1 /* Common target dependent code for GDB on ARM systems.
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Standard C includes. */
25 /* Standard C++ includes. */
28 /* Local non-gdb includes. */
29 #include "arch-utils.h"
30 #include "arch/arm-get-next-pcs.h"
33 #include "coff/internal.h"
34 #include "common/vec.h"
37 #include "dwarf2-frame.h"
40 #include "features/arm/arm-with-iwmmxt.c"
41 #include "features/arm/arm-with-m-fpa-layout.c"
42 #include "features/arm/arm-with-m-vfp-d16.c"
43 #include "features/arm/arm-with-m.c"
44 #include "features/arm/arm-with-neon.c"
45 #include "features/arm/arm-with-vfpv2.c"
46 #include "features/arm/arm-with-vfpv3.c"
47 #include "frame-base.h"
48 #include "frame-unwind.h"
50 #include "gdb/sim-arm.h"
57 #include "observable.h"
59 #include "prologue-value.h"
60 #include "record-full.h"
63 #include "reggroups.h"
65 #include "target-descriptions.h"
66 #include "target-float.h"
67 #include "trad-frame.h"
68 #include "user-regs.h"
72 #include "common/selftest.h"
77 /* Macros for setting and testing a bit in a minimal symbol that marks
78 it as Thumb function. The MSB of the minimal symbol's "info" field
79 is used for this purpose.
81 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
82 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
84 #define MSYMBOL_SET_SPECIAL(msym) \
85 MSYMBOL_TARGET_FLAG_1 (msym) = 1
87 #define MSYMBOL_IS_SPECIAL(msym) \
88 MSYMBOL_TARGET_FLAG_1 (msym)
90 /* Per-objfile data used for mapping symbols. */
91 static const struct objfile_data *arm_objfile_data_key;
93 struct arm_mapping_symbol
98 typedef struct arm_mapping_symbol arm_mapping_symbol_s;
99 DEF_VEC_O(arm_mapping_symbol_s);
101 struct arm_per_objfile
103 VEC(arm_mapping_symbol_s) **section_maps;
106 /* The list of available "set arm ..." and "show arm ..." commands. */
107 static struct cmd_list_element *setarmcmdlist = NULL;
108 static struct cmd_list_element *showarmcmdlist = NULL;
110 /* The type of floating-point to use. Keep this in sync with enum
111 arm_float_model, and the help string in _initialize_arm_tdep. */
112 static const char *const fp_model_strings[] =
122 /* A variable that can be configured by the user. */
123 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
124 static const char *current_fp_model = "auto";
126 /* The ABI to use. Keep this in sync with arm_abi_kind. */
127 static const char *const arm_abi_strings[] =
135 /* A variable that can be configured by the user. */
136 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
137 static const char *arm_abi_string = "auto";
139 /* The execution mode to assume. */
140 static const char *const arm_mode_strings[] =
148 static const char *arm_fallback_mode_string = "auto";
149 static const char *arm_force_mode_string = "auto";
151 /* The standard register names, and all the valid aliases for them. Note
152 that `fp', `sp' and `pc' are not added in this alias list, because they
153 have been added as builtin user registers in
154 std-regs.c:_initialize_frame_reg. */
159 } arm_register_aliases[] = {
160 /* Basic register numbers. */
177 /* Synonyms (argument and variable registers). */
190 /* Other platform-specific names for r9. */
196 /* Names used by GCC (not listed in the ARM EABI). */
198 /* A special name from the older ATPCS. */
202 static const char *const arm_register_names[] =
203 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
204 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
205 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
206 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
207 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
208 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
209 "fps", "cpsr" }; /* 24 25 */
211 /* Holds the current set of options to be passed to the disassembler. */
212 static char *arm_disassembler_options;
214 /* Valid register name styles. */
215 static const char **valid_disassembly_styles;
217 /* Disassembly style to use. Default to "std" register names. */
218 static const char *disassembly_style;
220 /* This is used to keep the bfd arch_info in sync with the disassembly
222 static void set_disassembly_style_sfunc (const char *, int,
223 struct cmd_list_element *);
224 static void show_disassembly_style_sfunc (struct ui_file *, int,
225 struct cmd_list_element *,
228 static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
229 readable_regcache *regcache,
230 int regnum, gdb_byte *buf);
231 static void arm_neon_quad_write (struct gdbarch *gdbarch,
232 struct regcache *regcache,
233 int regnum, const gdb_byte *buf);
236 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
239 /* get_next_pcs operations. */
240 static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
241 arm_get_next_pcs_read_memory_unsigned_integer,
242 arm_get_next_pcs_syscall_next_pc,
243 arm_get_next_pcs_addr_bits_remove,
244 arm_get_next_pcs_is_thumb,
248 struct arm_prologue_cache
250 /* The stack pointer at the time this frame was created; i.e. the
251 caller's stack pointer when this function was called. It is used
252 to identify this frame. */
255 /* The frame base for this frame is just prev_sp - frame size.
256 FRAMESIZE is the distance from the frame pointer to the
257 initial stack pointer. */
261 /* The register used to hold the frame pointer for this frame. */
264 /* Saved register offsets. */
265 struct trad_frame_saved_reg *saved_regs;
268 static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
269 CORE_ADDR prologue_start,
270 CORE_ADDR prologue_end,
271 struct arm_prologue_cache *cache);
273 /* Architecture version for displaced stepping. This effects the behaviour of
274 certain instructions, and really should not be hard-wired. */
276 #define DISPLACED_STEPPING_ARCH_VERSION 5
278 /* Set to true if the 32-bit mode is in use. */
282 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
285 arm_psr_thumb_bit (struct gdbarch *gdbarch)
287 if (gdbarch_tdep (gdbarch)->is_m)
293 /* Determine if the processor is currently executing in Thumb mode. */
296 arm_is_thumb (struct regcache *regcache)
299 ULONGEST t_bit = arm_psr_thumb_bit (regcache->arch ());
301 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
303 return (cpsr & t_bit) != 0;
306 /* Determine if FRAME is executing in Thumb mode. */
309 arm_frame_is_thumb (struct frame_info *frame)
312 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
314 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
315 directly (from a signal frame or dummy frame) or by interpreting
316 the saved LR (from a prologue or DWARF frame). So consult it and
317 trust the unwinders. */
318 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
320 return (cpsr & t_bit) != 0;
323 /* Callback for VEC_lower_bound. */
326 arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
327 const struct arm_mapping_symbol *rhs)
329 return lhs->value < rhs->value;
332 /* Search for the mapping symbol covering MEMADDR. If one is found,
333 return its type. Otherwise, return 0. If START is non-NULL,
334 set *START to the location of the mapping symbol. */
337 arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
339 struct obj_section *sec;
341 /* If there are mapping symbols, consult them. */
342 sec = find_pc_section (memaddr);
345 struct arm_per_objfile *data;
346 VEC(arm_mapping_symbol_s) *map;
347 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
351 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
352 arm_objfile_data_key);
355 map = data->section_maps[sec->the_bfd_section->index];
356 if (!VEC_empty (arm_mapping_symbol_s, map))
358 struct arm_mapping_symbol *map_sym;
360 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
361 arm_compare_mapping_symbols);
363 /* VEC_lower_bound finds the earliest ordered insertion
364 point. If the following symbol starts at this exact
365 address, we use that; otherwise, the preceding
366 mapping symbol covers this address. */
367 if (idx < VEC_length (arm_mapping_symbol_s, map))
369 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
370 if (map_sym->value == map_key.value)
373 *start = map_sym->value + obj_section_addr (sec);
374 return map_sym->type;
380 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
382 *start = map_sym->value + obj_section_addr (sec);
383 return map_sym->type;
392 /* Determine if the program counter specified in MEMADDR is in a Thumb
393 function. This function should be called for addresses unrelated to
394 any executing frame; otherwise, prefer arm_frame_is_thumb. */
397 arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
399 struct bound_minimal_symbol sym;
401 arm_displaced_step_closure *dsc
402 = ((arm_displaced_step_closure * )
403 get_displaced_step_closure_by_addr (memaddr));
405 /* If checking the mode of displaced instruction in copy area, the mode
406 should be determined by instruction on the original address. */
410 fprintf_unfiltered (gdb_stdlog,
411 "displaced: check mode of %.8lx instead of %.8lx\n",
412 (unsigned long) dsc->insn_addr,
413 (unsigned long) memaddr);
414 memaddr = dsc->insn_addr;
417 /* If bit 0 of the address is set, assume this is a Thumb address. */
418 if (IS_THUMB_ADDR (memaddr))
421 /* If the user wants to override the symbol table, let him. */
422 if (strcmp (arm_force_mode_string, "arm") == 0)
424 if (strcmp (arm_force_mode_string, "thumb") == 0)
427 /* ARM v6-M and v7-M are always in Thumb mode. */
428 if (gdbarch_tdep (gdbarch)->is_m)
431 /* If there are mapping symbols, consult them. */
432 type = arm_find_mapping_symbol (memaddr, NULL);
436 /* Thumb functions have a "special" bit set in minimal symbols. */
437 sym = lookup_minimal_symbol_by_pc (memaddr);
439 return (MSYMBOL_IS_SPECIAL (sym.minsym));
441 /* If the user wants to override the fallback mode, let them. */
442 if (strcmp (arm_fallback_mode_string, "arm") == 0)
444 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
447 /* If we couldn't find any symbol, but we're talking to a running
448 target, then trust the current value of $cpsr. This lets
449 "display/i $pc" always show the correct mode (though if there is
450 a symbol table we will not reach here, so it still may not be
451 displayed in the mode it will be executed). */
452 if (target_has_registers)
453 return arm_frame_is_thumb (get_current_frame ());
455 /* Otherwise we're out of luck; we assume ARM. */
459 /* Determine if the address specified equals any of these magic return
460 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
463 From ARMv6-M Reference Manual B1.5.8
464 Table B1-5 Exception return behavior
466 EXC_RETURN Return To Return Stack
467 0xFFFFFFF1 Handler mode Main
468 0xFFFFFFF9 Thread mode Main
469 0xFFFFFFFD Thread mode Process
471 From ARMv7-M Reference Manual B1.5.8
472 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
474 EXC_RETURN Return To Return Stack
475 0xFFFFFFF1 Handler mode Main
476 0xFFFFFFF9 Thread mode Main
477 0xFFFFFFFD Thread mode Process
479 Table B1-9 EXC_RETURN definition of exception return behavior, with
482 EXC_RETURN Return To Return Stack Frame Type
483 0xFFFFFFE1 Handler mode Main Extended
484 0xFFFFFFE9 Thread mode Main Extended
485 0xFFFFFFED Thread mode Process Extended
486 0xFFFFFFF1 Handler mode Main Basic
487 0xFFFFFFF9 Thread mode Main Basic
488 0xFFFFFFFD Thread mode Process Basic
490 For more details see "B1.5.8 Exception return behavior"
491 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
494 arm_m_addr_is_magic (CORE_ADDR addr)
498 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
499 the exception return behavior. */
506 /* Address is magic. */
510 /* Address is not magic. */
515 /* Remove useless bits from addresses in a running program. */
517 arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
519 /* On M-profile devices, do not strip the low bit from EXC_RETURN
520 (the magic exception return address). */
521 if (gdbarch_tdep (gdbarch)->is_m
522 && arm_m_addr_is_magic (val))
526 return UNMAKE_THUMB_ADDR (val);
528 return (val & 0x03fffffc);
531 /* Return 1 if PC is the start of a compiler helper function which
532 can be safely ignored during prologue skipping. IS_THUMB is true
533 if the function is known to be a Thumb function due to the way it
536 skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
538 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
539 struct bound_minimal_symbol msym;
541 msym = lookup_minimal_symbol_by_pc (pc);
542 if (msym.minsym != NULL
543 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
544 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
546 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
548 /* The GNU linker's Thumb call stub to foo is named
550 if (strstr (name, "_from_thumb") != NULL)
553 /* On soft-float targets, __truncdfsf2 is called to convert promoted
554 arguments to their argument types in non-prototyped
556 if (startswith (name, "__truncdfsf2"))
558 if (startswith (name, "__aeabi_d2f"))
561 /* Internal functions related to thread-local storage. */
562 if (startswith (name, "__tls_get_addr"))
564 if (startswith (name, "__aeabi_read_tp"))
569 /* If we run against a stripped glibc, we may be unable to identify
570 special functions by name. Check for one important case,
571 __aeabi_read_tp, by comparing the *code* against the default
572 implementation (this is hand-written ARM assembler in glibc). */
575 && read_code_unsigned_integer (pc, 4, byte_order_for_code)
576 == 0xe3e00a0f /* mov r0, #0xffff0fff */
577 && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code)
578 == 0xe240f01f) /* sub pc, r0, #31 */
585 /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
586 the first 16-bit of instruction, and INSN2 is the second 16-bit of
588 #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
589 ((bits ((insn1), 0, 3) << 12) \
590 | (bits ((insn1), 10, 10) << 11) \
591 | (bits ((insn2), 12, 14) << 8) \
592 | bits ((insn2), 0, 7))
594 /* Extract the immediate from instruction movw/movt of encoding A. INSN is
595 the 32-bit instruction. */
596 #define EXTRACT_MOVW_MOVT_IMM_A(insn) \
597 ((bits ((insn), 16, 19) << 12) \
598 | bits ((insn), 0, 11))
600 /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
603 thumb_expand_immediate (unsigned int imm)
605 unsigned int count = imm >> 7;
613 return (imm & 0xff) | ((imm & 0xff) << 16);
615 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
617 return (imm & 0xff) | ((imm & 0xff) << 8)
618 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
621 return (0x80 | (imm & 0x7f)) << (32 - count);
624 /* Return 1 if the 16-bit Thumb instruction INSN restores SP in
625 epilogue, 0 otherwise. */
628 thumb_instruction_restores_sp (unsigned short insn)
630 return (insn == 0x46bd /* mov sp, r7 */
631 || (insn & 0xff80) == 0xb000 /* add sp, imm */
632 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
635 /* Analyze a Thumb prologue, looking for a recognizable stack frame
636 and frame pointer. Scan until we encounter a store that could
637 clobber the stack frame unexpectedly, or an unknown instruction.
638 Return the last address which is definitely safe to skip for an
639 initial breakpoint. */
642 thumb_analyze_prologue (struct gdbarch *gdbarch,
643 CORE_ADDR start, CORE_ADDR limit,
644 struct arm_prologue_cache *cache)
646 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
647 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
651 CORE_ADDR unrecognized_pc = 0;
653 for (i = 0; i < 16; i++)
654 regs[i] = pv_register (i, 0);
655 pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
657 while (start < limit)
661 insn = read_code_unsigned_integer (start, 2, byte_order_for_code);
663 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
668 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
671 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
672 whether to save LR (R14). */
673 mask = (insn & 0xff) | ((insn & 0x100) << 6);
675 /* Calculate offsets of saved R0-R7 and LR. */
676 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
677 if (mask & (1 << regno))
679 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
681 stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]);
684 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
686 offset = (insn & 0x7f) << 2; /* get scaled offset */
687 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
690 else if (thumb_instruction_restores_sp (insn))
692 /* Don't scan past the epilogue. */
695 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
696 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
698 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
699 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
700 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
702 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
703 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
704 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
706 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
707 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
708 && pv_is_constant (regs[bits (insn, 3, 5)]))
709 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
710 regs[bits (insn, 6, 8)]);
711 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
712 && pv_is_constant (regs[bits (insn, 3, 6)]))
714 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
715 int rm = bits (insn, 3, 6);
716 regs[rd] = pv_add (regs[rd], regs[rm]);
718 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
720 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
721 int src_reg = (insn & 0x78) >> 3;
722 regs[dst_reg] = regs[src_reg];
724 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
726 /* Handle stores to the stack. Normally pushes are used,
727 but with GCC -mtpcs-frame, there may be other stores
728 in the prologue to create the frame. */
729 int regno = (insn >> 8) & 0x7;
732 offset = (insn & 0xff) << 2;
733 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
735 if (stack.store_would_trash (addr))
738 stack.store (addr, 4, regs[regno]);
740 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
742 int rd = bits (insn, 0, 2);
743 int rn = bits (insn, 3, 5);
746 offset = bits (insn, 6, 10) << 2;
747 addr = pv_add_constant (regs[rn], offset);
749 if (stack.store_would_trash (addr))
752 stack.store (addr, 4, regs[rd]);
754 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
755 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
756 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
757 /* Ignore stores of argument registers to the stack. */
759 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
760 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
761 /* Ignore block loads from the stack, potentially copying
762 parameters from memory. */
764 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
765 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
766 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
767 /* Similarly ignore single loads from the stack. */
769 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
770 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
771 /* Skip register copies, i.e. saves to another register
772 instead of the stack. */
774 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
775 /* Recognize constant loads; even with small stacks these are necessary
777 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
778 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
780 /* Constant pool loads, for the same reason. */
781 unsigned int constant;
784 loc = start + 4 + bits (insn, 0, 7) * 4;
785 constant = read_memory_unsigned_integer (loc, 4, byte_order);
786 regs[bits (insn, 8, 10)] = pv_constant (constant);
788 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
790 unsigned short inst2;
792 inst2 = read_code_unsigned_integer (start + 2, 2,
793 byte_order_for_code);
795 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
797 /* BL, BLX. Allow some special function calls when
798 skipping the prologue; GCC generates these before
799 storing arguments to the stack. */
801 int j1, j2, imm1, imm2;
803 imm1 = sbits (insn, 0, 10);
804 imm2 = bits (inst2, 0, 10);
805 j1 = bit (inst2, 13);
806 j2 = bit (inst2, 11);
808 offset = ((imm1 << 12) + (imm2 << 1));
809 offset ^= ((!j2) << 22) | ((!j1) << 23);
811 nextpc = start + 4 + offset;
812 /* For BLX make sure to clear the low bits. */
813 if (bit (inst2, 12) == 0)
814 nextpc = nextpc & 0xfffffffc;
816 if (!skip_prologue_function (gdbarch, nextpc,
817 bit (inst2, 12) != 0))
821 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
823 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
825 pv_t addr = regs[bits (insn, 0, 3)];
828 if (stack.store_would_trash (addr))
831 /* Calculate offsets of saved registers. */
832 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
833 if (inst2 & (1 << regno))
835 addr = pv_add_constant (addr, -4);
836 stack.store (addr, 4, regs[regno]);
840 regs[bits (insn, 0, 3)] = addr;
843 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
845 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
847 int regno1 = bits (inst2, 12, 15);
848 int regno2 = bits (inst2, 8, 11);
849 pv_t addr = regs[bits (insn, 0, 3)];
851 offset = inst2 & 0xff;
853 addr = pv_add_constant (addr, offset);
855 addr = pv_add_constant (addr, -offset);
857 if (stack.store_would_trash (addr))
860 stack.store (addr, 4, regs[regno1]);
861 stack.store (pv_add_constant (addr, 4),
865 regs[bits (insn, 0, 3)] = addr;
868 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
869 && (inst2 & 0x0c00) == 0x0c00
870 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
872 int regno = bits (inst2, 12, 15);
873 pv_t addr = regs[bits (insn, 0, 3)];
875 offset = inst2 & 0xff;
877 addr = pv_add_constant (addr, offset);
879 addr = pv_add_constant (addr, -offset);
881 if (stack.store_would_trash (addr))
884 stack.store (addr, 4, regs[regno]);
887 regs[bits (insn, 0, 3)] = addr;
890 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
891 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
893 int regno = bits (inst2, 12, 15);
896 offset = inst2 & 0xfff;
897 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
899 if (stack.store_would_trash (addr))
902 stack.store (addr, 4, regs[regno]);
905 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
906 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
907 /* Ignore stores of argument registers to the stack. */
910 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
911 && (inst2 & 0x0d00) == 0x0c00
912 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
913 /* Ignore stores of argument registers to the stack. */
916 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
918 && (inst2 & 0x8000) == 0x0000
919 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
920 /* Ignore block loads from the stack, potentially copying
921 parameters from memory. */
924 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
926 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
927 /* Similarly ignore dual loads from the stack. */
930 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
931 && (inst2 & 0x0d00) == 0x0c00
932 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
933 /* Similarly ignore single loads from the stack. */
936 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
937 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
938 /* Similarly ignore single loads from the stack. */
941 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
942 && (inst2 & 0x8000) == 0x0000)
944 unsigned int imm = ((bits (insn, 10, 10) << 11)
945 | (bits (inst2, 12, 14) << 8)
946 | bits (inst2, 0, 7));
948 regs[bits (inst2, 8, 11)]
949 = pv_add_constant (regs[bits (insn, 0, 3)],
950 thumb_expand_immediate (imm));
953 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
954 && (inst2 & 0x8000) == 0x0000)
956 unsigned int imm = ((bits (insn, 10, 10) << 11)
957 | (bits (inst2, 12, 14) << 8)
958 | bits (inst2, 0, 7));
960 regs[bits (inst2, 8, 11)]
961 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
964 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
965 && (inst2 & 0x8000) == 0x0000)
967 unsigned int imm = ((bits (insn, 10, 10) << 11)
968 | (bits (inst2, 12, 14) << 8)
969 | bits (inst2, 0, 7));
971 regs[bits (inst2, 8, 11)]
972 = pv_add_constant (regs[bits (insn, 0, 3)],
973 - (CORE_ADDR) thumb_expand_immediate (imm));
976 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
977 && (inst2 & 0x8000) == 0x0000)
979 unsigned int imm = ((bits (insn, 10, 10) << 11)
980 | (bits (inst2, 12, 14) << 8)
981 | bits (inst2, 0, 7));
983 regs[bits (inst2, 8, 11)]
984 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
987 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
989 unsigned int imm = ((bits (insn, 10, 10) << 11)
990 | (bits (inst2, 12, 14) << 8)
991 | bits (inst2, 0, 7));
993 regs[bits (inst2, 8, 11)]
994 = pv_constant (thumb_expand_immediate (imm));
997 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1000 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
1002 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1005 else if (insn == 0xea5f /* mov.w Rd,Rm */
1006 && (inst2 & 0xf0f0) == 0)
1008 int dst_reg = (inst2 & 0x0f00) >> 8;
1009 int src_reg = inst2 & 0xf;
1010 regs[dst_reg] = regs[src_reg];
1013 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1015 /* Constant pool loads. */
1016 unsigned int constant;
1019 offset = bits (inst2, 0, 11);
1021 loc = start + 4 + offset;
1023 loc = start + 4 - offset;
1025 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1026 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1029 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1031 /* Constant pool loads. */
1032 unsigned int constant;
1035 offset = bits (inst2, 0, 7) << 2;
1037 loc = start + 4 + offset;
1039 loc = start + 4 - offset;
1041 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1042 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1044 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1045 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1048 else if (thumb2_instruction_changes_pc (insn, inst2))
1050 /* Don't scan past anything that might change control flow. */
1055 /* The optimizer might shove anything into the prologue,
1056 so we just skip what we don't recognize. */
1057 unrecognized_pc = start;
1062 else if (thumb_instruction_changes_pc (insn))
1064 /* Don't scan past anything that might change control flow. */
1069 /* The optimizer might shove anything into the prologue,
1070 so we just skip what we don't recognize. */
1071 unrecognized_pc = start;
1078 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1079 paddress (gdbarch, start));
1081 if (unrecognized_pc == 0)
1082 unrecognized_pc = start;
1085 return unrecognized_pc;
1087 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1089 /* Frame pointer is fp. Frame size is constant. */
1090 cache->framereg = ARM_FP_REGNUM;
1091 cache->framesize = -regs[ARM_FP_REGNUM].k;
1093 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1095 /* Frame pointer is r7. Frame size is constant. */
1096 cache->framereg = THUMB_FP_REGNUM;
1097 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1101 /* Try the stack pointer... this is a bit desperate. */
1102 cache->framereg = ARM_SP_REGNUM;
1103 cache->framesize = -regs[ARM_SP_REGNUM].k;
1106 for (i = 0; i < 16; i++)
1107 if (stack.find_reg (gdbarch, i, &offset))
1108 cache->saved_regs[i].addr = offset;
1110 return unrecognized_pc;
1114 /* Try to analyze the instructions starting from PC, which load symbol
1115 __stack_chk_guard. Return the address of instruction after loading this
1116 symbol, set the dest register number to *BASEREG, and set the size of
1117 instructions for loading symbol in OFFSET. Return 0 if instructions are
1121 arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1122 unsigned int *destreg, int *offset)
1124 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1125 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1126 unsigned int low, high, address;
1131 unsigned short insn1
1132 = read_code_unsigned_integer (pc, 2, byte_order_for_code);
1134 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1136 *destreg = bits (insn1, 8, 10);
1138 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1139 address = read_memory_unsigned_integer (address, 4,
1140 byte_order_for_code);
1142 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1144 unsigned short insn2
1145 = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code);
1147 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1150 = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code);
1152 = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code);
1154 /* movt Rd, #const */
1155 if ((insn1 & 0xfbc0) == 0xf2c0)
1157 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1158 *destreg = bits (insn2, 8, 11);
1160 address = (high << 16 | low);
1167 = read_code_unsigned_integer (pc, 4, byte_order_for_code);
1169 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
1171 address = bits (insn, 0, 11) + pc + 8;
1172 address = read_memory_unsigned_integer (address, 4,
1173 byte_order_for_code);
1175 *destreg = bits (insn, 12, 15);
1178 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1180 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1183 = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code);
1185 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1187 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1188 *destreg = bits (insn, 12, 15);
1190 address = (high << 16 | low);
1198 /* Try to skip a sequence of instructions used for stack protector. If PC
1199 points to the first instruction of this sequence, return the address of
1200 first instruction after this sequence, otherwise, return original PC.
1202 On arm, this sequence of instructions is composed of mainly three steps,
1203 Step 1: load symbol __stack_chk_guard,
1204 Step 2: load from address of __stack_chk_guard,
1205 Step 3: store it to somewhere else.
1207 Usually, instructions on step 2 and step 3 are the same on various ARM
1208 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1209 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1210 instructions in step 1 vary from different ARM architectures. On ARMv7,
1213 movw Rn, #:lower16:__stack_chk_guard
1214 movt Rn, #:upper16:__stack_chk_guard
1221 .word __stack_chk_guard
1223 Since ldr/str is a very popular instruction, we can't use them as
1224 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1225 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1226 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1229 arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1231 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1232 unsigned int basereg;
1233 struct bound_minimal_symbol stack_chk_guard;
1235 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1238 /* Try to parse the instructions in Step 1. */
1239 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1244 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1245 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1246 Otherwise, this sequence cannot be for stack protector. */
1247 if (stack_chk_guard.minsym == NULL
1248 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
1253 unsigned int destreg;
1255 = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code);
1257 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1258 if ((insn & 0xf800) != 0x6800)
1260 if (bits (insn, 3, 5) != basereg)
1262 destreg = bits (insn, 0, 2);
1264 insn = read_code_unsigned_integer (pc + offset + 2, 2,
1265 byte_order_for_code);
1266 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1267 if ((insn & 0xf800) != 0x6000)
1269 if (destreg != bits (insn, 0, 2))
1274 unsigned int destreg;
1276 = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code);
1278 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1279 if ((insn & 0x0e500000) != 0x04100000)
1281 if (bits (insn, 16, 19) != basereg)
1283 destreg = bits (insn, 12, 15);
1284 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1285 insn = read_code_unsigned_integer (pc + offset + 4,
1286 4, byte_order_for_code);
1287 if ((insn & 0x0e500000) != 0x04000000)
1289 if (bits (insn, 12, 15) != destreg)
1292 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1295 return pc + offset + 4;
1297 return pc + offset + 8;
1300 /* Advance the PC across any function entry prologue instructions to
1301 reach some "real" code.
1303 The APCS (ARM Procedure Call Standard) defines the following
1307 [stmfd sp!, {a1,a2,a3,a4}]
1308 stmfd sp!, {...,fp,ip,lr,pc}
1309 [stfe f7, [sp, #-12]!]
1310 [stfe f6, [sp, #-12]!]
1311 [stfe f5, [sp, #-12]!]
1312 [stfe f4, [sp, #-12]!]
1313 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1316 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1318 CORE_ADDR func_addr, limit_pc;
1320 /* See if we can determine the end of the prologue via the symbol table.
1321 If so, then return either PC, or the PC after the prologue, whichever
1323 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1325 CORE_ADDR post_prologue_pc
1326 = skip_prologue_using_sal (gdbarch, func_addr);
1327 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1329 if (post_prologue_pc)
1331 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1334 /* GCC always emits a line note before the prologue and another
1335 one after, even if the two are at the same address or on the
1336 same line. Take advantage of this so that we do not need to
1337 know every instruction that might appear in the prologue. We
1338 will have producer information for most binaries; if it is
1339 missing (e.g. for -gstabs), assuming the GNU tools. */
1340 if (post_prologue_pc
1342 || COMPUNIT_PRODUCER (cust) == NULL
1343 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1344 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1345 return post_prologue_pc;
1347 if (post_prologue_pc != 0)
1349 CORE_ADDR analyzed_limit;
1351 /* For non-GCC compilers, make sure the entire line is an
1352 acceptable prologue; GDB will round this function's
1353 return value up to the end of the following line so we
1354 can not skip just part of a line (and we do not want to).
1356 RealView does not treat the prologue specially, but does
1357 associate prologue code with the opening brace; so this
1358 lets us skip the first line if we think it is the opening
1360 if (arm_pc_is_thumb (gdbarch, func_addr))
1361 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1362 post_prologue_pc, NULL);
1364 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1365 post_prologue_pc, NULL);
1367 if (analyzed_limit != post_prologue_pc)
1370 return post_prologue_pc;
1374 /* Can't determine prologue from the symbol table, need to examine
1377 /* Find an upper limit on the function prologue using the debug
1378 information. If the debug information could not be used to provide
1379 that bound, then use an arbitrary large number as the upper bound. */
1380 /* Like arm_scan_prologue, stop no later than pc + 64. */
1381 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1383 limit_pc = pc + 64; /* Magic. */
1386 /* Check if this is Thumb code. */
1387 if (arm_pc_is_thumb (gdbarch, pc))
1388 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1390 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1394 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1395 This function decodes a Thumb function prologue to determine:
1396 1) the size of the stack frame
1397 2) which registers are saved on it
1398 3) the offsets of saved regs
1399 4) the offset from the stack pointer to the frame pointer
1401 A typical Thumb function prologue would create this stack frame
1402 (offsets relative to FP)
1403 old SP -> 24 stack parameters
1406 R7 -> 0 local variables (16 bytes)
1407 SP -> -12 additional stack space (12 bytes)
1408 The frame size would thus be 36 bytes, and the frame offset would be
1409 12 bytes. The frame register is R7.
1411 The comments for thumb_skip_prolog() describe the algorithm we use
1412 to detect the end of the prolog. */
1416 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
1417 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
1419 CORE_ADDR prologue_start;
1420 CORE_ADDR prologue_end;
1422 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1425 /* See comment in arm_scan_prologue for an explanation of
1427 if (prologue_end > prologue_start + 64)
1429 prologue_end = prologue_start + 64;
1433 /* We're in the boondocks: we have no idea where the start of the
1437 prologue_end = std::min (prologue_end, prev_pc);
1439 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1442 /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1446 arm_instruction_restores_sp (unsigned int insn)
1448 if (bits (insn, 28, 31) != INST_NV)
1450 if ((insn & 0x0df0f000) == 0x0080d000
1451 /* ADD SP (register or immediate). */
1452 || (insn & 0x0df0f000) == 0x0040d000
1453 /* SUB SP (register or immediate). */
1454 || (insn & 0x0ffffff0) == 0x01a0d000
1456 || (insn & 0x0fff0000) == 0x08bd0000
1458 || (insn & 0x0fff0000) == 0x049d0000)
1459 /* POP of a single register. */
1466 /* Analyze an ARM mode prologue starting at PROLOGUE_START and
1467 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1468 fill it in. Return the first address not recognized as a prologue
1471 We recognize all the instructions typically found in ARM prologues,
1472 plus harmless instructions which can be skipped (either for analysis
1473 purposes, or a more restrictive set that can be skipped when finding
1474 the end of the prologue). */
1477 arm_analyze_prologue (struct gdbarch *gdbarch,
1478 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1479 struct arm_prologue_cache *cache)
1481 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1483 CORE_ADDR offset, current_pc;
1484 pv_t regs[ARM_FPS_REGNUM];
1485 CORE_ADDR unrecognized_pc = 0;
1487 /* Search the prologue looking for instructions that set up the
1488 frame pointer, adjust the stack pointer, and save registers.
1490 Be careful, however, and if it doesn't look like a prologue,
1491 don't try to scan it. If, for instance, a frameless function
1492 begins with stmfd sp!, then we will tell ourselves there is
1493 a frame, which will confuse stack traceback, as well as "finish"
1494 and other operations that rely on a knowledge of the stack
1497 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1498 regs[regno] = pv_register (regno, 0);
1499 pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1501 for (current_pc = prologue_start;
1502 current_pc < prologue_end;
1506 = read_code_unsigned_integer (current_pc, 4, byte_order_for_code);
1508 if (insn == 0xe1a0c00d) /* mov ip, sp */
1510 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
1513 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1514 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1516 unsigned imm = insn & 0xff; /* immediate value */
1517 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1518 int rd = bits (insn, 12, 15);
1519 imm = (imm >> rot) | (imm << (32 - rot));
1520 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
1523 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1524 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1526 unsigned imm = insn & 0xff; /* immediate value */
1527 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1528 int rd = bits (insn, 12, 15);
1529 imm = (imm >> rot) | (imm << (32 - rot));
1530 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
1533 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1536 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
1538 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1539 stack.store (regs[ARM_SP_REGNUM], 4,
1540 regs[bits (insn, 12, 15)]);
1543 else if ((insn & 0xffff0000) == 0xe92d0000)
1544 /* stmfd sp!, {..., fp, ip, lr, pc}
1546 stmfd sp!, {a1, a2, a3, a4} */
1548 int mask = insn & 0xffff;
1550 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
1553 /* Calculate offsets of saved registers. */
1554 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
1555 if (mask & (1 << regno))
1558 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1559 stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]);
1562 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1563 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1564 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1566 /* No need to add this to saved_regs -- it's just an arg reg. */
1569 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1570 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1571 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1573 /* No need to add this to saved_regs -- it's just an arg reg. */
1576 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1578 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1580 /* No need to add this to saved_regs -- it's just arg regs. */
1583 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1585 unsigned imm = insn & 0xff; /* immediate value */
1586 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1587 imm = (imm >> rot) | (imm << (32 - rot));
1588 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
1590 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1592 unsigned imm = insn & 0xff; /* immediate value */
1593 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1594 imm = (imm >> rot) | (imm << (32 - rot));
1595 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
1597 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1599 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1601 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
1604 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1605 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
1606 stack.store (regs[ARM_SP_REGNUM], 12, regs[regno]);
1608 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1610 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1612 int n_saved_fp_regs;
1613 unsigned int fp_start_reg, fp_bound_reg;
1615 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
1618 if ((insn & 0x800) == 0x800) /* N0 is set */
1620 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1621 n_saved_fp_regs = 3;
1623 n_saved_fp_regs = 1;
1627 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1628 n_saved_fp_regs = 2;
1630 n_saved_fp_regs = 4;
1633 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
1634 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1635 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
1637 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1638 stack.store (regs[ARM_SP_REGNUM], 12,
1639 regs[fp_start_reg++]);
1642 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1644 /* Allow some special function calls when skipping the
1645 prologue; GCC generates these before storing arguments to
1647 CORE_ADDR dest = BranchDest (current_pc, insn);
1649 if (skip_prologue_function (gdbarch, dest, 0))
1654 else if ((insn & 0xf0000000) != 0xe0000000)
1655 break; /* Condition not true, exit early. */
1656 else if (arm_instruction_changes_pc (insn))
1657 /* Don't scan past anything that might change control flow. */
1659 else if (arm_instruction_restores_sp (insn))
1661 /* Don't scan past the epilogue. */
1664 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1665 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1666 /* Ignore block loads from the stack, potentially copying
1667 parameters from memory. */
1669 else if ((insn & 0xfc500000) == 0xe4100000
1670 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1671 /* Similarly ignore single loads from the stack. */
1673 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1674 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1675 register instead of the stack. */
1679 /* The optimizer might shove anything into the prologue, if
1680 we build up cache (cache != NULL) from scanning prologue,
1681 we just skip what we don't recognize and scan further to
1682 make cache as complete as possible. However, if we skip
1683 prologue, we'll stop immediately on unrecognized
1685 unrecognized_pc = current_pc;
1693 if (unrecognized_pc == 0)
1694 unrecognized_pc = current_pc;
1698 int framereg, framesize;
1700 /* The frame size is just the distance from the frame register
1701 to the original stack pointer. */
1702 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1704 /* Frame pointer is fp. */
1705 framereg = ARM_FP_REGNUM;
1706 framesize = -regs[ARM_FP_REGNUM].k;
1710 /* Try the stack pointer... this is a bit desperate. */
1711 framereg = ARM_SP_REGNUM;
1712 framesize = -regs[ARM_SP_REGNUM].k;
1715 cache->framereg = framereg;
1716 cache->framesize = framesize;
1718 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1719 if (stack.find_reg (gdbarch, regno, &offset))
1720 cache->saved_regs[regno].addr = offset;
1724 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1725 paddress (gdbarch, unrecognized_pc));
1727 return unrecognized_pc;
1731 arm_scan_prologue (struct frame_info *this_frame,
1732 struct arm_prologue_cache *cache)
1734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1735 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1736 CORE_ADDR prologue_start, prologue_end;
1737 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1738 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1740 /* Assume there is no frame until proven otherwise. */
1741 cache->framereg = ARM_SP_REGNUM;
1742 cache->framesize = 0;
1744 /* Check for Thumb prologue. */
1745 if (arm_frame_is_thumb (this_frame))
1747 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1751 /* Find the function prologue. If we can't find the function in
1752 the symbol table, peek in the stack frame to find the PC. */
1753 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1756 /* One way to find the end of the prologue (which works well
1757 for unoptimized code) is to do the following:
1759 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1762 prologue_end = prev_pc;
1763 else if (sal.end < prologue_end)
1764 prologue_end = sal.end;
1766 This mechanism is very accurate so long as the optimizer
1767 doesn't move any instructions from the function body into the
1768 prologue. If this happens, sal.end will be the last
1769 instruction in the first hunk of prologue code just before
1770 the first instruction that the scheduler has moved from
1771 the body to the prologue.
1773 In order to make sure that we scan all of the prologue
1774 instructions, we use a slightly less accurate mechanism which
1775 may scan more than necessary. To help compensate for this
1776 lack of accuracy, the prologue scanning loop below contains
1777 several clauses which'll cause the loop to terminate early if
1778 an implausible prologue instruction is encountered.
1784 is a suitable endpoint since it accounts for the largest
1785 possible prologue plus up to five instructions inserted by
1788 if (prologue_end > prologue_start + 64)
1790 prologue_end = prologue_start + 64; /* See above. */
1795 /* We have no symbol information. Our only option is to assume this
1796 function has a standard stack frame and the normal frame register.
1797 Then, we can find the value of our frame pointer on entrance to
1798 the callee (or at the present moment if this is the innermost frame).
1799 The value stored there should be the address of the stmfd + 8. */
1800 CORE_ADDR frame_loc;
1801 ULONGEST return_value;
1803 /* AAPCS does not use a frame register, so we can abort here. */
1804 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_AAPCS)
1807 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1808 if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
1813 prologue_start = gdbarch_addr_bits_remove
1814 (gdbarch, return_value) - 8;
1815 prologue_end = prologue_start + 64; /* See above. */
1819 if (prev_pc < prologue_end)
1820 prologue_end = prev_pc;
1822 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1825 static struct arm_prologue_cache *
1826 arm_make_prologue_cache (struct frame_info *this_frame)
1829 struct arm_prologue_cache *cache;
1830 CORE_ADDR unwound_fp;
1832 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1833 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1835 arm_scan_prologue (this_frame, cache);
1837 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1838 if (unwound_fp == 0)
1841 cache->prev_sp = unwound_fp + cache->framesize;
1843 /* Calculate actual addresses of saved registers using offsets
1844 determined by arm_scan_prologue. */
1845 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1846 if (trad_frame_addr_p (cache->saved_regs, reg))
1847 cache->saved_regs[reg].addr += cache->prev_sp;
1852 /* Implementation of the stop_reason hook for arm_prologue frames. */
1854 static enum unwind_stop_reason
1855 arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1858 struct arm_prologue_cache *cache;
1861 if (*this_cache == NULL)
1862 *this_cache = arm_make_prologue_cache (this_frame);
1863 cache = (struct arm_prologue_cache *) *this_cache;
1865 /* This is meant to halt the backtrace at "_start". */
1866 pc = get_frame_pc (this_frame);
1867 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1868 return UNWIND_OUTERMOST;
1870 /* If we've hit a wall, stop. */
1871 if (cache->prev_sp == 0)
1872 return UNWIND_OUTERMOST;
1874 return UNWIND_NO_REASON;
1877 /* Our frame ID for a normal frame is the current function's starting PC
1878 and the caller's SP when we were called. */
1881 arm_prologue_this_id (struct frame_info *this_frame,
1883 struct frame_id *this_id)
1885 struct arm_prologue_cache *cache;
1889 if (*this_cache == NULL)
1890 *this_cache = arm_make_prologue_cache (this_frame);
1891 cache = (struct arm_prologue_cache *) *this_cache;
1893 /* Use function start address as part of the frame ID. If we cannot
1894 identify the start address (due to missing symbol information),
1895 fall back to just using the current PC. */
1896 pc = get_frame_pc (this_frame);
1897 func = get_frame_func (this_frame);
1901 id = frame_id_build (cache->prev_sp, func);
1905 static struct value *
1906 arm_prologue_prev_register (struct frame_info *this_frame,
1910 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1911 struct arm_prologue_cache *cache;
1913 if (*this_cache == NULL)
1914 *this_cache = arm_make_prologue_cache (this_frame);
1915 cache = (struct arm_prologue_cache *) *this_cache;
1917 /* If we are asked to unwind the PC, then we need to return the LR
1918 instead. The prologue may save PC, but it will point into this
1919 frame's prologue, not the next frame's resume location. Also
1920 strip the saved T bit. A valid LR may have the low bit set, but
1921 a valid PC never does. */
1922 if (prev_regnum == ARM_PC_REGNUM)
1926 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1927 return frame_unwind_got_constant (this_frame, prev_regnum,
1928 arm_addr_bits_remove (gdbarch, lr));
1931 /* SP is generally not saved to the stack, but this frame is
1932 identified by the next frame's stack pointer at the time of the call.
1933 The value was already reconstructed into PREV_SP. */
1934 if (prev_regnum == ARM_SP_REGNUM)
1935 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1937 /* The CPSR may have been changed by the call instruction and by the
1938 called function. The only bit we can reconstruct is the T bit,
1939 by checking the low bit of LR as of the call. This is a reliable
1940 indicator of Thumb-ness except for some ARM v4T pre-interworking
1941 Thumb code, which could get away with a clear low bit as long as
1942 the called function did not use bx. Guess that all other
1943 bits are unchanged; the condition flags are presumably lost,
1944 but the processor status is likely valid. */
1945 if (prev_regnum == ARM_PS_REGNUM)
1948 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
1950 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1951 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1952 if (IS_THUMB_ADDR (lr))
1956 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1959 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1963 struct frame_unwind arm_prologue_unwind = {
1965 arm_prologue_unwind_stop_reason,
1966 arm_prologue_this_id,
1967 arm_prologue_prev_register,
1969 default_frame_sniffer
1972 /* Maintain a list of ARM exception table entries per objfile, similar to the
1973 list of mapping symbols. We only cache entries for standard ARM-defined
1974 personality routines; the cache will contain only the frame unwinding
1975 instructions associated with the entry (not the descriptors). */
1977 static const struct objfile_data *arm_exidx_data_key;
1979 struct arm_exidx_entry
1984 typedef struct arm_exidx_entry arm_exidx_entry_s;
1985 DEF_VEC_O(arm_exidx_entry_s);
1987 struct arm_exidx_data
1989 VEC(arm_exidx_entry_s) **section_maps;
1993 arm_exidx_data_free (struct objfile *objfile, void *arg)
1995 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
1998 for (i = 0; i < objfile->obfd->section_count; i++)
1999 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2003 arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2004 const struct arm_exidx_entry *rhs)
2006 return lhs->addr < rhs->addr;
2009 static struct obj_section *
2010 arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2012 struct obj_section *osect;
2014 ALL_OBJFILE_OSECTIONS (objfile, osect)
2015 if (bfd_get_section_flags (objfile->obfd,
2016 osect->the_bfd_section) & SEC_ALLOC)
2018 bfd_vma start, size;
2019 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2020 size = bfd_get_section_size (osect->the_bfd_section);
2022 if (start <= vma && vma < start + size)
2029 /* Parse contents of exception table and exception index sections
2030 of OBJFILE, and fill in the exception table entry cache.
2032 For each entry that refers to a standard ARM-defined personality
2033 routine, extract the frame unwinding instructions (from either
2034 the index or the table section). The unwinding instructions
2036 - extracting them from the rest of the table data
2037 - converting to host endianness
2038 - appending the implicit 0xb0 ("Finish") code
2040 The extracted and normalized instructions are stored for later
2041 retrieval by the arm_find_exidx_entry routine. */
2044 arm_exidx_new_objfile (struct objfile *objfile)
2046 struct arm_exidx_data *data;
2047 asection *exidx, *extab;
2048 bfd_vma exidx_vma = 0, extab_vma = 0;
2051 /* If we've already touched this file, do nothing. */
2052 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2055 /* Read contents of exception table and index. */
2056 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
2057 gdb::byte_vector exidx_data;
2060 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2061 exidx_data.resize (bfd_get_section_size (exidx));
2063 if (!bfd_get_section_contents (objfile->obfd, exidx,
2064 exidx_data.data (), 0,
2065 exidx_data.size ()))
2069 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2070 gdb::byte_vector extab_data;
2073 extab_vma = bfd_section_vma (objfile->obfd, extab);
2074 extab_data.resize (bfd_get_section_size (extab));
2076 if (!bfd_get_section_contents (objfile->obfd, extab,
2077 extab_data.data (), 0,
2078 extab_data.size ()))
2082 /* Allocate exception table data structure. */
2083 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2084 set_objfile_data (objfile, arm_exidx_data_key, data);
2085 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2086 objfile->obfd->section_count,
2087 VEC(arm_exidx_entry_s) *);
2089 /* Fill in exception table. */
2090 for (i = 0; i < exidx_data.size () / 8; i++)
2092 struct arm_exidx_entry new_exidx_entry;
2093 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data.data () + i * 8);
2094 bfd_vma val = bfd_h_get_32 (objfile->obfd,
2095 exidx_data.data () + i * 8 + 4);
2096 bfd_vma addr = 0, word = 0;
2097 int n_bytes = 0, n_words = 0;
2098 struct obj_section *sec;
2099 gdb_byte *entry = NULL;
2101 /* Extract address of start of function. */
2102 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2103 idx += exidx_vma + i * 8;
2105 /* Find section containing function and compute section offset. */
2106 sec = arm_obj_section_from_vma (objfile, idx);
2109 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2111 /* Determine address of exception table entry. */
2114 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2116 else if ((val & 0xff000000) == 0x80000000)
2118 /* Exception table entry embedded in .ARM.exidx
2119 -- must be short form. */
2123 else if (!(val & 0x80000000))
2125 /* Exception table entry in .ARM.extab. */
2126 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2127 addr += exidx_vma + i * 8 + 4;
2129 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_data.size ())
2131 word = bfd_h_get_32 (objfile->obfd,
2132 extab_data.data () + addr - extab_vma);
2135 if ((word & 0xff000000) == 0x80000000)
2140 else if ((word & 0xff000000) == 0x81000000
2141 || (word & 0xff000000) == 0x82000000)
2145 n_words = ((word >> 16) & 0xff);
2147 else if (!(word & 0x80000000))
2150 struct obj_section *pers_sec;
2151 int gnu_personality = 0;
2153 /* Custom personality routine. */
2154 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2155 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2157 /* Check whether we've got one of the variants of the
2158 GNU personality routines. */
2159 pers_sec = arm_obj_section_from_vma (objfile, pers);
2162 static const char *personality[] =
2164 "__gcc_personality_v0",
2165 "__gxx_personality_v0",
2166 "__gcj_personality_v0",
2167 "__gnu_objc_personality_v0",
2171 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2174 for (k = 0; personality[k]; k++)
2175 if (lookup_minimal_symbol_by_pc_name
2176 (pc, personality[k], objfile))
2178 gnu_personality = 1;
2183 /* If so, the next word contains a word count in the high
2184 byte, followed by the same unwind instructions as the
2185 pre-defined forms. */
2187 && addr + 4 <= extab_vma + extab_data.size ())
2189 word = bfd_h_get_32 (objfile->obfd,
2191 + addr - extab_vma));
2194 n_words = ((word >> 24) & 0xff);
2200 /* Sanity check address. */
2202 if (addr < extab_vma
2203 || addr + 4 * n_words > extab_vma + extab_data.size ())
2204 n_words = n_bytes = 0;
2206 /* The unwind instructions reside in WORD (only the N_BYTES least
2207 significant bytes are valid), followed by N_WORDS words in the
2208 extab section starting at ADDR. */
2209 if (n_bytes || n_words)
2212 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2213 n_bytes + n_words * 4 + 1);
2216 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2220 word = bfd_h_get_32 (objfile->obfd,
2221 extab_data.data () + addr - extab_vma);
2224 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2225 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2226 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2227 *p++ = (gdb_byte) (word & 0xff);
2230 /* Implied "Finish" to terminate the list. */
2234 /* Push entry onto vector. They are guaranteed to always
2235 appear in order of increasing addresses. */
2236 new_exidx_entry.addr = idx;
2237 new_exidx_entry.entry = entry;
2238 VEC_safe_push (arm_exidx_entry_s,
2239 data->section_maps[sec->the_bfd_section->index],
2244 /* Search for the exception table entry covering MEMADDR. If one is found,
2245 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2246 set *START to the start of the region covered by this entry. */
2249 arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2251 struct obj_section *sec;
2253 sec = find_pc_section (memaddr);
2256 struct arm_exidx_data *data;
2257 VEC(arm_exidx_entry_s) *map;
2258 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2261 data = ((struct arm_exidx_data *)
2262 objfile_data (sec->objfile, arm_exidx_data_key));
2265 map = data->section_maps[sec->the_bfd_section->index];
2266 if (!VEC_empty (arm_exidx_entry_s, map))
2268 struct arm_exidx_entry *map_sym;
2270 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2271 arm_compare_exidx_entries);
2273 /* VEC_lower_bound finds the earliest ordered insertion
2274 point. If the following symbol starts at this exact
2275 address, we use that; otherwise, the preceding
2276 exception table entry covers this address. */
2277 if (idx < VEC_length (arm_exidx_entry_s, map))
2279 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2280 if (map_sym->addr == map_key.addr)
2283 *start = map_sym->addr + obj_section_addr (sec);
2284 return map_sym->entry;
2290 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2292 *start = map_sym->addr + obj_section_addr (sec);
2293 return map_sym->entry;
2302 /* Given the current frame THIS_FRAME, and its associated frame unwinding
2303 instruction list from the ARM exception table entry ENTRY, allocate and
2304 return a prologue cache structure describing how to unwind this frame.
2306 Return NULL if the unwinding instruction list contains a "spare",
2307 "reserved" or "refuse to unwind" instruction as defined in section
2308 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2309 for the ARM Architecture" document. */
2311 static struct arm_prologue_cache *
2312 arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2317 struct arm_prologue_cache *cache;
2318 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2319 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2325 /* Whenever we reload SP, we actually have to retrieve its
2326 actual value in the current frame. */
2329 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2331 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2332 vsp = get_frame_register_unsigned (this_frame, reg);
2336 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2337 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2343 /* Decode next unwind instruction. */
2346 if ((insn & 0xc0) == 0)
2348 int offset = insn & 0x3f;
2349 vsp += (offset << 2) + 4;
2351 else if ((insn & 0xc0) == 0x40)
2353 int offset = insn & 0x3f;
2354 vsp -= (offset << 2) + 4;
2356 else if ((insn & 0xf0) == 0x80)
2358 int mask = ((insn & 0xf) << 8) | *entry++;
2361 /* The special case of an all-zero mask identifies
2362 "Refuse to unwind". We return NULL to fall back
2363 to the prologue analyzer. */
2367 /* Pop registers r4..r15 under mask. */
2368 for (i = 0; i < 12; i++)
2369 if (mask & (1 << i))
2371 cache->saved_regs[4 + i].addr = vsp;
2375 /* Special-case popping SP -- we need to reload vsp. */
2376 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2379 else if ((insn & 0xf0) == 0x90)
2381 int reg = insn & 0xf;
2383 /* Reserved cases. */
2384 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2387 /* Set SP from another register and mark VSP for reload. */
2388 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2391 else if ((insn & 0xf0) == 0xa0)
2393 int count = insn & 0x7;
2394 int pop_lr = (insn & 0x8) != 0;
2397 /* Pop r4..r[4+count]. */
2398 for (i = 0; i <= count; i++)
2400 cache->saved_regs[4 + i].addr = vsp;
2404 /* If indicated by flag, pop LR as well. */
2407 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2411 else if (insn == 0xb0)
2413 /* We could only have updated PC by popping into it; if so, it
2414 will show up as address. Otherwise, copy LR into PC. */
2415 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2416 cache->saved_regs[ARM_PC_REGNUM]
2417 = cache->saved_regs[ARM_LR_REGNUM];
2422 else if (insn == 0xb1)
2424 int mask = *entry++;
2427 /* All-zero mask and mask >= 16 is "spare". */
2428 if (mask == 0 || mask >= 16)
2431 /* Pop r0..r3 under mask. */
2432 for (i = 0; i < 4; i++)
2433 if (mask & (1 << i))
2435 cache->saved_regs[i].addr = vsp;
2439 else if (insn == 0xb2)
2441 ULONGEST offset = 0;
2446 offset |= (*entry & 0x7f) << shift;
2449 while (*entry++ & 0x80);
2451 vsp += 0x204 + (offset << 2);
2453 else if (insn == 0xb3)
2455 int start = *entry >> 4;
2456 int count = (*entry++) & 0xf;
2459 /* Only registers D0..D15 are valid here. */
2460 if (start + count >= 16)
2463 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2464 for (i = 0; i <= count; i++)
2466 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2470 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2473 else if ((insn & 0xf8) == 0xb8)
2475 int count = insn & 0x7;
2478 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2479 for (i = 0; i <= count; i++)
2481 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2485 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2488 else if (insn == 0xc6)
2490 int start = *entry >> 4;
2491 int count = (*entry++) & 0xf;
2494 /* Only registers WR0..WR15 are valid. */
2495 if (start + count >= 16)
2498 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2499 for (i = 0; i <= count; i++)
2501 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2505 else if (insn == 0xc7)
2507 int mask = *entry++;
2510 /* All-zero mask and mask >= 16 is "spare". */
2511 if (mask == 0 || mask >= 16)
2514 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2515 for (i = 0; i < 4; i++)
2516 if (mask & (1 << i))
2518 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2522 else if ((insn & 0xf8) == 0xc0)
2524 int count = insn & 0x7;
2527 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2528 for (i = 0; i <= count; i++)
2530 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2534 else if (insn == 0xc8)
2536 int start = *entry >> 4;
2537 int count = (*entry++) & 0xf;
2540 /* Only registers D0..D31 are valid. */
2541 if (start + count >= 16)
2544 /* Pop VFP double-precision registers
2545 D[16+start]..D[16+start+count]. */
2546 for (i = 0; i <= count; i++)
2548 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2552 else if (insn == 0xc9)
2554 int start = *entry >> 4;
2555 int count = (*entry++) & 0xf;
2558 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2559 for (i = 0; i <= count; i++)
2561 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2565 else if ((insn & 0xf8) == 0xd0)
2567 int count = insn & 0x7;
2570 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2571 for (i = 0; i <= count; i++)
2573 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2579 /* Everything else is "spare". */
2584 /* If we restore SP from a register, assume this was the frame register.
2585 Otherwise just fall back to SP as frame register. */
2586 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2587 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2589 cache->framereg = ARM_SP_REGNUM;
2591 /* Determine offset to previous frame. */
2593 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2595 /* We already got the previous SP. */
2596 cache->prev_sp = vsp;
2601 /* Unwinding via ARM exception table entries. Note that the sniffer
2602 already computes a filled-in prologue cache, which is then used
2603 with the same arm_prologue_this_id and arm_prologue_prev_register
2604 routines also used for prologue-parsing based unwinding. */
2607 arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2608 struct frame_info *this_frame,
2609 void **this_prologue_cache)
2611 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2612 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2613 CORE_ADDR addr_in_block, exidx_region, func_start;
2614 struct arm_prologue_cache *cache;
2617 /* See if we have an ARM exception table entry covering this address. */
2618 addr_in_block = get_frame_address_in_block (this_frame);
2619 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2623 /* The ARM exception table does not describe unwind information
2624 for arbitrary PC values, but is guaranteed to be correct only
2625 at call sites. We have to decide here whether we want to use
2626 ARM exception table information for this frame, or fall back
2627 to using prologue parsing. (Note that if we have DWARF CFI,
2628 this sniffer isn't even called -- CFI is always preferred.)
2630 Before we make this decision, however, we check whether we
2631 actually have *symbol* information for the current frame.
2632 If not, prologue parsing would not work anyway, so we might
2633 as well use the exception table and hope for the best. */
2634 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2638 /* If the next frame is "normal", we are at a call site in this
2639 frame, so exception information is guaranteed to be valid. */
2640 if (get_next_frame (this_frame)
2641 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2644 /* We also assume exception information is valid if we're currently
2645 blocked in a system call. The system library is supposed to
2646 ensure this, so that e.g. pthread cancellation works. */
2647 if (arm_frame_is_thumb (this_frame))
2651 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2,
2652 2, byte_order_for_code, &insn)
2653 && (insn & 0xff00) == 0xdf00 /* svc */)
2660 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4,
2661 4, byte_order_for_code, &insn)
2662 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2666 /* Bail out if we don't know that exception information is valid. */
2670 /* The ARM exception index does not mark the *end* of the region
2671 covered by the entry, and some functions will not have any entry.
2672 To correctly recognize the end of the covered region, the linker
2673 should have inserted dummy records with a CANTUNWIND marker.
2675 Unfortunately, current versions of GNU ld do not reliably do
2676 this, and thus we may have found an incorrect entry above.
2677 As a (temporary) sanity check, we only use the entry if it
2678 lies *within* the bounds of the function. Note that this check
2679 might reject perfectly valid entries that just happen to cover
2680 multiple functions; therefore this check ought to be removed
2681 once the linker is fixed. */
2682 if (func_start > exidx_region)
2686 /* Decode the list of unwinding instructions into a prologue cache.
2687 Note that this may fail due to e.g. a "refuse to unwind" code. */
2688 cache = arm_exidx_fill_cache (this_frame, entry);
2692 *this_prologue_cache = cache;
2696 struct frame_unwind arm_exidx_unwind = {
2698 default_frame_unwind_stop_reason,
2699 arm_prologue_this_id,
2700 arm_prologue_prev_register,
2702 arm_exidx_unwind_sniffer
2705 static struct arm_prologue_cache *
2706 arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2708 struct arm_prologue_cache *cache;
2711 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2712 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2714 /* Still rely on the offset calculated from prologue. */
2715 arm_scan_prologue (this_frame, cache);
2717 /* Since we are in epilogue, the SP has been restored. */
2718 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2720 /* Calculate actual addresses of saved registers using offsets
2721 determined by arm_scan_prologue. */
2722 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2723 if (trad_frame_addr_p (cache->saved_regs, reg))
2724 cache->saved_regs[reg].addr += cache->prev_sp;
2729 /* Implementation of function hook 'this_id' in
2730 'struct frame_uwnind' for epilogue unwinder. */
2733 arm_epilogue_frame_this_id (struct frame_info *this_frame,
2735 struct frame_id *this_id)
2737 struct arm_prologue_cache *cache;
2740 if (*this_cache == NULL)
2741 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2742 cache = (struct arm_prologue_cache *) *this_cache;
2744 /* Use function start address as part of the frame ID. If we cannot
2745 identify the start address (due to missing symbol information),
2746 fall back to just using the current PC. */
2747 pc = get_frame_pc (this_frame);
2748 func = get_frame_func (this_frame);
2752 (*this_id) = frame_id_build (cache->prev_sp, pc);
2755 /* Implementation of function hook 'prev_register' in
2756 'struct frame_uwnind' for epilogue unwinder. */
2758 static struct value *
2759 arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2760 void **this_cache, int regnum)
2762 if (*this_cache == NULL)
2763 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2765 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2768 static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2770 static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2773 /* Implementation of function hook 'sniffer' in
2774 'struct frame_uwnind' for epilogue unwinder. */
2777 arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2778 struct frame_info *this_frame,
2779 void **this_prologue_cache)
2781 if (frame_relative_level (this_frame) == 0)
2783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2784 CORE_ADDR pc = get_frame_pc (this_frame);
2786 if (arm_frame_is_thumb (this_frame))
2787 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2789 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2795 /* Frame unwinder from epilogue. */
2797 static const struct frame_unwind arm_epilogue_frame_unwind =
2800 default_frame_unwind_stop_reason,
2801 arm_epilogue_frame_this_id,
2802 arm_epilogue_frame_prev_register,
2804 arm_epilogue_frame_sniffer,
2807 /* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2808 trampoline, return the target PC. Otherwise return 0.
2810 void call0a (char c, short s, int i, long l) {}
2814 (*pointer_to_call0a) (c, s, i, l);
2817 Instead of calling a stub library function _call_via_xx (xx is
2818 the register name), GCC may inline the trampoline in the object
2819 file as below (register r2 has the address of call0a).
2822 .type main, %function
2831 The trampoline 'bx r2' doesn't belong to main. */
2834 arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2836 /* The heuristics of recognizing such trampoline is that FRAME is
2837 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2838 if (arm_frame_is_thumb (frame))
2842 if (target_read_memory (pc, buf, 2) == 0)
2844 struct gdbarch *gdbarch = get_frame_arch (frame);
2845 enum bfd_endian byte_order_for_code
2846 = gdbarch_byte_order_for_code (gdbarch);
2848 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2850 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2853 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2855 /* Clear the LSB so that gdb core sets step-resume
2856 breakpoint at the right address. */
2857 return UNMAKE_THUMB_ADDR (dest);
2865 static struct arm_prologue_cache *
2866 arm_make_stub_cache (struct frame_info *this_frame)
2868 struct arm_prologue_cache *cache;
2870 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2871 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2873 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2878 /* Our frame ID for a stub frame is the current SP and LR. */
2881 arm_stub_this_id (struct frame_info *this_frame,
2883 struct frame_id *this_id)
2885 struct arm_prologue_cache *cache;
2887 if (*this_cache == NULL)
2888 *this_cache = arm_make_stub_cache (this_frame);
2889 cache = (struct arm_prologue_cache *) *this_cache;
2891 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
2895 arm_stub_unwind_sniffer (const struct frame_unwind *self,
2896 struct frame_info *this_frame,
2897 void **this_prologue_cache)
2899 CORE_ADDR addr_in_block;
2901 CORE_ADDR pc, start_addr;
2904 addr_in_block = get_frame_address_in_block (this_frame);
2905 pc = get_frame_pc (this_frame);
2906 if (in_plt_section (addr_in_block)
2907 /* We also use the stub winder if the target memory is unreadable
2908 to avoid having the prologue unwinder trying to read it. */
2909 || target_read_memory (pc, dummy, 4) != 0)
2912 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2913 && arm_skip_bx_reg (this_frame, pc) != 0)
2919 struct frame_unwind arm_stub_unwind = {
2921 default_frame_unwind_stop_reason,
2923 arm_prologue_prev_register,
2925 arm_stub_unwind_sniffer
2928 /* Put here the code to store, into CACHE->saved_regs, the addresses
2929 of the saved registers of frame described by THIS_FRAME. CACHE is
2932 static struct arm_prologue_cache *
2933 arm_m_exception_cache (struct frame_info *this_frame)
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2937 struct arm_prologue_cache *cache;
2938 CORE_ADDR unwound_sp;
2941 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2942 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2944 unwound_sp = get_frame_register_unsigned (this_frame,
2947 /* The hardware saves eight 32-bit words, comprising xPSR,
2948 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2949 "B1.5.6 Exception entry behavior" in
2950 "ARMv7-M Architecture Reference Manual". */
2951 cache->saved_regs[0].addr = unwound_sp;
2952 cache->saved_regs[1].addr = unwound_sp + 4;
2953 cache->saved_regs[2].addr = unwound_sp + 8;
2954 cache->saved_regs[3].addr = unwound_sp + 12;
2955 cache->saved_regs[12].addr = unwound_sp + 16;
2956 cache->saved_regs[14].addr = unwound_sp + 20;
2957 cache->saved_regs[15].addr = unwound_sp + 24;
2958 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2960 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2961 aligner between the top of the 32-byte stack frame and the
2962 previous context's stack pointer. */
2963 cache->prev_sp = unwound_sp + 32;
2964 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2965 && (xpsr & (1 << 9)) != 0)
2966 cache->prev_sp += 4;
2971 /* Implementation of function hook 'this_id' in
2972 'struct frame_uwnind'. */
2975 arm_m_exception_this_id (struct frame_info *this_frame,
2977 struct frame_id *this_id)
2979 struct arm_prologue_cache *cache;
2981 if (*this_cache == NULL)
2982 *this_cache = arm_m_exception_cache (this_frame);
2983 cache = (struct arm_prologue_cache *) *this_cache;
2985 /* Our frame ID for a stub frame is the current SP and LR. */
2986 *this_id = frame_id_build (cache->prev_sp,
2987 get_frame_pc (this_frame));
2990 /* Implementation of function hook 'prev_register' in
2991 'struct frame_uwnind'. */
2993 static struct value *
2994 arm_m_exception_prev_register (struct frame_info *this_frame,
2998 struct arm_prologue_cache *cache;
3000 if (*this_cache == NULL)
3001 *this_cache = arm_m_exception_cache (this_frame);
3002 cache = (struct arm_prologue_cache *) *this_cache;
3004 /* The value was already reconstructed into PREV_SP. */
3005 if (prev_regnum == ARM_SP_REGNUM)
3006 return frame_unwind_got_constant (this_frame, prev_regnum,
3009 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3013 /* Implementation of function hook 'sniffer' in
3014 'struct frame_uwnind'. */
3017 arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3018 struct frame_info *this_frame,
3019 void **this_prologue_cache)
3021 CORE_ADDR this_pc = get_frame_pc (this_frame);
3023 /* No need to check is_m; this sniffer is only registered for
3024 M-profile architectures. */
3026 /* Check if exception frame returns to a magic PC value. */
3027 return arm_m_addr_is_magic (this_pc);
3030 /* Frame unwinder for M-profile exceptions. */
3032 struct frame_unwind arm_m_exception_unwind =
3035 default_frame_unwind_stop_reason,
3036 arm_m_exception_this_id,
3037 arm_m_exception_prev_register,
3039 arm_m_exception_unwind_sniffer
3043 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
3045 struct arm_prologue_cache *cache;
3047 if (*this_cache == NULL)
3048 *this_cache = arm_make_prologue_cache (this_frame);
3049 cache = (struct arm_prologue_cache *) *this_cache;
3051 return cache->prev_sp - cache->framesize;
3054 struct frame_base arm_normal_base = {
3055 &arm_prologue_unwind,
3056 arm_normal_frame_base,
3057 arm_normal_frame_base,
3058 arm_normal_frame_base
3061 static struct value *
3062 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3065 struct gdbarch * gdbarch = get_frame_arch (this_frame);
3067 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
3072 /* The PC is normally copied from the return column, which
3073 describes saves of LR. However, that version may have an
3074 extra bit set to indicate Thumb state. The bit is not
3076 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3077 return frame_unwind_got_constant (this_frame, regnum,
3078 arm_addr_bits_remove (gdbarch, lr));
3081 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3082 cpsr = get_frame_register_unsigned (this_frame, regnum);
3083 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3084 if (IS_THUMB_ADDR (lr))
3088 return frame_unwind_got_constant (this_frame, regnum, cpsr);
3091 internal_error (__FILE__, __LINE__,
3092 _("Unexpected register %d"), regnum);
3097 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3098 struct dwarf2_frame_state_reg *reg,
3099 struct frame_info *this_frame)
3105 reg->how = DWARF2_FRAME_REG_FN;
3106 reg->loc.fn = arm_dwarf2_prev_register;
3109 reg->how = DWARF2_FRAME_REG_CFA;
3114 /* Implement the stack_frame_destroyed_p gdbarch method. */
3117 thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3119 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3120 unsigned int insn, insn2;
3121 int found_return = 0, found_stack_adjust = 0;
3122 CORE_ADDR func_start, func_end;
3126 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3129 /* The epilogue is a sequence of instructions along the following lines:
3131 - add stack frame size to SP or FP
3132 - [if frame pointer used] restore SP from FP
3133 - restore registers from SP [may include PC]
3134 - a return-type instruction [if PC wasn't already restored]
3136 In a first pass, we scan forward from the current PC and verify the
3137 instructions we find as compatible with this sequence, ending in a
3140 However, this is not sufficient to distinguish indirect function calls
3141 within a function from indirect tail calls in the epilogue in some cases.
3142 Therefore, if we didn't already find any SP-changing instruction during
3143 forward scan, we add a backward scanning heuristic to ensure we actually
3144 are in the epilogue. */
3147 while (scan_pc < func_end && !found_return)
3149 if (target_read_memory (scan_pc, buf, 2))
3153 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3155 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3157 else if (insn == 0x46f7) /* mov pc, lr */
3159 else if (thumb_instruction_restores_sp (insn))
3161 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
3164 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
3166 if (target_read_memory (scan_pc, buf, 2))
3170 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3172 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3174 if (insn2 & 0x8000) /* <registers> include PC. */
3177 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3178 && (insn2 & 0x0fff) == 0x0b04)
3180 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3183 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3184 && (insn2 & 0x0e00) == 0x0a00)
3196 /* Since any instruction in the epilogue sequence, with the possible
3197 exception of return itself, updates the stack pointer, we need to
3198 scan backwards for at most one instruction. Try either a 16-bit or
3199 a 32-bit instruction. This is just a heuristic, so we do not worry
3200 too much about false positives. */
3202 if (pc - 4 < func_start)
3204 if (target_read_memory (pc - 4, buf, 4))
3207 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3208 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3210 if (thumb_instruction_restores_sp (insn2))
3211 found_stack_adjust = 1;
3212 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3213 found_stack_adjust = 1;
3214 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3215 && (insn2 & 0x0fff) == 0x0b04)
3216 found_stack_adjust = 1;
3217 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3218 && (insn2 & 0x0e00) == 0x0a00)
3219 found_stack_adjust = 1;
3221 return found_stack_adjust;
3225 arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
3227 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3230 CORE_ADDR func_start, func_end;
3232 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3235 /* We are in the epilogue if the previous instruction was a stack
3236 adjustment and the next instruction is a possible return (bx, mov
3237 pc, or pop). We could have to scan backwards to find the stack
3238 adjustment, or forwards to find the return, but this is a decent
3239 approximation. First scan forwards. */
3242 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3243 if (bits (insn, 28, 31) != INST_NV)
3245 if ((insn & 0x0ffffff0) == 0x012fff10)
3248 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3251 else if ((insn & 0x0fff0000) == 0x08bd0000
3252 && (insn & 0x0000c000) != 0)
3253 /* POP (LDMIA), including PC or LR. */
3260 /* Scan backwards. This is just a heuristic, so do not worry about
3261 false positives from mode changes. */
3263 if (pc < func_start + 4)
3266 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3267 if (arm_instruction_restores_sp (insn))
3273 /* Implement the stack_frame_destroyed_p gdbarch method. */
3276 arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3278 if (arm_pc_is_thumb (gdbarch, pc))
3279 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3281 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3284 /* When arguments must be pushed onto the stack, they go on in reverse
3285 order. The code below implements a FILO (stack) to do this. */
3290 struct stack_item *prev;
3294 static struct stack_item *
3295 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
3297 struct stack_item *si;
3298 si = XNEW (struct stack_item);
3299 si->data = (gdb_byte *) xmalloc (len);
3302 memcpy (si->data, contents, len);
3306 static struct stack_item *
3307 pop_stack_item (struct stack_item *si)
3309 struct stack_item *dead = si;
3317 /* Return the alignment (in bytes) of the given type. */
3320 arm_type_align (struct type *t)
3326 t = check_typedef (t);
3327 switch (TYPE_CODE (t))
3330 /* Should never happen. */
3331 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3335 case TYPE_CODE_ENUM:
3339 case TYPE_CODE_RANGE:
3341 case TYPE_CODE_RVALUE_REF:
3342 case TYPE_CODE_CHAR:
3343 case TYPE_CODE_BOOL:
3344 return TYPE_LENGTH (t);
3346 case TYPE_CODE_ARRAY:
3347 if (TYPE_VECTOR (t))
3349 /* Use the natural alignment for vector types (the same for
3350 scalar type), but the maximum alignment is 64-bit. */
3351 if (TYPE_LENGTH (t) > 8)
3354 return TYPE_LENGTH (t);
3357 return arm_type_align (TYPE_TARGET_TYPE (t));
3358 case TYPE_CODE_COMPLEX:
3359 return arm_type_align (TYPE_TARGET_TYPE (t));
3361 case TYPE_CODE_STRUCT:
3362 case TYPE_CODE_UNION:
3364 for (n = 0; n < TYPE_NFIELDS (t); n++)
3366 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3374 /* Possible base types for a candidate for passing and returning in
3377 enum arm_vfp_cprc_base_type
3386 /* The length of one element of base type B. */
3389 arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3393 case VFP_CPRC_SINGLE:
3395 case VFP_CPRC_DOUBLE:
3397 case VFP_CPRC_VEC64:
3399 case VFP_CPRC_VEC128:
3402 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3407 /* The character ('s', 'd' or 'q') for the type of VFP register used
3408 for passing base type B. */
3411 arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3415 case VFP_CPRC_SINGLE:
3417 case VFP_CPRC_DOUBLE:
3419 case VFP_CPRC_VEC64:
3421 case VFP_CPRC_VEC128:
3424 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3429 /* Determine whether T may be part of a candidate for passing and
3430 returning in VFP registers, ignoring the limit on the total number
3431 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3432 classification of the first valid component found; if it is not
3433 VFP_CPRC_UNKNOWN, all components must have the same classification
3434 as *BASE_TYPE. If it is found that T contains a type not permitted
3435 for passing and returning in VFP registers, a type differently
3436 classified from *BASE_TYPE, or two types differently classified
3437 from each other, return -1, otherwise return the total number of
3438 base-type elements found (possibly 0 in an empty structure or
3439 array). Vector types are not currently supported, matching the
3440 generic AAPCS support. */
3443 arm_vfp_cprc_sub_candidate (struct type *t,
3444 enum arm_vfp_cprc_base_type *base_type)
3446 t = check_typedef (t);
3447 switch (TYPE_CODE (t))
3450 switch (TYPE_LENGTH (t))
3453 if (*base_type == VFP_CPRC_UNKNOWN)
3454 *base_type = VFP_CPRC_SINGLE;
3455 else if (*base_type != VFP_CPRC_SINGLE)
3460 if (*base_type == VFP_CPRC_UNKNOWN)
3461 *base_type = VFP_CPRC_DOUBLE;
3462 else if (*base_type != VFP_CPRC_DOUBLE)
3471 case TYPE_CODE_COMPLEX:
3472 /* Arguments of complex T where T is one of the types float or
3473 double get treated as if they are implemented as:
3482 switch (TYPE_LENGTH (t))
3485 if (*base_type == VFP_CPRC_UNKNOWN)
3486 *base_type = VFP_CPRC_SINGLE;
3487 else if (*base_type != VFP_CPRC_SINGLE)
3492 if (*base_type == VFP_CPRC_UNKNOWN)
3493 *base_type = VFP_CPRC_DOUBLE;
3494 else if (*base_type != VFP_CPRC_DOUBLE)
3503 case TYPE_CODE_ARRAY:
3505 if (TYPE_VECTOR (t))
3507 /* A 64-bit or 128-bit containerized vector type are VFP
3509 switch (TYPE_LENGTH (t))
3512 if (*base_type == VFP_CPRC_UNKNOWN)
3513 *base_type = VFP_CPRC_VEC64;
3516 if (*base_type == VFP_CPRC_UNKNOWN)
3517 *base_type = VFP_CPRC_VEC128;
3528 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3532 if (TYPE_LENGTH (t) == 0)
3534 gdb_assert (count == 0);
3537 else if (count == 0)
3539 unitlen = arm_vfp_cprc_unit_length (*base_type);
3540 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3541 return TYPE_LENGTH (t) / unitlen;
3546 case TYPE_CODE_STRUCT:
3551 for (i = 0; i < TYPE_NFIELDS (t); i++)
3555 if (!field_is_static (&TYPE_FIELD (t, i)))
3556 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3558 if (sub_count == -1)
3562 if (TYPE_LENGTH (t) == 0)
3564 gdb_assert (count == 0);
3567 else if (count == 0)
3569 unitlen = arm_vfp_cprc_unit_length (*base_type);
3570 if (TYPE_LENGTH (t) != unitlen * count)
3575 case TYPE_CODE_UNION:
3580 for (i = 0; i < TYPE_NFIELDS (t); i++)
3582 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3584 if (sub_count == -1)
3586 count = (count > sub_count ? count : sub_count);
3588 if (TYPE_LENGTH (t) == 0)
3590 gdb_assert (count == 0);
3593 else if (count == 0)
3595 unitlen = arm_vfp_cprc_unit_length (*base_type);
3596 if (TYPE_LENGTH (t) != unitlen * count)
3608 /* Determine whether T is a VFP co-processor register candidate (CPRC)
3609 if passed to or returned from a non-variadic function with the VFP
3610 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3611 *BASE_TYPE to the base type for T and *COUNT to the number of
3612 elements of that base type before returning. */
3615 arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3618 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3619 int c = arm_vfp_cprc_sub_candidate (t, &b);
3620 if (c <= 0 || c > 4)
3627 /* Return 1 if the VFP ABI should be used for passing arguments to and
3628 returning values from a function of type FUNC_TYPE, 0
3632 arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3634 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3635 /* Variadic functions always use the base ABI. Assume that functions
3636 without debug info are not variadic. */
3637 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3639 /* The VFP ABI is only supported as a variant of AAPCS. */
3640 if (tdep->arm_abi != ARM_ABI_AAPCS)
3642 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3645 /* We currently only support passing parameters in integer registers, which
3646 conforms with GCC's default model, and VFP argument passing following
3647 the VFP variant of AAPCS. Several other variants exist and
3648 we should probably support some of them based on the selected ABI. */
3651 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3652 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3653 struct value **args, CORE_ADDR sp,
3654 function_call_return_method return_method,
3655 CORE_ADDR struct_addr)
3657 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3661 struct stack_item *si = NULL;
3664 unsigned vfp_regs_free = (1 << 16) - 1;
3666 /* Determine the type of this function and whether the VFP ABI
3668 ftype = check_typedef (value_type (function));
3669 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3670 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3671 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
3673 /* Set the return address. For the ARM, the return breakpoint is
3674 always at BP_ADDR. */
3675 if (arm_pc_is_thumb (gdbarch, bp_addr))
3677 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
3679 /* Walk through the list of args and determine how large a temporary
3680 stack is required. Need to take care here as structs may be
3681 passed on the stack, and we have to push them. */
3684 argreg = ARM_A1_REGNUM;
3687 /* The struct_return pointer occupies the first parameter
3688 passing register. */
3689 if (return_method == return_method_struct)
3692 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
3693 gdbarch_register_name (gdbarch, argreg),
3694 paddress (gdbarch, struct_addr));
3695 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3699 for (argnum = 0; argnum < nargs; argnum++)
3702 struct type *arg_type;
3703 struct type *target_type;
3704 enum type_code typecode;
3705 const bfd_byte *val;
3707 enum arm_vfp_cprc_base_type vfp_base_type;
3709 int may_use_core_reg = 1;
3711 arg_type = check_typedef (value_type (args[argnum]));
3712 len = TYPE_LENGTH (arg_type);
3713 target_type = TYPE_TARGET_TYPE (arg_type);
3714 typecode = TYPE_CODE (arg_type);
3715 val = value_contents (args[argnum]);
3717 align = arm_type_align (arg_type);
3718 /* Round alignment up to a whole number of words. */
3719 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3720 /* Different ABIs have different maximum alignments. */
3721 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3723 /* The APCS ABI only requires word alignment. */
3724 align = INT_REGISTER_SIZE;
3728 /* The AAPCS requires at most doubleword alignment. */
3729 if (align > INT_REGISTER_SIZE * 2)
3730 align = INT_REGISTER_SIZE * 2;
3734 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3742 /* Because this is a CPRC it cannot go in a core register or
3743 cause a core register to be skipped for alignment.
3744 Either it goes in VFP registers and the rest of this loop
3745 iteration is skipped for this argument, or it goes on the
3746 stack (and the stack alignment code is correct for this
3748 may_use_core_reg = 0;
3750 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3751 shift = unit_length / 4;
3752 mask = (1 << (shift * vfp_base_count)) - 1;
3753 for (regno = 0; regno < 16; regno += shift)
3754 if (((vfp_regs_free >> regno) & mask) == mask)
3763 vfp_regs_free &= ~(mask << regno);
3764 reg_scaled = regno / shift;
3765 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3766 for (i = 0; i < vfp_base_count; i++)
3770 if (reg_char == 'q')
3771 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
3772 val + i * unit_length);
3775 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3776 reg_char, reg_scaled + i);
3777 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3779 regcache->cooked_write (regnum, val + i * unit_length);
3786 /* This CPRC could not go in VFP registers, so all VFP
3787 registers are now marked as used. */
3792 /* Push stack padding for dowubleword alignment. */
3793 if (nstack & (align - 1))
3795 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3796 nstack += INT_REGISTER_SIZE;
3799 /* Doubleword aligned quantities must go in even register pairs. */
3800 if (may_use_core_reg
3801 && argreg <= ARM_LAST_ARG_REGNUM
3802 && align > INT_REGISTER_SIZE
3806 /* If the argument is a pointer to a function, and it is a
3807 Thumb function, create a LOCAL copy of the value and set
3808 the THUMB bit in it. */
3809 if (TYPE_CODE_PTR == typecode
3810 && target_type != NULL
3811 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
3813 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
3814 if (arm_pc_is_thumb (gdbarch, regval))
3816 bfd_byte *copy = (bfd_byte *) alloca (len);
3817 store_unsigned_integer (copy, len, byte_order,
3818 MAKE_THUMB_ADDR (regval));
3823 /* Copy the argument to general registers or the stack in
3824 register-sized pieces. Large arguments are split between
3825 registers and stack. */
3828 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
3830 = extract_unsigned_integer (val, partial_len, byte_order);
3832 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
3834 /* The argument is being passed in a general purpose
3836 if (byte_order == BFD_ENDIAN_BIG)
3837 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
3839 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
3841 gdbarch_register_name
3843 phex (regval, INT_REGISTER_SIZE));
3844 regcache_cooked_write_unsigned (regcache, argreg, regval);
3849 gdb_byte buf[INT_REGISTER_SIZE];
3851 memset (buf, 0, sizeof (buf));
3852 store_unsigned_integer (buf, partial_len, byte_order, regval);
3854 /* Push the arguments onto the stack. */
3856 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3858 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
3859 nstack += INT_REGISTER_SIZE;
3866 /* If we have an odd number of words to push, then decrement the stack
3867 by one word now, so first stack argument will be dword aligned. */
3874 write_memory (sp, si->data, si->len);
3875 si = pop_stack_item (si);
3878 /* Finally, update teh SP register. */
3879 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3885 /* Always align the frame to an 8-byte boundary. This is required on
3886 some platforms and harmless on the rest. */
3889 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3891 /* Align the stack to eight bytes. */
3892 return sp & ~ (CORE_ADDR) 7;
3896 print_fpu_flags (struct ui_file *file, int flags)
3898 if (flags & (1 << 0))
3899 fputs_filtered ("IVO ", file);
3900 if (flags & (1 << 1))
3901 fputs_filtered ("DVZ ", file);
3902 if (flags & (1 << 2))
3903 fputs_filtered ("OFL ", file);
3904 if (flags & (1 << 3))
3905 fputs_filtered ("UFL ", file);
3906 if (flags & (1 << 4))
3907 fputs_filtered ("INX ", file);
3908 fputc_filtered ('\n', file);
3911 /* Print interesting information about the floating point processor
3912 (if present) or emulator. */
3914 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
3915 struct frame_info *frame, const char *args)
3917 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
3920 type = (status >> 24) & 127;
3921 if (status & (1 << 31))
3922 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
3924 fprintf_filtered (file, _("Software FPU type %d\n"), type);
3925 /* i18n: [floating point unit] mask */
3926 fputs_filtered (_("mask: "), file);
3927 print_fpu_flags (file, status >> 16);
3928 /* i18n: [floating point unit] flags */
3929 fputs_filtered (_("flags: "), file);
3930 print_fpu_flags (file, status);
3933 /* Construct the ARM extended floating point type. */
3934 static struct type *
3935 arm_ext_type (struct gdbarch *gdbarch)
3937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3939 if (!tdep->arm_ext_type)
3941 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
3942 floatformats_arm_ext);
3944 return tdep->arm_ext_type;
3947 static struct type *
3948 arm_neon_double_type (struct gdbarch *gdbarch)
3950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3952 if (tdep->neon_double_type == NULL)
3954 struct type *t, *elem;
3956 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
3958 elem = builtin_type (gdbarch)->builtin_uint8;
3959 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
3960 elem = builtin_type (gdbarch)->builtin_uint16;
3961 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
3962 elem = builtin_type (gdbarch)->builtin_uint32;
3963 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
3964 elem = builtin_type (gdbarch)->builtin_uint64;
3965 append_composite_type_field (t, "u64", elem);
3966 elem = builtin_type (gdbarch)->builtin_float;
3967 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
3968 elem = builtin_type (gdbarch)->builtin_double;
3969 append_composite_type_field (t, "f64", elem);
3971 TYPE_VECTOR (t) = 1;
3972 TYPE_NAME (t) = "neon_d";
3973 tdep->neon_double_type = t;
3976 return tdep->neon_double_type;
3979 /* FIXME: The vector types are not correctly ordered on big-endian
3980 targets. Just as s0 is the low bits of d0, d0[0] is also the low
3981 bits of d0 - regardless of what unit size is being held in d0. So
3982 the offset of the first uint8 in d0 is 7, but the offset of the
3983 first float is 4. This code works as-is for little-endian
3986 static struct type *
3987 arm_neon_quad_type (struct gdbarch *gdbarch)
3989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3991 if (tdep->neon_quad_type == NULL)
3993 struct type *t, *elem;
3995 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
3997 elem = builtin_type (gdbarch)->builtin_uint8;
3998 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
3999 elem = builtin_type (gdbarch)->builtin_uint16;
4000 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4001 elem = builtin_type (gdbarch)->builtin_uint32;
4002 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4003 elem = builtin_type (gdbarch)->builtin_uint64;
4004 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4005 elem = builtin_type (gdbarch)->builtin_float;
4006 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4007 elem = builtin_type (gdbarch)->builtin_double;
4008 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4010 TYPE_VECTOR (t) = 1;
4011 TYPE_NAME (t) = "neon_q";
4012 tdep->neon_quad_type = t;
4015 return tdep->neon_quad_type;
4018 /* Return the GDB type object for the "standard" data type of data in
4021 static struct type *
4022 arm_register_type (struct gdbarch *gdbarch, int regnum)
4024 int num_regs = gdbarch_num_regs (gdbarch);
4026 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4027 && regnum >= num_regs && regnum < num_regs + 32)
4028 return builtin_type (gdbarch)->builtin_float;
4030 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4031 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4032 return arm_neon_quad_type (gdbarch);
4034 /* If the target description has register information, we are only
4035 in this function so that we can override the types of
4036 double-precision registers for NEON. */
4037 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4039 struct type *t = tdesc_register_type (gdbarch, regnum);
4041 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4042 && TYPE_CODE (t) == TYPE_CODE_FLT
4043 && gdbarch_tdep (gdbarch)->have_neon)
4044 return arm_neon_double_type (gdbarch);
4049 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
4051 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4052 return builtin_type (gdbarch)->builtin_void;
4054 return arm_ext_type (gdbarch);
4056 else if (regnum == ARM_SP_REGNUM)
4057 return builtin_type (gdbarch)->builtin_data_ptr;
4058 else if (regnum == ARM_PC_REGNUM)
4059 return builtin_type (gdbarch)->builtin_func_ptr;
4060 else if (regnum >= ARRAY_SIZE (arm_register_names))
4061 /* These registers are only supported on targets which supply
4062 an XML description. */
4063 return builtin_type (gdbarch)->builtin_int0;
4065 return builtin_type (gdbarch)->builtin_uint32;
4068 /* Map a DWARF register REGNUM onto the appropriate GDB register
4072 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
4074 /* Core integer regs. */
4075 if (reg >= 0 && reg <= 15)
4078 /* Legacy FPA encoding. These were once used in a way which
4079 overlapped with VFP register numbering, so their use is
4080 discouraged, but GDB doesn't support the ARM toolchain
4081 which used them for VFP. */
4082 if (reg >= 16 && reg <= 23)
4083 return ARM_F0_REGNUM + reg - 16;
4085 /* New assignments for the FPA registers. */
4086 if (reg >= 96 && reg <= 103)
4087 return ARM_F0_REGNUM + reg - 96;
4089 /* WMMX register assignments. */
4090 if (reg >= 104 && reg <= 111)
4091 return ARM_WCGR0_REGNUM + reg - 104;
4093 if (reg >= 112 && reg <= 127)
4094 return ARM_WR0_REGNUM + reg - 112;
4096 if (reg >= 192 && reg <= 199)
4097 return ARM_WC0_REGNUM + reg - 192;
4099 /* VFP v2 registers. A double precision value is actually
4100 in d1 rather than s2, but the ABI only defines numbering
4101 for the single precision registers. This will "just work"
4102 in GDB for little endian targets (we'll read eight bytes,
4103 starting in s0 and then progressing to s1), but will be
4104 reversed on big endian targets with VFP. This won't
4105 be a problem for the new Neon quad registers; you're supposed
4106 to use DW_OP_piece for those. */
4107 if (reg >= 64 && reg <= 95)
4111 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
4112 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4116 /* VFP v3 / Neon registers. This range is also used for VFP v2
4117 registers, except that it now describes d0 instead of s0. */
4118 if (reg >= 256 && reg <= 287)
4122 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
4123 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4130 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4132 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
4135 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
4137 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4138 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4140 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4141 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4143 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4144 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4146 if (reg < NUM_GREGS)
4147 return SIM_ARM_R0_REGNUM + reg;
4150 if (reg < NUM_FREGS)
4151 return SIM_ARM_FP0_REGNUM + reg;
4154 if (reg < NUM_SREGS)
4155 return SIM_ARM_FPS_REGNUM + reg;
4158 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
4161 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4162 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4163 NULL if an error occurs. BUF is freed. */
4166 extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4167 int old_len, int new_len)
4170 int bytes_to_read = new_len - old_len;
4172 new_buf = (gdb_byte *) xmalloc (new_len);
4173 memcpy (new_buf + bytes_to_read, buf, old_len);
4175 if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0)
4183 /* An IT block is at most the 2-byte IT instruction followed by
4184 four 4-byte instructions. The furthest back we must search to
4185 find an IT block that affects the current instruction is thus
4186 2 + 3 * 4 == 14 bytes. */
4187 #define MAX_IT_BLOCK_PREFIX 14
4189 /* Use a quick scan if there are more than this many bytes of
4191 #define IT_SCAN_THRESHOLD 32
4193 /* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4194 A breakpoint in an IT block may not be hit, depending on the
4197 arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4201 CORE_ADDR boundary, func_start;
4203 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4204 int i, any, last_it, last_it_count;
4206 /* If we are using BKPT breakpoints, none of this is necessary. */
4207 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4210 /* ARM mode does not have this problem. */
4211 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4214 /* We are setting a breakpoint in Thumb code that could potentially
4215 contain an IT block. The first step is to find how much Thumb
4216 code there is; we do not need to read outside of known Thumb
4218 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4220 /* Thumb-2 code must have mapping symbols to have a chance. */
4223 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4225 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4226 && func_start > boundary)
4227 boundary = func_start;
4229 /* Search for a candidate IT instruction. We have to do some fancy
4230 footwork to distinguish a real IT instruction from the second
4231 half of a 32-bit instruction, but there is no need for that if
4232 there's no candidate. */
4233 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
4235 /* No room for an IT instruction. */
4238 buf = (gdb_byte *) xmalloc (buf_len);
4239 if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0)
4242 for (i = 0; i < buf_len; i += 2)
4244 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4245 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4258 /* OK, the code bytes before this instruction contain at least one
4259 halfword which resembles an IT instruction. We know that it's
4260 Thumb code, but there are still two possibilities. Either the
4261 halfword really is an IT instruction, or it is the second half of
4262 a 32-bit Thumb instruction. The only way we can tell is to
4263 scan forwards from a known instruction boundary. */
4264 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4268 /* There's a lot of code before this instruction. Start with an
4269 optimistic search; it's easy to recognize halfwords that can
4270 not be the start of a 32-bit instruction, and use that to
4271 lock on to the instruction boundaries. */
4272 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4275 buf_len = IT_SCAN_THRESHOLD;
4278 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4280 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4281 if (thumb_insn_size (inst1) == 2)
4288 /* At this point, if DEFINITE, BUF[I] is the first place we
4289 are sure that we know the instruction boundaries, and it is far
4290 enough from BPADDR that we could not miss an IT instruction
4291 affecting BPADDR. If ! DEFINITE, give up - start from a
4295 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4299 buf_len = bpaddr - boundary;
4305 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4308 buf_len = bpaddr - boundary;
4312 /* Scan forwards. Find the last IT instruction before BPADDR. */
4317 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4319 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4324 else if (inst1 & 0x0002)
4326 else if (inst1 & 0x0004)
4331 i += thumb_insn_size (inst1);
4337 /* There wasn't really an IT instruction after all. */
4340 if (last_it_count < 1)
4341 /* It was too far away. */
4344 /* This really is a trouble spot. Move the breakpoint to the IT
4346 return bpaddr - buf_len + last_it;
4349 /* ARM displaced stepping support.
4351 Generally ARM displaced stepping works as follows:
4353 1. When an instruction is to be single-stepped, it is first decoded by
4354 arm_process_displaced_insn. Depending on the type of instruction, it is
4355 then copied to a scratch location, possibly in a modified form. The
4356 copy_* set of functions performs such modification, as necessary. A
4357 breakpoint is placed after the modified instruction in the scratch space
4358 to return control to GDB. Note in particular that instructions which
4359 modify the PC will no longer do so after modification.
4361 2. The instruction is single-stepped, by setting the PC to the scratch
4362 location address, and resuming. Control returns to GDB when the
4365 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4366 function used for the current instruction. This function's job is to
4367 put the CPU/memory state back to what it would have been if the
4368 instruction had been executed unmodified in its original location. */
4370 /* NOP instruction (mov r0, r0). */
4371 #define ARM_NOP 0xe1a00000
4372 #define THUMB_NOP 0x4600
4374 /* Helper for register reads for displaced stepping. In particular, this
4375 returns the PC as it would be seen by the instruction at its original
4379 displaced_read_reg (struct regcache *regs, arm_displaced_step_closure *dsc,
4383 CORE_ADDR from = dsc->insn_addr;
4385 if (regno == ARM_PC_REGNUM)
4387 /* Compute pipeline offset:
4388 - When executing an ARM instruction, PC reads as the address of the
4389 current instruction plus 8.
4390 - When executing a Thumb instruction, PC reads as the address of the
4391 current instruction plus 4. */
4398 if (debug_displaced)
4399 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4400 (unsigned long) from);
4401 return (ULONGEST) from;
4405 regcache_cooked_read_unsigned (regs, regno, &ret);
4406 if (debug_displaced)
4407 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4408 regno, (unsigned long) ret);
4414 displaced_in_arm_mode (struct regcache *regs)
4417 ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ());
4419 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4421 return (ps & t_bit) == 0;
4424 /* Write to the PC as from a branch instruction. */
4427 branch_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc,
4431 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4432 architecture versions < 6. */
4433 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4434 val & ~(ULONGEST) 0x3);
4436 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4437 val & ~(ULONGEST) 0x1);
4440 /* Write to the PC as from a branch-exchange instruction. */
4443 bx_write_pc (struct regcache *regs, ULONGEST val)
4446 ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ());
4448 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4452 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
4453 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4455 else if ((val & 2) == 0)
4457 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4458 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
4462 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4463 mode, align dest to 4 bytes). */
4464 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
4465 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4466 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
4470 /* Write to the PC as if from a load instruction. */
4473 load_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc,
4476 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4477 bx_write_pc (regs, val);
4479 branch_write_pc (regs, dsc, val);
4482 /* Write to the PC as if from an ALU instruction. */
4485 alu_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc,
4488 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
4489 bx_write_pc (regs, val);
4491 branch_write_pc (regs, dsc, val);
4494 /* Helper for writing to registers for displaced stepping. Writing to the PC
4495 has a varying effects depending on the instruction which does the write:
4496 this is controlled by the WRITE_PC argument. */
4499 displaced_write_reg (struct regcache *regs, arm_displaced_step_closure *dsc,
4500 int regno, ULONGEST val, enum pc_write_style write_pc)
4502 if (regno == ARM_PC_REGNUM)
4504 if (debug_displaced)
4505 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4506 (unsigned long) val);
4509 case BRANCH_WRITE_PC:
4510 branch_write_pc (regs, dsc, val);
4514 bx_write_pc (regs, val);
4518 load_write_pc (regs, dsc, val);
4522 alu_write_pc (regs, dsc, val);
4525 case CANNOT_WRITE_PC:
4526 warning (_("Instruction wrote to PC in an unexpected way when "
4527 "single-stepping"));
4531 internal_error (__FILE__, __LINE__,
4532 _("Invalid argument to displaced_write_reg"));
4535 dsc->wrote_to_pc = 1;
4539 if (debug_displaced)
4540 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4541 regno, (unsigned long) val);
4542 regcache_cooked_write_unsigned (regs, regno, val);
4546 /* This function is used to concisely determine if an instruction INSN
4547 references PC. Register fields of interest in INSN should have the
4548 corresponding fields of BITMASK set to 0b1111. The function
4549 returns return 1 if any of these fields in INSN reference the PC
4550 (also 0b1111, r15), else it returns 0. */
4553 insn_references_pc (uint32_t insn, uint32_t bitmask)
4555 uint32_t lowbit = 1;
4557 while (bitmask != 0)
4561 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4567 mask = lowbit * 0xf;
4569 if ((insn & mask) == mask)
4578 /* The simplest copy function. Many instructions have the same effect no
4579 matter what address they are executed at: in those cases, use this. */
4582 arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4583 const char *iname, arm_displaced_step_closure *dsc)
4585 if (debug_displaced)
4586 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4587 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4590 dsc->modinsn[0] = insn;
4596 thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4597 uint16_t insn2, const char *iname,
4598 arm_displaced_step_closure *dsc)
4600 if (debug_displaced)
4601 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4602 "opcode/class '%s' unmodified\n", insn1, insn2,
4605 dsc->modinsn[0] = insn1;
4606 dsc->modinsn[1] = insn2;
4612 /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4615 thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
4617 arm_displaced_step_closure *dsc)
4619 if (debug_displaced)
4620 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4621 "opcode/class '%s' unmodified\n", insn,
4624 dsc->modinsn[0] = insn;
4629 /* Preload instructions with immediate offset. */
4632 cleanup_preload (struct gdbarch *gdbarch,
4633 struct regcache *regs, arm_displaced_step_closure *dsc)
4635 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4636 if (!dsc->u.preload.immed)
4637 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4641 install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4642 arm_displaced_step_closure *dsc, unsigned int rn)
4645 /* Preload instructions:
4647 {pli/pld} [rn, #+/-imm]
4649 {pli/pld} [r0, #+/-imm]. */
4651 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4652 rn_val = displaced_read_reg (regs, dsc, rn);
4653 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4654 dsc->u.preload.immed = 1;
4656 dsc->cleanup = &cleanup_preload;
4660 arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
4661 arm_displaced_step_closure *dsc)
4663 unsigned int rn = bits (insn, 16, 19);
4665 if (!insn_references_pc (insn, 0x000f0000ul))
4666 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
4668 if (debug_displaced)
4669 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4670 (unsigned long) insn);
4672 dsc->modinsn[0] = insn & 0xfff0ffff;
4674 install_preload (gdbarch, regs, dsc, rn);
4680 thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4681 struct regcache *regs, arm_displaced_step_closure *dsc)
4683 unsigned int rn = bits (insn1, 0, 3);
4684 unsigned int u_bit = bit (insn1, 7);
4685 int imm12 = bits (insn2, 0, 11);
4688 if (rn != ARM_PC_REGNUM)
4689 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4691 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4692 PLD (literal) Encoding T1. */
4693 if (debug_displaced)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4696 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4702 /* Rewrite instruction {pli/pld} PC imm12 into:
4703 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4707 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4709 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4710 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4712 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4714 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4715 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4716 dsc->u.preload.immed = 0;
4718 /* {pli/pld} [r0, r1] */
4719 dsc->modinsn[0] = insn1 & 0xfff0;
4720 dsc->modinsn[1] = 0xf001;
4723 dsc->cleanup = &cleanup_preload;
4727 /* Preload instructions with register offset. */
4730 install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4731 arm_displaced_step_closure *dsc, unsigned int rn,
4734 ULONGEST rn_val, rm_val;
4736 /* Preload register-offset instructions:
4738 {pli/pld} [rn, rm {, shift}]
4740 {pli/pld} [r0, r1 {, shift}]. */
4742 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4743 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4744 rn_val = displaced_read_reg (regs, dsc, rn);
4745 rm_val = displaced_read_reg (regs, dsc, rm);
4746 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4747 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
4748 dsc->u.preload.immed = 0;
4750 dsc->cleanup = &cleanup_preload;
4754 arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4755 struct regcache *regs,
4756 arm_displaced_step_closure *dsc)
4758 unsigned int rn = bits (insn, 16, 19);
4759 unsigned int rm = bits (insn, 0, 3);
4762 if (!insn_references_pc (insn, 0x000f000ful))
4763 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4765 if (debug_displaced)
4766 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4767 (unsigned long) insn);
4769 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
4771 install_preload_reg (gdbarch, regs, dsc, rn, rm);
4775 /* Copy/cleanup coprocessor load and store instructions. */
4778 cleanup_copro_load_store (struct gdbarch *gdbarch,
4779 struct regcache *regs,
4780 arm_displaced_step_closure *dsc)
4782 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
4784 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4786 if (dsc->u.ldst.writeback)
4787 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4791 install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4792 arm_displaced_step_closure *dsc,
4793 int writeback, unsigned int rn)
4797 /* Coprocessor load/store instructions:
4799 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4801 {stc/stc2} [r0, #+/-imm].
4803 ldc/ldc2 are handled identically. */
4805 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4806 rn_val = displaced_read_reg (regs, dsc, rn);
4807 /* PC should be 4-byte aligned. */
4808 rn_val = rn_val & 0xfffffffc;
4809 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4811 dsc->u.ldst.writeback = writeback;
4812 dsc->u.ldst.rn = rn;
4814 dsc->cleanup = &cleanup_copro_load_store;
4818 arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4819 struct regcache *regs,
4820 arm_displaced_step_closure *dsc)
4822 unsigned int rn = bits (insn, 16, 19);
4824 if (!insn_references_pc (insn, 0x000f0000ul))
4825 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4827 if (debug_displaced)
4828 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4829 "load/store insn %.8lx\n", (unsigned long) insn);
4831 dsc->modinsn[0] = insn & 0xfff0ffff;
4833 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
4839 thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4840 uint16_t insn2, struct regcache *regs,
4841 arm_displaced_step_closure *dsc)
4843 unsigned int rn = bits (insn1, 0, 3);
4845 if (rn != ARM_PC_REGNUM)
4846 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4847 "copro load/store", dsc);
4849 if (debug_displaced)
4850 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4851 "load/store insn %.4x%.4x\n", insn1, insn2);
4853 dsc->modinsn[0] = insn1 & 0xfff0;
4854 dsc->modinsn[1] = insn2;
4857 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4858 doesn't support writeback, so pass 0. */
4859 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4864 /* Clean up branch instructions (actually perform the branch, by setting
4868 cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
4869 arm_displaced_step_closure *dsc)
4871 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
4872 int branch_taken = condition_true (dsc->u.branch.cond, status);
4873 enum pc_write_style write_pc = dsc->u.branch.exchange
4874 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4879 if (dsc->u.branch.link)
4881 /* The value of LR should be the next insn of current one. In order
4882 not to confuse logic hanlding later insn `bx lr', if current insn mode
4883 is Thumb, the bit 0 of LR value should be set to 1. */
4884 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4887 next_insn_addr |= 0x1;
4889 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4893 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
4896 /* Copy B/BL/BLX instructions with immediate destinations. */
4899 install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
4900 arm_displaced_step_closure *dsc,
4901 unsigned int cond, int exchange, int link, long offset)
4903 /* Implement "BL<cond> <label>" as:
4905 Preparation: cond <- instruction condition
4906 Insn: mov r0, r0 (nop)
4907 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
4909 B<cond> similar, but don't set r14 in cleanup. */
4911 dsc->u.branch.cond = cond;
4912 dsc->u.branch.link = link;
4913 dsc->u.branch.exchange = exchange;
4915 dsc->u.branch.dest = dsc->insn_addr;
4916 if (link && exchange)
4917 /* For BLX, offset is computed from the Align (PC, 4). */
4918 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
4921 dsc->u.branch.dest += 4 + offset;
4923 dsc->u.branch.dest += 8 + offset;
4925 dsc->cleanup = &cleanup_branch;
4928 arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
4929 struct regcache *regs, arm_displaced_step_closure *dsc)
4931 unsigned int cond = bits (insn, 28, 31);
4932 int exchange = (cond == 0xf);
4933 int link = exchange || bit (insn, 24);
4936 if (debug_displaced)
4937 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
4938 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
4939 (unsigned long) insn);
4941 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
4942 then arrange the switch into Thumb mode. */
4943 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
4945 offset = bits (insn, 0, 23) << 2;
4947 if (bit (offset, 25))
4948 offset = offset | ~0x3ffffff;
4950 dsc->modinsn[0] = ARM_NOP;
4952 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
4957 thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
4958 uint16_t insn2, struct regcache *regs,
4959 arm_displaced_step_closure *dsc)
4961 int link = bit (insn2, 14);
4962 int exchange = link && !bit (insn2, 12);
4965 int j1 = bit (insn2, 13);
4966 int j2 = bit (insn2, 11);
4967 int s = sbits (insn1, 10, 10);
4968 int i1 = !(j1 ^ bit (insn1, 10));
4969 int i2 = !(j2 ^ bit (insn1, 10));
4971 if (!link && !exchange) /* B */
4973 offset = (bits (insn2, 0, 10) << 1);
4974 if (bit (insn2, 12)) /* Encoding T4 */
4976 offset |= (bits (insn1, 0, 9) << 12)
4982 else /* Encoding T3 */
4984 offset |= (bits (insn1, 0, 5) << 12)
4988 cond = bits (insn1, 6, 9);
4993 offset = (bits (insn1, 0, 9) << 12);
4994 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
4995 offset |= exchange ?
4996 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
4999 if (debug_displaced)
5000 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5001 "%.4x %.4x with offset %.8lx\n",
5002 link ? (exchange) ? "blx" : "bl" : "b",
5003 insn1, insn2, offset);
5005 dsc->modinsn[0] = THUMB_NOP;
5007 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5011 /* Copy B Thumb instructions. */
5013 thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
5014 arm_displaced_step_closure *dsc)
5016 unsigned int cond = 0;
5018 unsigned short bit_12_15 = bits (insn, 12, 15);
5019 CORE_ADDR from = dsc->insn_addr;
5021 if (bit_12_15 == 0xd)
5023 /* offset = SignExtend (imm8:0, 32) */
5024 offset = sbits ((insn << 1), 0, 8);
5025 cond = bits (insn, 8, 11);
5027 else if (bit_12_15 == 0xe) /* Encoding T2 */
5029 offset = sbits ((insn << 1), 0, 11);
5033 if (debug_displaced)
5034 fprintf_unfiltered (gdb_stdlog,
5035 "displaced: copying b immediate insn %.4x "
5036 "with offset %d\n", insn, offset);
5038 dsc->u.branch.cond = cond;
5039 dsc->u.branch.link = 0;
5040 dsc->u.branch.exchange = 0;
5041 dsc->u.branch.dest = from + 4 + offset;
5043 dsc->modinsn[0] = THUMB_NOP;
5045 dsc->cleanup = &cleanup_branch;
5050 /* Copy BX/BLX with register-specified destinations. */
5053 install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5054 arm_displaced_step_closure *dsc, int link,
5055 unsigned int cond, unsigned int rm)
5057 /* Implement {BX,BLX}<cond> <reg>" as:
5059 Preparation: cond <- instruction condition
5060 Insn: mov r0, r0 (nop)
5061 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5063 Don't set r14 in cleanup for BX. */
5065 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
5067 dsc->u.branch.cond = cond;
5068 dsc->u.branch.link = link;
5070 dsc->u.branch.exchange = 1;
5072 dsc->cleanup = &cleanup_branch;
5076 arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5077 struct regcache *regs, arm_displaced_step_closure *dsc)
5079 unsigned int cond = bits (insn, 28, 31);
5082 int link = bit (insn, 5);
5083 unsigned int rm = bits (insn, 0, 3);
5085 if (debug_displaced)
5086 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5087 (unsigned long) insn);
5089 dsc->modinsn[0] = ARM_NOP;
5091 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
5096 thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5097 struct regcache *regs,
5098 arm_displaced_step_closure *dsc)
5100 int link = bit (insn, 7);
5101 unsigned int rm = bits (insn, 3, 6);
5103 if (debug_displaced)
5104 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5105 (unsigned short) insn);
5107 dsc->modinsn[0] = THUMB_NOP;
5109 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5115 /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
5118 cleanup_alu_imm (struct gdbarch *gdbarch,
5119 struct regcache *regs, arm_displaced_step_closure *dsc)
5121 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5122 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5123 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5124 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5128 arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5129 arm_displaced_step_closure *dsc)
5131 unsigned int rn = bits (insn, 16, 19);
5132 unsigned int rd = bits (insn, 12, 15);
5133 unsigned int op = bits (insn, 21, 24);
5134 int is_mov = (op == 0xd);
5135 ULONGEST rd_val, rn_val;
5137 if (!insn_references_pc (insn, 0x000ff000ul))
5138 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5140 if (debug_displaced)
5141 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5142 "%.8lx\n", is_mov ? "move" : "ALU",
5143 (unsigned long) insn);
5145 /* Instruction is of form:
5147 <op><cond> rd, [rn,] #imm
5151 Preparation: tmp1, tmp2 <- r0, r1;
5153 Insn: <op><cond> r0, r1, #imm
5154 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5157 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5158 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5159 rn_val = displaced_read_reg (regs, dsc, rn);
5160 rd_val = displaced_read_reg (regs, dsc, rd);
5161 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5162 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5166 dsc->modinsn[0] = insn & 0xfff00fff;
5168 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5170 dsc->cleanup = &cleanup_alu_imm;
5176 thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5177 uint16_t insn2, struct regcache *regs,
5178 arm_displaced_step_closure *dsc)
5180 unsigned int op = bits (insn1, 5, 8);
5181 unsigned int rn, rm, rd;
5182 ULONGEST rd_val, rn_val;
5184 rn = bits (insn1, 0, 3); /* Rn */
5185 rm = bits (insn2, 0, 3); /* Rm */
5186 rd = bits (insn2, 8, 11); /* Rd */
5188 /* This routine is only called for instruction MOV. */
5189 gdb_assert (op == 0x2 && rn == 0xf);
5191 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5192 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5194 if (debug_displaced)
5195 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5196 "ALU", insn1, insn2);
5198 /* Instruction is of form:
5200 <op><cond> rd, [rn,] #imm
5204 Preparation: tmp1, tmp2 <- r0, r1;
5206 Insn: <op><cond> r0, r1, #imm
5207 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5210 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5211 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5212 rn_val = displaced_read_reg (regs, dsc, rn);
5213 rd_val = displaced_read_reg (regs, dsc, rd);
5214 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5215 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5218 dsc->modinsn[0] = insn1;
5219 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5222 dsc->cleanup = &cleanup_alu_imm;
5227 /* Copy/cleanup arithmetic/logic insns with register RHS. */
5230 cleanup_alu_reg (struct gdbarch *gdbarch,
5231 struct regcache *regs, arm_displaced_step_closure *dsc)
5236 rd_val = displaced_read_reg (regs, dsc, 0);
5238 for (i = 0; i < 3; i++)
5239 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5241 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5245 install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5246 arm_displaced_step_closure *dsc,
5247 unsigned int rd, unsigned int rn, unsigned int rm)
5249 ULONGEST rd_val, rn_val, rm_val;
5251 /* Instruction is of form:
5253 <op><cond> rd, [rn,] rm [, <shift>]
5257 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5258 r0, r1, r2 <- rd, rn, rm
5259 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
5260 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5263 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5264 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5265 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5266 rd_val = displaced_read_reg (regs, dsc, rd);
5267 rn_val = displaced_read_reg (regs, dsc, rn);
5268 rm_val = displaced_read_reg (regs, dsc, rm);
5269 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5270 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5271 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5274 dsc->cleanup = &cleanup_alu_reg;
5278 arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5279 arm_displaced_step_closure *dsc)
5281 unsigned int op = bits (insn, 21, 24);
5282 int is_mov = (op == 0xd);
5284 if (!insn_references_pc (insn, 0x000ff00ful))
5285 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5287 if (debug_displaced)
5288 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5289 is_mov ? "move" : "ALU", (unsigned long) insn);
5292 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5294 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5296 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5302 thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5303 struct regcache *regs,
5304 arm_displaced_step_closure *dsc)
5308 rm = bits (insn, 3, 6);
5309 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
5311 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
5312 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5314 if (debug_displaced)
5315 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5316 (unsigned short) insn);
5318 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
5320 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
5325 /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5328 cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
5329 struct regcache *regs,
5330 arm_displaced_step_closure *dsc)
5332 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5335 for (i = 0; i < 4; i++)
5336 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5338 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5342 install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5343 arm_displaced_step_closure *dsc,
5344 unsigned int rd, unsigned int rn, unsigned int rm,
5348 ULONGEST rd_val, rn_val, rm_val, rs_val;
5350 /* Instruction is of form:
5352 <op><cond> rd, [rn,] rm, <shift> rs
5356 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5357 r0, r1, r2, r3 <- rd, rn, rm, rs
5358 Insn: <op><cond> r0, r1, r2, <shift> r3
5360 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5364 for (i = 0; i < 4; i++)
5365 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5367 rd_val = displaced_read_reg (regs, dsc, rd);
5368 rn_val = displaced_read_reg (regs, dsc, rn);
5369 rm_val = displaced_read_reg (regs, dsc, rm);
5370 rs_val = displaced_read_reg (regs, dsc, rs);
5371 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5372 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5373 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5374 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5376 dsc->cleanup = &cleanup_alu_shifted_reg;
5380 arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5381 struct regcache *regs,
5382 arm_displaced_step_closure *dsc)
5384 unsigned int op = bits (insn, 21, 24);
5385 int is_mov = (op == 0xd);
5386 unsigned int rd, rn, rm, rs;
5388 if (!insn_references_pc (insn, 0x000fff0ful))
5389 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5391 if (debug_displaced)
5392 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5393 "%.8lx\n", is_mov ? "move" : "ALU",
5394 (unsigned long) insn);
5396 rn = bits (insn, 16, 19);
5397 rm = bits (insn, 0, 3);
5398 rs = bits (insn, 8, 11);
5399 rd = bits (insn, 12, 15);
5402 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5404 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5406 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
5411 /* Clean up load instructions. */
5414 cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
5415 arm_displaced_step_closure *dsc)
5417 ULONGEST rt_val, rt_val2 = 0, rn_val;
5419 rt_val = displaced_read_reg (regs, dsc, 0);
5420 if (dsc->u.ldst.xfersize == 8)
5421 rt_val2 = displaced_read_reg (regs, dsc, 1);
5422 rn_val = displaced_read_reg (regs, dsc, 2);
5424 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5425 if (dsc->u.ldst.xfersize > 4)
5426 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5427 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5428 if (!dsc->u.ldst.immed)
5429 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5431 /* Handle register writeback. */
5432 if (dsc->u.ldst.writeback)
5433 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5434 /* Put result in right place. */
5435 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5436 if (dsc->u.ldst.xfersize == 8)
5437 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5440 /* Clean up store instructions. */
5443 cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
5444 arm_displaced_step_closure *dsc)
5446 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
5448 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5449 if (dsc->u.ldst.xfersize > 4)
5450 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5451 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5452 if (!dsc->u.ldst.immed)
5453 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5454 if (!dsc->u.ldst.restore_r4)
5455 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5458 if (dsc->u.ldst.writeback)
5459 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5462 /* Copy "extra" load/store instructions. These are halfword/doubleword
5463 transfers, which have a different encoding to byte/word transfers. */
5466 arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
5467 struct regcache *regs, arm_displaced_step_closure *dsc)
5469 unsigned int op1 = bits (insn, 20, 24);
5470 unsigned int op2 = bits (insn, 5, 6);
5471 unsigned int rt = bits (insn, 12, 15);
5472 unsigned int rn = bits (insn, 16, 19);
5473 unsigned int rm = bits (insn, 0, 3);
5474 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5475 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5476 int immed = (op1 & 0x4) != 0;
5478 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5480 if (!insn_references_pc (insn, 0x000ff00ful))
5481 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5483 if (debug_displaced)
5484 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5485 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
5486 (unsigned long) insn);
5488 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5491 internal_error (__FILE__, __LINE__,
5492 _("copy_extra_ld_st: instruction decode error"));
5494 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5495 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5496 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5498 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5500 rt_val = displaced_read_reg (regs, dsc, rt);
5501 if (bytesize[opcode] == 8)
5502 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5503 rn_val = displaced_read_reg (regs, dsc, rn);
5505 rm_val = displaced_read_reg (regs, dsc, rm);
5507 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5508 if (bytesize[opcode] == 8)
5509 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5510 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5512 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5515 dsc->u.ldst.xfersize = bytesize[opcode];
5516 dsc->u.ldst.rn = rn;
5517 dsc->u.ldst.immed = immed;
5518 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5519 dsc->u.ldst.restore_r4 = 0;
5522 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5524 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5525 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5527 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5529 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5530 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5532 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5537 /* Copy byte/half word/word loads and stores. */
5540 install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5541 arm_displaced_step_closure *dsc, int load,
5542 int immed, int writeback, int size, int usermode,
5543 int rt, int rm, int rn)
5545 ULONGEST rt_val, rn_val, rm_val = 0;
5547 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5548 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5550 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5552 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
5554 rt_val = displaced_read_reg (regs, dsc, rt);
5555 rn_val = displaced_read_reg (regs, dsc, rn);
5557 rm_val = displaced_read_reg (regs, dsc, rm);
5559 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5560 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5562 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5564 dsc->u.ldst.xfersize = size;
5565 dsc->u.ldst.rn = rn;
5566 dsc->u.ldst.immed = immed;
5567 dsc->u.ldst.writeback = writeback;
5569 /* To write PC we can do:
5571 Before this sequence of instructions:
5572 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5573 r2 is the Rn value got from dispalced_read_reg.
5575 Insn1: push {pc} Write address of STR instruction + offset on stack
5576 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5577 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5578 = addr(Insn1) + offset - addr(Insn3) - 8
5580 Insn4: add r4, r4, #8 r4 = offset - 8
5581 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5583 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
5585 Otherwise we don't know what value to write for PC, since the offset is
5586 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5587 of this can be found in Section "Saving from r15" in
5588 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
5590 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5595 thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5596 uint16_t insn2, struct regcache *regs,
5597 arm_displaced_step_closure *dsc, int size)
5599 unsigned int u_bit = bit (insn1, 7);
5600 unsigned int rt = bits (insn2, 12, 15);
5601 int imm12 = bits (insn2, 0, 11);
5604 if (debug_displaced)
5605 fprintf_unfiltered (gdb_stdlog,
5606 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5607 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5613 /* Rewrite instruction LDR Rt imm12 into:
5615 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5619 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5622 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5623 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5624 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5626 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5628 pc_val = pc_val & 0xfffffffc;
5630 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5631 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5635 dsc->u.ldst.xfersize = size;
5636 dsc->u.ldst.immed = 0;
5637 dsc->u.ldst.writeback = 0;
5638 dsc->u.ldst.restore_r4 = 0;
5640 /* LDR R0, R2, R3 */
5641 dsc->modinsn[0] = 0xf852;
5642 dsc->modinsn[1] = 0x3;
5645 dsc->cleanup = &cleanup_load;
5651 thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5652 uint16_t insn2, struct regcache *regs,
5653 arm_displaced_step_closure *dsc,
5654 int writeback, int immed)
5656 unsigned int rt = bits (insn2, 12, 15);
5657 unsigned int rn = bits (insn1, 0, 3);
5658 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5659 /* In LDR (register), there is also a register Rm, which is not allowed to
5660 be PC, so we don't have to check it. */
5662 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5663 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5666 if (debug_displaced)
5667 fprintf_unfiltered (gdb_stdlog,
5668 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5669 rt, rn, insn1, insn2);
5671 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5674 dsc->u.ldst.restore_r4 = 0;
5677 /* ldr[b]<cond> rt, [rn, #imm], etc.
5679 ldr[b]<cond> r0, [r2, #imm]. */
5681 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5682 dsc->modinsn[1] = insn2 & 0x0fff;
5685 /* ldr[b]<cond> rt, [rn, rm], etc.
5687 ldr[b]<cond> r0, [r2, r3]. */
5689 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5690 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5700 arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5701 struct regcache *regs,
5702 arm_displaced_step_closure *dsc,
5703 int load, int size, int usermode)
5705 int immed = !bit (insn, 25);
5706 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5707 unsigned int rt = bits (insn, 12, 15);
5708 unsigned int rn = bits (insn, 16, 19);
5709 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5711 if (!insn_references_pc (insn, 0x000ff00ful))
5712 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5714 if (debug_displaced)
5715 fprintf_unfiltered (gdb_stdlog,
5716 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
5717 load ? (size == 1 ? "ldrb" : "ldr")
5718 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
5720 (unsigned long) insn);
5722 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5723 usermode, rt, rm, rn);
5725 if (load || rt != ARM_PC_REGNUM)
5727 dsc->u.ldst.restore_r4 = 0;
5730 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5732 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5733 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5735 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5737 {ldr,str}[b]<cond> r0, [r2, r3]. */
5738 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5742 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5743 dsc->u.ldst.restore_r4 = 1;
5744 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5745 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
5746 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5747 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5748 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5752 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5754 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5759 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5764 /* Cleanup LDM instructions with fully-populated register list. This is an
5765 unfortunate corner case: it's impossible to implement correctly by modifying
5766 the instruction. The issue is as follows: we have an instruction,
5770 which we must rewrite to avoid loading PC. A possible solution would be to
5771 do the load in two halves, something like (with suitable cleanup
5775 ldm[id][ab] r8!, {r0-r7}
5777 ldm[id][ab] r8, {r7-r14}
5780 but at present there's no suitable place for <temp>, since the scratch space
5781 is overwritten before the cleanup routine is called. For now, we simply
5782 emulate the instruction. */
5785 cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5786 arm_displaced_step_closure *dsc)
5788 int inc = dsc->u.block.increment;
5789 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5790 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5791 uint32_t regmask = dsc->u.block.regmask;
5792 int regno = inc ? 0 : 15;
5793 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5794 int exception_return = dsc->u.block.load && dsc->u.block.user
5795 && (regmask & 0x8000) != 0;
5796 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5797 int do_transfer = condition_true (dsc->u.block.cond, status);
5798 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5803 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5804 sensible we can do here. Complain loudly. */
5805 if (exception_return)
5806 error (_("Cannot single-step exception return"));
5808 /* We don't handle any stores here for now. */
5809 gdb_assert (dsc->u.block.load != 0);
5811 if (debug_displaced)
5812 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5813 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5814 dsc->u.block.increment ? "inc" : "dec",
5815 dsc->u.block.before ? "before" : "after");
5822 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
5825 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5828 xfer_addr += bump_before;
5830 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5831 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5833 xfer_addr += bump_after;
5835 regmask &= ~(1 << regno);
5838 if (dsc->u.block.writeback)
5839 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5843 /* Clean up an STM which included the PC in the register list. */
5846 cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5847 arm_displaced_step_closure *dsc)
5849 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5850 int store_executed = condition_true (dsc->u.block.cond, status);
5851 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5852 CORE_ADDR stm_insn_addr;
5855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5857 /* If condition code fails, there's nothing else to do. */
5858 if (!store_executed)
5861 if (dsc->u.block.increment)
5863 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5865 if (dsc->u.block.before)
5870 pc_stored_at = dsc->u.block.xfer_addr;
5872 if (dsc->u.block.before)
5876 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5877 stm_insn_addr = dsc->scratch_base;
5878 offset = pc_val - stm_insn_addr;
5880 if (debug_displaced)
5881 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5882 "STM instruction\n", offset);
5884 /* Rewrite the stored PC to the proper value for the non-displaced original
5886 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5887 dsc->insn_addr + offset);
5890 /* Clean up an LDM which includes the PC in the register list. We clumped all
5891 the registers in the transferred list into a contiguous range r0...rX (to
5892 avoid loading PC directly and losing control of the debugged program), so we
5893 must undo that here. */
5896 cleanup_block_load_pc (struct gdbarch *gdbarch,
5897 struct regcache *regs,
5898 arm_displaced_step_closure *dsc)
5900 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5901 int load_executed = condition_true (dsc->u.block.cond, status);
5902 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
5903 unsigned int regs_loaded = bitcount (mask);
5904 unsigned int num_to_shuffle = regs_loaded, clobbered;
5906 /* The method employed here will fail if the register list is fully populated
5907 (we need to avoid loading PC directly). */
5908 gdb_assert (num_to_shuffle < 16);
5913 clobbered = (1 << num_to_shuffle) - 1;
5915 while (num_to_shuffle > 0)
5917 if ((mask & (1 << write_reg)) != 0)
5919 unsigned int read_reg = num_to_shuffle - 1;
5921 if (read_reg != write_reg)
5923 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
5924 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
5925 if (debug_displaced)
5926 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
5927 "loaded register r%d to r%d\n"), read_reg,
5930 else if (debug_displaced)
5931 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
5932 "r%d already in the right place\n"),
5935 clobbered &= ~(1 << write_reg);
5943 /* Restore any registers we scribbled over. */
5944 for (write_reg = 0; clobbered != 0; write_reg++)
5946 if ((clobbered & (1 << write_reg)) != 0)
5948 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
5950 if (debug_displaced)
5951 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
5952 "clobbered register r%d\n"), write_reg);
5953 clobbered &= ~(1 << write_reg);
5957 /* Perform register writeback manually. */
5958 if (dsc->u.block.writeback)
5960 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
5962 if (dsc->u.block.increment)
5963 new_rn_val += regs_loaded * 4;
5965 new_rn_val -= regs_loaded * 4;
5967 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
5972 /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
5973 in user-level code (in particular exception return, ldm rn, {...pc}^). */
5976 arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
5977 struct regcache *regs,
5978 arm_displaced_step_closure *dsc)
5980 int load = bit (insn, 20);
5981 int user = bit (insn, 22);
5982 int increment = bit (insn, 23);
5983 int before = bit (insn, 24);
5984 int writeback = bit (insn, 21);
5985 int rn = bits (insn, 16, 19);
5987 /* Block transfers which don't mention PC can be run directly
5989 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
5990 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
5992 if (rn == ARM_PC_REGNUM)
5994 warning (_("displaced: Unpredictable LDM or STM with "
5995 "base register r15"));
5996 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
5999 if (debug_displaced)
6000 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6001 "%.8lx\n", (unsigned long) insn);
6003 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6004 dsc->u.block.rn = rn;
6006 dsc->u.block.load = load;
6007 dsc->u.block.user = user;
6008 dsc->u.block.increment = increment;
6009 dsc->u.block.before = before;
6010 dsc->u.block.writeback = writeback;
6011 dsc->u.block.cond = bits (insn, 28, 31);
6013 dsc->u.block.regmask = insn & 0xffff;
6017 if ((insn & 0xffff) == 0xffff)
6019 /* LDM with a fully-populated register list. This case is
6020 particularly tricky. Implement for now by fully emulating the
6021 instruction (which might not behave perfectly in all cases, but
6022 these instructions should be rare enough for that not to matter
6024 dsc->modinsn[0] = ARM_NOP;
6026 dsc->cleanup = &cleanup_block_load_all;
6030 /* LDM of a list of registers which includes PC. Implement by
6031 rewriting the list of registers to be transferred into a
6032 contiguous chunk r0...rX before doing the transfer, then shuffling
6033 registers into the correct places in the cleanup routine. */
6034 unsigned int regmask = insn & 0xffff;
6035 unsigned int num_in_list = bitcount (regmask), new_regmask;
6038 for (i = 0; i < num_in_list; i++)
6039 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6041 /* Writeback makes things complicated. We need to avoid clobbering
6042 the base register with one of the registers in our modified
6043 register list, but just using a different register can't work in
6046 ldm r14!, {r0-r13,pc}
6048 which would need to be rewritten as:
6052 but that can't work, because there's no free register for N.
6054 Solve this by turning off the writeback bit, and emulating
6055 writeback manually in the cleanup routine. */
6060 new_regmask = (1 << num_in_list) - 1;
6062 if (debug_displaced)
6063 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6064 "{..., pc}: original reg list %.4x, modified "
6065 "list %.4x\n"), rn, writeback ? "!" : "",
6066 (int) insn & 0xffff, new_regmask);
6068 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6070 dsc->cleanup = &cleanup_block_load_pc;
6075 /* STM of a list of registers which includes PC. Run the instruction
6076 as-is, but out of line: this will store the wrong value for the PC,
6077 so we must manually fix up the memory in the cleanup routine.
6078 Doing things this way has the advantage that we can auto-detect
6079 the offset of the PC write (which is architecture-dependent) in
6080 the cleanup routine. */
6081 dsc->modinsn[0] = insn;
6083 dsc->cleanup = &cleanup_block_store_pc;
6090 thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6091 struct regcache *regs,
6092 arm_displaced_step_closure *dsc)
6094 int rn = bits (insn1, 0, 3);
6095 int load = bit (insn1, 4);
6096 int writeback = bit (insn1, 5);
6098 /* Block transfers which don't mention PC can be run directly
6100 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6101 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
6103 if (rn == ARM_PC_REGNUM)
6105 warning (_("displaced: Unpredictable LDM or STM with "
6106 "base register r15"));
6107 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6108 "unpredictable ldm/stm", dsc);
6111 if (debug_displaced)
6112 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6113 "%.4x%.4x\n", insn1, insn2);
6115 /* Clear bit 13, since it should be always zero. */
6116 dsc->u.block.regmask = (insn2 & 0xdfff);
6117 dsc->u.block.rn = rn;
6119 dsc->u.block.load = load;
6120 dsc->u.block.user = 0;
6121 dsc->u.block.increment = bit (insn1, 7);
6122 dsc->u.block.before = bit (insn1, 8);
6123 dsc->u.block.writeback = writeback;
6124 dsc->u.block.cond = INST_AL;
6125 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6129 if (dsc->u.block.regmask == 0xffff)
6131 /* This branch is impossible to happen. */
6136 unsigned int regmask = dsc->u.block.regmask;
6137 unsigned int num_in_list = bitcount (regmask), new_regmask;
6140 for (i = 0; i < num_in_list; i++)
6141 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6146 new_regmask = (1 << num_in_list) - 1;
6148 if (debug_displaced)
6149 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6150 "{..., pc}: original reg list %.4x, modified "
6151 "list %.4x\n"), rn, writeback ? "!" : "",
6152 (int) dsc->u.block.regmask, new_regmask);
6154 dsc->modinsn[0] = insn1;
6155 dsc->modinsn[1] = (new_regmask & 0xffff);
6158 dsc->cleanup = &cleanup_block_load_pc;
6163 dsc->modinsn[0] = insn1;
6164 dsc->modinsn[1] = insn2;
6166 dsc->cleanup = &cleanup_block_store_pc;
6171 /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6172 This is used to avoid a dependency on BFD's bfd_endian enum. */
6175 arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6178 return read_memory_unsigned_integer (memaddr, len,
6179 (enum bfd_endian) byte_order);
6182 /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6185 arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6188 return gdbarch_addr_bits_remove (self->regcache->arch (), val);
6191 /* Wrapper over syscall_next_pc for use in get_next_pcs. */
6194 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
6199 /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6202 arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6204 return arm_is_thumb (self->regcache);
6207 /* single_step() is called just before we want to resume the inferior,
6208 if we want to single-step it but there is no hardware or kernel
6209 single-step support. We find the target of the coming instructions
6210 and breakpoint them. */
6212 std::vector<CORE_ADDR>
6213 arm_software_single_step (struct regcache *regcache)
6215 struct gdbarch *gdbarch = regcache->arch ();
6216 struct arm_get_next_pcs next_pcs_ctx;
6218 arm_get_next_pcs_ctor (&next_pcs_ctx,
6219 &arm_get_next_pcs_ops,
6220 gdbarch_byte_order (gdbarch),
6221 gdbarch_byte_order_for_code (gdbarch),
6225 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
6227 for (CORE_ADDR &pc_ref : next_pcs)
6228 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
6233 /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6234 for Linux, where some SVC instructions must be treated specially. */
6237 cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6238 arm_displaced_step_closure *dsc)
6240 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6242 if (debug_displaced)
6243 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6244 "%.8lx\n", (unsigned long) resume_addr);
6246 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6250 /* Common copy routine for svc instruciton. */
6253 install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6254 arm_displaced_step_closure *dsc)
6256 /* Preparation: none.
6257 Insn: unmodified svc.
6258 Cleanup: pc <- insn_addr + insn_size. */
6260 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6262 dsc->wrote_to_pc = 1;
6264 /* Allow OS-specific code to override SVC handling. */
6265 if (dsc->u.svc.copy_svc_os)
6266 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6269 dsc->cleanup = &cleanup_svc;
6275 arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6276 struct regcache *regs, arm_displaced_step_closure *dsc)
6279 if (debug_displaced)
6280 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6281 (unsigned long) insn);
6283 dsc->modinsn[0] = insn;
6285 return install_svc (gdbarch, regs, dsc);
6289 thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6290 struct regcache *regs, arm_displaced_step_closure *dsc)
6293 if (debug_displaced)
6294 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6297 dsc->modinsn[0] = insn;
6299 return install_svc (gdbarch, regs, dsc);
6302 /* Copy undefined instructions. */
6305 arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6306 arm_displaced_step_closure *dsc)
6308 if (debug_displaced)
6309 fprintf_unfiltered (gdb_stdlog,
6310 "displaced: copying undefined insn %.8lx\n",
6311 (unsigned long) insn);
6313 dsc->modinsn[0] = insn;
6319 thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6320 arm_displaced_step_closure *dsc)
6323 if (debug_displaced)
6324 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6325 "%.4x %.4x\n", (unsigned short) insn1,
6326 (unsigned short) insn2);
6328 dsc->modinsn[0] = insn1;
6329 dsc->modinsn[1] = insn2;
6335 /* Copy unpredictable instructions. */
6338 arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6339 arm_displaced_step_closure *dsc)
6341 if (debug_displaced)
6342 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6343 "%.8lx\n", (unsigned long) insn);
6345 dsc->modinsn[0] = insn;
6350 /* The decode_* functions are instruction decoding helpers. They mostly follow
6351 the presentation in the ARM ARM. */
6354 arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6355 struct regcache *regs,
6356 arm_displaced_step_closure *dsc)
6358 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6359 unsigned int rn = bits (insn, 16, 19);
6361 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0x1) == 0x0)
6362 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
6363 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0x1) == 0x1)
6364 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
6365 else if ((op1 & 0x60) == 0x20)
6366 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6367 else if ((op1 & 0x71) == 0x40)
6368 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6370 else if ((op1 & 0x77) == 0x41)
6371 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6372 else if ((op1 & 0x77) == 0x45)
6373 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6374 else if ((op1 & 0x77) == 0x51)
6377 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6379 return arm_copy_unpred (gdbarch, insn, dsc);
6381 else if ((op1 & 0x77) == 0x55)
6382 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6383 else if (op1 == 0x57)
6386 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6387 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6388 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6389 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6390 default: return arm_copy_unpred (gdbarch, insn, dsc);
6392 else if ((op1 & 0x63) == 0x43)
6393 return arm_copy_unpred (gdbarch, insn, dsc);
6394 else if ((op2 & 0x1) == 0x0)
6395 switch (op1 & ~0x80)
6398 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6400 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6401 case 0x71: case 0x75:
6403 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
6404 case 0x63: case 0x67: case 0x73: case 0x77:
6405 return arm_copy_unpred (gdbarch, insn, dsc);
6407 return arm_copy_undef (gdbarch, insn, dsc);
6410 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6414 arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6415 struct regcache *regs,
6416 arm_displaced_step_closure *dsc)
6418 if (bit (insn, 27) == 0)
6419 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6420 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6421 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6424 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
6427 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
6429 case 0x4: case 0x5: case 0x6: case 0x7:
6430 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6433 switch ((insn & 0xe00000) >> 21)
6435 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6437 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6440 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6443 return arm_copy_undef (gdbarch, insn, dsc);
6448 int rn_f = (bits (insn, 16, 19) == 0xf);
6449 switch ((insn & 0xe00000) >> 21)
6452 /* ldc/ldc2 imm (undefined for rn == pc). */
6453 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6454 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6457 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6459 case 0x4: case 0x5: case 0x6: case 0x7:
6460 /* ldc/ldc2 lit (undefined for rn != pc). */
6461 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6462 : arm_copy_undef (gdbarch, insn, dsc);
6465 return arm_copy_undef (gdbarch, insn, dsc);
6470 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6473 if (bits (insn, 16, 19) == 0xf)
6475 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6477 return arm_copy_undef (gdbarch, insn, dsc);
6481 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6483 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6487 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6489 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6492 return arm_copy_undef (gdbarch, insn, dsc);
6496 /* Decode miscellaneous instructions in dp/misc encoding space. */
6499 arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6500 struct regcache *regs,
6501 arm_displaced_step_closure *dsc)
6503 unsigned int op2 = bits (insn, 4, 6);
6504 unsigned int op = bits (insn, 21, 22);
6509 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6512 if (op == 0x1) /* bx. */
6513 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6515 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
6517 return arm_copy_undef (gdbarch, insn, dsc);
6521 /* Not really supported. */
6522 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
6524 return arm_copy_undef (gdbarch, insn, dsc);
6528 return arm_copy_bx_blx_reg (gdbarch, insn,
6529 regs, dsc); /* blx register. */
6531 return arm_copy_undef (gdbarch, insn, dsc);
6534 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6538 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
6540 /* Not really supported. */
6541 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
6545 return arm_copy_undef (gdbarch, insn, dsc);
6550 arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6551 struct regcache *regs,
6552 arm_displaced_step_closure *dsc)
6555 switch (bits (insn, 20, 24))
6558 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
6561 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
6563 case 0x12: case 0x16:
6564 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
6567 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
6571 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6573 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6574 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
6575 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6576 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6577 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6578 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
6579 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6580 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6581 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6582 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6583 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6584 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
6585 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6586 /* 2nd arg means "unprivileged". */
6587 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6591 /* Should be unreachable. */
6596 arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6597 struct regcache *regs,
6598 arm_displaced_step_closure *dsc)
6600 int a = bit (insn, 25), b = bit (insn, 4);
6601 uint32_t op1 = bits (insn, 20, 24);
6603 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6604 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6605 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
6606 else if ((!a && (op1 & 0x17) == 0x02)
6607 || (a && (op1 & 0x17) == 0x02 && !b))
6608 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
6609 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6610 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6611 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
6612 else if ((!a && (op1 & 0x17) == 0x03)
6613 || (a && (op1 & 0x17) == 0x03 && !b))
6614 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
6615 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6616 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6617 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6618 else if ((!a && (op1 & 0x17) == 0x06)
6619 || (a && (op1 & 0x17) == 0x06 && !b))
6620 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6621 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6622 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6623 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6624 else if ((!a && (op1 & 0x17) == 0x07)
6625 || (a && (op1 & 0x17) == 0x07 && !b))
6626 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6628 /* Should be unreachable. */
6633 arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6634 arm_displaced_step_closure *dsc)
6636 switch (bits (insn, 20, 24))
6638 case 0x00: case 0x01: case 0x02: case 0x03:
6639 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6641 case 0x04: case 0x05: case 0x06: case 0x07:
6642 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6644 case 0x08: case 0x09: case 0x0a: case 0x0b:
6645 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6646 return arm_copy_unmodified (gdbarch, insn,
6647 "decode/pack/unpack/saturate/reverse", dsc);
6650 if (bits (insn, 5, 7) == 0) /* op2. */
6652 if (bits (insn, 12, 15) == 0xf)
6653 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
6655 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
6658 return arm_copy_undef (gdbarch, insn, dsc);
6660 case 0x1a: case 0x1b:
6661 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6662 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
6664 return arm_copy_undef (gdbarch, insn, dsc);
6666 case 0x1c: case 0x1d:
6667 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6669 if (bits (insn, 0, 3) == 0xf)
6670 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
6672 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
6675 return arm_copy_undef (gdbarch, insn, dsc);
6677 case 0x1e: case 0x1f:
6678 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6679 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
6681 return arm_copy_undef (gdbarch, insn, dsc);
6684 /* Should be unreachable. */
6689 arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
6690 struct regcache *regs,
6691 arm_displaced_step_closure *dsc)
6694 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6696 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
6700 arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6701 struct regcache *regs,
6702 arm_displaced_step_closure *dsc)
6704 unsigned int opcode = bits (insn, 20, 24);
6708 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6709 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6711 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6712 case 0x12: case 0x16:
6713 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6715 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6716 case 0x13: case 0x17:
6717 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6719 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6720 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6721 /* Note: no writeback for these instructions. Bit 25 will always be
6722 zero though (via caller), so the following works OK. */
6723 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6726 /* Should be unreachable. */
6730 /* Decode shifted register instructions. */
6733 thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6734 uint16_t insn2, struct regcache *regs,
6735 arm_displaced_step_closure *dsc)
6737 /* PC is only allowed to be used in instruction MOV. */
6739 unsigned int op = bits (insn1, 5, 8);
6740 unsigned int rn = bits (insn1, 0, 3);
6742 if (op == 0x2 && rn == 0xf) /* MOV */
6743 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6745 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6746 "dp (shift reg)", dsc);
6750 /* Decode extension register load/store. Exactly the same as
6751 arm_decode_ext_reg_ld_st. */
6754 thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6755 uint16_t insn2, struct regcache *regs,
6756 arm_displaced_step_closure *dsc)
6758 unsigned int opcode = bits (insn1, 4, 8);
6762 case 0x04: case 0x05:
6763 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6764 "vfp/neon vmov", dsc);
6766 case 0x08: case 0x0c: /* 01x00 */
6767 case 0x0a: case 0x0e: /* 01x10 */
6768 case 0x12: case 0x16: /* 10x10 */
6769 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6770 "vfp/neon vstm/vpush", dsc);
6772 case 0x09: case 0x0d: /* 01x01 */
6773 case 0x0b: case 0x0f: /* 01x11 */
6774 case 0x13: case 0x17: /* 10x11 */
6775 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6776 "vfp/neon vldm/vpop", dsc);
6778 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6779 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6781 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6782 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6785 /* Should be unreachable. */
6790 arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
6791 struct regcache *regs, arm_displaced_step_closure *dsc)
6793 unsigned int op1 = bits (insn, 20, 25);
6794 int op = bit (insn, 4);
6795 unsigned int coproc = bits (insn, 8, 11);
6797 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6798 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6799 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6800 && (coproc & 0xe) != 0xa)
6802 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6803 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6804 && (coproc & 0xe) != 0xa)
6805 /* ldc/ldc2 imm/lit. */
6806 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6807 else if ((op1 & 0x3e) == 0x00)
6808 return arm_copy_undef (gdbarch, insn, dsc);
6809 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6810 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6811 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6812 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6813 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6814 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6815 else if ((op1 & 0x30) == 0x20 && !op)
6817 if ((coproc & 0xe) == 0xa)
6818 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6820 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6822 else if ((op1 & 0x30) == 0x20 && op)
6823 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6824 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6825 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6826 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6827 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6828 else if ((op1 & 0x30) == 0x30)
6829 return arm_copy_svc (gdbarch, insn, regs, dsc);
6831 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6835 thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6836 uint16_t insn2, struct regcache *regs,
6837 arm_displaced_step_closure *dsc)
6839 unsigned int coproc = bits (insn2, 8, 11);
6840 unsigned int bit_5_8 = bits (insn1, 5, 8);
6841 unsigned int bit_9 = bit (insn1, 9);
6842 unsigned int bit_4 = bit (insn1, 4);
6847 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6848 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6850 else if (bit_5_8 == 0) /* UNDEFINED. */
6851 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6854 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6855 if ((coproc & 0xe) == 0xa)
6856 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6858 else /* coproc is not 101x. */
6860 if (bit_4 == 0) /* STC/STC2. */
6861 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6863 else /* LDC/LDC2 {literal, immeidate}. */
6864 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6870 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6876 install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6877 arm_displaced_step_closure *dsc, int rd)
6883 Preparation: Rd <- PC
6889 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6890 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
6894 thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
6895 arm_displaced_step_closure *dsc,
6896 int rd, unsigned int imm)
6899 /* Encoding T2: ADDS Rd, #imm */
6900 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
6902 install_pc_relative (gdbarch, regs, dsc, rd);
6908 thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
6909 struct regcache *regs,
6910 arm_displaced_step_closure *dsc)
6912 unsigned int rd = bits (insn, 8, 10);
6913 unsigned int imm8 = bits (insn, 0, 7);
6915 if (debug_displaced)
6916 fprintf_unfiltered (gdb_stdlog,
6917 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
6920 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
6924 thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
6925 uint16_t insn2, struct regcache *regs,
6926 arm_displaced_step_closure *dsc)
6928 unsigned int rd = bits (insn2, 8, 11);
6929 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
6930 extract raw immediate encoding rather than computing immediate. When
6931 generating ADD or SUB instruction, we can simply perform OR operation to
6932 set immediate into ADD. */
6933 unsigned int imm_3_8 = insn2 & 0x70ff;
6934 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
6936 if (debug_displaced)
6937 fprintf_unfiltered (gdb_stdlog,
6938 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
6939 rd, imm_i, imm_3_8, insn1, insn2);
6941 if (bit (insn1, 7)) /* Encoding T2 */
6943 /* Encoding T3: SUB Rd, Rd, #imm */
6944 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
6945 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
6947 else /* Encoding T3 */
6949 /* Encoding T3: ADD Rd, Rd, #imm */
6950 dsc->modinsn[0] = (0xf100 | rd | imm_i);
6951 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
6955 install_pc_relative (gdbarch, regs, dsc, rd);
6961 thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
6962 struct regcache *regs,
6963 arm_displaced_step_closure *dsc)
6965 unsigned int rt = bits (insn1, 8, 10);
6967 int imm8 = (bits (insn1, 0, 7) << 2);
6973 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
6975 Insn: LDR R0, [R2, R3];
6976 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
6978 if (debug_displaced)
6979 fprintf_unfiltered (gdb_stdlog,
6980 "displaced: copying thumb ldr r%d [pc #%d]\n"
6983 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6984 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
6985 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
6986 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6987 /* The assembler calculates the required value of the offset from the
6988 Align(PC,4) value of this instruction to the label. */
6989 pc = pc & 0xfffffffc;
6991 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
6992 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
6995 dsc->u.ldst.xfersize = 4;
6997 dsc->u.ldst.immed = 0;
6998 dsc->u.ldst.writeback = 0;
6999 dsc->u.ldst.restore_r4 = 0;
7001 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7003 dsc->cleanup = &cleanup_load;
7008 /* Copy Thumb cbnz/cbz insruction. */
7011 thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7012 struct regcache *regs,
7013 arm_displaced_step_closure *dsc)
7015 int non_zero = bit (insn1, 11);
7016 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7017 CORE_ADDR from = dsc->insn_addr;
7018 int rn = bits (insn1, 0, 2);
7019 int rn_val = displaced_read_reg (regs, dsc, rn);
7021 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7022 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7023 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7024 condition is false, let it be, cleanup_branch will do nothing. */
7025 if (dsc->u.branch.cond)
7027 dsc->u.branch.cond = INST_AL;
7028 dsc->u.branch.dest = from + 4 + imm5;
7031 dsc->u.branch.dest = from + 2;
7033 dsc->u.branch.link = 0;
7034 dsc->u.branch.exchange = 0;
7036 if (debug_displaced)
7037 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7038 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7039 rn, rn_val, insn1, dsc->u.branch.dest);
7041 dsc->modinsn[0] = THUMB_NOP;
7043 dsc->cleanup = &cleanup_branch;
7047 /* Copy Table Branch Byte/Halfword */
7049 thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7050 uint16_t insn2, struct regcache *regs,
7051 arm_displaced_step_closure *dsc)
7053 ULONGEST rn_val, rm_val;
7054 int is_tbh = bit (insn2, 4);
7055 CORE_ADDR halfwords = 0;
7056 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7058 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7059 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7065 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7066 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7072 target_read_memory (rn_val + rm_val, buf, 1);
7073 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7076 if (debug_displaced)
7077 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7078 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7079 (unsigned int) rn_val, (unsigned int) rm_val,
7080 (unsigned int) halfwords);
7082 dsc->u.branch.cond = INST_AL;
7083 dsc->u.branch.link = 0;
7084 dsc->u.branch.exchange = 0;
7085 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7087 dsc->cleanup = &cleanup_branch;
7093 cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7094 arm_displaced_step_closure *dsc)
7097 int val = displaced_read_reg (regs, dsc, 7);
7098 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7101 val = displaced_read_reg (regs, dsc, 8);
7102 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7105 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7110 thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
7111 struct regcache *regs,
7112 arm_displaced_step_closure *dsc)
7114 dsc->u.block.regmask = insn1 & 0x00ff;
7116 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7119 (1) register list is full, that is, r0-r7 are used.
7120 Prepare: tmp[0] <- r8
7122 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7123 MOV r8, r7; Move value of r7 to r8;
7124 POP {r7}; Store PC value into r7.
7126 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7128 (2) register list is not full, supposing there are N registers in
7129 register list (except PC, 0 <= N <= 7).
7130 Prepare: for each i, 0 - N, tmp[i] <- ri.
7132 POP {r0, r1, ...., rN};
7134 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7135 from tmp[] properly.
7137 if (debug_displaced)
7138 fprintf_unfiltered (gdb_stdlog,
7139 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7140 dsc->u.block.regmask, insn1);
7142 if (dsc->u.block.regmask == 0xff)
7144 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7146 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7147 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7148 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7151 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7155 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
7157 unsigned int new_regmask;
7159 for (i = 0; i < num_in_list + 1; i++)
7160 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7162 new_regmask = (1 << (num_in_list + 1)) - 1;
7164 if (debug_displaced)
7165 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7166 "{..., pc}: original reg list %.4x,"
7167 " modified list %.4x\n"),
7168 (int) dsc->u.block.regmask, new_regmask);
7170 dsc->u.block.regmask |= 0x8000;
7171 dsc->u.block.writeback = 0;
7172 dsc->u.block.cond = INST_AL;
7174 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7176 dsc->cleanup = &cleanup_block_load_pc;
7183 thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7184 struct regcache *regs,
7185 arm_displaced_step_closure *dsc)
7187 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7188 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7191 /* 16-bit thumb instructions. */
7192 switch (op_bit_12_15)
7194 /* Shift (imme), add, subtract, move and compare. */
7195 case 0: case 1: case 2: case 3:
7196 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7197 "shift/add/sub/mov/cmp",
7201 switch (op_bit_10_11)
7203 case 0: /* Data-processing */
7204 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7208 case 1: /* Special data instructions and branch and exchange. */
7210 unsigned short op = bits (insn1, 7, 9);
7211 if (op == 6 || op == 7) /* BX or BLX */
7212 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7213 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7214 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7216 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7220 default: /* LDR (literal) */
7221 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7224 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7225 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7228 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7229 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7230 else /* Generate SP-relative address */
7231 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7233 case 11: /* Misc 16-bit instructions */
7235 switch (bits (insn1, 8, 11))
7237 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7238 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7240 case 12: case 13: /* POP */
7241 if (bit (insn1, 8)) /* PC is in register list. */
7242 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7244 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7246 case 15: /* If-Then, and hints */
7247 if (bits (insn1, 0, 3))
7248 /* If-Then makes up to four following instructions conditional.
7249 IT instruction itself is not conditional, so handle it as a
7250 common unmodified instruction. */
7251 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7254 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7257 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7262 if (op_bit_10_11 < 2) /* Store multiple registers */
7263 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7264 else /* Load multiple registers */
7265 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7267 case 13: /* Conditional branch and supervisor call */
7268 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7269 err = thumb_copy_b (gdbarch, insn1, dsc);
7271 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7273 case 14: /* Unconditional branch */
7274 err = thumb_copy_b (gdbarch, insn1, dsc);
7281 internal_error (__FILE__, __LINE__,
7282 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7286 decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7287 uint16_t insn1, uint16_t insn2,
7288 struct regcache *regs,
7289 arm_displaced_step_closure *dsc)
7291 int rt = bits (insn2, 12, 15);
7292 int rn = bits (insn1, 0, 3);
7293 int op1 = bits (insn1, 7, 8);
7295 switch (bits (insn1, 5, 6))
7297 case 0: /* Load byte and memory hints */
7298 if (rt == 0xf) /* PLD/PLI */
7301 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7302 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7304 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7309 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7310 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7313 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7314 "ldrb{reg, immediate}/ldrbt",
7319 case 1: /* Load halfword and memory hints. */
7320 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7321 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7322 "pld/unalloc memhint", dsc);
7326 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7329 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7333 case 2: /* Load word */
7335 int insn2_bit_8_11 = bits (insn2, 8, 11);
7338 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7339 else if (op1 == 0x1) /* Encoding T3 */
7340 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7342 else /* op1 == 0x0 */
7344 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7345 /* LDR (immediate) */
7346 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7347 dsc, bit (insn2, 8), 1);
7348 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7349 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7352 /* LDR (register) */
7353 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7359 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7366 thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7367 uint16_t insn2, struct regcache *regs,
7368 arm_displaced_step_closure *dsc)
7371 unsigned short op = bit (insn2, 15);
7372 unsigned int op1 = bits (insn1, 11, 12);
7378 switch (bits (insn1, 9, 10))
7383 /* Load/store {dual, execlusive}, table branch. */
7384 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7385 && bits (insn2, 5, 7) == 0)
7386 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7389 /* PC is not allowed to use in load/store {dual, exclusive}
7391 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7392 "load/store dual/ex", dsc);
7394 else /* load/store multiple */
7396 switch (bits (insn1, 7, 8))
7398 case 0: case 3: /* SRS, RFE */
7399 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7402 case 1: case 2: /* LDM/STM/PUSH/POP */
7403 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7410 /* Data-processing (shift register). */
7411 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7414 default: /* Coprocessor instructions. */
7415 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7420 case 2: /* op1 = 2 */
7421 if (op) /* Branch and misc control. */
7423 if (bit (insn2, 14) /* BLX/BL */
7424 || bit (insn2, 12) /* Unconditional branch */
7425 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7426 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7428 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7433 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7435 int dp_op = bits (insn1, 4, 8);
7436 int rn = bits (insn1, 0, 3);
7437 if ((dp_op == 0 || dp_op == 0xa) && rn == 0xf)
7438 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7441 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7444 else /* Data processing (modified immeidate) */
7445 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7449 case 3: /* op1 = 3 */
7450 switch (bits (insn1, 9, 10))
7454 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7456 else /* NEON Load/Store and Store single data item */
7457 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7458 "neon elt/struct load/store",
7461 case 1: /* op1 = 3, bits (9, 10) == 1 */
7462 switch (bits (insn1, 7, 8))
7464 case 0: case 1: /* Data processing (register) */
7465 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7468 case 2: /* Multiply and absolute difference */
7469 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7470 "mul/mua/diff", dsc);
7472 case 3: /* Long multiply and divide */
7473 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7478 default: /* Coprocessor instructions */
7479 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7488 internal_error (__FILE__, __LINE__,
7489 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7494 thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7495 struct regcache *regs,
7496 arm_displaced_step_closure *dsc)
7498 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7500 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7502 if (debug_displaced)
7503 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7504 "at %.8lx\n", insn1, (unsigned long) from);
7507 dsc->insn_size = thumb_insn_size (insn1);
7508 if (thumb_insn_size (insn1) == 4)
7511 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7512 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7515 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
7519 arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7520 CORE_ADDR to, struct regcache *regs,
7521 arm_displaced_step_closure *dsc)
7524 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7527 /* Most displaced instructions use a 1-instruction scratch space, so set this
7528 here and override below if/when necessary. */
7530 dsc->insn_addr = from;
7531 dsc->scratch_base = to;
7532 dsc->cleanup = NULL;
7533 dsc->wrote_to_pc = 0;
7535 if (!displaced_in_arm_mode (regs))
7536 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
7540 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7541 if (debug_displaced)
7542 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7543 "at %.8lx\n", (unsigned long) insn,
7544 (unsigned long) from);
7546 if ((insn & 0xf0000000) == 0xf0000000)
7547 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
7548 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7550 case 0x0: case 0x1: case 0x2: case 0x3:
7551 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
7554 case 0x4: case 0x5: case 0x6:
7555 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
7559 err = arm_decode_media (gdbarch, insn, dsc);
7562 case 0x8: case 0x9: case 0xa: case 0xb:
7563 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
7566 case 0xc: case 0xd: case 0xe: case 0xf:
7567 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
7572 internal_error (__FILE__, __LINE__,
7573 _("arm_process_displaced_insn: Instruction decode error"));
7576 /* Actually set up the scratch space for a displaced instruction. */
7579 arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7580 CORE_ADDR to, arm_displaced_step_closure *dsc)
7582 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7583 unsigned int i, len, offset;
7584 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7585 int size = dsc->is_thumb? 2 : 4;
7586 const gdb_byte *bkp_insn;
7589 /* Poke modified instruction(s). */
7590 for (i = 0; i < dsc->numinsns; i++)
7592 if (debug_displaced)
7594 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7596 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7599 fprintf_unfiltered (gdb_stdlog, "%.4x",
7600 (unsigned short)dsc->modinsn[i]);
7602 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7603 (unsigned long) to + offset);
7606 write_memory_unsigned_integer (to + offset, size,
7607 byte_order_for_code,
7612 /* Choose the correct breakpoint instruction. */
7615 bkp_insn = tdep->thumb_breakpoint;
7616 len = tdep->thumb_breakpoint_size;
7620 bkp_insn = tdep->arm_breakpoint;
7621 len = tdep->arm_breakpoint_size;
7624 /* Put breakpoint afterwards. */
7625 write_memory (to + offset, bkp_insn, len);
7627 if (debug_displaced)
7628 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7629 paddress (gdbarch, from), paddress (gdbarch, to));
7632 /* Entry point for cleaning things up after a displaced instruction has been
7636 arm_displaced_step_fixup (struct gdbarch *gdbarch,
7637 struct displaced_step_closure *dsc_,
7638 CORE_ADDR from, CORE_ADDR to,
7639 struct regcache *regs)
7641 arm_displaced_step_closure *dsc = (arm_displaced_step_closure *) dsc_;
7644 dsc->cleanup (gdbarch, regs, dsc);
7646 if (!dsc->wrote_to_pc)
7647 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7648 dsc->insn_addr + dsc->insn_size);
7652 #include "bfd-in2.h"
7653 #include "libcoff.h"
7656 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7658 gdb_disassembler *di
7659 = static_cast<gdb_disassembler *>(info->application_data);
7660 struct gdbarch *gdbarch = di->arch ();
7662 if (arm_pc_is_thumb (gdbarch, memaddr))
7664 static asymbol *asym;
7665 static combined_entry_type ce;
7666 static struct coff_symbol_struct csym;
7667 static struct bfd fake_bfd;
7668 static bfd_target fake_target;
7670 if (csym.native == NULL)
7672 /* Create a fake symbol vector containing a Thumb symbol.
7673 This is solely so that the code in print_insn_little_arm()
7674 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7675 the presence of a Thumb symbol and switch to decoding
7676 Thumb instructions. */
7678 fake_target.flavour = bfd_target_coff_flavour;
7679 fake_bfd.xvec = &fake_target;
7680 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7682 csym.symbol.the_bfd = &fake_bfd;
7683 csym.symbol.name = "fake";
7684 asym = (asymbol *) & csym;
7687 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7688 info->symbols = &asym;
7691 info->symbols = NULL;
7693 /* GDB is able to get bfd_mach from the exe_bfd, info->mach is
7694 accurate, so mark USER_SPECIFIED_MACHINE_TYPE bit. Otherwise,
7695 opcodes/arm-dis.c:print_insn reset info->mach, and it will trigger
7696 the assert on the mismatch of info->mach and bfd_get_mach (exec_bfd)
7697 in default_print_insn. */
7698 if (exec_bfd != NULL)
7699 info->flags |= USER_SPECIFIED_MACHINE_TYPE;
7701 return default_print_insn (memaddr, info);
7704 /* The following define instruction sequences that will cause ARM
7705 cpu's to take an undefined instruction trap. These are used to
7706 signal a breakpoint to GDB.
7708 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7709 modes. A different instruction is required for each mode. The ARM
7710 cpu's can also be big or little endian. Thus four different
7711 instructions are needed to support all cases.
7713 Note: ARMv4 defines several new instructions that will take the
7714 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7715 not in fact add the new instructions. The new undefined
7716 instructions in ARMv4 are all instructions that had no defined
7717 behaviour in earlier chips. There is no guarantee that they will
7718 raise an exception, but may be treated as NOP's. In practice, it
7719 may only safe to rely on instructions matching:
7721 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7722 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7723 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7725 Even this may only true if the condition predicate is true. The
7726 following use a condition predicate of ALWAYS so it is always TRUE.
7728 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7729 and NetBSD all use a software interrupt rather than an undefined
7730 instruction to force a trap. This can be handled by by the
7731 abi-specific code during establishment of the gdbarch vector. */
7733 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7734 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7735 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7736 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7738 static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7739 static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7740 static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7741 static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7743 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7746 arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7748 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7749 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7751 if (arm_pc_is_thumb (gdbarch, *pcptr))
7753 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
7755 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7756 check whether we are replacing a 32-bit instruction. */
7757 if (tdep->thumb2_breakpoint != NULL)
7761 if (target_read_memory (*pcptr, buf, 2) == 0)
7763 unsigned short inst1;
7765 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7766 if (thumb_insn_size (inst1) == 4)
7767 return ARM_BP_KIND_THUMB2;
7771 return ARM_BP_KIND_THUMB;
7774 return ARM_BP_KIND_ARM;
7778 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7780 static const gdb_byte *
7781 arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7787 case ARM_BP_KIND_ARM:
7788 *size = tdep->arm_breakpoint_size;
7789 return tdep->arm_breakpoint;
7790 case ARM_BP_KIND_THUMB:
7791 *size = tdep->thumb_breakpoint_size;
7792 return tdep->thumb_breakpoint;
7793 case ARM_BP_KIND_THUMB2:
7794 *size = tdep->thumb2_breakpoint_size;
7795 return tdep->thumb2_breakpoint;
7797 gdb_assert_not_reached ("unexpected arm breakpoint kind");
7801 /* Implement the breakpoint_kind_from_current_state gdbarch method. */
7804 arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
7805 struct regcache *regcache,
7810 /* Check the memory pointed by PC is readable. */
7811 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
7813 struct arm_get_next_pcs next_pcs_ctx;
7815 arm_get_next_pcs_ctor (&next_pcs_ctx,
7816 &arm_get_next_pcs_ops,
7817 gdbarch_byte_order (gdbarch),
7818 gdbarch_byte_order_for_code (gdbarch),
7822 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
7824 /* If MEMADDR is the next instruction of current pc, do the
7825 software single step computation, and get the thumb mode by
7826 the destination address. */
7827 for (CORE_ADDR pc : next_pcs)
7829 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
7831 if (IS_THUMB_ADDR (pc))
7833 *pcptr = MAKE_THUMB_ADDR (*pcptr);
7834 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7837 return ARM_BP_KIND_ARM;
7842 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7845 /* Extract from an array REGBUF containing the (raw) register state a
7846 function return value of type TYPE, and copy that, in virtual
7847 format, into VALBUF. */
7850 arm_extract_return_value (struct type *type, struct regcache *regs,
7853 struct gdbarch *gdbarch = regs->arch ();
7854 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7856 if (TYPE_CODE_FLT == TYPE_CODE (type))
7858 switch (gdbarch_tdep (gdbarch)->fp_model)
7862 /* The value is in register F0 in internal format. We need to
7863 extract the raw value and then convert it to the desired
7865 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7867 regs->cooked_read (ARM_F0_REGNUM, tmpbuf);
7868 target_float_convert (tmpbuf, arm_ext_type (gdbarch),
7873 case ARM_FLOAT_SOFT_FPA:
7874 case ARM_FLOAT_SOFT_VFP:
7875 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7876 not using the VFP ABI code. */
7878 regs->cooked_read (ARM_A1_REGNUM, valbuf);
7879 if (TYPE_LENGTH (type) > 4)
7880 regs->cooked_read (ARM_A1_REGNUM + 1, valbuf + INT_REGISTER_SIZE);
7884 internal_error (__FILE__, __LINE__,
7885 _("arm_extract_return_value: "
7886 "Floating point model not supported"));
7890 else if (TYPE_CODE (type) == TYPE_CODE_INT
7891 || TYPE_CODE (type) == TYPE_CODE_CHAR
7892 || TYPE_CODE (type) == TYPE_CODE_BOOL
7893 || TYPE_CODE (type) == TYPE_CODE_PTR
7894 || TYPE_IS_REFERENCE (type)
7895 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7897 /* If the type is a plain integer, then the access is
7898 straight-forward. Otherwise we have to play around a bit
7900 int len = TYPE_LENGTH (type);
7901 int regno = ARM_A1_REGNUM;
7906 /* By using store_unsigned_integer we avoid having to do
7907 anything special for small big-endian values. */
7908 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7909 store_unsigned_integer (valbuf,
7910 (len > INT_REGISTER_SIZE
7911 ? INT_REGISTER_SIZE : len),
7913 len -= INT_REGISTER_SIZE;
7914 valbuf += INT_REGISTER_SIZE;
7919 /* For a structure or union the behaviour is as if the value had
7920 been stored to word-aligned memory and then loaded into
7921 registers with 32-bit load instruction(s). */
7922 int len = TYPE_LENGTH (type);
7923 int regno = ARM_A1_REGNUM;
7924 bfd_byte tmpbuf[INT_REGISTER_SIZE];
7928 regs->cooked_read (regno++, tmpbuf);
7929 memcpy (valbuf, tmpbuf,
7930 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
7931 len -= INT_REGISTER_SIZE;
7932 valbuf += INT_REGISTER_SIZE;
7938 /* Will a function return an aggregate type in memory or in a
7939 register? Return 0 if an aggregate type can be returned in a
7940 register, 1 if it must be returned in memory. */
7943 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
7945 enum type_code code;
7947 type = check_typedef (type);
7949 /* Simple, non-aggregate types (ie not including vectors and
7950 complex) are always returned in a register (or registers). */
7951 code = TYPE_CODE (type);
7952 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
7953 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
7956 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
7958 /* Vector values should be returned using ARM registers if they
7959 are not over 16 bytes. */
7960 return (TYPE_LENGTH (type) > 16);
7963 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
7965 /* The AAPCS says all aggregates not larger than a word are returned
7967 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
7976 /* All aggregate types that won't fit in a register must be returned
7978 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
7981 /* In the ARM ABI, "integer" like aggregate types are returned in
7982 registers. For an aggregate type to be integer like, its size
7983 must be less than or equal to INT_REGISTER_SIZE and the
7984 offset of each addressable subfield must be zero. Note that bit
7985 fields are not addressable, and all addressable subfields of
7986 unions always start at offset zero.
7988 This function is based on the behaviour of GCC 2.95.1.
7989 See: gcc/arm.c: arm_return_in_memory() for details.
7991 Note: All versions of GCC before GCC 2.95.2 do not set up the
7992 parameters correctly for a function returning the following
7993 structure: struct { float f;}; This should be returned in memory,
7994 not a register. Richard Earnshaw sent me a patch, but I do not
7995 know of any way to detect if a function like the above has been
7996 compiled with the correct calling convention. */
7998 /* Assume all other aggregate types can be returned in a register.
7999 Run a check for structures, unions and arrays. */
8002 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8005 /* Need to check if this struct/union is "integer" like. For
8006 this to be true, its size must be less than or equal to
8007 INT_REGISTER_SIZE and the offset of each addressable
8008 subfield must be zero. Note that bit fields are not
8009 addressable, and unions always start at offset zero. If any
8010 of the subfields is a floating point type, the struct/union
8011 cannot be an integer type. */
8013 /* For each field in the object, check:
8014 1) Is it FP? --> yes, nRc = 1;
8015 2) Is it addressable (bitpos != 0) and
8016 not packed (bitsize == 0)?
8020 for (i = 0; i < TYPE_NFIELDS (type); i++)
8022 enum type_code field_type_code;
8025 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8028 /* Is it a floating point type field? */
8029 if (field_type_code == TYPE_CODE_FLT)
8035 /* If bitpos != 0, then we have to care about it. */
8036 if (TYPE_FIELD_BITPOS (type, i) != 0)
8038 /* Bitfields are not addressable. If the field bitsize is
8039 zero, then the field is not packed. Hence it cannot be
8040 a bitfield or any other packed type. */
8041 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8054 /* Write into appropriate registers a function return value of type
8055 TYPE, given in virtual format. */
8058 arm_store_return_value (struct type *type, struct regcache *regs,
8059 const gdb_byte *valbuf)
8061 struct gdbarch *gdbarch = regs->arch ();
8062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8064 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8066 gdb_byte buf[FP_REGISTER_SIZE];
8068 switch (gdbarch_tdep (gdbarch)->fp_model)
8072 target_float_convert (valbuf, type, buf, arm_ext_type (gdbarch));
8073 regs->cooked_write (ARM_F0_REGNUM, buf);
8076 case ARM_FLOAT_SOFT_FPA:
8077 case ARM_FLOAT_SOFT_VFP:
8078 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8079 not using the VFP ABI code. */
8081 regs->cooked_write (ARM_A1_REGNUM, valbuf);
8082 if (TYPE_LENGTH (type) > 4)
8083 regs->cooked_write (ARM_A1_REGNUM + 1, valbuf + INT_REGISTER_SIZE);
8087 internal_error (__FILE__, __LINE__,
8088 _("arm_store_return_value: Floating "
8089 "point model not supported"));
8093 else if (TYPE_CODE (type) == TYPE_CODE_INT
8094 || TYPE_CODE (type) == TYPE_CODE_CHAR
8095 || TYPE_CODE (type) == TYPE_CODE_BOOL
8096 || TYPE_CODE (type) == TYPE_CODE_PTR
8097 || TYPE_IS_REFERENCE (type)
8098 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8100 if (TYPE_LENGTH (type) <= 4)
8102 /* Values of one word or less are zero/sign-extended and
8104 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8105 LONGEST val = unpack_long (type, valbuf);
8107 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
8108 regs->cooked_write (ARM_A1_REGNUM, tmpbuf);
8112 /* Integral values greater than one word are stored in consecutive
8113 registers starting with r0. This will always be a multiple of
8114 the regiser size. */
8115 int len = TYPE_LENGTH (type);
8116 int regno = ARM_A1_REGNUM;
8120 regs->cooked_write (regno++, valbuf);
8121 len -= INT_REGISTER_SIZE;
8122 valbuf += INT_REGISTER_SIZE;
8128 /* For a structure or union the behaviour is as if the value had
8129 been stored to word-aligned memory and then loaded into
8130 registers with 32-bit load instruction(s). */
8131 int len = TYPE_LENGTH (type);
8132 int regno = ARM_A1_REGNUM;
8133 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8137 memcpy (tmpbuf, valbuf,
8138 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8139 regs->cooked_write (regno++, tmpbuf);
8140 len -= INT_REGISTER_SIZE;
8141 valbuf += INT_REGISTER_SIZE;
8147 /* Handle function return values. */
8149 static enum return_value_convention
8150 arm_return_value (struct gdbarch *gdbarch, struct value *function,
8151 struct type *valtype, struct regcache *regcache,
8152 gdb_byte *readbuf, const gdb_byte *writebuf)
8154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8155 struct type *func_type = function ? value_type (function) : NULL;
8156 enum arm_vfp_cprc_base_type vfp_base_type;
8159 if (arm_vfp_abi_for_function (gdbarch, func_type)
8160 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8162 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8163 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8165 for (i = 0; i < vfp_base_count; i++)
8167 if (reg_char == 'q')
8170 arm_neon_quad_write (gdbarch, regcache, i,
8171 writebuf + i * unit_length);
8174 arm_neon_quad_read (gdbarch, regcache, i,
8175 readbuf + i * unit_length);
8182 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
8183 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8186 regcache->cooked_write (regnum, writebuf + i * unit_length);
8188 regcache->cooked_read (regnum, readbuf + i * unit_length);
8191 return RETURN_VALUE_REGISTER_CONVENTION;
8194 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8195 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8196 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8198 if (tdep->struct_return == pcc_struct_return
8199 || arm_return_in_memory (gdbarch, valtype))
8200 return RETURN_VALUE_STRUCT_CONVENTION;
8202 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8204 if (arm_return_in_memory (gdbarch, valtype))
8205 return RETURN_VALUE_STRUCT_CONVENTION;
8209 arm_store_return_value (valtype, regcache, writebuf);
8212 arm_extract_return_value (valtype, regcache, readbuf);
8214 return RETURN_VALUE_REGISTER_CONVENTION;
8219 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
8221 struct gdbarch *gdbarch = get_frame_arch (frame);
8222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8223 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8225 gdb_byte buf[INT_REGISTER_SIZE];
8227 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
8229 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
8233 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
8237 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8238 return the target PC. Otherwise return 0. */
8241 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
8245 CORE_ADDR start_addr;
8247 /* Find the starting address and name of the function containing the PC. */
8248 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
8250 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8252 start_addr = arm_skip_bx_reg (frame, pc);
8253 if (start_addr != 0)
8259 /* If PC is in a Thumb call or return stub, return the address of the
8260 target PC, which is in a register. The thunk functions are called
8261 _call_via_xx, where x is the register name. The possible names
8262 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8263 functions, named __ARM_call_via_r[0-7]. */
8264 if (startswith (name, "_call_via_")
8265 || startswith (name, "__ARM_call_via_"))
8267 /* Use the name suffix to determine which register contains the
8269 static const char *table[15] =
8270 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8271 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8274 int offset = strlen (name) - 2;
8276 for (regno = 0; regno <= 14; regno++)
8277 if (strcmp (&name[offset], table[regno]) == 0)
8278 return get_frame_register_unsigned (frame, regno);
8281 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8282 non-interworking calls to foo. We could decode the stubs
8283 to find the target but it's easier to use the symbol table. */
8284 namelen = strlen (name);
8285 if (name[0] == '_' && name[1] == '_'
8286 && ((namelen > 2 + strlen ("_from_thumb")
8287 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
8288 || (namelen > 2 + strlen ("_from_arm")
8289 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
8292 int target_len = namelen - 2;
8293 struct bound_minimal_symbol minsym;
8294 struct objfile *objfile;
8295 struct obj_section *sec;
8297 if (name[namelen - 1] == 'b')
8298 target_len -= strlen ("_from_thumb");
8300 target_len -= strlen ("_from_arm");
8302 target_name = (char *) alloca (target_len + 1);
8303 memcpy (target_name, name + 2, target_len);
8304 target_name[target_len] = '\0';
8306 sec = find_pc_section (pc);
8307 objfile = (sec == NULL) ? NULL : sec->objfile;
8308 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
8309 if (minsym.minsym != NULL)
8310 return BMSYMBOL_VALUE_ADDRESS (minsym);
8315 return 0; /* not a stub */
8319 set_arm_command (const char *args, int from_tty)
8321 printf_unfiltered (_("\
8322 \"set arm\" must be followed by an apporpriate subcommand.\n"));
8323 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8327 show_arm_command (const char *args, int from_tty)
8329 cmd_show_list (showarmcmdlist, from_tty, "");
8333 arm_update_current_architecture (void)
8335 struct gdbarch_info info;
8337 /* If the current architecture is not ARM, we have nothing to do. */
8338 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
8341 /* Update the architecture. */
8342 gdbarch_info_init (&info);
8344 if (!gdbarch_update_p (info))
8345 internal_error (__FILE__, __LINE__, _("could not update architecture"));
8349 set_fp_model_sfunc (const char *args, int from_tty,
8350 struct cmd_list_element *c)
8354 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8355 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8357 arm_fp_model = (enum arm_float_model) fp_model;
8361 if (fp_model == ARM_FLOAT_LAST)
8362 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
8365 arm_update_current_architecture ();
8369 show_fp_model (struct ui_file *file, int from_tty,
8370 struct cmd_list_element *c, const char *value)
8372 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8374 if (arm_fp_model == ARM_FLOAT_AUTO
8375 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8376 fprintf_filtered (file, _("\
8377 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8378 fp_model_strings[tdep->fp_model]);
8380 fprintf_filtered (file, _("\
8381 The current ARM floating point model is \"%s\".\n"),
8382 fp_model_strings[arm_fp_model]);
8386 arm_set_abi (const char *args, int from_tty,
8387 struct cmd_list_element *c)
8391 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8392 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8394 arm_abi_global = (enum arm_abi_kind) arm_abi;
8398 if (arm_abi == ARM_ABI_LAST)
8399 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8402 arm_update_current_architecture ();
8406 arm_show_abi (struct ui_file *file, int from_tty,
8407 struct cmd_list_element *c, const char *value)
8409 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8411 if (arm_abi_global == ARM_ABI_AUTO
8412 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8413 fprintf_filtered (file, _("\
8414 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8415 arm_abi_strings[tdep->arm_abi]);
8417 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8422 arm_show_fallback_mode (struct ui_file *file, int from_tty,
8423 struct cmd_list_element *c, const char *value)
8425 fprintf_filtered (file,
8426 _("The current execution mode assumed "
8427 "(when symbols are unavailable) is \"%s\".\n"),
8428 arm_fallback_mode_string);
8432 arm_show_force_mode (struct ui_file *file, int from_tty,
8433 struct cmd_list_element *c, const char *value)
8435 fprintf_filtered (file,
8436 _("The current execution mode assumed "
8437 "(even when symbols are available) is \"%s\".\n"),
8438 arm_force_mode_string);
8441 /* If the user changes the register disassembly style used for info
8442 register and other commands, we have to also switch the style used
8443 in opcodes for disassembly output. This function is run in the "set
8444 arm disassembly" command, and does that. */
8447 set_disassembly_style_sfunc (const char *args, int from_tty,
8448 struct cmd_list_element *c)
8450 /* Convert the short style name into the long style name (eg, reg-names-*)
8451 before calling the generic set_disassembler_options() function. */
8452 std::string long_name = std::string ("reg-names-") + disassembly_style;
8453 set_disassembler_options (&long_name[0]);
8457 show_disassembly_style_sfunc (struct ui_file *file, int from_tty,
8458 struct cmd_list_element *c, const char *value)
8460 struct gdbarch *gdbarch = get_current_arch ();
8461 char *options = get_disassembler_options (gdbarch);
8462 const char *style = "";
8466 FOR_EACH_DISASSEMBLER_OPTION (opt, options)
8467 if (CONST_STRNEQ (opt, "reg-names-"))
8469 style = &opt[strlen ("reg-names-")];
8470 len = strcspn (style, ",");
8473 fprintf_unfiltered (file, "The disassembly style is \"%.*s\".\n", len, style);
8476 /* Return the ARM register name corresponding to register I. */
8478 arm_register_name (struct gdbarch *gdbarch, int i)
8480 const int num_regs = gdbarch_num_regs (gdbarch);
8482 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8483 && i >= num_regs && i < num_regs + 32)
8485 static const char *const vfp_pseudo_names[] = {
8486 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8487 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8488 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8489 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8492 return vfp_pseudo_names[i - num_regs];
8495 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8496 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8498 static const char *const neon_pseudo_names[] = {
8499 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8500 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8503 return neon_pseudo_names[i - num_regs - 32];
8506 if (i >= ARRAY_SIZE (arm_register_names))
8507 /* These registers are only supported on targets which supply
8508 an XML description. */
8511 return arm_register_names[i];
8514 /* Test whether the coff symbol specific value corresponds to a Thumb
8518 coff_sym_is_thumb (int val)
8520 return (val == C_THUMBEXT
8521 || val == C_THUMBSTAT
8522 || val == C_THUMBEXTFUNC
8523 || val == C_THUMBSTATFUNC
8524 || val == C_THUMBLABEL);
8527 /* arm_coff_make_msymbol_special()
8528 arm_elf_make_msymbol_special()
8530 These functions test whether the COFF or ELF symbol corresponds to
8531 an address in thumb code, and set a "special" bit in a minimal
8532 symbol to indicate that it does. */
8535 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8537 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8539 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
8540 == ST_BRANCH_TO_THUMB)
8541 MSYMBOL_SET_SPECIAL (msym);
8545 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8547 if (coff_sym_is_thumb (val))
8548 MSYMBOL_SET_SPECIAL (msym);
8552 arm_objfile_data_free (struct objfile *objfile, void *arg)
8554 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
8557 for (i = 0; i < objfile->obfd->section_count; i++)
8558 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8562 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8565 const char *name = bfd_asymbol_name (sym);
8566 struct arm_per_objfile *data;
8567 VEC(arm_mapping_symbol_s) **map_p;
8568 struct arm_mapping_symbol new_map_sym;
8570 gdb_assert (name[0] == '$');
8571 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8574 data = (struct arm_per_objfile *) objfile_data (objfile,
8575 arm_objfile_data_key);
8578 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8579 struct arm_per_objfile);
8580 set_objfile_data (objfile, arm_objfile_data_key, data);
8581 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8582 objfile->obfd->section_count,
8583 VEC(arm_mapping_symbol_s) *);
8585 map_p = &data->section_maps[bfd_get_section (sym)->index];
8587 new_map_sym.value = sym->value;
8588 new_map_sym.type = name[1];
8590 /* Assume that most mapping symbols appear in order of increasing
8591 value. If they were randomly distributed, it would be faster to
8592 always push here and then sort at first use. */
8593 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8595 struct arm_mapping_symbol *prev_map_sym;
8597 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8598 if (prev_map_sym->value >= sym->value)
8601 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8602 arm_compare_mapping_symbols);
8603 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8608 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8612 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
8614 struct gdbarch *gdbarch = regcache->arch ();
8615 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
8617 /* If necessary, set the T bit. */
8620 ULONGEST val, t_bit;
8621 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
8622 t_bit = arm_psr_thumb_bit (gdbarch);
8623 if (arm_pc_is_thumb (gdbarch, pc))
8624 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8627 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8632 /* Read the contents of a NEON quad register, by reading from two
8633 double registers. This is used to implement the quad pseudo
8634 registers, and for argument passing in case the quad registers are
8635 missing; vectors are passed in quad registers when using the VFP
8636 ABI, even if a NEON unit is not present. REGNUM is the index of
8637 the quad register, in [0, 15]. */
8639 static enum register_status
8640 arm_neon_quad_read (struct gdbarch *gdbarch, readable_regcache *regcache,
8641 int regnum, gdb_byte *buf)
8644 gdb_byte reg_buf[8];
8645 int offset, double_regnum;
8646 enum register_status status;
8648 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8649 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8652 /* d0 is always the least significant half of q0. */
8653 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8658 status = regcache->raw_read (double_regnum, reg_buf);
8659 if (status != REG_VALID)
8661 memcpy (buf + offset, reg_buf, 8);
8663 offset = 8 - offset;
8664 status = regcache->raw_read (double_regnum + 1, reg_buf);
8665 if (status != REG_VALID)
8667 memcpy (buf + offset, reg_buf, 8);
8672 static enum register_status
8673 arm_pseudo_read (struct gdbarch *gdbarch, readable_regcache *regcache,
8674 int regnum, gdb_byte *buf)
8676 const int num_regs = gdbarch_num_regs (gdbarch);
8678 gdb_byte reg_buf[8];
8679 int offset, double_regnum;
8681 gdb_assert (regnum >= num_regs);
8684 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8685 /* Quad-precision register. */
8686 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
8689 enum register_status status;
8691 /* Single-precision register. */
8692 gdb_assert (regnum < 32);
8694 /* s0 is always the least significant half of d0. */
8695 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8696 offset = (regnum & 1) ? 0 : 4;
8698 offset = (regnum & 1) ? 4 : 0;
8700 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8701 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8704 status = regcache->raw_read (double_regnum, reg_buf);
8705 if (status == REG_VALID)
8706 memcpy (buf, reg_buf + offset, 4);
8711 /* Store the contents of BUF to a NEON quad register, by writing to
8712 two double registers. This is used to implement the quad pseudo
8713 registers, and for argument passing in case the quad registers are
8714 missing; vectors are passed in quad registers when using the VFP
8715 ABI, even if a NEON unit is not present. REGNUM is the index
8716 of the quad register, in [0, 15]. */
8719 arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8720 int regnum, const gdb_byte *buf)
8723 int offset, double_regnum;
8725 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8726 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8729 /* d0 is always the least significant half of q0. */
8730 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8735 regcache->raw_write (double_regnum, buf + offset);
8736 offset = 8 - offset;
8737 regcache->raw_write (double_regnum + 1, buf + offset);
8741 arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8742 int regnum, const gdb_byte *buf)
8744 const int num_regs = gdbarch_num_regs (gdbarch);
8746 gdb_byte reg_buf[8];
8747 int offset, double_regnum;
8749 gdb_assert (regnum >= num_regs);
8752 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8753 /* Quad-precision register. */
8754 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8757 /* Single-precision register. */
8758 gdb_assert (regnum < 32);
8760 /* s0 is always the least significant half of d0. */
8761 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8762 offset = (regnum & 1) ? 0 : 4;
8764 offset = (regnum & 1) ? 4 : 0;
8766 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8767 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8770 regcache->raw_read (double_regnum, reg_buf);
8771 memcpy (reg_buf + offset, buf, 4);
8772 regcache->raw_write (double_regnum, reg_buf);
8776 static struct value *
8777 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8779 const int *reg_p = (const int *) baton;
8780 return value_of_register (*reg_p, frame);
8783 static enum gdb_osabi
8784 arm_elf_osabi_sniffer (bfd *abfd)
8786 unsigned int elfosabi;
8787 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
8789 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
8791 if (elfosabi == ELFOSABI_ARM)
8792 /* GNU tools use this value. Check note sections in this case,
8794 bfd_map_over_sections (abfd,
8795 generic_elf_osabi_sniff_abi_tag_sections,
8798 /* Anything else will be handled by the generic ELF sniffer. */
8803 arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8804 struct reggroup *group)
8806 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8807 this, FPS register belongs to save_regroup, restore_reggroup, and
8808 all_reggroup, of course. */
8809 if (regnum == ARM_FPS_REGNUM)
8810 return (group == float_reggroup
8811 || group == save_reggroup
8812 || group == restore_reggroup
8813 || group == all_reggroup);
8815 return default_register_reggroup_p (gdbarch, regnum, group);
8819 /* For backward-compatibility we allow two 'g' packet lengths with
8820 the remote protocol depending on whether FPA registers are
8821 supplied. M-profile targets do not have FPA registers, but some
8822 stubs already exist in the wild which use a 'g' packet which
8823 supplies them albeit with dummy values. The packet format which
8824 includes FPA registers should be considered deprecated for
8825 M-profile targets. */
8828 arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8830 if (gdbarch_tdep (gdbarch)->is_m)
8832 /* If we know from the executable this is an M-profile target,
8833 cater for remote targets whose register set layout is the
8834 same as the FPA layout. */
8835 register_remote_g_packet_guess (gdbarch,
8836 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
8837 (16 * INT_REGISTER_SIZE)
8838 + (8 * FP_REGISTER_SIZE)
8839 + (2 * INT_REGISTER_SIZE),
8840 tdesc_arm_with_m_fpa_layout);
8842 /* The regular M-profile layout. */
8843 register_remote_g_packet_guess (gdbarch,
8844 /* r0-r12,sp,lr,pc; xpsr */
8845 (16 * INT_REGISTER_SIZE)
8846 + INT_REGISTER_SIZE,
8849 /* M-profile plus M4F VFP. */
8850 register_remote_g_packet_guess (gdbarch,
8851 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8852 (16 * INT_REGISTER_SIZE)
8853 + (16 * VFP_REGISTER_SIZE)
8854 + (2 * INT_REGISTER_SIZE),
8855 tdesc_arm_with_m_vfp_d16);
8858 /* Otherwise we don't have a useful guess. */
8861 /* Implement the code_of_frame_writable gdbarch method. */
8864 arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8866 if (gdbarch_tdep (gdbarch)->is_m
8867 && get_frame_type (frame) == SIGTRAMP_FRAME)
8869 /* M-profile exception frames return to some magic PCs, where
8870 isn't writable at all. */
8878 /* Initialize the current architecture based on INFO. If possible,
8879 re-use an architecture from ARCHES, which is a list of
8880 architectures already created during this debugging session.
8882 Called e.g. at program startup, when reading a core file, and when
8883 reading a binary file. */
8885 static struct gdbarch *
8886 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8888 struct gdbarch_tdep *tdep;
8889 struct gdbarch *gdbarch;
8890 struct gdbarch_list *best_arch;
8891 enum arm_abi_kind arm_abi = arm_abi_global;
8892 enum arm_float_model fp_model = arm_fp_model;
8893 struct tdesc_arch_data *tdesc_data = NULL;
8895 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8896 int have_wmmx_registers = 0;
8898 int have_fpa_registers = 1;
8899 const struct target_desc *tdesc = info.target_desc;
8901 /* If we have an object to base this architecture on, try to determine
8904 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8906 int ei_osabi, e_flags;
8908 switch (bfd_get_flavour (info.abfd))
8910 case bfd_target_coff_flavour:
8911 /* Assume it's an old APCS-style ABI. */
8913 arm_abi = ARM_ABI_APCS;
8916 case bfd_target_elf_flavour:
8917 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8918 e_flags = elf_elfheader (info.abfd)->e_flags;
8920 if (ei_osabi == ELFOSABI_ARM)
8922 /* GNU tools used to use this value, but do not for EABI
8923 objects. There's nowhere to tag an EABI version
8924 anyway, so assume APCS. */
8925 arm_abi = ARM_ABI_APCS;
8927 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
8929 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
8933 case EF_ARM_EABI_UNKNOWN:
8934 /* Assume GNU tools. */
8935 arm_abi = ARM_ABI_APCS;
8938 case EF_ARM_EABI_VER4:
8939 case EF_ARM_EABI_VER5:
8940 arm_abi = ARM_ABI_AAPCS;
8941 /* EABI binaries default to VFP float ordering.
8942 They may also contain build attributes that can
8943 be used to identify if the VFP argument-passing
8945 if (fp_model == ARM_FLOAT_AUTO)
8948 switch (bfd_elf_get_obj_attr_int (info.abfd,
8952 case AEABI_VFP_args_base:
8953 /* "The user intended FP parameter/result
8954 passing to conform to AAPCS, base
8956 fp_model = ARM_FLOAT_SOFT_VFP;
8958 case AEABI_VFP_args_vfp:
8959 /* "The user intended FP parameter/result
8960 passing to conform to AAPCS, VFP
8962 fp_model = ARM_FLOAT_VFP;
8964 case AEABI_VFP_args_toolchain:
8965 /* "The user intended FP parameter/result
8966 passing to conform to tool chain-specific
8967 conventions" - we don't know any such
8968 conventions, so leave it as "auto". */
8970 case AEABI_VFP_args_compatible:
8971 /* "Code is compatible with both the base
8972 and VFP variants; the user did not permit
8973 non-variadic functions to pass FP
8974 parameters/results" - leave it as
8978 /* Attribute value not mentioned in the
8979 November 2012 ABI, so leave it as
8984 fp_model = ARM_FLOAT_SOFT_VFP;
8990 /* Leave it as "auto". */
8991 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
8996 /* Detect M-profile programs. This only works if the
8997 executable file includes build attributes; GCC does
8998 copy them to the executable, but e.g. RealView does
9001 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9004 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9005 Tag_CPU_arch_profile);
9007 /* GCC specifies the profile for v6-M; RealView only
9008 specifies the profile for architectures starting with
9009 V7 (as opposed to architectures with a tag
9010 numerically greater than TAG_CPU_ARCH_V7). */
9011 if (!tdesc_has_registers (tdesc)
9012 && (attr_arch == TAG_CPU_ARCH_V6_M
9013 || attr_arch == TAG_CPU_ARCH_V6S_M
9014 || attr_profile == 'M'))
9019 if (fp_model == ARM_FLOAT_AUTO)
9021 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9024 /* Leave it as "auto". Strictly speaking this case
9025 means FPA, but almost nobody uses that now, and
9026 many toolchains fail to set the appropriate bits
9027 for the floating-point model they use. */
9029 case EF_ARM_SOFT_FLOAT:
9030 fp_model = ARM_FLOAT_SOFT_FPA;
9032 case EF_ARM_VFP_FLOAT:
9033 fp_model = ARM_FLOAT_VFP;
9035 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9036 fp_model = ARM_FLOAT_SOFT_VFP;
9041 if (e_flags & EF_ARM_BE8)
9042 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9047 /* Leave it as "auto". */
9052 /* Check any target description for validity. */
9053 if (tdesc_has_registers (tdesc))
9055 /* For most registers we require GDB's default names; but also allow
9056 the numeric names for sp / lr / pc, as a convenience. */
9057 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9058 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9059 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9061 const struct tdesc_feature *feature;
9064 feature = tdesc_find_feature (tdesc,
9065 "org.gnu.gdb.arm.core");
9066 if (feature == NULL)
9068 feature = tdesc_find_feature (tdesc,
9069 "org.gnu.gdb.arm.m-profile");
9070 if (feature == NULL)
9076 tdesc_data = tdesc_data_alloc ();
9079 for (i = 0; i < ARM_SP_REGNUM; i++)
9080 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9081 arm_register_names[i]);
9082 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9085 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9088 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9092 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9093 ARM_PS_REGNUM, "xpsr");
9095 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9096 ARM_PS_REGNUM, "cpsr");
9100 tdesc_data_cleanup (tdesc_data);
9104 feature = tdesc_find_feature (tdesc,
9105 "org.gnu.gdb.arm.fpa");
9106 if (feature != NULL)
9109 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9110 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9111 arm_register_names[i]);
9114 tdesc_data_cleanup (tdesc_data);
9119 have_fpa_registers = 0;
9121 feature = tdesc_find_feature (tdesc,
9122 "org.gnu.gdb.xscale.iwmmxt");
9123 if (feature != NULL)
9125 static const char *const iwmmxt_names[] = {
9126 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9127 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9128 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9129 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9133 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9135 &= tdesc_numbered_register (feature, tdesc_data, i,
9136 iwmmxt_names[i - ARM_WR0_REGNUM]);
9138 /* Check for the control registers, but do not fail if they
9140 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9141 tdesc_numbered_register (feature, tdesc_data, i,
9142 iwmmxt_names[i - ARM_WR0_REGNUM]);
9144 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9146 &= tdesc_numbered_register (feature, tdesc_data, i,
9147 iwmmxt_names[i - ARM_WR0_REGNUM]);
9151 tdesc_data_cleanup (tdesc_data);
9155 have_wmmx_registers = 1;
9158 /* If we have a VFP unit, check whether the single precision registers
9159 are present. If not, then we will synthesize them as pseudo
9161 feature = tdesc_find_feature (tdesc,
9162 "org.gnu.gdb.arm.vfp");
9163 if (feature != NULL)
9165 static const char *const vfp_double_names[] = {
9166 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9167 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9168 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9169 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9172 /* Require the double precision registers. There must be either
9175 for (i = 0; i < 32; i++)
9177 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9179 vfp_double_names[i]);
9183 if (!valid_p && i == 16)
9186 /* Also require FPSCR. */
9187 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9188 ARM_FPSCR_REGNUM, "fpscr");
9191 tdesc_data_cleanup (tdesc_data);
9195 if (tdesc_unnumbered_register (feature, "s0") == 0)
9196 have_vfp_pseudos = 1;
9198 vfp_register_count = i;
9200 /* If we have VFP, also check for NEON. The architecture allows
9201 NEON without VFP (integer vector operations only), but GDB
9202 does not support that. */
9203 feature = tdesc_find_feature (tdesc,
9204 "org.gnu.gdb.arm.neon");
9205 if (feature != NULL)
9207 /* NEON requires 32 double-precision registers. */
9210 tdesc_data_cleanup (tdesc_data);
9214 /* If there are quad registers defined by the stub, use
9215 their type; otherwise (normally) provide them with
9216 the default type. */
9217 if (tdesc_unnumbered_register (feature, "q0") == 0)
9218 have_neon_pseudos = 1;
9225 /* If there is already a candidate, use it. */
9226 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9228 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9230 if (arm_abi != ARM_ABI_AUTO
9231 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
9234 if (fp_model != ARM_FLOAT_AUTO
9235 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
9238 /* There are various other properties in tdep that we do not
9239 need to check here: those derived from a target description,
9240 since gdbarches with a different target description are
9241 automatically disqualified. */
9243 /* Do check is_m, though, since it might come from the binary. */
9244 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9247 /* Found a match. */
9251 if (best_arch != NULL)
9253 if (tdesc_data != NULL)
9254 tdesc_data_cleanup (tdesc_data);
9255 return best_arch->gdbarch;
9258 tdep = XCNEW (struct gdbarch_tdep);
9259 gdbarch = gdbarch_alloc (&info, tdep);
9261 /* Record additional information about the architecture we are defining.
9262 These are gdbarch discriminators, like the OSABI. */
9263 tdep->arm_abi = arm_abi;
9264 tdep->fp_model = fp_model;
9266 tdep->have_fpa_registers = have_fpa_registers;
9267 tdep->have_wmmx_registers = have_wmmx_registers;
9268 gdb_assert (vfp_register_count == 0
9269 || vfp_register_count == 16
9270 || vfp_register_count == 32);
9271 tdep->vfp_register_count = vfp_register_count;
9272 tdep->have_vfp_pseudos = have_vfp_pseudos;
9273 tdep->have_neon_pseudos = have_neon_pseudos;
9274 tdep->have_neon = have_neon;
9276 arm_register_g_packet_guesses (gdbarch);
9279 switch (info.byte_order_for_code)
9281 case BFD_ENDIAN_BIG:
9282 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9283 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9284 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9285 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9289 case BFD_ENDIAN_LITTLE:
9290 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9291 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9292 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9293 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9298 internal_error (__FILE__, __LINE__,
9299 _("arm_gdbarch_init: bad byte order for float format"));
9302 /* On ARM targets char defaults to unsigned. */
9303 set_gdbarch_char_signed (gdbarch, 0);
9305 /* wchar_t is unsigned under the AAPCS. */
9306 if (tdep->arm_abi == ARM_ABI_AAPCS)
9307 set_gdbarch_wchar_signed (gdbarch, 0);
9309 set_gdbarch_wchar_signed (gdbarch, 1);
9311 /* Note: for displaced stepping, this includes the breakpoint, and one word
9312 of additional scratch space. This setting isn't used for anything beside
9313 displaced stepping at present. */
9314 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9316 /* This should be low enough for everything. */
9317 tdep->lowest_pc = 0x20;
9318 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
9320 /* The default, for both APCS and AAPCS, is to return small
9321 structures in registers. */
9322 tdep->struct_return = reg_struct_return;
9324 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
9325 set_gdbarch_frame_align (gdbarch, arm_frame_align);
9328 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9330 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9332 frame_base_set_default (gdbarch, &arm_normal_base);
9334 /* Address manipulation. */
9335 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9337 /* Advance PC across function entry code. */
9338 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9340 /* Detect whether PC is at a point where the stack has been destroyed. */
9341 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
9343 /* Skip trampolines. */
9344 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9346 /* The stack grows downward. */
9347 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9349 /* Breakpoint manipulation. */
9350 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
9351 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
9352 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
9353 arm_breakpoint_kind_from_current_state);
9355 /* Information about registers, etc. */
9356 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9357 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9358 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
9359 set_gdbarch_register_type (gdbarch, arm_register_type);
9360 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
9362 /* This "info float" is FPA-specific. Use the generic version if we
9364 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9365 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9367 /* Internal <-> external register number maps. */
9368 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
9369 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9371 set_gdbarch_register_name (gdbarch, arm_register_name);
9373 /* Returning results. */
9374 set_gdbarch_return_value (gdbarch, arm_return_value);
9377 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9379 /* Minsymbol frobbing. */
9380 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9381 set_gdbarch_coff_make_msymbol_special (gdbarch,
9382 arm_coff_make_msymbol_special);
9383 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
9385 /* Thumb-2 IT block support. */
9386 set_gdbarch_adjust_breakpoint_address (gdbarch,
9387 arm_adjust_breakpoint_address);
9389 /* Virtual tables. */
9390 set_gdbarch_vbit_in_delta (gdbarch, 1);
9392 /* Hook in the ABI-specific overrides, if they have been registered. */
9393 gdbarch_init_osabi (info, gdbarch);
9395 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9397 /* Add some default predicates. */
9399 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
9400 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9401 dwarf2_append_unwinders (gdbarch);
9402 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
9403 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
9404 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
9406 /* Now we have tuned the configuration, set a few final things,
9407 based on what the OS ABI has told us. */
9409 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9410 binaries are always marked. */
9411 if (tdep->arm_abi == ARM_ABI_AUTO)
9412 tdep->arm_abi = ARM_ABI_APCS;
9414 /* Watchpoints are not steppable. */
9415 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9417 /* We used to default to FPA for generic ARM, but almost nobody
9418 uses that now, and we now provide a way for the user to force
9419 the model. So default to the most useful variant. */
9420 if (tdep->fp_model == ARM_FLOAT_AUTO)
9421 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9423 if (tdep->jb_pc >= 0)
9424 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9426 /* Floating point sizes and format. */
9427 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
9428 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
9430 set_gdbarch_double_format
9431 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9432 set_gdbarch_long_double_format
9433 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9437 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9438 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
9441 if (have_vfp_pseudos)
9443 /* NOTE: These are the only pseudo registers used by
9444 the ARM target at the moment. If more are added, a
9445 little more care in numbering will be needed. */
9447 int num_pseudos = 32;
9448 if (have_neon_pseudos)
9450 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9451 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9452 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9457 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9459 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
9461 /* Override tdesc_register_type to adjust the types of VFP
9462 registers for NEON. */
9463 set_gdbarch_register_type (gdbarch, arm_register_type);
9466 /* Add standard register aliases. We add aliases even for those
9467 nanes which are used by the current architecture - it's simpler,
9468 and does no harm, since nothing ever lists user registers. */
9469 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9470 user_reg_add (gdbarch, arm_register_aliases[i].name,
9471 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9473 set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options);
9474 set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ());
9480 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9487 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
9488 (unsigned long) tdep->lowest_pc);
9494 static void arm_record_test (void);
9499 _initialize_arm_tdep (void)
9503 char regdesc[1024], *rdptr = regdesc;
9504 size_t rest = sizeof (regdesc);
9506 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
9508 arm_objfile_data_key
9509 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
9511 /* Add ourselves to objfile event chain. */
9512 gdb::observers::new_objfile.attach (arm_exidx_new_objfile);
9514 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9516 /* Register an ELF OS ABI sniffer for ARM binaries. */
9517 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9518 bfd_target_elf_flavour,
9519 arm_elf_osabi_sniffer);
9521 /* Initialize the standard target descriptions. */
9522 initialize_tdesc_arm_with_m ();
9523 initialize_tdesc_arm_with_m_fpa_layout ();
9524 initialize_tdesc_arm_with_m_vfp_d16 ();
9525 initialize_tdesc_arm_with_iwmmxt ();
9526 initialize_tdesc_arm_with_vfpv2 ();
9527 initialize_tdesc_arm_with_vfpv3 ();
9528 initialize_tdesc_arm_with_neon ();
9530 /* Add root prefix command for all "set arm"/"show arm" commands. */
9531 add_prefix_cmd ("arm", no_class, set_arm_command,
9532 _("Various ARM-specific commands."),
9533 &setarmcmdlist, "set arm ", 0, &setlist);
9535 add_prefix_cmd ("arm", no_class, show_arm_command,
9536 _("Various ARM-specific commands."),
9537 &showarmcmdlist, "show arm ", 0, &showlist);
9540 arm_disassembler_options = xstrdup ("reg-names-std");
9541 const disasm_options_t *disasm_options
9542 = &disassembler_options_arm ()->options;
9543 int num_disassembly_styles = 0;
9544 for (i = 0; disasm_options->name[i] != NULL; i++)
9545 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9546 num_disassembly_styles++;
9548 /* Initialize the array that will be passed to add_setshow_enum_cmd(). */
9549 valid_disassembly_styles = XNEWVEC (const char *,
9550 num_disassembly_styles + 1);
9551 for (i = j = 0; disasm_options->name[i] != NULL; i++)
9552 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9554 size_t offset = strlen ("reg-names-");
9555 const char *style = disasm_options->name[i];
9556 valid_disassembly_styles[j++] = &style[offset];
9557 length = snprintf (rdptr, rest, "%s - %s\n", &style[offset],
9558 disasm_options->description[i]);
9562 /* Mark the end of valid options. */
9563 valid_disassembly_styles[num_disassembly_styles] = NULL;
9565 /* Create the help text. */
9566 std::string helptext = string_printf ("%s%s%s",
9567 _("The valid values are:\n"),
9569 _("The default is \"std\"."));
9571 add_setshow_enum_cmd("disassembler", no_class,
9572 valid_disassembly_styles, &disassembly_style,
9573 _("Set the disassembly style."),
9574 _("Show the disassembly style."),
9576 set_disassembly_style_sfunc,
9577 show_disassembly_style_sfunc,
9578 &setarmcmdlist, &showarmcmdlist);
9580 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9581 _("Set usage of ARM 32-bit mode."),
9582 _("Show usage of ARM 32-bit mode."),
9583 _("When off, a 26-bit PC will be used."),
9585 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9587 &setarmcmdlist, &showarmcmdlist);
9589 /* Add a command to allow the user to force the FPU model. */
9590 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model,
9591 _("Set the floating point type."),
9592 _("Show the floating point type."),
9593 _("auto - Determine the FP typefrom the OS-ABI.\n\
9594 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9595 fpa - FPA co-processor (GCC compiled).\n\
9596 softvfp - Software FP with pure-endian doubles.\n\
9597 vfp - VFP co-processor."),
9598 set_fp_model_sfunc, show_fp_model,
9599 &setarmcmdlist, &showarmcmdlist);
9601 /* Add a command to allow the user to force the ABI. */
9602 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9605 NULL, arm_set_abi, arm_show_abi,
9606 &setarmcmdlist, &showarmcmdlist);
9608 /* Add two commands to allow the user to force the assumed
9610 add_setshow_enum_cmd ("fallback-mode", class_support,
9611 arm_mode_strings, &arm_fallback_mode_string,
9612 _("Set the mode assumed when symbols are unavailable."),
9613 _("Show the mode assumed when symbols are unavailable."),
9614 NULL, NULL, arm_show_fallback_mode,
9615 &setarmcmdlist, &showarmcmdlist);
9616 add_setshow_enum_cmd ("force-mode", class_support,
9617 arm_mode_strings, &arm_force_mode_string,
9618 _("Set the mode assumed even when symbols are available."),
9619 _("Show the mode assumed even when symbols are available."),
9620 NULL, NULL, arm_show_force_mode,
9621 &setarmcmdlist, &showarmcmdlist);
9623 /* Debugging flag. */
9624 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9625 _("Set ARM debugging."),
9626 _("Show ARM debugging."),
9627 _("When on, arm-specific debugging is enabled."),
9629 NULL, /* FIXME: i18n: "ARM debugging is %s. */
9630 &setdebuglist, &showdebuglist);
9633 selftests::register_test ("arm-record", selftests::arm_record_test);
9638 /* ARM-reversible process record data structures. */
9640 #define ARM_INSN_SIZE_BYTES 4
9641 #define THUMB_INSN_SIZE_BYTES 2
9642 #define THUMB2_INSN_SIZE_BYTES 4
9645 /* Position of the bit within a 32-bit ARM instruction
9646 that defines whether the instruction is a load or store. */
9647 #define INSN_S_L_BIT_NUM 20
9649 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9652 unsigned int reg_len = LENGTH; \
9655 REGS = XNEWVEC (uint32_t, reg_len); \
9656 memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9661 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9664 unsigned int mem_len = LENGTH; \
9667 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9668 memcpy(&MEMS->len, &RECORD_BUF[0], \
9669 sizeof(struct arm_mem_r) * LENGTH); \
9674 /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9675 #define INSN_RECORDED(ARM_RECORD) \
9676 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9678 /* ARM memory record structure. */
9681 uint32_t len; /* Record length. */
9682 uint32_t addr; /* Memory address. */
9685 /* ARM instruction record contains opcode of current insn
9686 and execution state (before entry to decode_insn()),
9687 contains list of to-be-modified registers and
9688 memory blocks (on return from decode_insn()). */
9690 typedef struct insn_decode_record_t
9692 struct gdbarch *gdbarch;
9693 struct regcache *regcache;
9694 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9695 uint32_t arm_insn; /* Should accommodate thumb. */
9696 uint32_t cond; /* Condition code. */
9697 uint32_t opcode; /* Insn opcode. */
9698 uint32_t decode; /* Insn decode bits. */
9699 uint32_t mem_rec_count; /* No of mem records. */
9700 uint32_t reg_rec_count; /* No of reg records. */
9701 uint32_t *arm_regs; /* Registers to be saved for this record. */
9702 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9703 } insn_decode_record;
9706 /* Checks ARM SBZ and SBO mandatory fields. */
9709 sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9711 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9730 enum arm_record_result
9732 ARM_RECORD_SUCCESS = 0,
9733 ARM_RECORD_FAILURE = 1
9740 } arm_record_strx_t;
9751 arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9752 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9755 struct regcache *reg_cache = arm_insn_r->regcache;
9756 ULONGEST u_regval[2]= {0};
9758 uint32_t reg_src1 = 0, reg_src2 = 0;
9759 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
9761 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9762 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
9764 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9766 /* 1) Handle misc store, immediate offset. */
9767 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9768 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9769 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9770 regcache_raw_read_unsigned (reg_cache, reg_src1,
9772 if (ARM_PC_REGNUM == reg_src1)
9774 /* If R15 was used as Rn, hence current PC+8. */
9775 u_regval[0] = u_regval[0] + 8;
9777 offset_8 = (immed_high << 4) | immed_low;
9778 /* Calculate target store address. */
9779 if (14 == arm_insn_r->opcode)
9781 tgt_mem_addr = u_regval[0] + offset_8;
9785 tgt_mem_addr = u_regval[0] - offset_8;
9787 if (ARM_RECORD_STRH == str_type)
9789 record_buf_mem[0] = 2;
9790 record_buf_mem[1] = tgt_mem_addr;
9791 arm_insn_r->mem_rec_count = 1;
9793 else if (ARM_RECORD_STRD == str_type)
9795 record_buf_mem[0] = 4;
9796 record_buf_mem[1] = tgt_mem_addr;
9797 record_buf_mem[2] = 4;
9798 record_buf_mem[3] = tgt_mem_addr + 4;
9799 arm_insn_r->mem_rec_count = 2;
9802 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9804 /* 2) Store, register offset. */
9806 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9808 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9809 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9810 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9813 /* If R15 was used as Rn, hence current PC+8. */
9814 u_regval[0] = u_regval[0] + 8;
9816 /* Calculate target store address, Rn +/- Rm, register offset. */
9817 if (12 == arm_insn_r->opcode)
9819 tgt_mem_addr = u_regval[0] + u_regval[1];
9823 tgt_mem_addr = u_regval[1] - u_regval[0];
9825 if (ARM_RECORD_STRH == str_type)
9827 record_buf_mem[0] = 2;
9828 record_buf_mem[1] = tgt_mem_addr;
9829 arm_insn_r->mem_rec_count = 1;
9831 else if (ARM_RECORD_STRD == str_type)
9833 record_buf_mem[0] = 4;
9834 record_buf_mem[1] = tgt_mem_addr;
9835 record_buf_mem[2] = 4;
9836 record_buf_mem[3] = tgt_mem_addr + 4;
9837 arm_insn_r->mem_rec_count = 2;
9840 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9841 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9843 /* 3) Store, immediate pre-indexed. */
9844 /* 5) Store, immediate post-indexed. */
9845 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9846 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9847 offset_8 = (immed_high << 4) | immed_low;
9848 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9849 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9850 /* Calculate target store address, Rn +/- Rm, register offset. */
9851 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9853 tgt_mem_addr = u_regval[0] + offset_8;
9857 tgt_mem_addr = u_regval[0] - offset_8;
9859 if (ARM_RECORD_STRH == str_type)
9861 record_buf_mem[0] = 2;
9862 record_buf_mem[1] = tgt_mem_addr;
9863 arm_insn_r->mem_rec_count = 1;
9865 else if (ARM_RECORD_STRD == str_type)
9867 record_buf_mem[0] = 4;
9868 record_buf_mem[1] = tgt_mem_addr;
9869 record_buf_mem[2] = 4;
9870 record_buf_mem[3] = tgt_mem_addr + 4;
9871 arm_insn_r->mem_rec_count = 2;
9873 /* Record Rn also as it changes. */
9874 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9875 arm_insn_r->reg_rec_count = 1;
9877 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9878 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9880 /* 4) Store, register pre-indexed. */
9881 /* 6) Store, register post -indexed. */
9882 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9883 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9884 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9885 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9886 /* Calculate target store address, Rn +/- Rm, register offset. */
9887 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9889 tgt_mem_addr = u_regval[0] + u_regval[1];
9893 tgt_mem_addr = u_regval[1] - u_regval[0];
9895 if (ARM_RECORD_STRH == str_type)
9897 record_buf_mem[0] = 2;
9898 record_buf_mem[1] = tgt_mem_addr;
9899 arm_insn_r->mem_rec_count = 1;
9901 else if (ARM_RECORD_STRD == str_type)
9903 record_buf_mem[0] = 4;
9904 record_buf_mem[1] = tgt_mem_addr;
9905 record_buf_mem[2] = 4;
9906 record_buf_mem[3] = tgt_mem_addr + 4;
9907 arm_insn_r->mem_rec_count = 2;
9909 /* Record Rn also as it changes. */
9910 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9911 arm_insn_r->reg_rec_count = 1;
9916 /* Handling ARM extension space insns. */
9919 arm_record_extension_space (insn_decode_record *arm_insn_r)
9921 int ret = 0; /* Return value: -1:record failure ; 0:success */
9922 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
9923 uint32_t record_buf[8], record_buf_mem[8];
9924 uint32_t reg_src1 = 0;
9925 struct regcache *reg_cache = arm_insn_r->regcache;
9926 ULONGEST u_regval = 0;
9928 gdb_assert (!INSN_RECORDED(arm_insn_r));
9929 /* Handle unconditional insn extension space. */
9931 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
9932 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
9933 if (arm_insn_r->cond)
9935 /* PLD has no affect on architectural state, it just affects
9937 if (5 == ((opcode1 & 0xE0) >> 5))
9940 record_buf[0] = ARM_PS_REGNUM;
9941 record_buf[1] = ARM_LR_REGNUM;
9942 arm_insn_r->reg_rec_count = 2;
9944 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
9948 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
9949 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
9952 /* Undefined instruction on ARM V5; need to handle if later
9953 versions define it. */
9956 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
9957 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
9958 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
9960 /* Handle arithmetic insn extension space. */
9961 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
9962 && !INSN_RECORDED(arm_insn_r))
9964 /* Handle MLA(S) and MUL(S). */
9965 if (in_inclusive_range (insn_op1, 0U, 3U))
9967 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
9968 record_buf[1] = ARM_PS_REGNUM;
9969 arm_insn_r->reg_rec_count = 2;
9971 else if (in_inclusive_range (insn_op1, 4U, 15U))
9973 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
9974 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
9975 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
9976 record_buf[2] = ARM_PS_REGNUM;
9977 arm_insn_r->reg_rec_count = 3;
9981 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
9982 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
9983 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
9985 /* Handle control insn extension space. */
9987 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
9988 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
9990 if (!bit (arm_insn_r->arm_insn,25))
9992 if (!bits (arm_insn_r->arm_insn, 4, 7))
9994 if ((0 == insn_op1) || (2 == insn_op1))
9997 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
9998 arm_insn_r->reg_rec_count = 1;
10000 else if (1 == insn_op1)
10002 /* CSPR is going to be changed. */
10003 record_buf[0] = ARM_PS_REGNUM;
10004 arm_insn_r->reg_rec_count = 1;
10006 else if (3 == insn_op1)
10008 /* SPSR is going to be changed. */
10009 /* We need to get SPSR value, which is yet to be done. */
10013 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10018 record_buf[0] = ARM_PS_REGNUM;
10019 arm_insn_r->reg_rec_count = 1;
10021 else if (3 == insn_op1)
10024 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10025 arm_insn_r->reg_rec_count = 1;
10028 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10031 record_buf[0] = ARM_PS_REGNUM;
10032 record_buf[1] = ARM_LR_REGNUM;
10033 arm_insn_r->reg_rec_count = 2;
10035 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10037 /* QADD, QSUB, QDADD, QDSUB */
10038 record_buf[0] = ARM_PS_REGNUM;
10039 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10040 arm_insn_r->reg_rec_count = 2;
10042 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10045 record_buf[0] = ARM_PS_REGNUM;
10046 record_buf[1] = ARM_LR_REGNUM;
10047 arm_insn_r->reg_rec_count = 2;
10049 /* Save SPSR also;how? */
10052 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10053 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10054 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10055 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10058 if (0 == insn_op1 || 1 == insn_op1)
10060 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10061 /* We dont do optimization for SMULW<y> where we
10063 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10064 record_buf[1] = ARM_PS_REGNUM;
10065 arm_insn_r->reg_rec_count = 2;
10067 else if (2 == insn_op1)
10070 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10071 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10072 arm_insn_r->reg_rec_count = 2;
10074 else if (3 == insn_op1)
10077 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10078 arm_insn_r->reg_rec_count = 1;
10084 /* MSR : immediate form. */
10087 /* CSPR is going to be changed. */
10088 record_buf[0] = ARM_PS_REGNUM;
10089 arm_insn_r->reg_rec_count = 1;
10091 else if (3 == insn_op1)
10093 /* SPSR is going to be changed. */
10094 /* we need to get SPSR value, which is yet to be done */
10100 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10101 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10102 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10104 /* Handle load/store insn extension space. */
10106 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10107 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10108 && !INSN_RECORDED(arm_insn_r))
10113 /* These insn, changes register and memory as well. */
10114 /* SWP or SWPB insn. */
10115 /* Get memory address given by Rn. */
10116 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10117 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10118 /* SWP insn ?, swaps word. */
10119 if (8 == arm_insn_r->opcode)
10121 record_buf_mem[0] = 4;
10125 /* SWPB insn, swaps only byte. */
10126 record_buf_mem[0] = 1;
10128 record_buf_mem[1] = u_regval;
10129 arm_insn_r->mem_rec_count = 1;
10130 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10131 arm_insn_r->reg_rec_count = 1;
10133 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10136 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10139 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10142 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10143 record_buf[1] = record_buf[0] + 1;
10144 arm_insn_r->reg_rec_count = 2;
10146 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10149 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10152 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10154 /* LDRH, LDRSB, LDRSH. */
10155 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10156 arm_insn_r->reg_rec_count = 1;
10161 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10162 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10163 && !INSN_RECORDED(arm_insn_r))
10166 /* Handle coprocessor insn extension space. */
10169 /* To be done for ARMv5 and later; as of now we return -1. */
10173 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10174 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10179 /* Handling opcode 000 insns. */
10182 arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10184 struct regcache *reg_cache = arm_insn_r->regcache;
10185 uint32_t record_buf[8], record_buf_mem[8];
10186 ULONGEST u_regval[2] = {0};
10188 uint32_t reg_src1 = 0;
10189 uint32_t opcode1 = 0;
10191 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10192 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10193 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10195 if (!((opcode1 & 0x19) == 0x10))
10197 /* Data-processing (register) and Data-processing (register-shifted
10199 /* Out of 11 shifter operands mode, all the insn modifies destination
10200 register, which is specified by 13-16 decode. */
10201 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10202 record_buf[1] = ARM_PS_REGNUM;
10203 arm_insn_r->reg_rec_count = 2;
10205 else if ((arm_insn_r->decode < 8) && ((opcode1 & 0x19) == 0x10))
10207 /* Miscellaneous instructions */
10209 if (3 == arm_insn_r->decode && 0x12 == opcode1
10210 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10212 /* Handle BLX, branch and link/exchange. */
10213 if (9 == arm_insn_r->opcode)
10215 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10216 and R14 stores the return address. */
10217 record_buf[0] = ARM_PS_REGNUM;
10218 record_buf[1] = ARM_LR_REGNUM;
10219 arm_insn_r->reg_rec_count = 2;
10222 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10224 /* Handle enhanced software breakpoint insn, BKPT. */
10225 /* CPSR is changed to be executed in ARM state, disabling normal
10226 interrupts, entering abort mode. */
10227 /* According to high vector configuration PC is set. */
10228 /* user hit breakpoint and type reverse, in
10229 that case, we need to go back with previous CPSR and
10230 Program Counter. */
10231 record_buf[0] = ARM_PS_REGNUM;
10232 record_buf[1] = ARM_LR_REGNUM;
10233 arm_insn_r->reg_rec_count = 2;
10235 /* Save SPSR also; how? */
10238 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10239 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10241 /* Handle BX, branch and link/exchange. */
10242 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10243 record_buf[0] = ARM_PS_REGNUM;
10244 arm_insn_r->reg_rec_count = 1;
10246 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10247 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10248 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10250 /* Count leading zeros: CLZ. */
10251 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10252 arm_insn_r->reg_rec_count = 1;
10254 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10255 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10256 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10257 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0))
10259 /* Handle MRS insn. */
10260 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10261 arm_insn_r->reg_rec_count = 1;
10264 else if (9 == arm_insn_r->decode && opcode1 < 0x10)
10266 /* Multiply and multiply-accumulate */
10268 /* Handle multiply instructions. */
10269 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10270 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10272 /* Handle MLA and MUL. */
10273 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10274 record_buf[1] = ARM_PS_REGNUM;
10275 arm_insn_r->reg_rec_count = 2;
10277 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10279 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10280 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10281 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10282 record_buf[2] = ARM_PS_REGNUM;
10283 arm_insn_r->reg_rec_count = 3;
10286 else if (9 == arm_insn_r->decode && opcode1 > 0x10)
10288 /* Synchronization primitives */
10290 /* Handling SWP, SWPB. */
10291 /* These insn, changes register and memory as well. */
10292 /* SWP or SWPB insn. */
10294 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10295 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10296 /* SWP insn ?, swaps word. */
10297 if (8 == arm_insn_r->opcode)
10299 record_buf_mem[0] = 4;
10303 /* SWPB insn, swaps only byte. */
10304 record_buf_mem[0] = 1;
10306 record_buf_mem[1] = u_regval[0];
10307 arm_insn_r->mem_rec_count = 1;
10308 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10309 arm_insn_r->reg_rec_count = 1;
10311 else if (11 == arm_insn_r->decode || 13 == arm_insn_r->decode
10312 || 15 == arm_insn_r->decode)
10314 if ((opcode1 & 0x12) == 2)
10316 /* Extra load/store (unprivileged) */
10321 /* Extra load/store */
10322 switch (bits (arm_insn_r->arm_insn, 5, 6))
10325 if ((opcode1 & 0x05) == 0x0 || (opcode1 & 0x05) == 0x4)
10327 /* STRH (register), STRH (immediate) */
10328 arm_record_strx (arm_insn_r, &record_buf[0],
10329 &record_buf_mem[0], ARM_RECORD_STRH);
10331 else if ((opcode1 & 0x05) == 0x1)
10333 /* LDRH (register) */
10334 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10335 arm_insn_r->reg_rec_count = 1;
10337 if (bit (arm_insn_r->arm_insn, 21))
10339 /* Write back to Rn. */
10340 record_buf[arm_insn_r->reg_rec_count++]
10341 = bits (arm_insn_r->arm_insn, 16, 19);
10344 else if ((opcode1 & 0x05) == 0x5)
10346 /* LDRH (immediate), LDRH (literal) */
10347 int rn = bits (arm_insn_r->arm_insn, 16, 19);
10349 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10350 arm_insn_r->reg_rec_count = 1;
10354 /*LDRH (immediate) */
10355 if (bit (arm_insn_r->arm_insn, 21))
10357 /* Write back to Rn. */
10358 record_buf[arm_insn_r->reg_rec_count++] = rn;
10366 if ((opcode1 & 0x05) == 0x0)
10368 /* LDRD (register) */
10369 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10370 record_buf[1] = record_buf[0] + 1;
10371 arm_insn_r->reg_rec_count = 2;
10373 if (bit (arm_insn_r->arm_insn, 21))
10375 /* Write back to Rn. */
10376 record_buf[arm_insn_r->reg_rec_count++]
10377 = bits (arm_insn_r->arm_insn, 16, 19);
10380 else if ((opcode1 & 0x05) == 0x1)
10382 /* LDRSB (register) */
10383 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10384 arm_insn_r->reg_rec_count = 1;
10386 if (bit (arm_insn_r->arm_insn, 21))
10388 /* Write back to Rn. */
10389 record_buf[arm_insn_r->reg_rec_count++]
10390 = bits (arm_insn_r->arm_insn, 16, 19);
10393 else if ((opcode1 & 0x05) == 0x4 || (opcode1 & 0x05) == 0x5)
10395 /* LDRD (immediate), LDRD (literal), LDRSB (immediate),
10397 int rn = bits (arm_insn_r->arm_insn, 16, 19);
10399 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10400 arm_insn_r->reg_rec_count = 1;
10404 /*LDRD (immediate), LDRSB (immediate) */
10405 if (bit (arm_insn_r->arm_insn, 21))
10407 /* Write back to Rn. */
10408 record_buf[arm_insn_r->reg_rec_count++] = rn;
10416 if ((opcode1 & 0x05) == 0x0)
10418 /* STRD (register) */
10419 arm_record_strx (arm_insn_r, &record_buf[0],
10420 &record_buf_mem[0], ARM_RECORD_STRD);
10422 else if ((opcode1 & 0x05) == 0x1)
10424 /* LDRSH (register) */
10425 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10426 arm_insn_r->reg_rec_count = 1;
10428 if (bit (arm_insn_r->arm_insn, 21))
10430 /* Write back to Rn. */
10431 record_buf[arm_insn_r->reg_rec_count++]
10432 = bits (arm_insn_r->arm_insn, 16, 19);
10435 else if ((opcode1 & 0x05) == 0x4)
10437 /* STRD (immediate) */
10438 arm_record_strx (arm_insn_r, &record_buf[0],
10439 &record_buf_mem[0], ARM_RECORD_STRD);
10441 else if ((opcode1 & 0x05) == 0x5)
10443 /* LDRSH (immediate), LDRSH (literal) */
10444 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10445 arm_insn_r->reg_rec_count = 1;
10447 if (bit (arm_insn_r->arm_insn, 21))
10449 /* Write back to Rn. */
10450 record_buf[arm_insn_r->reg_rec_count++]
10451 = bits (arm_insn_r->arm_insn, 16, 19);
10467 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10468 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10472 /* Handling opcode 001 insns. */
10475 arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10477 uint32_t record_buf[8], record_buf_mem[8];
10479 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10480 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10482 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10483 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10484 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10487 /* Handle MSR insn. */
10488 if (9 == arm_insn_r->opcode)
10490 /* CSPR is going to be changed. */
10491 record_buf[0] = ARM_PS_REGNUM;
10492 arm_insn_r->reg_rec_count = 1;
10496 /* SPSR is going to be changed. */
10499 else if (arm_insn_r->opcode <= 15)
10501 /* Normal data processing insns. */
10502 /* Out of 11 shifter operands mode, all the insn modifies destination
10503 register, which is specified by 13-16 decode. */
10504 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10505 record_buf[1] = ARM_PS_REGNUM;
10506 arm_insn_r->reg_rec_count = 2;
10513 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10514 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10519 arm_record_media (insn_decode_record *arm_insn_r)
10521 uint32_t record_buf[8];
10523 switch (bits (arm_insn_r->arm_insn, 22, 24))
10526 /* Parallel addition and subtraction, signed */
10528 /* Parallel addition and subtraction, unsigned */
10531 /* Packing, unpacking, saturation and reversal */
10533 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10535 record_buf[arm_insn_r->reg_rec_count++] = rd;
10541 /* Signed multiplies */
10543 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10544 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10546 record_buf[arm_insn_r->reg_rec_count++] = rd;
10548 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10549 else if (op1 == 0x4)
10550 record_buf[arm_insn_r->reg_rec_count++]
10551 = bits (arm_insn_r->arm_insn, 12, 15);
10557 if (bit (arm_insn_r->arm_insn, 21)
10558 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10561 record_buf[arm_insn_r->reg_rec_count++]
10562 = bits (arm_insn_r->arm_insn, 12, 15);
10564 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10565 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10567 /* USAD8 and USADA8 */
10568 record_buf[arm_insn_r->reg_rec_count++]
10569 = bits (arm_insn_r->arm_insn, 16, 19);
10576 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10577 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10579 /* Permanently UNDEFINED */
10584 /* BFC, BFI and UBFX */
10585 record_buf[arm_insn_r->reg_rec_count++]
10586 = bits (arm_insn_r->arm_insn, 12, 15);
10595 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10600 /* Handle ARM mode instructions with opcode 010. */
10603 arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10605 struct regcache *reg_cache = arm_insn_r->regcache;
10607 uint32_t reg_base , reg_dest;
10608 uint32_t offset_12, tgt_mem_addr;
10609 uint32_t record_buf[8], record_buf_mem[8];
10610 unsigned char wback;
10613 /* Calculate wback. */
10614 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10615 || (bit (arm_insn_r->arm_insn, 21) == 1);
10617 arm_insn_r->reg_rec_count = 0;
10618 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10620 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10622 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10625 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10626 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10628 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10629 preceeds a LDR instruction having R15 as reg_base, it
10630 emulates a branch and link instruction, and hence we need to save
10631 CPSR and PC as well. */
10632 if (ARM_PC_REGNUM == reg_dest)
10633 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10635 /* If wback is true, also save the base register, which is going to be
10638 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10642 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10644 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
10645 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10647 /* Handle bit U. */
10648 if (bit (arm_insn_r->arm_insn, 23))
10650 /* U == 1: Add the offset. */
10651 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10655 /* U == 0: subtract the offset. */
10656 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10659 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10661 if (bit (arm_insn_r->arm_insn, 22))
10663 /* STRB and STRBT: 1 byte. */
10664 record_buf_mem[0] = 1;
10668 /* STR and STRT: 4 bytes. */
10669 record_buf_mem[0] = 4;
10672 /* Handle bit P. */
10673 if (bit (arm_insn_r->arm_insn, 24))
10674 record_buf_mem[1] = tgt_mem_addr;
10676 record_buf_mem[1] = (uint32_t) u_regval;
10678 arm_insn_r->mem_rec_count = 1;
10680 /* If wback is true, also save the base register, which is going to be
10683 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10686 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10687 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10691 /* Handling opcode 011 insns. */
10694 arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10696 struct regcache *reg_cache = arm_insn_r->regcache;
10698 uint32_t shift_imm = 0;
10699 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10700 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10701 uint32_t record_buf[8], record_buf_mem[8];
10704 ULONGEST u_regval[2];
10706 if (bit (arm_insn_r->arm_insn, 4))
10707 return arm_record_media (arm_insn_r);
10709 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10710 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10712 /* Handle enhanced store insns and LDRD DSP insn,
10713 order begins according to addressing modes for store insns
10717 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10719 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10720 /* LDR insn has a capability to do branching, if
10721 MOV LR, PC is precedded by LDR insn having Rn as R15
10722 in that case, it emulates branch and link insn, and hence we
10723 need to save CSPR and PC as well. */
10724 if (15 != reg_dest)
10726 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10727 arm_insn_r->reg_rec_count = 1;
10731 record_buf[0] = reg_dest;
10732 record_buf[1] = ARM_PS_REGNUM;
10733 arm_insn_r->reg_rec_count = 2;
10738 if (! bits (arm_insn_r->arm_insn, 4, 11))
10740 /* Store insn, register offset and register pre-indexed,
10741 register post-indexed. */
10743 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10745 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10746 regcache_raw_read_unsigned (reg_cache, reg_src1
10748 regcache_raw_read_unsigned (reg_cache, reg_src2
10750 if (15 == reg_src2)
10752 /* If R15 was used as Rn, hence current PC+8. */
10753 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10754 u_regval[0] = u_regval[0] + 8;
10756 /* Calculate target store address, Rn +/- Rm, register offset. */
10758 if (bit (arm_insn_r->arm_insn, 23))
10760 tgt_mem_addr = u_regval[0] + u_regval[1];
10764 tgt_mem_addr = u_regval[1] - u_regval[0];
10767 switch (arm_insn_r->opcode)
10781 record_buf_mem[0] = 4;
10796 record_buf_mem[0] = 1;
10800 gdb_assert_not_reached ("no decoding pattern found");
10803 record_buf_mem[1] = tgt_mem_addr;
10804 arm_insn_r->mem_rec_count = 1;
10806 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10807 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10808 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10809 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10810 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10811 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10814 /* Rn is going to be changed in pre-indexed mode and
10815 post-indexed mode as well. */
10816 record_buf[0] = reg_src2;
10817 arm_insn_r->reg_rec_count = 1;
10822 /* Store insn, scaled register offset; scaled pre-indexed. */
10823 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10825 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10827 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10828 /* Get shift_imm. */
10829 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10830 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10831 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10832 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10833 /* Offset_12 used as shift. */
10837 /* Offset_12 used as index. */
10838 offset_12 = u_regval[0] << shift_imm;
10842 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10848 if (bit (u_regval[0], 31))
10850 offset_12 = 0xFFFFFFFF;
10859 /* This is arithmetic shift. */
10860 offset_12 = s_word >> shift_imm;
10867 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10869 /* Get C flag value and shift it by 31. */
10870 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10871 | (u_regval[0]) >> 1);
10875 offset_12 = (u_regval[0] >> shift_imm) \
10877 (sizeof(uint32_t) - shift_imm));
10882 gdb_assert_not_reached ("no decoding pattern found");
10886 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10888 if (bit (arm_insn_r->arm_insn, 23))
10890 tgt_mem_addr = u_regval[1] + offset_12;
10894 tgt_mem_addr = u_regval[1] - offset_12;
10897 switch (arm_insn_r->opcode)
10911 record_buf_mem[0] = 4;
10926 record_buf_mem[0] = 1;
10930 gdb_assert_not_reached ("no decoding pattern found");
10933 record_buf_mem[1] = tgt_mem_addr;
10934 arm_insn_r->mem_rec_count = 1;
10936 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10937 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10938 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10939 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10940 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10941 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10944 /* Rn is going to be changed in register scaled pre-indexed
10945 mode,and scaled post indexed mode. */
10946 record_buf[0] = reg_src2;
10947 arm_insn_r->reg_rec_count = 1;
10952 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10953 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10957 /* Handle ARM mode instructions with opcode 100. */
10960 arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10962 struct regcache *reg_cache = arm_insn_r->regcache;
10963 uint32_t register_count = 0, register_bits;
10964 uint32_t reg_base, addr_mode;
10965 uint32_t record_buf[24], record_buf_mem[48];
10969 /* Fetch the list of registers. */
10970 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10971 arm_insn_r->reg_rec_count = 0;
10973 /* Fetch the base register that contains the address we are loading data
10975 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10977 /* Calculate wback. */
10978 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
10980 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10982 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
10984 /* Find out which registers are going to be loaded from memory. */
10985 while (register_bits)
10987 if (register_bits & 0x00000001)
10988 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10989 register_bits = register_bits >> 1;
10994 /* If wback is true, also save the base register, which is going to be
10997 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10999 /* Save the CPSR register. */
11000 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
11004 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
11006 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
11008 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
11010 /* Find out how many registers are going to be stored to memory. */
11011 while (register_bits)
11013 if (register_bits & 0x00000001)
11015 register_bits = register_bits >> 1;
11020 /* STMDA (STMED): Decrement after. */
11022 record_buf_mem[1] = (uint32_t) u_regval
11023 - register_count * INT_REGISTER_SIZE + 4;
11025 /* STM (STMIA, STMEA): Increment after. */
11027 record_buf_mem[1] = (uint32_t) u_regval;
11029 /* STMDB (STMFD): Decrement before. */
11031 record_buf_mem[1] = (uint32_t) u_regval
11032 - register_count * INT_REGISTER_SIZE;
11034 /* STMIB (STMFA): Increment before. */
11036 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
11039 gdb_assert_not_reached ("no decoding pattern found");
11043 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11044 arm_insn_r->mem_rec_count = 1;
11046 /* If wback is true, also save the base register, which is going to be
11049 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
11052 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11053 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11057 /* Handling opcode 101 insns. */
11060 arm_record_b_bl (insn_decode_record *arm_insn_r)
11062 uint32_t record_buf[8];
11064 /* Handle B, BL, BLX(1) insns. */
11065 /* B simply branches so we do nothing here. */
11066 /* Note: BLX(1) doesnt fall here but instead it falls into
11067 extension space. */
11068 if (bit (arm_insn_r->arm_insn, 24))
11070 record_buf[0] = ARM_LR_REGNUM;
11071 arm_insn_r->reg_rec_count = 1;
11074 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11080 arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
11082 printf_unfiltered (_("Process record does not support instruction "
11083 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11084 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11089 /* Record handler for vector data transfer instructions. */
11092 arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11094 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11095 uint32_t record_buf[4];
11097 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11098 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11099 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11100 bit_l = bit (arm_insn_r->arm_insn, 20);
11101 bit_c = bit (arm_insn_r->arm_insn, 8);
11103 /* Handle VMOV instruction. */
11104 if (bit_l && bit_c)
11106 record_buf[0] = reg_t;
11107 arm_insn_r->reg_rec_count = 1;
11109 else if (bit_l && !bit_c)
11111 /* Handle VMOV instruction. */
11112 if (bits_a == 0x00)
11114 record_buf[0] = reg_t;
11115 arm_insn_r->reg_rec_count = 1;
11117 /* Handle VMRS instruction. */
11118 else if (bits_a == 0x07)
11121 reg_t = ARM_PS_REGNUM;
11123 record_buf[0] = reg_t;
11124 arm_insn_r->reg_rec_count = 1;
11127 else if (!bit_l && !bit_c)
11129 /* Handle VMOV instruction. */
11130 if (bits_a == 0x00)
11132 record_buf[0] = ARM_D0_REGNUM + reg_v;
11134 arm_insn_r->reg_rec_count = 1;
11136 /* Handle VMSR instruction. */
11137 else if (bits_a == 0x07)
11139 record_buf[0] = ARM_FPSCR_REGNUM;
11140 arm_insn_r->reg_rec_count = 1;
11143 else if (!bit_l && bit_c)
11145 /* Handle VMOV instruction. */
11146 if (!(bits_a & 0x04))
11148 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11150 arm_insn_r->reg_rec_count = 1;
11152 /* Handle VDUP instruction. */
11155 if (bit (arm_insn_r->arm_insn, 21))
11157 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11158 record_buf[0] = reg_v + ARM_D0_REGNUM;
11159 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11160 arm_insn_r->reg_rec_count = 2;
11164 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11165 record_buf[0] = reg_v + ARM_D0_REGNUM;
11166 arm_insn_r->reg_rec_count = 1;
11171 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11175 /* Record handler for extension register load/store instructions. */
11178 arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11180 uint32_t opcode, single_reg;
11181 uint8_t op_vldm_vstm;
11182 uint32_t record_buf[8], record_buf_mem[128];
11183 ULONGEST u_regval = 0;
11185 struct regcache *reg_cache = arm_insn_r->regcache;
11187 opcode = bits (arm_insn_r->arm_insn, 20, 24);
11188 single_reg = !bit (arm_insn_r->arm_insn, 8);
11189 op_vldm_vstm = opcode & 0x1b;
11191 /* Handle VMOV instructions. */
11192 if ((opcode & 0x1e) == 0x04)
11194 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
11196 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11197 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11198 arm_insn_r->reg_rec_count = 2;
11202 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11203 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
11207 /* The first S register number m is REG_M:M (M is bit 5),
11208 the corresponding D register number is REG_M:M / 2, which
11210 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11211 /* The second S register number is REG_M:M + 1, the
11212 corresponding D register number is (REG_M:M + 1) / 2.
11213 IOW, if bit M is 1, the first and second S registers
11214 are mapped to different D registers, otherwise, they are
11215 in the same D register. */
11218 record_buf[arm_insn_r->reg_rec_count++]
11219 = ARM_D0_REGNUM + reg_m + 1;
11224 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
11225 arm_insn_r->reg_rec_count = 1;
11229 /* Handle VSTM and VPUSH instructions. */
11230 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
11231 || op_vldm_vstm == 0x12)
11233 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11234 uint32_t memory_index = 0;
11236 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11237 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11238 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11239 imm_off32 = imm_off8 << 2;
11240 memory_count = imm_off8;
11242 if (bit (arm_insn_r->arm_insn, 23))
11243 start_address = u_regval;
11245 start_address = u_regval - imm_off32;
11247 if (bit (arm_insn_r->arm_insn, 21))
11249 record_buf[0] = reg_rn;
11250 arm_insn_r->reg_rec_count = 1;
11253 while (memory_count > 0)
11257 record_buf_mem[memory_index] = 4;
11258 record_buf_mem[memory_index + 1] = start_address;
11259 start_address = start_address + 4;
11260 memory_index = memory_index + 2;
11264 record_buf_mem[memory_index] = 4;
11265 record_buf_mem[memory_index + 1] = start_address;
11266 record_buf_mem[memory_index + 2] = 4;
11267 record_buf_mem[memory_index + 3] = start_address + 4;
11268 start_address = start_address + 8;
11269 memory_index = memory_index + 4;
11273 arm_insn_r->mem_rec_count = (memory_index >> 1);
11275 /* Handle VLDM instructions. */
11276 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
11277 || op_vldm_vstm == 0x13)
11279 uint32_t reg_count, reg_vd;
11280 uint32_t reg_index = 0;
11281 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
11283 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11284 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11286 /* REG_VD is the first D register number. If the instruction
11287 loads memory to S registers (SINGLE_REG is TRUE), the register
11288 number is (REG_VD << 1 | bit D), so the corresponding D
11289 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11291 reg_vd = reg_vd | (bit_d << 4);
11293 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
11294 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
11296 /* If the instruction loads memory to D register, REG_COUNT should
11297 be divided by 2, according to the ARM Architecture Reference
11298 Manual. If the instruction loads memory to S register, divide by
11299 2 as well because two S registers are mapped to D register. */
11300 reg_count = reg_count / 2;
11301 if (single_reg && bit_d)
11303 /* Increase the register count if S register list starts from
11304 an odd number (bit d is one). */
11308 while (reg_count > 0)
11310 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
11313 arm_insn_r->reg_rec_count = reg_index;
11315 /* VSTR Vector store register. */
11316 else if ((opcode & 0x13) == 0x10)
11318 uint32_t start_address, reg_rn, imm_off32, imm_off8;
11319 uint32_t memory_index = 0;
11321 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11322 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11323 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11324 imm_off32 = imm_off8 << 2;
11326 if (bit (arm_insn_r->arm_insn, 23))
11327 start_address = u_regval + imm_off32;
11329 start_address = u_regval - imm_off32;
11333 record_buf_mem[memory_index] = 4;
11334 record_buf_mem[memory_index + 1] = start_address;
11335 arm_insn_r->mem_rec_count = 1;
11339 record_buf_mem[memory_index] = 4;
11340 record_buf_mem[memory_index + 1] = start_address;
11341 record_buf_mem[memory_index + 2] = 4;
11342 record_buf_mem[memory_index + 3] = start_address + 4;
11343 arm_insn_r->mem_rec_count = 2;
11346 /* VLDR Vector load register. */
11347 else if ((opcode & 0x13) == 0x11)
11349 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11353 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11354 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11358 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
11359 /* Record register D rather than pseudo register S. */
11360 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
11362 arm_insn_r->reg_rec_count = 1;
11365 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11366 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11370 /* Record handler for arm/thumb mode VFP data processing instructions. */
11373 arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11375 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11376 uint32_t record_buf[4];
11377 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11378 enum insn_types curr_insn_type = INSN_INV;
11380 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11381 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11382 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11383 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11384 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11385 bit_d = bit (arm_insn_r->arm_insn, 22);
11386 /* Mask off the "D" bit. */
11387 opc1 = opc1 & ~0x04;
11389 /* Handle VMLA, VMLS. */
11392 if (bit (arm_insn_r->arm_insn, 10))
11394 if (bit (arm_insn_r->arm_insn, 6))
11395 curr_insn_type = INSN_T0;
11397 curr_insn_type = INSN_T1;
11402 curr_insn_type = INSN_T1;
11404 curr_insn_type = INSN_T2;
11407 /* Handle VNMLA, VNMLS, VNMUL. */
11408 else if (opc1 == 0x01)
11411 curr_insn_type = INSN_T1;
11413 curr_insn_type = INSN_T2;
11416 else if (opc1 == 0x02 && !(opc3 & 0x01))
11418 if (bit (arm_insn_r->arm_insn, 10))
11420 if (bit (arm_insn_r->arm_insn, 6))
11421 curr_insn_type = INSN_T0;
11423 curr_insn_type = INSN_T1;
11428 curr_insn_type = INSN_T1;
11430 curr_insn_type = INSN_T2;
11433 /* Handle VADD, VSUB. */
11434 else if (opc1 == 0x03)
11436 if (!bit (arm_insn_r->arm_insn, 9))
11438 if (bit (arm_insn_r->arm_insn, 6))
11439 curr_insn_type = INSN_T0;
11441 curr_insn_type = INSN_T1;
11446 curr_insn_type = INSN_T1;
11448 curr_insn_type = INSN_T2;
11452 else if (opc1 == 0x08)
11455 curr_insn_type = INSN_T1;
11457 curr_insn_type = INSN_T2;
11459 /* Handle all other vfp data processing instructions. */
11460 else if (opc1 == 0x0b)
11463 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11465 if (bit (arm_insn_r->arm_insn, 4))
11467 if (bit (arm_insn_r->arm_insn, 6))
11468 curr_insn_type = INSN_T0;
11470 curr_insn_type = INSN_T1;
11475 curr_insn_type = INSN_T1;
11477 curr_insn_type = INSN_T2;
11480 /* Handle VNEG and VABS. */
11481 else if ((opc2 == 0x01 && opc3 == 0x01)
11482 || (opc2 == 0x00 && opc3 == 0x03))
11484 if (!bit (arm_insn_r->arm_insn, 11))
11486 if (bit (arm_insn_r->arm_insn, 6))
11487 curr_insn_type = INSN_T0;
11489 curr_insn_type = INSN_T1;
11494 curr_insn_type = INSN_T1;
11496 curr_insn_type = INSN_T2;
11499 /* Handle VSQRT. */
11500 else if (opc2 == 0x01 && opc3 == 0x03)
11503 curr_insn_type = INSN_T1;
11505 curr_insn_type = INSN_T2;
11508 else if (opc2 == 0x07 && opc3 == 0x03)
11511 curr_insn_type = INSN_T1;
11513 curr_insn_type = INSN_T2;
11515 else if (opc3 & 0x01)
11518 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11520 if (!bit (arm_insn_r->arm_insn, 18))
11521 curr_insn_type = INSN_T2;
11525 curr_insn_type = INSN_T1;
11527 curr_insn_type = INSN_T2;
11531 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11534 curr_insn_type = INSN_T1;
11536 curr_insn_type = INSN_T2;
11538 /* Handle VCVTB, VCVTT. */
11539 else if ((opc2 & 0x0e) == 0x02)
11540 curr_insn_type = INSN_T2;
11541 /* Handle VCMP, VCMPE. */
11542 else if ((opc2 & 0x0e) == 0x04)
11543 curr_insn_type = INSN_T3;
11547 switch (curr_insn_type)
11550 reg_vd = reg_vd | (bit_d << 4);
11551 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11552 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11553 arm_insn_r->reg_rec_count = 2;
11557 reg_vd = reg_vd | (bit_d << 4);
11558 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11559 arm_insn_r->reg_rec_count = 1;
11563 reg_vd = (reg_vd << 1) | bit_d;
11564 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11565 arm_insn_r->reg_rec_count = 1;
11569 record_buf[0] = ARM_FPSCR_REGNUM;
11570 arm_insn_r->reg_rec_count = 1;
11574 gdb_assert_not_reached ("no decoding pattern found");
11578 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11582 /* Handling opcode 110 insns. */
11585 arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11587 uint32_t op1, op1_ebit, coproc;
11589 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11590 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11591 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11593 if ((coproc & 0x0e) == 0x0a)
11595 /* Handle extension register ld/st instructions. */
11597 return arm_record_exreg_ld_st_insn (arm_insn_r);
11599 /* 64-bit transfers between arm core and extension registers. */
11600 if ((op1 & 0x3e) == 0x04)
11601 return arm_record_exreg_ld_st_insn (arm_insn_r);
11605 /* Handle coprocessor ld/st instructions. */
11610 return arm_record_unsupported_insn (arm_insn_r);
11613 return arm_record_unsupported_insn (arm_insn_r);
11616 /* Move to coprocessor from two arm core registers. */
11618 return arm_record_unsupported_insn (arm_insn_r);
11620 /* Move to two arm core registers from coprocessor. */
11625 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11626 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11627 arm_insn_r->reg_rec_count = 2;
11629 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11633 return arm_record_unsupported_insn (arm_insn_r);
11636 /* Handling opcode 111 insns. */
11639 arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11641 uint32_t op, op1_ebit, coproc, bits_24_25;
11642 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11643 struct regcache *reg_cache = arm_insn_r->regcache;
11645 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11646 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11647 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11648 op = bit (arm_insn_r->arm_insn, 4);
11649 bits_24_25 = bits (arm_insn_r->arm_insn, 24, 25);
11651 /* Handle arm SWI/SVC system call instructions. */
11652 if (bits_24_25 == 0x3)
11654 if (tdep->arm_syscall_record != NULL)
11656 ULONGEST svc_operand, svc_number;
11658 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11660 if (svc_operand) /* OABI. */
11661 svc_number = svc_operand - 0x900000;
11663 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11665 return tdep->arm_syscall_record (reg_cache, svc_number);
11669 printf_unfiltered (_("no syscall record support\n"));
11673 else if (bits_24_25 == 0x02)
11677 if ((coproc & 0x0e) == 0x0a)
11679 /* 8, 16, and 32-bit transfer */
11680 return arm_record_vdata_transfer_insn (arm_insn_r);
11687 uint32_t record_buf[1];
11689 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11690 if (record_buf[0] == 15)
11691 record_buf[0] = ARM_PS_REGNUM;
11693 arm_insn_r->reg_rec_count = 1;
11694 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11707 if ((coproc & 0x0e) == 0x0a)
11709 /* VFP data-processing instructions. */
11710 return arm_record_vfp_data_proc_insn (arm_insn_r);
11721 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 25);
11725 if ((coproc & 0x0e) != 0x0a)
11731 else if (op1 == 4 || op1 == 5)
11733 if ((coproc & 0x0e) == 0x0a)
11735 /* 64-bit transfers between ARM core and extension */
11744 else if (op1 == 0 || op1 == 1)
11751 if ((coproc & 0x0e) == 0x0a)
11753 /* Extension register load/store */
11757 /* STC, STC2, LDC, LDC2 */
11766 /* Handling opcode 000 insns. */
11769 thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11771 uint32_t record_buf[8];
11772 uint32_t reg_src1 = 0;
11774 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11776 record_buf[0] = ARM_PS_REGNUM;
11777 record_buf[1] = reg_src1;
11778 thumb_insn_r->reg_rec_count = 2;
11780 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11786 /* Handling opcode 001 insns. */
11789 thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11791 uint32_t record_buf[8];
11792 uint32_t reg_src1 = 0;
11794 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11796 record_buf[0] = ARM_PS_REGNUM;
11797 record_buf[1] = reg_src1;
11798 thumb_insn_r->reg_rec_count = 2;
11800 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11805 /* Handling opcode 010 insns. */
11808 thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11810 struct regcache *reg_cache = thumb_insn_r->regcache;
11811 uint32_t record_buf[8], record_buf_mem[8];
11813 uint32_t reg_src1 = 0, reg_src2 = 0;
11814 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11816 ULONGEST u_regval[2] = {0};
11818 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11820 if (bit (thumb_insn_r->arm_insn, 12))
11822 /* Handle load/store register offset. */
11823 uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11);
11825 if (in_inclusive_range (opB, 4U, 7U))
11827 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11828 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11829 record_buf[0] = reg_src1;
11830 thumb_insn_r->reg_rec_count = 1;
11832 else if (in_inclusive_range (opB, 0U, 2U))
11834 /* STR(2), STRB(2), STRH(2) . */
11835 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11836 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11837 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11838 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11840 record_buf_mem[0] = 4; /* STR (2). */
11842 record_buf_mem[0] = 1; /* STRB (2). */
11844 record_buf_mem[0] = 2; /* STRH (2). */
11845 record_buf_mem[1] = u_regval[0] + u_regval[1];
11846 thumb_insn_r->mem_rec_count = 1;
11849 else if (bit (thumb_insn_r->arm_insn, 11))
11851 /* Handle load from literal pool. */
11853 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11854 record_buf[0] = reg_src1;
11855 thumb_insn_r->reg_rec_count = 1;
11859 /* Special data instructions and branch and exchange */
11860 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11861 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11862 if ((3 == opcode2) && (!opcode3))
11864 /* Branch with exchange. */
11865 record_buf[0] = ARM_PS_REGNUM;
11866 thumb_insn_r->reg_rec_count = 1;
11870 /* Format 8; special data processing insns. */
11871 record_buf[0] = ARM_PS_REGNUM;
11872 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11873 | bits (thumb_insn_r->arm_insn, 0, 2));
11874 thumb_insn_r->reg_rec_count = 2;
11879 /* Format 5; data processing insns. */
11880 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11881 if (bit (thumb_insn_r->arm_insn, 7))
11883 reg_src1 = reg_src1 + 8;
11885 record_buf[0] = ARM_PS_REGNUM;
11886 record_buf[1] = reg_src1;
11887 thumb_insn_r->reg_rec_count = 2;
11890 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11891 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11897 /* Handling opcode 001 insns. */
11900 thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11902 struct regcache *reg_cache = thumb_insn_r->regcache;
11903 uint32_t record_buf[8], record_buf_mem[8];
11905 uint32_t reg_src1 = 0;
11906 uint32_t opcode = 0, immed_5 = 0;
11908 ULONGEST u_regval = 0;
11910 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11915 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11916 record_buf[0] = reg_src1;
11917 thumb_insn_r->reg_rec_count = 1;
11922 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11923 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11924 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11925 record_buf_mem[0] = 4;
11926 record_buf_mem[1] = u_regval + (immed_5 * 4);
11927 thumb_insn_r->mem_rec_count = 1;
11930 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11931 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11937 /* Handling opcode 100 insns. */
11940 thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11942 struct regcache *reg_cache = thumb_insn_r->regcache;
11943 uint32_t record_buf[8], record_buf_mem[8];
11945 uint32_t reg_src1 = 0;
11946 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11948 ULONGEST u_regval = 0;
11950 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11955 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11956 record_buf[0] = reg_src1;
11957 thumb_insn_r->reg_rec_count = 1;
11959 else if (1 == opcode)
11962 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11963 record_buf[0] = reg_src1;
11964 thumb_insn_r->reg_rec_count = 1;
11966 else if (2 == opcode)
11969 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11970 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11971 record_buf_mem[0] = 4;
11972 record_buf_mem[1] = u_regval + (immed_8 * 4);
11973 thumb_insn_r->mem_rec_count = 1;
11975 else if (0 == opcode)
11978 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11979 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11980 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11981 record_buf_mem[0] = 2;
11982 record_buf_mem[1] = u_regval + (immed_5 * 2);
11983 thumb_insn_r->mem_rec_count = 1;
11986 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11987 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11993 /* Handling opcode 101 insns. */
11996 thumb_record_misc (insn_decode_record *thumb_insn_r)
11998 struct regcache *reg_cache = thumb_insn_r->regcache;
12000 uint32_t opcode = 0;
12001 uint32_t register_bits = 0, register_count = 0;
12002 uint32_t index = 0, start_address = 0;
12003 uint32_t record_buf[24], record_buf_mem[48];
12006 ULONGEST u_regval = 0;
12008 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
12010 if (opcode == 0 || opcode == 1)
12012 /* ADR and ADD (SP plus immediate) */
12014 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12015 record_buf[0] = reg_src1;
12016 thumb_insn_r->reg_rec_count = 1;
12020 /* Miscellaneous 16-bit instructions */
12021 uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11);
12026 /* SETEND and CPS */
12029 /* ADD/SUB (SP plus immediate) */
12030 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12031 record_buf[0] = ARM_SP_REGNUM;
12032 thumb_insn_r->reg_rec_count = 1;
12034 case 1: /* fall through */
12035 case 3: /* fall through */
12036 case 9: /* fall through */
12041 /* SXTH, SXTB, UXTH, UXTB */
12042 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
12043 thumb_insn_r->reg_rec_count = 1;
12045 case 4: /* fall through */
12048 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12049 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
12050 while (register_bits)
12052 if (register_bits & 0x00000001)
12054 register_bits = register_bits >> 1;
12056 start_address = u_regval - \
12057 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
12058 thumb_insn_r->mem_rec_count = register_count;
12059 while (register_count)
12061 record_buf_mem[(register_count * 2) - 1] = start_address;
12062 record_buf_mem[(register_count * 2) - 2] = 4;
12063 start_address = start_address + 4;
12066 record_buf[0] = ARM_SP_REGNUM;
12067 thumb_insn_r->reg_rec_count = 1;
12070 /* REV, REV16, REVSH */
12071 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
12072 thumb_insn_r->reg_rec_count = 1;
12074 case 12: /* fall through */
12077 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12078 while (register_bits)
12080 if (register_bits & 0x00000001)
12081 record_buf[index++] = register_count;
12082 register_bits = register_bits >> 1;
12085 record_buf[index++] = ARM_PS_REGNUM;
12086 record_buf[index++] = ARM_SP_REGNUM;
12087 thumb_insn_r->reg_rec_count = index;
12091 /* Handle enhanced software breakpoint insn, BKPT. */
12092 /* CPSR is changed to be executed in ARM state, disabling normal
12093 interrupts, entering abort mode. */
12094 /* According to high vector configuration PC is set. */
12095 /* User hits breakpoint and type reverse, in that case, we need to go back with
12096 previous CPSR and Program Counter. */
12097 record_buf[0] = ARM_PS_REGNUM;
12098 record_buf[1] = ARM_LR_REGNUM;
12099 thumb_insn_r->reg_rec_count = 2;
12100 /* We need to save SPSR value, which is not yet done. */
12101 printf_unfiltered (_("Process record does not support instruction "
12102 "0x%0x at address %s.\n"),
12103 thumb_insn_r->arm_insn,
12104 paddress (thumb_insn_r->gdbarch,
12105 thumb_insn_r->this_addr));
12109 /* If-Then, and hints */
12116 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12117 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12123 /* Handling opcode 110 insns. */
12126 thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12128 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12129 struct regcache *reg_cache = thumb_insn_r->regcache;
12131 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12132 uint32_t reg_src1 = 0;
12133 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12134 uint32_t index = 0, start_address = 0;
12135 uint32_t record_buf[24], record_buf_mem[48];
12137 ULONGEST u_regval = 0;
12139 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12140 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12146 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12148 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12149 while (register_bits)
12151 if (register_bits & 0x00000001)
12152 record_buf[index++] = register_count;
12153 register_bits = register_bits >> 1;
12156 record_buf[index++] = reg_src1;
12157 thumb_insn_r->reg_rec_count = index;
12159 else if (0 == opcode2)
12161 /* It handles both STMIA. */
12162 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12164 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12165 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12166 while (register_bits)
12168 if (register_bits & 0x00000001)
12170 register_bits = register_bits >> 1;
12172 start_address = u_regval;
12173 thumb_insn_r->mem_rec_count = register_count;
12174 while (register_count)
12176 record_buf_mem[(register_count * 2) - 1] = start_address;
12177 record_buf_mem[(register_count * 2) - 2] = 4;
12178 start_address = start_address + 4;
12182 else if (0x1F == opcode1)
12184 /* Handle arm syscall insn. */
12185 if (tdep->arm_syscall_record != NULL)
12187 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12188 ret = tdep->arm_syscall_record (reg_cache, u_regval);
12192 printf_unfiltered (_("no syscall record support\n"));
12197 /* B (1), conditional branch is automatically taken care in process_record,
12198 as PC is saved there. */
12200 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12201 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12207 /* Handling opcode 111 insns. */
12210 thumb_record_branch (insn_decode_record *thumb_insn_r)
12212 uint32_t record_buf[8];
12213 uint32_t bits_h = 0;
12215 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12217 if (2 == bits_h || 3 == bits_h)
12220 record_buf[0] = ARM_LR_REGNUM;
12221 thumb_insn_r->reg_rec_count = 1;
12223 else if (1 == bits_h)
12226 record_buf[0] = ARM_PS_REGNUM;
12227 record_buf[1] = ARM_LR_REGNUM;
12228 thumb_insn_r->reg_rec_count = 2;
12231 /* B(2) is automatically taken care in process_record, as PC is
12234 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12239 /* Handler for thumb2 load/store multiple instructions. */
12242 thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12244 struct regcache *reg_cache = thumb2_insn_r->regcache;
12246 uint32_t reg_rn, op;
12247 uint32_t register_bits = 0, register_count = 0;
12248 uint32_t index = 0, start_address = 0;
12249 uint32_t record_buf[24], record_buf_mem[48];
12251 ULONGEST u_regval = 0;
12253 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12254 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12256 if (0 == op || 3 == op)
12258 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12260 /* Handle RFE instruction. */
12261 record_buf[0] = ARM_PS_REGNUM;
12262 thumb2_insn_r->reg_rec_count = 1;
12266 /* Handle SRS instruction after reading banked SP. */
12267 return arm_record_unsupported_insn (thumb2_insn_r);
12270 else if (1 == op || 2 == op)
12272 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12274 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12275 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12276 while (register_bits)
12278 if (register_bits & 0x00000001)
12279 record_buf[index++] = register_count;
12282 register_bits = register_bits >> 1;
12284 record_buf[index++] = reg_rn;
12285 record_buf[index++] = ARM_PS_REGNUM;
12286 thumb2_insn_r->reg_rec_count = index;
12290 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12291 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12292 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12293 while (register_bits)
12295 if (register_bits & 0x00000001)
12298 register_bits = register_bits >> 1;
12303 /* Start address calculation for LDMDB/LDMEA. */
12304 start_address = u_regval;
12308 /* Start address calculation for LDMDB/LDMEA. */
12309 start_address = u_regval - register_count * 4;
12312 thumb2_insn_r->mem_rec_count = register_count;
12313 while (register_count)
12315 record_buf_mem[register_count * 2 - 1] = start_address;
12316 record_buf_mem[register_count * 2 - 2] = 4;
12317 start_address = start_address + 4;
12320 record_buf[0] = reg_rn;
12321 record_buf[1] = ARM_PS_REGNUM;
12322 thumb2_insn_r->reg_rec_count = 2;
12326 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12328 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12330 return ARM_RECORD_SUCCESS;
12333 /* Handler for thumb2 load/store (dual/exclusive) and table branch
12337 thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12339 struct regcache *reg_cache = thumb2_insn_r->regcache;
12341 uint32_t reg_rd, reg_rn, offset_imm;
12342 uint32_t reg_dest1, reg_dest2;
12343 uint32_t address, offset_addr;
12344 uint32_t record_buf[8], record_buf_mem[8];
12345 uint32_t op1, op2, op3;
12347 ULONGEST u_regval[2];
12349 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12350 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12351 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12353 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12355 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12357 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12358 record_buf[0] = reg_dest1;
12359 record_buf[1] = ARM_PS_REGNUM;
12360 thumb2_insn_r->reg_rec_count = 2;
12363 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12365 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12366 record_buf[2] = reg_dest2;
12367 thumb2_insn_r->reg_rec_count = 3;
12372 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12373 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12375 if (0 == op1 && 0 == op2)
12377 /* Handle STREX. */
12378 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12379 address = u_regval[0] + (offset_imm * 4);
12380 record_buf_mem[0] = 4;
12381 record_buf_mem[1] = address;
12382 thumb2_insn_r->mem_rec_count = 1;
12383 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12384 record_buf[0] = reg_rd;
12385 thumb2_insn_r->reg_rec_count = 1;
12387 else if (1 == op1 && 0 == op2)
12389 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12390 record_buf[0] = reg_rd;
12391 thumb2_insn_r->reg_rec_count = 1;
12392 address = u_regval[0];
12393 record_buf_mem[1] = address;
12397 /* Handle STREXB. */
12398 record_buf_mem[0] = 1;
12399 thumb2_insn_r->mem_rec_count = 1;
12403 /* Handle STREXH. */
12404 record_buf_mem[0] = 2 ;
12405 thumb2_insn_r->mem_rec_count = 1;
12409 /* Handle STREXD. */
12410 address = u_regval[0];
12411 record_buf_mem[0] = 4;
12412 record_buf_mem[2] = 4;
12413 record_buf_mem[3] = address + 4;
12414 thumb2_insn_r->mem_rec_count = 2;
12419 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12421 if (bit (thumb2_insn_r->arm_insn, 24))
12423 if (bit (thumb2_insn_r->arm_insn, 23))
12424 offset_addr = u_regval[0] + (offset_imm * 4);
12426 offset_addr = u_regval[0] - (offset_imm * 4);
12428 address = offset_addr;
12431 address = u_regval[0];
12433 record_buf_mem[0] = 4;
12434 record_buf_mem[1] = address;
12435 record_buf_mem[2] = 4;
12436 record_buf_mem[3] = address + 4;
12437 thumb2_insn_r->mem_rec_count = 2;
12438 record_buf[0] = reg_rn;
12439 thumb2_insn_r->reg_rec_count = 1;
12443 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12445 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12447 return ARM_RECORD_SUCCESS;
12450 /* Handler for thumb2 data processing (shift register and modified immediate)
12454 thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12456 uint32_t reg_rd, op;
12457 uint32_t record_buf[8];
12459 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12460 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12462 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12464 record_buf[0] = ARM_PS_REGNUM;
12465 thumb2_insn_r->reg_rec_count = 1;
12469 record_buf[0] = reg_rd;
12470 record_buf[1] = ARM_PS_REGNUM;
12471 thumb2_insn_r->reg_rec_count = 2;
12474 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12476 return ARM_RECORD_SUCCESS;
12479 /* Generic handler for thumb2 instructions which effect destination and PS
12483 thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12486 uint32_t record_buf[8];
12488 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12490 record_buf[0] = reg_rd;
12491 record_buf[1] = ARM_PS_REGNUM;
12492 thumb2_insn_r->reg_rec_count = 2;
12494 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12496 return ARM_RECORD_SUCCESS;
12499 /* Handler for thumb2 branch and miscellaneous control instructions. */
12502 thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12504 uint32_t op, op1, op2;
12505 uint32_t record_buf[8];
12507 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12508 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12509 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12511 /* Handle MSR insn. */
12512 if (!(op1 & 0x2) && 0x38 == op)
12516 /* CPSR is going to be changed. */
12517 record_buf[0] = ARM_PS_REGNUM;
12518 thumb2_insn_r->reg_rec_count = 1;
12522 arm_record_unsupported_insn(thumb2_insn_r);
12526 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12529 record_buf[0] = ARM_PS_REGNUM;
12530 record_buf[1] = ARM_LR_REGNUM;
12531 thumb2_insn_r->reg_rec_count = 2;
12534 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12536 return ARM_RECORD_SUCCESS;
12539 /* Handler for thumb2 store single data item instructions. */
12542 thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12544 struct regcache *reg_cache = thumb2_insn_r->regcache;
12546 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12547 uint32_t address, offset_addr;
12548 uint32_t record_buf[8], record_buf_mem[8];
12551 ULONGEST u_regval[2];
12553 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12554 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12555 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12556 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12558 if (bit (thumb2_insn_r->arm_insn, 23))
12561 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12562 offset_addr = u_regval[0] + offset_imm;
12563 address = offset_addr;
12568 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12570 /* Handle STRB (register). */
12571 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12572 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12573 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12574 offset_addr = u_regval[1] << shift_imm;
12575 address = u_regval[0] + offset_addr;
12579 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12580 if (bit (thumb2_insn_r->arm_insn, 10))
12582 if (bit (thumb2_insn_r->arm_insn, 9))
12583 offset_addr = u_regval[0] + offset_imm;
12585 offset_addr = u_regval[0] - offset_imm;
12587 address = offset_addr;
12590 address = u_regval[0];
12596 /* Store byte instructions. */
12599 record_buf_mem[0] = 1;
12601 /* Store half word instructions. */
12604 record_buf_mem[0] = 2;
12606 /* Store word instructions. */
12609 record_buf_mem[0] = 4;
12613 gdb_assert_not_reached ("no decoding pattern found");
12617 record_buf_mem[1] = address;
12618 thumb2_insn_r->mem_rec_count = 1;
12619 record_buf[0] = reg_rn;
12620 thumb2_insn_r->reg_rec_count = 1;
12622 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12624 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12626 return ARM_RECORD_SUCCESS;
12629 /* Handler for thumb2 load memory hints instructions. */
12632 thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12634 uint32_t record_buf[8];
12635 uint32_t reg_rt, reg_rn;
12637 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12638 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12640 if (ARM_PC_REGNUM != reg_rt)
12642 record_buf[0] = reg_rt;
12643 record_buf[1] = reg_rn;
12644 record_buf[2] = ARM_PS_REGNUM;
12645 thumb2_insn_r->reg_rec_count = 3;
12647 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12649 return ARM_RECORD_SUCCESS;
12652 return ARM_RECORD_FAILURE;
12655 /* Handler for thumb2 load word instructions. */
12658 thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12660 uint32_t record_buf[8];
12662 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12663 record_buf[1] = ARM_PS_REGNUM;
12664 thumb2_insn_r->reg_rec_count = 2;
12666 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12668 return ARM_RECORD_SUCCESS;
12671 /* Handler for thumb2 long multiply, long multiply accumulate, and
12672 divide instructions. */
12675 thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12677 uint32_t opcode1 = 0, opcode2 = 0;
12678 uint32_t record_buf[8];
12680 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12681 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12683 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12685 /* Handle SMULL, UMULL, SMULAL. */
12686 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12687 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12688 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12689 record_buf[2] = ARM_PS_REGNUM;
12690 thumb2_insn_r->reg_rec_count = 3;
12692 else if (1 == opcode1 || 3 == opcode2)
12694 /* Handle SDIV and UDIV. */
12695 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12696 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12697 record_buf[2] = ARM_PS_REGNUM;
12698 thumb2_insn_r->reg_rec_count = 3;
12701 return ARM_RECORD_FAILURE;
12703 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12705 return ARM_RECORD_SUCCESS;
12708 /* Record handler for thumb32 coprocessor instructions. */
12711 thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12713 if (bit (thumb2_insn_r->arm_insn, 25))
12714 return arm_record_coproc_data_proc (thumb2_insn_r);
12716 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12719 /* Record handler for advance SIMD structure load/store instructions. */
12722 thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12724 struct regcache *reg_cache = thumb2_insn_r->regcache;
12725 uint32_t l_bit, a_bit, b_bits;
12726 uint32_t record_buf[128], record_buf_mem[128];
12727 uint32_t reg_rn, reg_vd, address, f_elem;
12728 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12731 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12732 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12733 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12734 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12735 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12736 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12737 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
12738 f_elem = 8 / f_ebytes;
12742 ULONGEST u_regval = 0;
12743 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12744 address = u_regval;
12749 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12751 if (b_bits == 0x07)
12753 else if (b_bits == 0x0a)
12755 else if (b_bits == 0x06)
12757 else if (b_bits == 0x02)
12762 for (index_r = 0; index_r < bf_regs; index_r++)
12764 for (index_e = 0; index_e < f_elem; index_e++)
12766 record_buf_mem[index_m++] = f_ebytes;
12767 record_buf_mem[index_m++] = address;
12768 address = address + f_ebytes;
12769 thumb2_insn_r->mem_rec_count += 1;
12774 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12776 if (b_bits == 0x09 || b_bits == 0x08)
12778 else if (b_bits == 0x03)
12783 for (index_r = 0; index_r < bf_regs; index_r++)
12784 for (index_e = 0; index_e < f_elem; index_e++)
12786 for (loop_t = 0; loop_t < 2; loop_t++)
12788 record_buf_mem[index_m++] = f_ebytes;
12789 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12790 thumb2_insn_r->mem_rec_count += 1;
12792 address = address + (2 * f_ebytes);
12796 else if ((b_bits & 0x0e) == 0x04)
12798 for (index_e = 0; index_e < f_elem; index_e++)
12800 for (loop_t = 0; loop_t < 3; loop_t++)
12802 record_buf_mem[index_m++] = f_ebytes;
12803 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12804 thumb2_insn_r->mem_rec_count += 1;
12806 address = address + (3 * f_ebytes);
12810 else if (!(b_bits & 0x0e))
12812 for (index_e = 0; index_e < f_elem; index_e++)
12814 for (loop_t = 0; loop_t < 4; loop_t++)
12816 record_buf_mem[index_m++] = f_ebytes;
12817 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12818 thumb2_insn_r->mem_rec_count += 1;
12820 address = address + (4 * f_ebytes);
12826 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12828 if (bft_size == 0x00)
12830 else if (bft_size == 0x01)
12832 else if (bft_size == 0x02)
12838 if (!(b_bits & 0x0b) || b_bits == 0x08)
12839 thumb2_insn_r->mem_rec_count = 1;
12841 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12842 thumb2_insn_r->mem_rec_count = 2;
12844 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12845 thumb2_insn_r->mem_rec_count = 3;
12847 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12848 thumb2_insn_r->mem_rec_count = 4;
12850 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12852 record_buf_mem[index_m] = f_ebytes;
12853 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12862 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12863 thumb2_insn_r->reg_rec_count = 1;
12865 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12866 thumb2_insn_r->reg_rec_count = 2;
12868 else if ((b_bits & 0x0e) == 0x04)
12869 thumb2_insn_r->reg_rec_count = 3;
12871 else if (!(b_bits & 0x0e))
12872 thumb2_insn_r->reg_rec_count = 4;
12877 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12878 thumb2_insn_r->reg_rec_count = 1;
12880 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12881 thumb2_insn_r->reg_rec_count = 2;
12883 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12884 thumb2_insn_r->reg_rec_count = 3;
12886 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12887 thumb2_insn_r->reg_rec_count = 4;
12889 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12890 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12894 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12896 record_buf[index_r] = reg_rn;
12897 thumb2_insn_r->reg_rec_count += 1;
12900 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12902 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12907 /* Decodes thumb2 instruction type and invokes its record handler. */
12909 static unsigned int
12910 thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12912 uint32_t op, op1, op2;
12914 op = bit (thumb2_insn_r->arm_insn, 15);
12915 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12916 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12920 if (!(op2 & 0x64 ))
12922 /* Load/store multiple instruction. */
12923 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12925 else if ((op2 & 0x64) == 0x4)
12927 /* Load/store (dual/exclusive) and table branch instruction. */
12928 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12930 else if ((op2 & 0x60) == 0x20)
12932 /* Data-processing (shifted register). */
12933 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12935 else if (op2 & 0x40)
12937 /* Co-processor instructions. */
12938 return thumb2_record_coproc_insn (thumb2_insn_r);
12941 else if (op1 == 0x02)
12945 /* Branches and miscellaneous control instructions. */
12946 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12948 else if (op2 & 0x20)
12950 /* Data-processing (plain binary immediate) instruction. */
12951 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12955 /* Data-processing (modified immediate). */
12956 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12959 else if (op1 == 0x03)
12961 if (!(op2 & 0x71 ))
12963 /* Store single data item. */
12964 return thumb2_record_str_single_data (thumb2_insn_r);
12966 else if (!((op2 & 0x71) ^ 0x10))
12968 /* Advanced SIMD or structure load/store instructions. */
12969 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
12971 else if (!((op2 & 0x67) ^ 0x01))
12973 /* Load byte, memory hints instruction. */
12974 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12976 else if (!((op2 & 0x67) ^ 0x03))
12978 /* Load halfword, memory hints instruction. */
12979 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12981 else if (!((op2 & 0x67) ^ 0x05))
12983 /* Load word instruction. */
12984 return thumb2_record_ld_word (thumb2_insn_r);
12986 else if (!((op2 & 0x70) ^ 0x20))
12988 /* Data-processing (register) instruction. */
12989 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12991 else if (!((op2 & 0x78) ^ 0x30))
12993 /* Multiply, multiply accumulate, abs diff instruction. */
12994 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12996 else if (!((op2 & 0x78) ^ 0x38))
12998 /* Long multiply, long multiply accumulate, and divide. */
12999 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
13001 else if (op2 & 0x40)
13003 /* Co-processor instructions. */
13004 return thumb2_record_coproc_insn (thumb2_insn_r);
13012 /* Abstract memory reader. */
13014 class abstract_memory_reader
13017 /* Read LEN bytes of target memory at address MEMADDR, placing the
13018 results in GDB's memory at BUF. Return true on success. */
13020 virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0;
13023 /* Instruction reader from real target. */
13025 class instruction_reader : public abstract_memory_reader
13028 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) override
13030 if (target_read_memory (memaddr, buf, len))
13039 /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
13040 and positive val on fauilure. */
13043 extract_arm_insn (abstract_memory_reader& reader,
13044 insn_decode_record *insn_record, uint32_t insn_size)
13046 gdb_byte buf[insn_size];
13048 memset (&buf[0], 0, insn_size);
13050 if (!reader.read (insn_record->this_addr, buf, insn_size))
13052 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
13054 gdbarch_byte_order_for_code (insn_record->gdbarch));
13058 typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
13060 /* Decode arm/thumb insn depending on condition cods and opcodes; and
13064 decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record,
13065 record_type_t record_type, uint32_t insn_size)
13068 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
13070 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
13072 arm_record_data_proc_misc_ld_str, /* 000. */
13073 arm_record_data_proc_imm, /* 001. */
13074 arm_record_ld_st_imm_offset, /* 010. */
13075 arm_record_ld_st_reg_offset, /* 011. */
13076 arm_record_ld_st_multiple, /* 100. */
13077 arm_record_b_bl, /* 101. */
13078 arm_record_asimd_vfp_coproc, /* 110. */
13079 arm_record_coproc_data_proc /* 111. */
13082 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
13084 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
13086 thumb_record_shift_add_sub, /* 000. */
13087 thumb_record_add_sub_cmp_mov, /* 001. */
13088 thumb_record_ld_st_reg_offset, /* 010. */
13089 thumb_record_ld_st_imm_offset, /* 011. */
13090 thumb_record_ld_st_stack, /* 100. */
13091 thumb_record_misc, /* 101. */
13092 thumb_record_ldm_stm_swi, /* 110. */
13093 thumb_record_branch /* 111. */
13096 uint32_t ret = 0; /* return value: negative:failure 0:success. */
13097 uint32_t insn_id = 0;
13099 if (extract_arm_insn (reader, arm_record, insn_size))
13103 printf_unfiltered (_("Process record: error reading memory at "
13104 "addr %s len = %d.\n"),
13105 paddress (arm_record->gdbarch,
13106 arm_record->this_addr), insn_size);
13110 else if (ARM_RECORD == record_type)
13112 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
13113 insn_id = bits (arm_record->arm_insn, 25, 27);
13115 if (arm_record->cond == 0xf)
13116 ret = arm_record_extension_space (arm_record);
13119 /* If this insn has fallen into extension space
13120 then we need not decode it anymore. */
13121 ret = arm_handle_insn[insn_id] (arm_record);
13123 if (ret != ARM_RECORD_SUCCESS)
13125 arm_record_unsupported_insn (arm_record);
13129 else if (THUMB_RECORD == record_type)
13131 /* As thumb does not have condition codes, we set negative. */
13132 arm_record->cond = -1;
13133 insn_id = bits (arm_record->arm_insn, 13, 15);
13134 ret = thumb_handle_insn[insn_id] (arm_record);
13135 if (ret != ARM_RECORD_SUCCESS)
13137 arm_record_unsupported_insn (arm_record);
13141 else if (THUMB2_RECORD == record_type)
13143 /* As thumb does not have condition codes, we set negative. */
13144 arm_record->cond = -1;
13146 /* Swap first half of 32bit thumb instruction with second half. */
13147 arm_record->arm_insn
13148 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
13150 ret = thumb2_record_decode_insn_handler (arm_record);
13152 if (ret != ARM_RECORD_SUCCESS)
13154 arm_record_unsupported_insn (arm_record);
13160 /* Throw assertion. */
13161 gdb_assert_not_reached ("not a valid instruction, could not decode");
13168 namespace selftests {
13170 /* Provide both 16-bit and 32-bit thumb instructions. */
13172 class instruction_reader_thumb : public abstract_memory_reader
13175 template<size_t SIZE>
13176 instruction_reader_thumb (enum bfd_endian endian,
13177 const uint16_t (&insns)[SIZE])
13178 : m_endian (endian), m_insns (insns), m_insns_size (SIZE)
13181 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) override
13183 SELF_CHECK (len == 4 || len == 2);
13184 SELF_CHECK (memaddr % 2 == 0);
13185 SELF_CHECK ((memaddr / 2) < m_insns_size);
13187 store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]);
13190 store_unsigned_integer (&buf[2], 2, m_endian,
13191 m_insns[memaddr / 2 + 1]);
13197 enum bfd_endian m_endian;
13198 const uint16_t *m_insns;
13199 size_t m_insns_size;
13203 arm_record_test (void)
13205 struct gdbarch_info info;
13206 gdbarch_info_init (&info);
13207 info.bfd_arch_info = bfd_scan_arch ("arm");
13209 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
13211 SELF_CHECK (gdbarch != NULL);
13213 /* 16-bit Thumb instructions. */
13215 insn_decode_record arm_record;
13217 memset (&arm_record, 0, sizeof (insn_decode_record));
13218 arm_record.gdbarch = gdbarch;
13220 static const uint16_t insns[] = {
13221 /* db b2 uxtb r3, r3 */
13223 /* cd 58 ldr r5, [r1, r3] */
13227 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13228 instruction_reader_thumb reader (endian, insns);
13229 int ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13230 THUMB_INSN_SIZE_BYTES);
13232 SELF_CHECK (ret == 0);
13233 SELF_CHECK (arm_record.mem_rec_count == 0);
13234 SELF_CHECK (arm_record.reg_rec_count == 1);
13235 SELF_CHECK (arm_record.arm_regs[0] == 3);
13237 arm_record.this_addr += 2;
13238 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13239 THUMB_INSN_SIZE_BYTES);
13241 SELF_CHECK (ret == 0);
13242 SELF_CHECK (arm_record.mem_rec_count == 0);
13243 SELF_CHECK (arm_record.reg_rec_count == 1);
13244 SELF_CHECK (arm_record.arm_regs[0] == 5);
13247 /* 32-bit Thumb-2 instructions. */
13249 insn_decode_record arm_record;
13251 memset (&arm_record, 0, sizeof (insn_decode_record));
13252 arm_record.gdbarch = gdbarch;
13254 static const uint16_t insns[] = {
13255 /* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */
13259 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13260 instruction_reader_thumb reader (endian, insns);
13261 int ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13262 THUMB2_INSN_SIZE_BYTES);
13264 SELF_CHECK (ret == 0);
13265 SELF_CHECK (arm_record.mem_rec_count == 0);
13266 SELF_CHECK (arm_record.reg_rec_count == 1);
13267 SELF_CHECK (arm_record.arm_regs[0] == 7);
13270 } // namespace selftests
13271 #endif /* GDB_SELF_TEST */
13273 /* Cleans up local record registers and memory allocations. */
13276 deallocate_reg_mem (insn_decode_record *record)
13278 xfree (record->arm_regs);
13279 xfree (record->arm_mems);
13283 /* Parse the current instruction and record the values of the registers and
13284 memory that will be changed in current instruction to record_arch_list".
13285 Return -1 if something is wrong. */
13288 arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13289 CORE_ADDR insn_addr)
13292 uint32_t no_of_rec = 0;
13293 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13294 ULONGEST t_bit = 0, insn_id = 0;
13296 ULONGEST u_regval = 0;
13298 insn_decode_record arm_record;
13300 memset (&arm_record, 0, sizeof (insn_decode_record));
13301 arm_record.regcache = regcache;
13302 arm_record.this_addr = insn_addr;
13303 arm_record.gdbarch = gdbarch;
13306 if (record_debug > 1)
13308 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
13310 paddress (gdbarch, arm_record.this_addr));
13313 instruction_reader reader;
13314 if (extract_arm_insn (reader, &arm_record, 2))
13318 printf_unfiltered (_("Process record: error reading memory at "
13319 "addr %s len = %d.\n"),
13320 paddress (arm_record.gdbarch,
13321 arm_record.this_addr), 2);
13326 /* Check the insn, whether it is thumb or arm one. */
13328 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13329 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13332 if (!(u_regval & t_bit))
13334 /* We are decoding arm insn. */
13335 ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13339 insn_id = bits (arm_record.arm_insn, 11, 15);
13340 /* is it thumb2 insn? */
13341 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
13343 ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13344 THUMB2_INSN_SIZE_BYTES);
13348 /* We are decoding thumb insn. */
13349 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13350 THUMB_INSN_SIZE_BYTES);
13356 /* Record registers. */
13357 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
13358 if (arm_record.arm_regs)
13360 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13362 if (record_full_arch_list_add_reg
13363 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
13367 /* Record memories. */
13368 if (arm_record.arm_mems)
13370 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13372 if (record_full_arch_list_add_mem
13373 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
13374 arm_record.arm_mems[no_of_rec].len))
13379 if (record_full_arch_list_add_end ())
13384 deallocate_reg_mem (&arm_record);