355 && (best_end == 0 || best_end > item->pc))
2356 best_end = item->pc;
2361 /* If we didn't find any line number info, just return zeros.
2362 We used to return alt->line - 1 here, but that could be
2363 anywhere; if we don't have line number info for this PC,
2364 don't make some up. */
2367 else if (best->line == 0)
2369 /* If our best fit is in a range of PC's for which no line
2370 number info is available (line number is zero) then we didn't
2371 find any valid line information. */
2376 val.symtab = best_symtab;
2377 val.line = best->line;
2379 if (best_end && (!alt || best_end < alt->pc))
2384 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2386 val.section = section;
2390 /* Backward compatibility (no section). */
2392 struct symtab_and_line
2393 find_pc_line (CORE_ADDR pc, int notcurrent)
2395 struct obj_section *section;
2397 section = find_pc_overlay (pc);
2398 if (pc_in_unmapped_range (pc, section))
2399 pc = overlay_mapped_address (pc, section);
2400 return find_pc_sect_line (pc, section, notcurrent);
2403 /* Find line number LINE in any symtab whose name is the same as
2406 If found, return the symtab that contains the linetable in which it was
2407 found, set *INDEX to the index in the linetable of the best entry
2408 found, and set *EXACT_MATCH nonzero if the value returned is an
2411 If not found, return NULL. */
2414 find_line_symtab (struct symtab *symtab, int line,
2415 int *index, int *exact_match)
2417 int exact = 0; /* Initialized here to avoid a compiler warning. */
2419 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2423 struct linetable *best_linetable;
2424 struct symtab *best_symtab;
2426 /* First try looking it up in the given symtab. */
2427 best_linetable = LINETABLE (symtab);
2428 best_symtab = symtab;
2429 best_index = find_line_common (best_linetable, line, &exact, 0);
2430 if (best_index < 0 || !exact)
2432 /* Didn't find an exact match. So we better keep looking for
2433 another symtab with the same name. In the case of xcoff,
2434 multiple csects for one source file (produced by IBM's FORTRAN
2435 compiler) produce multiple symtabs (this is unavoidable
2436 assuming csects can be at arbitrary places in memory and that
2437 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2439 /* BEST is the smallest linenumber > LINE so far seen,
2440 or 0 if none has been seen so far.
2441 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2444 struct objfile *objfile;
2447 if (best_index >= 0)
2448 best = best_linetable->item[best_index].line;
2452 ALL_OBJFILES (objfile)
2455 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2459 /* Get symbol full file name if possible. */
2460 symtab_to_fullname (symtab);
2462 ALL_SYMTABS (objfile, s)
2464 struct linetable *l;
2467 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2469 if (symtab->fullname != NULL
2470 && symtab_to_fullname (s) != NULL
2471 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2474 ind = find_line_common (l, line, &exact, 0);
2484 if (best == 0 || l->item[ind].line < best)
2486 best = l->item[ind].line;
2499 *index = best_index;
2501 *exact_match = exact;
2506 /* Given SYMTAB, returns all the PCs function in the symtab that
2507 exactly match LINE. Returns NULL if there are no exact matches,
2508 but updates BEST_ITEM in this case. */
2511 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2512 struct linetable_entry **best_item)
2515 struct symbol *previous_function = NULL;
2516 VEC (CORE_ADDR) *result = NULL;
2518 /* First, collect all the PCs that are at this line. */
2524 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2530 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2532 if (*best_item == NULL || item->line < (*best_item)->line)
2538 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2546 /* Set the PC value for a given source file and line number and return true.
2547 Returns zero for invalid line number (and sets the PC to 0).
2548 The source file is specified with a struct symtab. */
2551 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2553 struct linetable *l;
2560 symtab = find_line_symtab (symtab, line, &ind, NULL);
2563 l = LINETABLE (symtab);
2564 *pc = l->item[ind].pc;
2571 /* Find the range of pc values in a line.
2572 Store the starting pc of the line into *STARTPTR
2573 and the ending pc (start of next line) into *ENDPTR.
2574 Returns 1 to indicate success.
2575 Returns 0 if could not find the specified line. */
2578 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2581 CORE_ADDR startaddr;
2582 struct symtab_and_line found_sal;
2585 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2588 /* This whole function is based on address. For example, if line 10 has
2589 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2590 "info line *0x123" should say the line goes from 0x100 to 0x200
2591 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2592 This also insures that we never give a range like "starts at 0x134
2593 and ends at 0x12c". */
2595 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2596 if (found_sal.line != sal.line)
2598 /* The specified line (sal) has zero bytes. */
2599 *startptr = found_sal.pc;
2600 *endptr = found_sal.pc;
2604 *startptr = found_sal.pc;
2605 *endptr = found_sal.end;
2610 /* Given a line table and a line number, return the index into the line
2611 table for the pc of the nearest line whose number is >= the specified one.
2612 Return -1 if none is found. The value is >= 0 if it is an index.
2613 START is the index at which to start searching the line table.
2615 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2618 find_line_common (struct linetable *l, int lineno,
2619 int *exact_match, int start)
2624 /* BEST is the smallest linenumber > LINENO so far seen,
2625 or 0 if none has been seen so far.
2626 BEST_INDEX identifies the item for it. */
2628 int best_index = -1;
2639 for (i = start; i < len; i++)
2641 struct linetable_entry *item = &(l->item[i]);
2643 if (item->line == lineno)
2645 /* Return the first (lowest address) entry which matches. */
2650 if (item->line > lineno && (best == 0 || item->line < best))
2657 /* If we got here, we didn't get an exact match. */
2662 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2664 struct symtab_and_line sal;
2666 sal = find_pc_line (pc, 0);
2669 return sal.symtab != 0;
2672 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2673 address for that function that has an entry in SYMTAB's line info
2674 table. If such an entry cannot be found, return FUNC_ADDR
2678 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2680 CORE_ADDR func_start, func_end;
2681 struct linetable *l;
2684 /* Give up if this symbol has no lineinfo table. */
2685 l = LINETABLE (symtab);
2689 /* Get the range for the function's PC values, or give up if we
2690 cannot, for some reason. */
2691 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2694 /* Linetable entries are ordered by PC values, see the commentary in
2695 symtab.h where `struct linetable' is defined. Thus, the first
2696 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2697 address we are looking for. */
2698 for (i = 0; i < l->nitems; i++)
2700 struct linetable_entry *item = &(l->item[i]);
2702 /* Don't use line numbers of zero, they mark special entries in
2703 the table. See the commentary on symtab.h before the
2704 definition of struct linetable. */
2705 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2712 /* Given a function symbol SYM, find the symtab and line for the start
2714 If the argument FUNFIRSTLINE is nonzero, we want the first line
2715 of real code inside the function. */
2717 struct symtab_and_line
2718 find_function_start_sal (struct symbol *sym, int funfirstline)
2720 struct symtab_and_line sal;
2722 fixup_symbol_section (sym, NULL);
2723 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2724 SYMBOL_OBJ_SECTION (sym), 0);
2726 /* We always should have a line for the function start address.
2727 If we don't, something is odd. Create a plain SAL refering
2728 just the PC and hope that skip_prologue_sal (if requested)
2729 can find a line number for after the prologue. */
2730 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2733 sal.pspace = current_program_space;
2734 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2735 sal.section = SYMBOL_OBJ_SECTION (sym);
2739 skip_prologue_sal (&sal);
2744 /* Adjust SAL to the first instruction past the function prologue.
2745 If the PC was explicitly specified, the SAL is not changed.
2746 If the line number was explicitly specified, at most the SAL's PC
2747 is updated. If SAL is already past the prologue, then do nothing. */
2750 skip_prologue_sal (struct symtab_and_line *sal)
2753 struct symtab_and_line start_sal;
2754 struct cleanup *old_chain;
2755 CORE_ADDR pc, saved_pc;
2756 struct obj_section *section;
2758 struct objfile *objfile;
2759 struct gdbarch *gdbarch;
2760 struct block *b, *function_block;
2761 int force_skip, skip;
2763 /* Do not change the SAL is PC was specified explicitly. */
2764 if (sal->explicit_pc)
2767 old_chain = save_current_space_and_thread ();
2768 switch_to_program_space_and_thread (sal->pspace);
2770 sym = find_pc_sect_function (sal->pc, sal->section);
2773 fixup_symbol_section (sym, NULL);
2775 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2776 section = SYMBOL_OBJ_SECTION (sym);
2777 name = SYMBOL_LINKAGE_NAME (sym);
2778 objfile = SYMBOL_SYMTAB (sym)->objfile;
2782 struct minimal_symbol *msymbol
2783 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2785 if (msymbol == NULL)
2787 do_cleanups (old_chain);
2791 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2792 section = SYMBOL_OBJ_SECTION (msymbol);
2793 name = SYMBOL_LINKAGE_NAME (msymbol);
2794 objfile = msymbol_objfile (msymbol);
2797 gdbarch = get_objfile_arch (objfile);
2799 /* Process the prologue in two passes. In the first pass try to skip the
2800 prologue (SKIP is true) and verify there is a real need for it (indicated
2801 by FORCE_SKIP). If no such reason was found run a second pass where the
2802 prologue is not skipped (SKIP is false). */
2807 /* Be conservative - allow direct PC (without skipping prologue) only if we
2808 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2809 have to be set by the caller so we use SYM instead. */
2810 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2818 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2819 so that gdbarch_skip_prologue has something unique to work on. */
2820 if (section_is_overlay (section) && !section_is_mapped (section))
2821 pc = overlay_unmapped_address (pc, section);
2823 /* Skip "first line" of function (which is actually its prologue). */
2824 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2826 pc = gdbarch_skip_prologue (gdbarch, pc);
2828 /* For overlays, map pc back into its mapped VMA range. */
2829 pc = overlay_mapped_address (pc, section);
2831 /* Calculate line number. */
2832 start_sal = find_pc_sect_line (pc, section, 0);
2834 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2835 line is still part of the same function. */
2836 if (skip && start_sal.pc != pc
2837 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2838 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2839 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2840 == lookup_minimal_symbol_by_pc_section (pc, section))))
2842 /* First pc of next line */
2844 /* Recalculate the line number (might not be N+1). */
2845 start_sal = find_pc_sect_line (pc, section, 0);
2848 /* On targets with executable formats that don't have a concept of
2849 constructors (ELF with .init has, PE doesn't), gcc emits a call
2850 to `__main' in `main' between the prologue and before user
2852 if (gdbarch_skip_main_prologue_p (gdbarch)
2853 && name && strcmp_iw (name, "main") == 0)
2855 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2856 /* Recalculate the line number (might not be N+1). */
2857 start_sal = find_pc_sect_line (pc, section, 0);
2861 while (!force_skip && skip--);
2863 /* If we still don't have a valid source line, try to find the first
2864 PC in the lineinfo table that belongs to the same function. This
2865 happens with COFF debug info, which does not seem to have an
2866 entry in lineinfo table for the code after the prologue which has
2867 no direct relation to source. For example, this was found to be
2868 the case with the DJGPP target using "gcc -gcoff" when the
2869 compiler inserted code after the prologue to make sure the stack
2871 if (!force_skip && sym && start_sal.symtab == NULL)
2873 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2874 /* Recalculate the line number. */
2875 start_sal = find_pc_sect_line (pc, section, 0);
2878 do_cleanups (old_chain);
2880 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2881 forward SAL to the end of the prologue. */
2886 sal->section = section;
2888 /* Unless the explicit_line flag was set, update the SAL line
2889 and symtab to correspond to the modified PC location. */
2890 if (sal->explicit_line)
2893 sal->symtab = start_sal.symtab;
2894 sal->line = start_sal.line;
2895 sal->end = start_sal.end;
2897 /* Check if we are now inside an inlined function. If we can,
2898 use the call site of the function instead. */
2899 b = block_for_pc_sect (sal->pc, sal->section);
2900 function_block = NULL;
2903 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2905 else if (BLOCK_FUNCTION (b) != NULL)
2907 b = BLOCK_SUPERBLOCK (b);
2909 if (function_block != NULL
2910 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2912 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2913 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2917 /* If P is of the form "operator[ \t]+..." where `...' is
2918 some legitimate operator text, return a pointer to the
2919 beginning of the substring of the operator text.
2920 Otherwise, return "". */
2923 operator_chars (char *p, char **end)
2926 if (strncmp (p, "operator", 8))
2930 /* Don't get faked out by `operator' being part of a longer
2932 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2935 /* Allow some whitespace between `operator' and the operator symbol. */
2936 while (*p == ' ' || *p == '\t')
2939 /* Recognize 'operator TYPENAME'. */
2941 if (isalpha (*p) || *p == '_' || *p == '$')
2945 while (isalnum (*q) || *q == '_' || *q == '$')
2954 case '\\': /* regexp quoting */
2957 if (p[2] == '=') /* 'operator\*=' */
2959 else /* 'operator\*' */
2963 else if (p[1] == '[')
2966 error (_("mismatched quoting on brackets, "
2967 "try 'operator\\[\\]'"));
2968 else if (p[2] == '\\' && p[3] == ']')
2970 *end = p + 4; /* 'operator\[\]' */
2974 error (_("nothing is allowed between '[' and ']'"));
2978 /* Gratuitous qoute: skip it and move on. */
3000 if (p[0] == '-' && p[1] == '>')
3002 /* Struct pointer member operator 'operator->'. */
3005 *end = p + 3; /* 'operator->*' */
3008 else if (p[2] == '\\')
3010 *end = p + 4; /* Hopefully 'operator->\*' */
3015 *end = p + 2; /* 'operator->' */
3019 if (p[1] == '=' || p[1] == p[0])
3030 error (_("`operator ()' must be specified "
3031 "without whitespace in `()'"));
3036 error (_("`operator ?:' must be specified "
3037 "without whitespace in `?:'"));
3042 error (_("`operator []' must be specified "
3043 "without whitespace in `[]'"));
3047 error (_("`operator %s' not supported"), p);
3056 /* If FILE is not already in the table of files, return zero;
3057 otherwise return non-zero. Optionally add FILE to the table if ADD
3058 is non-zero. If *FIRST is non-zero, forget the old table
3062 filename_seen (const char *file, int add, int *first)
3064 /* Table of files seen so far. */
3065 static const char **tab = NULL;
3066 /* Allocated size of tab in elements.
3067 Start with one 256-byte block (when using GNU malloc.c).
3068 24 is the malloc overhead when range checking is in effect. */
3069 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3070 /* Current size of tab in elements. */
3071 static int tab_cur_size;
3077 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3081 /* Is FILE in tab? */
3082 for (p = tab; p < tab + tab_cur_size; p++)
3083 if (filename_cmp (*p, file) == 0)
3086 /* No; maybe add it to tab. */
3089 if (tab_cur_size == tab_alloc_size)
3091 tab_alloc_size *= 2;
3092 tab = (const char **) xrealloc ((char *) tab,
3093 tab_alloc_size * sizeof (*tab));
3095 tab[tab_cur_size++] = file;
3101 /* Slave routine for sources_info. Force line breaks at ,'s.
3102 NAME is the name to print and *FIRST is nonzero if this is the first
3103 name printed. Set *FIRST to zero. */
3106 output_source_filename (const char *name, int *first)
3108 /* Since a single source file can result in several partial symbol
3109 tables, we need to avoid printing it more than once. Note: if
3110 some of the psymtabs are read in and some are not, it gets
3111 printed both under "Source files for which symbols have been
3112 read" and "Source files for which symbols will be read in on
3113 demand". I consider this a reasonable way to deal with the
3114 situation. I'm not sure whether this can also happen for
3115 symtabs; it doesn't hurt to check. */
3117 /* Was NAME already seen? */
3118 if (filename_seen (name, 1, first))
3120 /* Yes; don't print it again. */
3123 /* No; print it and reset *FIRST. */
3130 printf_filtered (", ");
3134 fputs_filtered (name, gdb_stdout);
3137 /* A callback for map_partial_symbol_filenames. */
3140 output_partial_symbol_filename (const char *filename, const char *fullname,
3143 output_source_filename (fullname ? fullname : filename, data);
3147 sources_info (char *ignore, int from_tty)
3150 struct objfile *objfile;
3153 if (!have_full_symbols () && !have_partial_symbols ())
3155 error (_("No symbol table is loaded. Use the \"file\" command."));
3158 printf_filtered ("Source files for which symbols have been read in:\n\n");
3161 ALL_SYMTABS (objfile, s)
3163 const char *fullname = symtab_to_fullname (s);
3165 output_source_filename (fullname ? fullname : s->filename, &first);
3167 printf_filtered ("\n\n");
3169 printf_filtered ("Source files for which symbols "
3170 "will be read in on demand:\n\n");
3173 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3174 1 /*need_fullname*/);
3175 printf_filtered ("\n");
3179 file_matches (const char *file, char *files[], int nfiles)
3183 if (file != NULL && nfiles != 0)
3185 for (i = 0; i < nfiles; i++)
3187 if (filename_cmp (files[i], lbasename (file)) == 0)
3191 else if (nfiles == 0)
3196 /* Free any memory associated with a search. */
3199 free_search_symbols (struct symbol_search *symbols)
3201 struct symbol_search *p;
3202 struct symbol_search *next;
3204 for (p = symbols; p != NULL; p = next)
3212 do_free_search_symbols_cleanup (void *symbols)
3214 free_search_symbols (symbols);
3218 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3220 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3223 /* Helper function for sort_search_symbols and qsort. Can only
3224 sort symbols, not minimal symbols. */
3227 compare_search_syms (const void *sa, const void *sb)
3229 struct symbol_search **sym_a = (struct symbol_search **) sa;
3230 struct symbol_search **sym_b = (struct symbol_search **) sb;
3232 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3233 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3236 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3237 prevtail where it is, but update its next pointer to point to
3238 the first of the sorted symbols. */
3240 static struct symbol_search *
3241 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3243 struct symbol_search **symbols, *symp, *old_next;
3246 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3248 symp = prevtail->next;
3249 for (i = 0; i < nfound; i++)
3254 /* Generally NULL. */
3257 qsort (symbols, nfound, sizeof (struct symbol_search *),
3258 compare_search_syms);
3261 for (i = 0; i < nfound; i++)
3263 symp->next = symbols[i];
3266 symp->next = old_next;
3272 /* An object of this type is passed as the user_data to the
3273 expand_symtabs_matching method. */
3274 struct search_symbols_data
3279 /* It is true if PREG contains valid data, false otherwise. */
3280 unsigned preg_p : 1;
3284 /* A callback for expand_symtabs_matching. */
3287 search_symbols_file_matches (const char *filename, void *user_data)
3289 struct search_symbols_data *data = user_data;
3291 return file_matches (filename, data->files, data->nfiles);
3294 /* A callback for expand_symtabs_matching. */
3297 search_symbols_name_matches (const char *symname, void *user_data)
3299 struct search_symbols_data *data = user_data;
3301 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3304 /* Search the symbol table for matches to the regular expression REGEXP,
3305 returning the results in *MATCHES.
3307 Only symbols of KIND are searched:
3308 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3309 and constants (enums)
3310 FUNCTIONS_DOMAIN - search all functions
3311 TYPES_DOMAIN - search all type names
3312 ALL_DOMAIN - an internal error for this function
3314 free_search_symbols should be called when *MATCHES is no longer needed.
3316 The results are sorted locally; each symtab's global and static blocks are
3317 separately alphabetized. */
3320 search_symbols (char *regexp, enum search_domain kind,
3321 int nfiles, char *files[],
3322 struct symbol_search **matches)
3325 struct blockvector *bv;
3328 struct block_iterator iter;
3330 struct objfile *objfile;
3331 struct minimal_symbol *msymbol;
3333 static const enum minimal_symbol_type types[]
3334 = {mst_data, mst_text, mst_abs};
3335 static const enum minimal_symbol_type types2[]
3336 = {mst_bss, mst_file_text, mst_abs};
3337 static const enum minimal_symbol_type types3[]
3338 = {mst_file_data, mst_solib_trampoline, mst_abs};
3339 static const enum minimal_symbol_type types4[]
3340 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3341 enum minimal_symbol_type ourtype;
3342 enum minimal_symbol_type ourtype2;
3343 enum minimal_symbol_type ourtype3;
3344 enum minimal_symbol_type ourtype4;
3345 struct symbol_search *sr;
3346 struct symbol_search *psr;
3347 struct symbol_search *tail;
3348 struct search_symbols_data datum;
3350 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3351 CLEANUP_CHAIN is freed only in the case of an error. */
3352 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3353 struct cleanup *retval_chain;
3355 gdb_assert (kind <= TYPES_DOMAIN);
3357 ourtype = types[kind];
3358 ourtype2 = types2[kind];
3359 ourtype3 = types3[kind];
3360 ourtype4 = types4[kind];
3362 sr = *matches = NULL;
3368 /* Make sure spacing is right for C++ operators.
3369 This is just a courtesy to make the matching less sensitive
3370 to how many spaces the user leaves between 'operator'
3371 and <TYPENAME> or <OPERATOR>. */
3373 char *opname = operator_chars (regexp, &opend);
3378 int fix = -1; /* -1 means ok; otherwise number of
3381 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3383 /* There should 1 space between 'operator' and 'TYPENAME'. */
3384 if (opname[-1] != ' ' || opname[-2] == ' ')
3389 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3390 if (opname[-1] == ' ')
3393 /* If wrong number of spaces, fix it. */
3396 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3398 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3403 errcode = regcomp (&datum.preg, regexp,
3404 REG_NOSUB | (case_sensitivity == case_sensitive_off
3408 char *err = get_regcomp_error (errcode, &datum.preg);
3410 make_cleanup (xfree, err);
3411 error (_("Invalid regexp (%s): %s"), err, regexp);
3414 make_regfree_cleanup (&datum.preg);
3417 /* Search through the partial symtabs *first* for all symbols
3418 matching the regexp. That way we don't have to reproduce all of
3419 the machinery below. */
3421 datum.nfiles = nfiles;
3422 datum.files = files;
3423 ALL_OBJFILES (objfile)
3426 objfile->sf->qf->expand_symtabs_matching (objfile,
3429 : search_symbols_file_matches),
3430 search_symbols_name_matches,
3435 retval_chain = old_chain;
3437 /* Here, we search through the minimal symbol tables for functions
3438 and variables that match, and force their symbols to be read.
3439 This is in particular necessary for demangled variable names,
3440 which are no longer put into the partial symbol tables.
3441 The symbol will then be found during the scan of symtabs below.
3443 For functions, find_pc_symtab should succeed if we have debug info
3444 for the function, for variables we have to call lookup_symbol
3445 to determine if the variable has debug info.
3446 If the lookup fails, set found_misc so that we will rescan to print
3447 any matching symbols without debug info. */
3449 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3451 ALL_MSYMBOLS (objfile, msymbol)
3455 if (MSYMBOL_TYPE (msymbol) == ourtype
3456 || MSYMBOL_TYPE (msymbol) == ourtype2
3457 || MSYMBOL_TYPE (msymbol) == ourtype3
3458 || MSYMBOL_TYPE (msymbol) == ourtype4)
3461 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3464 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3466 /* FIXME: carlton/2003-02-04: Given that the
3467 semantics of lookup_symbol keeps on changing
3468 slightly, it would be a nice idea if we had a
3469 function lookup_symbol_minsym that found the
3470 symbol associated to a given minimal symbol (if
3472 if (kind == FUNCTIONS_DOMAIN
3473 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3474 (struct block *) NULL,
3484 ALL_PRIMARY_SYMTABS (objfile, s)
3486 bv = BLOCKVECTOR (s);
3487 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3489 struct symbol_search *prevtail = tail;
3492 b = BLOCKVECTOR_BLOCK (bv, i);
3493 ALL_BLOCK_SYMBOLS (b, iter, sym)
3495 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3499 if (file_matches (real_symtab->filename, files, nfiles)
3501 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3503 && ((kind == VARIABLES_DOMAIN
3504 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3505 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3506 && SYMBOL_CLASS (sym) != LOC_BLOCK
3507 /* LOC_CONST can be used for more than just enums,
3508 e.g., c++ static const members.
3509 We only want to skip enums here. */
3510 && !(SYMBOL_CLASS (sym) == LOC_CONST
3511 && TYPE_CODE (SYMBOL_TYPE (sym))
3513 || (kind == FUNCTIONS_DOMAIN
3514 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3515 || (kind == TYPES_DOMAIN
3516 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3519 psr = (struct symbol_search *)
3520 xmalloc (sizeof (struct symbol_search));
3522 psr->symtab = real_symtab;
3524 psr->msymbol = NULL;
3536 if (prevtail == NULL)
3538 struct symbol_search dummy;
3541 tail = sort_search_symbols (&dummy, nfound);
3544 make_cleanup_free_search_symbols (sr);
3547 tail = sort_search_symbols (prevtail, nfound);
3552 /* If there are no eyes, avoid all contact. I mean, if there are
3553 no debug symbols, then print directly from the msymbol_vector. */
3555 if (found_misc || kind != FUNCTIONS_DOMAIN)
3557 ALL_MSYMBOLS (objfile, msymbol)
3561 if (MSYMBOL_TYPE (msymbol) == ourtype
3562 || MSYMBOL_TYPE (msymbol) == ourtype2
3563 || MSYMBOL_TYPE (msymbol) == ourtype3
3564 || MSYMBOL_TYPE (msymbol) == ourtype4)
3567 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3570 /* Functions: Look up by address. */
3571 if (kind != FUNCTIONS_DOMAIN ||
3572 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3574 /* Variables/Absolutes: Look up by name. */
3575 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3576 (struct block *) NULL, VAR_DOMAIN, 0)
3580 psr = (struct symbol_search *)
3581 xmalloc (sizeof (struct symbol_search));
3583 psr->msymbol = msymbol;
3590 make_cleanup_free_search_symbols (sr);
3602 discard_cleanups (retval_chain);
3603 do_cleanups (old_chain);
3607 /* Helper function for symtab_symbol_info, this function uses
3608 the data returned from search_symbols() to print information
3609 regarding the match to gdb_stdout. */
3612 print_symbol_info (enum search_domain kind,
3613 struct symtab *s, struct symbol *sym,
3614 int block, char *last)
3616 if (last == NULL || filename_cmp (last, s->filename) != 0)
3618 fputs_filtered ("\nFile ", gdb_stdout);
3619 fputs_filtered (s->filename, gdb_stdout);
3620 fputs_filtered (":\n", gdb_stdout);
3623 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3624 printf_filtered ("static ");
3626 /* Typedef that is not a C++ class. */
3627 if (kind == TYPES_DOMAIN
3628 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3629 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3630 /* variable, func, or typedef-that-is-c++-class. */
3631 else if (kind < TYPES_DOMAIN
3632 || (kind == TYPES_DOMAIN
3633 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3635 type_print (SYMBOL_TYPE (sym),
3636 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3637 ? "" : SYMBOL_PRINT_NAME (sym)),
3640 printf_filtered (";\n");
3644 /* This help function for symtab_symbol_info() prints information
3645 for non-debugging symbols to gdb_stdout. */
3648 print_msymbol_info (struct minimal_symbol *msymbol)
3650 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3653 if (gdbarch_addr_bit (gdbarch) <= 32)
3654 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3655 & (CORE_ADDR) 0xffffffff,
3658 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3660 printf_filtered ("%s %s\n",
3661 tmp, SYMBOL_PRINT_NAME (msymbol));
3664 /* This is the guts of the commands "info functions", "info types", and
3665 "info variables". It calls search_symbols to find all matches and then
3666 print_[m]symbol_info to print out some useful information about the
3670 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3672 static const char * const classnames[] =
3673 {"variable", "function", "type"};
3674 struct symbol_search *symbols;
3675 struct symbol_search *p;
3676 struct cleanup *old_chain;
3677 char *last_filename = NULL;
3680 gdb_assert (kind <= TYPES_DOMAIN);
3682 /* Must make sure that if we're interrupted, symbols gets freed. */
3683 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3684 old_chain = make_cleanup_free_search_symbols (symbols);
3686 printf_filtered (regexp
3687 ? "All %ss matching regular expression \"%s\":\n"
3688 : "All defined %ss:\n",
3689 classnames[kind], regexp);
3691 for (p = symbols; p != NULL; p = p->next)
3695 if (p->msymbol != NULL)
3699 printf_filtered ("\nNon-debugging symbols:\n");
3702 print_msymbol_info (p->msymbol);
3706 print_symbol_info (kind,
3711 last_filename = p->symtab->filename;
3715 do_cleanups (old_chain);
3719 variables_info (char *regexp, int from_tty)
3721 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3725 functions_info (char *regexp, int from_tty)
3727 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3732 types_info (char *regexp, int from_tty)
3734 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3737 /* Breakpoint all functions matching regular expression. */
3740 rbreak_command_wrapper (char *regexp, int from_tty)
3742 rbreak_command (regexp, from_tty);
3745 /* A cleanup function that calls end_rbreak_breakpoints. */
3748 do_end_rbreak_breakpoints (void *ignore)
3750 end_rbreak_breakpoints ();
3754 rbreak_command (char *regexp, int from_tty)
3756 struct symbol_search *ss;
3757 struct symbol_search *p;
3758 struct cleanup *old_chain;
3759 char *string = NULL;
3761 char **files = NULL, *file_name;
3766 char *colon = strchr (regexp, ':');
3768 if (colon && *(colon + 1) != ':')
3772 colon_index = colon - regexp;
3773 file_name = alloca (colon_index + 1);
3774 memcpy (file_name, regexp, colon_index);
3775 file_name[colon_index--] = 0;
3776 while (isspace (file_name[colon_index]))
3777 file_name[colon_index--] = 0;
3781 while (isspace (*regexp)) regexp++;
3785 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3786 old_chain = make_cleanup_free_search_symbols (ss);
3787 make_cleanup (free_current_contents, &string);
3789 start_rbreak_breakpoints ();
3790 make_cleanup (do_end_rbreak_breakpoints, NULL);
3791 for (p = ss; p != NULL; p = p->next)
3793 if (p->msymbol == NULL)
3795 int newlen = (strlen (p->symtab->filename)
3796 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3801 string = xrealloc (string, newlen);
3804 strcpy (string, p->symtab->filename);
3805 strcat (string, ":'");
3806 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3807 strcat (string, "'");
3808 break_command (string, from_tty);
3809 print_symbol_info (FUNCTIONS_DOMAIN,
3813 p->symtab->filename);
3817 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3821 string = xrealloc (string, newlen);
3824 strcpy (string, "'");
3825 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3826 strcat (string, "'");
3828 break_command (string, from_tty);
3829 printf_filtered ("<function, no debug info> %s;\n",
3830 SYMBOL_PRINT_NAME (p->msymbol));
3834 do_cleanups (old_chain);
3838 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3840 Either sym_text[sym_text_len] != '(' and then we search for any
3841 symbol starting with SYM_TEXT text.
3843 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3844 be terminated at that point. Partial symbol tables do not have parameters
3848 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3850 int (*ncmp) (const char *, const char *, size_t);
3852 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3854 if (ncmp (name, sym_text, sym_text_len) != 0)
3857 if (sym_text[sym_text_len] == '(')
3859 /* User searches for `name(someth...'. Require NAME to be terminated.
3860 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3861 present but accept even parameters presence. In this case this
3862 function is in fact strcmp_iw but whitespace skipping is not supported
3863 for tab completion. */
3865 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3872 /* Free any memory associated with a completion list. */
3875 free_completion_list (char ***list_ptr)
3878 char **list = *list_ptr;
3880 while (list[i] != NULL)
3888 /* Callback for make_cleanup. */
3891 do_free_completion_list (void *list)
3893 free_completion_list (list);
3896 /* Helper routine for make_symbol_completion_list. */
3898 static int return_val_size;
3899 static int return_val_index;
3900 static char **return_val;
3902 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3903 completion_list_add_name \
3904 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3906 /* Test to see if the symbol specified by SYMNAME (which is already
3907 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3908 characters. If so, add it to the current completion list. */
3911 completion_list_add_name (const char *symname,
3912 const char *sym_text, int sym_text_len,
3913 const char *text, const char *word)
3917 /* Clip symbols that cannot match. */
3918 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3921 /* We have a match for a completion, so add SYMNAME to the current list
3922 of matches. Note that the name is moved to freshly malloc'd space. */
3927 if (word == sym_text)
3929 new = xmalloc (strlen (symname) + 5);
3930 strcpy (new, symname);
3932 else if (word > sym_text)
3934 /* Return some portion of symname. */
3935 new = xmalloc (strlen (symname) + 5);
3936 strcpy (new, symname + (word - sym_text));
3940 /* Return some of SYM_TEXT plus symname. */
3941 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3942 strncpy (new, word, sym_text - word);
3943 new[sym_text - word] = '\0';
3944 strcat (new, symname);
3947 if (return_val_index + 3 > return_val_size)
3949 newsize = (return_val_size *= 2) * sizeof (char *);
3950 return_val = (char **) xrealloc ((char *) return_val, newsize);
3952 return_val[return_val_index++] = new;
3953 return_val[return_val_index] = NULL;
3957 /* ObjC: In case we are completing on a selector, look as the msymbol
3958 again and feed all the selectors into the mill. */
3961 completion_list_objc_symbol (struct minimal_symbol *msymbol,
3962 const char *sym_text, int sym_text_len,
3963 const char *text, const char *word)
3965 static char *tmp = NULL;
3966 static unsigned int tmplen = 0;
3968 const char *method, *category, *selector;
3971 method = SYMBOL_NATURAL_NAME (msymbol);
3973 /* Is it a method? */
3974 if ((method[0] != '-') && (method[0] != '+'))
3977 if (sym_text[0] == '[')
3978 /* Complete on shortened method method. */
3979 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3981 while ((strlen (method) + 1) >= tmplen)
3987 tmp = xrealloc (tmp, tmplen);
3989 selector = strchr (method, ' ');
3990 if (selector != NULL)
3993 category = strchr (method, '(');
3995 if ((category != NULL) && (selector != NULL))
3997 memcpy (tmp, method, (category - method));
3998 tmp[category - method] = ' ';
3999 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4000 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4001 if (sym_text[0] == '[')
4002 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4005 if (selector != NULL)
4007 /* Complete on selector only. */
4008 strcpy (tmp, selector);
4009 tmp2 = strchr (tmp, ']');
4013 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4017 /* Break the non-quoted text based on the characters which are in
4018 symbols. FIXME: This should probably be language-specific. */
4021 language_search_unquoted_string (char *text, char *p)
4023 for (; p > text; --p)
4025 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4029 if ((current_language->la_language == language_objc))
4031 if (p[-1] == ':') /* Might be part of a method name. */
4033 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4034 p -= 2; /* Beginning of a method name. */
4035 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4036 { /* Might be part of a method name. */
4039 /* Seeing a ' ' or a '(' is not conclusive evidence
4040 that we are in the middle of a method name. However,
4041 finding "-[" or "+[" should be pretty un-ambiguous.
4042 Unfortunately we have to find it now to decide. */
4045 if (isalnum (t[-1]) || t[-1] == '_' ||
4046 t[-1] == ' ' || t[-1] == ':' ||
4047 t[-1] == '(' || t[-1] == ')')
4052 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4053 p = t - 2; /* Method name detected. */
4054 /* Else we leave with p unchanged. */
4064 completion_list_add_fields (struct symbol *sym, char *sym_text,
4065 int sym_text_len, char *text, char *word)
4067 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4069 struct type *t = SYMBOL_TYPE (sym);
4070 enum type_code c = TYPE_CODE (t);
4073 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4074 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4075 if (TYPE_FIELD_NAME (t, j))
4076 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4077 sym_text, sym_text_len, text, word);
4081 /* Type of the user_data argument passed to add_macro_name or
4082 expand_partial_symbol_name. The contents are simply whatever is
4083 needed by completion_list_add_name. */
4084 struct add_name_data
4092 /* A callback used with macro_for_each and macro_for_each_in_scope.
4093 This adds a macro's name to the current completion list. */
4096 add_macro_name (const char *name, const struct macro_definition *ignore,
4097 struct macro_source_file *ignore2, int ignore3,
4100 struct add_name_data *datum = (struct add_name_data *) user_data;
4102 completion_list_add_name ((char *) name,
4103 datum->sym_text, datum->sym_text_len,
4104 datum->text, datum->word);
4107 /* A callback for expand_partial_symbol_names. */
4110 expand_partial_symbol_name (const char *name, void *user_data)
4112 struct add_name_data *datum = (struct add_name_data *) user_data;
4114 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4118 default_make_symbol_completion_list_break_on (char *text, char *word,
4119 const char *break_on)
4121 /* Problem: All of the symbols have to be copied because readline
4122 frees them. I'm not going to worry about this; hopefully there
4123 won't be that many. */
4127 struct minimal_symbol *msymbol;
4128 struct objfile *objfile;
4130 const struct block *surrounding_static_block, *surrounding_global_block;
4131 struct block_iterator iter;
4132 /* The symbol we are completing on. Points in same buffer as text. */
4134 /* Length of sym_text. */
4136 struct add_name_data datum;
4137 struct cleanup *back_to;
4139 /* Now look for the symbol we are supposed to complete on. */
4143 char *quote_pos = NULL;
4145 /* First see if this is a quoted string. */
4147 for (p = text; *p != '\0'; ++p)
4149 if (quote_found != '\0')
4151 if (*p == quote_found)
4152 /* Found close quote. */
4154 else if (*p == '\\' && p[1] == quote_found)
4155 /* A backslash followed by the quote character
4156 doesn't end the string. */
4159 else if (*p == '\'' || *p == '"')
4165 if (quote_found == '\'')
4166 /* A string within single quotes can be a symbol, so complete on it. */
4167 sym_text = quote_pos + 1;
4168 else if (quote_found == '"')
4169 /* A double-quoted string is never a symbol, nor does it make sense
4170 to complete it any other way. */
4172 return_val = (char **) xmalloc (sizeof (char *));
4173 return_val[0] = NULL;
4178 /* It is not a quoted string. Break it based on the characters
4179 which are in symbols. */
4182 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4183 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4192 sym_text_len = strlen (sym_text);
4194 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4196 if (current_language->la_language == language_cplus
4197 || current_language->la_language == language_java
4198 || current_language->la_language == language_fortran)
4200 /* These languages may have parameters entered by user but they are never
4201 present in the partial symbol tables. */
4203 const char *cs = memchr (sym_text, '(', sym_text_len);
4206 sym_text_len = cs - sym_text;
4208 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4210 return_val_size = 100;
4211 return_val_index = 0;
4212 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4213 return_val[0] = NULL;
4214 back_to = make_cleanup (do_free_completion_list, &return_val);
4216 datum.sym_text = sym_text;
4217 datum.sym_text_len = sym_text_len;
4221 /* Look through the partial symtabs for all symbols which begin
4222 by matching SYM_TEXT. Expand all CUs that you find to the list.
4223 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4224 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4226 /* At this point scan through the misc symbol vectors and add each
4227 symbol you find to the list. Eventually we want to ignore
4228 anything that isn't a text symbol (everything else will be
4229 handled by the psymtab code above). */
4231 ALL_MSYMBOLS (objfile, msymbol)
4234 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4236 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4239 /* Search upwards from currently selected frame (so that we can
4240 complete on local vars). Also catch fields of types defined in
4241 this places which match our text string. Only complete on types
4242 visible from current context. */
4244 b = get_selected_block (0);
4245 surrounding_static_block = block_static_block (b);
4246 surrounding_global_block = block_global_block (b);
4247 if (surrounding_static_block != NULL)
4248 while (b != surrounding_static_block)
4252 ALL_BLOCK_SYMBOLS (b, iter, sym)
4254 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4256 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4260 /* Stop when we encounter an enclosing function. Do not stop for
4261 non-inlined functions - the locals of the enclosing function
4262 are in scope for a nested function. */
4263 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4265 b = BLOCK_SUPERBLOCK (b);
4268 /* Add fields from the file's types; symbols will be added below. */
4270 if (surrounding_static_block != NULL)
4271 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4272 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4274 if (surrounding_global_block != NULL)
4275 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4276 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4278 /* Go through the symtabs and check the externs and statics for
4279 symbols which match. */
4281 ALL_PRIMARY_SYMTABS (objfile, s)
4284 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4285 ALL_BLOCK_SYMBOLS (b, iter, sym)
4287 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4291 ALL_PRIMARY_SYMTABS (objfile, s)
4294 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4295 ALL_BLOCK_SYMBOLS (b, iter, sym)
4297 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4301 if (current_language->la_macro_expansion == macro_expansion_c)
4303 struct macro_scope *scope;
4305 /* Add any macros visible in the default scope. Note that this
4306 may yield the occasional wrong result, because an expression
4307 might be evaluated in a scope other than the default. For
4308 example, if the user types "break file:line if <TAB>", the
4309 resulting expression will be evaluated at "file:line" -- but
4310 at there does not seem to be a way to detect this at
4312 scope = default_macro_scope ();
4315 macro_for_each_in_scope (scope->file, scope->line,
4316 add_macro_name, &datum);
4320 /* User-defined macros are always visible. */
4321 macro_for_each (macro_user_macros, add_macro_name, &datum);
4324 discard_cleanups (back_to);
4325 return (return_val);
4329 default_make_symbol_completion_list (char *text, char *word)
4331 return default_make_symbol_completion_list_break_on (text, word, "");
4334 /* Return a NULL terminated array of all symbols (regardless of class)
4335 which begin by matching TEXT. If the answer is no symbols, then
4336 the return value is an array which contains only a NULL pointer. */
4339 make_symbol_completion_list (char *text, char *word)
4341 return current_language->la_make_symbol_completion_list (text, word);
4344 /* Like make_symbol_completion_list, but suitable for use as a
4345 completion function. */
4348 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4349 char *text, char *word)
4351 return make_symbol_completion_list (text, word);
4354 /* Like make_symbol_completion_list, but returns a list of symbols
4355 defined in a source file FILE. */
4358 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4363 struct block_iterator iter;
4364 /* The symbol we are completing on. Points in same buffer as text. */
4366 /* Length of sym_text. */
4369 /* Now look for the symbol we are supposed to complete on.
4370 FIXME: This should be language-specific. */
4374 char *quote_pos = NULL;
4376 /* First see if this is a quoted string. */
4378 for (p = text; *p != '\0'; ++p)
4380 if (quote_found != '\0')
4382 if (*p == quote_found)
4383 /* Found close quote. */
4385 else if (*p == '\\' && p[1] == quote_found)
4386 /* A backslash followed by the quote character
4387 doesn't end the string. */
4390 else if (*p == '\'' || *p == '"')
4396 if (quote_found == '\'')
4397 /* A string within single quotes can be a symbol, so complete on it. */
4398 sym_text = quote_pos + 1;
4399 else if (quote_found == '"')
4400 /* A double-quoted string is never a symbol, nor does it make sense
4401 to complete it any other way. */
4403 return_val = (char **) xmalloc (sizeof (char *));
4404 return_val[0] = NULL;
4409 /* Not a quoted string. */
4410 sym_text = language_search_unquoted_string (text, p);
4414 sym_text_len = strlen (sym_text);
4416 return_val_size = 10;
4417 return_val_index = 0;
4418 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4419 return_val[0] = NULL;
4421 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4423 s = lookup_symtab (srcfile);
4426 /* Maybe they typed the file with leading directories, while the
4427 symbol tables record only its basename. */
4428 const char *tail = lbasename (srcfile);
4431 s = lookup_symtab (tail);
4434 /* If we have no symtab for that file, return an empty list. */
4436 return (return_val);
4438 /* Go through this symtab and check the externs and statics for
4439 symbols which match. */
4441 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4442 ALL_BLOCK_SYMBOLS (b, iter, sym)
4444 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4447 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4448 ALL_BLOCK_SYMBOLS (b, iter, sym)
4450 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4453 return (return_val);
4456 /* A helper function for make_source_files_completion_list. It adds
4457 another file name to a list of possible completions, growing the
4458 list as necessary. */
4461 add_filename_to_list (const char *fname, char *text, char *word,
4462 char ***list, int *list_used, int *list_alloced)
4465 size_t fnlen = strlen (fname);
4467 if (*list_used + 1 >= *list_alloced)
4470 *list = (char **) xrealloc ((char *) *list,
4471 *list_alloced * sizeof (char *));
4476 /* Return exactly fname. */
4477 new = xmalloc (fnlen + 5);
4478 strcpy (new, fname);
4480 else if (word > text)
4482 /* Return some portion of fname. */
4483 new = xmalloc (fnlen + 5);
4484 strcpy (new, fname + (word - text));
4488 /* Return some of TEXT plus fname. */
4489 new = xmalloc (fnlen + (text - word) + 5);
4490 strncpy (new, word, text - word);
4491 new[text - word] = '\0';
4492 strcat (new, fname);
4494 (*list)[*list_used] = new;
4495 (*list)[++*list_used] = NULL;
4499 not_interesting_fname (const char *fname)
4501 static const char *illegal_aliens[] = {
4502 "_globals_", /* inserted by coff_symtab_read */
4507 for (i = 0; illegal_aliens[i]; i++)
4509 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4515 /* An object of this type is passed as the user_data argument to
4516 map_partial_symbol_filenames. */
4517 struct add_partial_filename_data
4528 /* A callback for map_partial_symbol_filenames. */
4531 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4534 struct add_partial_filename_data *data = user_data;
4536 if (not_interesting_fname (filename))
4538 if (!filename_seen (filename, 1, data->first)
4539 && filename_ncmp (filename, data->text, data->text_len) == 0)
4541 /* This file matches for a completion; add it to the
4542 current list of matches. */
4543 add_filename_to_list (filename, data->text, data->word,
4544 data->list, data->list_used, data->list_alloced);
4548 const char *base_name = lbasename (filename);
4550 if (base_name != filename
4551 && !filename_seen (base_name, 1, data->first)
4552 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4553 add_filename_to_list (base_name, data->text, data->word,
4554 data->list, data->list_used, data->list_alloced);
4558 /* Return a NULL terminated array of all source files whose names
4559 begin with matching TEXT. The file names are looked up in the
4560 symbol tables of this program. If the answer is no matchess, then
4561 the return value is an array which contains only a NULL pointer. */
4564 make_source_files_completion_list (char *text, char *word)
4567 struct objfile *objfile;
4569 int list_alloced = 1;
4571 size_t text_len = strlen (text);
4572 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4573 const char *base_name;
4574 struct add_partial_filename_data datum;
4575 struct cleanup *back_to;
4579 if (!have_full_symbols () && !have_partial_symbols ())
4582 back_to = make_cleanup (do_free_completion_list, &list);
4584 ALL_SYMTABS (objfile, s)
4586 if (not_interesting_fname (s->filename))
4588 if (!filename_seen (s->filename, 1, &first)
4589 && filename_ncmp (s->filename, text, text_len) == 0)
4591 /* This file matches for a completion; add it to the current
4593 add_filename_to_list (s->filename, text, word,
4594 &list, &list_used, &list_alloced);
4598 /* NOTE: We allow the user to type a base name when the
4599 debug info records leading directories, but not the other
4600 way around. This is what subroutines of breakpoint
4601 command do when they parse file names. */
4602 base_name = lbasename (s->filename);
4603 if (base_name != s->filename
4604 && !filename_seen (base_name, 1, &first)
4605 && filename_ncmp (base_name, text, text_len) == 0)
4606 add_filename_to_list (base_name, text, word,
4607 &list, &list_used, &list_alloced);
4611 datum.first = &first;
4614 datum.text_len = text_len;
4616 datum.list_used = &list_used;
4617 datum.list_alloced = &list_alloced;
4618 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4619 0 /*need_fullname*/);
4620 discard_cleanups (back_to);
4625 /* Determine if PC is in the prologue of a function. The prologue is the area
4626 between the first instruction of a function, and the first executable line.
4627 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4629 If non-zero, func_start is where we think the prologue starts, possibly
4630 by previous examination of symbol table information. */
4633 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4635 struct symtab_and_line sal;
4636 CORE_ADDR func_addr, func_end;
4638 /* We have several sources of information we can consult to figure
4640 - Compilers usually emit line number info that marks the prologue
4641 as its own "source line". So the ending address of that "line"
4642 is the end of the prologue. If available, this is the most
4644 - The minimal symbols and partial symbols, which can usually tell
4645 us the starting and ending addresses of a function.
4646 - If we know the function's start address, we can call the
4647 architecture-defined gdbarch_skip_prologue function to analyze the
4648 instruction stream and guess where the prologue ends.
4649 - Our `func_start' argument; if non-zero, this is the caller's
4650 best guess as to the function's entry point. At the time of
4651 this writing, handle_inferior_event doesn't get this right, so
4652 it should be our last resort. */
4654 /* Consult the partial symbol table, to find which function
4656 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4658 CORE_ADDR prologue_end;
4660 /* We don't even have minsym information, so fall back to using
4661 func_start, if given. */
4663 return 1; /* We *might* be in a prologue. */
4665 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4667 return func_start <= pc && pc < prologue_end;
4670 /* If we have line number information for the function, that's
4671 usually pretty reliable. */
4672 sal = find_pc_line (func_addr, 0);
4674 /* Now sal describes the source line at the function's entry point,
4675 which (by convention) is the prologue. The end of that "line",
4676 sal.end, is the end of the prologue.
4678 Note that, for functions whose source code is all on a single
4679 line, the line number information doesn't always end up this way.
4680 So we must verify that our purported end-of-prologue address is
4681 *within* the function, not at its start or end. */
4683 || sal.end <= func_addr
4684 || func_end <= sal.end)
4686 /* We don't have any good line number info, so use the minsym
4687 information, together with the architecture-specific prologue
4689 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4691 return func_addr <= pc && pc < prologue_end;
4694 /* We have line number info, and it looks good. */
4695 return func_addr <= pc && pc < sal.end;
4698 /* Given PC at the function's start address, attempt to find the
4699 prologue end using SAL information. Return zero if the skip fails.
4701 A non-optimized prologue traditionally has one SAL for the function
4702 and a second for the function body. A single line function has
4703 them both pointing at the same line.
4705 An optimized prologue is similar but the prologue may contain
4706 instructions (SALs) from the instruction body. Need to skip those
4707 while not getting into the function body.
4709 The functions end point and an increasing SAL line are used as
4710 indicators of the prologue's endpoint.
4712 This code is based on the function refine_prologue_limit
4716 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4718 struct symtab_and_line prologue_sal;
4723 /* Get an initial range for the function. */
4724 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4725 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4727 prologue_sal = find_pc_line (start_pc, 0);
4728 if (prologue_sal.line != 0)
4730 /* For languages other than assembly, treat two consecutive line
4731 entries at the same address as a zero-instruction prologue.
4732 The GNU assembler emits separate line notes for each instruction
4733 in a multi-instruction macro, but compilers generally will not
4735 if (prologue_sal.symtab->language != language_asm)
4737 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4740 /* Skip any earlier lines, and any end-of-sequence marker
4741 from a previous function. */
4742 while (linetable->item[idx].pc != prologue_sal.pc
4743 || linetable->item[idx].line == 0)
4746 if (idx+1 < linetable->nitems
4747 && linetable->item[idx+1].line != 0
4748 && linetable->item[idx+1].pc == start_pc)
4752 /* If there is only one sal that covers the entire function,
4753 then it is probably a single line function, like
4755 if (prologue_sal.end >= end_pc)
4758 while (prologue_sal.end < end_pc)
4760 struct symtab_and_line sal;
4762 sal = find_pc_line (prologue_sal.end, 0);
4765 /* Assume that a consecutive SAL for the same (or larger)
4766 line mark the prologue -> body transition. */
4767 if (sal.line >= prologue_sal.line)
4770 /* The line number is smaller. Check that it's from the
4771 same function, not something inlined. If it's inlined,
4772 then there is no point comparing the line numbers. */
4773 bl = block_for_pc (prologue_sal.end);
4776 if (block_inlined_p (bl))
4778 if (BLOCK_FUNCTION (bl))
4783 bl = BLOCK_SUPERBLOCK (bl);
4788 /* The case in which compiler's optimizer/scheduler has
4789 moved instructions into the prologue. We look ahead in
4790 the function looking for address ranges whose
4791 corresponding line number is less the first one that we
4792 found for the function. This is more conservative then
4793 refine_prologue_limit which scans a large number of SALs
4794 looking for any in the prologue. */
4799 if (prologue_sal.end < end_pc)
4800 /* Return the end of this line, or zero if we could not find a
4802 return prologue_sal.end;
4804 /* Don't return END_PC, which is past the end of the function. */
4805 return prologue_sal.pc;
4808 struct symtabs_and_lines
4809 decode_line_spec (char *string, int flags)
4811 struct symtabs_and_lines sals;
4812 struct symtab_and_line cursal;
4815 error (_("Empty line specification."));
4817 /* We use whatever is set as the current source line. We do not try
4818 and get a default or it will recursively call us! */
4819 cursal = get_current_source_symtab_and_line ();
4821 sals = decode_line_1 (&string, flags,
4822 cursal.symtab, cursal.line);
4825 error (_("Junk at end of line specification: %s"), string);
4830 static char *name_of_main;
4831 enum language language_of_main = language_unknown;
4834 set_main_name (const char *name)
4836 if (name_of_main != NULL)
4838 xfree (name_of_main);
4839 name_of_main = NULL;
4840 language_of_main = language_unknown;
4844 name_of_main = xstrdup (name);
4845 language_of_main = language_unknown;
4849 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4853 find_main_name (void)
4855 const char *new_main_name;
4857 /* Try to see if the main procedure is in Ada. */
4858 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4859 be to add a new method in the language vector, and call this
4860 method for each language until one of them returns a non-empty
4861 name. This would allow us to remove this hard-coded call to
4862 an Ada function. It is not clear that this is a better approach
4863 at this point, because all methods need to be written in a way
4864 such that false positives never be returned. For instance, it is
4865 important that a method does not return a wrong name for the main
4866 procedure if the main procedure is actually written in a different
4867 language. It is easy to guaranty this with Ada, since we use a
4868 special symbol generated only when the main in Ada to find the name
4869 of the main procedure. It is difficult however to see how this can
4870 be guarantied for languages such as C, for instance. This suggests
4871 that order of call for these methods becomes important, which means
4872 a more complicated approach. */
4873 new_main_name = ada_main_name ();
4874 if (new_main_name != NULL)
4876 set_main_name (new_main_name);
4880 new_main_name = go_main_name ();
4881 if (new_main_name != NULL)
4883 set_main_name (new_main_name);
4887 new_main_name = pascal_main_name ();
4888 if (new_main_name != NULL)
4890 set_main_name (new_main_name);
4894 /* The languages above didn't identify the name of the main procedure.
4895 Fallback to "main". */
4896 set_main_name ("main");
4902 if (name_of_main == NULL)
4905 return name_of_main;
4908 /* Handle ``executable_changed'' events for the symtab module. */
4911 symtab_observer_executable_changed (void)
4913 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4914 set_main_name (NULL);
4917 /* Return 1 if the supplied producer string matches the ARM RealView
4918 compiler (armcc). */
4921 producer_is_realview (const char *producer)
4923 static const char *const arm_idents[] = {
4924 "ARM C Compiler, ADS",
4925 "Thumb C Compiler, ADS",
4926 "ARM C++ Compiler, ADS",
4927 "Thumb C++ Compiler, ADS",
4928 "ARM/Thumb C/C++ Compiler, RVCT",
4929 "ARM C/C++ Compiler, RVCT"
4933 if (producer == NULL)
4936 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4937 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4944 _initialize_symtab (void)
4946 add_info ("variables", variables_info, _("\
4947 All global and static variable names, or those matching REGEXP."));
4949 add_com ("whereis", class_info, variables_info, _("\
4950 All global and static variable names, or those matching REGEXP."));
4952 add_info ("functions", functions_info,
4953 _("All function names, or those matching REGEXP."));
4955 /* FIXME: This command has at least the following problems:
4956 1. It prints builtin types (in a very strange and confusing fashion).
4957 2. It doesn't print right, e.g. with
4958 typedef struct foo *FOO
4959 type_print prints "FOO" when we want to make it (in this situation)
4960 print "struct foo *".
4961 I also think "ptype" or "whatis" is more likely to be useful (but if
4962 there is much disagreement "info types" can be fixed). */
4963 add_info ("types", types_info,
4964 _("All type names, or those matching REGEXP."));
4966 add_info ("sources", sources_info,
4967 _("Source files in the program."));
4969 add_com ("rbreak", class_breakpoint, rbreak_command,
4970 _("Set a breakpoint for all functions matching REGEXP."));
4974 add_com ("lf", class_info, sources_info,
4975 _("Source files in the program"));
4976 add_com ("lg", class_info, variables_info, _("\
4977 All global and static variable names, or those matching REGEXP."));
4980 add_setshow_enum_cmd ("multiple-symbols", no_class,
4981 multiple_symbols_modes, &multiple_symbols_mode,
4983 Set the debugger behavior when more than one symbol are possible matches\n\
4984 in an expression."), _("\
4985 Show how the debugger handles ambiguities in expressions."), _("\
4986 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4987 NULL, NULL, &setlist, &showlist);
4989 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4990 &basenames_may_differ, _("\
4991 Set whether a source file may have multiple base names."), _("\
4992 Show whether a source file may have multiple base names."), _("\
4993 (A \"base name\" is the name of a file with the directory part removed.\n\
4994 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4995 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4996 before comparing them. Canonicalization is an expensive operation,\n\
4997 but it allows the same file be known by more than one base name.\n\
4998 If not set (the default), all source files are assumed to have just\n\
4999 one base name, and gdb will do file name comparisons more efficiently."),
5001 &setlist, &showlist);
5003 observer_attach_executable_changed (symtab_observer_executable_changed);