1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
37 #include "dictionary.h"
38 #include "cp-support.h"
40 #include "user-regs.h"
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
50 extern int overload_debug;
51 /* Local functions. */
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
59 static struct value *search_struct_method (char *, struct value **,
61 int, int *, struct type *);
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
66 struct badness_vector **);
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
78 static int oload_method_static (int, struct fn_field *, int);
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
83 oload_classification classify_oload_match (struct badness_vector *,
86 static struct value *value_struct_elt_for_reference (struct type *,
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
95 static struct value *value_maybe_namespace_elt (const struct type *,
99 static CORE_ADDR allocate_space_in_inferior (int);
101 static struct value *cast_into_complex (struct type *, struct value *);
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
107 void _initialize_valops (void);
110 /* Flag for whether we want to abandon failed expression evals by
113 static int auto_abandon = 0;
116 int overload_resolution = 0;
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
140 error (_("\"%s\" exists in this program but is not a function."),
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
147 return value_of_variable (sym, NULL);
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
168 return value_from_pointer (type, maddr);
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
185 value_allocate_space_in_inferior (int len)
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
199 error (_("No memory available to program: call to malloc failed"));
205 allocate_space_in_inferior (int len)
207 return value_as_long (value_allocate_space_in_inferior (len));
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
222 gdb_assert (type != NULL && v2 != NULL);
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
240 v = search_struct_field (type_name_no_tag (t1),
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = VALUE_ADDRESS (v2);
258 addr2 -= (VALUE_ADDRESS (v)
260 + value_embedded_offset (v));
261 return value_at (type, addr2);
268 /* Cast one pointer or reference type to another. Both TYPE and
269 the type of ARG2 should be pointer types, or else both should be
270 reference types. Returns the new pointer or reference. */
273 value_cast_pointers (struct type *type, struct value *arg2)
275 struct type *type1 = check_typedef (type);
276 struct type *type2 = check_typedef (value_type (arg2));
277 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
278 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
280 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
281 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
282 && !value_logical_not (arg2))
286 if (TYPE_CODE (type2) == TYPE_CODE_REF)
287 v2 = coerce_ref (arg2);
289 v2 = value_ind (arg2);
290 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
291 && !!"Why did coercion fail?");
292 v2 = value_cast_structs (t1, v2);
293 /* At this point we have what we can have, un-dereference if needed. */
296 struct value *v = value_addr (v2);
297 deprecated_set_value_type (v, type);
302 /* No superclass found, just change the pointer type. */
303 arg2 = value_copy (arg2);
304 deprecated_set_value_type (arg2, type);
305 arg2 = value_change_enclosing_type (arg2, type);
306 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
310 /* Cast value ARG2 to type TYPE and return as a value.
311 More general than a C cast: accepts any two types of the same length,
312 and if ARG2 is an lvalue it can be cast into anything at all. */
313 /* In C++, casts may change pointer or object representations. */
316 value_cast (struct type *type, struct value *arg2)
318 enum type_code code1;
319 enum type_code code2;
323 int convert_to_boolean = 0;
325 if (value_type (arg2) == type)
328 code1 = TYPE_CODE (check_typedef (type));
330 /* Check if we are casting struct reference to struct reference. */
331 if (code1 == TYPE_CODE_REF)
333 /* We dereference type; then we recurse and finally
334 we generate value of the given reference. Nothing wrong with
336 struct type *t1 = check_typedef (type);
337 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
338 struct value *val = value_cast (dereftype, arg2);
339 return value_ref (val);
342 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
344 if (code2 == TYPE_CODE_REF)
345 /* We deref the value and then do the cast. */
346 return value_cast (type, coerce_ref (arg2));
348 CHECK_TYPEDEF (type);
349 code1 = TYPE_CODE (type);
350 arg2 = coerce_ref (arg2);
351 type2 = check_typedef (value_type (arg2));
353 /* You can't cast to a reference type. See value_cast_pointers
355 gdb_assert (code1 != TYPE_CODE_REF);
357 /* A cast to an undetermined-length array_type, such as
358 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
359 where N is sizeof(OBJECT)/sizeof(TYPE). */
360 if (code1 == TYPE_CODE_ARRAY)
362 struct type *element_type = TYPE_TARGET_TYPE (type);
363 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
364 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
366 struct type *range_type = TYPE_INDEX_TYPE (type);
367 int val_length = TYPE_LENGTH (type2);
368 LONGEST low_bound, high_bound, new_length;
369 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
370 low_bound = 0, high_bound = 0;
371 new_length = val_length / element_length;
372 if (val_length % element_length != 0)
373 warning (_("array element type size does not divide object size in cast"));
374 /* FIXME-type-allocation: need a way to free this type when
375 we are done with it. */
376 range_type = create_range_type ((struct type *) NULL,
377 TYPE_TARGET_TYPE (range_type),
379 new_length + low_bound - 1);
380 deprecated_set_value_type (arg2,
381 create_array_type ((struct type *) NULL,
388 if (current_language->c_style_arrays
389 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
390 arg2 = value_coerce_array (arg2);
392 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
393 arg2 = value_coerce_function (arg2);
395 type2 = check_typedef (value_type (arg2));
396 code2 = TYPE_CODE (type2);
398 if (code1 == TYPE_CODE_COMPLEX)
399 return cast_into_complex (type, arg2);
400 if (code1 == TYPE_CODE_BOOL)
402 code1 = TYPE_CODE_INT;
403 convert_to_boolean = 1;
405 if (code1 == TYPE_CODE_CHAR)
406 code1 = TYPE_CODE_INT;
407 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
408 code2 = TYPE_CODE_INT;
410 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
411 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
412 || code2 == TYPE_CODE_RANGE);
414 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
415 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
416 && TYPE_NAME (type) != 0)
418 struct value *v = value_cast_structs (type, arg2);
423 if (code1 == TYPE_CODE_FLT && scalar)
424 return value_from_double (type, value_as_double (arg2));
425 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
427 int dec_len = TYPE_LENGTH (type);
430 if (code2 == TYPE_CODE_FLT)
431 decimal_from_floating (arg2, dec, dec_len);
432 else if (code2 == TYPE_CODE_DECFLOAT)
433 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
436 /* The only option left is an integral type. */
437 decimal_from_integral (arg2, dec, dec_len);
439 return value_from_decfloat (type, dec);
441 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
442 || code1 == TYPE_CODE_RANGE)
443 && (scalar || code2 == TYPE_CODE_PTR
444 || code2 == TYPE_CODE_MEMBERPTR))
448 /* When we cast pointers to integers, we mustn't use
449 gdbarch_pointer_to_address to find the address the pointer
450 represents, as value_as_long would. GDB should evaluate
451 expressions just as the compiler would --- and the compiler
452 sees a cast as a simple reinterpretation of the pointer's
454 if (code2 == TYPE_CODE_PTR)
455 longest = extract_unsigned_integer (value_contents (arg2),
456 TYPE_LENGTH (type2));
458 longest = value_as_long (arg2);
459 return value_from_longest (type, convert_to_boolean ?
460 (LONGEST) (longest ? 1 : 0) : longest);
462 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
463 || code2 == TYPE_CODE_ENUM
464 || code2 == TYPE_CODE_RANGE))
466 /* TYPE_LENGTH (type) is the length of a pointer, but we really
467 want the length of an address! -- we are really dealing with
468 addresses (i.e., gdb representations) not pointers (i.e.,
469 target representations) here.
471 This allows things like "print *(int *)0x01000234" to work
472 without printing a misleading message -- which would
473 otherwise occur when dealing with a target having two byte
474 pointers and four byte addresses. */
476 int addr_bit = gdbarch_addr_bit (current_gdbarch);
478 LONGEST longest = value_as_long (arg2);
479 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
481 if (longest >= ((LONGEST) 1 << addr_bit)
482 || longest <= -((LONGEST) 1 << addr_bit))
483 warning (_("value truncated"));
485 return value_from_longest (type, longest);
487 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
488 && value_as_long (arg2) == 0)
490 struct value *result = allocate_value (type);
491 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
494 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
495 && value_as_long (arg2) == 0)
497 /* The Itanium C++ ABI represents NULL pointers to members as
498 minus one, instead of biasing the normal case. */
499 return value_from_longest (type, -1);
501 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
503 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
504 return value_cast_pointers (type, arg2);
506 arg2 = value_copy (arg2);
507 deprecated_set_value_type (arg2, type);
508 arg2 = value_change_enclosing_type (arg2, type);
509 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
512 else if (VALUE_LVAL (arg2) == lval_memory)
513 return value_at_lazy (type,
514 VALUE_ADDRESS (arg2) + value_offset (arg2));
515 else if (code1 == TYPE_CODE_VOID)
517 return value_zero (builtin_type_void, not_lval);
521 error (_("Invalid cast."));
526 /* Create a value of type TYPE that is zero, and return it. */
529 value_zero (struct type *type, enum lval_type lv)
531 struct value *val = allocate_value (type);
532 VALUE_LVAL (val) = lv;
537 /* Create a value of numeric type TYPE that is one, and return it. */
540 value_one (struct type *type, enum lval_type lv)
542 struct type *type1 = check_typedef (type);
543 struct value *val = NULL; /* avoid -Wall warning */
545 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
547 struct value *int_one = value_from_longest (builtin_type_int32, 1);
551 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int32));
552 val = value_from_decfloat (type, v);
554 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
556 val = value_from_double (type, (DOUBLEST) 1);
558 else if (is_integral_type (type1))
560 val = value_from_longest (type, (LONGEST) 1);
564 error (_("Not a numeric type."));
567 VALUE_LVAL (val) = lv;
571 /* Return a value with type TYPE located at ADDR.
573 Call value_at only if the data needs to be fetched immediately;
574 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
575 value_at_lazy instead. value_at_lazy simply records the address of
576 the data and sets the lazy-evaluation-required flag. The lazy flag
577 is tested in the value_contents macro, which is used if and when
578 the contents are actually required.
580 Note: value_at does *NOT* handle embedded offsets; perform such
581 adjustments before or after calling it. */
584 value_at (struct type *type, CORE_ADDR addr)
588 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
589 error (_("Attempt to dereference a generic pointer."));
591 val = allocate_value (type);
593 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
595 VALUE_LVAL (val) = lval_memory;
596 VALUE_ADDRESS (val) = addr;
601 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
604 value_at_lazy (struct type *type, CORE_ADDR addr)
608 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
609 error (_("Attempt to dereference a generic pointer."));
611 val = allocate_value (type);
613 VALUE_LVAL (val) = lval_memory;
614 VALUE_ADDRESS (val) = addr;
615 set_value_lazy (val, 1);
620 /* Called only from the value_contents and value_contents_all()
621 macros, if the current data for a variable needs to be loaded into
622 value_contents(VAL). Fetches the data from the user's process, and
623 clears the lazy flag to indicate that the data in the buffer is
626 If the value is zero-length, we avoid calling read_memory, which
627 would abort. We mark the value as fetched anyway -- all 0 bytes of
630 This function returns a value because it is used in the
631 value_contents macro as part of an expression, where a void would
632 not work. The value is ignored. */
635 value_fetch_lazy (struct value *val)
637 if (VALUE_LVAL (val) == lval_memory)
639 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
640 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
643 read_memory (addr, value_contents_all_raw (val), length);
645 else if (VALUE_LVAL (val) == lval_register)
647 struct frame_info *frame;
649 struct type *type = check_typedef (value_type (val));
650 struct value *new_val = val, *mark = value_mark ();
652 /* Offsets are not supported here; lazy register values must
653 refer to the entire register. */
654 gdb_assert (value_offset (val) == 0);
656 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
658 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
659 regnum = VALUE_REGNUM (new_val);
661 gdb_assert (frame != NULL);
663 /* Convertible register routines are used for multi-register
664 values and for interpretation in different types
665 (e.g. float or int from a double register). Lazy
666 register values should have the register's natural type,
667 so they do not apply. */
668 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
671 new_val = get_frame_register_value (frame, regnum);
674 /* If it's still lazy (for instance, a saved register on the
676 if (value_lazy (new_val))
677 value_fetch_lazy (new_val);
679 /* If the register was not saved, mark it unavailable. */
680 if (value_optimized_out (new_val))
681 set_value_optimized_out (val, 1);
683 memcpy (value_contents_raw (val), value_contents (new_val),
688 struct gdbarch *gdbarch;
689 frame = frame_find_by_id (VALUE_FRAME_ID (val));
690 regnum = VALUE_REGNUM (val);
691 gdbarch = get_frame_arch (frame);
693 fprintf_unfiltered (gdb_stdlog, "\
694 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
695 frame_relative_level (frame), regnum,
696 user_reg_map_regnum_to_name (gdbarch, regnum));
698 fprintf_unfiltered (gdb_stdlog, "->");
699 if (value_optimized_out (new_val))
700 fprintf_unfiltered (gdb_stdlog, " optimized out");
704 const gdb_byte *buf = value_contents (new_val);
706 if (VALUE_LVAL (new_val) == lval_register)
707 fprintf_unfiltered (gdb_stdlog, " register=%d",
708 VALUE_REGNUM (new_val));
709 else if (VALUE_LVAL (new_val) == lval_memory)
710 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
711 paddr_nz (VALUE_ADDRESS (new_val)));
713 fprintf_unfiltered (gdb_stdlog, " computed");
715 fprintf_unfiltered (gdb_stdlog, " bytes=");
716 fprintf_unfiltered (gdb_stdlog, "[");
717 for (i = 0; i < register_size (gdbarch, regnum); i++)
718 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
719 fprintf_unfiltered (gdb_stdlog, "]");
722 fprintf_unfiltered (gdb_stdlog, " }\n");
725 /* Dispose of the intermediate values. This prevents
726 watchpoints from trying to watch the saved frame pointer. */
727 value_free_to_mark (mark);
730 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
732 set_value_lazy (val, 0);
737 /* Store the contents of FROMVAL into the location of TOVAL.
738 Return a new value with the location of TOVAL and contents of FROMVAL. */
741 value_assign (struct value *toval, struct value *fromval)
745 struct frame_id old_frame;
747 if (!deprecated_value_modifiable (toval))
748 error (_("Left operand of assignment is not a modifiable lvalue."));
750 toval = coerce_ref (toval);
752 type = value_type (toval);
753 if (VALUE_LVAL (toval) != lval_internalvar)
755 toval = value_coerce_to_target (toval);
756 fromval = value_cast (type, fromval);
760 /* Coerce arrays and functions to pointers, except for arrays
761 which only live in GDB's storage. */
762 if (!value_must_coerce_to_target (fromval))
763 fromval = coerce_array (fromval);
766 CHECK_TYPEDEF (type);
768 /* Since modifying a register can trash the frame chain, and
769 modifying memory can trash the frame cache, we save the old frame
770 and then restore the new frame afterwards. */
771 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
773 switch (VALUE_LVAL (toval))
775 case lval_internalvar:
776 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
777 val = value_copy (VALUE_INTERNALVAR (toval)->value);
778 val = value_change_enclosing_type (val,
779 value_enclosing_type (fromval));
780 set_value_embedded_offset (val, value_embedded_offset (fromval));
781 set_value_pointed_to_offset (val,
782 value_pointed_to_offset (fromval));
785 case lval_internalvar_component:
786 set_internalvar_component (VALUE_INTERNALVAR (toval),
787 value_offset (toval),
788 value_bitpos (toval),
789 value_bitsize (toval),
795 const gdb_byte *dest_buffer;
796 CORE_ADDR changed_addr;
798 gdb_byte buffer[sizeof (LONGEST)];
800 if (value_bitsize (toval))
802 /* We assume that the argument to read_memory is in units
803 of host chars. FIXME: Is that correct? */
804 changed_len = (value_bitpos (toval)
805 + value_bitsize (toval)
809 if (changed_len > (int) sizeof (LONGEST))
810 error (_("Can't handle bitfields which don't fit in a %d bit word."),
811 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
813 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
814 buffer, changed_len);
815 modify_field (buffer, value_as_long (fromval),
816 value_bitpos (toval), value_bitsize (toval));
817 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
818 dest_buffer = buffer;
822 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
823 changed_len = TYPE_LENGTH (type);
824 dest_buffer = value_contents (fromval);
827 write_memory (changed_addr, dest_buffer, changed_len);
828 if (deprecated_memory_changed_hook)
829 deprecated_memory_changed_hook (changed_addr, changed_len);
835 struct frame_info *frame;
838 /* Figure out which frame this is in currently. */
839 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
840 value_reg = VALUE_REGNUM (toval);
843 error (_("Value being assigned to is no longer active."));
845 if (gdbarch_convert_register_p
846 (current_gdbarch, VALUE_REGNUM (toval), type))
848 /* If TOVAL is a special machine register requiring
849 conversion of program values to a special raw
851 gdbarch_value_to_register (current_gdbarch, frame,
852 VALUE_REGNUM (toval), type,
853 value_contents (fromval));
857 if (value_bitsize (toval))
860 gdb_byte buffer[sizeof (LONGEST)];
862 changed_len = (value_bitpos (toval)
863 + value_bitsize (toval)
867 if (changed_len > (int) sizeof (LONGEST))
868 error (_("Can't handle bitfields which don't fit in a %d bit word."),
869 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
871 get_frame_register_bytes (frame, value_reg,
872 value_offset (toval),
873 changed_len, buffer);
875 modify_field (buffer, value_as_long (fromval),
876 value_bitpos (toval),
877 value_bitsize (toval));
879 put_frame_register_bytes (frame, value_reg,
880 value_offset (toval),
881 changed_len, buffer);
885 put_frame_register_bytes (frame, value_reg,
886 value_offset (toval),
888 value_contents (fromval));
892 if (deprecated_register_changed_hook)
893 deprecated_register_changed_hook (-1);
894 observer_notify_target_changed (¤t_target);
899 error (_("Left operand of assignment is not an lvalue."));
902 /* Assigning to the stack pointer, frame pointer, and other
903 (architecture and calling convention specific) registers may
904 cause the frame cache to be out of date. Assigning to memory
905 also can. We just do this on all assignments to registers or
906 memory, for simplicity's sake; I doubt the slowdown matters. */
907 switch (VALUE_LVAL (toval))
912 reinit_frame_cache ();
914 /* Having destroyed the frame cache, restore the selected
917 /* FIXME: cagney/2002-11-02: There has to be a better way of
918 doing this. Instead of constantly saving/restoring the
919 frame. Why not create a get_selected_frame() function that,
920 having saved the selected frame's ID can automatically
921 re-find the previously selected frame automatically. */
924 struct frame_info *fi = frame_find_by_id (old_frame);
934 /* If the field does not entirely fill a LONGEST, then zero the sign
935 bits. If the field is signed, and is negative, then sign
937 if ((value_bitsize (toval) > 0)
938 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
940 LONGEST fieldval = value_as_long (fromval);
941 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
944 if (!TYPE_UNSIGNED (type)
945 && (fieldval & (valmask ^ (valmask >> 1))))
946 fieldval |= ~valmask;
948 fromval = value_from_longest (type, fieldval);
951 val = value_copy (toval);
952 memcpy (value_contents_raw (val), value_contents (fromval),
954 deprecated_set_value_type (val, type);
955 val = value_change_enclosing_type (val,
956 value_enclosing_type (fromval));
957 set_value_embedded_offset (val, value_embedded_offset (fromval));
958 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
963 /* Extend a value VAL to COUNT repetitions of its type. */
966 value_repeat (struct value *arg1, int count)
970 if (VALUE_LVAL (arg1) != lval_memory)
971 error (_("Only values in memory can be extended with '@'."));
973 error (_("Invalid number %d of repetitions."), count);
975 val = allocate_repeat_value (value_enclosing_type (arg1), count);
977 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
978 value_contents_all_raw (val),
979 TYPE_LENGTH (value_enclosing_type (val)));
980 VALUE_LVAL (val) = lval_memory;
981 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
987 value_of_variable (struct symbol *var, struct block *b)
990 struct frame_info *frame = NULL;
993 frame = NULL; /* Use selected frame. */
994 else if (symbol_read_needs_frame (var))
996 frame = block_innermost_frame (b);
999 if (BLOCK_FUNCTION (b)
1000 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1001 error (_("No frame is currently executing in block %s."),
1002 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1004 error (_("No frame is currently executing in specified block"));
1008 val = read_var_value (var, frame);
1010 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1015 /* Return one if VAL does not live in target memory, but should in order
1016 to operate on it. Otherwise return zero. */
1019 value_must_coerce_to_target (struct value *val)
1021 struct type *valtype;
1023 /* The only lval kinds which do not live in target memory. */
1024 if (VALUE_LVAL (val) != not_lval
1025 && VALUE_LVAL (val) != lval_internalvar)
1028 valtype = check_typedef (value_type (val));
1030 switch (TYPE_CODE (valtype))
1032 case TYPE_CODE_ARRAY:
1033 case TYPE_CODE_STRING:
1040 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1041 strings are constructed as character arrays in GDB's storage, and this
1042 function copies them to the target. */
1045 value_coerce_to_target (struct value *val)
1050 if (!value_must_coerce_to_target (val))
1053 length = TYPE_LENGTH (check_typedef (value_type (val)));
1054 addr = allocate_space_in_inferior (length);
1055 write_memory (addr, value_contents (val), length);
1056 return value_at_lazy (value_type (val), addr);
1059 /* Given a value which is an array, return a value which is a pointer
1060 to its first element, regardless of whether or not the array has a
1061 nonzero lower bound.
1063 FIXME: A previous comment here indicated that this routine should
1064 be substracting the array's lower bound. It's not clear to me that
1065 this is correct. Given an array subscripting operation, it would
1066 certainly work to do the adjustment here, essentially computing:
1068 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1070 However I believe a more appropriate and logical place to account
1071 for the lower bound is to do so in value_subscript, essentially
1074 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1076 As further evidence consider what would happen with operations
1077 other than array subscripting, where the caller would get back a
1078 value that had an address somewhere before the actual first element
1079 of the array, and the information about the lower bound would be
1080 lost because of the coercion to pointer type.
1084 value_coerce_array (struct value *arg1)
1086 struct type *type = check_typedef (value_type (arg1));
1088 /* If the user tries to do something requiring a pointer with an
1089 array that has not yet been pushed to the target, then this would
1090 be a good time to do so. */
1091 arg1 = value_coerce_to_target (arg1);
1093 if (VALUE_LVAL (arg1) != lval_memory)
1094 error (_("Attempt to take address of value not located in memory."));
1096 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1097 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1100 /* Given a value which is a function, return a value which is a pointer
1104 value_coerce_function (struct value *arg1)
1106 struct value *retval;
1108 if (VALUE_LVAL (arg1) != lval_memory)
1109 error (_("Attempt to take address of value not located in memory."));
1111 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1112 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1116 /* Return a pointer value for the object for which ARG1 is the
1120 value_addr (struct value *arg1)
1124 struct type *type = check_typedef (value_type (arg1));
1125 if (TYPE_CODE (type) == TYPE_CODE_REF)
1127 /* Copy the value, but change the type from (T&) to (T*). We
1128 keep the same location information, which is efficient, and
1129 allows &(&X) to get the location containing the reference. */
1130 arg2 = value_copy (arg1);
1131 deprecated_set_value_type (arg2,
1132 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1135 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1136 return value_coerce_function (arg1);
1138 /* If this is an array that has not yet been pushed to the target,
1139 then this would be a good time to force it to memory. */
1140 arg1 = value_coerce_to_target (arg1);
1142 if (VALUE_LVAL (arg1) != lval_memory)
1143 error (_("Attempt to take address of value not located in memory."));
1145 /* Get target memory address */
1146 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1147 (VALUE_ADDRESS (arg1)
1148 + value_offset (arg1)
1149 + value_embedded_offset (arg1)));
1151 /* This may be a pointer to a base subobject; so remember the
1152 full derived object's type ... */
1153 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1154 /* ... and also the relative position of the subobject in the full
1156 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1160 /* Return a reference value for the object for which ARG1 is the
1164 value_ref (struct value *arg1)
1168 struct type *type = check_typedef (value_type (arg1));
1169 if (TYPE_CODE (type) == TYPE_CODE_REF)
1172 arg2 = value_addr (arg1);
1173 deprecated_set_value_type (arg2, lookup_reference_type (type));
1177 /* Given a value of a pointer type, apply the C unary * operator to
1181 value_ind (struct value *arg1)
1183 struct type *base_type;
1186 arg1 = coerce_array (arg1);
1188 base_type = check_typedef (value_type (arg1));
1190 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1192 struct type *enc_type;
1193 /* We may be pointing to something embedded in a larger object.
1194 Get the real type of the enclosing object. */
1195 enc_type = check_typedef (value_enclosing_type (arg1));
1196 enc_type = TYPE_TARGET_TYPE (enc_type);
1198 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1199 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1200 /* For functions, go through find_function_addr, which knows
1201 how to handle function descriptors. */
1202 arg2 = value_at_lazy (enc_type,
1203 find_function_addr (arg1, NULL));
1205 /* Retrieve the enclosing object pointed to */
1206 arg2 = value_at_lazy (enc_type,
1207 (value_as_address (arg1)
1208 - value_pointed_to_offset (arg1)));
1210 /* Re-adjust type. */
1211 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1212 /* Add embedding info. */
1213 arg2 = value_change_enclosing_type (arg2, enc_type);
1214 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1216 /* We may be pointing to an object of some derived type. */
1217 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1221 error (_("Attempt to take contents of a non-pointer value."));
1222 return 0; /* For lint -- never reached. */
1225 /* Create a value for an array by allocating space in GDB, copying
1226 copying the data into that space, and then setting up an array
1229 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1230 is populated from the values passed in ELEMVEC.
1232 The element type of the array is inherited from the type of the
1233 first element, and all elements must have the same size (though we
1234 don't currently enforce any restriction on their types). */
1237 value_array (int lowbound, int highbound, struct value **elemvec)
1241 unsigned int typelength;
1243 struct type *rangetype;
1244 struct type *arraytype;
1247 /* Validate that the bounds are reasonable and that each of the
1248 elements have the same size. */
1250 nelem = highbound - lowbound + 1;
1253 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1255 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1256 for (idx = 1; idx < nelem; idx++)
1258 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1260 error (_("array elements must all be the same size"));
1264 rangetype = create_range_type ((struct type *) NULL,
1266 lowbound, highbound);
1267 arraytype = create_array_type ((struct type *) NULL,
1268 value_enclosing_type (elemvec[0]),
1271 if (!current_language->c_style_arrays)
1273 val = allocate_value (arraytype);
1274 for (idx = 0; idx < nelem; idx++)
1276 memcpy (value_contents_all_raw (val) + (idx * typelength),
1277 value_contents_all (elemvec[idx]),
1283 /* Allocate space to store the array, and then initialize it by
1284 copying in each element. */
1286 val = allocate_value (arraytype);
1287 for (idx = 0; idx < nelem; idx++)
1288 memcpy (value_contents_writeable (val) + (idx * typelength),
1289 value_contents_all (elemvec[idx]),
1294 /* Create a value for a string constant by allocating space in the
1295 inferior, copying the data into that space, and returning the
1296 address with type TYPE_CODE_STRING. PTR points to the string
1297 constant data; LEN is number of characters.
1299 Note that string types are like array of char types with a lower
1300 bound of zero and an upper bound of LEN - 1. Also note that the
1301 string may contain embedded null bytes. */
1304 value_string (char *ptr, int len)
1307 int lowbound = current_language->string_lower_bound;
1308 struct type *rangetype = create_range_type ((struct type *) NULL,
1311 len + lowbound - 1);
1312 struct type *stringtype
1313 = create_string_type ((struct type *) NULL, rangetype);
1316 if (current_language->c_style_arrays == 0)
1318 val = allocate_value (stringtype);
1319 memcpy (value_contents_raw (val), ptr, len);
1324 /* Allocate space to store the string in the inferior, and then copy
1325 LEN bytes from PTR in gdb to that address in the inferior. */
1327 addr = allocate_space_in_inferior (len);
1328 write_memory (addr, (gdb_byte *) ptr, len);
1330 val = value_at_lazy (stringtype, addr);
1335 value_bitstring (char *ptr, int len)
1338 struct type *domain_type = create_range_type (NULL,
1341 struct type *type = create_set_type ((struct type *) NULL,
1343 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1344 val = allocate_value (type);
1345 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1349 /* See if we can pass arguments in T2 to a function which takes
1350 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1351 a NULL-terminated vector. If some arguments need coercion of some
1352 sort, then the coerced values are written into T2. Return value is
1353 0 if the arguments could be matched, or the position at which they
1356 STATICP is nonzero if the T1 argument list came from a static
1357 member function. T2 will still include the ``this'' pointer, but
1360 For non-static member functions, we ignore the first argument,
1361 which is the type of the instance variable. This is because we
1362 want to handle calls with objects from derived classes. This is
1363 not entirely correct: we should actually check to make sure that a
1364 requested operation is type secure, shouldn't we? FIXME. */
1367 typecmp (int staticp, int varargs, int nargs,
1368 struct field t1[], struct value *t2[])
1373 internal_error (__FILE__, __LINE__,
1374 _("typecmp: no argument list"));
1376 /* Skip ``this'' argument if applicable. T2 will always include
1382 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1385 struct type *tt1, *tt2;
1390 tt1 = check_typedef (t1[i].type);
1391 tt2 = check_typedef (value_type (t2[i]));
1393 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1394 /* We should be doing hairy argument matching, as below. */
1395 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1397 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1398 t2[i] = value_coerce_array (t2[i]);
1400 t2[i] = value_ref (t2[i]);
1404 /* djb - 20000715 - Until the new type structure is in the
1405 place, and we can attempt things like implicit conversions,
1406 we need to do this so you can take something like a map<const
1407 char *>, and properly access map["hello"], because the
1408 argument to [] will be a reference to a pointer to a char,
1409 and the argument will be a pointer to a char. */
1410 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1411 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1413 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1415 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1416 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1417 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1419 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1421 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1423 /* Array to pointer is a `trivial conversion' according to the
1426 /* We should be doing much hairier argument matching (see
1427 section 13.2 of the ARM), but as a quick kludge, just check
1428 for the same type code. */
1429 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1432 if (varargs || t2[i] == NULL)
1437 /* Helper function used by value_struct_elt to recurse through
1438 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1439 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1440 TYPE. If found, return value, else return NULL.
1442 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1443 fields, look for a baseclass named NAME. */
1445 static struct value *
1446 search_struct_field (char *name, struct value *arg1, int offset,
1447 struct type *type, int looking_for_baseclass)
1450 int nbases = TYPE_N_BASECLASSES (type);
1452 CHECK_TYPEDEF (type);
1454 if (!looking_for_baseclass)
1455 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1457 char *t_field_name = TYPE_FIELD_NAME (type, i);
1459 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1462 if (TYPE_FIELD_STATIC (type, i))
1464 v = value_static_field (type, i);
1466 error (_("field %s is nonexistent or has been optimised out"),
1471 v = value_primitive_field (arg1, offset, i, type);
1473 error (_("there is no field named %s"), name);
1479 && (t_field_name[0] == '\0'
1480 || (TYPE_CODE (type) == TYPE_CODE_UNION
1481 && (strcmp_iw (t_field_name, "else") == 0))))
1483 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1484 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1485 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1487 /* Look for a match through the fields of an anonymous
1488 union, or anonymous struct. C++ provides anonymous
1491 In the GNU Chill (now deleted from GDB)
1492 implementation of variant record types, each
1493 <alternative field> has an (anonymous) union type,
1494 each member of the union represents a <variant
1495 alternative>. Each <variant alternative> is
1496 represented as a struct, with a member for each
1500 int new_offset = offset;
1502 /* This is pretty gross. In G++, the offset in an
1503 anonymous union is relative to the beginning of the
1504 enclosing struct. In the GNU Chill (now deleted
1505 from GDB) implementation of variant records, the
1506 bitpos is zero in an anonymous union field, so we
1507 have to add the offset of the union here. */
1508 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1509 || (TYPE_NFIELDS (field_type) > 0
1510 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1511 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1513 v = search_struct_field (name, arg1, new_offset,
1515 looking_for_baseclass);
1522 for (i = 0; i < nbases; i++)
1525 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1526 /* If we are looking for baseclasses, this is what we get when
1527 we hit them. But it could happen that the base part's member
1528 name is not yet filled in. */
1529 int found_baseclass = (looking_for_baseclass
1530 && TYPE_BASECLASS_NAME (type, i) != NULL
1531 && (strcmp_iw (name,
1532 TYPE_BASECLASS_NAME (type,
1535 if (BASETYPE_VIA_VIRTUAL (type, i))
1538 struct value *v2 = allocate_value (basetype);
1540 boffset = baseclass_offset (type, i,
1541 value_contents (arg1) + offset,
1542 VALUE_ADDRESS (arg1)
1543 + value_offset (arg1) + offset);
1545 error (_("virtual baseclass botch"));
1547 /* The virtual base class pointer might have been clobbered
1548 by the user program. Make sure that it still points to a
1549 valid memory location. */
1552 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1554 CORE_ADDR base_addr;
1557 VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1558 if (target_read_memory (base_addr,
1559 value_contents_raw (v2),
1560 TYPE_LENGTH (basetype)) != 0)
1561 error (_("virtual baseclass botch"));
1562 VALUE_LVAL (v2) = lval_memory;
1563 VALUE_ADDRESS (v2) = base_addr;
1567 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1568 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1569 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1570 set_value_offset (v2, value_offset (arg1) + boffset);
1571 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1572 set_value_lazy (v2, 1);
1574 memcpy (value_contents_raw (v2),
1575 value_contents_raw (arg1) + boffset,
1576 TYPE_LENGTH (basetype));
1579 if (found_baseclass)
1581 v = search_struct_field (name, v2, 0,
1582 TYPE_BASECLASS (type, i),
1583 looking_for_baseclass);
1585 else if (found_baseclass)
1586 v = value_primitive_field (arg1, offset, i, type);
1588 v = search_struct_field (name, arg1,
1589 offset + TYPE_BASECLASS_BITPOS (type,
1591 basetype, looking_for_baseclass);
1598 /* Helper function used by value_struct_elt to recurse through
1599 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1600 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1603 If found, return value, else if name matched and args not return
1604 (value) -1, else return NULL. */
1606 static struct value *
1607 search_struct_method (char *name, struct value **arg1p,
1608 struct value **args, int offset,
1609 int *static_memfuncp, struct type *type)
1613 int name_matched = 0;
1614 char dem_opname[64];
1616 CHECK_TYPEDEF (type);
1617 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1619 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1620 /* FIXME! May need to check for ARM demangling here */
1621 if (strncmp (t_field_name, "__", 2) == 0 ||
1622 strncmp (t_field_name, "op", 2) == 0 ||
1623 strncmp (t_field_name, "type", 4) == 0)
1625 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1626 t_field_name = dem_opname;
1627 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1628 t_field_name = dem_opname;
1630 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1632 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1633 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1636 check_stub_method_group (type, i);
1637 if (j > 0 && args == 0)
1638 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1639 else if (j == 0 && args == 0)
1641 v = value_fn_field (arg1p, f, j, type, offset);
1648 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1649 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1650 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1651 TYPE_FN_FIELD_ARGS (f, j), args))
1653 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1654 return value_virtual_fn_field (arg1p, f, j,
1656 if (TYPE_FN_FIELD_STATIC_P (f, j)
1658 *static_memfuncp = 1;
1659 v = value_fn_field (arg1p, f, j, type, offset);
1668 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1672 if (BASETYPE_VIA_VIRTUAL (type, i))
1674 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1675 const gdb_byte *base_valaddr;
1677 /* The virtual base class pointer might have been
1678 clobbered by the user program. Make sure that it
1679 still points to a valid memory location. */
1681 if (offset < 0 || offset >= TYPE_LENGTH (type))
1683 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1684 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1685 + value_offset (*arg1p) + offset,
1686 tmp, TYPE_LENGTH (baseclass)) != 0)
1687 error (_("virtual baseclass botch"));
1691 base_valaddr = value_contents (*arg1p) + offset;
1693 base_offset = baseclass_offset (type, i, base_valaddr,
1694 VALUE_ADDRESS (*arg1p)
1695 + value_offset (*arg1p) + offset);
1696 if (base_offset == -1)
1697 error (_("virtual baseclass botch"));
1701 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1703 v = search_struct_method (name, arg1p, args, base_offset + offset,
1704 static_memfuncp, TYPE_BASECLASS (type, i));
1705 if (v == (struct value *) - 1)
1711 /* FIXME-bothner: Why is this commented out? Why is it here? */
1712 /* *arg1p = arg1_tmp; */
1717 return (struct value *) - 1;
1722 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1723 extract the component named NAME from the ultimate target
1724 structure/union and return it as a value with its appropriate type.
1725 ERR is used in the error message if *ARGP's type is wrong.
1727 C++: ARGS is a list of argument types to aid in the selection of
1728 an appropriate method. Also, handle derived types.
1730 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1731 where the truthvalue of whether the function that was resolved was
1732 a static member function or not is stored.
1734 ERR is an error message to be printed in case the field is not
1738 value_struct_elt (struct value **argp, struct value **args,
1739 char *name, int *static_memfuncp, char *err)
1744 *argp = coerce_array (*argp);
1746 t = check_typedef (value_type (*argp));
1748 /* Follow pointers until we get to a non-pointer. */
1750 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1752 *argp = value_ind (*argp);
1753 /* Don't coerce fn pointer to fn and then back again! */
1754 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1755 *argp = coerce_array (*argp);
1756 t = check_typedef (value_type (*argp));
1759 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1760 && TYPE_CODE (t) != TYPE_CODE_UNION)
1761 error (_("Attempt to extract a component of a value that is not a %s."), err);
1763 /* Assume it's not, unless we see that it is. */
1764 if (static_memfuncp)
1765 *static_memfuncp = 0;
1769 /* if there are no arguments ...do this... */
1771 /* Try as a field first, because if we succeed, there is less
1773 v = search_struct_field (name, *argp, 0, t, 0);
1777 /* C++: If it was not found as a data field, then try to
1778 return it as a pointer to a method. */
1780 if (destructor_name_p (name, t))
1781 error (_("Cannot get value of destructor"));
1783 v = search_struct_method (name, argp, args, 0,
1784 static_memfuncp, t);
1786 if (v == (struct value *) - 1)
1787 error (_("Cannot take address of method %s."), name);
1790 if (TYPE_NFN_FIELDS (t))
1791 error (_("There is no member or method named %s."), name);
1793 error (_("There is no member named %s."), name);
1798 if (destructor_name_p (name, t))
1802 /* Destructors are a special case. */
1803 int m_index, f_index;
1806 if (get_destructor_fn_field (t, &m_index, &f_index))
1808 v = value_fn_field (NULL,
1809 TYPE_FN_FIELDLIST1 (t, m_index),
1813 error (_("could not find destructor function named %s."),
1820 error (_("destructor should not have any argument"));
1824 v = search_struct_method (name, argp, args, 0,
1825 static_memfuncp, t);
1827 if (v == (struct value *) - 1)
1829 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1833 /* See if user tried to invoke data as function. If so, hand it
1834 back. If it's not callable (i.e., a pointer to function),
1835 gdb should give an error. */
1836 v = search_struct_field (name, *argp, 0, t, 0);
1837 /* If we found an ordinary field, then it is not a method call.
1838 So, treat it as if it were a static member function. */
1839 if (v && static_memfuncp)
1840 *static_memfuncp = 1;
1844 error (_("Structure has no component named %s."), name);
1848 /* Search through the methods of an object (and its bases) to find a
1849 specified method. Return the pointer to the fn_field list of
1850 overloaded instances.
1852 Helper function for value_find_oload_list.
1853 ARGP is a pointer to a pointer to a value (the object).
1854 METHOD is a string containing the method name.
1855 OFFSET is the offset within the value.
1856 TYPE is the assumed type of the object.
1857 NUM_FNS is the number of overloaded instances.
1858 BASETYPE is set to the actual type of the subobject where the
1860 BOFFSET is the offset of the base subobject where the method is found.
1863 static struct fn_field *
1864 find_method_list (struct value **argp, char *method,
1865 int offset, struct type *type, int *num_fns,
1866 struct type **basetype, int *boffset)
1870 CHECK_TYPEDEF (type);
1874 /* First check in object itself. */
1875 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1877 /* pai: FIXME What about operators and type conversions? */
1878 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1879 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1881 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1882 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1888 /* Resolve any stub methods. */
1889 check_stub_method_group (type, i);
1895 /* Not found in object, check in base subobjects. */
1896 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1899 if (BASETYPE_VIA_VIRTUAL (type, i))
1901 base_offset = value_offset (*argp) + offset;
1902 base_offset = baseclass_offset (type, i,
1903 value_contents (*argp) + base_offset,
1904 VALUE_ADDRESS (*argp) + base_offset);
1905 if (base_offset == -1)
1906 error (_("virtual baseclass botch"));
1908 else /* Non-virtual base, simply use bit position from debug
1911 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1913 f = find_method_list (argp, method, base_offset + offset,
1914 TYPE_BASECLASS (type, i), num_fns,
1922 /* Return the list of overloaded methods of a specified name.
1924 ARGP is a pointer to a pointer to a value (the object).
1925 METHOD is the method name.
1926 OFFSET is the offset within the value contents.
1927 NUM_FNS is the number of overloaded instances.
1928 BASETYPE is set to the type of the base subobject that defines the
1930 BOFFSET is the offset of the base subobject which defines the method.
1934 value_find_oload_method_list (struct value **argp, char *method,
1935 int offset, int *num_fns,
1936 struct type **basetype, int *boffset)
1940 t = check_typedef (value_type (*argp));
1942 /* Code snarfed from value_struct_elt. */
1943 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1945 *argp = value_ind (*argp);
1946 /* Don't coerce fn pointer to fn and then back again! */
1947 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1948 *argp = coerce_array (*argp);
1949 t = check_typedef (value_type (*argp));
1952 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1953 && TYPE_CODE (t) != TYPE_CODE_UNION)
1954 error (_("Attempt to extract a component of a value that is not a struct or union"));
1956 return find_method_list (argp, method, 0, t, num_fns,
1960 /* Given an array of argument types (ARGTYPES) (which includes an
1961 entry for "this" in the case of C++ methods), the number of
1962 arguments NARGS, the NAME of a function whether it's a method or
1963 not (METHOD), and the degree of laxness (LAX) in conforming to
1964 overload resolution rules in ANSI C++, find the best function that
1965 matches on the argument types according to the overload resolution
1968 In the case of class methods, the parameter OBJ is an object value
1969 in which to search for overloaded methods.
1971 In the case of non-method functions, the parameter FSYM is a symbol
1972 corresponding to one of the overloaded functions.
1974 Return value is an integer: 0 -> good match, 10 -> debugger applied
1975 non-standard coercions, 100 -> incompatible.
1977 If a method is being searched for, VALP will hold the value.
1978 If a non-method is being searched for, SYMP will hold the symbol
1981 If a method is being searched for, and it is a static method,
1982 then STATICP will point to a non-zero value.
1984 Note: This function does *not* check the value of
1985 overload_resolution. Caller must check it to see whether overload
1986 resolution is permitted.
1990 find_overload_match (struct type **arg_types, int nargs,
1991 char *name, int method, int lax,
1992 struct value **objp, struct symbol *fsym,
1993 struct value **valp, struct symbol **symp,
1996 struct value *obj = (objp ? *objp : NULL);
1997 /* Index of best overloaded function. */
1999 /* The measure for the current best match. */
2000 struct badness_vector *oload_champ_bv = NULL;
2001 struct value *temp = obj;
2002 /* For methods, the list of overloaded methods. */
2003 struct fn_field *fns_ptr = NULL;
2004 /* For non-methods, the list of overloaded function symbols. */
2005 struct symbol **oload_syms = NULL;
2006 /* Number of overloaded instances being considered. */
2008 struct type *basetype = NULL;
2012 struct cleanup *old_cleanups = NULL;
2014 const char *obj_type_name = NULL;
2015 char *func_name = NULL;
2016 enum oload_classification match_quality;
2018 /* Get the list of overloaded methods or functions. */
2022 obj_type_name = TYPE_NAME (value_type (obj));
2023 /* Hack: evaluate_subexp_standard often passes in a pointer
2024 value rather than the object itself, so try again. */
2025 if ((!obj_type_name || !*obj_type_name)
2026 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2027 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2029 fns_ptr = value_find_oload_method_list (&temp, name,
2031 &basetype, &boffset);
2032 if (!fns_ptr || !num_fns)
2033 error (_("Couldn't find method %s%s%s"),
2035 (obj_type_name && *obj_type_name) ? "::" : "",
2037 /* If we are dealing with stub method types, they should have
2038 been resolved by find_method_list via
2039 value_find_oload_method_list above. */
2040 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2041 oload_champ = find_oload_champ (arg_types, nargs, method,
2043 oload_syms, &oload_champ_bv);
2047 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2049 /* If we have a C++ name, try to extract just the function
2052 func_name = cp_func_name (qualified_name);
2054 /* If there was no C++ name, this must be a C-style function.
2055 Just return the same symbol. Do the same if cp_func_name
2056 fails for some reason. */
2057 if (func_name == NULL)
2063 old_cleanups = make_cleanup (xfree, func_name);
2064 make_cleanup (xfree, oload_syms);
2065 make_cleanup (xfree, oload_champ_bv);
2067 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2074 /* Check how bad the best match is. */
2077 classify_oload_match (oload_champ_bv, nargs,
2078 oload_method_static (method, fns_ptr,
2081 if (match_quality == INCOMPATIBLE)
2084 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2086 (obj_type_name && *obj_type_name) ? "::" : "",
2089 error (_("Cannot resolve function %s to any overloaded instance"),
2092 else if (match_quality == NON_STANDARD)
2095 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2097 (obj_type_name && *obj_type_name) ? "::" : "",
2100 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2106 if (staticp != NULL)
2107 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2108 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2109 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2112 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2117 *symp = oload_syms[oload_champ];
2122 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
2123 && (TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR
2124 || TYPE_CODE (value_type (*objp)) == TYPE_CODE_REF))
2126 temp = value_addr (temp);
2130 if (old_cleanups != NULL)
2131 do_cleanups (old_cleanups);
2133 switch (match_quality)
2139 default: /* STANDARD */
2144 /* Find the best overload match, searching for FUNC_NAME in namespaces
2145 contained in QUALIFIED_NAME until it either finds a good match or
2146 runs out of namespaces. It stores the overloaded functions in
2147 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2148 calling function is responsible for freeing *OLOAD_SYMS and
2152 find_oload_champ_namespace (struct type **arg_types, int nargs,
2153 const char *func_name,
2154 const char *qualified_name,
2155 struct symbol ***oload_syms,
2156 struct badness_vector **oload_champ_bv)
2160 find_oload_champ_namespace_loop (arg_types, nargs,
2163 oload_syms, oload_champ_bv,
2169 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2170 how deep we've looked for namespaces, and the champ is stored in
2171 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2174 It is the caller's responsibility to free *OLOAD_SYMS and
2178 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2179 const char *func_name,
2180 const char *qualified_name,
2182 struct symbol ***oload_syms,
2183 struct badness_vector **oload_champ_bv,
2186 int next_namespace_len = namespace_len;
2187 int searched_deeper = 0;
2189 struct cleanup *old_cleanups;
2190 int new_oload_champ;
2191 struct symbol **new_oload_syms;
2192 struct badness_vector *new_oload_champ_bv;
2193 char *new_namespace;
2195 if (next_namespace_len != 0)
2197 gdb_assert (qualified_name[next_namespace_len] == ':');
2198 next_namespace_len += 2;
2200 next_namespace_len +=
2201 cp_find_first_component (qualified_name + next_namespace_len);
2203 /* Initialize these to values that can safely be xfree'd. */
2205 *oload_champ_bv = NULL;
2207 /* First, see if we have a deeper namespace we can search in.
2208 If we get a good match there, use it. */
2210 if (qualified_name[next_namespace_len] == ':')
2212 searched_deeper = 1;
2214 if (find_oload_champ_namespace_loop (arg_types, nargs,
2215 func_name, qualified_name,
2217 oload_syms, oload_champ_bv,
2224 /* If we reach here, either we're in the deepest namespace or we
2225 didn't find a good match in a deeper namespace. But, in the
2226 latter case, we still have a bad match in a deeper namespace;
2227 note that we might not find any match at all in the current
2228 namespace. (There's always a match in the deepest namespace,
2229 because this overload mechanism only gets called if there's a
2230 function symbol to start off with.) */
2232 old_cleanups = make_cleanup (xfree, *oload_syms);
2233 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2234 new_namespace = alloca (namespace_len + 1);
2235 strncpy (new_namespace, qualified_name, namespace_len);
2236 new_namespace[namespace_len] = '\0';
2237 new_oload_syms = make_symbol_overload_list (func_name,
2239 while (new_oload_syms[num_fns])
2242 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2243 NULL, new_oload_syms,
2244 &new_oload_champ_bv);
2246 /* Case 1: We found a good match. Free earlier matches (if any),
2247 and return it. Case 2: We didn't find a good match, but we're
2248 not the deepest function. Then go with the bad match that the
2249 deeper function found. Case 3: We found a bad match, and we're
2250 the deepest function. Then return what we found, even though
2251 it's a bad match. */
2253 if (new_oload_champ != -1
2254 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2256 *oload_syms = new_oload_syms;
2257 *oload_champ = new_oload_champ;
2258 *oload_champ_bv = new_oload_champ_bv;
2259 do_cleanups (old_cleanups);
2262 else if (searched_deeper)
2264 xfree (new_oload_syms);
2265 xfree (new_oload_champ_bv);
2266 discard_cleanups (old_cleanups);
2271 gdb_assert (new_oload_champ != -1);
2272 *oload_syms = new_oload_syms;
2273 *oload_champ = new_oload_champ;
2274 *oload_champ_bv = new_oload_champ_bv;
2275 discard_cleanups (old_cleanups);
2280 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2281 the best match from among the overloaded methods or functions
2282 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2283 The number of methods/functions in the list is given by NUM_FNS.
2284 Return the index of the best match; store an indication of the
2285 quality of the match in OLOAD_CHAMP_BV.
2287 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2290 find_oload_champ (struct type **arg_types, int nargs, int method,
2291 int num_fns, struct fn_field *fns_ptr,
2292 struct symbol **oload_syms,
2293 struct badness_vector **oload_champ_bv)
2296 /* A measure of how good an overloaded instance is. */
2297 struct badness_vector *bv;
2298 /* Index of best overloaded function. */
2299 int oload_champ = -1;
2300 /* Current ambiguity state for overload resolution. */
2301 int oload_ambiguous = 0;
2302 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2304 *oload_champ_bv = NULL;
2306 /* Consider each candidate in turn. */
2307 for (ix = 0; ix < num_fns; ix++)
2310 int static_offset = oload_method_static (method, fns_ptr, ix);
2312 struct type **parm_types;
2316 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2320 /* If it's not a method, this is the proper place. */
2321 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2324 /* Prepare array of parameter types. */
2325 parm_types = (struct type **)
2326 xmalloc (nparms * (sizeof (struct type *)));
2327 for (jj = 0; jj < nparms; jj++)
2328 parm_types[jj] = (method
2329 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2330 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2333 /* Compare parameter types to supplied argument types. Skip
2334 THIS for static methods. */
2335 bv = rank_function (parm_types, nparms,
2336 arg_types + static_offset,
2337 nargs - static_offset);
2339 if (!*oload_champ_bv)
2341 *oload_champ_bv = bv;
2344 else /* See whether current candidate is better or worse than
2346 switch (compare_badness (bv, *oload_champ_bv))
2348 case 0: /* Top two contenders are equally good. */
2349 oload_ambiguous = 1;
2351 case 1: /* Incomparable top contenders. */
2352 oload_ambiguous = 2;
2354 case 2: /* New champion, record details. */
2355 *oload_champ_bv = bv;
2356 oload_ambiguous = 0;
2367 fprintf_filtered (gdb_stderr,
2368 "Overloaded method instance %s, # of parms %d\n",
2369 fns_ptr[ix].physname, nparms);
2371 fprintf_filtered (gdb_stderr,
2372 "Overloaded function instance %s # of parms %d\n",
2373 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2375 for (jj = 0; jj < nargs - static_offset; jj++)
2376 fprintf_filtered (gdb_stderr,
2377 "...Badness @ %d : %d\n",
2379 fprintf_filtered (gdb_stderr,
2380 "Overload resolution champion is %d, ambiguous? %d\n",
2381 oload_champ, oload_ambiguous);
2388 /* Return 1 if we're looking at a static method, 0 if we're looking at
2389 a non-static method or a function that isn't a method. */
2392 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2394 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2400 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2402 static enum oload_classification
2403 classify_oload_match (struct badness_vector *oload_champ_bv,
2409 for (ix = 1; ix <= nargs - static_offset; ix++)
2411 if (oload_champ_bv->rank[ix] >= 100)
2412 return INCOMPATIBLE; /* Truly mismatched types. */
2413 else if (oload_champ_bv->rank[ix] >= 10)
2414 return NON_STANDARD; /* Non-standard type conversions
2418 return STANDARD; /* Only standard conversions needed. */
2421 /* C++: return 1 is NAME is a legitimate name for the destructor of
2422 type TYPE. If TYPE does not have a destructor, or if NAME is
2423 inappropriate for TYPE, an error is signaled. */
2425 destructor_name_p (const char *name, const struct type *type)
2427 /* Destructors are a special case. */
2431 char *dname = type_name_no_tag (type);
2432 char *cp = strchr (dname, '<');
2435 /* Do not compare the template part for template classes. */
2437 len = strlen (dname);
2440 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2441 error (_("name of destructor must equal name of class"));
2448 /* Given TYPE, a structure/union,
2449 return 1 if the component named NAME from the ultimate target
2450 structure/union is defined, otherwise, return 0. */
2453 check_field (struct type *type, const char *name)
2457 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2459 char *t_field_name = TYPE_FIELD_NAME (type, i);
2460 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2464 /* C++: If it was not found as a data field, then try to return it
2465 as a pointer to a method. */
2467 /* Destructors are a special case. */
2468 if (destructor_name_p (name, type))
2470 int m_index, f_index;
2472 return get_destructor_fn_field (type, &m_index, &f_index);
2475 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2477 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2481 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2482 if (check_field (TYPE_BASECLASS (type, i), name))
2488 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2489 return the appropriate member (or the address of the member, if
2490 WANT_ADDRESS). This function is used to resolve user expressions
2491 of the form "DOMAIN::NAME". For more details on what happens, see
2492 the comment before value_struct_elt_for_reference. */
2495 value_aggregate_elt (struct type *curtype,
2496 char *name, int want_address,
2499 switch (TYPE_CODE (curtype))
2501 case TYPE_CODE_STRUCT:
2502 case TYPE_CODE_UNION:
2503 return value_struct_elt_for_reference (curtype, 0, curtype,
2505 want_address, noside);
2506 case TYPE_CODE_NAMESPACE:
2507 return value_namespace_elt (curtype, name,
2508 want_address, noside);
2510 internal_error (__FILE__, __LINE__,
2511 _("non-aggregate type in value_aggregate_elt"));
2515 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2516 return the address of this member as a "pointer to member" type.
2517 If INTYPE is non-null, then it will be the type of the member we
2518 are looking for. This will help us resolve "pointers to member
2519 functions". This function is used to resolve user expressions of
2520 the form "DOMAIN::NAME". */
2522 static struct value *
2523 value_struct_elt_for_reference (struct type *domain, int offset,
2524 struct type *curtype, char *name,
2525 struct type *intype,
2529 struct type *t = curtype;
2531 struct value *v, *result;
2533 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2534 && TYPE_CODE (t) != TYPE_CODE_UNION)
2535 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2537 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2539 char *t_field_name = TYPE_FIELD_NAME (t, i);
2541 if (t_field_name && strcmp (t_field_name, name) == 0)
2543 if (TYPE_FIELD_STATIC (t, i))
2545 v = value_static_field (t, i);
2547 error (_("static field %s has been optimized out"),
2553 if (TYPE_FIELD_PACKED (t, i))
2554 error (_("pointers to bitfield members not allowed"));
2557 return value_from_longest
2558 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2559 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2560 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2561 return allocate_value (TYPE_FIELD_TYPE (t, i));
2563 error (_("Cannot reference non-static field \"%s\""), name);
2567 /* C++: If it was not found as a data field, then try to return it
2568 as a pointer to a method. */
2570 /* Destructors are a special case. */
2571 if (destructor_name_p (name, t))
2573 error (_("member pointers to destructors not implemented yet"));
2576 /* Perform all necessary dereferencing. */
2577 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2578 intype = TYPE_TARGET_TYPE (intype);
2580 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2582 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2583 char dem_opname[64];
2585 if (strncmp (t_field_name, "__", 2) == 0
2586 || strncmp (t_field_name, "op", 2) == 0
2587 || strncmp (t_field_name, "type", 4) == 0)
2589 if (cplus_demangle_opname (t_field_name,
2590 dem_opname, DMGL_ANSI))
2591 t_field_name = dem_opname;
2592 else if (cplus_demangle_opname (t_field_name,
2594 t_field_name = dem_opname;
2596 if (t_field_name && strcmp (t_field_name, name) == 0)
2598 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2599 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2601 check_stub_method_group (t, i);
2603 if (intype == 0 && j > 1)
2604 error (_("non-unique member `%s' requires type instantiation"), name);
2608 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2611 error (_("no member function matches that type instantiation"));
2616 if (TYPE_FN_FIELD_STATIC_P (f, j))
2619 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2625 return value_addr (read_var_value (s, 0));
2627 return read_var_value (s, 0);
2630 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2634 result = allocate_value
2635 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2636 cplus_make_method_ptr (value_type (result),
2637 value_contents_writeable (result),
2638 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2640 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2641 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2643 error (_("Cannot reference virtual member function \"%s\""),
2649 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2654 v = read_var_value (s, 0);
2659 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2660 cplus_make_method_ptr (value_type (result),
2661 value_contents_writeable (result),
2662 VALUE_ADDRESS (v), 0);
2668 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2673 if (BASETYPE_VIA_VIRTUAL (t, i))
2676 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2677 v = value_struct_elt_for_reference (domain,
2678 offset + base_offset,
2679 TYPE_BASECLASS (t, i),
2681 want_address, noside);
2686 /* As a last chance, pretend that CURTYPE is a namespace, and look
2687 it up that way; this (frequently) works for types nested inside
2690 return value_maybe_namespace_elt (curtype, name,
2691 want_address, noside);
2694 /* C++: Return the member NAME of the namespace given by the type
2697 static struct value *
2698 value_namespace_elt (const struct type *curtype,
2699 char *name, int want_address,
2702 struct value *retval = value_maybe_namespace_elt (curtype, name,
2707 error (_("No symbol \"%s\" in namespace \"%s\"."),
2708 name, TYPE_TAG_NAME (curtype));
2713 /* A helper function used by value_namespace_elt and
2714 value_struct_elt_for_reference. It looks up NAME inside the
2715 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2716 is a class and NAME refers to a type in CURTYPE itself (as opposed
2717 to, say, some base class of CURTYPE). */
2719 static struct value *
2720 value_maybe_namespace_elt (const struct type *curtype,
2721 char *name, int want_address,
2724 const char *namespace_name = TYPE_TAG_NAME (curtype);
2726 struct value *result;
2728 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2729 get_selected_block (0),
2734 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2735 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2736 result = allocate_value (SYMBOL_TYPE (sym));
2738 result = value_of_variable (sym, get_selected_block (0));
2740 if (result && want_address)
2741 result = value_addr (result);
2746 /* Given a pointer value V, find the real (RTTI) type of the object it
2749 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2750 and refer to the values computed for the object pointed to. */
2753 value_rtti_target_type (struct value *v, int *full,
2754 int *top, int *using_enc)
2756 struct value *target;
2758 target = value_ind (v);
2760 return value_rtti_type (target, full, top, using_enc);
2763 /* Given a value pointed to by ARGP, check its real run-time type, and
2764 if that is different from the enclosing type, create a new value
2765 using the real run-time type as the enclosing type (and of the same
2766 type as ARGP) and return it, with the embedded offset adjusted to
2767 be the correct offset to the enclosed object. RTYPE is the type,
2768 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2769 by value_rtti_type(). If these are available, they can be supplied
2770 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2771 NULL if they're not available. */
2774 value_full_object (struct value *argp,
2776 int xfull, int xtop,
2779 struct type *real_type;
2783 struct value *new_val;
2790 using_enc = xusing_enc;
2793 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2795 /* If no RTTI data, or if object is already complete, do nothing. */
2796 if (!real_type || real_type == value_enclosing_type (argp))
2799 /* If we have the full object, but for some reason the enclosing
2800 type is wrong, set it. */
2801 /* pai: FIXME -- sounds iffy */
2804 argp = value_change_enclosing_type (argp, real_type);
2808 /* Check if object is in memory */
2809 if (VALUE_LVAL (argp) != lval_memory)
2811 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2812 TYPE_NAME (real_type));
2817 /* All other cases -- retrieve the complete object. */
2818 /* Go back by the computed top_offset from the beginning of the
2819 object, adjusting for the embedded offset of argp if that's what
2820 value_rtti_type used for its computation. */
2821 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2822 (using_enc ? 0 : value_embedded_offset (argp)));
2823 deprecated_set_value_type (new_val, value_type (argp));
2824 set_value_embedded_offset (new_val, (using_enc
2825 ? top + value_embedded_offset (argp)
2831 /* Return the value of the local variable, if one exists.
2832 Flag COMPLAIN signals an error if the request is made in an
2833 inappropriate context. */
2836 value_of_local (const char *name, int complain)
2838 struct symbol *func, *sym;
2841 struct frame_info *frame;
2844 frame = get_selected_frame (_("no frame selected"));
2847 frame = deprecated_safe_get_selected_frame ();
2852 func = get_frame_function (frame);
2856 error (_("no `%s' in nameless context"), name);
2861 b = SYMBOL_BLOCK_VALUE (func);
2862 if (dict_empty (BLOCK_DICT (b)))
2865 error (_("no args, no `%s'"), name);
2870 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2871 symbol instead of the LOC_ARG one (if both exist). */
2872 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2876 error (_("current stack frame does not contain a variable named `%s'"),
2882 ret = read_var_value (sym, frame);
2883 if (ret == 0 && complain)
2884 error (_("`%s' argument unreadable"), name);
2888 /* C++/Objective-C: return the value of the class instance variable,
2889 if one exists. Flag COMPLAIN signals an error if the request is
2890 made in an inappropriate context. */
2893 value_of_this (int complain)
2895 if (!current_language->la_name_of_this)
2897 return value_of_local (current_language->la_name_of_this, complain);
2900 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2901 elements long, starting at LOWBOUND. The result has the same lower
2902 bound as the original ARRAY. */
2905 value_slice (struct value *array, int lowbound, int length)
2907 struct type *slice_range_type, *slice_type, *range_type;
2908 LONGEST lowerbound, upperbound;
2909 struct value *slice;
2910 struct type *array_type;
2912 array_type = check_typedef (value_type (array));
2913 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2914 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2915 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2916 error (_("cannot take slice of non-array"));
2918 range_type = TYPE_INDEX_TYPE (array_type);
2919 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2920 error (_("slice from bad array or bitstring"));
2922 if (lowbound < lowerbound || length < 0
2923 || lowbound + length - 1 > upperbound)
2924 error (_("slice out of range"));
2926 /* FIXME-type-allocation: need a way to free this type when we are
2928 slice_range_type = create_range_type ((struct type *) NULL,
2929 TYPE_TARGET_TYPE (range_type),
2931 lowbound + length - 1);
2932 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2936 slice_type = create_set_type ((struct type *) NULL,
2938 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2939 slice = value_zero (slice_type, not_lval);
2941 for (i = 0; i < length; i++)
2943 int element = value_bit_index (array_type,
2944 value_contents (array),
2947 error (_("internal error accessing bitstring"));
2948 else if (element > 0)
2950 int j = i % TARGET_CHAR_BIT;
2951 if (gdbarch_bits_big_endian (current_gdbarch))
2952 j = TARGET_CHAR_BIT - 1 - j;
2953 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2956 /* We should set the address, bitssize, and bitspos, so the
2957 slice can be used on the LHS, but that may require extensions
2958 to value_assign. For now, just leave as a non_lval.
2963 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2965 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2967 slice_type = create_array_type ((struct type *) NULL,
2970 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2972 slice = allocate_value (slice_type);
2973 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2974 set_value_lazy (slice, 1);
2976 memcpy (value_contents_writeable (slice),
2977 value_contents (array) + offset,
2978 TYPE_LENGTH (slice_type));
2980 if (VALUE_LVAL (array) == lval_internalvar)
2981 VALUE_LVAL (slice) = lval_internalvar_component;
2983 VALUE_LVAL (slice) = VALUE_LVAL (array);
2985 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2986 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2987 set_value_offset (slice, value_offset (array) + offset);
2992 /* Create a value for a FORTRAN complex number. Currently most of the
2993 time values are coerced to COMPLEX*16 (i.e. a complex number
2994 composed of 2 doubles. This really should be a smarter routine
2995 that figures out precision inteligently as opposed to assuming
2996 doubles. FIXME: fmb */
2999 value_literal_complex (struct value *arg1,
3004 struct type *real_type = TYPE_TARGET_TYPE (type);
3006 val = allocate_value (type);
3007 arg1 = value_cast (real_type, arg1);
3008 arg2 = value_cast (real_type, arg2);
3010 memcpy (value_contents_raw (val),
3011 value_contents (arg1), TYPE_LENGTH (real_type));
3012 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3013 value_contents (arg2), TYPE_LENGTH (real_type));
3017 /* Cast a value into the appropriate complex data type. */
3019 static struct value *
3020 cast_into_complex (struct type *type, struct value *val)
3022 struct type *real_type = TYPE_TARGET_TYPE (type);
3024 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3026 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3027 struct value *re_val = allocate_value (val_real_type);
3028 struct value *im_val = allocate_value (val_real_type);
3030 memcpy (value_contents_raw (re_val),
3031 value_contents (val), TYPE_LENGTH (val_real_type));
3032 memcpy (value_contents_raw (im_val),
3033 value_contents (val) + TYPE_LENGTH (val_real_type),
3034 TYPE_LENGTH (val_real_type));
3036 return value_literal_complex (re_val, im_val, type);
3038 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3039 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3040 return value_literal_complex (val,
3041 value_zero (real_type, not_lval),
3044 error (_("cannot cast non-number to complex"));
3048 _initialize_valops (void)
3050 add_setshow_boolean_cmd ("overload-resolution", class_support,
3051 &overload_resolution, _("\
3052 Set overload resolution in evaluating C++ functions."), _("\
3053 Show overload resolution in evaluating C++ functions."),
3055 show_overload_resolution,
3056 &setlist, &showlist);
3057 overload_resolution = 1;