1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdbsupport/gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdbsupport/gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_args_match (struct symbol *, struct value **, int);
102 static struct value *make_array_descriptor (struct type *, struct value *);
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
118 const struct block *);
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
122 static const char *ada_decoded_op_name (enum exp_opcode);
124 static int numeric_type_p (struct type *);
126 static int integer_type_p (struct type *);
128 static int scalar_type_p (struct type *);
130 static int discrete_type_p (struct type *);
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
135 static struct type *ada_find_parallel_type_with_name (struct type *,
138 static int is_dynamic_field (struct type *, int);
140 static struct type *to_fixed_variant_branch_type (struct type *,
142 CORE_ADDR, struct value *);
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
146 static struct type *to_fixed_range_type (struct type *, struct value *);
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
151 static struct value *unwrap_value (struct value *);
153 static struct type *constrained_packed_array_type (struct type *, long *);
155 static struct type *decode_constrained_packed_array_type (struct type *);
157 static long decode_packed_array_bitsize (struct type *);
159 static struct value *decode_constrained_packed_array (struct value *);
161 static int ada_is_unconstrained_packed_array_type (struct type *);
163 static struct value *value_subscript_packed (struct value *, int,
166 static struct value *coerce_unspec_val_to_type (struct value *,
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
171 static int equiv_types (struct type *, struct type *);
173 static int is_name_suffix (const char *);
175 static int advance_wild_match (const char **, const char *, char);
177 static bool wild_match (const char *name, const char *patn);
179 static struct value *ada_coerce_ref (struct value *);
181 static LONGEST pos_atr (struct value *);
183 static struct value *val_atr (struct type *, LONGEST);
185 static struct symbol *standard_lookup (const char *, const struct block *,
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
198 static int ada_is_direct_array_type (struct type *);
200 static struct value *ada_index_struct_field (int, struct value *, int,
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
206 static struct type *ada_find_any_type (const char *name);
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
213 /* The character set used for source files. */
214 static const char *ada_source_charset;
216 /* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218 static const char ada_utf8[] = "UTF-8";
220 /* Each entry in the UTF-32 case-folding table is of this form. */
223 /* The start and end, inclusive, of this range of codepoints. */
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
232 bool operator< (uint32_t val) const
238 static const utf8_entry ada_case_fold[] =
240 #include "ada-casefold.h"
245 /* The result of a symbol lookup to be stored in our symbol cache. */
249 /* The name used to perform the lookup. */
251 /* The namespace used during the lookup. */
253 /* The symbol returned by the lookup, or NULL if no matching symbol
256 /* The block where the symbol was found, or NULL if no matching
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
263 /* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
272 #define HASH_SIZE 1009
274 struct ada_symbol_cache
276 /* An obstack used to store the entries in our cache. */
277 struct auto_obstack cache_space;
279 /* The root of the hash table used to implement our symbol cache. */
280 struct cache_entry *root[HASH_SIZE] {};
283 static const char ada_completer_word_break_characters[] =
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
301 static const char * const known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 static const char * const known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 /* Maintenance-related settings for this module. */
311 static struct cmd_list_element *maint_set_ada_cmdlist;
312 static struct cmd_list_element *maint_show_ada_cmdlist;
314 /* The "maintenance ada set/show ignore-descriptive-type" value. */
316 static bool ada_ignore_descriptive_types_p = false;
318 /* Inferior-specific data. */
320 /* Per-inferior data for this module. */
322 struct ada_inferior_data
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
328 struct type *tsd_type = nullptr;
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
333 const struct exception_support_info *exception_info = nullptr;
336 /* Our key to this module's inferior data. */
337 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
339 /* Return our inferior data for the given inferior (INF).
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
347 static struct ada_inferior_data *
348 get_ada_inferior_data (struct inferior *inf)
350 struct ada_inferior_data *data;
352 data = ada_inferior_data.get (inf);
354 data = ada_inferior_data.emplace (inf);
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
363 ada_inferior_exit (struct inferior *inf)
365 ada_inferior_data.clear (inf);
369 /* program-space-specific data. */
371 /* This module's per-program-space data. */
372 struct ada_pspace_data
374 /* The Ada symbol cache. */
375 std::unique_ptr<ada_symbol_cache> sym_cache;
378 /* Key to our per-program-space data. */
379 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
381 /* Return this module's data for the given program space (PSPACE).
382 If not is found, add a zero'ed one now.
384 This function always returns a valid object. */
386 static struct ada_pspace_data *
387 get_ada_pspace_data (struct program_space *pspace)
389 struct ada_pspace_data *data;
391 data = ada_pspace_data_handle.get (pspace);
393 data = ada_pspace_data_handle.emplace (pspace);
400 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
401 all typedef layers have been peeled. Otherwise, return TYPE.
403 Normally, we really expect a typedef type to only have 1 typedef layer.
404 In other words, we really expect the target type of a typedef type to be
405 a non-typedef type. This is particularly true for Ada units, because
406 the language does not have a typedef vs not-typedef distinction.
407 In that respect, the Ada compiler has been trying to eliminate as many
408 typedef definitions in the debugging information, since they generally
409 do not bring any extra information (we still use typedef under certain
410 circumstances related mostly to the GNAT encoding).
412 Unfortunately, we have seen situations where the debugging information
413 generated by the compiler leads to such multiple typedef layers. For
414 instance, consider the following example with stabs:
416 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
417 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
419 This is an error in the debugging information which causes type
420 pck__float_array___XUP to be defined twice, and the second time,
421 it is defined as a typedef of a typedef.
423 This is on the fringe of legality as far as debugging information is
424 concerned, and certainly unexpected. But it is easy to handle these
425 situations correctly, so we can afford to be lenient in this case. */
428 ada_typedef_target_type (struct type *type)
430 while (type->code () == TYPE_CODE_TYPEDEF)
431 type = TYPE_TARGET_TYPE (type);
435 /* Given DECODED_NAME a string holding a symbol name in its
436 decoded form (ie using the Ada dotted notation), returns
437 its unqualified name. */
440 ada_unqualified_name (const char *decoded_name)
444 /* If the decoded name starts with '<', it means that the encoded
445 name does not follow standard naming conventions, and thus that
446 it is not your typical Ada symbol name. Trying to unqualify it
447 is therefore pointless and possibly erroneous. */
448 if (decoded_name[0] == '<')
451 result = strrchr (decoded_name, '.');
453 result++; /* Skip the dot... */
455 result = decoded_name;
460 /* Return a string starting with '<', followed by STR, and '>'. */
463 add_angle_brackets (const char *str)
465 return string_printf ("<%s>", str);
468 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
469 suffix of FIELD_NAME beginning "___". */
472 field_name_match (const char *field_name, const char *target)
474 int len = strlen (target);
477 (strncmp (field_name, target, len) == 0
478 && (field_name[len] == '\0'
479 || (startswith (field_name + len, "___")
480 && strcmp (field_name + strlen (field_name) - 6,
485 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
486 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
487 and return its index. This function also handles fields whose name
488 have ___ suffixes because the compiler sometimes alters their name
489 by adding such a suffix to represent fields with certain constraints.
490 If the field could not be found, return a negative number if
491 MAYBE_MISSING is set. Otherwise raise an error. */
494 ada_get_field_index (const struct type *type, const char *field_name,
498 struct type *struct_type = check_typedef ((struct type *) type);
500 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
501 if (field_name_match (struct_type->field (fieldno).name (), field_name))
505 error (_("Unable to find field %s in struct %s. Aborting"),
506 field_name, struct_type->name ());
511 /* The length of the prefix of NAME prior to any "___" suffix. */
514 ada_name_prefix_len (const char *name)
520 const char *p = strstr (name, "___");
523 return strlen (name);
529 /* Return non-zero if SUFFIX is a suffix of STR.
530 Return zero if STR is null. */
533 is_suffix (const char *str, const char *suffix)
540 len2 = strlen (suffix);
541 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
544 /* The contents of value VAL, treated as a value of type TYPE. The
545 result is an lval in memory if VAL is. */
547 static struct value *
548 coerce_unspec_val_to_type (struct value *val, struct type *type)
550 type = ada_check_typedef (type);
551 if (value_type (val) == type)
555 struct value *result;
557 if (value_optimized_out (val))
558 result = allocate_optimized_out_value (type);
559 else if (value_lazy (val)
560 /* Be careful not to make a lazy not_lval value. */
561 || (VALUE_LVAL (val) != not_lval
562 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
563 result = allocate_value_lazy (type);
566 result = allocate_value (type);
567 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
569 set_value_component_location (result, val);
570 set_value_bitsize (result, value_bitsize (val));
571 set_value_bitpos (result, value_bitpos (val));
572 if (VALUE_LVAL (result) == lval_memory)
573 set_value_address (result, value_address (val));
578 static const gdb_byte *
579 cond_offset_host (const gdb_byte *valaddr, long offset)
584 return valaddr + offset;
588 cond_offset_target (CORE_ADDR address, long offset)
593 return address + offset;
596 /* Issue a warning (as for the definition of warning in utils.c, but
597 with exactly one argument rather than ...), unless the limit on the
598 number of warnings has passed during the evaluation of the current
601 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
602 provided by "complaint". */
603 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
606 lim_warning (const char *format, ...)
610 va_start (args, format);
611 warnings_issued += 1;
612 if (warnings_issued <= warning_limit)
613 vwarning (format, args);
618 /* Maximum value of a SIZE-byte signed integer type. */
620 max_of_size (int size)
622 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
624 return top_bit | (top_bit - 1);
627 /* Minimum value of a SIZE-byte signed integer type. */
629 min_of_size (int size)
631 return -max_of_size (size) - 1;
634 /* Maximum value of a SIZE-byte unsigned integer type. */
636 umax_of_size (int size)
638 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
640 return top_bit | (top_bit - 1);
643 /* Maximum value of integral type T, as a signed quantity. */
645 max_of_type (struct type *t)
647 if (t->is_unsigned ())
648 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
650 return max_of_size (TYPE_LENGTH (t));
653 /* Minimum value of integral type T, as a signed quantity. */
655 min_of_type (struct type *t)
657 if (t->is_unsigned ())
660 return min_of_size (TYPE_LENGTH (t));
663 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
665 ada_discrete_type_high_bound (struct type *type)
667 type = resolve_dynamic_type (type, {}, 0);
668 switch (type->code ())
670 case TYPE_CODE_RANGE:
672 const dynamic_prop &high = type->bounds ()->high;
674 if (high.kind () == PROP_CONST)
675 return high.const_val ();
678 gdb_assert (high.kind () == PROP_UNDEFINED);
680 /* This happens when trying to evaluate a type's dynamic bound
681 without a live target. There is nothing relevant for us to
682 return here, so return 0. */
687 return type->field (type->num_fields () - 1).loc_enumval ();
692 return max_of_type (type);
694 error (_("Unexpected type in ada_discrete_type_high_bound."));
698 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
700 ada_discrete_type_low_bound (struct type *type)
702 type = resolve_dynamic_type (type, {}, 0);
703 switch (type->code ())
705 case TYPE_CODE_RANGE:
707 const dynamic_prop &low = type->bounds ()->low;
709 if (low.kind () == PROP_CONST)
710 return low.const_val ();
713 gdb_assert (low.kind () == PROP_UNDEFINED);
715 /* This happens when trying to evaluate a type's dynamic bound
716 without a live target. There is nothing relevant for us to
717 return here, so return 0. */
722 return type->field (0).loc_enumval ();
727 return min_of_type (type);
729 error (_("Unexpected type in ada_discrete_type_low_bound."));
733 /* The identity on non-range types. For range types, the underlying
734 non-range scalar type. */
737 get_base_type (struct type *type)
739 while (type != NULL && type->code () == TYPE_CODE_RANGE)
741 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
743 type = TYPE_TARGET_TYPE (type);
748 /* Return a decoded version of the given VALUE. This means returning
749 a value whose type is obtained by applying all the GNAT-specific
750 encodings, making the resulting type a static but standard description
751 of the initial type. */
754 ada_get_decoded_value (struct value *value)
756 struct type *type = ada_check_typedef (value_type (value));
758 if (ada_is_array_descriptor_type (type)
759 || (ada_is_constrained_packed_array_type (type)
760 && type->code () != TYPE_CODE_PTR))
762 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
763 value = ada_coerce_to_simple_array_ptr (value);
765 value = ada_coerce_to_simple_array (value);
768 value = ada_to_fixed_value (value);
773 /* Same as ada_get_decoded_value, but with the given TYPE.
774 Because there is no associated actual value for this type,
775 the resulting type might be a best-effort approximation in
776 the case of dynamic types. */
779 ada_get_decoded_type (struct type *type)
781 type = to_static_fixed_type (type);
782 if (ada_is_constrained_packed_array_type (type))
783 type = ada_coerce_to_simple_array_type (type);
789 /* Language Selection */
791 /* If the main program is in Ada, return language_ada, otherwise return LANG
792 (the main program is in Ada iif the adainit symbol is found). */
795 ada_update_initial_language (enum language lang)
797 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
803 /* If the main procedure is written in Ada, then return its name.
804 The result is good until the next call. Return NULL if the main
805 procedure doesn't appear to be in Ada. */
810 struct bound_minimal_symbol msym;
811 static gdb::unique_xmalloc_ptr<char> main_program_name;
813 /* For Ada, the name of the main procedure is stored in a specific
814 string constant, generated by the binder. Look for that symbol,
815 extract its address, and then read that string. If we didn't find
816 that string, then most probably the main procedure is not written
818 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
820 if (msym.minsym != NULL)
822 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
823 if (main_program_name_addr == 0)
824 error (_("Invalid address for Ada main program name."));
826 main_program_name = target_read_string (main_program_name_addr, 1024);
827 return main_program_name.get ();
830 /* The main procedure doesn't seem to be in Ada. */
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
864 /* If STR is a decoded version of a compiler-provided suffix (like the
865 "[cold]" in "symbol[cold]"), return true. Otherwise, return
869 is_compiler_suffix (const char *str)
871 gdb_assert (*str == '[');
873 while (*str != '\0' && isalpha (*str))
875 /* We accept a missing "]" in order to support completion. */
876 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
879 /* Append a non-ASCII character to RESULT. */
881 append_hex_encoded (std::string &result, uint32_t one_char)
883 if (one_char <= 0xff)
886 result.append (phex (one_char, 1));
888 else if (one_char <= 0xffff)
891 result.append (phex (one_char, 2));
895 result.append ("WW");
896 result.append (phex (one_char, 4));
900 /* Return a string that is a copy of the data in STORAGE, with
901 non-ASCII characters replaced by the appropriate hex encoding. A
902 template is used because, for UTF-8, we actually want to work with
903 UTF-32 codepoints. */
906 copy_and_hex_encode (struct obstack *storage)
908 const T *chars = (T *) obstack_base (storage);
909 int num_chars = obstack_object_size (storage) / sizeof (T);
911 for (int i = 0; i < num_chars; ++i)
913 if (chars[i] <= 0x7f)
915 /* The host character set has to be a superset of ASCII, as
916 are all the other character sets we can use. */
917 result.push_back (chars[i]);
920 append_hex_encoded (result, chars[i]);
925 /* The "encoded" form of DECODED, according to GNAT conventions. If
926 THROW_ERRORS, throw an error if invalid operator name is found.
927 Otherwise, return the empty string in that case. */
930 ada_encode_1 (const char *decoded, bool throw_errors)
935 std::string encoding_buffer;
936 bool saw_non_ascii = false;
937 for (const char *p = decoded; *p != '\0'; p += 1)
939 if ((*p & 0x80) != 0)
940 saw_non_ascii = true;
943 encoding_buffer.append ("__");
944 else if (*p == '[' && is_compiler_suffix (p))
946 encoding_buffer = encoding_buffer + "." + (p + 1);
947 if (encoding_buffer.back () == ']')
948 encoding_buffer.pop_back ();
953 const struct ada_opname_map *mapping;
955 for (mapping = ada_opname_table;
956 mapping->encoded != NULL
957 && !startswith (p, mapping->decoded); mapping += 1)
959 if (mapping->encoded == NULL)
962 error (_("invalid Ada operator name: %s"), p);
966 encoding_buffer.append (mapping->encoded);
970 encoding_buffer.push_back (*p);
973 /* If a non-ASCII character is seen, we must convert it to the
974 appropriate hex form. As this is more expensive, we keep track
975 of whether it is even necessary. */
978 auto_obstack storage;
979 bool is_utf8 = ada_source_charset == ada_utf8;
982 convert_between_encodings
984 is_utf8 ? HOST_UTF32 : ada_source_charset,
985 (const gdb_byte *) encoding_buffer.c_str (),
986 encoding_buffer.length (), 1,
987 &storage, translit_none);
989 catch (const gdb_exception &)
991 static bool warned = false;
993 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
994 might like to know why. */
998 warning (_("charset conversion failure for '%s'.\n"
999 "You may have the wrong value for 'set ada source-charset'."),
1000 encoding_buffer.c_str ());
1003 /* We don't try to recover from errors. */
1004 return encoding_buffer;
1008 return copy_and_hex_encode<uint32_t> (&storage);
1009 return copy_and_hex_encode<gdb_byte> (&storage);
1012 return encoding_buffer;
1015 /* Find the entry for C in the case-folding table. Return nullptr if
1016 the entry does not cover C. */
1017 static const utf8_entry *
1018 find_case_fold_entry (uint32_t c)
1020 auto iter = std::lower_bound (std::begin (ada_case_fold),
1021 std::end (ada_case_fold),
1023 if (iter == std::end (ada_case_fold)
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. If
1032 THROW_ON_ERROR is true, encoding failures will throw an exception
1033 rather than emitting a warning. Result good to next call. */
1036 ada_fold_name (gdb::string_view name, bool throw_on_error = false)
1038 static std::string fold_storage;
1040 if (!name.empty () && name[0] == '\'')
1041 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
1044 /* Why convert to UTF-32 and implement our own case-folding,
1045 rather than convert to wchar_t and use the platform's
1046 functions? I'm glad you asked.
1048 The main problem is that GNAT implements an unusual rule for
1049 case folding. For ASCII letters, letters in single-byte
1050 encodings (such as ISO-8859-*), and Unicode letters that fit
1051 in a single byte (i.e., code point is <= 0xff), the letter is
1052 folded to lower case. Other Unicode letters are folded to
1055 This rule means that the code must be able to examine the
1056 value of the character. And, some hosts do not use Unicode
1057 for wchar_t, so examining the value of such characters is
1059 auto_obstack storage;
1062 convert_between_encodings
1063 (host_charset (), HOST_UTF32,
1064 (const gdb_byte *) name.data (),
1066 &storage, translit_none);
1068 catch (const gdb_exception &)
1073 static bool warned = false;
1075 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1076 might like to know why. */
1080 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1081 "This normally should not happen, please file a bug report."),
1082 gdb::to_string (name).c_str (), host_charset ());
1085 /* We don't try to recover from errors; just return the
1087 fold_storage = gdb::to_string (name);
1088 return fold_storage.c_str ();
1091 bool is_utf8 = ada_source_charset == ada_utf8;
1092 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1093 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1094 for (int i = 0; i < num_chars; ++i)
1096 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1097 if (entry != nullptr)
1099 uint32_t low = chars[i] + entry->lower_delta;
1100 if (!is_utf8 || low <= 0xff)
1103 chars[i] = chars[i] + entry->upper_delta;
1107 /* Now convert back to ordinary characters. */
1108 auto_obstack reconverted;
1111 convert_between_encodings (HOST_UTF32,
1113 (const gdb_byte *) chars,
1114 num_chars * sizeof (uint32_t),
1118 obstack_1grow (&reconverted, '\0');
1119 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1121 catch (const gdb_exception &)
1126 static bool warned = false;
1128 /* Converting back from UTF-32 shouldn't normally fail, but
1129 there are some host encodings without upper/lower
1134 warning (_("could not convert the lower-cased variant of '%s'\n"
1135 "from UTF-32 to the host encoding (%s)."),
1136 gdb::to_string (name).c_str (), host_charset ());
1139 /* We don't try to recover from errors; just return the
1141 fold_storage = gdb::to_string (name);
1145 return fold_storage.c_str ();
1148 /* The "encoded" form of DECODED, according to GNAT conventions. */
1151 ada_encode (const char *decoded)
1153 if (decoded[0] != '<')
1154 decoded = ada_fold_name (decoded);
1155 return ada_encode_1 (decoded, true);
1158 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1161 is_lower_alphanum (const char c)
1163 return (isdigit (c) || (isalpha (c) && islower (c)));
1166 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1167 This function saves in LEN the length of that same symbol name but
1168 without either of these suffixes:
1174 These are suffixes introduced by the compiler for entities such as
1175 nested subprogram for instance, in order to avoid name clashes.
1176 They do not serve any purpose for the debugger. */
1179 ada_remove_trailing_digits (const char *encoded, int *len)
1181 if (*len > 1 && isdigit (encoded[*len - 1]))
1185 while (i > 0 && isdigit (encoded[i]))
1187 if (i >= 0 && encoded[i] == '.')
1189 else if (i >= 0 && encoded[i] == '$')
1191 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1193 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1198 /* Remove the suffix introduced by the compiler for protected object
1202 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1204 /* Remove trailing N. */
1206 /* Protected entry subprograms are broken into two
1207 separate subprograms: The first one is unprotected, and has
1208 a 'N' suffix; the second is the protected version, and has
1209 the 'P' suffix. The second calls the first one after handling
1210 the protection. Since the P subprograms are internally generated,
1211 we leave these names undecoded, giving the user a clue that this
1212 entity is internal. */
1215 && encoded[*len - 1] == 'N'
1216 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1220 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1221 then update *LEN to remove the suffix and return the offset of the
1222 character just past the ".". Otherwise, return -1. */
1225 remove_compiler_suffix (const char *encoded, int *len)
1227 int offset = *len - 1;
1228 while (offset > 0 && isalpha (encoded[offset]))
1230 if (offset > 0 && encoded[offset] == '.')
1238 /* Convert an ASCII hex string to a number. Reads exactly N
1239 characters from STR. Returns true on success, false if one of the
1240 digits was not a hex digit. */
1242 convert_hex (const char *str, int n, uint32_t *out)
1244 uint32_t result = 0;
1246 for (int i = 0; i < n; ++i)
1248 if (!isxdigit (str[i]))
1251 result |= fromhex (str[i]);
1258 /* Convert a wide character from its ASCII hex representation in STR
1259 (consisting of exactly N characters) to the host encoding,
1260 appending the resulting bytes to OUT. If N==2 and the Ada source
1261 charset is not UTF-8, then hex refers to an encoding in the
1262 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1263 Return false and do not modify OUT on conversion failure. */
1265 convert_from_hex_encoded (std::string &out, const char *str, int n)
1269 if (!convert_hex (str, n, &value))
1274 /* In the 'U' case, the hex digits encode the character in the
1275 Ada source charset. However, if the source charset is UTF-8,
1276 this really means it is a single-byte UTF-32 character. */
1277 if (n == 2 && ada_source_charset != ada_utf8)
1279 gdb_byte one_char = (gdb_byte) value;
1281 convert_between_encodings (ada_source_charset, host_charset (),
1283 sizeof (one_char), sizeof (one_char),
1284 &bytes, translit_none);
1287 convert_between_encodings (HOST_UTF32, host_charset (),
1288 (const gdb_byte *) &value,
1289 sizeof (value), sizeof (value),
1290 &bytes, translit_none);
1291 obstack_1grow (&bytes, '\0');
1292 out.append ((const char *) obstack_base (&bytes));
1294 catch (const gdb_exception &)
1296 /* On failure, the caller will just let the encoded form
1297 through, which seems basically reasonable. */
1304 /* See ada-lang.h. */
1307 ada_decode (const char *encoded, bool wrap)
1313 std::string decoded;
1316 /* With function descriptors on PPC64, the value of a symbol named
1317 ".FN", if it exists, is the entry point of the function "FN". */
1318 if (encoded[0] == '.')
1321 /* The name of the Ada main procedure starts with "_ada_".
1322 This prefix is not part of the decoded name, so skip this part
1323 if we see this prefix. */
1324 if (startswith (encoded, "_ada_"))
1327 /* If the name starts with '_', then it is not a properly encoded
1328 name, so do not attempt to decode it. Similarly, if the name
1329 starts with '<', the name should not be decoded. */
1330 if (encoded[0] == '_' || encoded[0] == '<')
1333 len0 = strlen (encoded);
1335 suffix = remove_compiler_suffix (encoded, &len0);
1337 ada_remove_trailing_digits (encoded, &len0);
1338 ada_remove_po_subprogram_suffix (encoded, &len0);
1340 /* Remove the ___X.* suffix if present. Do not forget to verify that
1341 the suffix is located before the current "end" of ENCODED. We want
1342 to avoid re-matching parts of ENCODED that have previously been
1343 marked as discarded (by decrementing LEN0). */
1344 p = strstr (encoded, "___");
1345 if (p != NULL && p - encoded < len0 - 3)
1353 /* Remove any trailing TKB suffix. It tells us that this symbol
1354 is for the body of a task, but that information does not actually
1355 appear in the decoded name. */
1357 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1360 /* Remove any trailing TB suffix. The TB suffix is slightly different
1361 from the TKB suffix because it is used for non-anonymous task
1364 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1367 /* Remove trailing "B" suffixes. */
1368 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1370 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1373 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1375 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1378 while ((i >= 0 && isdigit (encoded[i]))
1379 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1381 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1383 else if (encoded[i] == '$')
1387 /* The first few characters that are not alphabetic are not part
1388 of any encoding we use, so we can copy them over verbatim. */
1390 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1391 decoded.push_back (encoded[i]);
1396 /* Is this a symbol function? */
1397 if (at_start_name && encoded[i] == 'O')
1401 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1403 int op_len = strlen (ada_opname_table[k].encoded);
1404 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1406 && !isalnum (encoded[i + op_len]))
1408 decoded.append (ada_opname_table[k].decoded);
1414 if (ada_opname_table[k].encoded != NULL)
1419 /* Replace "TK__" with "__", which will eventually be translated
1420 into "." (just below). */
1422 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1425 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1426 be translated into "." (just below). These are internal names
1427 generated for anonymous blocks inside which our symbol is nested. */
1429 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1430 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1431 && isdigit (encoded [i+4]))
1435 while (k < len0 && isdigit (encoded[k]))
1436 k++; /* Skip any extra digit. */
1438 /* Double-check that the "__B_{DIGITS}+" sequence we found
1439 is indeed followed by "__". */
1440 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1444 /* Remove _E{DIGITS}+[sb] */
1446 /* Just as for protected object subprograms, there are 2 categories
1447 of subprograms created by the compiler for each entry. The first
1448 one implements the actual entry code, and has a suffix following
1449 the convention above; the second one implements the barrier and
1450 uses the same convention as above, except that the 'E' is replaced
1453 Just as above, we do not decode the name of barrier functions
1454 to give the user a clue that the code he is debugging has been
1455 internally generated. */
1457 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1458 && isdigit (encoded[i+2]))
1462 while (k < len0 && isdigit (encoded[k]))
1466 && (encoded[k] == 'b' || encoded[k] == 's'))
1469 /* Just as an extra precaution, make sure that if this
1470 suffix is followed by anything else, it is a '_'.
1471 Otherwise, we matched this sequence by accident. */
1473 || (k < len0 && encoded[k] == '_'))
1478 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1479 the GNAT front-end in protected object subprograms. */
1482 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1484 /* Backtrack a bit up until we reach either the begining of
1485 the encoded name, or "__". Make sure that we only find
1486 digits or lowercase characters. */
1487 const char *ptr = encoded + i - 1;
1489 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1492 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1496 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1498 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1504 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1506 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1512 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1513 && isxdigit (encoded[i + 2]))
1515 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1522 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1524 /* This is a X[bn]* sequence not separated from the previous
1525 part of the name with a non-alpha-numeric character (in other
1526 words, immediately following an alpha-numeric character), then
1527 verify that it is placed at the end of the encoded name. If
1528 not, then the encoding is not valid and we should abort the
1529 decoding. Otherwise, just skip it, it is used in body-nested
1533 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1537 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1539 /* Replace '__' by '.'. */
1540 decoded.push_back ('.');
1546 /* It's a character part of the decoded name, so just copy it
1548 decoded.push_back (encoded[i]);
1553 /* Decoded names should never contain any uppercase character.
1554 Double-check this, and abort the decoding if we find one. */
1556 for (i = 0; i < decoded.length(); ++i)
1557 if (isupper (decoded[i]) || decoded[i] == ' ')
1560 /* If the compiler added a suffix, append it now. */
1562 decoded = decoded + "[" + &encoded[suffix] + "]";
1570 if (encoded[0] == '<')
1573 decoded = '<' + std::string(encoded) + '>';
1577 /* Table for keeping permanent unique copies of decoded names. Once
1578 allocated, names in this table are never released. While this is a
1579 storage leak, it should not be significant unless there are massive
1580 changes in the set of decoded names in successive versions of a
1581 symbol table loaded during a single session. */
1582 static struct htab *decoded_names_store;
1584 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1585 in the language-specific part of GSYMBOL, if it has not been
1586 previously computed. Tries to save the decoded name in the same
1587 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1588 in any case, the decoded symbol has a lifetime at least that of
1590 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1591 const, but nevertheless modified to a semantically equivalent form
1592 when a decoded name is cached in it. */
1595 ada_decode_symbol (const struct general_symbol_info *arg)
1597 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1598 const char **resultp =
1599 &gsymbol->language_specific.demangled_name;
1601 if (!gsymbol->ada_mangled)
1603 std::string decoded = ada_decode (gsymbol->linkage_name ());
1604 struct obstack *obstack = gsymbol->language_specific.obstack;
1606 gsymbol->ada_mangled = 1;
1608 if (obstack != NULL)
1609 *resultp = obstack_strdup (obstack, decoded.c_str ());
1612 /* Sometimes, we can't find a corresponding objfile, in
1613 which case, we put the result on the heap. Since we only
1614 decode when needed, we hope this usually does not cause a
1615 significant memory leak (FIXME). */
1617 char **slot = (char **) htab_find_slot (decoded_names_store,
1618 decoded.c_str (), INSERT);
1621 *slot = xstrdup (decoded.c_str ());
1633 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1634 generated by the GNAT compiler to describe the index type used
1635 for each dimension of an array, check whether it follows the latest
1636 known encoding. If not, fix it up to conform to the latest encoding.
1637 Otherwise, do nothing. This function also does nothing if
1638 INDEX_DESC_TYPE is NULL.
1640 The GNAT encoding used to describe the array index type evolved a bit.
1641 Initially, the information would be provided through the name of each
1642 field of the structure type only, while the type of these fields was
1643 described as unspecified and irrelevant. The debugger was then expected
1644 to perform a global type lookup using the name of that field in order
1645 to get access to the full index type description. Because these global
1646 lookups can be very expensive, the encoding was later enhanced to make
1647 the global lookup unnecessary by defining the field type as being
1648 the full index type description.
1650 The purpose of this routine is to allow us to support older versions
1651 of the compiler by detecting the use of the older encoding, and by
1652 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1653 we essentially replace each field's meaningless type by the associated
1657 ada_fixup_array_indexes_type (struct type *index_desc_type)
1661 if (index_desc_type == NULL)
1663 gdb_assert (index_desc_type->num_fields () > 0);
1665 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1666 to check one field only, no need to check them all). If not, return
1669 If our INDEX_DESC_TYPE was generated using the older encoding,
1670 the field type should be a meaningless integer type whose name
1671 is not equal to the field name. */
1672 if (index_desc_type->field (0).type ()->name () != NULL
1673 && strcmp (index_desc_type->field (0).type ()->name (),
1674 index_desc_type->field (0).name ()) == 0)
1677 /* Fixup each field of INDEX_DESC_TYPE. */
1678 for (i = 0; i < index_desc_type->num_fields (); i++)
1680 const char *name = index_desc_type->field (i).name ();
1681 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1684 index_desc_type->field (i).set_type (raw_type);
1688 /* The desc_* routines return primitive portions of array descriptors
1691 /* The descriptor or array type, if any, indicated by TYPE; removes
1692 level of indirection, if needed. */
1694 static struct type *
1695 desc_base_type (struct type *type)
1699 type = ada_check_typedef (type);
1700 if (type->code () == TYPE_CODE_TYPEDEF)
1701 type = ada_typedef_target_type (type);
1704 && (type->code () == TYPE_CODE_PTR
1705 || type->code () == TYPE_CODE_REF))
1706 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1711 /* True iff TYPE indicates a "thin" array pointer type. */
1714 is_thin_pntr (struct type *type)
1717 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1718 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1721 /* The descriptor type for thin pointer type TYPE. */
1723 static struct type *
1724 thin_descriptor_type (struct type *type)
1726 struct type *base_type = desc_base_type (type);
1728 if (base_type == NULL)
1730 if (is_suffix (ada_type_name (base_type), "___XVE"))
1734 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1736 if (alt_type == NULL)
1743 /* A pointer to the array data for thin-pointer value VAL. */
1745 static struct value *
1746 thin_data_pntr (struct value *val)
1748 struct type *type = ada_check_typedef (value_type (val));
1749 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1751 data_type = lookup_pointer_type (data_type);
1753 if (type->code () == TYPE_CODE_PTR)
1754 return value_cast (data_type, value_copy (val));
1756 return value_from_longest (data_type, value_address (val));
1759 /* True iff TYPE indicates a "thick" array pointer type. */
1762 is_thick_pntr (struct type *type)
1764 type = desc_base_type (type);
1765 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1766 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1769 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1770 pointer to one, the type of its bounds data; otherwise, NULL. */
1772 static struct type *
1773 desc_bounds_type (struct type *type)
1777 type = desc_base_type (type);
1781 else if (is_thin_pntr (type))
1783 type = thin_descriptor_type (type);
1786 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1788 return ada_check_typedef (r);
1790 else if (type->code () == TYPE_CODE_STRUCT)
1792 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1794 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1799 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1800 one, a pointer to its bounds data. Otherwise NULL. */
1802 static struct value *
1803 desc_bounds (struct value *arr)
1805 struct type *type = ada_check_typedef (value_type (arr));
1807 if (is_thin_pntr (type))
1809 struct type *bounds_type =
1810 desc_bounds_type (thin_descriptor_type (type));
1813 if (bounds_type == NULL)
1814 error (_("Bad GNAT array descriptor"));
1816 /* NOTE: The following calculation is not really kosher, but
1817 since desc_type is an XVE-encoded type (and shouldn't be),
1818 the correct calculation is a real pain. FIXME (and fix GCC). */
1819 if (type->code () == TYPE_CODE_PTR)
1820 addr = value_as_long (arr);
1822 addr = value_address (arr);
1825 value_from_longest (lookup_pointer_type (bounds_type),
1826 addr - TYPE_LENGTH (bounds_type));
1829 else if (is_thick_pntr (type))
1831 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1832 _("Bad GNAT array descriptor"));
1833 struct type *p_bounds_type = value_type (p_bounds);
1836 && p_bounds_type->code () == TYPE_CODE_PTR)
1838 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1840 if (target_type->is_stub ())
1841 p_bounds = value_cast (lookup_pointer_type
1842 (ada_check_typedef (target_type)),
1846 error (_("Bad GNAT array descriptor"));
1854 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1855 position of the field containing the address of the bounds data. */
1858 fat_pntr_bounds_bitpos (struct type *type)
1860 return desc_base_type (type)->field (1).loc_bitpos ();
1863 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1864 size of the field containing the address of the bounds data. */
1867 fat_pntr_bounds_bitsize (struct type *type)
1869 type = desc_base_type (type);
1871 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 1);
1874 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1877 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1878 pointer to one, the type of its array data (a array-with-no-bounds type);
1879 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1882 static struct type *
1883 desc_data_target_type (struct type *type)
1885 type = desc_base_type (type);
1887 /* NOTE: The following is bogus; see comment in desc_bounds. */
1888 if (is_thin_pntr (type))
1889 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1890 else if (is_thick_pntr (type))
1892 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1895 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1896 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1902 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1905 static struct value *
1906 desc_data (struct value *arr)
1908 struct type *type = value_type (arr);
1910 if (is_thin_pntr (type))
1911 return thin_data_pntr (arr);
1912 else if (is_thick_pntr (type))
1913 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1914 _("Bad GNAT array descriptor"));
1920 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1921 position of the field containing the address of the data. */
1924 fat_pntr_data_bitpos (struct type *type)
1926 return desc_base_type (type)->field (0).loc_bitpos ();
1929 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1930 size of the field containing the address of the data. */
1933 fat_pntr_data_bitsize (struct type *type)
1935 type = desc_base_type (type);
1937 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1938 return TYPE_FIELD_BITSIZE (type, 0);
1940 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1943 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1944 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1945 bound, if WHICH is 1. The first bound is I=1. */
1947 static struct value *
1948 desc_one_bound (struct value *bounds, int i, int which)
1950 char bound_name[20];
1951 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1952 which ? 'U' : 'L', i - 1);
1953 return value_struct_elt (&bounds, {}, bound_name, NULL,
1954 _("Bad GNAT array descriptor bounds"));
1957 /* If BOUNDS is an array-bounds structure type, return the bit position
1958 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1959 bound, if WHICH is 1. The first bound is I=1. */
1962 desc_bound_bitpos (struct type *type, int i, int which)
1964 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1967 /* If BOUNDS is an array-bounds structure type, return the bit field size
1968 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1969 bound, if WHICH is 1. The first bound is I=1. */
1972 desc_bound_bitsize (struct type *type, int i, int which)
1974 type = desc_base_type (type);
1976 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1977 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1979 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1982 /* If TYPE is the type of an array-bounds structure, the type of its
1983 Ith bound (numbering from 1). Otherwise, NULL. */
1985 static struct type *
1986 desc_index_type (struct type *type, int i)
1988 type = desc_base_type (type);
1990 if (type->code () == TYPE_CODE_STRUCT)
1992 char bound_name[20];
1993 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1994 return lookup_struct_elt_type (type, bound_name, 1);
2000 /* The number of index positions in the array-bounds type TYPE.
2001 Return 0 if TYPE is NULL. */
2004 desc_arity (struct type *type)
2006 type = desc_base_type (type);
2009 return type->num_fields () / 2;
2013 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2014 an array descriptor type (representing an unconstrained array
2018 ada_is_direct_array_type (struct type *type)
2022 type = ada_check_typedef (type);
2023 return (type->code () == TYPE_CODE_ARRAY
2024 || ada_is_array_descriptor_type (type));
2027 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
2031 ada_is_array_type (struct type *type)
2034 && (type->code () == TYPE_CODE_PTR
2035 || type->code () == TYPE_CODE_REF))
2036 type = TYPE_TARGET_TYPE (type);
2037 return ada_is_direct_array_type (type);
2040 /* Non-zero iff TYPE is a simple array type or pointer to one. */
2043 ada_is_simple_array_type (struct type *type)
2047 type = ada_check_typedef (type);
2048 return (type->code () == TYPE_CODE_ARRAY
2049 || (type->code () == TYPE_CODE_PTR
2050 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
2051 == TYPE_CODE_ARRAY)));
2054 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2057 ada_is_array_descriptor_type (struct type *type)
2059 struct type *data_type = desc_data_target_type (type);
2063 type = ada_check_typedef (type);
2064 return (data_type != NULL
2065 && data_type->code () == TYPE_CODE_ARRAY
2066 && desc_arity (desc_bounds_type (type)) > 0);
2069 /* Non-zero iff type is a partially mal-formed GNAT array
2070 descriptor. FIXME: This is to compensate for some problems with
2071 debugging output from GNAT. Re-examine periodically to see if it
2075 ada_is_bogus_array_descriptor (struct type *type)
2079 && type->code () == TYPE_CODE_STRUCT
2080 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
2081 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
2082 && !ada_is_array_descriptor_type (type);
2086 /* If ARR has a record type in the form of a standard GNAT array descriptor,
2087 (fat pointer) returns the type of the array data described---specifically,
2088 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
2089 in from the descriptor; otherwise, they are left unspecified. If
2090 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2091 returns NULL. The result is simply the type of ARR if ARR is not
2094 static struct type *
2095 ada_type_of_array (struct value *arr, int bounds)
2097 if (ada_is_constrained_packed_array_type (value_type (arr)))
2098 return decode_constrained_packed_array_type (value_type (arr));
2100 if (!ada_is_array_descriptor_type (value_type (arr)))
2101 return value_type (arr);
2105 struct type *array_type =
2106 ada_check_typedef (desc_data_target_type (value_type (arr)));
2108 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2109 TYPE_FIELD_BITSIZE (array_type, 0) =
2110 decode_packed_array_bitsize (value_type (arr));
2116 struct type *elt_type;
2118 struct value *descriptor;
2120 elt_type = ada_array_element_type (value_type (arr), -1);
2121 arity = ada_array_arity (value_type (arr));
2123 if (elt_type == NULL || arity == 0)
2124 return ada_check_typedef (value_type (arr));
2126 descriptor = desc_bounds (arr);
2127 if (value_as_long (descriptor) == 0)
2131 struct type *range_type = alloc_type_copy (value_type (arr));
2132 struct type *array_type = alloc_type_copy (value_type (arr));
2133 struct value *low = desc_one_bound (descriptor, arity, 0);
2134 struct value *high = desc_one_bound (descriptor, arity, 1);
2137 create_static_range_type (range_type, value_type (low),
2138 longest_to_int (value_as_long (low)),
2139 longest_to_int (value_as_long (high)));
2140 elt_type = create_array_type (array_type, elt_type, range_type);
2142 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2144 /* We need to store the element packed bitsize, as well as
2145 recompute the array size, because it was previously
2146 computed based on the unpacked element size. */
2147 LONGEST lo = value_as_long (low);
2148 LONGEST hi = value_as_long (high);
2150 TYPE_FIELD_BITSIZE (elt_type, 0) =
2151 decode_packed_array_bitsize (value_type (arr));
2152 /* If the array has no element, then the size is already
2153 zero, and does not need to be recomputed. */
2157 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2159 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2164 return lookup_pointer_type (elt_type);
2168 /* If ARR does not represent an array, returns ARR unchanged.
2169 Otherwise, returns either a standard GDB array with bounds set
2170 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2171 GDB array. Returns NULL if ARR is a null fat pointer. */
2174 ada_coerce_to_simple_array_ptr (struct value *arr)
2176 if (ada_is_array_descriptor_type (value_type (arr)))
2178 struct type *arrType = ada_type_of_array (arr, 1);
2180 if (arrType == NULL)
2182 return value_cast (arrType, value_copy (desc_data (arr)));
2184 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2185 return decode_constrained_packed_array (arr);
2190 /* If ARR does not represent an array, returns ARR unchanged.
2191 Otherwise, returns a standard GDB array describing ARR (which may
2192 be ARR itself if it already is in the proper form). */
2195 ada_coerce_to_simple_array (struct value *arr)
2197 if (ada_is_array_descriptor_type (value_type (arr)))
2199 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2202 error (_("Bounds unavailable for null array pointer."));
2203 return value_ind (arrVal);
2205 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2206 return decode_constrained_packed_array (arr);
2211 /* If TYPE represents a GNAT array type, return it translated to an
2212 ordinary GDB array type (possibly with BITSIZE fields indicating
2213 packing). For other types, is the identity. */
2216 ada_coerce_to_simple_array_type (struct type *type)
2218 if (ada_is_constrained_packed_array_type (type))
2219 return decode_constrained_packed_array_type (type);
2221 if (ada_is_array_descriptor_type (type))
2222 return ada_check_typedef (desc_data_target_type (type));
2227 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2230 ada_is_gnat_encoded_packed_array_type (struct type *type)
2234 type = desc_base_type (type);
2235 type = ada_check_typedef (type);
2237 ada_type_name (type) != NULL
2238 && strstr (ada_type_name (type), "___XP") != NULL;
2241 /* Non-zero iff TYPE represents a standard GNAT constrained
2242 packed-array type. */
2245 ada_is_constrained_packed_array_type (struct type *type)
2247 return ada_is_gnat_encoded_packed_array_type (type)
2248 && !ada_is_array_descriptor_type (type);
2251 /* Non-zero iff TYPE represents an array descriptor for a
2252 unconstrained packed-array type. */
2255 ada_is_unconstrained_packed_array_type (struct type *type)
2257 if (!ada_is_array_descriptor_type (type))
2260 if (ada_is_gnat_encoded_packed_array_type (type))
2263 /* If we saw GNAT encodings, then the above code is sufficient.
2264 However, with minimal encodings, we will just have a thick
2266 if (is_thick_pntr (type))
2268 type = desc_base_type (type);
2269 /* The structure's first field is a pointer to an array, so this
2270 fetches the array type. */
2271 type = TYPE_TARGET_TYPE (type->field (0).type ());
2272 if (type->code () == TYPE_CODE_TYPEDEF)
2273 type = ada_typedef_target_type (type);
2274 /* Now we can see if the array elements are packed. */
2275 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2281 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2282 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2285 ada_is_any_packed_array_type (struct type *type)
2287 return (ada_is_constrained_packed_array_type (type)
2288 || (type->code () == TYPE_CODE_ARRAY
2289 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2292 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2293 return the size of its elements in bits. */
2296 decode_packed_array_bitsize (struct type *type)
2298 const char *raw_name;
2302 /* Access to arrays implemented as fat pointers are encoded as a typedef
2303 of the fat pointer type. We need the name of the fat pointer type
2304 to do the decoding, so strip the typedef layer. */
2305 if (type->code () == TYPE_CODE_TYPEDEF)
2306 type = ada_typedef_target_type (type);
2308 raw_name = ada_type_name (ada_check_typedef (type));
2310 raw_name = ada_type_name (desc_base_type (type));
2315 tail = strstr (raw_name, "___XP");
2316 if (tail == nullptr)
2318 gdb_assert (is_thick_pntr (type));
2319 /* The structure's first field is a pointer to an array, so this
2320 fetches the array type. */
2321 type = TYPE_TARGET_TYPE (type->field (0).type ());
2322 /* Now we can see if the array elements are packed. */
2323 return TYPE_FIELD_BITSIZE (type, 0);
2326 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2329 (_("could not understand bit size information on packed array"));
2336 /* Given that TYPE is a standard GDB array type with all bounds filled
2337 in, and that the element size of its ultimate scalar constituents
2338 (that is, either its elements, or, if it is an array of arrays, its
2339 elements' elements, etc.) is *ELT_BITS, return an identical type,
2340 but with the bit sizes of its elements (and those of any
2341 constituent arrays) recorded in the BITSIZE components of its
2342 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2345 Note that, for arrays whose index type has an XA encoding where
2346 a bound references a record discriminant, getting that discriminant,
2347 and therefore the actual value of that bound, is not possible
2348 because none of the given parameters gives us access to the record.
2349 This function assumes that it is OK in the context where it is being
2350 used to return an array whose bounds are still dynamic and where
2351 the length is arbitrary. */
2353 static struct type *
2354 constrained_packed_array_type (struct type *type, long *elt_bits)
2356 struct type *new_elt_type;
2357 struct type *new_type;
2358 struct type *index_type_desc;
2359 struct type *index_type;
2360 LONGEST low_bound, high_bound;
2362 type = ada_check_typedef (type);
2363 if (type->code () != TYPE_CODE_ARRAY)
2366 index_type_desc = ada_find_parallel_type (type, "___XA");
2367 if (index_type_desc)
2368 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2371 index_type = type->index_type ();
2373 new_type = alloc_type_copy (type);
2375 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2377 create_array_type (new_type, new_elt_type, index_type);
2378 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2379 new_type->set_name (ada_type_name (type));
2381 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2382 && is_dynamic_type (check_typedef (index_type)))
2383 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2384 low_bound = high_bound = 0;
2385 if (high_bound < low_bound)
2386 *elt_bits = TYPE_LENGTH (new_type) = 0;
2389 *elt_bits *= (high_bound - low_bound + 1);
2390 TYPE_LENGTH (new_type) =
2391 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2394 new_type->set_is_fixed_instance (true);
2398 /* The array type encoded by TYPE, where
2399 ada_is_constrained_packed_array_type (TYPE). */
2401 static struct type *
2402 decode_constrained_packed_array_type (struct type *type)
2404 const char *raw_name = ada_type_name (ada_check_typedef (type));
2407 struct type *shadow_type;
2411 raw_name = ada_type_name (desc_base_type (type));
2416 name = (char *) alloca (strlen (raw_name) + 1);
2417 tail = strstr (raw_name, "___XP");
2418 type = desc_base_type (type);
2420 memcpy (name, raw_name, tail - raw_name);
2421 name[tail - raw_name] = '\000';
2423 shadow_type = ada_find_parallel_type_with_name (type, name);
2425 if (shadow_type == NULL)
2427 lim_warning (_("could not find bounds information on packed array"));
2430 shadow_type = check_typedef (shadow_type);
2432 if (shadow_type->code () != TYPE_CODE_ARRAY)
2434 lim_warning (_("could not understand bounds "
2435 "information on packed array"));
2439 bits = decode_packed_array_bitsize (type);
2440 return constrained_packed_array_type (shadow_type, &bits);
2443 /* Helper function for decode_constrained_packed_array. Set the field
2444 bitsize on a series of packed arrays. Returns the number of
2445 elements in TYPE. */
2448 recursively_update_array_bitsize (struct type *type)
2450 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2453 if (!get_discrete_bounds (type->index_type (), &low, &high)
2456 LONGEST our_len = high - low + 1;
2458 struct type *elt_type = TYPE_TARGET_TYPE (type);
2459 if (elt_type->code () == TYPE_CODE_ARRAY)
2461 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2462 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2463 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2465 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2472 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2473 array, returns a simple array that denotes that array. Its type is a
2474 standard GDB array type except that the BITSIZEs of the array
2475 target types are set to the number of bits in each element, and the
2476 type length is set appropriately. */
2478 static struct value *
2479 decode_constrained_packed_array (struct value *arr)
2483 /* If our value is a pointer, then dereference it. Likewise if
2484 the value is a reference. Make sure that this operation does not
2485 cause the target type to be fixed, as this would indirectly cause
2486 this array to be decoded. The rest of the routine assumes that
2487 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2488 and "value_ind" routines to perform the dereferencing, as opposed
2489 to using "ada_coerce_ref" or "ada_value_ind". */
2490 arr = coerce_ref (arr);
2491 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2492 arr = value_ind (arr);
2494 type = decode_constrained_packed_array_type (value_type (arr));
2497 error (_("can't unpack array"));
2501 /* Decoding the packed array type could not correctly set the field
2502 bitsizes for any dimension except the innermost, because the
2503 bounds may be variable and were not passed to that function. So,
2504 we further resolve the array bounds here and then update the
2506 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2507 CORE_ADDR address = value_address (arr);
2508 gdb::array_view<const gdb_byte> view
2509 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2510 type = resolve_dynamic_type (type, view, address);
2511 recursively_update_array_bitsize (type);
2513 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2514 && ada_is_modular_type (value_type (arr)))
2516 /* This is a (right-justified) modular type representing a packed
2517 array with no wrapper. In order to interpret the value through
2518 the (left-justified) packed array type we just built, we must
2519 first left-justify it. */
2520 int bit_size, bit_pos;
2523 mod = ada_modulus (value_type (arr)) - 1;
2530 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2531 arr = ada_value_primitive_packed_val (arr, NULL,
2532 bit_pos / HOST_CHAR_BIT,
2533 bit_pos % HOST_CHAR_BIT,
2538 return coerce_unspec_val_to_type (arr, type);
2542 /* The value of the element of packed array ARR at the ARITY indices
2543 given in IND. ARR must be a simple array. */
2545 static struct value *
2546 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2549 int bits, elt_off, bit_off;
2550 long elt_total_bit_offset;
2551 struct type *elt_type;
2555 elt_total_bit_offset = 0;
2556 elt_type = ada_check_typedef (value_type (arr));
2557 for (i = 0; i < arity; i += 1)
2559 if (elt_type->code () != TYPE_CODE_ARRAY
2560 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2562 (_("attempt to do packed indexing of "
2563 "something other than a packed array"));
2566 struct type *range_type = elt_type->index_type ();
2567 LONGEST lowerbound, upperbound;
2570 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2572 lim_warning (_("don't know bounds of array"));
2573 lowerbound = upperbound = 0;
2576 idx = pos_atr (ind[i]);
2577 if (idx < lowerbound || idx > upperbound)
2578 lim_warning (_("packed array index %ld out of bounds"),
2580 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2581 elt_total_bit_offset += (idx - lowerbound) * bits;
2582 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2585 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2586 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2588 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2593 /* Non-zero iff TYPE includes negative integer values. */
2596 has_negatives (struct type *type)
2598 switch (type->code ())
2603 return !type->is_unsigned ();
2604 case TYPE_CODE_RANGE:
2605 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2609 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2610 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2611 the unpacked buffer.
2613 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2614 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2616 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2619 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2621 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2624 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2625 gdb_byte *unpacked, int unpacked_len,
2626 int is_big_endian, int is_signed_type,
2629 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2630 int src_idx; /* Index into the source area */
2631 int src_bytes_left; /* Number of source bytes left to process. */
2632 int srcBitsLeft; /* Number of source bits left to move */
2633 int unusedLS; /* Number of bits in next significant
2634 byte of source that are unused */
2636 int unpacked_idx; /* Index into the unpacked buffer */
2637 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2639 unsigned long accum; /* Staging area for bits being transferred */
2640 int accumSize; /* Number of meaningful bits in accum */
2643 /* Transmit bytes from least to most significant; delta is the direction
2644 the indices move. */
2645 int delta = is_big_endian ? -1 : 1;
2647 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2649 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2650 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2651 bit_size, unpacked_len);
2653 srcBitsLeft = bit_size;
2654 src_bytes_left = src_len;
2655 unpacked_bytes_left = unpacked_len;
2660 src_idx = src_len - 1;
2662 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2666 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2672 unpacked_idx = unpacked_len - 1;
2676 /* Non-scalar values must be aligned at a byte boundary... */
2678 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2679 /* ... And are placed at the beginning (most-significant) bytes
2681 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2682 unpacked_bytes_left = unpacked_idx + 1;
2687 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2689 src_idx = unpacked_idx = 0;
2690 unusedLS = bit_offset;
2693 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2698 while (src_bytes_left > 0)
2700 /* Mask for removing bits of the next source byte that are not
2701 part of the value. */
2702 unsigned int unusedMSMask =
2703 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2705 /* Sign-extend bits for this byte. */
2706 unsigned int signMask = sign & ~unusedMSMask;
2709 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2710 accumSize += HOST_CHAR_BIT - unusedLS;
2711 if (accumSize >= HOST_CHAR_BIT)
2713 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2714 accumSize -= HOST_CHAR_BIT;
2715 accum >>= HOST_CHAR_BIT;
2716 unpacked_bytes_left -= 1;
2717 unpacked_idx += delta;
2719 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2721 src_bytes_left -= 1;
2724 while (unpacked_bytes_left > 0)
2726 accum |= sign << accumSize;
2727 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2728 accumSize -= HOST_CHAR_BIT;
2731 accum >>= HOST_CHAR_BIT;
2732 unpacked_bytes_left -= 1;
2733 unpacked_idx += delta;
2737 /* Create a new value of type TYPE from the contents of OBJ starting
2738 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2739 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2740 assigning through the result will set the field fetched from.
2741 VALADDR is ignored unless OBJ is NULL, in which case,
2742 VALADDR+OFFSET must address the start of storage containing the
2743 packed value. The value returned in this case is never an lval.
2744 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2747 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2748 long offset, int bit_offset, int bit_size,
2752 const gdb_byte *src; /* First byte containing data to unpack */
2754 const int is_scalar = is_scalar_type (type);
2755 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2756 gdb::byte_vector staging;
2758 type = ada_check_typedef (type);
2761 src = valaddr + offset;
2763 src = value_contents (obj).data () + offset;
2765 if (is_dynamic_type (type))
2767 /* The length of TYPE might by dynamic, so we need to resolve
2768 TYPE in order to know its actual size, which we then use
2769 to create the contents buffer of the value we return.
2770 The difficulty is that the data containing our object is
2771 packed, and therefore maybe not at a byte boundary. So, what
2772 we do, is unpack the data into a byte-aligned buffer, and then
2773 use that buffer as our object's value for resolving the type. */
2774 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2775 staging.resize (staging_len);
2777 ada_unpack_from_contents (src, bit_offset, bit_size,
2778 staging.data (), staging.size (),
2779 is_big_endian, has_negatives (type),
2781 type = resolve_dynamic_type (type, staging, 0);
2782 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2784 /* This happens when the length of the object is dynamic,
2785 and is actually smaller than the space reserved for it.
2786 For instance, in an array of variant records, the bit_size
2787 we're given is the array stride, which is constant and
2788 normally equal to the maximum size of its element.
2789 But, in reality, each element only actually spans a portion
2791 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2797 v = allocate_value (type);
2798 src = valaddr + offset;
2800 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2802 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2805 v = value_at (type, value_address (obj) + offset);
2806 buf = (gdb_byte *) alloca (src_len);
2807 read_memory (value_address (v), buf, src_len);
2812 v = allocate_value (type);
2813 src = value_contents (obj).data () + offset;
2818 long new_offset = offset;
2820 set_value_component_location (v, obj);
2821 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2822 set_value_bitsize (v, bit_size);
2823 if (value_bitpos (v) >= HOST_CHAR_BIT)
2826 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2828 set_value_offset (v, new_offset);
2830 /* Also set the parent value. This is needed when trying to
2831 assign a new value (in inferior memory). */
2832 set_value_parent (v, obj);
2835 set_value_bitsize (v, bit_size);
2836 unpacked = value_contents_writeable (v).data ();
2840 memset (unpacked, 0, TYPE_LENGTH (type));
2844 if (staging.size () == TYPE_LENGTH (type))
2846 /* Small short-cut: If we've unpacked the data into a buffer
2847 of the same size as TYPE's length, then we can reuse that,
2848 instead of doing the unpacking again. */
2849 memcpy (unpacked, staging.data (), staging.size ());
2852 ada_unpack_from_contents (src, bit_offset, bit_size,
2853 unpacked, TYPE_LENGTH (type),
2854 is_big_endian, has_negatives (type), is_scalar);
2859 /* Store the contents of FROMVAL into the location of TOVAL.
2860 Return a new value with the location of TOVAL and contents of
2861 FROMVAL. Handles assignment into packed fields that have
2862 floating-point or non-scalar types. */
2864 static struct value *
2865 ada_value_assign (struct value *toval, struct value *fromval)
2867 struct type *type = value_type (toval);
2868 int bits = value_bitsize (toval);
2870 toval = ada_coerce_ref (toval);
2871 fromval = ada_coerce_ref (fromval);
2873 if (ada_is_direct_array_type (value_type (toval)))
2874 toval = ada_coerce_to_simple_array (toval);
2875 if (ada_is_direct_array_type (value_type (fromval)))
2876 fromval = ada_coerce_to_simple_array (fromval);
2878 if (!deprecated_value_modifiable (toval))
2879 error (_("Left operand of assignment is not a modifiable lvalue."));
2881 if (VALUE_LVAL (toval) == lval_memory
2883 && (type->code () == TYPE_CODE_FLT
2884 || type->code () == TYPE_CODE_STRUCT))
2886 int len = (value_bitpos (toval)
2887 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2889 gdb_byte *buffer = (gdb_byte *) alloca (len);
2891 CORE_ADDR to_addr = value_address (toval);
2893 if (type->code () == TYPE_CODE_FLT)
2894 fromval = value_cast (type, fromval);
2896 read_memory (to_addr, buffer, len);
2897 from_size = value_bitsize (fromval);
2899 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2901 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2902 ULONGEST from_offset = 0;
2903 if (is_big_endian && is_scalar_type (value_type (fromval)))
2904 from_offset = from_size - bits;
2905 copy_bitwise (buffer, value_bitpos (toval),
2906 value_contents (fromval).data (), from_offset,
2907 bits, is_big_endian);
2908 write_memory_with_notification (to_addr, buffer, len);
2910 val = value_copy (toval);
2911 memcpy (value_contents_raw (val).data (),
2912 value_contents (fromval).data (),
2913 TYPE_LENGTH (type));
2914 deprecated_set_value_type (val, type);
2919 return value_assign (toval, fromval);
2923 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2924 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2925 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2926 COMPONENT, and not the inferior's memory. The current contents
2927 of COMPONENT are ignored.
2929 Although not part of the initial design, this function also works
2930 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2931 had a null address, and COMPONENT had an address which is equal to
2932 its offset inside CONTAINER. */
2935 value_assign_to_component (struct value *container, struct value *component,
2938 LONGEST offset_in_container =
2939 (LONGEST) (value_address (component) - value_address (container));
2940 int bit_offset_in_container =
2941 value_bitpos (component) - value_bitpos (container);
2944 val = value_cast (value_type (component), val);
2946 if (value_bitsize (component) == 0)
2947 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2949 bits = value_bitsize (component);
2951 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2955 if (is_scalar_type (check_typedef (value_type (component))))
2957 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2960 copy_bitwise ((value_contents_writeable (container).data ()
2961 + offset_in_container),
2962 value_bitpos (container) + bit_offset_in_container,
2963 value_contents (val).data (), src_offset, bits, 1);
2966 copy_bitwise ((value_contents_writeable (container).data ()
2967 + offset_in_container),
2968 value_bitpos (container) + bit_offset_in_container,
2969 value_contents (val).data (), 0, bits, 0);
2972 /* Determine if TYPE is an access to an unconstrained array. */
2975 ada_is_access_to_unconstrained_array (struct type *type)
2977 return (type->code () == TYPE_CODE_TYPEDEF
2978 && is_thick_pntr (ada_typedef_target_type (type)));
2981 /* The value of the element of array ARR at the ARITY indices given in IND.
2982 ARR may be either a simple array, GNAT array descriptor, or pointer
2986 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2990 struct type *elt_type;
2992 elt = ada_coerce_to_simple_array (arr);
2994 elt_type = ada_check_typedef (value_type (elt));
2995 if (elt_type->code () == TYPE_CODE_ARRAY
2996 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2997 return value_subscript_packed (elt, arity, ind);
2999 for (k = 0; k < arity; k += 1)
3001 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
3003 if (elt_type->code () != TYPE_CODE_ARRAY)
3004 error (_("too many subscripts (%d expected)"), k);
3006 elt = value_subscript (elt, pos_atr (ind[k]));
3008 if (ada_is_access_to_unconstrained_array (saved_elt_type)
3009 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
3011 /* The element is a typedef to an unconstrained array,
3012 except that the value_subscript call stripped the
3013 typedef layer. The typedef layer is GNAT's way to
3014 specify that the element is, at the source level, an
3015 access to the unconstrained array, rather than the
3016 unconstrained array. So, we need to restore that
3017 typedef layer, which we can do by forcing the element's
3018 type back to its original type. Otherwise, the returned
3019 value is going to be printed as the array, rather
3020 than as an access. Another symptom of the same issue
3021 would be that an expression trying to dereference the
3022 element would also be improperly rejected. */
3023 deprecated_set_value_type (elt, saved_elt_type);
3026 elt_type = ada_check_typedef (value_type (elt));
3032 /* Assuming ARR is a pointer to a GDB array, the value of the element
3033 of *ARR at the ARITY indices given in IND.
3034 Does not read the entire array into memory.
3036 Note: Unlike what one would expect, this function is used instead of
3037 ada_value_subscript for basically all non-packed array types. The reason
3038 for this is that a side effect of doing our own pointer arithmetics instead
3039 of relying on value_subscript is that there is no implicit typedef peeling.
3040 This is important for arrays of array accesses, where it allows us to
3041 preserve the fact that the array's element is an array access, where the
3042 access part os encoded in a typedef layer. */
3044 static struct value *
3045 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
3048 struct value *array_ind = ada_value_ind (arr);
3050 = check_typedef (value_enclosing_type (array_ind));
3052 if (type->code () == TYPE_CODE_ARRAY
3053 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3054 return value_subscript_packed (array_ind, arity, ind);
3056 for (k = 0; k < arity; k += 1)
3060 if (type->code () != TYPE_CODE_ARRAY)
3061 error (_("too many subscripts (%d expected)"), k);
3062 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3064 get_discrete_bounds (type->index_type (), &lwb, &upb);
3065 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
3066 type = TYPE_TARGET_TYPE (type);
3069 return value_ind (arr);
3072 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
3073 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3074 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3075 this array is LOW, as per Ada rules. */
3076 static struct value *
3077 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
3080 struct type *type0 = ada_check_typedef (type);
3081 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
3082 struct type *index_type
3083 = create_static_range_type (NULL, base_index_type, low, high);
3084 struct type *slice_type = create_array_type_with_stride
3085 (NULL, TYPE_TARGET_TYPE (type0), index_type,
3086 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
3087 TYPE_FIELD_BITSIZE (type0, 0));
3088 int base_low = ada_discrete_type_low_bound (type0->index_type ());
3089 gdb::optional<LONGEST> base_low_pos, low_pos;
3092 low_pos = discrete_position (base_index_type, low);
3093 base_low_pos = discrete_position (base_index_type, base_low);
3095 if (!low_pos.has_value () || !base_low_pos.has_value ())
3097 warning (_("unable to get positions in slice, use bounds instead"));
3099 base_low_pos = base_low;
3102 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3104 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
3106 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
3107 return value_at_lazy (slice_type, base);
3111 static struct value *
3112 ada_value_slice (struct value *array, int low, int high)
3114 struct type *type = ada_check_typedef (value_type (array));
3115 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
3116 struct type *index_type
3117 = create_static_range_type (NULL, type->index_type (), low, high);
3118 struct type *slice_type = create_array_type_with_stride
3119 (NULL, TYPE_TARGET_TYPE (type), index_type,
3120 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
3121 TYPE_FIELD_BITSIZE (type, 0));
3122 gdb::optional<LONGEST> low_pos, high_pos;
3125 low_pos = discrete_position (base_index_type, low);
3126 high_pos = discrete_position (base_index_type, high);
3128 if (!low_pos.has_value () || !high_pos.has_value ())
3130 warning (_("unable to get positions in slice, use bounds instead"));
3135 return value_cast (slice_type,
3136 value_slice (array, low, *high_pos - *low_pos + 1));
3139 /* If type is a record type in the form of a standard GNAT array
3140 descriptor, returns the number of dimensions for type. If arr is a
3141 simple array, returns the number of "array of"s that prefix its
3142 type designation. Otherwise, returns 0. */
3145 ada_array_arity (struct type *type)
3152 type = desc_base_type (type);
3155 if (type->code () == TYPE_CODE_STRUCT)
3156 return desc_arity (desc_bounds_type (type));
3158 while (type->code () == TYPE_CODE_ARRAY)
3161 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
3167 /* If TYPE is a record type in the form of a standard GNAT array
3168 descriptor or a simple array type, returns the element type for
3169 TYPE after indexing by NINDICES indices, or by all indices if
3170 NINDICES is -1. Otherwise, returns NULL. */
3173 ada_array_element_type (struct type *type, int nindices)
3175 type = desc_base_type (type);
3177 if (type->code () == TYPE_CODE_STRUCT)
3180 struct type *p_array_type;
3182 p_array_type = desc_data_target_type (type);
3184 k = ada_array_arity (type);
3188 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3189 if (nindices >= 0 && k > nindices)
3191 while (k > 0 && p_array_type != NULL)
3193 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3196 return p_array_type;
3198 else if (type->code () == TYPE_CODE_ARRAY)
3200 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
3202 type = TYPE_TARGET_TYPE (type);
3211 /* See ada-lang.h. */
3214 ada_index_type (struct type *type, int n, const char *name)
3216 struct type *result_type;
3218 type = desc_base_type (type);
3220 if (n < 0 || n > ada_array_arity (type))
3221 error (_("invalid dimension number to '%s"), name);
3223 if (ada_is_simple_array_type (type))
3227 for (i = 1; i < n; i += 1)
3229 type = ada_check_typedef (type);
3230 type = TYPE_TARGET_TYPE (type);
3232 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
3233 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3234 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3235 perhaps stabsread.c would make more sense. */
3236 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
3241 result_type = desc_index_type (desc_bounds_type (type), n);
3242 if (result_type == NULL)
3243 error (_("attempt to take bound of something that is not an array"));
3249 /* Given that arr is an array type, returns the lower bound of the
3250 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3251 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3252 array-descriptor type. It works for other arrays with bounds supplied
3253 by run-time quantities other than discriminants. */
3256 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3258 struct type *type, *index_type_desc, *index_type;
3261 gdb_assert (which == 0 || which == 1);
3263 if (ada_is_constrained_packed_array_type (arr_type))
3264 arr_type = decode_constrained_packed_array_type (arr_type);
3266 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3267 return (LONGEST) - which;
3269 if (arr_type->code () == TYPE_CODE_PTR)
3270 type = TYPE_TARGET_TYPE (arr_type);
3274 if (type->is_fixed_instance ())
3276 /* The array has already been fixed, so we do not need to
3277 check the parallel ___XA type again. That encoding has
3278 already been applied, so ignore it now. */
3279 index_type_desc = NULL;
3283 index_type_desc = ada_find_parallel_type (type, "___XA");
3284 ada_fixup_array_indexes_type (index_type_desc);
3287 if (index_type_desc != NULL)
3288 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3292 struct type *elt_type = check_typedef (type);
3294 for (i = 1; i < n; i++)
3295 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3297 index_type = elt_type->index_type ();
3301 (LONGEST) (which == 0
3302 ? ada_discrete_type_low_bound (index_type)
3303 : ada_discrete_type_high_bound (index_type));
3306 /* Given that arr is an array value, returns the lower bound of the
3307 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3308 WHICH is 1. This routine will also work for arrays with bounds
3309 supplied by run-time quantities other than discriminants. */
3312 ada_array_bound (struct value *arr, int n, int which)
3314 struct type *arr_type;
3316 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3317 arr = value_ind (arr);
3318 arr_type = value_enclosing_type (arr);
3320 if (ada_is_constrained_packed_array_type (arr_type))
3321 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3322 else if (ada_is_simple_array_type (arr_type))
3323 return ada_array_bound_from_type (arr_type, n, which);
3325 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3328 /* Given that arr is an array value, returns the length of the
3329 nth index. This routine will also work for arrays with bounds
3330 supplied by run-time quantities other than discriminants.
3331 Does not work for arrays indexed by enumeration types with representation
3332 clauses at the moment. */
3335 ada_array_length (struct value *arr, int n)
3337 struct type *arr_type, *index_type;
3340 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3341 arr = value_ind (arr);
3342 arr_type = value_enclosing_type (arr);
3344 if (ada_is_constrained_packed_array_type (arr_type))
3345 return ada_array_length (decode_constrained_packed_array (arr), n);
3347 if (ada_is_simple_array_type (arr_type))
3349 low = ada_array_bound_from_type (arr_type, n, 0);
3350 high = ada_array_bound_from_type (arr_type, n, 1);
3354 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3355 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3358 arr_type = check_typedef (arr_type);
3359 index_type = ada_index_type (arr_type, n, "length");
3360 if (index_type != NULL)
3362 struct type *base_type;
3363 if (index_type->code () == TYPE_CODE_RANGE)
3364 base_type = TYPE_TARGET_TYPE (index_type);
3366 base_type = index_type;
3368 low = pos_atr (value_from_longest (base_type, low));
3369 high = pos_atr (value_from_longest (base_type, high));
3371 return high - low + 1;
3374 /* An array whose type is that of ARR_TYPE (an array type), with
3375 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3376 less than LOW, then LOW-1 is used. */
3378 static struct value *
3379 empty_array (struct type *arr_type, int low, int high)
3381 struct type *arr_type0 = ada_check_typedef (arr_type);
3382 struct type *index_type
3383 = create_static_range_type
3384 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3385 high < low ? low - 1 : high);
3386 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3388 return allocate_value (create_array_type (NULL, elt_type, index_type));
3392 /* Name resolution */
3394 /* The "decoded" name for the user-definable Ada operator corresponding
3398 ada_decoded_op_name (enum exp_opcode op)
3402 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3404 if (ada_opname_table[i].op == op)
3405 return ada_opname_table[i].decoded;
3407 error (_("Could not find operator name for opcode"));
3410 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3411 in a listing of choices during disambiguation (see sort_choices, below).
3412 The idea is that overloadings of a subprogram name from the
3413 same package should sort in their source order. We settle for ordering
3414 such symbols by their trailing number (__N or $N). */
3417 encoded_ordered_before (const char *N0, const char *N1)
3421 else if (N0 == NULL)
3427 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3429 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3431 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3432 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3437 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3440 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3442 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3443 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3445 return (strcmp (N0, N1) < 0);
3449 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3453 sort_choices (struct block_symbol syms[], int nsyms)
3457 for (i = 1; i < nsyms; i += 1)
3459 struct block_symbol sym = syms[i];
3462 for (j = i - 1; j >= 0; j -= 1)
3464 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3465 sym.symbol->linkage_name ()))
3467 syms[j + 1] = syms[j];
3473 /* Whether GDB should display formals and return types for functions in the
3474 overloads selection menu. */
3475 static bool print_signatures = true;
3477 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3478 all but functions, the signature is just the name of the symbol. For
3479 functions, this is the name of the function, the list of types for formals
3480 and the return type (if any). */
3483 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3484 const struct type_print_options *flags)
3486 struct type *type = sym->type ();
3488 gdb_printf (stream, "%s", sym->print_name ());
3489 if (!print_signatures
3491 || type->code () != TYPE_CODE_FUNC)
3494 if (type->num_fields () > 0)
3498 gdb_printf (stream, " (");
3499 for (i = 0; i < type->num_fields (); ++i)
3502 gdb_printf (stream, "; ");
3503 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3506 gdb_printf (stream, ")");
3508 if (TYPE_TARGET_TYPE (type) != NULL
3509 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3511 gdb_printf (stream, " return ");
3512 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3516 /* Read and validate a set of numeric choices from the user in the
3517 range 0 .. N_CHOICES-1. Place the results in increasing
3518 order in CHOICES[0 .. N-1], and return N.
3520 The user types choices as a sequence of numbers on one line
3521 separated by blanks, encoding them as follows:
3523 + A choice of 0 means to cancel the selection, throwing an error.
3524 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3525 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3527 The user is not allowed to choose more than MAX_RESULTS values.
3529 ANNOTATION_SUFFIX, if present, is used to annotate the input
3530 prompts (for use with the -f switch). */
3533 get_selections (int *choices, int n_choices, int max_results,
3534 int is_all_choice, const char *annotation_suffix)
3539 int first_choice = is_all_choice ? 2 : 1;
3541 prompt = getenv ("PS2");
3545 args = command_line_input (prompt, annotation_suffix);
3548 error_no_arg (_("one or more choice numbers"));
3552 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3553 order, as given in args. Choices are validated. */
3559 args = skip_spaces (args);
3560 if (*args == '\0' && n_chosen == 0)
3561 error_no_arg (_("one or more choice numbers"));
3562 else if (*args == '\0')
3565 choice = strtol (args, &args2, 10);
3566 if (args == args2 || choice < 0
3567 || choice > n_choices + first_choice - 1)
3568 error (_("Argument must be choice number"));
3572 error (_("cancelled"));
3574 if (choice < first_choice)
3576 n_chosen = n_choices;
3577 for (j = 0; j < n_choices; j += 1)
3581 choice -= first_choice;
3583 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3587 if (j < 0 || choice != choices[j])
3591 for (k = n_chosen - 1; k > j; k -= 1)
3592 choices[k + 1] = choices[k];
3593 choices[j + 1] = choice;
3598 if (n_chosen > max_results)
3599 error (_("Select no more than %d of the above"), max_results);
3604 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3605 by asking the user (if necessary), returning the number selected,
3606 and setting the first elements of SYMS items. Error if no symbols
3609 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3610 to be re-integrated one of these days. */
3613 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3616 int *chosen = XALLOCAVEC (int , nsyms);
3618 int first_choice = (max_results == 1) ? 1 : 2;
3619 const char *select_mode = multiple_symbols_select_mode ();
3621 if (max_results < 1)
3622 error (_("Request to select 0 symbols!"));
3626 if (select_mode == multiple_symbols_cancel)
3628 canceled because the command is ambiguous\n\
3629 See set/show multiple-symbol."));
3631 /* If select_mode is "all", then return all possible symbols.
3632 Only do that if more than one symbol can be selected, of course.
3633 Otherwise, display the menu as usual. */
3634 if (select_mode == multiple_symbols_all && max_results > 1)
3637 gdb_printf (_("[0] cancel\n"));
3638 if (max_results > 1)
3639 gdb_printf (_("[1] all\n"));
3641 sort_choices (syms, nsyms);
3643 for (i = 0; i < nsyms; i += 1)
3645 if (syms[i].symbol == NULL)
3648 if (syms[i].symbol->aclass () == LOC_BLOCK)
3650 struct symtab_and_line sal =
3651 find_function_start_sal (syms[i].symbol, 1);
3653 gdb_printf ("[%d] ", i + first_choice);
3654 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3655 &type_print_raw_options);
3656 if (sal.symtab == NULL)
3657 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3658 metadata_style.style ().ptr (), nullptr, sal.line);
3662 styled_string (file_name_style.style (),
3663 symtab_to_filename_for_display (sal.symtab)),
3670 (syms[i].symbol->aclass () == LOC_CONST
3671 && syms[i].symbol->type () != NULL
3672 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
3673 struct symtab *symtab = NULL;
3675 if (syms[i].symbol->is_objfile_owned ())
3676 symtab = symbol_symtab (syms[i].symbol);
3678 if (syms[i].symbol->line () != 0 && symtab != NULL)
3680 gdb_printf ("[%d] ", i + first_choice);
3681 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3682 &type_print_raw_options);
3683 gdb_printf (_(" at %s:%d\n"),
3684 symtab_to_filename_for_display (symtab),
3685 syms[i].symbol->line ());
3687 else if (is_enumeral
3688 && syms[i].symbol->type ()->name () != NULL)
3690 gdb_printf (("[%d] "), i + first_choice);
3691 ada_print_type (syms[i].symbol->type (), NULL,
3692 gdb_stdout, -1, 0, &type_print_raw_options);
3693 gdb_printf (_("'(%s) (enumeral)\n"),
3694 syms[i].symbol->print_name ());
3698 gdb_printf ("[%d] ", i + first_choice);
3699 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3700 &type_print_raw_options);
3703 gdb_printf (is_enumeral
3704 ? _(" in %s (enumeral)\n")
3706 symtab_to_filename_for_display (symtab));
3708 gdb_printf (is_enumeral
3709 ? _(" (enumeral)\n")
3715 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3718 for (i = 0; i < n_chosen; i += 1)
3719 syms[i] = syms[chosen[i]];
3724 /* See ada-lang.h. */
3727 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3728 int nargs, value *argvec[])
3730 if (possible_user_operator_p (op, argvec))
3732 std::vector<struct block_symbol> candidates
3733 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3736 int i = ada_resolve_function (candidates, argvec,
3737 nargs, ada_decoded_op_name (op), NULL,
3740 return candidates[i];
3745 /* See ada-lang.h. */
3748 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3749 struct type *context_type,
3750 bool parse_completion,
3751 int nargs, value *argvec[],
3752 innermost_block_tracker *tracker)
3754 std::vector<struct block_symbol> candidates
3755 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3758 if (candidates.size () == 1)
3762 i = ada_resolve_function
3765 sym->linkage_name (),
3766 context_type, parse_completion);
3768 error (_("Could not find a match for %s"), sym->print_name ());
3771 tracker->update (candidates[i]);
3772 return candidates[i];
3775 /* Resolve a mention of a name where the context type is an
3776 enumeration type. */
3779 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3780 const char *name, struct type *context_type,
3781 bool parse_completion)
3783 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3784 context_type = ada_check_typedef (context_type);
3786 for (int i = 0; i < syms.size (); ++i)
3788 /* We already know the name matches, so we're just looking for
3789 an element of the correct enum type. */
3790 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
3794 error (_("No name '%s' in enumeration type '%s'"), name,
3795 ada_type_name (context_type));
3798 /* See ada-lang.h. */
3801 ada_resolve_variable (struct symbol *sym, const struct block *block,
3802 struct type *context_type,
3803 bool parse_completion,
3805 innermost_block_tracker *tracker)
3807 std::vector<struct block_symbol> candidates
3808 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3810 if (std::any_of (candidates.begin (),
3812 [] (block_symbol &bsym)
3814 switch (bsym.symbol->aclass ())
3819 case LOC_REGPARM_ADDR:
3828 /* Types tend to get re-introduced locally, so if there
3829 are any local symbols that are not types, first filter
3833 (candidates.begin (),
3835 [] (block_symbol &bsym)
3837 return bsym.symbol->aclass () == LOC_TYPEDEF;
3842 /* Filter out artificial symbols. */
3845 (candidates.begin (),
3847 [] (block_symbol &bsym)
3849 return bsym.symbol->artificial;
3854 if (candidates.empty ())
3855 error (_("No definition found for %s"), sym->print_name ());
3856 else if (candidates.size () == 1)
3858 else if (context_type != nullptr
3859 && context_type->code () == TYPE_CODE_ENUM)
3860 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3862 else if (deprocedure_p && !is_nonfunction (candidates))
3864 i = ada_resolve_function
3865 (candidates, NULL, 0,
3866 sym->linkage_name (),
3867 context_type, parse_completion);
3869 error (_("Could not find a match for %s"), sym->print_name ());
3873 gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
3874 user_select_syms (candidates.data (), candidates.size (), 1);
3878 tracker->update (candidates[i]);
3879 return candidates[i];
3882 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3883 /* The term "match" here is rather loose. The match is heuristic and
3887 ada_type_match (struct type *ftype, struct type *atype)
3889 ftype = ada_check_typedef (ftype);
3890 atype = ada_check_typedef (atype);
3892 if (ftype->code () == TYPE_CODE_REF)
3893 ftype = TYPE_TARGET_TYPE (ftype);
3894 if (atype->code () == TYPE_CODE_REF)
3895 atype = TYPE_TARGET_TYPE (atype);
3897 switch (ftype->code ())
3900 return ftype->code () == atype->code ();
3902 if (atype->code () != TYPE_CODE_PTR)
3904 atype = TYPE_TARGET_TYPE (atype);
3905 /* This can only happen if the actual argument is 'null'. */
3906 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3908 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3910 case TYPE_CODE_ENUM:
3911 case TYPE_CODE_RANGE:
3912 switch (atype->code ())
3915 case TYPE_CODE_ENUM:
3916 case TYPE_CODE_RANGE:
3922 case TYPE_CODE_ARRAY:
3923 return (atype->code () == TYPE_CODE_ARRAY
3924 || ada_is_array_descriptor_type (atype));
3926 case TYPE_CODE_STRUCT:
3927 if (ada_is_array_descriptor_type (ftype))
3928 return (atype->code () == TYPE_CODE_ARRAY
3929 || ada_is_array_descriptor_type (atype));
3931 return (atype->code () == TYPE_CODE_STRUCT
3932 && !ada_is_array_descriptor_type (atype));
3934 case TYPE_CODE_UNION:
3936 return (atype->code () == ftype->code ());
3940 /* Return non-zero if the formals of FUNC "sufficiently match" the
3941 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3942 may also be an enumeral, in which case it is treated as a 0-
3943 argument function. */
3946 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3949 struct type *func_type = func->type ();
3951 if (func->aclass () == LOC_CONST
3952 && func_type->code () == TYPE_CODE_ENUM)
3953 return (n_actuals == 0);
3954 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3957 if (func_type->num_fields () != n_actuals)
3960 for (i = 0; i < n_actuals; i += 1)
3962 if (actuals[i] == NULL)
3966 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3967 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3969 if (!ada_type_match (ftype, atype))
3976 /* False iff function type FUNC_TYPE definitely does not produce a value
3977 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3978 FUNC_TYPE is not a valid function type with a non-null return type
3979 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3982 return_match (struct type *func_type, struct type *context_type)
3984 struct type *return_type;
3986 if (func_type == NULL)
3989 if (func_type->code () == TYPE_CODE_FUNC)
3990 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3992 return_type = get_base_type (func_type);
3993 if (return_type == NULL)
3996 context_type = get_base_type (context_type);
3998 if (return_type->code () == TYPE_CODE_ENUM)
3999 return context_type == NULL || return_type == context_type;
4000 else if (context_type == NULL)
4001 return return_type->code () != TYPE_CODE_VOID;
4003 return return_type->code () == context_type->code ();
4007 /* Returns the index in SYMS that contains the symbol for the
4008 function (if any) that matches the types of the NARGS arguments in
4009 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4010 that returns that type, then eliminate matches that don't. If
4011 CONTEXT_TYPE is void and there is at least one match that does not
4012 return void, eliminate all matches that do.
4014 Asks the user if there is more than one match remaining. Returns -1
4015 if there is no such symbol or none is selected. NAME is used
4016 solely for messages. May re-arrange and modify SYMS in
4017 the process; the index returned is for the modified vector. */
4020 ada_resolve_function (std::vector<struct block_symbol> &syms,
4021 struct value **args, int nargs,
4022 const char *name, struct type *context_type,
4023 bool parse_completion)
4027 int m; /* Number of hits */
4030 /* In the first pass of the loop, we only accept functions matching
4031 context_type. If none are found, we add a second pass of the loop
4032 where every function is accepted. */
4033 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4035 for (k = 0; k < syms.size (); k += 1)
4037 struct type *type = ada_check_typedef (syms[k].symbol->type ());
4039 if (ada_args_match (syms[k].symbol, args, nargs)
4040 && (fallback || return_match (type, context_type)))
4048 /* If we got multiple matches, ask the user which one to use. Don't do this
4049 interactive thing during completion, though, as the purpose of the
4050 completion is providing a list of all possible matches. Prompting the
4051 user to filter it down would be completely unexpected in this case. */
4054 else if (m > 1 && !parse_completion)
4056 gdb_printf (_("Multiple matches for %s\n"), name);
4057 user_select_syms (syms.data (), m, 1);
4063 /* Type-class predicates */
4065 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4069 numeric_type_p (struct type *type)
4075 switch (type->code ())
4079 case TYPE_CODE_FIXED_POINT:
4081 case TYPE_CODE_RANGE:
4082 return (type == TYPE_TARGET_TYPE (type)
4083 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4090 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4093 integer_type_p (struct type *type)
4099 switch (type->code ())
4103 case TYPE_CODE_RANGE:
4104 return (type == TYPE_TARGET_TYPE (type)
4105 || integer_type_p (TYPE_TARGET_TYPE (type)));
4112 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4115 scalar_type_p (struct type *type)
4121 switch (type->code ())
4124 case TYPE_CODE_RANGE:
4125 case TYPE_CODE_ENUM:
4127 case TYPE_CODE_FIXED_POINT:
4135 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4138 discrete_type_p (struct type *type)
4144 switch (type->code ())
4147 case TYPE_CODE_RANGE:
4148 case TYPE_CODE_ENUM:
4149 case TYPE_CODE_BOOL:
4157 /* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
4162 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4164 struct type *type0 =
4165 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4166 struct type *type1 =
4167 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4181 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4185 case BINOP_BITWISE_AND:
4186 case BINOP_BITWISE_IOR:
4187 case BINOP_BITWISE_XOR:
4188 return (!(integer_type_p (type0) && integer_type_p (type1)));
4191 case BINOP_NOTEQUAL:
4196 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4199 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4202 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4206 case UNOP_LOGICAL_NOT:
4208 return (!numeric_type_p (type0));
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4227 /* If SYM encodes a renaming,
4229 <renaming> renames <renamed entity>,
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4246 enum ada_renaming_category
4247 ada_parse_renaming (struct symbol *sym,
4248 const char **renamed_entity, int *len,
4249 const char **renaming_expr)
4251 enum ada_renaming_category kind;
4256 return ADA_NOT_RENAMING;
4257 switch (sym->aclass ())
4260 return ADA_NOT_RENAMING;
4264 case LOC_OPTIMIZED_OUT:
4265 info = strstr (sym->linkage_name (), "___XR");
4267 return ADA_NOT_RENAMING;
4271 kind = ADA_OBJECT_RENAMING;
4275 kind = ADA_EXCEPTION_RENAMING;
4279 kind = ADA_PACKAGE_RENAMING;
4283 kind = ADA_SUBPROGRAM_RENAMING;
4287 return ADA_NOT_RENAMING;
4291 if (renamed_entity != NULL)
4292 *renamed_entity = info;
4293 suffix = strstr (info, "___XE");
4294 if (suffix == NULL || suffix == info)
4295 return ADA_NOT_RENAMING;
4297 *len = strlen (info) - strlen (suffix);
4299 if (renaming_expr != NULL)
4300 *renaming_expr = suffix;
4304 /* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4308 static struct value *
4309 ada_read_renaming_var_value (struct symbol *renaming_sym,
4310 const struct block *block)
4312 const char *sym_name;
4314 sym_name = renaming_sym->linkage_name ();
4315 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4316 return evaluate_expression (expr.get ());
4320 /* Evaluation: Function Calls */
4322 /* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4326 static struct value *
4327 ensure_lval (struct value *val)
4329 if (VALUE_LVAL (val) == not_lval
4330 || VALUE_LVAL (val) == lval_internalvar)
4332 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4333 const CORE_ADDR addr =
4334 value_as_long (value_allocate_space_in_inferior (len));
4336 VALUE_LVAL (val) = lval_memory;
4337 set_value_address (val, addr);
4338 write_memory (addr, value_contents (val).data (), len);
4344 /* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4353 If NO_ERR, then simply return NULL in case of error, rather than
4356 static struct value *
4357 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4359 struct type *t, *t1;
4364 t1 = t = ada_check_typedef (value_type (arg));
4365 if (t->code () == TYPE_CODE_REF)
4367 t1 = TYPE_TARGET_TYPE (t);
4370 t1 = ada_check_typedef (t1);
4371 if (t1->code () == TYPE_CODE_PTR)
4373 arg = coerce_ref (arg);
4378 while (t->code () == TYPE_CODE_PTR)
4380 t1 = TYPE_TARGET_TYPE (t);
4383 t1 = ada_check_typedef (t1);
4384 if (t1->code () == TYPE_CODE_PTR)
4386 arg = value_ind (arg);
4393 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4397 v = ada_search_struct_field (name, arg, 0, t);
4400 int bit_offset, bit_size, byte_offset;
4401 struct type *field_type;
4404 if (t->code () == TYPE_CODE_PTR)
4405 address = value_address (ada_value_ind (arg));
4407 address = value_address (ada_coerce_ref (arg));
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
4415 if (ada_is_tagged_type (t1, 0)
4416 || (t1->code () == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
4422 if (!find_struct_field (name, t1, 0,
4423 nullptr, nullptr, nullptr,
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4435 address, NULL, check_tag);
4437 /* Resolve the dynamic type as well. */
4438 arg = value_from_contents_and_address (t1, nullptr, address);
4439 t1 = value_type (arg);
4441 if (find_struct_field (name, t1, 0,
4442 &field_type, &byte_offset, &bit_offset,
4447 if (t->code () == TYPE_CODE_REF)
4448 arg = ada_coerce_ref (arg);
4450 arg = ada_value_ind (arg);
4451 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4452 bit_offset, bit_size,
4456 v = value_at_lazy (field_type, address + byte_offset);
4460 if (v != NULL || no_err)
4463 error (_("There is no member named %s."), name);
4469 error (_("Attempt to extract a component of "
4470 "a value that is not a record."));
4473 /* Return the value ACTUAL, converted to be an appropriate value for a
4474 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4475 allocating any necessary descriptors (fat pointers), or copies of
4476 values not residing in memory, updating it as needed. */
4479 ada_convert_actual (struct value *actual, struct type *formal_type0)
4481 struct type *actual_type = ada_check_typedef (value_type (actual));
4482 struct type *formal_type = ada_check_typedef (formal_type0);
4483 struct type *formal_target =
4484 formal_type->code () == TYPE_CODE_PTR
4485 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4486 struct type *actual_target =
4487 actual_type->code () == TYPE_CODE_PTR
4488 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4490 if (ada_is_array_descriptor_type (formal_target)
4491 && actual_target->code () == TYPE_CODE_ARRAY)
4492 return make_array_descriptor (formal_type, actual);
4493 else if (formal_type->code () == TYPE_CODE_PTR
4494 || formal_type->code () == TYPE_CODE_REF)
4496 struct value *result;
4498 if (formal_target->code () == TYPE_CODE_ARRAY
4499 && ada_is_array_descriptor_type (actual_target))
4500 result = desc_data (actual);
4501 else if (formal_type->code () != TYPE_CODE_PTR)
4503 if (VALUE_LVAL (actual) != lval_memory)
4507 actual_type = ada_check_typedef (value_type (actual));
4508 val = allocate_value (actual_type);
4509 copy (value_contents (actual), value_contents_raw (val));
4510 actual = ensure_lval (val);
4512 result = value_addr (actual);
4516 return value_cast_pointers (formal_type, result, 0);
4518 else if (actual_type->code () == TYPE_CODE_PTR)
4519 return ada_value_ind (actual);
4520 else if (ada_is_aligner_type (formal_type))
4522 /* We need to turn this parameter into an aligner type
4524 struct value *aligner = allocate_value (formal_type);
4525 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4527 value_assign_to_component (aligner, component, actual);
4534 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4535 type TYPE. This is usually an inefficient no-op except on some targets
4536 (such as AVR) where the representation of a pointer and an address
4540 value_pointer (struct value *value, struct type *type)
4542 unsigned len = TYPE_LENGTH (type);
4543 gdb_byte *buf = (gdb_byte *) alloca (len);
4546 addr = value_address (value);
4547 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4548 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4553 /* Push a descriptor of type TYPE for array value ARR on the stack at
4554 *SP, updating *SP to reflect the new descriptor. Return either
4555 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4556 to-descriptor type rather than a descriptor type), a struct value *
4557 representing a pointer to this descriptor. */
4559 static struct value *
4560 make_array_descriptor (struct type *type, struct value *arr)
4562 struct type *bounds_type = desc_bounds_type (type);
4563 struct type *desc_type = desc_base_type (type);
4564 struct value *descriptor = allocate_value (desc_type);
4565 struct value *bounds = allocate_value (bounds_type);
4568 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4571 modify_field (value_type (bounds),
4572 value_contents_writeable (bounds).data (),
4573 ada_array_bound (arr, i, 0),
4574 desc_bound_bitpos (bounds_type, i, 0),
4575 desc_bound_bitsize (bounds_type, i, 0));
4576 modify_field (value_type (bounds),
4577 value_contents_writeable (bounds).data (),
4578 ada_array_bound (arr, i, 1),
4579 desc_bound_bitpos (bounds_type, i, 1),
4580 desc_bound_bitsize (bounds_type, i, 1));
4583 bounds = ensure_lval (bounds);
4585 modify_field (value_type (descriptor),
4586 value_contents_writeable (descriptor).data (),
4587 value_pointer (ensure_lval (arr),
4588 desc_type->field (0).type ()),
4589 fat_pntr_data_bitpos (desc_type),
4590 fat_pntr_data_bitsize (desc_type));
4592 modify_field (value_type (descriptor),
4593 value_contents_writeable (descriptor).data (),
4594 value_pointer (bounds,
4595 desc_type->field (1).type ()),
4596 fat_pntr_bounds_bitpos (desc_type),
4597 fat_pntr_bounds_bitsize (desc_type));
4599 descriptor = ensure_lval (descriptor);
4601 if (type->code () == TYPE_CODE_PTR)
4602 return value_addr (descriptor);
4607 /* Symbol Cache Module */
4609 /* Performance measurements made as of 2010-01-15 indicate that
4610 this cache does bring some noticeable improvements. Depending
4611 on the type of entity being printed, the cache can make it as much
4612 as an order of magnitude faster than without it.
4614 The descriptive type DWARF extension has significantly reduced
4615 the need for this cache, at least when DWARF is being used. However,
4616 even in this case, some expensive name-based symbol searches are still
4617 sometimes necessary - to find an XVZ variable, mostly. */
4619 /* Return the symbol cache associated to the given program space PSPACE.
4620 If not allocated for this PSPACE yet, allocate and initialize one. */
4622 static struct ada_symbol_cache *
4623 ada_get_symbol_cache (struct program_space *pspace)
4625 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4627 if (pspace_data->sym_cache == nullptr)
4628 pspace_data->sym_cache.reset (new ada_symbol_cache);
4630 return pspace_data->sym_cache.get ();
4633 /* Clear all entries from the symbol cache. */
4636 ada_clear_symbol_cache ()
4638 struct ada_pspace_data *pspace_data
4639 = get_ada_pspace_data (current_program_space);
4641 if (pspace_data->sym_cache != nullptr)
4642 pspace_data->sym_cache.reset ();
4645 /* Search our cache for an entry matching NAME and DOMAIN.
4646 Return it if found, or NULL otherwise. */
4648 static struct cache_entry **
4649 find_entry (const char *name, domain_enum domain)
4651 struct ada_symbol_cache *sym_cache
4652 = ada_get_symbol_cache (current_program_space);
4653 int h = msymbol_hash (name) % HASH_SIZE;
4654 struct cache_entry **e;
4656 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4658 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4664 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4665 Return 1 if found, 0 otherwise.
4667 If an entry was found and SYM is not NULL, set *SYM to the entry's
4668 SYM. Same principle for BLOCK if not NULL. */
4671 lookup_cached_symbol (const char *name, domain_enum domain,
4672 struct symbol **sym, const struct block **block)
4674 struct cache_entry **e = find_entry (name, domain);
4681 *block = (*e)->block;
4685 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4686 in domain DOMAIN, save this result in our symbol cache. */
4689 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4690 const struct block *block)
4692 struct ada_symbol_cache *sym_cache
4693 = ada_get_symbol_cache (current_program_space);
4695 struct cache_entry *e;
4697 /* Symbols for builtin types don't have a block.
4698 For now don't cache such symbols. */
4699 if (sym != NULL && !sym->is_objfile_owned ())
4702 /* If the symbol is a local symbol, then do not cache it, as a search
4703 for that symbol depends on the context. To determine whether
4704 the symbol is local or not, we check the block where we found it
4705 against the global and static blocks of its associated symtab. */
4707 && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (),
4708 GLOBAL_BLOCK) != block
4709 && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (),
4710 STATIC_BLOCK) != block)
4713 h = msymbol_hash (name) % HASH_SIZE;
4714 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4715 e->next = sym_cache->root[h];
4716 sym_cache->root[h] = e;
4717 e->name = obstack_strdup (&sym_cache->cache_space, name);
4725 /* Return the symbol name match type that should be used used when
4726 searching for all symbols matching LOOKUP_NAME.
4728 LOOKUP_NAME is expected to be a symbol name after transformation
4731 static symbol_name_match_type
4732 name_match_type_from_name (const char *lookup_name)
4734 return (strstr (lookup_name, "__") == NULL
4735 ? symbol_name_match_type::WILD
4736 : symbol_name_match_type::FULL);
4739 /* Return the result of a standard (literal, C-like) lookup of NAME in
4740 given DOMAIN, visible from lexical block BLOCK. */
4742 static struct symbol *
4743 standard_lookup (const char *name, const struct block *block,
4746 /* Initialize it just to avoid a GCC false warning. */
4747 struct block_symbol sym = {};
4749 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4751 ada_lookup_encoded_symbol (name, block, domain, &sym);
4752 cache_symbol (name, domain, sym.symbol, sym.block);
4757 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4758 in the symbol fields of SYMS. We treat enumerals as functions,
4759 since they contend in overloading in the same way. */
4761 is_nonfunction (const std::vector<struct block_symbol> &syms)
4763 for (const block_symbol &sym : syms)
4764 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4765 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
4766 || sym.symbol->aclass () != LOC_CONST))
4772 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4773 struct types. Otherwise, they may not. */
4776 equiv_types (struct type *type0, struct type *type1)
4780 if (type0 == NULL || type1 == NULL
4781 || type0->code () != type1->code ())
4783 if ((type0->code () == TYPE_CODE_STRUCT
4784 || type0->code () == TYPE_CODE_ENUM)
4785 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4786 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4792 /* True iff SYM0 represents the same entity as SYM1, or one that is
4793 no more defined than that of SYM1. */
4796 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4800 if (sym0->domain () != sym1->domain ()
4801 || sym0->aclass () != sym1->aclass ())
4804 switch (sym0->aclass ())
4810 struct type *type0 = sym0->type ();
4811 struct type *type1 = sym1->type ();
4812 const char *name0 = sym0->linkage_name ();
4813 const char *name1 = sym1->linkage_name ();
4814 int len0 = strlen (name0);
4817 type0->code () == type1->code ()
4818 && (equiv_types (type0, type1)
4819 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4820 && startswith (name1 + len0, "___XV")));
4823 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4824 && equiv_types (sym0->type (), sym1->type ());
4828 const char *name0 = sym0->linkage_name ();
4829 const char *name1 = sym1->linkage_name ();
4830 return (strcmp (name0, name1) == 0
4831 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4839 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4840 records in RESULT. Do nothing if SYM is a duplicate. */
4843 add_defn_to_vec (std::vector<struct block_symbol> &result,
4845 const struct block *block)
4847 /* Do not try to complete stub types, as the debugger is probably
4848 already scanning all symbols matching a certain name at the
4849 time when this function is called. Trying to replace the stub
4850 type by its associated full type will cause us to restart a scan
4851 which may lead to an infinite recursion. Instead, the client
4852 collecting the matching symbols will end up collecting several
4853 matches, with at least one of them complete. It can then filter
4854 out the stub ones if needed. */
4856 for (int i = result.size () - 1; i >= 0; i -= 1)
4858 if (lesseq_defined_than (sym, result[i].symbol))
4860 else if (lesseq_defined_than (result[i].symbol, sym))
4862 result[i].symbol = sym;
4863 result[i].block = block;
4868 struct block_symbol info;
4871 result.push_back (info);
4874 /* Return a bound minimal symbol matching NAME according to Ada
4875 decoding rules. Returns an invalid symbol if there is no such
4876 minimal symbol. Names prefixed with "standard__" are handled
4877 specially: "standard__" is first stripped off, and only static and
4878 global symbols are searched. */
4880 struct bound_minimal_symbol
4881 ada_lookup_simple_minsym (const char *name)
4883 struct bound_minimal_symbol result;
4885 symbol_name_match_type match_type = name_match_type_from_name (name);
4886 lookup_name_info lookup_name (name, match_type);
4888 symbol_name_matcher_ftype *match_name
4889 = ada_get_symbol_name_matcher (lookup_name);
4891 for (objfile *objfile : current_program_space->objfiles ())
4893 for (minimal_symbol *msymbol : objfile->msymbols ())
4895 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4896 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4898 result.minsym = msymbol;
4899 result.objfile = objfile;
4908 /* True if TYPE is definitely an artificial type supplied to a symbol
4909 for which no debugging information was given in the symbol file. */
4912 is_nondebugging_type (struct type *type)
4914 const char *name = ada_type_name (type);
4916 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4919 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4920 that are deemed "identical" for practical purposes.
4922 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4923 types and that their number of enumerals is identical (in other
4924 words, type1->num_fields () == type2->num_fields ()). */
4927 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4931 /* The heuristic we use here is fairly conservative. We consider
4932 that 2 enumerate types are identical if they have the same
4933 number of enumerals and that all enumerals have the same
4934 underlying value and name. */
4936 /* All enums in the type should have an identical underlying value. */
4937 for (i = 0; i < type1->num_fields (); i++)
4938 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4941 /* All enumerals should also have the same name (modulo any numerical
4943 for (i = 0; i < type1->num_fields (); i++)
4945 const char *name_1 = type1->field (i).name ();
4946 const char *name_2 = type2->field (i).name ();
4947 int len_1 = strlen (name_1);
4948 int len_2 = strlen (name_2);
4950 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4951 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4953 || strncmp (type1->field (i).name (),
4954 type2->field (i).name (),
4962 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4963 that are deemed "identical" for practical purposes. Sometimes,
4964 enumerals are not strictly identical, but their types are so similar
4965 that they can be considered identical.
4967 For instance, consider the following code:
4969 type Color is (Black, Red, Green, Blue, White);
4970 type RGB_Color is new Color range Red .. Blue;
4972 Type RGB_Color is a subrange of an implicit type which is a copy
4973 of type Color. If we call that implicit type RGB_ColorB ("B" is
4974 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4975 As a result, when an expression references any of the enumeral
4976 by name (Eg. "print green"), the expression is technically
4977 ambiguous and the user should be asked to disambiguate. But
4978 doing so would only hinder the user, since it wouldn't matter
4979 what choice he makes, the outcome would always be the same.
4980 So, for practical purposes, we consider them as the same. */
4983 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4987 /* Before performing a thorough comparison check of each type,
4988 we perform a series of inexpensive checks. We expect that these
4989 checks will quickly fail in the vast majority of cases, and thus
4990 help prevent the unnecessary use of a more expensive comparison.
4991 Said comparison also expects us to make some of these checks
4992 (see ada_identical_enum_types_p). */
4994 /* Quick check: All symbols should have an enum type. */
4995 for (i = 0; i < syms.size (); i++)
4996 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
4999 /* Quick check: They should all have the same value. */
5000 for (i = 1; i < syms.size (); i++)
5001 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5004 /* Quick check: They should all have the same number of enumerals. */
5005 for (i = 1; i < syms.size (); i++)
5006 if (syms[i].symbol->type ()->num_fields ()
5007 != syms[0].symbol->type ()->num_fields ())
5010 /* All the sanity checks passed, so we might have a set of
5011 identical enumeration types. Perform a more complete
5012 comparison of the type of each symbol. */
5013 for (i = 1; i < syms.size (); i++)
5014 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5015 syms[0].symbol->type ()))
5021 /* Remove any non-debugging symbols in SYMS that definitely
5022 duplicate other symbols in the list (The only case I know of where
5023 this happens is when object files containing stabs-in-ecoff are
5024 linked with files containing ordinary ecoff debugging symbols (or no
5025 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
5028 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5032 /* We should never be called with less than 2 symbols, as there
5033 cannot be any extra symbol in that case. But it's easy to
5034 handle, since we have nothing to do in that case. */
5035 if (syms->size () < 2)
5039 while (i < syms->size ())
5043 /* If two symbols have the same name and one of them is a stub type,
5044 the get rid of the stub. */
5046 if ((*syms)[i].symbol->type ()->is_stub ()
5047 && (*syms)[i].symbol->linkage_name () != NULL)
5049 for (j = 0; j < syms->size (); j++)
5052 && !(*syms)[j].symbol->type ()->is_stub ()
5053 && (*syms)[j].symbol->linkage_name () != NULL
5054 && strcmp ((*syms)[i].symbol->linkage_name (),
5055 (*syms)[j].symbol->linkage_name ()) == 0)
5060 /* Two symbols with the same name, same class and same address
5061 should be identical. */
5063 else if ((*syms)[i].symbol->linkage_name () != NULL
5064 && (*syms)[i].symbol->aclass () == LOC_STATIC
5065 && is_nondebugging_type ((*syms)[i].symbol->type ()))
5067 for (j = 0; j < syms->size (); j += 1)
5070 && (*syms)[j].symbol->linkage_name () != NULL
5071 && strcmp ((*syms)[i].symbol->linkage_name (),
5072 (*syms)[j].symbol->linkage_name ()) == 0
5073 && ((*syms)[i].symbol->aclass ()
5074 == (*syms)[j].symbol->aclass ())
5075 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5076 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5082 syms->erase (syms->begin () + i);
5087 /* If all the remaining symbols are identical enumerals, then
5088 just keep the first one and discard the rest.
5090 Unlike what we did previously, we do not discard any entry
5091 unless they are ALL identical. This is because the symbol
5092 comparison is not a strict comparison, but rather a practical
5093 comparison. If all symbols are considered identical, then
5094 we can just go ahead and use the first one and discard the rest.
5095 But if we cannot reduce the list to a single element, we have
5096 to ask the user to disambiguate anyways. And if we have to
5097 present a multiple-choice menu, it's less confusing if the list
5098 isn't missing some choices that were identical and yet distinct. */
5099 if (symbols_are_identical_enums (*syms))
5103 /* Given a type that corresponds to a renaming entity, use the type name
5104 to extract the scope (package name or function name, fully qualified,
5105 and following the GNAT encoding convention) where this renaming has been
5109 xget_renaming_scope (struct type *renaming_type)
5111 /* The renaming types adhere to the following convention:
5112 <scope>__<rename>___<XR extension>.
5113 So, to extract the scope, we search for the "___XR" extension,
5114 and then backtrack until we find the first "__". */
5116 const char *name = renaming_type->name ();
5117 const char *suffix = strstr (name, "___XR");
5120 /* Now, backtrack a bit until we find the first "__". Start looking
5121 at suffix - 3, as the <rename> part is at least one character long. */
5123 for (last = suffix - 3; last > name; last--)
5124 if (last[0] == '_' && last[1] == '_')
5127 /* Make a copy of scope and return it. */
5128 return std::string (name, last);
5131 /* Return nonzero if NAME corresponds to a package name. */
5134 is_package_name (const char *name)
5136 /* Here, We take advantage of the fact that no symbols are generated
5137 for packages, while symbols are generated for each function.
5138 So the condition for NAME represent a package becomes equivalent
5139 to NAME not existing in our list of symbols. There is only one
5140 small complication with library-level functions (see below). */
5142 /* If it is a function that has not been defined at library level,
5143 then we should be able to look it up in the symbols. */
5144 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5147 /* Library-level function names start with "_ada_". See if function
5148 "_ada_" followed by NAME can be found. */
5150 /* Do a quick check that NAME does not contain "__", since library-level
5151 functions names cannot contain "__" in them. */
5152 if (strstr (name, "__") != NULL)
5155 std::string fun_name = string_printf ("_ada_%s", name);
5157 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5160 /* Return nonzero if SYM corresponds to a renaming entity that is
5161 not visible from FUNCTION_NAME. */
5164 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5166 if (sym->aclass () != LOC_TYPEDEF)
5169 std::string scope = xget_renaming_scope (sym->type ());
5171 /* If the rename has been defined in a package, then it is visible. */
5172 if (is_package_name (scope.c_str ()))
5175 /* Check that the rename is in the current function scope by checking
5176 that its name starts with SCOPE. */
5178 /* If the function name starts with "_ada_", it means that it is
5179 a library-level function. Strip this prefix before doing the
5180 comparison, as the encoding for the renaming does not contain
5182 if (startswith (function_name, "_ada_"))
5185 return !startswith (function_name, scope.c_str ());
5188 /* Remove entries from SYMS that corresponds to a renaming entity that
5189 is not visible from the function associated with CURRENT_BLOCK or
5190 that is superfluous due to the presence of more specific renaming
5191 information. Places surviving symbols in the initial entries of
5195 First, in cases where an object renaming is implemented as a
5196 reference variable, GNAT may produce both the actual reference
5197 variable and the renaming encoding. In this case, we discard the
5200 Second, GNAT emits a type following a specified encoding for each renaming
5201 entity. Unfortunately, STABS currently does not support the definition
5202 of types that are local to a given lexical block, so all renamings types
5203 are emitted at library level. As a consequence, if an application
5204 contains two renaming entities using the same name, and a user tries to
5205 print the value of one of these entities, the result of the ada symbol
5206 lookup will also contain the wrong renaming type.
5208 This function partially covers for this limitation by attempting to
5209 remove from the SYMS list renaming symbols that should be visible
5210 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5211 method with the current information available. The implementation
5212 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5214 - When the user tries to print a rename in a function while there
5215 is another rename entity defined in a package: Normally, the
5216 rename in the function has precedence over the rename in the
5217 package, so the latter should be removed from the list. This is
5218 currently not the case.
5220 - This function will incorrectly remove valid renames if
5221 the CURRENT_BLOCK corresponds to a function which symbol name
5222 has been changed by an "Export" pragma. As a consequence,
5223 the user will be unable to print such rename entities. */
5226 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5227 const struct block *current_block)
5229 struct symbol *current_function;
5230 const char *current_function_name;
5232 int is_new_style_renaming;
5234 /* If there is both a renaming foo___XR... encoded as a variable and
5235 a simple variable foo in the same block, discard the latter.
5236 First, zero out such symbols, then compress. */
5237 is_new_style_renaming = 0;
5238 for (i = 0; i < syms->size (); i += 1)
5240 struct symbol *sym = (*syms)[i].symbol;
5241 const struct block *block = (*syms)[i].block;
5245 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
5247 name = sym->linkage_name ();
5248 suffix = strstr (name, "___XR");
5252 int name_len = suffix - name;
5255 is_new_style_renaming = 1;
5256 for (j = 0; j < syms->size (); j += 1)
5257 if (i != j && (*syms)[j].symbol != NULL
5258 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5260 && block == (*syms)[j].block)
5261 (*syms)[j].symbol = NULL;
5264 if (is_new_style_renaming)
5268 for (j = k = 0; j < syms->size (); j += 1)
5269 if ((*syms)[j].symbol != NULL)
5271 (*syms)[k] = (*syms)[j];
5278 /* Extract the function name associated to CURRENT_BLOCK.
5279 Abort if unable to do so. */
5281 if (current_block == NULL)
5284 current_function = block_linkage_function (current_block);
5285 if (current_function == NULL)
5288 current_function_name = current_function->linkage_name ();
5289 if (current_function_name == NULL)
5292 /* Check each of the symbols, and remove it from the list if it is
5293 a type corresponding to a renaming that is out of the scope of
5294 the current block. */
5297 while (i < syms->size ())
5299 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5300 == ADA_OBJECT_RENAMING
5301 && old_renaming_is_invisible ((*syms)[i].symbol,
5302 current_function_name))
5303 syms->erase (syms->begin () + i);
5309 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5310 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5312 Note: This function assumes that RESULT is empty. */
5315 ada_add_local_symbols (std::vector<struct block_symbol> &result,
5316 const lookup_name_info &lookup_name,
5317 const struct block *block, domain_enum domain)
5319 while (block != NULL)
5321 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5323 /* If we found a non-function match, assume that's the one. We
5324 only check this when finding a function boundary, so that we
5325 can accumulate all results from intervening blocks first. */
5326 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5329 block = BLOCK_SUPERBLOCK (block);
5333 /* An object of this type is used as the callback argument when
5334 calling the map_matching_symbols method. */
5338 explicit match_data (std::vector<struct block_symbol> *rp)
5342 DISABLE_COPY_AND_ASSIGN (match_data);
5344 bool operator() (struct block_symbol *bsym);
5346 struct objfile *objfile = nullptr;
5347 std::vector<struct block_symbol> *resultp;
5348 struct symbol *arg_sym = nullptr;
5349 bool found_sym = false;
5352 /* A callback for add_nonlocal_symbols that adds symbol, found in
5353 BSYM, to a list of symbols. */
5356 match_data::operator() (struct block_symbol *bsym)
5358 const struct block *block = bsym->block;
5359 struct symbol *sym = bsym->symbol;
5363 if (!found_sym && arg_sym != NULL)
5364 add_defn_to_vec (*resultp,
5365 fixup_symbol_section (arg_sym, objfile),
5372 if (sym->aclass () == LOC_UNRESOLVED)
5374 else if (sym->is_argument ())
5379 add_defn_to_vec (*resultp,
5380 fixup_symbol_section (sym, objfile),
5387 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5388 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5389 symbols to RESULT. Return whether we found such symbols. */
5392 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5393 const struct block *block,
5394 const lookup_name_info &lookup_name,
5397 struct using_direct *renaming;
5398 int defns_mark = result.size ();
5400 symbol_name_matcher_ftype *name_match
5401 = ada_get_symbol_name_matcher (lookup_name);
5403 for (renaming = block_using (block);
5405 renaming = renaming->next)
5409 /* Avoid infinite recursions: skip this renaming if we are actually
5410 already traversing it.
5412 Currently, symbol lookup in Ada don't use the namespace machinery from
5413 C++/Fortran support: skip namespace imports that use them. */
5414 if (renaming->searched
5415 || (renaming->import_src != NULL
5416 && renaming->import_src[0] != '\0')
5417 || (renaming->import_dest != NULL
5418 && renaming->import_dest[0] != '\0'))
5420 renaming->searched = 1;
5422 /* TODO: here, we perform another name-based symbol lookup, which can
5423 pull its own multiple overloads. In theory, we should be able to do
5424 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5425 not a simple name. But in order to do this, we would need to enhance
5426 the DWARF reader to associate a symbol to this renaming, instead of a
5427 name. So, for now, we do something simpler: re-use the C++/Fortran
5428 namespace machinery. */
5429 r_name = (renaming->alias != NULL
5431 : renaming->declaration);
5432 if (name_match (r_name, lookup_name, NULL))
5434 lookup_name_info decl_lookup_name (renaming->declaration,
5435 lookup_name.match_type ());
5436 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5439 renaming->searched = 0;
5441 return result.size () != defns_mark;
5444 /* Implements compare_names, but only applying the comparision using
5445 the given CASING. */
5448 compare_names_with_case (const char *string1, const char *string2,
5449 enum case_sensitivity casing)
5451 while (*string1 != '\0' && *string2 != '\0')
5455 if (isspace (*string1) || isspace (*string2))
5456 return strcmp_iw_ordered (string1, string2);
5458 if (casing == case_sensitive_off)
5460 c1 = tolower (*string1);
5461 c2 = tolower (*string2);
5478 return strcmp_iw_ordered (string1, string2);
5480 if (*string2 == '\0')
5482 if (is_name_suffix (string1))
5489 if (*string2 == '(')
5490 return strcmp_iw_ordered (string1, string2);
5493 if (casing == case_sensitive_off)
5494 return tolower (*string1) - tolower (*string2);
5496 return *string1 - *string2;
5501 /* Compare STRING1 to STRING2, with results as for strcmp.
5502 Compatible with strcmp_iw_ordered in that...
5504 strcmp_iw_ordered (STRING1, STRING2) <= 0
5508 compare_names (STRING1, STRING2) <= 0
5510 (they may differ as to what symbols compare equal). */
5513 compare_names (const char *string1, const char *string2)
5517 /* Similar to what strcmp_iw_ordered does, we need to perform
5518 a case-insensitive comparison first, and only resort to
5519 a second, case-sensitive, comparison if the first one was
5520 not sufficient to differentiate the two strings. */
5522 result = compare_names_with_case (string1, string2, case_sensitive_off);
5524 result = compare_names_with_case (string1, string2, case_sensitive_on);
5529 /* Convenience function to get at the Ada encoded lookup name for
5530 LOOKUP_NAME, as a C string. */
5533 ada_lookup_name (const lookup_name_info &lookup_name)
5535 return lookup_name.ada ().lookup_name ().c_str ();
5538 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5539 for OBJFILE, then walk the objfile's symtabs and update the
5543 map_matching_symbols (struct objfile *objfile,
5544 const lookup_name_info &lookup_name,
5550 data.objfile = objfile;
5551 objfile->expand_matching_symbols (lookup_name, domain, global,
5552 is_wild_match ? nullptr : compare_names);
5554 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5555 for (compunit_symtab *symtab : objfile->compunits ())
5557 const struct block *block
5558 = BLOCKVECTOR_BLOCK (symtab->blockvector (), block_kind);
5559 if (!iterate_over_symbols_terminated (block, lookup_name,
5565 /* Add to RESULT all non-local symbols whose name and domain match
5566 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5567 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5568 symbols otherwise. */
5571 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5572 const lookup_name_info &lookup_name,
5573 domain_enum domain, int global)
5575 struct match_data data (&result);
5577 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5579 for (objfile *objfile : current_program_space->objfiles ())
5581 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5584 for (compunit_symtab *cu : objfile->compunits ())
5586 const struct block *global_block
5587 = BLOCKVECTOR_BLOCK (cu->blockvector (), GLOBAL_BLOCK);
5589 if (ada_add_block_renamings (result, global_block, lookup_name,
5591 data.found_sym = true;
5595 if (result.empty () && global && !is_wild_match)
5597 const char *name = ada_lookup_name (lookup_name);
5598 std::string bracket_name = std::string ("<_ada_") + name + '>';
5599 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5601 for (objfile *objfile : current_program_space->objfiles ())
5602 map_matching_symbols (objfile, name1, false, domain, global, data);
5606 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5607 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5608 returning the number of matches. Add these to RESULT.
5610 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5611 symbol match within the nest of blocks whose innermost member is BLOCK,
5612 is the one match returned (no other matches in that or
5613 enclosing blocks is returned). If there are any matches in or
5614 surrounding BLOCK, then these alone are returned.
5616 Names prefixed with "standard__" are handled specially:
5617 "standard__" is first stripped off (by the lookup_name
5618 constructor), and only static and global symbols are searched.
5620 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5621 to lookup global symbols. */
5624 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5625 const struct block *block,
5626 const lookup_name_info &lookup_name,
5629 int *made_global_lookup_p)
5633 if (made_global_lookup_p)
5634 *made_global_lookup_p = 0;
5636 /* Special case: If the user specifies a symbol name inside package
5637 Standard, do a non-wild matching of the symbol name without
5638 the "standard__" prefix. This was primarily introduced in order
5639 to allow the user to specifically access the standard exceptions
5640 using, for instance, Standard.Constraint_Error when Constraint_Error
5641 is ambiguous (due to the user defining its own Constraint_Error
5642 entity inside its program). */
5643 if (lookup_name.ada ().standard_p ())
5646 /* Check the non-global symbols. If we have ANY match, then we're done. */
5651 ada_add_local_symbols (result, lookup_name, block, domain);
5654 /* In the !full_search case we're are being called by
5655 iterate_over_symbols, and we don't want to search
5657 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5659 if (!result.empty () || !full_search)
5663 /* No non-global symbols found. Check our cache to see if we have
5664 already performed this search before. If we have, then return
5667 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5668 domain, &sym, &block))
5671 add_defn_to_vec (result, sym, block);
5675 if (made_global_lookup_p)
5676 *made_global_lookup_p = 1;
5678 /* Search symbols from all global blocks. */
5680 add_nonlocal_symbols (result, lookup_name, domain, 1);
5682 /* Now add symbols from all per-file blocks if we've gotten no hits
5683 (not strictly correct, but perhaps better than an error). */
5685 if (result.empty ())
5686 add_nonlocal_symbols (result, lookup_name, domain, 0);
5689 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5690 is non-zero, enclosing scope and in global scopes.
5692 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5693 blocks and symbol tables (if any) in which they were found.
5695 When full_search is non-zero, any non-function/non-enumeral
5696 symbol match within the nest of blocks whose innermost member is BLOCK,
5697 is the one match returned (no other matches in that or
5698 enclosing blocks is returned). If there are any matches in or
5699 surrounding BLOCK, then these alone are returned.
5701 Names prefixed with "standard__" are handled specially: "standard__"
5702 is first stripped off, and only static and global symbols are searched. */
5704 static std::vector<struct block_symbol>
5705 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5706 const struct block *block,
5710 int syms_from_global_search;
5711 std::vector<struct block_symbol> results;
5713 ada_add_all_symbols (results, block, lookup_name,
5714 domain, full_search, &syms_from_global_search);
5716 remove_extra_symbols (&results);
5718 if (results.empty () && full_search && syms_from_global_search)
5719 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5721 if (results.size () == 1 && full_search && syms_from_global_search)
5722 cache_symbol (ada_lookup_name (lookup_name), domain,
5723 results[0].symbol, results[0].block);
5725 remove_irrelevant_renamings (&results, block);
5729 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5730 in global scopes, returning (SYM,BLOCK) tuples.
5732 See ada_lookup_symbol_list_worker for further details. */
5734 std::vector<struct block_symbol>
5735 ada_lookup_symbol_list (const char *name, const struct block *block,
5738 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5739 lookup_name_info lookup_name (name, name_match_type);
5741 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5744 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5745 to 1, but choosing the first symbol found if there are multiple
5748 The result is stored in *INFO, which must be non-NULL.
5749 If no match is found, INFO->SYM is set to NULL. */
5752 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5754 struct block_symbol *info)
5756 /* Since we already have an encoded name, wrap it in '<>' to force a
5757 verbatim match. Otherwise, if the name happens to not look like
5758 an encoded name (because it doesn't include a "__"),
5759 ada_lookup_name_info would re-encode/fold it again, and that
5760 would e.g., incorrectly lowercase object renaming names like
5761 "R28b" -> "r28b". */
5762 std::string verbatim = add_angle_brackets (name);
5764 gdb_assert (info != NULL);
5765 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5768 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5769 scope and in global scopes, or NULL if none. NAME is folded and
5770 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5771 choosing the first symbol if there are multiple choices. */
5774 ada_lookup_symbol (const char *name, const struct block *block0,
5777 std::vector<struct block_symbol> candidates
5778 = ada_lookup_symbol_list (name, block0, domain);
5780 if (candidates.empty ())
5783 block_symbol info = candidates[0];
5784 info.symbol = fixup_symbol_section (info.symbol, NULL);
5789 /* True iff STR is a possible encoded suffix of a normal Ada name
5790 that is to be ignored for matching purposes. Suffixes of parallel
5791 names (e.g., XVE) are not included here. Currently, the possible suffixes
5792 are given by any of the regular expressions:
5794 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5795 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5796 TKB [subprogram suffix for task bodies]
5797 _E[0-9]+[bs]$ [protected object entry suffixes]
5798 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5800 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5801 match is performed. This sequence is used to differentiate homonyms,
5802 is an optional part of a valid name suffix. */
5805 is_name_suffix (const char *str)
5808 const char *matching;
5809 const int len = strlen (str);
5811 /* Skip optional leading __[0-9]+. */
5813 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5816 while (isdigit (str[0]))
5822 if (str[0] == '.' || str[0] == '$')
5825 while (isdigit (matching[0]))
5827 if (matching[0] == '\0')
5833 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5836 while (isdigit (matching[0]))
5838 if (matching[0] == '\0')
5842 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5844 if (strcmp (str, "TKB") == 0)
5848 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5849 with a N at the end. Unfortunately, the compiler uses the same
5850 convention for other internal types it creates. So treating
5851 all entity names that end with an "N" as a name suffix causes
5852 some regressions. For instance, consider the case of an enumerated
5853 type. To support the 'Image attribute, it creates an array whose
5855 Having a single character like this as a suffix carrying some
5856 information is a bit risky. Perhaps we should change the encoding
5857 to be something like "_N" instead. In the meantime, do not do
5858 the following check. */
5859 /* Protected Object Subprograms */
5860 if (len == 1 && str [0] == 'N')
5865 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5868 while (isdigit (matching[0]))
5870 if ((matching[0] == 'b' || matching[0] == 's')
5871 && matching [1] == '\0')
5875 /* ??? We should not modify STR directly, as we are doing below. This
5876 is fine in this case, but may become problematic later if we find
5877 that this alternative did not work, and want to try matching
5878 another one from the begining of STR. Since we modified it, we
5879 won't be able to find the begining of the string anymore! */
5883 while (str[0] != '_' && str[0] != '\0')
5885 if (str[0] != 'n' && str[0] != 'b')
5891 if (str[0] == '\000')
5896 if (str[1] != '_' || str[2] == '\000')
5900 if (strcmp (str + 3, "JM") == 0)
5902 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5903 the LJM suffix in favor of the JM one. But we will
5904 still accept LJM as a valid suffix for a reasonable
5905 amount of time, just to allow ourselves to debug programs
5906 compiled using an older version of GNAT. */
5907 if (strcmp (str + 3, "LJM") == 0)
5911 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5912 || str[4] == 'U' || str[4] == 'P')
5914 if (str[4] == 'R' && str[5] != 'T')
5918 if (!isdigit (str[2]))
5920 for (k = 3; str[k] != '\0'; k += 1)
5921 if (!isdigit (str[k]) && str[k] != '_')
5925 if (str[0] == '$' && isdigit (str[1]))
5927 for (k = 2; str[k] != '\0'; k += 1)
5928 if (!isdigit (str[k]) && str[k] != '_')
5935 /* Return non-zero if the string starting at NAME and ending before
5936 NAME_END contains no capital letters. */
5939 is_valid_name_for_wild_match (const char *name0)
5941 std::string decoded_name = ada_decode (name0);
5944 /* If the decoded name starts with an angle bracket, it means that
5945 NAME0 does not follow the GNAT encoding format. It should then
5946 not be allowed as a possible wild match. */
5947 if (decoded_name[0] == '<')
5950 for (i=0; decoded_name[i] != '\0'; i++)
5951 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5957 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5958 character which could start a simple name. Assumes that *NAMEP points
5959 somewhere inside the string beginning at NAME0. */
5962 advance_wild_match (const char **namep, const char *name0, char target0)
5964 const char *name = *namep;
5974 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5977 if (name == name0 + 5 && startswith (name0, "_ada"))
5982 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5983 || name[2] == target0))
5988 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5990 /* Names like "pkg__B_N__name", where N is a number, are
5991 block-local. We can handle these by simply skipping
5998 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6008 /* Return true iff NAME encodes a name of the form prefix.PATN.
6009 Ignores any informational suffixes of NAME (i.e., for which
6010 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6014 wild_match (const char *name, const char *patn)
6017 const char *name0 = name;
6021 const char *match = name;
6025 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6028 if (*p == '\0' && is_name_suffix (name))
6029 return match == name0 || is_valid_name_for_wild_match (name0);
6031 if (name[-1] == '_')
6034 if (!advance_wild_match (&name, name0, *patn))
6039 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
6040 necessary). OBJFILE is the section containing BLOCK. */
6043 ada_add_block_symbols (std::vector<struct block_symbol> &result,
6044 const struct block *block,
6045 const lookup_name_info &lookup_name,
6046 domain_enum domain, struct objfile *objfile)
6048 struct block_iterator iter;
6049 /* A matching argument symbol, if any. */
6050 struct symbol *arg_sym;
6051 /* Set true when we find a matching non-argument symbol. */
6057 for (sym = block_iter_match_first (block, lookup_name, &iter);
6059 sym = block_iter_match_next (lookup_name, &iter))
6061 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
6063 if (sym->aclass () != LOC_UNRESOLVED)
6065 if (sym->is_argument ())
6070 add_defn_to_vec (result,
6071 fixup_symbol_section (sym, objfile),
6078 /* Handle renamings. */
6080 if (ada_add_block_renamings (result, block, lookup_name, domain))
6083 if (!found_sym && arg_sym != NULL)
6085 add_defn_to_vec (result,
6086 fixup_symbol_section (arg_sym, objfile),
6090 if (!lookup_name.ada ().wild_match_p ())
6094 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6095 const char *name = ada_lookup_name.c_str ();
6096 size_t name_len = ada_lookup_name.size ();
6098 ALL_BLOCK_SYMBOLS (block, iter, sym)
6100 if (symbol_matches_domain (sym->language (),
6101 sym->domain (), domain))
6105 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6108 cmp = !startswith (sym->linkage_name (), "_ada_");
6110 cmp = strncmp (name, sym->linkage_name () + 5,
6115 && is_name_suffix (sym->linkage_name () + name_len + 5))
6117 if (sym->aclass () != LOC_UNRESOLVED)
6119 if (sym->is_argument ())
6124 add_defn_to_vec (result,
6125 fixup_symbol_section (sym, objfile),
6133 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6134 They aren't parameters, right? */
6135 if (!found_sym && arg_sym != NULL)
6137 add_defn_to_vec (result,
6138 fixup_symbol_section (arg_sym, objfile),
6145 /* Symbol Completion */
6150 ada_lookup_name_info::matches
6151 (const char *sym_name,
6152 symbol_name_match_type match_type,
6153 completion_match_result *comp_match_res) const
6156 const char *text = m_encoded_name.c_str ();
6157 size_t text_len = m_encoded_name.size ();
6159 /* First, test against the fully qualified name of the symbol. */
6161 if (strncmp (sym_name, text, text_len) == 0)
6164 std::string decoded_name = ada_decode (sym_name);
6165 if (match && !m_encoded_p)
6167 /* One needed check before declaring a positive match is to verify
6168 that iff we are doing a verbatim match, the decoded version
6169 of the symbol name starts with '<'. Otherwise, this symbol name
6170 is not a suitable completion. */
6172 bool has_angle_bracket = (decoded_name[0] == '<');
6173 match = (has_angle_bracket == m_verbatim_p);
6176 if (match && !m_verbatim_p)
6178 /* When doing non-verbatim match, another check that needs to
6179 be done is to verify that the potentially matching symbol name
6180 does not include capital letters, because the ada-mode would
6181 not be able to understand these symbol names without the
6182 angle bracket notation. */
6185 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6190 /* Second: Try wild matching... */
6192 if (!match && m_wild_match_p)
6194 /* Since we are doing wild matching, this means that TEXT
6195 may represent an unqualified symbol name. We therefore must
6196 also compare TEXT against the unqualified name of the symbol. */
6197 sym_name = ada_unqualified_name (decoded_name.c_str ());
6199 if (strncmp (sym_name, text, text_len) == 0)
6203 /* Finally: If we found a match, prepare the result to return. */
6208 if (comp_match_res != NULL)
6210 std::string &match_str = comp_match_res->match.storage ();
6213 match_str = ada_decode (sym_name);
6217 match_str = add_angle_brackets (sym_name);
6219 match_str = sym_name;
6223 comp_match_res->set_match (match_str.c_str ());
6231 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6232 for tagged types. */
6235 ada_is_dispatch_table_ptr_type (struct type *type)
6239 if (type->code () != TYPE_CODE_PTR)
6242 name = TYPE_TARGET_TYPE (type)->name ();
6246 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6249 /* Return non-zero if TYPE is an interface tag. */
6252 ada_is_interface_tag (struct type *type)
6254 const char *name = type->name ();
6259 return (strcmp (name, "ada__tags__interface_tag") == 0);
6262 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6263 to be invisible to users. */
6266 ada_is_ignored_field (struct type *type, int field_num)
6268 if (field_num < 0 || field_num > type->num_fields ())
6271 /* Check the name of that field. */
6273 const char *name = type->field (field_num).name ();
6275 /* Anonymous field names should not be printed.
6276 brobecker/2007-02-20: I don't think this can actually happen
6277 but we don't want to print the value of anonymous fields anyway. */
6281 /* Normally, fields whose name start with an underscore ("_")
6282 are fields that have been internally generated by the compiler,
6283 and thus should not be printed. The "_parent" field is special,
6284 however: This is a field internally generated by the compiler
6285 for tagged types, and it contains the components inherited from
6286 the parent type. This field should not be printed as is, but
6287 should not be ignored either. */
6288 if (name[0] == '_' && !startswith (name, "_parent"))
6291 /* The compiler doesn't document this, but sometimes it emits
6292 a field whose name starts with a capital letter, like 'V148s'.
6293 These aren't marked as artificial in any way, but we know they
6294 should be ignored. However, wrapper fields should not be
6296 if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
6298 /* Wrapper field. */
6300 else if (isupper (name[0]))
6304 /* If this is the dispatch table of a tagged type or an interface tag,
6306 if (ada_is_tagged_type (type, 1)
6307 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6308 || ada_is_interface_tag (type->field (field_num).type ())))
6311 /* Not a special field, so it should not be ignored. */
6315 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6316 pointer or reference type whose ultimate target has a tag field. */
6319 ada_is_tagged_type (struct type *type, int refok)
6321 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6324 /* True iff TYPE represents the type of X'Tag */
6327 ada_is_tag_type (struct type *type)
6329 type = ada_check_typedef (type);
6331 if (type == NULL || type->code () != TYPE_CODE_PTR)
6335 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6337 return (name != NULL
6338 && strcmp (name, "ada__tags__dispatch_table") == 0);
6342 /* The type of the tag on VAL. */
6344 static struct type *
6345 ada_tag_type (struct value *val)
6347 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6350 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6351 retired at Ada 05). */
6354 is_ada95_tag (struct value *tag)
6356 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6359 /* The value of the tag on VAL. */
6361 static struct value *
6362 ada_value_tag (struct value *val)
6364 return ada_value_struct_elt (val, "_tag", 0);
6367 /* The value of the tag on the object of type TYPE whose contents are
6368 saved at VALADDR, if it is non-null, or is at memory address
6371 static struct value *
6372 value_tag_from_contents_and_address (struct type *type,
6373 const gdb_byte *valaddr,
6376 int tag_byte_offset;
6377 struct type *tag_type;
6379 gdb::array_view<const gdb_byte> contents;
6380 if (valaddr != nullptr)
6381 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6382 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6383 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6386 const gdb_byte *valaddr1 = ((valaddr == NULL)
6388 : valaddr + tag_byte_offset);
6389 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6391 return value_from_contents_and_address (tag_type, valaddr1, address1);
6396 static struct type *
6397 type_from_tag (struct value *tag)
6399 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6401 if (type_name != NULL)
6402 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6406 /* Given a value OBJ of a tagged type, return a value of this
6407 type at the base address of the object. The base address, as
6408 defined in Ada.Tags, it is the address of the primary tag of
6409 the object, and therefore where the field values of its full
6410 view can be fetched. */
6413 ada_tag_value_at_base_address (struct value *obj)
6416 LONGEST offset_to_top = 0;
6417 struct type *ptr_type, *obj_type;
6419 CORE_ADDR base_address;
6421 obj_type = value_type (obj);
6423 /* It is the responsability of the caller to deref pointers. */
6425 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6428 tag = ada_value_tag (obj);
6432 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6434 if (is_ada95_tag (tag))
6437 struct type *offset_type
6438 = language_lookup_primitive_type (language_def (language_ada),
6439 target_gdbarch(), "storage_offset");
6440 ptr_type = lookup_pointer_type (offset_type);
6441 val = value_cast (ptr_type, tag);
6445 /* It is perfectly possible that an exception be raised while
6446 trying to determine the base address, just like for the tag;
6447 see ada_tag_name for more details. We do not print the error
6448 message for the same reason. */
6452 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6455 catch (const gdb_exception_error &e)
6460 /* If offset is null, nothing to do. */
6462 if (offset_to_top == 0)
6465 /* -1 is a special case in Ada.Tags; however, what should be done
6466 is not quite clear from the documentation. So do nothing for
6469 if (offset_to_top == -1)
6472 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6473 top is used. In this situation the offset is stored just after
6474 the tag, in the object itself. */
6475 ULONGEST last = (((ULONGEST) 1) << (8 * TYPE_LENGTH (offset_type) - 1)) - 1;
6476 if (offset_to_top == last)
6478 struct value *tem = value_addr (tag);
6479 tem = value_ptradd (tem, 1);
6480 tem = value_cast (ptr_type, tem);
6481 offset_to_top = value_as_long (value_ind (tem));
6483 else if (offset_to_top > 0)
6485 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6486 from the base address. This was however incompatible with
6487 C++ dispatch table: C++ uses a *negative* value to *add*
6488 to the base address. Ada's convention has therefore been
6489 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6490 use the same convention. Here, we support both cases by
6491 checking the sign of OFFSET_TO_TOP. */
6492 offset_to_top = -offset_to_top;
6495 base_address = value_address (obj) + offset_to_top;
6496 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6498 /* Make sure that we have a proper tag at the new address.
6499 Otherwise, offset_to_top is bogus (which can happen when
6500 the object is not initialized yet). */
6505 obj_type = type_from_tag (tag);
6510 return value_from_contents_and_address (obj_type, NULL, base_address);
6513 /* Return the "ada__tags__type_specific_data" type. */
6515 static struct type *
6516 ada_get_tsd_type (struct inferior *inf)
6518 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6520 if (data->tsd_type == 0)
6521 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6522 return data->tsd_type;
6525 /* Return the TSD (type-specific data) associated to the given TAG.
6526 TAG is assumed to be the tag of a tagged-type entity.
6528 May return NULL if we are unable to get the TSD. */
6530 static struct value *
6531 ada_get_tsd_from_tag (struct value *tag)
6536 /* First option: The TSD is simply stored as a field of our TAG.
6537 Only older versions of GNAT would use this format, but we have
6538 to test it first, because there are no visible markers for
6539 the current approach except the absence of that field. */
6541 val = ada_value_struct_elt (tag, "tsd", 1);
6545 /* Try the second representation for the dispatch table (in which
6546 there is no explicit 'tsd' field in the referent of the tag pointer,
6547 and instead the tsd pointer is stored just before the dispatch
6550 type = ada_get_tsd_type (current_inferior());
6553 type = lookup_pointer_type (lookup_pointer_type (type));
6554 val = value_cast (type, tag);
6557 return value_ind (value_ptradd (val, -1));
6560 /* Given the TSD of a tag (type-specific data), return a string
6561 containing the name of the associated type.
6563 May return NULL if we are unable to determine the tag name. */
6565 static gdb::unique_xmalloc_ptr<char>
6566 ada_tag_name_from_tsd (struct value *tsd)
6570 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6573 gdb::unique_xmalloc_ptr<char> buffer
6574 = target_read_string (value_as_address (val), INT_MAX);
6575 if (buffer == nullptr)
6580 /* Let this throw an exception on error. If the data is
6581 uninitialized, we'd rather not have the user see a
6583 const char *folded = ada_fold_name (buffer.get (), true);
6584 return make_unique_xstrdup (folded);
6586 catch (const gdb_exception &)
6592 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6595 Return NULL if the TAG is not an Ada tag, or if we were unable to
6596 determine the name of that tag. */
6598 gdb::unique_xmalloc_ptr<char>
6599 ada_tag_name (struct value *tag)
6601 gdb::unique_xmalloc_ptr<char> name;
6603 if (!ada_is_tag_type (value_type (tag)))
6606 /* It is perfectly possible that an exception be raised while trying
6607 to determine the TAG's name, even under normal circumstances:
6608 The associated variable may be uninitialized or corrupted, for
6609 instance. We do not let any exception propagate past this point.
6610 instead we return NULL.
6612 We also do not print the error message either (which often is very
6613 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6614 the caller print a more meaningful message if necessary. */
6617 struct value *tsd = ada_get_tsd_from_tag (tag);
6620 name = ada_tag_name_from_tsd (tsd);
6622 catch (const gdb_exception_error &e)
6629 /* The parent type of TYPE, or NULL if none. */
6632 ada_parent_type (struct type *type)
6636 type = ada_check_typedef (type);
6638 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6641 for (i = 0; i < type->num_fields (); i += 1)
6642 if (ada_is_parent_field (type, i))
6644 struct type *parent_type = type->field (i).type ();
6646 /* If the _parent field is a pointer, then dereference it. */
6647 if (parent_type->code () == TYPE_CODE_PTR)
6648 parent_type = TYPE_TARGET_TYPE (parent_type);
6649 /* If there is a parallel XVS type, get the actual base type. */
6650 parent_type = ada_get_base_type (parent_type);
6652 return ada_check_typedef (parent_type);
6658 /* True iff field number FIELD_NUM of structure type TYPE contains the
6659 parent-type (inherited) fields of a derived type. Assumes TYPE is
6660 a structure type with at least FIELD_NUM+1 fields. */
6663 ada_is_parent_field (struct type *type, int field_num)
6665 const char *name = ada_check_typedef (type)->field (field_num).name ();
6667 return (name != NULL
6668 && (startswith (name, "PARENT")
6669 || startswith (name, "_parent")));
6672 /* True iff field number FIELD_NUM of structure type TYPE is a
6673 transparent wrapper field (which should be silently traversed when doing
6674 field selection and flattened when printing). Assumes TYPE is a
6675 structure type with at least FIELD_NUM+1 fields. Such fields are always
6679 ada_is_wrapper_field (struct type *type, int field_num)
6681 const char *name = type->field (field_num).name ();
6683 if (name != NULL && strcmp (name, "RETVAL") == 0)
6685 /* This happens in functions with "out" or "in out" parameters
6686 which are passed by copy. For such functions, GNAT describes
6687 the function's return type as being a struct where the return
6688 value is in a field called RETVAL, and where the other "out"
6689 or "in out" parameters are fields of that struct. This is not
6694 return (name != NULL
6695 && (startswith (name, "PARENT")
6696 || strcmp (name, "REP") == 0
6697 || startswith (name, "_parent")
6698 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6701 /* True iff field number FIELD_NUM of structure or union type TYPE
6702 is a variant wrapper. Assumes TYPE is a structure type with at least
6703 FIELD_NUM+1 fields. */
6706 ada_is_variant_part (struct type *type, int field_num)
6708 /* Only Ada types are eligible. */
6709 if (!ADA_TYPE_P (type))
6712 struct type *field_type = type->field (field_num).type ();
6714 return (field_type->code () == TYPE_CODE_UNION
6715 || (is_dynamic_field (type, field_num)
6716 && (TYPE_TARGET_TYPE (field_type)->code ()
6717 == TYPE_CODE_UNION)));
6720 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6721 whose discriminants are contained in the record type OUTER_TYPE,
6722 returns the type of the controlling discriminant for the variant.
6723 May return NULL if the type could not be found. */
6726 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6728 const char *name = ada_variant_discrim_name (var_type);
6730 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6733 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6734 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6735 represents a 'when others' clause; otherwise 0. */
6738 ada_is_others_clause (struct type *type, int field_num)
6740 const char *name = type->field (field_num).name ();
6742 return (name != NULL && name[0] == 'O');
6745 /* Assuming that TYPE0 is the type of the variant part of a record,
6746 returns the name of the discriminant controlling the variant.
6747 The value is valid until the next call to ada_variant_discrim_name. */
6750 ada_variant_discrim_name (struct type *type0)
6752 static std::string result;
6755 const char *discrim_end;
6756 const char *discrim_start;
6758 if (type0->code () == TYPE_CODE_PTR)
6759 type = TYPE_TARGET_TYPE (type0);
6763 name = ada_type_name (type);
6765 if (name == NULL || name[0] == '\000')
6768 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6771 if (startswith (discrim_end, "___XVN"))
6774 if (discrim_end == name)
6777 for (discrim_start = discrim_end; discrim_start != name + 3;
6780 if (discrim_start == name + 1)
6782 if ((discrim_start > name + 3
6783 && startswith (discrim_start - 3, "___"))
6784 || discrim_start[-1] == '.')
6788 result = std::string (discrim_start, discrim_end - discrim_start);
6789 return result.c_str ();
6792 /* Scan STR for a subtype-encoded number, beginning at position K.
6793 Put the position of the character just past the number scanned in
6794 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6795 Return 1 if there was a valid number at the given position, and 0
6796 otherwise. A "subtype-encoded" number consists of the absolute value
6797 in decimal, followed by the letter 'm' to indicate a negative number.
6798 Assumes 0m does not occur. */
6801 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6805 if (!isdigit (str[k]))
6808 /* Do it the hard way so as not to make any assumption about
6809 the relationship of unsigned long (%lu scan format code) and
6812 while (isdigit (str[k]))
6814 RU = RU * 10 + (str[k] - '0');
6821 *R = (-(LONGEST) (RU - 1)) - 1;
6827 /* NOTE on the above: Technically, C does not say what the results of
6828 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6829 number representable as a LONGEST (although either would probably work
6830 in most implementations). When RU>0, the locution in the then branch
6831 above is always equivalent to the negative of RU. */
6838 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6839 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6840 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6843 ada_in_variant (LONGEST val, struct type *type, int field_num)
6845 const char *name = type->field (field_num).name ();
6859 if (!ada_scan_number (name, p + 1, &W, &p))
6869 if (!ada_scan_number (name, p + 1, &L, &p)
6870 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6872 if (val >= L && val <= U)
6884 /* FIXME: Lots of redundancy below. Try to consolidate. */
6886 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6887 ARG_TYPE, extract and return the value of one of its (non-static)
6888 fields. FIELDNO says which field. Differs from value_primitive_field
6889 only in that it can handle packed values of arbitrary type. */
6892 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6893 struct type *arg_type)
6897 arg_type = ada_check_typedef (arg_type);
6898 type = arg_type->field (fieldno).type ();
6900 /* Handle packed fields. It might be that the field is not packed
6901 relative to its containing structure, but the structure itself is
6902 packed; in this case we must take the bit-field path. */
6903 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6905 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6906 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6908 return ada_value_primitive_packed_val (arg1,
6909 value_contents (arg1).data (),
6910 offset + bit_pos / 8,
6911 bit_pos % 8, bit_size, type);
6914 return value_primitive_field (arg1, offset, fieldno, arg_type);
6917 /* Find field with name NAME in object of type TYPE. If found,
6918 set the following for each argument that is non-null:
6919 - *FIELD_TYPE_P to the field's type;
6920 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6921 an object of that type;
6922 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6923 - *BIT_SIZE_P to its size in bits if the field is packed, and
6925 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6926 fields up to but not including the desired field, or by the total
6927 number of fields if not found. A NULL value of NAME never
6928 matches; the function just counts visible fields in this case.
6930 Notice that we need to handle when a tagged record hierarchy
6931 has some components with the same name, like in this scenario:
6933 type Top_T is tagged record
6939 type Middle_T is new Top.Top_T with record
6940 N : Character := 'a';
6944 type Bottom_T is new Middle.Middle_T with record
6946 C : Character := '5';
6948 A : Character := 'J';
6951 Let's say we now have a variable declared and initialized as follow:
6953 TC : Top_A := new Bottom_T;
6955 And then we use this variable to call this function
6957 procedure Assign (Obj: in out Top_T; TV : Integer);
6961 Assign (Top_T (B), 12);
6963 Now, we're in the debugger, and we're inside that procedure
6964 then and we want to print the value of obj.c:
6966 Usually, the tagged record or one of the parent type owns the
6967 component to print and there's no issue but in this particular
6968 case, what does it mean to ask for Obj.C? Since the actual
6969 type for object is type Bottom_T, it could mean two things: type
6970 component C from the Middle_T view, but also component C from
6971 Bottom_T. So in that "undefined" case, when the component is
6972 not found in the non-resolved type (which includes all the
6973 components of the parent type), then resolve it and see if we
6974 get better luck once expanded.
6976 In the case of homonyms in the derived tagged type, we don't
6977 guaranty anything, and pick the one that's easiest for us
6980 Returns 1 if found, 0 otherwise. */
6983 find_struct_field (const char *name, struct type *type, int offset,
6984 struct type **field_type_p,
6985 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6989 int parent_offset = -1;
6991 type = ada_check_typedef (type);
6993 if (field_type_p != NULL)
6994 *field_type_p = NULL;
6995 if (byte_offset_p != NULL)
6997 if (bit_offset_p != NULL)
6999 if (bit_size_p != NULL)
7002 for (i = 0; i < type->num_fields (); i += 1)
7004 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7005 type. However, we only need the values to be correct when
7006 the caller asks for them. */
7007 int bit_pos = 0, fld_offset = 0;
7008 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7010 bit_pos = type->field (i).loc_bitpos ();
7011 fld_offset = offset + bit_pos / 8;
7014 const char *t_field_name = type->field (i).name ();
7016 if (t_field_name == NULL)
7019 else if (ada_is_parent_field (type, i))
7021 /* This is a field pointing us to the parent type of a tagged
7022 type. As hinted in this function's documentation, we give
7023 preference to fields in the current record first, so what
7024 we do here is just record the index of this field before
7025 we skip it. If it turns out we couldn't find our field
7026 in the current record, then we'll get back to it and search
7027 inside it whether the field might exist in the parent. */
7033 else if (name != NULL && field_name_match (t_field_name, name))
7035 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7037 if (field_type_p != NULL)
7038 *field_type_p = type->field (i).type ();
7039 if (byte_offset_p != NULL)
7040 *byte_offset_p = fld_offset;
7041 if (bit_offset_p != NULL)
7042 *bit_offset_p = bit_pos % 8;
7043 if (bit_size_p != NULL)
7044 *bit_size_p = bit_size;
7047 else if (ada_is_wrapper_field (type, i))
7049 if (find_struct_field (name, type->field (i).type (), fld_offset,
7050 field_type_p, byte_offset_p, bit_offset_p,
7051 bit_size_p, index_p))
7054 else if (ada_is_variant_part (type, i))
7056 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7059 struct type *field_type
7060 = ada_check_typedef (type->field (i).type ());
7062 for (j = 0; j < field_type->num_fields (); j += 1)
7064 if (find_struct_field (name, field_type->field (j).type (),
7066 + field_type->field (j).loc_bitpos () / 8,
7067 field_type_p, byte_offset_p,
7068 bit_offset_p, bit_size_p, index_p))
7072 else if (index_p != NULL)
7076 /* Field not found so far. If this is a tagged type which
7077 has a parent, try finding that field in the parent now. */
7079 if (parent_offset != -1)
7081 /* As above, only compute the offset when truly needed. */
7082 int fld_offset = offset;
7083 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7085 int bit_pos = type->field (parent_offset).loc_bitpos ();
7086 fld_offset += bit_pos / 8;
7089 if (find_struct_field (name, type->field (parent_offset).type (),
7090 fld_offset, field_type_p, byte_offset_p,
7091 bit_offset_p, bit_size_p, index_p))
7098 /* Number of user-visible fields in record type TYPE. */
7101 num_visible_fields (struct type *type)
7106 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7110 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7111 and search in it assuming it has (class) type TYPE.
7112 If found, return value, else return NULL.
7114 Searches recursively through wrapper fields (e.g., '_parent').
7116 In the case of homonyms in the tagged types, please refer to the
7117 long explanation in find_struct_field's function documentation. */
7119 static struct value *
7120 ada_search_struct_field (const char *name, struct value *arg, int offset,
7124 int parent_offset = -1;
7126 type = ada_check_typedef (type);
7127 for (i = 0; i < type->num_fields (); i += 1)
7129 const char *t_field_name = type->field (i).name ();
7131 if (t_field_name == NULL)
7134 else if (ada_is_parent_field (type, i))
7136 /* This is a field pointing us to the parent type of a tagged
7137 type. As hinted in this function's documentation, we give
7138 preference to fields in the current record first, so what
7139 we do here is just record the index of this field before
7140 we skip it. If it turns out we couldn't find our field
7141 in the current record, then we'll get back to it and search
7142 inside it whether the field might exist in the parent. */
7148 else if (field_name_match (t_field_name, name))
7149 return ada_value_primitive_field (arg, offset, i, type);
7151 else if (ada_is_wrapper_field (type, i))
7153 struct value *v = /* Do not let indent join lines here. */
7154 ada_search_struct_field (name, arg,
7155 offset + type->field (i).loc_bitpos () / 8,
7156 type->field (i).type ());
7162 else if (ada_is_variant_part (type, i))
7164 /* PNH: Do we ever get here? See find_struct_field. */
7166 struct type *field_type = ada_check_typedef (type->field (i).type ());
7167 int var_offset = offset + type->field (i).loc_bitpos () / 8;
7169 for (j = 0; j < field_type->num_fields (); j += 1)
7171 struct value *v = ada_search_struct_field /* Force line
7174 var_offset + field_type->field (j).loc_bitpos () / 8,
7175 field_type->field (j).type ());
7183 /* Field not found so far. If this is a tagged type which
7184 has a parent, try finding that field in the parent now. */
7186 if (parent_offset != -1)
7188 struct value *v = ada_search_struct_field (
7189 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
7190 type->field (parent_offset).type ());
7199 static struct value *ada_index_struct_field_1 (int *, struct value *,
7200 int, struct type *);
7203 /* Return field #INDEX in ARG, where the index is that returned by
7204 * find_struct_field through its INDEX_P argument. Adjust the address
7205 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7206 * If found, return value, else return NULL. */
7208 static struct value *
7209 ada_index_struct_field (int index, struct value *arg, int offset,
7212 return ada_index_struct_field_1 (&index, arg, offset, type);
7216 /* Auxiliary function for ada_index_struct_field. Like
7217 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7220 static struct value *
7221 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7225 type = ada_check_typedef (type);
7227 for (i = 0; i < type->num_fields (); i += 1)
7229 if (type->field (i).name () == NULL)
7231 else if (ada_is_wrapper_field (type, i))
7233 struct value *v = /* Do not let indent join lines here. */
7234 ada_index_struct_field_1 (index_p, arg,
7235 offset + type->field (i).loc_bitpos () / 8,
7236 type->field (i).type ());
7242 else if (ada_is_variant_part (type, i))
7244 /* PNH: Do we ever get here? See ada_search_struct_field,
7245 find_struct_field. */
7246 error (_("Cannot assign this kind of variant record"));
7248 else if (*index_p == 0)
7249 return ada_value_primitive_field (arg, offset, i, type);
7256 /* Return a string representation of type TYPE. */
7259 type_as_string (struct type *type)
7261 string_file tmp_stream;
7263 type_print (type, "", &tmp_stream, -1);
7265 return tmp_stream.release ();
7268 /* Given a type TYPE, look up the type of the component of type named NAME.
7269 If DISPP is non-null, add its byte displacement from the beginning of a
7270 structure (pointed to by a value) of type TYPE to *DISPP (does not
7271 work for packed fields).
7273 Matches any field whose name has NAME as a prefix, possibly
7276 TYPE can be either a struct or union. If REFOK, TYPE may also
7277 be a (pointer or reference)+ to a struct or union, and the
7278 ultimate target type will be searched.
7280 Looks recursively into variant clauses and parent types.
7282 In the case of homonyms in the tagged types, please refer to the
7283 long explanation in find_struct_field's function documentation.
7285 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7286 TYPE is not a type of the right kind. */
7288 static struct type *
7289 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7293 int parent_offset = -1;
7298 if (refok && type != NULL)
7301 type = ada_check_typedef (type);
7302 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7304 type = TYPE_TARGET_TYPE (type);
7308 || (type->code () != TYPE_CODE_STRUCT
7309 && type->code () != TYPE_CODE_UNION))
7314 error (_("Type %s is not a structure or union type"),
7315 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7318 type = to_static_fixed_type (type);
7320 for (i = 0; i < type->num_fields (); i += 1)
7322 const char *t_field_name = type->field (i).name ();
7325 if (t_field_name == NULL)
7328 else if (ada_is_parent_field (type, i))
7330 /* This is a field pointing us to the parent type of a tagged
7331 type. As hinted in this function's documentation, we give
7332 preference to fields in the current record first, so what
7333 we do here is just record the index of this field before
7334 we skip it. If it turns out we couldn't find our field
7335 in the current record, then we'll get back to it and search
7336 inside it whether the field might exist in the parent. */
7342 else if (field_name_match (t_field_name, name))
7343 return type->field (i).type ();
7345 else if (ada_is_wrapper_field (type, i))
7347 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7353 else if (ada_is_variant_part (type, i))
7356 struct type *field_type = ada_check_typedef (type->field (i).type ());
7358 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7360 /* FIXME pnh 2008/01/26: We check for a field that is
7361 NOT wrapped in a struct, since the compiler sometimes
7362 generates these for unchecked variant types. Revisit
7363 if the compiler changes this practice. */
7364 const char *v_field_name = field_type->field (j).name ();
7366 if (v_field_name != NULL
7367 && field_name_match (v_field_name, name))
7368 t = field_type->field (j).type ();
7370 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7380 /* Field not found so far. If this is a tagged type which
7381 has a parent, try finding that field in the parent now. */
7383 if (parent_offset != -1)
7387 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7396 const char *name_str = name != NULL ? name : _("<null>");
7398 error (_("Type %s has no component named %s"),
7399 type_as_string (type).c_str (), name_str);
7405 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7406 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7407 represents an unchecked union (that is, the variant part of a
7408 record that is named in an Unchecked_Union pragma). */
7411 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7413 const char *discrim_name = ada_variant_discrim_name (var_type);
7415 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7419 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7420 within OUTER, determine which variant clause (field number in VAR_TYPE,
7421 numbering from 0) is applicable. Returns -1 if none are. */
7424 ada_which_variant_applies (struct type *var_type, struct value *outer)
7428 const char *discrim_name = ada_variant_discrim_name (var_type);
7429 struct value *discrim;
7430 LONGEST discrim_val;
7432 /* Using plain value_from_contents_and_address here causes problems
7433 because we will end up trying to resolve a type that is currently
7434 being constructed. */
7435 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7436 if (discrim == NULL)
7438 discrim_val = value_as_long (discrim);
7441 for (i = 0; i < var_type->num_fields (); i += 1)
7443 if (ada_is_others_clause (var_type, i))
7445 else if (ada_in_variant (discrim_val, var_type, i))
7449 return others_clause;
7454 /* Dynamic-Sized Records */
7456 /* Strategy: The type ostensibly attached to a value with dynamic size
7457 (i.e., a size that is not statically recorded in the debugging
7458 data) does not accurately reflect the size or layout of the value.
7459 Our strategy is to convert these values to values with accurate,
7460 conventional types that are constructed on the fly. */
7462 /* There is a subtle and tricky problem here. In general, we cannot
7463 determine the size of dynamic records without its data. However,
7464 the 'struct value' data structure, which GDB uses to represent
7465 quantities in the inferior process (the target), requires the size
7466 of the type at the time of its allocation in order to reserve space
7467 for GDB's internal copy of the data. That's why the
7468 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7469 rather than struct value*s.
7471 However, GDB's internal history variables ($1, $2, etc.) are
7472 struct value*s containing internal copies of the data that are not, in
7473 general, the same as the data at their corresponding addresses in
7474 the target. Fortunately, the types we give to these values are all
7475 conventional, fixed-size types (as per the strategy described
7476 above), so that we don't usually have to perform the
7477 'to_fixed_xxx_type' conversions to look at their values.
7478 Unfortunately, there is one exception: if one of the internal
7479 history variables is an array whose elements are unconstrained
7480 records, then we will need to create distinct fixed types for each
7481 element selected. */
7483 /* The upshot of all of this is that many routines take a (type, host
7484 address, target address) triple as arguments to represent a value.
7485 The host address, if non-null, is supposed to contain an internal
7486 copy of the relevant data; otherwise, the program is to consult the
7487 target at the target address. */
7489 /* Assuming that VAL0 represents a pointer value, the result of
7490 dereferencing it. Differs from value_ind in its treatment of
7491 dynamic-sized types. */
7494 ada_value_ind (struct value *val0)
7496 struct value *val = value_ind (val0);
7498 if (ada_is_tagged_type (value_type (val), 0))
7499 val = ada_tag_value_at_base_address (val);
7501 return ada_to_fixed_value (val);
7504 /* The value resulting from dereferencing any "reference to"
7505 qualifiers on VAL0. */
7507 static struct value *
7508 ada_coerce_ref (struct value *val0)
7510 if (value_type (val0)->code () == TYPE_CODE_REF)
7512 struct value *val = val0;
7514 val = coerce_ref (val);
7516 if (ada_is_tagged_type (value_type (val), 0))
7517 val = ada_tag_value_at_base_address (val);
7519 return ada_to_fixed_value (val);
7525 /* Return the bit alignment required for field #F of template type TYPE. */
7528 field_alignment (struct type *type, int f)
7530 const char *name = type->field (f).name ();
7534 /* The field name should never be null, unless the debugging information
7535 is somehow malformed. In this case, we assume the field does not
7536 require any alignment. */
7540 len = strlen (name);
7542 if (!isdigit (name[len - 1]))
7545 if (isdigit (name[len - 2]))
7546 align_offset = len - 2;
7548 align_offset = len - 1;
7550 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7551 return TARGET_CHAR_BIT;
7553 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7556 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7558 static struct symbol *
7559 ada_find_any_type_symbol (const char *name)
7563 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7564 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
7567 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7571 /* Find a type named NAME. Ignores ambiguity. This routine will look
7572 solely for types defined by debug info, it will not search the GDB
7575 static struct type *
7576 ada_find_any_type (const char *name)
7578 struct symbol *sym = ada_find_any_type_symbol (name);
7581 return sym->type ();
7586 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7587 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7588 symbol, in which case it is returned. Otherwise, this looks for
7589 symbols whose name is that of NAME_SYM suffixed with "___XR".
7590 Return symbol if found, and NULL otherwise. */
7593 ada_is_renaming_symbol (struct symbol *name_sym)
7595 const char *name = name_sym->linkage_name ();
7596 return strstr (name, "___XR") != NULL;
7599 /* Because of GNAT encoding conventions, several GDB symbols may match a
7600 given type name. If the type denoted by TYPE0 is to be preferred to
7601 that of TYPE1 for purposes of type printing, return non-zero;
7602 otherwise return 0. */
7605 ada_prefer_type (struct type *type0, struct type *type1)
7609 else if (type0 == NULL)
7611 else if (type1->code () == TYPE_CODE_VOID)
7613 else if (type0->code () == TYPE_CODE_VOID)
7615 else if (type1->name () == NULL && type0->name () != NULL)
7617 else if (ada_is_constrained_packed_array_type (type0))
7619 else if (ada_is_array_descriptor_type (type0)
7620 && !ada_is_array_descriptor_type (type1))
7624 const char *type0_name = type0->name ();
7625 const char *type1_name = type1->name ();
7627 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7628 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7634 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7638 ada_type_name (struct type *type)
7642 return type->name ();
7645 /* Search the list of "descriptive" types associated to TYPE for a type
7646 whose name is NAME. */
7648 static struct type *
7649 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7651 struct type *result, *tmp;
7653 if (ada_ignore_descriptive_types_p)
7656 /* If there no descriptive-type info, then there is no parallel type
7658 if (!HAVE_GNAT_AUX_INFO (type))
7661 result = TYPE_DESCRIPTIVE_TYPE (type);
7662 while (result != NULL)
7664 const char *result_name = ada_type_name (result);
7666 if (result_name == NULL)
7668 warning (_("unexpected null name on descriptive type"));
7672 /* If the names match, stop. */
7673 if (strcmp (result_name, name) == 0)
7676 /* Otherwise, look at the next item on the list, if any. */
7677 if (HAVE_GNAT_AUX_INFO (result))
7678 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7682 /* If not found either, try after having resolved the typedef. */
7687 result = check_typedef (result);
7688 if (HAVE_GNAT_AUX_INFO (result))
7689 result = TYPE_DESCRIPTIVE_TYPE (result);
7695 /* If we didn't find a match, see whether this is a packed array. With
7696 older compilers, the descriptive type information is either absent or
7697 irrelevant when it comes to packed arrays so the above lookup fails.
7698 Fall back to using a parallel lookup by name in this case. */
7699 if (result == NULL && ada_is_constrained_packed_array_type (type))
7700 return ada_find_any_type (name);
7705 /* Find a parallel type to TYPE with the specified NAME, using the
7706 descriptive type taken from the debugging information, if available,
7707 and otherwise using the (slower) name-based method. */
7709 static struct type *
7710 ada_find_parallel_type_with_name (struct type *type, const char *name)
7712 struct type *result = NULL;
7714 if (HAVE_GNAT_AUX_INFO (type))
7715 result = find_parallel_type_by_descriptive_type (type, name);
7717 result = ada_find_any_type (name);
7722 /* Same as above, but specify the name of the parallel type by appending
7723 SUFFIX to the name of TYPE. */
7726 ada_find_parallel_type (struct type *type, const char *suffix)
7729 const char *type_name = ada_type_name (type);
7732 if (type_name == NULL)
7735 len = strlen (type_name);
7737 name = (char *) alloca (len + strlen (suffix) + 1);
7739 strcpy (name, type_name);
7740 strcpy (name + len, suffix);
7742 return ada_find_parallel_type_with_name (type, name);
7745 /* If TYPE is a variable-size record type, return the corresponding template
7746 type describing its fields. Otherwise, return NULL. */
7748 static struct type *
7749 dynamic_template_type (struct type *type)
7751 type = ada_check_typedef (type);
7753 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7754 || ada_type_name (type) == NULL)
7758 int len = strlen (ada_type_name (type));
7760 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7763 return ada_find_parallel_type (type, "___XVE");
7767 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7768 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7771 is_dynamic_field (struct type *templ_type, int field_num)
7773 const char *name = templ_type->field (field_num).name ();
7776 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7777 && strstr (name, "___XVL") != NULL;
7780 /* The index of the variant field of TYPE, or -1 if TYPE does not
7781 represent a variant record type. */
7784 variant_field_index (struct type *type)
7788 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7791 for (f = 0; f < type->num_fields (); f += 1)
7793 if (ada_is_variant_part (type, f))
7799 /* A record type with no fields. */
7801 static struct type *
7802 empty_record (struct type *templ)
7804 struct type *type = alloc_type_copy (templ);
7806 type->set_code (TYPE_CODE_STRUCT);
7807 INIT_NONE_SPECIFIC (type);
7808 type->set_name ("<empty>");
7809 TYPE_LENGTH (type) = 0;
7813 /* An ordinary record type (with fixed-length fields) that describes
7814 the value of type TYPE at VALADDR or ADDRESS (see comments at
7815 the beginning of this section) VAL according to GNAT conventions.
7816 DVAL0 should describe the (portion of a) record that contains any
7817 necessary discriminants. It should be NULL if value_type (VAL) is
7818 an outer-level type (i.e., as opposed to a branch of a variant.) A
7819 variant field (unless unchecked) is replaced by a particular branch
7822 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7823 length are not statically known are discarded. As a consequence,
7824 VALADDR, ADDRESS and DVAL0 are ignored.
7826 NOTE: Limitations: For now, we assume that dynamic fields and
7827 variants occupy whole numbers of bytes. However, they need not be
7831 ada_template_to_fixed_record_type_1 (struct type *type,
7832 const gdb_byte *valaddr,
7833 CORE_ADDR address, struct value *dval0,
7834 int keep_dynamic_fields)
7836 struct value *mark = value_mark ();
7839 int nfields, bit_len;
7845 /* Compute the number of fields in this record type that are going
7846 to be processed: unless keep_dynamic_fields, this includes only
7847 fields whose position and length are static will be processed. */
7848 if (keep_dynamic_fields)
7849 nfields = type->num_fields ();
7853 while (nfields < type->num_fields ()
7854 && !ada_is_variant_part (type, nfields)
7855 && !is_dynamic_field (type, nfields))
7859 rtype = alloc_type_copy (type);
7860 rtype->set_code (TYPE_CODE_STRUCT);
7861 INIT_NONE_SPECIFIC (rtype);
7862 rtype->set_num_fields (nfields);
7864 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7865 rtype->set_name (ada_type_name (type));
7866 rtype->set_is_fixed_instance (true);
7872 for (f = 0; f < nfields; f += 1)
7874 off = align_up (off, field_alignment (type, f))
7875 + type->field (f).loc_bitpos ();
7876 rtype->field (f).set_loc_bitpos (off);
7877 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7879 if (ada_is_variant_part (type, f))
7884 else if (is_dynamic_field (type, f))
7886 const gdb_byte *field_valaddr = valaddr;
7887 CORE_ADDR field_address = address;
7888 struct type *field_type =
7889 TYPE_TARGET_TYPE (type->field (f).type ());
7893 /* Using plain value_from_contents_and_address here
7894 causes problems because we will end up trying to
7895 resolve a type that is currently being
7897 dval = value_from_contents_and_address_unresolved (rtype,
7900 rtype = value_type (dval);
7905 /* If the type referenced by this field is an aligner type, we need
7906 to unwrap that aligner type, because its size might not be set.
7907 Keeping the aligner type would cause us to compute the wrong
7908 size for this field, impacting the offset of the all the fields
7909 that follow this one. */
7910 if (ada_is_aligner_type (field_type))
7912 long field_offset = type->field (f).loc_bitpos ();
7914 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7915 field_address = cond_offset_target (field_address, field_offset);
7916 field_type = ada_aligned_type (field_type);
7919 field_valaddr = cond_offset_host (field_valaddr,
7920 off / TARGET_CHAR_BIT);
7921 field_address = cond_offset_target (field_address,
7922 off / TARGET_CHAR_BIT);
7924 /* Get the fixed type of the field. Note that, in this case,
7925 we do not want to get the real type out of the tag: if
7926 the current field is the parent part of a tagged record,
7927 we will get the tag of the object. Clearly wrong: the real
7928 type of the parent is not the real type of the child. We
7929 would end up in an infinite loop. */
7930 field_type = ada_get_base_type (field_type);
7931 field_type = ada_to_fixed_type (field_type, field_valaddr,
7932 field_address, dval, 0);
7934 rtype->field (f).set_type (field_type);
7935 rtype->field (f).set_name (type->field (f).name ());
7936 /* The multiplication can potentially overflow. But because
7937 the field length has been size-checked just above, and
7938 assuming that the maximum size is a reasonable value,
7939 an overflow should not happen in practice. So rather than
7940 adding overflow recovery code to this already complex code,
7941 we just assume that it's not going to happen. */
7943 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7947 /* Note: If this field's type is a typedef, it is important
7948 to preserve the typedef layer.
7950 Otherwise, we might be transforming a typedef to a fat
7951 pointer (encoding a pointer to an unconstrained array),
7952 into a basic fat pointer (encoding an unconstrained
7953 array). As both types are implemented using the same
7954 structure, the typedef is the only clue which allows us
7955 to distinguish between the two options. Stripping it
7956 would prevent us from printing this field appropriately. */
7957 rtype->field (f).set_type (type->field (f).type ());
7958 rtype->field (f).set_name (type->field (f).name ());
7959 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7961 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7964 struct type *field_type = type->field (f).type ();
7966 /* We need to be careful of typedefs when computing
7967 the length of our field. If this is a typedef,
7968 get the length of the target type, not the length
7970 if (field_type->code () == TYPE_CODE_TYPEDEF)
7971 field_type = ada_typedef_target_type (field_type);
7974 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7977 if (off + fld_bit_len > bit_len)
7978 bit_len = off + fld_bit_len;
7980 TYPE_LENGTH (rtype) =
7981 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7984 /* We handle the variant part, if any, at the end because of certain
7985 odd cases in which it is re-ordered so as NOT to be the last field of
7986 the record. This can happen in the presence of representation
7988 if (variant_field >= 0)
7990 struct type *branch_type;
7992 off = rtype->field (variant_field).loc_bitpos ();
7996 /* Using plain value_from_contents_and_address here causes
7997 problems because we will end up trying to resolve a type
7998 that is currently being constructed. */
7999 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8001 rtype = value_type (dval);
8007 to_fixed_variant_branch_type
8008 (type->field (variant_field).type (),
8009 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8010 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8011 if (branch_type == NULL)
8013 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8014 rtype->field (f - 1) = rtype->field (f);
8015 rtype->set_num_fields (rtype->num_fields () - 1);
8019 rtype->field (variant_field).set_type (branch_type);
8020 rtype->field (variant_field).set_name ("S");
8022 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8024 if (off + fld_bit_len > bit_len)
8025 bit_len = off + fld_bit_len;
8026 TYPE_LENGTH (rtype) =
8027 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8031 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8032 should contain the alignment of that record, which should be a strictly
8033 positive value. If null or negative, then something is wrong, most
8034 probably in the debug info. In that case, we don't round up the size
8035 of the resulting type. If this record is not part of another structure,
8036 the current RTYPE length might be good enough for our purposes. */
8037 if (TYPE_LENGTH (type) <= 0)
8040 warning (_("Invalid type size for `%s' detected: %s."),
8041 rtype->name (), pulongest (TYPE_LENGTH (type)));
8043 warning (_("Invalid type size for <unnamed> detected: %s."),
8044 pulongest (TYPE_LENGTH (type)));
8048 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8049 TYPE_LENGTH (type));
8052 value_free_to_mark (mark);
8056 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8059 static struct type *
8060 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8061 CORE_ADDR address, struct value *dval0)
8063 return ada_template_to_fixed_record_type_1 (type, valaddr,
8067 /* An ordinary record type in which ___XVL-convention fields and
8068 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8069 static approximations, containing all possible fields. Uses
8070 no runtime values. Useless for use in values, but that's OK,
8071 since the results are used only for type determinations. Works on both
8072 structs and unions. Representation note: to save space, we memorize
8073 the result of this function in the TYPE_TARGET_TYPE of the
8076 static struct type *
8077 template_to_static_fixed_type (struct type *type0)
8083 /* No need no do anything if the input type is already fixed. */
8084 if (type0->is_fixed_instance ())
8087 /* Likewise if we already have computed the static approximation. */
8088 if (TYPE_TARGET_TYPE (type0) != NULL)
8089 return TYPE_TARGET_TYPE (type0);
8091 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8093 nfields = type0->num_fields ();
8095 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8096 recompute all over next time. */
8097 TYPE_TARGET_TYPE (type0) = type;
8099 for (f = 0; f < nfields; f += 1)
8101 struct type *field_type = type0->field (f).type ();
8102 struct type *new_type;
8104 if (is_dynamic_field (type0, f))
8106 field_type = ada_check_typedef (field_type);
8107 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8110 new_type = static_unwrap_type (field_type);
8112 if (new_type != field_type)
8114 /* Clone TYPE0 only the first time we get a new field type. */
8117 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8118 type->set_code (type0->code ());
8119 INIT_NONE_SPECIFIC (type);
8120 type->set_num_fields (nfields);
8124 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8125 memcpy (fields, type0->fields (),
8126 sizeof (struct field) * nfields);
8127 type->set_fields (fields);
8129 type->set_name (ada_type_name (type0));
8130 type->set_is_fixed_instance (true);
8131 TYPE_LENGTH (type) = 0;
8133 type->field (f).set_type (new_type);
8134 type->field (f).set_name (type0->field (f).name ());
8141 /* Given an object of type TYPE whose contents are at VALADDR and
8142 whose address in memory is ADDRESS, returns a revision of TYPE,
8143 which should be a non-dynamic-sized record, in which the variant
8144 part, if any, is replaced with the appropriate branch. Looks
8145 for discriminant values in DVAL0, which can be NULL if the record
8146 contains the necessary discriminant values. */
8148 static struct type *
8149 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8150 CORE_ADDR address, struct value *dval0)
8152 struct value *mark = value_mark ();
8155 struct type *branch_type;
8156 int nfields = type->num_fields ();
8157 int variant_field = variant_field_index (type);
8159 if (variant_field == -1)
8164 dval = value_from_contents_and_address (type, valaddr, address);
8165 type = value_type (dval);
8170 rtype = alloc_type_copy (type);
8171 rtype->set_code (TYPE_CODE_STRUCT);
8172 INIT_NONE_SPECIFIC (rtype);
8173 rtype->set_num_fields (nfields);
8176 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8177 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8178 rtype->set_fields (fields);
8180 rtype->set_name (ada_type_name (type));
8181 rtype->set_is_fixed_instance (true);
8182 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8184 branch_type = to_fixed_variant_branch_type
8185 (type->field (variant_field).type (),
8186 cond_offset_host (valaddr,
8187 type->field (variant_field).loc_bitpos ()
8189 cond_offset_target (address,
8190 type->field (variant_field).loc_bitpos ()
8191 / TARGET_CHAR_BIT), dval);
8192 if (branch_type == NULL)
8196 for (f = variant_field + 1; f < nfields; f += 1)
8197 rtype->field (f - 1) = rtype->field (f);
8198 rtype->set_num_fields (rtype->num_fields () - 1);
8202 rtype->field (variant_field).set_type (branch_type);
8203 rtype->field (variant_field).set_name ("S");
8204 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8205 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8207 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8209 value_free_to_mark (mark);
8213 /* An ordinary record type (with fixed-length fields) that describes
8214 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8215 beginning of this section]. Any necessary discriminants' values
8216 should be in DVAL, a record value; it may be NULL if the object
8217 at ADDR itself contains any necessary discriminant values.
8218 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8219 values from the record are needed. Except in the case that DVAL,
8220 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8221 unchecked) is replaced by a particular branch of the variant.
8223 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8224 is questionable and may be removed. It can arise during the
8225 processing of an unconstrained-array-of-record type where all the
8226 variant branches have exactly the same size. This is because in
8227 such cases, the compiler does not bother to use the XVS convention
8228 when encoding the record. I am currently dubious of this
8229 shortcut and suspect the compiler should be altered. FIXME. */
8231 static struct type *
8232 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8233 CORE_ADDR address, struct value *dval)
8235 struct type *templ_type;
8237 if (type0->is_fixed_instance ())
8240 templ_type = dynamic_template_type (type0);
8242 if (templ_type != NULL)
8243 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8244 else if (variant_field_index (type0) >= 0)
8246 if (dval == NULL && valaddr == NULL && address == 0)
8248 return to_record_with_fixed_variant_part (type0, valaddr, address,
8253 type0->set_is_fixed_instance (true);
8259 /* An ordinary record type (with fixed-length fields) that describes
8260 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8261 union type. Any necessary discriminants' values should be in DVAL,
8262 a record value. That is, this routine selects the appropriate
8263 branch of the union at ADDR according to the discriminant value
8264 indicated in the union's type name. Returns VAR_TYPE0 itself if
8265 it represents a variant subject to a pragma Unchecked_Union. */
8267 static struct type *
8268 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8269 CORE_ADDR address, struct value *dval)
8272 struct type *templ_type;
8273 struct type *var_type;
8275 if (var_type0->code () == TYPE_CODE_PTR)
8276 var_type = TYPE_TARGET_TYPE (var_type0);
8278 var_type = var_type0;
8280 templ_type = ada_find_parallel_type (var_type, "___XVU");
8282 if (templ_type != NULL)
8283 var_type = templ_type;
8285 if (is_unchecked_variant (var_type, value_type (dval)))
8287 which = ada_which_variant_applies (var_type, dval);
8290 return empty_record (var_type);
8291 else if (is_dynamic_field (var_type, which))
8292 return to_fixed_record_type
8293 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8294 valaddr, address, dval);
8295 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8297 to_fixed_record_type
8298 (var_type->field (which).type (), valaddr, address, dval);
8300 return var_type->field (which).type ();
8303 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8304 ENCODING_TYPE, a type following the GNAT conventions for discrete
8305 type encodings, only carries redundant information. */
8308 ada_is_redundant_range_encoding (struct type *range_type,
8309 struct type *encoding_type)
8311 const char *bounds_str;
8315 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8317 if (get_base_type (range_type)->code ()
8318 != get_base_type (encoding_type)->code ())
8320 /* The compiler probably used a simple base type to describe
8321 the range type instead of the range's actual base type,
8322 expecting us to get the real base type from the encoding
8323 anyway. In this situation, the encoding cannot be ignored
8328 if (is_dynamic_type (range_type))
8331 if (encoding_type->name () == NULL)
8334 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8335 if (bounds_str == NULL)
8338 n = 8; /* Skip "___XDLU_". */
8339 if (!ada_scan_number (bounds_str, n, &lo, &n))
8341 if (range_type->bounds ()->low.const_val () != lo)
8344 n += 2; /* Skip the "__" separator between the two bounds. */
8345 if (!ada_scan_number (bounds_str, n, &hi, &n))
8347 if (range_type->bounds ()->high.const_val () != hi)
8353 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8354 a type following the GNAT encoding for describing array type
8355 indices, only carries redundant information. */
8358 ada_is_redundant_index_type_desc (struct type *array_type,
8359 struct type *desc_type)
8361 struct type *this_layer = check_typedef (array_type);
8364 for (i = 0; i < desc_type->num_fields (); i++)
8366 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8367 desc_type->field (i).type ()))
8369 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8375 /* Assuming that TYPE0 is an array type describing the type of a value
8376 at ADDR, and that DVAL describes a record containing any
8377 discriminants used in TYPE0, returns a type for the value that
8378 contains no dynamic components (that is, no components whose sizes
8379 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8380 true, gives an error message if the resulting type's size is over
8383 static struct type *
8384 to_fixed_array_type (struct type *type0, struct value *dval,
8387 struct type *index_type_desc;
8388 struct type *result;
8389 int constrained_packed_array_p;
8390 static const char *xa_suffix = "___XA";
8392 type0 = ada_check_typedef (type0);
8393 if (type0->is_fixed_instance ())
8396 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8397 if (constrained_packed_array_p)
8399 type0 = decode_constrained_packed_array_type (type0);
8400 if (type0 == nullptr)
8401 error (_("could not decode constrained packed array type"));
8404 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8406 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8407 encoding suffixed with 'P' may still be generated. If so,
8408 it should be used to find the XA type. */
8410 if (index_type_desc == NULL)
8412 const char *type_name = ada_type_name (type0);
8414 if (type_name != NULL)
8416 const int len = strlen (type_name);
8417 char *name = (char *) alloca (len + strlen (xa_suffix));
8419 if (type_name[len - 1] == 'P')
8421 strcpy (name, type_name);
8422 strcpy (name + len - 1, xa_suffix);
8423 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8428 ada_fixup_array_indexes_type (index_type_desc);
8429 if (index_type_desc != NULL
8430 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8432 /* Ignore this ___XA parallel type, as it does not bring any
8433 useful information. This allows us to avoid creating fixed
8434 versions of the array's index types, which would be identical
8435 to the original ones. This, in turn, can also help avoid
8436 the creation of fixed versions of the array itself. */
8437 index_type_desc = NULL;
8440 if (index_type_desc == NULL)
8442 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8444 /* NOTE: elt_type---the fixed version of elt_type0---should never
8445 depend on the contents of the array in properly constructed
8447 /* Create a fixed version of the array element type.
8448 We're not providing the address of an element here,
8449 and thus the actual object value cannot be inspected to do
8450 the conversion. This should not be a problem, since arrays of
8451 unconstrained objects are not allowed. In particular, all
8452 the elements of an array of a tagged type should all be of
8453 the same type specified in the debugging info. No need to
8454 consult the object tag. */
8455 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8457 /* Make sure we always create a new array type when dealing with
8458 packed array types, since we're going to fix-up the array
8459 type length and element bitsize a little further down. */
8460 if (elt_type0 == elt_type && !constrained_packed_array_p)
8463 result = create_array_type (alloc_type_copy (type0),
8464 elt_type, type0->index_type ());
8469 struct type *elt_type0;
8472 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8473 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8475 /* NOTE: result---the fixed version of elt_type0---should never
8476 depend on the contents of the array in properly constructed
8478 /* Create a fixed version of the array element type.
8479 We're not providing the address of an element here,
8480 and thus the actual object value cannot be inspected to do
8481 the conversion. This should not be a problem, since arrays of
8482 unconstrained objects are not allowed. In particular, all
8483 the elements of an array of a tagged type should all be of
8484 the same type specified in the debugging info. No need to
8485 consult the object tag. */
8487 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8490 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8492 struct type *range_type =
8493 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8495 result = create_array_type (alloc_type_copy (elt_type0),
8496 result, range_type);
8497 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8501 /* We want to preserve the type name. This can be useful when
8502 trying to get the type name of a value that has already been
8503 printed (for instance, if the user did "print VAR; whatis $". */
8504 result->set_name (type0->name ());
8506 if (constrained_packed_array_p)
8508 /* So far, the resulting type has been created as if the original
8509 type was a regular (non-packed) array type. As a result, the
8510 bitsize of the array elements needs to be set again, and the array
8511 length needs to be recomputed based on that bitsize. */
8512 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8513 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8515 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8516 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8517 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8518 TYPE_LENGTH (result)++;
8521 result->set_is_fixed_instance (true);
8526 /* A standard type (containing no dynamically sized components)
8527 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8528 DVAL describes a record containing any discriminants used in TYPE0,
8529 and may be NULL if there are none, or if the object of type TYPE at
8530 ADDRESS or in VALADDR contains these discriminants.
8532 If CHECK_TAG is not null, in the case of tagged types, this function
8533 attempts to locate the object's tag and use it to compute the actual
8534 type. However, when ADDRESS is null, we cannot use it to determine the
8535 location of the tag, and therefore compute the tagged type's actual type.
8536 So we return the tagged type without consulting the tag. */
8538 static struct type *
8539 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8540 CORE_ADDR address, struct value *dval, int check_tag)
8542 type = ada_check_typedef (type);
8544 /* Only un-fixed types need to be handled here. */
8545 if (!HAVE_GNAT_AUX_INFO (type))
8548 switch (type->code ())
8552 case TYPE_CODE_STRUCT:
8554 struct type *static_type = to_static_fixed_type (type);
8555 struct type *fixed_record_type =
8556 to_fixed_record_type (type, valaddr, address, NULL);
8558 /* If STATIC_TYPE is a tagged type and we know the object's address,
8559 then we can determine its tag, and compute the object's actual
8560 type from there. Note that we have to use the fixed record
8561 type (the parent part of the record may have dynamic fields
8562 and the way the location of _tag is expressed may depend on
8565 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8568 value_tag_from_contents_and_address
8572 struct type *real_type = type_from_tag (tag);
8574 value_from_contents_and_address (fixed_record_type,
8577 fixed_record_type = value_type (obj);
8578 if (real_type != NULL)
8579 return to_fixed_record_type
8581 value_address (ada_tag_value_at_base_address (obj)), NULL);
8584 /* Check to see if there is a parallel ___XVZ variable.
8585 If there is, then it provides the actual size of our type. */
8586 else if (ada_type_name (fixed_record_type) != NULL)
8588 const char *name = ada_type_name (fixed_record_type);
8590 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8591 bool xvz_found = false;
8594 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8597 xvz_found = get_int_var_value (xvz_name, size);
8599 catch (const gdb_exception_error &except)
8601 /* We found the variable, but somehow failed to read
8602 its value. Rethrow the same error, but with a little
8603 bit more information, to help the user understand
8604 what went wrong (Eg: the variable might have been
8606 throw_error (except.error,
8607 _("unable to read value of %s (%s)"),
8608 xvz_name, except.what ());
8611 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8613 fixed_record_type = copy_type (fixed_record_type);
8614 TYPE_LENGTH (fixed_record_type) = size;
8616 /* The FIXED_RECORD_TYPE may have be a stub. We have
8617 observed this when the debugging info is STABS, and
8618 apparently it is something that is hard to fix.
8620 In practice, we don't need the actual type definition
8621 at all, because the presence of the XVZ variable allows us
8622 to assume that there must be a XVS type as well, which we
8623 should be able to use later, when we need the actual type
8626 In the meantime, pretend that the "fixed" type we are
8627 returning is NOT a stub, because this can cause trouble
8628 when using this type to create new types targeting it.
8629 Indeed, the associated creation routines often check
8630 whether the target type is a stub and will try to replace
8631 it, thus using a type with the wrong size. This, in turn,
8632 might cause the new type to have the wrong size too.
8633 Consider the case of an array, for instance, where the size
8634 of the array is computed from the number of elements in
8635 our array multiplied by the size of its element. */
8636 fixed_record_type->set_is_stub (false);
8639 return fixed_record_type;
8641 case TYPE_CODE_ARRAY:
8642 return to_fixed_array_type (type, dval, 1);
8643 case TYPE_CODE_UNION:
8647 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8651 /* The same as ada_to_fixed_type_1, except that it preserves the type
8652 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8654 The typedef layer needs be preserved in order to differentiate between
8655 arrays and array pointers when both types are implemented using the same
8656 fat pointer. In the array pointer case, the pointer is encoded as
8657 a typedef of the pointer type. For instance, considering:
8659 type String_Access is access String;
8660 S1 : String_Access := null;
8662 To the debugger, S1 is defined as a typedef of type String. But
8663 to the user, it is a pointer. So if the user tries to print S1,
8664 we should not dereference the array, but print the array address
8667 If we didn't preserve the typedef layer, we would lose the fact that
8668 the type is to be presented as a pointer (needs de-reference before
8669 being printed). And we would also use the source-level type name. */
8672 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8673 CORE_ADDR address, struct value *dval, int check_tag)
8676 struct type *fixed_type =
8677 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8679 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8680 then preserve the typedef layer.
8682 Implementation note: We can only check the main-type portion of
8683 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8684 from TYPE now returns a type that has the same instance flags
8685 as TYPE. For instance, if TYPE is a "typedef const", and its
8686 target type is a "struct", then the typedef elimination will return
8687 a "const" version of the target type. See check_typedef for more
8688 details about how the typedef layer elimination is done.
8690 brobecker/2010-11-19: It seems to me that the only case where it is
8691 useful to preserve the typedef layer is when dealing with fat pointers.
8692 Perhaps, we could add a check for that and preserve the typedef layer
8693 only in that situation. But this seems unnecessary so far, probably
8694 because we call check_typedef/ada_check_typedef pretty much everywhere.
8696 if (type->code () == TYPE_CODE_TYPEDEF
8697 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8698 == TYPE_MAIN_TYPE (fixed_type)))
8704 /* A standard (static-sized) type corresponding as well as possible to
8705 TYPE0, but based on no runtime data. */
8707 static struct type *
8708 to_static_fixed_type (struct type *type0)
8715 if (type0->is_fixed_instance ())
8718 type0 = ada_check_typedef (type0);
8720 switch (type0->code ())
8724 case TYPE_CODE_STRUCT:
8725 type = dynamic_template_type (type0);
8727 return template_to_static_fixed_type (type);
8729 return template_to_static_fixed_type (type0);
8730 case TYPE_CODE_UNION:
8731 type = ada_find_parallel_type (type0, "___XVU");
8733 return template_to_static_fixed_type (type);
8735 return template_to_static_fixed_type (type0);
8739 /* A static approximation of TYPE with all type wrappers removed. */
8741 static struct type *
8742 static_unwrap_type (struct type *type)
8744 if (ada_is_aligner_type (type))
8746 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8747 if (ada_type_name (type1) == NULL)
8748 type1->set_name (ada_type_name (type));
8750 return static_unwrap_type (type1);
8754 struct type *raw_real_type = ada_get_base_type (type);
8756 if (raw_real_type == type)
8759 return to_static_fixed_type (raw_real_type);
8763 /* In some cases, incomplete and private types require
8764 cross-references that are not resolved as records (for example,
8766 type FooP is access Foo;
8768 type Foo is array ...;
8769 ). In these cases, since there is no mechanism for producing
8770 cross-references to such types, we instead substitute for FooP a
8771 stub enumeration type that is nowhere resolved, and whose tag is
8772 the name of the actual type. Call these types "non-record stubs". */
8774 /* A type equivalent to TYPE that is not a non-record stub, if one
8775 exists, otherwise TYPE. */
8778 ada_check_typedef (struct type *type)
8783 /* If our type is an access to an unconstrained array, which is encoded
8784 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8785 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8786 what allows us to distinguish between fat pointers that represent
8787 array types, and fat pointers that represent array access types
8788 (in both cases, the compiler implements them as fat pointers). */
8789 if (ada_is_access_to_unconstrained_array (type))
8792 type = check_typedef (type);
8793 if (type == NULL || type->code () != TYPE_CODE_ENUM
8794 || !type->is_stub ()
8795 || type->name () == NULL)
8799 const char *name = type->name ();
8800 struct type *type1 = ada_find_any_type (name);
8805 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8806 stubs pointing to arrays, as we don't create symbols for array
8807 types, only for the typedef-to-array types). If that's the case,
8808 strip the typedef layer. */
8809 if (type1->code () == TYPE_CODE_TYPEDEF)
8810 type1 = ada_check_typedef (type1);
8816 /* A value representing the data at VALADDR/ADDRESS as described by
8817 type TYPE0, but with a standard (static-sized) type that correctly
8818 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8819 type, then return VAL0 [this feature is simply to avoid redundant
8820 creation of struct values]. */
8822 static struct value *
8823 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8826 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8828 if (type == type0 && val0 != NULL)
8831 if (VALUE_LVAL (val0) != lval_memory)
8833 /* Our value does not live in memory; it could be a convenience
8834 variable, for instance. Create a not_lval value using val0's
8836 return value_from_contents (type, value_contents (val0).data ());
8839 return value_from_contents_and_address (type, 0, address);
8842 /* A value representing VAL, but with a standard (static-sized) type
8843 that correctly describes it. Does not necessarily create a new
8847 ada_to_fixed_value (struct value *val)
8849 val = unwrap_value (val);
8850 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8857 /* Table mapping attribute numbers to names.
8858 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8860 static const char * const attribute_names[] = {
8878 ada_attribute_name (enum exp_opcode n)
8880 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8881 return attribute_names[n - OP_ATR_FIRST + 1];
8883 return attribute_names[0];
8886 /* Evaluate the 'POS attribute applied to ARG. */
8889 pos_atr (struct value *arg)
8891 struct value *val = coerce_ref (arg);
8892 struct type *type = value_type (val);
8894 if (!discrete_type_p (type))
8895 error (_("'POS only defined on discrete types"));
8897 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8898 if (!result.has_value ())
8899 error (_("enumeration value is invalid: can't find 'POS"));
8905 ada_pos_atr (struct type *expect_type,
8906 struct expression *exp,
8907 enum noside noside, enum exp_opcode op,
8910 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8911 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8912 return value_zero (type, not_lval);
8913 return value_from_longest (type, pos_atr (arg));
8916 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8918 static struct value *
8919 val_atr (struct type *type, LONGEST val)
8921 gdb_assert (discrete_type_p (type));
8922 if (type->code () == TYPE_CODE_RANGE)
8923 type = TYPE_TARGET_TYPE (type);
8924 if (type->code () == TYPE_CODE_ENUM)
8926 if (val < 0 || val >= type->num_fields ())
8927 error (_("argument to 'VAL out of range"));
8928 val = type->field (val).loc_enumval ();
8930 return value_from_longest (type, val);
8934 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8937 return value_zero (type, not_lval);
8939 if (!discrete_type_p (type))
8940 error (_("'VAL only defined on discrete types"));
8941 if (!integer_type_p (value_type (arg)))
8942 error (_("'VAL requires integral argument"));
8944 return val_atr (type, value_as_long (arg));
8950 /* True if TYPE appears to be an Ada character type.
8951 [At the moment, this is true only for Character and Wide_Character;
8952 It is a heuristic test that could stand improvement]. */
8955 ada_is_character_type (struct type *type)
8959 /* If the type code says it's a character, then assume it really is,
8960 and don't check any further. */
8961 if (type->code () == TYPE_CODE_CHAR)
8964 /* Otherwise, assume it's a character type iff it is a discrete type
8965 with a known character type name. */
8966 name = ada_type_name (type);
8967 return (name != NULL
8968 && (type->code () == TYPE_CODE_INT
8969 || type->code () == TYPE_CODE_RANGE)
8970 && (strcmp (name, "character") == 0
8971 || strcmp (name, "wide_character") == 0
8972 || strcmp (name, "wide_wide_character") == 0
8973 || strcmp (name, "unsigned char") == 0));
8976 /* True if TYPE appears to be an Ada string type. */
8979 ada_is_string_type (struct type *type)
8981 type = ada_check_typedef (type);
8983 && type->code () != TYPE_CODE_PTR
8984 && (ada_is_simple_array_type (type)
8985 || ada_is_array_descriptor_type (type))
8986 && ada_array_arity (type) == 1)
8988 struct type *elttype = ada_array_element_type (type, 1);
8990 return ada_is_character_type (elttype);
8996 /* The compiler sometimes provides a parallel XVS type for a given
8997 PAD type. Normally, it is safe to follow the PAD type directly,
8998 but older versions of the compiler have a bug that causes the offset
8999 of its "F" field to be wrong. Following that field in that case
9000 would lead to incorrect results, but this can be worked around
9001 by ignoring the PAD type and using the associated XVS type instead.
9003 Set to True if the debugger should trust the contents of PAD types.
9004 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9005 static bool trust_pad_over_xvs = true;
9007 /* True if TYPE is a struct type introduced by the compiler to force the
9008 alignment of a value. Such types have a single field with a
9009 distinctive name. */
9012 ada_is_aligner_type (struct type *type)
9014 type = ada_check_typedef (type);
9016 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9019 return (type->code () == TYPE_CODE_STRUCT
9020 && type->num_fields () == 1
9021 && strcmp (type->field (0).name (), "F") == 0);
9024 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9025 the parallel type. */
9028 ada_get_base_type (struct type *raw_type)
9030 struct type *real_type_namer;
9031 struct type *raw_real_type;
9033 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9036 if (ada_is_aligner_type (raw_type))
9037 /* The encoding specifies that we should always use the aligner type.
9038 So, even if this aligner type has an associated XVS type, we should
9041 According to the compiler gurus, an XVS type parallel to an aligner
9042 type may exist because of a stabs limitation. In stabs, aligner
9043 types are empty because the field has a variable-sized type, and
9044 thus cannot actually be used as an aligner type. As a result,
9045 we need the associated parallel XVS type to decode the type.
9046 Since the policy in the compiler is to not change the internal
9047 representation based on the debugging info format, we sometimes
9048 end up having a redundant XVS type parallel to the aligner type. */
9051 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9052 if (real_type_namer == NULL
9053 || real_type_namer->code () != TYPE_CODE_STRUCT
9054 || real_type_namer->num_fields () != 1)
9057 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9059 /* This is an older encoding form where the base type needs to be
9060 looked up by name. We prefer the newer encoding because it is
9062 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
9063 if (raw_real_type == NULL)
9066 return raw_real_type;
9069 /* The field in our XVS type is a reference to the base type. */
9070 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9073 /* The type of value designated by TYPE, with all aligners removed. */
9076 ada_aligned_type (struct type *type)
9078 if (ada_is_aligner_type (type))
9079 return ada_aligned_type (type->field (0).type ());
9081 return ada_get_base_type (type);
9085 /* The address of the aligned value in an object at address VALADDR
9086 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9089 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9091 if (ada_is_aligner_type (type))
9092 return ada_aligned_value_addr
9093 (type->field (0).type (),
9094 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
9101 /* The printed representation of an enumeration literal with encoded
9102 name NAME. The value is good to the next call of ada_enum_name. */
9104 ada_enum_name (const char *name)
9106 static std::string storage;
9109 /* First, unqualify the enumeration name:
9110 1. Search for the last '.' character. If we find one, then skip
9111 all the preceding characters, the unqualified name starts
9112 right after that dot.
9113 2. Otherwise, we may be debugging on a target where the compiler
9114 translates dots into "__". Search forward for double underscores,
9115 but stop searching when we hit an overloading suffix, which is
9116 of the form "__" followed by digits. */
9118 tmp = strrchr (name, '.');
9123 while ((tmp = strstr (name, "__")) != NULL)
9125 if (isdigit (tmp[2]))
9136 if (name[1] == 'U' || name[1] == 'W')
9139 if (name[1] == 'W' && name[2] == 'W')
9141 /* Also handle the QWW case. */
9144 if (sscanf (name + offset, "%x", &v) != 1)
9147 else if (((name[1] >= '0' && name[1] <= '9')
9148 || (name[1] >= 'a' && name[1] <= 'z'))
9151 storage = string_printf ("'%c'", name[1]);
9152 return storage.c_str ();
9157 if (isascii (v) && isprint (v))
9158 storage = string_printf ("'%c'", v);
9159 else if (name[1] == 'U')
9160 storage = string_printf ("'[\"%02x\"]'", v);
9161 else if (name[2] != 'W')
9162 storage = string_printf ("'[\"%04x\"]'", v);
9164 storage = string_printf ("'[\"%06x\"]'", v);
9166 return storage.c_str ();
9170 tmp = strstr (name, "__");
9172 tmp = strstr (name, "$");
9175 storage = std::string (name, tmp - name);
9176 return storage.c_str ();
9183 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9186 static struct value *
9187 unwrap_value (struct value *val)
9189 struct type *type = ada_check_typedef (value_type (val));
9191 if (ada_is_aligner_type (type))
9193 struct value *v = ada_value_struct_elt (val, "F", 0);
9194 struct type *val_type = ada_check_typedef (value_type (v));
9196 if (ada_type_name (val_type) == NULL)
9197 val_type->set_name (ada_type_name (type));
9199 return unwrap_value (v);
9203 struct type *raw_real_type =
9204 ada_check_typedef (ada_get_base_type (type));
9206 /* If there is no parallel XVS or XVE type, then the value is
9207 already unwrapped. Return it without further modification. */
9208 if ((type == raw_real_type)
9209 && ada_find_parallel_type (type, "___XVE") == NULL)
9213 coerce_unspec_val_to_type
9214 (val, ada_to_fixed_type (raw_real_type, 0,
9215 value_address (val),
9220 /* Given two array types T1 and T2, return nonzero iff both arrays
9221 contain the same number of elements. */
9224 ada_same_array_size_p (struct type *t1, struct type *t2)
9226 LONGEST lo1, hi1, lo2, hi2;
9228 /* Get the array bounds in order to verify that the size of
9229 the two arrays match. */
9230 if (!get_array_bounds (t1, &lo1, &hi1)
9231 || !get_array_bounds (t2, &lo2, &hi2))
9232 error (_("unable to determine array bounds"));
9234 /* To make things easier for size comparison, normalize a bit
9235 the case of empty arrays by making sure that the difference
9236 between upper bound and lower bound is always -1. */
9242 return (hi1 - lo1 == hi2 - lo2);
9245 /* Assuming that VAL is an array of integrals, and TYPE represents
9246 an array with the same number of elements, but with wider integral
9247 elements, return an array "casted" to TYPE. In practice, this
9248 means that the returned array is built by casting each element
9249 of the original array into TYPE's (wider) element type. */
9251 static struct value *
9252 ada_promote_array_of_integrals (struct type *type, struct value *val)
9254 struct type *elt_type = TYPE_TARGET_TYPE (type);
9258 /* Verify that both val and type are arrays of scalars, and
9259 that the size of val's elements is smaller than the size
9260 of type's element. */
9261 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9262 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9263 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9264 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9265 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9266 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9268 if (!get_array_bounds (type, &lo, &hi))
9269 error (_("unable to determine array bounds"));
9271 value *res = allocate_value (type);
9272 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
9274 /* Promote each array element. */
9275 for (i = 0; i < hi - lo + 1; i++)
9277 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9278 int elt_len = TYPE_LENGTH (elt_type);
9280 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
9286 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9287 return the converted value. */
9289 static struct value *
9290 coerce_for_assign (struct type *type, struct value *val)
9292 struct type *type2 = value_type (val);
9297 type2 = ada_check_typedef (type2);
9298 type = ada_check_typedef (type);
9300 if (type2->code () == TYPE_CODE_PTR
9301 && type->code () == TYPE_CODE_ARRAY)
9303 val = ada_value_ind (val);
9304 type2 = value_type (val);
9307 if (type2->code () == TYPE_CODE_ARRAY
9308 && type->code () == TYPE_CODE_ARRAY)
9310 if (!ada_same_array_size_p (type, type2))
9311 error (_("cannot assign arrays of different length"));
9313 if (is_integral_type (TYPE_TARGET_TYPE (type))
9314 && is_integral_type (TYPE_TARGET_TYPE (type2))
9315 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9316 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9318 /* Allow implicit promotion of the array elements to
9320 return ada_promote_array_of_integrals (type, val);
9323 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9324 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9325 error (_("Incompatible types in assignment"));
9326 deprecated_set_value_type (val, type);
9331 static struct value *
9332 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9335 struct type *type1, *type2;
9338 arg1 = coerce_ref (arg1);
9339 arg2 = coerce_ref (arg2);
9340 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9341 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9343 if (type1->code () != TYPE_CODE_INT
9344 || type2->code () != TYPE_CODE_INT)
9345 return value_binop (arg1, arg2, op);
9354 return value_binop (arg1, arg2, op);
9357 v2 = value_as_long (arg2);
9361 if (op == BINOP_MOD)
9363 else if (op == BINOP_DIV)
9367 gdb_assert (op == BINOP_REM);
9371 error (_("second operand of %s must not be zero."), name);
9374 if (type1->is_unsigned () || op == BINOP_MOD)
9375 return value_binop (arg1, arg2, op);
9377 v1 = value_as_long (arg1);
9382 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9383 v += v > 0 ? -1 : 1;
9391 /* Should not reach this point. */
9395 val = allocate_value (type1);
9396 store_unsigned_integer (value_contents_raw (val).data (),
9397 TYPE_LENGTH (value_type (val)),
9398 type_byte_order (type1), v);
9403 ada_value_equal (struct value *arg1, struct value *arg2)
9405 if (ada_is_direct_array_type (value_type (arg1))
9406 || ada_is_direct_array_type (value_type (arg2)))
9408 struct type *arg1_type, *arg2_type;
9410 /* Automatically dereference any array reference before
9411 we attempt to perform the comparison. */
9412 arg1 = ada_coerce_ref (arg1);
9413 arg2 = ada_coerce_ref (arg2);
9415 arg1 = ada_coerce_to_simple_array (arg1);
9416 arg2 = ada_coerce_to_simple_array (arg2);
9418 arg1_type = ada_check_typedef (value_type (arg1));
9419 arg2_type = ada_check_typedef (value_type (arg2));
9421 if (arg1_type->code () != TYPE_CODE_ARRAY
9422 || arg2_type->code () != TYPE_CODE_ARRAY)
9423 error (_("Attempt to compare array with non-array"));
9424 /* FIXME: The following works only for types whose
9425 representations use all bits (no padding or undefined bits)
9426 and do not have user-defined equality. */
9427 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9428 && memcmp (value_contents (arg1).data (),
9429 value_contents (arg2).data (),
9430 TYPE_LENGTH (arg1_type)) == 0);
9432 return value_equal (arg1, arg2);
9439 check_objfile (const std::unique_ptr<ada_component> &comp,
9440 struct objfile *objfile)
9442 return comp->uses_objfile (objfile);
9445 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9446 component of LHS (a simple array or a record). Does not modify the
9447 inferior's memory, nor does it modify LHS (unless LHS ==
9451 assign_component (struct value *container, struct value *lhs, LONGEST index,
9452 struct expression *exp, operation_up &arg)
9454 scoped_value_mark mark;
9457 struct type *lhs_type = check_typedef (value_type (lhs));
9459 if (lhs_type->code () == TYPE_CODE_ARRAY)
9461 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9462 struct value *index_val = value_from_longest (index_type, index);
9464 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9468 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9469 elt = ada_to_fixed_value (elt);
9472 ada_aggregate_operation *ag_op
9473 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9474 if (ag_op != nullptr)
9475 ag_op->assign_aggregate (container, elt, exp);
9477 value_assign_to_component (container, elt,
9478 arg->evaluate (nullptr, exp,
9483 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9485 for (const auto &item : m_components)
9486 if (item->uses_objfile (objfile))
9492 ada_aggregate_component::dump (ui_file *stream, int depth)
9494 gdb_printf (stream, _("%*sAggregate\n"), depth, "");
9495 for (const auto &item : m_components)
9496 item->dump (stream, depth + 1);
9500 ada_aggregate_component::assign (struct value *container,
9501 struct value *lhs, struct expression *exp,
9502 std::vector<LONGEST> &indices,
9503 LONGEST low, LONGEST high)
9505 for (auto &item : m_components)
9506 item->assign (container, lhs, exp, indices, low, high);
9509 /* See ada-exp.h. */
9512 ada_aggregate_operation::assign_aggregate (struct value *container,
9514 struct expression *exp)
9516 struct type *lhs_type;
9517 LONGEST low_index, high_index;
9519 container = ada_coerce_ref (container);
9520 if (ada_is_direct_array_type (value_type (container)))
9521 container = ada_coerce_to_simple_array (container);
9522 lhs = ada_coerce_ref (lhs);
9523 if (!deprecated_value_modifiable (lhs))
9524 error (_("Left operand of assignment is not a modifiable lvalue."));
9526 lhs_type = check_typedef (value_type (lhs));
9527 if (ada_is_direct_array_type (lhs_type))
9529 lhs = ada_coerce_to_simple_array (lhs);
9530 lhs_type = check_typedef (value_type (lhs));
9531 low_index = lhs_type->bounds ()->low.const_val ();
9532 high_index = lhs_type->bounds ()->high.const_val ();
9534 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9537 high_index = num_visible_fields (lhs_type) - 1;
9540 error (_("Left-hand side must be array or record."));
9542 std::vector<LONGEST> indices (4);
9543 indices[0] = indices[1] = low_index - 1;
9544 indices[2] = indices[3] = high_index + 1;
9546 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9547 low_index, high_index);
9553 ada_positional_component::uses_objfile (struct objfile *objfile)
9555 return m_op->uses_objfile (objfile);
9559 ada_positional_component::dump (ui_file *stream, int depth)
9561 gdb_printf (stream, _("%*sPositional, index = %d\n"),
9562 depth, "", m_index);
9563 m_op->dump (stream, depth + 1);
9566 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9567 construct, given that the positions are relative to lower bound
9568 LOW, where HIGH is the upper bound. Record the position in
9569 INDICES. CONTAINER is as for assign_aggregate. */
9571 ada_positional_component::assign (struct value *container,
9572 struct value *lhs, struct expression *exp,
9573 std::vector<LONGEST> &indices,
9574 LONGEST low, LONGEST high)
9576 LONGEST ind = m_index + low;
9578 if (ind - 1 == high)
9579 warning (_("Extra components in aggregate ignored."));
9582 add_component_interval (ind, ind, indices);
9583 assign_component (container, lhs, ind, exp, m_op);
9588 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9590 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9594 ada_discrete_range_association::dump (ui_file *stream, int depth)
9596 gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
9597 m_low->dump (stream, depth + 1);
9598 m_high->dump (stream, depth + 1);
9602 ada_discrete_range_association::assign (struct value *container,
9604 struct expression *exp,
9605 std::vector<LONGEST> &indices,
9606 LONGEST low, LONGEST high,
9609 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9610 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9612 if (lower <= upper && (lower < low || upper > high))
9613 error (_("Index in component association out of bounds."));
9615 add_component_interval (lower, upper, indices);
9616 while (lower <= upper)
9618 assign_component (container, lhs, lower, exp, op);
9624 ada_name_association::uses_objfile (struct objfile *objfile)
9626 return m_val->uses_objfile (objfile);
9630 ada_name_association::dump (ui_file *stream, int depth)
9632 gdb_printf (stream, _("%*sName:\n"), depth, "");
9633 m_val->dump (stream, depth + 1);
9637 ada_name_association::assign (struct value *container,
9639 struct expression *exp,
9640 std::vector<LONGEST> &indices,
9641 LONGEST low, LONGEST high,
9646 if (ada_is_direct_array_type (value_type (lhs)))
9647 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9651 ada_string_operation *strop
9652 = dynamic_cast<ada_string_operation *> (m_val.get ());
9655 if (strop != nullptr)
9656 name = strop->get_name ();
9659 ada_var_value_operation *vvo
9660 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9662 error (_("Invalid record component association."));
9663 name = vvo->get_symbol ()->natural_name ();
9667 if (! find_struct_field (name, value_type (lhs), 0,
9668 NULL, NULL, NULL, NULL, &index))
9669 error (_("Unknown component name: %s."), name);
9672 add_component_interval (index, index, indices);
9673 assign_component (container, lhs, index, exp, op);
9677 ada_choices_component::uses_objfile (struct objfile *objfile)
9679 if (m_op->uses_objfile (objfile))
9681 for (const auto &item : m_assocs)
9682 if (item->uses_objfile (objfile))
9688 ada_choices_component::dump (ui_file *stream, int depth)
9690 gdb_printf (stream, _("%*sChoices:\n"), depth, "");
9691 m_op->dump (stream, depth + 1);
9692 for (const auto &item : m_assocs)
9693 item->dump (stream, depth + 1);
9696 /* Assign into the components of LHS indexed by the OP_CHOICES
9697 construct at *POS, updating *POS past the construct, given that
9698 the allowable indices are LOW..HIGH. Record the indices assigned
9699 to in INDICES. CONTAINER is as for assign_aggregate. */
9701 ada_choices_component::assign (struct value *container,
9702 struct value *lhs, struct expression *exp,
9703 std::vector<LONGEST> &indices,
9704 LONGEST low, LONGEST high)
9706 for (auto &item : m_assocs)
9707 item->assign (container, lhs, exp, indices, low, high, m_op);
9711 ada_others_component::uses_objfile (struct objfile *objfile)
9713 return m_op->uses_objfile (objfile);
9717 ada_others_component::dump (ui_file *stream, int depth)
9719 gdb_printf (stream, _("%*sOthers:\n"), depth, "");
9720 m_op->dump (stream, depth + 1);
9723 /* Assign the value of the expression in the OP_OTHERS construct in
9724 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9725 have not been previously assigned. The index intervals already assigned
9726 are in INDICES. CONTAINER is as for assign_aggregate. */
9728 ada_others_component::assign (struct value *container,
9729 struct value *lhs, struct expression *exp,
9730 std::vector<LONGEST> &indices,
9731 LONGEST low, LONGEST high)
9733 int num_indices = indices.size ();
9734 for (int i = 0; i < num_indices - 2; i += 2)
9736 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9737 assign_component (container, lhs, ind, exp, m_op);
9742 ada_assign_operation::evaluate (struct type *expect_type,
9743 struct expression *exp,
9746 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9748 ada_aggregate_operation *ag_op
9749 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9750 if (ag_op != nullptr)
9752 if (noside != EVAL_NORMAL)
9755 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9756 return ada_value_assign (arg1, arg1);
9758 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9759 except if the lhs of our assignment is a convenience variable.
9760 In the case of assigning to a convenience variable, the lhs
9761 should be exactly the result of the evaluation of the rhs. */
9762 struct type *type = value_type (arg1);
9763 if (VALUE_LVAL (arg1) == lval_internalvar)
9765 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9768 if (VALUE_LVAL (arg1) == lval_internalvar)
9773 arg2 = coerce_for_assign (value_type (arg1), arg2);
9774 return ada_value_assign (arg1, arg2);
9777 } /* namespace expr */
9779 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9780 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9783 add_component_interval (LONGEST low, LONGEST high,
9784 std::vector<LONGEST> &indices)
9788 int size = indices.size ();
9789 for (i = 0; i < size; i += 2) {
9790 if (high >= indices[i] && low <= indices[i + 1])
9794 for (kh = i + 2; kh < size; kh += 2)
9795 if (high < indices[kh])
9797 if (low < indices[i])
9799 indices[i + 1] = indices[kh - 1];
9800 if (high > indices[i + 1])
9801 indices[i + 1] = high;
9802 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9803 indices.resize (kh - i - 2);
9806 else if (high < indices[i])
9810 indices.resize (indices.size () + 2);
9811 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9812 indices[j] = indices[j - 2];
9814 indices[i + 1] = high;
9817 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9820 static struct value *
9821 ada_value_cast (struct type *type, struct value *arg2)
9823 if (type == ada_check_typedef (value_type (arg2)))
9826 return value_cast (type, arg2);
9829 /* Evaluating Ada expressions, and printing their result.
9830 ------------------------------------------------------
9835 We usually evaluate an Ada expression in order to print its value.
9836 We also evaluate an expression in order to print its type, which
9837 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9838 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9839 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9840 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9843 Evaluating expressions is a little more complicated for Ada entities
9844 than it is for entities in languages such as C. The main reason for
9845 this is that Ada provides types whose definition might be dynamic.
9846 One example of such types is variant records. Or another example
9847 would be an array whose bounds can only be known at run time.
9849 The following description is a general guide as to what should be
9850 done (and what should NOT be done) in order to evaluate an expression
9851 involving such types, and when. This does not cover how the semantic
9852 information is encoded by GNAT as this is covered separatly. For the
9853 document used as the reference for the GNAT encoding, see exp_dbug.ads
9854 in the GNAT sources.
9856 Ideally, we should embed each part of this description next to its
9857 associated code. Unfortunately, the amount of code is so vast right
9858 now that it's hard to see whether the code handling a particular
9859 situation might be duplicated or not. One day, when the code is
9860 cleaned up, this guide might become redundant with the comments
9861 inserted in the code, and we might want to remove it.
9863 2. ``Fixing'' an Entity, the Simple Case:
9864 -----------------------------------------
9866 When evaluating Ada expressions, the tricky issue is that they may
9867 reference entities whose type contents and size are not statically
9868 known. Consider for instance a variant record:
9870 type Rec (Empty : Boolean := True) is record
9873 when False => Value : Integer;
9876 Yes : Rec := (Empty => False, Value => 1);
9877 No : Rec := (empty => True);
9879 The size and contents of that record depends on the value of the
9880 descriminant (Rec.Empty). At this point, neither the debugging
9881 information nor the associated type structure in GDB are able to
9882 express such dynamic types. So what the debugger does is to create
9883 "fixed" versions of the type that applies to the specific object.
9884 We also informally refer to this operation as "fixing" an object,
9885 which means creating its associated fixed type.
9887 Example: when printing the value of variable "Yes" above, its fixed
9888 type would look like this:
9895 On the other hand, if we printed the value of "No", its fixed type
9902 Things become a little more complicated when trying to fix an entity
9903 with a dynamic type that directly contains another dynamic type,
9904 such as an array of variant records, for instance. There are
9905 two possible cases: Arrays, and records.
9907 3. ``Fixing'' Arrays:
9908 ---------------------
9910 The type structure in GDB describes an array in terms of its bounds,
9911 and the type of its elements. By design, all elements in the array
9912 have the same type and we cannot represent an array of variant elements
9913 using the current type structure in GDB. When fixing an array,
9914 we cannot fix the array element, as we would potentially need one
9915 fixed type per element of the array. As a result, the best we can do
9916 when fixing an array is to produce an array whose bounds and size
9917 are correct (allowing us to read it from memory), but without having
9918 touched its element type. Fixing each element will be done later,
9919 when (if) necessary.
9921 Arrays are a little simpler to handle than records, because the same
9922 amount of memory is allocated for each element of the array, even if
9923 the amount of space actually used by each element differs from element
9924 to element. Consider for instance the following array of type Rec:
9926 type Rec_Array is array (1 .. 2) of Rec;
9928 The actual amount of memory occupied by each element might be different
9929 from element to element, depending on the value of their discriminant.
9930 But the amount of space reserved for each element in the array remains
9931 fixed regardless. So we simply need to compute that size using
9932 the debugging information available, from which we can then determine
9933 the array size (we multiply the number of elements of the array by
9934 the size of each element).
9936 The simplest case is when we have an array of a constrained element
9937 type. For instance, consider the following type declarations:
9939 type Bounded_String (Max_Size : Integer) is
9941 Buffer : String (1 .. Max_Size);
9943 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9945 In this case, the compiler describes the array as an array of
9946 variable-size elements (identified by its XVS suffix) for which
9947 the size can be read in the parallel XVZ variable.
9949 In the case of an array of an unconstrained element type, the compiler
9950 wraps the array element inside a private PAD type. This type should not
9951 be shown to the user, and must be "unwrap"'ed before printing. Note
9952 that we also use the adjective "aligner" in our code to designate
9953 these wrapper types.
9955 In some cases, the size allocated for each element is statically
9956 known. In that case, the PAD type already has the correct size,
9957 and the array element should remain unfixed.
9959 But there are cases when this size is not statically known.
9960 For instance, assuming that "Five" is an integer variable:
9962 type Dynamic is array (1 .. Five) of Integer;
9963 type Wrapper (Has_Length : Boolean := False) is record
9966 when True => Length : Integer;
9970 type Wrapper_Array is array (1 .. 2) of Wrapper;
9972 Hello : Wrapper_Array := (others => (Has_Length => True,
9973 Data => (others => 17),
9977 The debugging info would describe variable Hello as being an
9978 array of a PAD type. The size of that PAD type is not statically
9979 known, but can be determined using a parallel XVZ variable.
9980 In that case, a copy of the PAD type with the correct size should
9981 be used for the fixed array.
9983 3. ``Fixing'' record type objects:
9984 ----------------------------------
9986 Things are slightly different from arrays in the case of dynamic
9987 record types. In this case, in order to compute the associated
9988 fixed type, we need to determine the size and offset of each of
9989 its components. This, in turn, requires us to compute the fixed
9990 type of each of these components.
9992 Consider for instance the example:
9994 type Bounded_String (Max_Size : Natural) is record
9995 Str : String (1 .. Max_Size);
9998 My_String : Bounded_String (Max_Size => 10);
10000 In that case, the position of field "Length" depends on the size
10001 of field Str, which itself depends on the value of the Max_Size
10002 discriminant. In order to fix the type of variable My_String,
10003 we need to fix the type of field Str. Therefore, fixing a variant
10004 record requires us to fix each of its components.
10006 However, if a component does not have a dynamic size, the component
10007 should not be fixed. In particular, fields that use a PAD type
10008 should not fixed. Here is an example where this might happen
10009 (assuming type Rec above):
10011 type Container (Big : Boolean) is record
10015 when True => Another : Integer;
10016 when False => null;
10019 My_Container : Container := (Big => False,
10020 First => (Empty => True),
10023 In that example, the compiler creates a PAD type for component First,
10024 whose size is constant, and then positions the component After just
10025 right after it. The offset of component After is therefore constant
10028 The debugger computes the position of each field based on an algorithm
10029 that uses, among other things, the actual position and size of the field
10030 preceding it. Let's now imagine that the user is trying to print
10031 the value of My_Container. If the type fixing was recursive, we would
10032 end up computing the offset of field After based on the size of the
10033 fixed version of field First. And since in our example First has
10034 only one actual field, the size of the fixed type is actually smaller
10035 than the amount of space allocated to that field, and thus we would
10036 compute the wrong offset of field After.
10038 To make things more complicated, we need to watch out for dynamic
10039 components of variant records (identified by the ___XVL suffix in
10040 the component name). Even if the target type is a PAD type, the size
10041 of that type might not be statically known. So the PAD type needs
10042 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10043 we might end up with the wrong size for our component. This can be
10044 observed with the following type declarations:
10046 type Octal is new Integer range 0 .. 7;
10047 type Octal_Array is array (Positive range <>) of Octal;
10048 pragma Pack (Octal_Array);
10050 type Octal_Buffer (Size : Positive) is record
10051 Buffer : Octal_Array (1 .. Size);
10055 In that case, Buffer is a PAD type whose size is unset and needs
10056 to be computed by fixing the unwrapped type.
10058 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10059 ----------------------------------------------------------
10061 Lastly, when should the sub-elements of an entity that remained unfixed
10062 thus far, be actually fixed?
10064 The answer is: Only when referencing that element. For instance
10065 when selecting one component of a record, this specific component
10066 should be fixed at that point in time. Or when printing the value
10067 of a record, each component should be fixed before its value gets
10068 printed. Similarly for arrays, the element of the array should be
10069 fixed when printing each element of the array, or when extracting
10070 one element out of that array. On the other hand, fixing should
10071 not be performed on the elements when taking a slice of an array!
10073 Note that one of the side effects of miscomputing the offset and
10074 size of each field is that we end up also miscomputing the size
10075 of the containing type. This can have adverse results when computing
10076 the value of an entity. GDB fetches the value of an entity based
10077 on the size of its type, and thus a wrong size causes GDB to fetch
10078 the wrong amount of memory. In the case where the computed size is
10079 too small, GDB fetches too little data to print the value of our
10080 entity. Results in this case are unpredictable, as we usually read
10081 past the buffer containing the data =:-o. */
10083 /* A helper function for TERNOP_IN_RANGE. */
10086 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10087 enum noside noside,
10088 value *arg1, value *arg2, value *arg3)
10090 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10091 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10092 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10094 value_from_longest (type,
10095 (value_less (arg1, arg3)
10096 || value_equal (arg1, arg3))
10097 && (value_less (arg2, arg1)
10098 || value_equal (arg2, arg1)));
10101 /* A helper function for UNOP_NEG. */
10104 ada_unop_neg (struct type *expect_type,
10105 struct expression *exp,
10106 enum noside noside, enum exp_opcode op,
10107 struct value *arg1)
10109 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10110 return value_neg (arg1);
10113 /* A helper function for UNOP_IN_RANGE. */
10116 ada_unop_in_range (struct type *expect_type,
10117 struct expression *exp,
10118 enum noside noside, enum exp_opcode op,
10119 struct value *arg1, struct type *type)
10121 struct value *arg2, *arg3;
10122 switch (type->code ())
10125 lim_warning (_("Membership test incompletely implemented; "
10126 "always returns true"));
10127 type = language_bool_type (exp->language_defn, exp->gdbarch);
10128 return value_from_longest (type, (LONGEST) 1);
10130 case TYPE_CODE_RANGE:
10131 arg2 = value_from_longest (type,
10132 type->bounds ()->low.const_val ());
10133 arg3 = value_from_longest (type,
10134 type->bounds ()->high.const_val ());
10135 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10136 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10137 type = language_bool_type (exp->language_defn, exp->gdbarch);
10139 value_from_longest (type,
10140 (value_less (arg1, arg3)
10141 || value_equal (arg1, arg3))
10142 && (value_less (arg2, arg1)
10143 || value_equal (arg2, arg1)));
10147 /* A helper function for OP_ATR_TAG. */
10150 ada_atr_tag (struct type *expect_type,
10151 struct expression *exp,
10152 enum noside noside, enum exp_opcode op,
10153 struct value *arg1)
10155 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10156 return value_zero (ada_tag_type (arg1), not_lval);
10158 return ada_value_tag (arg1);
10161 /* A helper function for OP_ATR_SIZE. */
10164 ada_atr_size (struct type *expect_type,
10165 struct expression *exp,
10166 enum noside noside, enum exp_opcode op,
10167 struct value *arg1)
10169 struct type *type = value_type (arg1);
10171 /* If the argument is a reference, then dereference its type, since
10172 the user is really asking for the size of the actual object,
10173 not the size of the pointer. */
10174 if (type->code () == TYPE_CODE_REF)
10175 type = TYPE_TARGET_TYPE (type);
10177 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10178 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10180 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10181 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10184 /* A helper function for UNOP_ABS. */
10187 ada_abs (struct type *expect_type,
10188 struct expression *exp,
10189 enum noside noside, enum exp_opcode op,
10190 struct value *arg1)
10192 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10193 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10194 return value_neg (arg1);
10199 /* A helper function for BINOP_MUL. */
10202 ada_mult_binop (struct type *expect_type,
10203 struct expression *exp,
10204 enum noside noside, enum exp_opcode op,
10205 struct value *arg1, struct value *arg2)
10207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10209 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10210 return value_zero (value_type (arg1), not_lval);
10214 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10215 return ada_value_binop (arg1, arg2, op);
10219 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10222 ada_equal_binop (struct type *expect_type,
10223 struct expression *exp,
10224 enum noside noside, enum exp_opcode op,
10225 struct value *arg1, struct value *arg2)
10228 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10232 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10233 tem = ada_value_equal (arg1, arg2);
10235 if (op == BINOP_NOTEQUAL)
10237 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10238 return value_from_longest (type, (LONGEST) tem);
10241 /* A helper function for TERNOP_SLICE. */
10244 ada_ternop_slice (struct expression *exp,
10245 enum noside noside,
10246 struct value *array, struct value *low_bound_val,
10247 struct value *high_bound_val)
10250 LONGEST high_bound;
10252 low_bound_val = coerce_ref (low_bound_val);
10253 high_bound_val = coerce_ref (high_bound_val);
10254 low_bound = value_as_long (low_bound_val);
10255 high_bound = value_as_long (high_bound_val);
10257 /* If this is a reference to an aligner type, then remove all
10259 if (value_type (array)->code () == TYPE_CODE_REF
10260 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10261 TYPE_TARGET_TYPE (value_type (array)) =
10262 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10264 if (ada_is_any_packed_array_type (value_type (array)))
10265 error (_("cannot slice a packed array"));
10267 /* If this is a reference to an array or an array lvalue,
10268 convert to a pointer. */
10269 if (value_type (array)->code () == TYPE_CODE_REF
10270 || (value_type (array)->code () == TYPE_CODE_ARRAY
10271 && VALUE_LVAL (array) == lval_memory))
10272 array = value_addr (array);
10274 if (noside == EVAL_AVOID_SIDE_EFFECTS
10275 && ada_is_array_descriptor_type (ada_check_typedef
10276 (value_type (array))))
10277 return empty_array (ada_type_of_array (array, 0), low_bound,
10280 array = ada_coerce_to_simple_array_ptr (array);
10282 /* If we have more than one level of pointer indirection,
10283 dereference the value until we get only one level. */
10284 while (value_type (array)->code () == TYPE_CODE_PTR
10285 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10287 array = value_ind (array);
10289 /* Make sure we really do have an array type before going further,
10290 to avoid a SEGV when trying to get the index type or the target
10291 type later down the road if the debug info generated by
10292 the compiler is incorrect or incomplete. */
10293 if (!ada_is_simple_array_type (value_type (array)))
10294 error (_("cannot take slice of non-array"));
10296 if (ada_check_typedef (value_type (array))->code ()
10299 struct type *type0 = ada_check_typedef (value_type (array));
10301 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10302 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10305 struct type *arr_type0 =
10306 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10308 return ada_value_slice_from_ptr (array, arr_type0,
10309 longest_to_int (low_bound),
10310 longest_to_int (high_bound));
10313 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10315 else if (high_bound < low_bound)
10316 return empty_array (value_type (array), low_bound, high_bound);
10318 return ada_value_slice (array, longest_to_int (low_bound),
10319 longest_to_int (high_bound));
10322 /* A helper function for BINOP_IN_BOUNDS. */
10325 ada_binop_in_bounds (struct expression *exp, enum noside noside,
10326 struct value *arg1, struct value *arg2, int n)
10328 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10330 struct type *type = language_bool_type (exp->language_defn,
10332 return value_zero (type, not_lval);
10335 struct type *type = ada_index_type (value_type (arg2), n, "range");
10337 type = value_type (arg1);
10339 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10340 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10342 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10343 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10344 type = language_bool_type (exp->language_defn, exp->gdbarch);
10345 return value_from_longest (type,
10346 (value_less (arg1, arg3)
10347 || value_equal (arg1, arg3))
10348 && (value_less (arg2, arg1)
10349 || value_equal (arg2, arg1)));
10352 /* A helper function for some attribute operations. */
10355 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10356 struct value *arg1, struct type *type_arg, int tem)
10358 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10360 if (type_arg == NULL)
10361 type_arg = value_type (arg1);
10363 if (ada_is_constrained_packed_array_type (type_arg))
10364 type_arg = decode_constrained_packed_array_type (type_arg);
10366 if (!discrete_type_p (type_arg))
10370 default: /* Should never happen. */
10371 error (_("unexpected attribute encountered"));
10374 type_arg = ada_index_type (type_arg, tem,
10375 ada_attribute_name (op));
10377 case OP_ATR_LENGTH:
10378 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10383 return value_zero (type_arg, not_lval);
10385 else if (type_arg == NULL)
10387 arg1 = ada_coerce_ref (arg1);
10389 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10390 arg1 = ada_coerce_to_simple_array (arg1);
10393 if (op == OP_ATR_LENGTH)
10394 type = builtin_type (exp->gdbarch)->builtin_int;
10397 type = ada_index_type (value_type (arg1), tem,
10398 ada_attribute_name (op));
10400 type = builtin_type (exp->gdbarch)->builtin_int;
10405 default: /* Should never happen. */
10406 error (_("unexpected attribute encountered"));
10408 return value_from_longest
10409 (type, ada_array_bound (arg1, tem, 0));
10411 return value_from_longest
10412 (type, ada_array_bound (arg1, tem, 1));
10413 case OP_ATR_LENGTH:
10414 return value_from_longest
10415 (type, ada_array_length (arg1, tem));
10418 else if (discrete_type_p (type_arg))
10420 struct type *range_type;
10421 const char *name = ada_type_name (type_arg);
10424 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10425 range_type = to_fixed_range_type (type_arg, NULL);
10426 if (range_type == NULL)
10427 range_type = type_arg;
10431 error (_("unexpected attribute encountered"));
10433 return value_from_longest
10434 (range_type, ada_discrete_type_low_bound (range_type));
10436 return value_from_longest
10437 (range_type, ada_discrete_type_high_bound (range_type));
10438 case OP_ATR_LENGTH:
10439 error (_("the 'length attribute applies only to array types"));
10442 else if (type_arg->code () == TYPE_CODE_FLT)
10443 error (_("unimplemented type attribute"));
10448 if (ada_is_constrained_packed_array_type (type_arg))
10449 type_arg = decode_constrained_packed_array_type (type_arg);
10452 if (op == OP_ATR_LENGTH)
10453 type = builtin_type (exp->gdbarch)->builtin_int;
10456 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10458 type = builtin_type (exp->gdbarch)->builtin_int;
10464 error (_("unexpected attribute encountered"));
10466 low = ada_array_bound_from_type (type_arg, tem, 0);
10467 return value_from_longest (type, low);
10469 high = ada_array_bound_from_type (type_arg, tem, 1);
10470 return value_from_longest (type, high);
10471 case OP_ATR_LENGTH:
10472 low = ada_array_bound_from_type (type_arg, tem, 0);
10473 high = ada_array_bound_from_type (type_arg, tem, 1);
10474 return value_from_longest (type, high - low + 1);
10479 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10482 ada_binop_minmax (struct type *expect_type,
10483 struct expression *exp,
10484 enum noside noside, enum exp_opcode op,
10485 struct value *arg1, struct value *arg2)
10487 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10488 return value_zero (value_type (arg1), not_lval);
10491 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10492 return value_binop (arg1, arg2, op);
10496 /* A helper function for BINOP_EXP. */
10499 ada_binop_exp (struct type *expect_type,
10500 struct expression *exp,
10501 enum noside noside, enum exp_opcode op,
10502 struct value *arg1, struct value *arg2)
10504 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10505 return value_zero (value_type (arg1), not_lval);
10508 /* For integer exponentiation operations,
10509 only promote the first argument. */
10510 if (is_integral_type (value_type (arg2)))
10511 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10513 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10515 return value_binop (arg1, arg2, op);
10522 /* See ada-exp.h. */
10525 ada_resolvable::replace (operation_up &&owner,
10526 struct expression *exp,
10527 bool deprocedure_p,
10528 bool parse_completion,
10529 innermost_block_tracker *tracker,
10530 struct type *context_type)
10532 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10533 return (make_operation<ada_funcall_operation>
10534 (std::move (owner),
10535 std::vector<operation_up> ()));
10536 return std::move (owner);
10539 /* Convert the character literal whose value would be VAL to the
10540 appropriate value of type TYPE, if there is a translation.
10541 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10542 the literal 'A' (VAL == 65), returns 0. */
10545 convert_char_literal (struct type *type, LONGEST val)
10552 type = check_typedef (type);
10553 if (type->code () != TYPE_CODE_ENUM)
10556 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10557 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10558 else if (val >= 0 && val < 256)
10559 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10560 else if (val >= 0 && val < 0x10000)
10561 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
10563 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
10564 size_t len = strlen (name);
10565 for (f = 0; f < type->num_fields (); f += 1)
10567 /* Check the suffix because an enum constant in a package will
10568 have a name like "pkg__QUxx". This is safe enough because we
10569 already have the correct type, and because mangling means
10570 there can't be clashes. */
10571 const char *ename = type->field (f).name ();
10572 size_t elen = strlen (ename);
10574 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10575 return type->field (f).loc_enumval ();
10581 ada_char_operation::evaluate (struct type *expect_type,
10582 struct expression *exp,
10583 enum noside noside)
10585 value *result = long_const_operation::evaluate (expect_type, exp, noside);
10586 if (expect_type != nullptr)
10587 result = ada_value_cast (expect_type, result);
10591 /* See ada-exp.h. */
10594 ada_char_operation::replace (operation_up &&owner,
10595 struct expression *exp,
10596 bool deprocedure_p,
10597 bool parse_completion,
10598 innermost_block_tracker *tracker,
10599 struct type *context_type)
10601 operation_up result = std::move (owner);
10603 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10605 gdb_assert (result.get () == this);
10606 std::get<0> (m_storage) = context_type;
10607 std::get<1> (m_storage)
10608 = convert_char_literal (context_type, std::get<1> (m_storage));
10615 ada_wrapped_operation::evaluate (struct type *expect_type,
10616 struct expression *exp,
10617 enum noside noside)
10619 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10620 if (noside == EVAL_NORMAL)
10621 result = unwrap_value (result);
10623 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10624 then we need to perform the conversion manually, because
10625 evaluate_subexp_standard doesn't do it. This conversion is
10626 necessary in Ada because the different kinds of float/fixed
10627 types in Ada have different representations.
10629 Similarly, we need to perform the conversion from OP_LONG
10631 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10632 result = ada_value_cast (expect_type, result);
10638 ada_string_operation::evaluate (struct type *expect_type,
10639 struct expression *exp,
10640 enum noside noside)
10642 struct type *char_type;
10643 if (expect_type != nullptr && ada_is_string_type (expect_type))
10644 char_type = ada_array_element_type (expect_type, 1);
10646 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10648 const std::string &str = std::get<0> (m_storage);
10649 const char *encoding;
10650 switch (TYPE_LENGTH (char_type))
10654 /* Simply copy over the data -- this isn't perhaps strictly
10655 correct according to the encodings, but it is gdb's
10656 historical behavior. */
10657 struct type *stringtype
10658 = lookup_array_range_type (char_type, 1, str.length ());
10659 struct value *val = allocate_value (stringtype);
10660 memcpy (value_contents_raw (val).data (), str.c_str (),
10666 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10667 encoding = "UTF-16BE";
10669 encoding = "UTF-16LE";
10673 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10674 encoding = "UTF-32BE";
10676 encoding = "UTF-32LE";
10680 error (_("unexpected character type size %s"),
10681 pulongest (TYPE_LENGTH (char_type)));
10684 auto_obstack converted;
10685 convert_between_encodings (host_charset (), encoding,
10686 (const gdb_byte *) str.c_str (),
10688 &converted, translit_none);
10690 struct type *stringtype
10691 = lookup_array_range_type (char_type, 1,
10692 obstack_object_size (&converted)
10693 / TYPE_LENGTH (char_type));
10694 struct value *val = allocate_value (stringtype);
10695 memcpy (value_contents_raw (val).data (),
10696 obstack_base (&converted),
10697 obstack_object_size (&converted));
10702 ada_concat_operation::evaluate (struct type *expect_type,
10703 struct expression *exp,
10704 enum noside noside)
10706 /* If one side is a literal, evaluate the other side first so that
10707 the expected type can be set properly. */
10708 const operation_up &lhs_expr = std::get<0> (m_storage);
10709 const operation_up &rhs_expr = std::get<1> (m_storage);
10712 if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
10714 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10715 lhs = lhs_expr->evaluate (value_type (rhs), exp, noside);
10717 else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
10719 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10720 struct type *rhs_type = check_typedef (value_type (rhs));
10721 struct type *elt_type = nullptr;
10722 if (rhs_type->code () == TYPE_CODE_ARRAY)
10723 elt_type = TYPE_TARGET_TYPE (rhs_type);
10724 lhs = lhs_expr->evaluate (elt_type, exp, noside);
10726 else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
10728 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10729 rhs = rhs_expr->evaluate (value_type (lhs), exp, noside);
10731 else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
10733 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10734 struct type *lhs_type = check_typedef (value_type (lhs));
10735 struct type *elt_type = nullptr;
10736 if (lhs_type->code () == TYPE_CODE_ARRAY)
10737 elt_type = TYPE_TARGET_TYPE (lhs_type);
10738 rhs = rhs_expr->evaluate (elt_type, exp, noside);
10741 return concat_operation::evaluate (expect_type, exp, noside);
10743 return value_concat (lhs, rhs);
10747 ada_qual_operation::evaluate (struct type *expect_type,
10748 struct expression *exp,
10749 enum noside noside)
10751 struct type *type = std::get<1> (m_storage);
10752 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10756 ada_ternop_range_operation::evaluate (struct type *expect_type,
10757 struct expression *exp,
10758 enum noside noside)
10760 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10761 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10762 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10763 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10767 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10768 struct expression *exp,
10769 enum noside noside)
10771 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10772 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10774 auto do_op = [=] (LONGEST x, LONGEST y)
10776 if (std::get<0> (m_storage) == BINOP_ADD)
10781 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10782 return (value_from_longest
10783 (value_type (arg1),
10784 do_op (value_as_long (arg1), value_as_long (arg2))));
10785 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10786 return (value_from_longest
10787 (value_type (arg2),
10788 do_op (value_as_long (arg1), value_as_long (arg2))));
10789 /* Preserve the original type for use by the range case below.
10790 We cannot cast the result to a reference type, so if ARG1 is
10791 a reference type, find its underlying type. */
10792 struct type *type = value_type (arg1);
10793 while (type->code () == TYPE_CODE_REF)
10794 type = TYPE_TARGET_TYPE (type);
10795 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10796 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10797 /* We need to special-case the result with a range.
10798 This is done for the benefit of "ptype". gdb's Ada support
10799 historically used the LHS to set the result type here, so
10800 preserve this behavior. */
10801 if (type->code () == TYPE_CODE_RANGE)
10802 arg1 = value_cast (type, arg1);
10807 ada_unop_atr_operation::evaluate (struct type *expect_type,
10808 struct expression *exp,
10809 enum noside noside)
10811 struct type *type_arg = nullptr;
10812 value *val = nullptr;
10814 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10816 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10817 EVAL_AVOID_SIDE_EFFECTS);
10818 type_arg = value_type (tem);
10821 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10823 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10824 val, type_arg, std::get<2> (m_storage));
10828 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10829 struct expression *exp,
10830 enum noside noside)
10832 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10833 return value_zero (expect_type, not_lval);
10835 const bound_minimal_symbol &b = std::get<0> (m_storage);
10836 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10838 val = ada_value_cast (expect_type, val);
10840 /* Follow the Ada language semantics that do not allow taking
10841 an address of the result of a cast (view conversion in Ada). */
10842 if (VALUE_LVAL (val) == lval_memory)
10844 if (value_lazy (val))
10845 value_fetch_lazy (val);
10846 VALUE_LVAL (val) = not_lval;
10852 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10853 struct expression *exp,
10854 enum noside noside)
10856 value *val = evaluate_var_value (noside,
10857 std::get<0> (m_storage).block,
10858 std::get<0> (m_storage).symbol);
10860 val = ada_value_cast (expect_type, val);
10862 /* Follow the Ada language semantics that do not allow taking
10863 an address of the result of a cast (view conversion in Ada). */
10864 if (VALUE_LVAL (val) == lval_memory)
10866 if (value_lazy (val))
10867 value_fetch_lazy (val);
10868 VALUE_LVAL (val) = not_lval;
10874 ada_var_value_operation::evaluate (struct type *expect_type,
10875 struct expression *exp,
10876 enum noside noside)
10878 symbol *sym = std::get<0> (m_storage).symbol;
10880 if (sym->domain () == UNDEF_DOMAIN)
10881 /* Only encountered when an unresolved symbol occurs in a
10882 context other than a function call, in which case, it is
10884 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10885 sym->print_name ());
10887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10889 struct type *type = static_unwrap_type (sym->type ());
10890 /* Check to see if this is a tagged type. We also need to handle
10891 the case where the type is a reference to a tagged type, but
10892 we have to be careful to exclude pointers to tagged types.
10893 The latter should be shown as usual (as a pointer), whereas
10894 a reference should mostly be transparent to the user. */
10895 if (ada_is_tagged_type (type, 0)
10896 || (type->code () == TYPE_CODE_REF
10897 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10899 /* Tagged types are a little special in the fact that the real
10900 type is dynamic and can only be determined by inspecting the
10901 object's tag. This means that we need to get the object's
10902 value first (EVAL_NORMAL) and then extract the actual object
10905 Note that we cannot skip the final step where we extract
10906 the object type from its tag, because the EVAL_NORMAL phase
10907 results in dynamic components being resolved into fixed ones.
10908 This can cause problems when trying to print the type
10909 description of tagged types whose parent has a dynamic size:
10910 We use the type name of the "_parent" component in order
10911 to print the name of the ancestor type in the type description.
10912 If that component had a dynamic size, the resolution into
10913 a fixed type would result in the loss of that type name,
10914 thus preventing us from printing the name of the ancestor
10915 type in the type description. */
10916 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10918 if (type->code () != TYPE_CODE_REF)
10920 struct type *actual_type;
10922 actual_type = type_from_tag (ada_value_tag (arg1));
10923 if (actual_type == NULL)
10924 /* If, for some reason, we were unable to determine
10925 the actual type from the tag, then use the static
10926 approximation that we just computed as a fallback.
10927 This can happen if the debugging information is
10928 incomplete, for instance. */
10929 actual_type = type;
10930 return value_zero (actual_type, not_lval);
10934 /* In the case of a ref, ada_coerce_ref takes care
10935 of determining the actual type. But the evaluation
10936 should return a ref as it should be valid to ask
10937 for its address; so rebuild a ref after coerce. */
10938 arg1 = ada_coerce_ref (arg1);
10939 return value_ref (arg1, TYPE_CODE_REF);
10943 /* Records and unions for which GNAT encodings have been
10944 generated need to be statically fixed as well.
10945 Otherwise, non-static fixing produces a type where
10946 all dynamic properties are removed, which prevents "ptype"
10947 from being able to completely describe the type.
10948 For instance, a case statement in a variant record would be
10949 replaced by the relevant components based on the actual
10950 value of the discriminants. */
10951 if ((type->code () == TYPE_CODE_STRUCT
10952 && dynamic_template_type (type) != NULL)
10953 || (type->code () == TYPE_CODE_UNION
10954 && ada_find_parallel_type (type, "___XVU") != NULL))
10955 return value_zero (to_static_fixed_type (type), not_lval);
10958 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10959 return ada_to_fixed_value (arg1);
10963 ada_var_value_operation::resolve (struct expression *exp,
10964 bool deprocedure_p,
10965 bool parse_completion,
10966 innermost_block_tracker *tracker,
10967 struct type *context_type)
10969 symbol *sym = std::get<0> (m_storage).symbol;
10970 if (sym->domain () == UNDEF_DOMAIN)
10972 block_symbol resolved
10973 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10974 context_type, parse_completion,
10975 deprocedure_p, tracker);
10976 std::get<0> (m_storage) = resolved;
10980 && (std::get<0> (m_storage).symbol->type ()->code ()
10981 == TYPE_CODE_FUNC))
10988 ada_atr_val_operation::evaluate (struct type *expect_type,
10989 struct expression *exp,
10990 enum noside noside)
10992 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10993 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10997 ada_unop_ind_operation::evaluate (struct type *expect_type,
10998 struct expression *exp,
10999 enum noside noside)
11001 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
11003 struct type *type = ada_check_typedef (value_type (arg1));
11004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11006 if (ada_is_array_descriptor_type (type))
11007 /* GDB allows dereferencing GNAT array descriptors. */
11009 struct type *arrType = ada_type_of_array (arg1, 0);
11011 if (arrType == NULL)
11012 error (_("Attempt to dereference null array pointer."));
11013 return value_at_lazy (arrType, 0);
11015 else if (type->code () == TYPE_CODE_PTR
11016 || type->code () == TYPE_CODE_REF
11017 /* In C you can dereference an array to get the 1st elt. */
11018 || type->code () == TYPE_CODE_ARRAY)
11020 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11021 only be determined by inspecting the object's tag.
11022 This means that we need to evaluate completely the
11023 expression in order to get its type. */
11025 if ((type->code () == TYPE_CODE_REF
11026 || type->code () == TYPE_CODE_PTR)
11027 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11029 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11031 type = value_type (ada_value_ind (arg1));
11035 type = to_static_fixed_type
11037 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11039 return value_zero (type, lval_memory);
11041 else if (type->code () == TYPE_CODE_INT)
11043 /* GDB allows dereferencing an int. */
11044 if (expect_type == NULL)
11045 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11050 to_static_fixed_type (ada_aligned_type (expect_type));
11051 return value_zero (expect_type, lval_memory);
11055 error (_("Attempt to take contents of a non-pointer value."));
11057 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11058 type = ada_check_typedef (value_type (arg1));
11060 if (type->code () == TYPE_CODE_INT)
11061 /* GDB allows dereferencing an int. If we were given
11062 the expect_type, then use that as the target type.
11063 Otherwise, assume that the target type is an int. */
11065 if (expect_type != NULL)
11066 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11069 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11070 (CORE_ADDR) value_as_address (arg1));
11073 if (ada_is_array_descriptor_type (type))
11074 /* GDB allows dereferencing GNAT array descriptors. */
11075 return ada_coerce_to_simple_array (arg1);
11077 return ada_value_ind (arg1);
11081 ada_structop_operation::evaluate (struct type *expect_type,
11082 struct expression *exp,
11083 enum noside noside)
11085 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11086 const char *str = std::get<1> (m_storage).c_str ();
11087 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11090 struct type *type1 = value_type (arg1);
11092 if (ada_is_tagged_type (type1, 1))
11094 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11096 /* If the field is not found, check if it exists in the
11097 extension of this object's type. This means that we
11098 need to evaluate completely the expression. */
11102 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11104 arg1 = ada_value_struct_elt (arg1, str, 0);
11105 arg1 = unwrap_value (arg1);
11106 type = value_type (ada_to_fixed_value (arg1));
11110 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11112 return value_zero (ada_aligned_type (type), lval_memory);
11116 arg1 = ada_value_struct_elt (arg1, str, 0);
11117 arg1 = unwrap_value (arg1);
11118 return ada_to_fixed_value (arg1);
11123 ada_funcall_operation::evaluate (struct type *expect_type,
11124 struct expression *exp,
11125 enum noside noside)
11127 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11128 int nargs = args_up.size ();
11129 std::vector<value *> argvec (nargs);
11130 operation_up &callee_op = std::get<0> (m_storage);
11132 ada_var_value_operation *avv
11133 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11135 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
11136 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11137 avv->get_symbol ()->print_name ());
11139 value *callee = callee_op->evaluate (nullptr, exp, noside);
11140 for (int i = 0; i < args_up.size (); ++i)
11141 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11143 if (ada_is_constrained_packed_array_type
11144 (desc_base_type (value_type (callee))))
11145 callee = ada_coerce_to_simple_array (callee);
11146 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11147 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
11148 /* This is a packed array that has already been fixed, and
11149 therefore already coerced to a simple array. Nothing further
11152 else if (value_type (callee)->code () == TYPE_CODE_REF)
11154 /* Make sure we dereference references so that all the code below
11155 feels like it's really handling the referenced value. Wrapping
11156 types (for alignment) may be there, so make sure we strip them as
11158 callee = ada_to_fixed_value (coerce_ref (callee));
11160 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11161 && VALUE_LVAL (callee) == lval_memory)
11162 callee = value_addr (callee);
11164 struct type *type = ada_check_typedef (value_type (callee));
11166 /* Ada allows us to implicitly dereference arrays when subscripting
11167 them. So, if this is an array typedef (encoding use for array
11168 access types encoded as fat pointers), strip it now. */
11169 if (type->code () == TYPE_CODE_TYPEDEF)
11170 type = ada_typedef_target_type (type);
11172 if (type->code () == TYPE_CODE_PTR)
11174 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
11176 case TYPE_CODE_FUNC:
11177 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
11179 case TYPE_CODE_ARRAY:
11181 case TYPE_CODE_STRUCT:
11182 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11183 callee = ada_value_ind (callee);
11184 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
11187 error (_("cannot subscript or call something of type `%s'"),
11188 ada_type_name (value_type (callee)));
11193 switch (type->code ())
11195 case TYPE_CODE_FUNC:
11196 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11198 if (TYPE_TARGET_TYPE (type) == NULL)
11199 error_call_unknown_return_type (NULL);
11200 return allocate_value (TYPE_TARGET_TYPE (type));
11202 return call_function_by_hand (callee, NULL, argvec);
11203 case TYPE_CODE_INTERNAL_FUNCTION:
11204 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11205 /* We don't know anything about what the internal
11206 function might return, but we have to return
11208 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11211 return call_internal_function (exp->gdbarch, exp->language_defn,
11215 case TYPE_CODE_STRUCT:
11219 arity = ada_array_arity (type);
11220 type = ada_array_element_type (type, nargs);
11222 error (_("cannot subscript or call a record"));
11223 if (arity != nargs)
11224 error (_("wrong number of subscripts; expecting %d"), arity);
11225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11226 return value_zero (ada_aligned_type (type), lval_memory);
11228 unwrap_value (ada_value_subscript
11229 (callee, nargs, argvec.data ()));
11231 case TYPE_CODE_ARRAY:
11232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11234 type = ada_array_element_type (type, nargs);
11236 error (_("element type of array unknown"));
11238 return value_zero (ada_aligned_type (type), lval_memory);
11241 unwrap_value (ada_value_subscript
11242 (ada_coerce_to_simple_array (callee),
11243 nargs, argvec.data ()));
11244 case TYPE_CODE_PTR: /* Pointer to array */
11245 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11247 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11248 type = ada_array_element_type (type, nargs);
11250 error (_("element type of array unknown"));
11252 return value_zero (ada_aligned_type (type), lval_memory);
11255 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11259 error (_("Attempt to index or call something other than an "
11260 "array or function"));
11265 ada_funcall_operation::resolve (struct expression *exp,
11266 bool deprocedure_p,
11267 bool parse_completion,
11268 innermost_block_tracker *tracker,
11269 struct type *context_type)
11271 operation_up &callee_op = std::get<0> (m_storage);
11273 ada_var_value_operation *avv
11274 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11275 if (avv == nullptr)
11278 symbol *sym = avv->get_symbol ();
11279 if (sym->domain () != UNDEF_DOMAIN)
11282 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11283 int nargs = args_up.size ();
11284 std::vector<value *> argvec (nargs);
11286 for (int i = 0; i < args_up.size (); ++i)
11287 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
11289 const block *block = avv->get_block ();
11290 block_symbol resolved
11291 = ada_resolve_funcall (sym, block,
11292 context_type, parse_completion,
11293 nargs, argvec.data (),
11296 std::get<0> (m_storage)
11297 = make_operation<ada_var_value_operation> (resolved);
11302 ada_ternop_slice_operation::resolve (struct expression *exp,
11303 bool deprocedure_p,
11304 bool parse_completion,
11305 innermost_block_tracker *tracker,
11306 struct type *context_type)
11308 /* Historically this check was done during resolution, so we
11309 continue that here. */
11310 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11311 EVAL_AVOID_SIDE_EFFECTS);
11312 if (ada_is_any_packed_array_type (value_type (v)))
11313 error (_("cannot slice a packed array"));
11321 /* Return non-zero iff TYPE represents a System.Address type. */
11324 ada_is_system_address_type (struct type *type)
11326 return (type->name () && strcmp (type->name (), "system__address") == 0);
11333 /* Scan STR beginning at position K for a discriminant name, and
11334 return the value of that discriminant field of DVAL in *PX. If
11335 PNEW_K is not null, put the position of the character beyond the
11336 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11337 not alter *PX and *PNEW_K if unsuccessful. */
11340 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11343 static std::string storage;
11344 const char *pstart, *pend, *bound;
11345 struct value *bound_val;
11347 if (dval == NULL || str == NULL || str[k] == '\0')
11351 pend = strstr (pstart, "__");
11355 k += strlen (bound);
11359 int len = pend - pstart;
11361 /* Strip __ and beyond. */
11362 storage = std::string (pstart, len);
11363 bound = storage.c_str ();
11367 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11368 if (bound_val == NULL)
11371 *px = value_as_long (bound_val);
11372 if (pnew_k != NULL)
11377 /* Value of variable named NAME. Only exact matches are considered.
11378 If no such variable found, then if ERR_MSG is null, returns 0, and
11379 otherwise causes an error with message ERR_MSG. */
11381 static struct value *
11382 get_var_value (const char *name, const char *err_msg)
11384 std::string quoted_name = add_angle_brackets (name);
11386 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11388 std::vector<struct block_symbol> syms
11389 = ada_lookup_symbol_list_worker (lookup_name,
11390 get_selected_block (0),
11393 if (syms.size () != 1)
11395 if (err_msg == NULL)
11398 error (("%s"), err_msg);
11401 return value_of_variable (syms[0].symbol, syms[0].block);
11404 /* Value of integer variable named NAME in the current environment.
11405 If no such variable is found, returns false. Otherwise, sets VALUE
11406 to the variable's value and returns true. */
11409 get_int_var_value (const char *name, LONGEST &value)
11411 struct value *var_val = get_var_value (name, 0);
11416 value = value_as_long (var_val);
11421 /* Return a range type whose base type is that of the range type named
11422 NAME in the current environment, and whose bounds are calculated
11423 from NAME according to the GNAT range encoding conventions.
11424 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11425 corresponding range type from debug information; fall back to using it
11426 if symbol lookup fails. If a new type must be created, allocate it
11427 like ORIG_TYPE was. The bounds information, in general, is encoded
11428 in NAME, the base type given in the named range type. */
11430 static struct type *
11431 to_fixed_range_type (struct type *raw_type, struct value *dval)
11434 struct type *base_type;
11435 const char *subtype_info;
11437 gdb_assert (raw_type != NULL);
11438 gdb_assert (raw_type->name () != NULL);
11440 if (raw_type->code () == TYPE_CODE_RANGE)
11441 base_type = TYPE_TARGET_TYPE (raw_type);
11443 base_type = raw_type;
11445 name = raw_type->name ();
11446 subtype_info = strstr (name, "___XD");
11447 if (subtype_info == NULL)
11449 LONGEST L = ada_discrete_type_low_bound (raw_type);
11450 LONGEST U = ada_discrete_type_high_bound (raw_type);
11452 if (L < INT_MIN || U > INT_MAX)
11455 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11460 int prefix_len = subtype_info - name;
11463 const char *bounds_str;
11467 bounds_str = strchr (subtype_info, '_');
11470 if (*subtype_info == 'L')
11472 if (!ada_scan_number (bounds_str, n, &L, &n)
11473 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11475 if (bounds_str[n] == '_')
11477 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11483 std::string name_buf = std::string (name, prefix_len) + "___L";
11484 if (!get_int_var_value (name_buf.c_str (), L))
11486 lim_warning (_("Unknown lower bound, using 1."));
11491 if (*subtype_info == 'U')
11493 if (!ada_scan_number (bounds_str, n, &U, &n)
11494 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11499 std::string name_buf = std::string (name, prefix_len) + "___U";
11500 if (!get_int_var_value (name_buf.c_str (), U))
11502 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11507 type = create_static_range_type (alloc_type_copy (raw_type),
11509 /* create_static_range_type alters the resulting type's length
11510 to match the size of the base_type, which is not what we want.
11511 Set it back to the original range type's length. */
11512 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11513 type->set_name (name);
11518 /* True iff NAME is the name of a range type. */
11521 ada_is_range_type_name (const char *name)
11523 return (name != NULL && strstr (name, "___XD"));
11527 /* Modular types */
11529 /* True iff TYPE is an Ada modular type. */
11532 ada_is_modular_type (struct type *type)
11534 struct type *subranged_type = get_base_type (type);
11536 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11537 && subranged_type->code () == TYPE_CODE_INT
11538 && subranged_type->is_unsigned ());
11541 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11544 ada_modulus (struct type *type)
11546 const dynamic_prop &high = type->bounds ()->high;
11548 if (high.kind () == PROP_CONST)
11549 return (ULONGEST) high.const_val () + 1;
11551 /* If TYPE is unresolved, the high bound might be a location list. Return
11552 0, for lack of a better value to return. */
11557 /* Ada exception catchpoint support:
11558 ---------------------------------
11560 We support 3 kinds of exception catchpoints:
11561 . catchpoints on Ada exceptions
11562 . catchpoints on unhandled Ada exceptions
11563 . catchpoints on failed assertions
11565 Exceptions raised during failed assertions, or unhandled exceptions
11566 could perfectly be caught with the general catchpoint on Ada exceptions.
11567 However, we can easily differentiate these two special cases, and having
11568 the option to distinguish these two cases from the rest can be useful
11569 to zero-in on certain situations.
11571 Exception catchpoints are a specialized form of breakpoint,
11572 since they rely on inserting breakpoints inside known routines
11573 of the GNAT runtime. The implementation therefore uses a standard
11574 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11577 Support in the runtime for exception catchpoints have been changed
11578 a few times already, and these changes affect the implementation
11579 of these catchpoints. In order to be able to support several
11580 variants of the runtime, we use a sniffer that will determine
11581 the runtime variant used by the program being debugged. */
11583 /* Ada's standard exceptions.
11585 The Ada 83 standard also defined Numeric_Error. But there so many
11586 situations where it was unclear from the Ada 83 Reference Manual
11587 (RM) whether Constraint_Error or Numeric_Error should be raised,
11588 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11589 Interpretation saying that anytime the RM says that Numeric_Error
11590 should be raised, the implementation may raise Constraint_Error.
11591 Ada 95 went one step further and pretty much removed Numeric_Error
11592 from the list of standard exceptions (it made it a renaming of
11593 Constraint_Error, to help preserve compatibility when compiling
11594 an Ada83 compiler). As such, we do not include Numeric_Error from
11595 this list of standard exceptions. */
11597 static const char * const standard_exc[] = {
11598 "constraint_error",
11604 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11606 /* A structure that describes how to support exception catchpoints
11607 for a given executable. */
11609 struct exception_support_info
11611 /* The name of the symbol to break on in order to insert
11612 a catchpoint on exceptions. */
11613 const char *catch_exception_sym;
11615 /* The name of the symbol to break on in order to insert
11616 a catchpoint on unhandled exceptions. */
11617 const char *catch_exception_unhandled_sym;
11619 /* The name of the symbol to break on in order to insert
11620 a catchpoint on failed assertions. */
11621 const char *catch_assert_sym;
11623 /* The name of the symbol to break on in order to insert
11624 a catchpoint on exception handling. */
11625 const char *catch_handlers_sym;
11627 /* Assuming that the inferior just triggered an unhandled exception
11628 catchpoint, this function is responsible for returning the address
11629 in inferior memory where the name of that exception is stored.
11630 Return zero if the address could not be computed. */
11631 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11634 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11635 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11637 /* The following exception support info structure describes how to
11638 implement exception catchpoints with the latest version of the
11639 Ada runtime (as of 2019-08-??). */
11641 static const struct exception_support_info default_exception_support_info =
11643 "__gnat_debug_raise_exception", /* catch_exception_sym */
11644 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11645 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11646 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11647 ada_unhandled_exception_name_addr
11650 /* The following exception support info structure describes how to
11651 implement exception catchpoints with an earlier version of the
11652 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11654 static const struct exception_support_info exception_support_info_v0 =
11656 "__gnat_debug_raise_exception", /* catch_exception_sym */
11657 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11658 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11659 "__gnat_begin_handler", /* catch_handlers_sym */
11660 ada_unhandled_exception_name_addr
11663 /* The following exception support info structure describes how to
11664 implement exception catchpoints with a slightly older version
11665 of the Ada runtime. */
11667 static const struct exception_support_info exception_support_info_fallback =
11669 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11670 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11671 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11672 "__gnat_begin_handler", /* catch_handlers_sym */
11673 ada_unhandled_exception_name_addr_from_raise
11676 /* Return nonzero if we can detect the exception support routines
11677 described in EINFO.
11679 This function errors out if an abnormal situation is detected
11680 (for instance, if we find the exception support routines, but
11681 that support is found to be incomplete). */
11684 ada_has_this_exception_support (const struct exception_support_info *einfo)
11686 struct symbol *sym;
11688 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11689 that should be compiled with debugging information. As a result, we
11690 expect to find that symbol in the symtabs. */
11692 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11695 /* Perhaps we did not find our symbol because the Ada runtime was
11696 compiled without debugging info, or simply stripped of it.
11697 It happens on some GNU/Linux distributions for instance, where
11698 users have to install a separate debug package in order to get
11699 the runtime's debugging info. In that situation, let the user
11700 know why we cannot insert an Ada exception catchpoint.
11702 Note: Just for the purpose of inserting our Ada exception
11703 catchpoint, we could rely purely on the associated minimal symbol.
11704 But we would be operating in degraded mode anyway, since we are
11705 still lacking the debugging info needed later on to extract
11706 the name of the exception being raised (this name is printed in
11707 the catchpoint message, and is also used when trying to catch
11708 a specific exception). We do not handle this case for now. */
11709 struct bound_minimal_symbol msym
11710 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11712 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11713 error (_("Your Ada runtime appears to be missing some debugging "
11714 "information.\nCannot insert Ada exception catchpoint "
11715 "in this configuration."));
11720 /* Make sure that the symbol we found corresponds to a function. */
11722 if (sym->aclass () != LOC_BLOCK)
11724 error (_("Symbol \"%s\" is not a function (class = %d)"),
11725 sym->linkage_name (), sym->aclass ());
11729 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11732 struct bound_minimal_symbol msym
11733 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11735 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11736 error (_("Your Ada runtime appears to be missing some debugging "
11737 "information.\nCannot insert Ada exception catchpoint "
11738 "in this configuration."));
11743 /* Make sure that the symbol we found corresponds to a function. */
11745 if (sym->aclass () != LOC_BLOCK)
11747 error (_("Symbol \"%s\" is not a function (class = %d)"),
11748 sym->linkage_name (), sym->aclass ());
11755 /* Inspect the Ada runtime and determine which exception info structure
11756 should be used to provide support for exception catchpoints.
11758 This function will always set the per-inferior exception_info,
11759 or raise an error. */
11762 ada_exception_support_info_sniffer (void)
11764 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11766 /* If the exception info is already known, then no need to recompute it. */
11767 if (data->exception_info != NULL)
11770 /* Check the latest (default) exception support info. */
11771 if (ada_has_this_exception_support (&default_exception_support_info))
11773 data->exception_info = &default_exception_support_info;
11777 /* Try the v0 exception suport info. */
11778 if (ada_has_this_exception_support (&exception_support_info_v0))
11780 data->exception_info = &exception_support_info_v0;
11784 /* Try our fallback exception suport info. */
11785 if (ada_has_this_exception_support (&exception_support_info_fallback))
11787 data->exception_info = &exception_support_info_fallback;
11791 /* Sometimes, it is normal for us to not be able to find the routine
11792 we are looking for. This happens when the program is linked with
11793 the shared version of the GNAT runtime, and the program has not been
11794 started yet. Inform the user of these two possible causes if
11797 if (ada_update_initial_language (language_unknown) != language_ada)
11798 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11800 /* If the symbol does not exist, then check that the program is
11801 already started, to make sure that shared libraries have been
11802 loaded. If it is not started, this may mean that the symbol is
11803 in a shared library. */
11805 if (inferior_ptid.pid () == 0)
11806 error (_("Unable to insert catchpoint. Try to start the program first."));
11808 /* At this point, we know that we are debugging an Ada program and
11809 that the inferior has been started, but we still are not able to
11810 find the run-time symbols. That can mean that we are in
11811 configurable run time mode, or that a-except as been optimized
11812 out by the linker... In any case, at this point it is not worth
11813 supporting this feature. */
11815 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11818 /* True iff FRAME is very likely to be that of a function that is
11819 part of the runtime system. This is all very heuristic, but is
11820 intended to be used as advice as to what frames are uninteresting
11824 is_known_support_routine (struct frame_info *frame)
11826 enum language func_lang;
11828 const char *fullname;
11830 /* If this code does not have any debugging information (no symtab),
11831 This cannot be any user code. */
11833 symtab_and_line sal = find_frame_sal (frame);
11834 if (sal.symtab == NULL)
11837 /* If there is a symtab, but the associated source file cannot be
11838 located, then assume this is not user code: Selecting a frame
11839 for which we cannot display the code would not be very helpful
11840 for the user. This should also take care of case such as VxWorks
11841 where the kernel has some debugging info provided for a few units. */
11843 fullname = symtab_to_fullname (sal.symtab);
11844 if (access (fullname, R_OK) != 0)
11847 /* Check the unit filename against the Ada runtime file naming.
11848 We also check the name of the objfile against the name of some
11849 known system libraries that sometimes come with debugging info
11852 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11854 re_comp (known_runtime_file_name_patterns[i]);
11855 if (re_exec (lbasename (sal.symtab->filename)))
11857 if (sal.symtab->objfile () != NULL
11858 && re_exec (objfile_name (sal.symtab->objfile ())))
11862 /* Check whether the function is a GNAT-generated entity. */
11864 gdb::unique_xmalloc_ptr<char> func_name
11865 = find_frame_funname (frame, &func_lang, NULL);
11866 if (func_name == NULL)
11869 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11871 re_comp (known_auxiliary_function_name_patterns[i]);
11872 if (re_exec (func_name.get ()))
11879 /* Find the first frame that contains debugging information and that is not
11880 part of the Ada run-time, starting from FI and moving upward. */
11883 ada_find_printable_frame (struct frame_info *fi)
11885 for (; fi != NULL; fi = get_prev_frame (fi))
11887 if (!is_known_support_routine (fi))
11896 /* Assuming that the inferior just triggered an unhandled exception
11897 catchpoint, return the address in inferior memory where the name
11898 of the exception is stored.
11900 Return zero if the address could not be computed. */
11903 ada_unhandled_exception_name_addr (void)
11905 return parse_and_eval_address ("e.full_name");
11908 /* Same as ada_unhandled_exception_name_addr, except that this function
11909 should be used when the inferior uses an older version of the runtime,
11910 where the exception name needs to be extracted from a specific frame
11911 several frames up in the callstack. */
11914 ada_unhandled_exception_name_addr_from_raise (void)
11917 struct frame_info *fi;
11918 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11920 /* To determine the name of this exception, we need to select
11921 the frame corresponding to RAISE_SYM_NAME. This frame is
11922 at least 3 levels up, so we simply skip the first 3 frames
11923 without checking the name of their associated function. */
11924 fi = get_current_frame ();
11925 for (frame_level = 0; frame_level < 3; frame_level += 1)
11927 fi = get_prev_frame (fi);
11931 enum language func_lang;
11933 gdb::unique_xmalloc_ptr<char> func_name
11934 = find_frame_funname (fi, &func_lang, NULL);
11935 if (func_name != NULL)
11937 if (strcmp (func_name.get (),
11938 data->exception_info->catch_exception_sym) == 0)
11939 break; /* We found the frame we were looking for... */
11941 fi = get_prev_frame (fi);
11948 return parse_and_eval_address ("id.full_name");
11951 /* Assuming the inferior just triggered an Ada exception catchpoint
11952 (of any type), return the address in inferior memory where the name
11953 of the exception is stored, if applicable.
11955 Assumes the selected frame is the current frame.
11957 Return zero if the address could not be computed, or if not relevant. */
11960 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11961 struct breakpoint *b)
11963 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11967 case ada_catch_exception:
11968 return (parse_and_eval_address ("e.full_name"));
11971 case ada_catch_exception_unhandled:
11972 return data->exception_info->unhandled_exception_name_addr ();
11975 case ada_catch_handlers:
11976 return 0; /* The runtimes does not provide access to the exception
11980 case ada_catch_assert:
11981 return 0; /* Exception name is not relevant in this case. */
11985 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11989 return 0; /* Should never be reached. */
11992 /* Assuming the inferior is stopped at an exception catchpoint,
11993 return the message which was associated to the exception, if
11994 available. Return NULL if the message could not be retrieved.
11996 Note: The exception message can be associated to an exception
11997 either through the use of the Raise_Exception function, or
11998 more simply (Ada 2005 and later), via:
12000 raise Exception_Name with "exception message";
12004 static gdb::unique_xmalloc_ptr<char>
12005 ada_exception_message_1 (void)
12007 struct value *e_msg_val;
12010 /* For runtimes that support this feature, the exception message
12011 is passed as an unbounded string argument called "message". */
12012 e_msg_val = parse_and_eval ("message");
12013 if (e_msg_val == NULL)
12014 return NULL; /* Exception message not supported. */
12016 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12017 gdb_assert (e_msg_val != NULL);
12018 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12020 /* If the message string is empty, then treat it as if there was
12021 no exception message. */
12022 if (e_msg_len <= 0)
12025 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12026 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12028 e_msg.get ()[e_msg_len] = '\0';
12033 /* Same as ada_exception_message_1, except that all exceptions are
12034 contained here (returning NULL instead). */
12036 static gdb::unique_xmalloc_ptr<char>
12037 ada_exception_message (void)
12039 gdb::unique_xmalloc_ptr<char> e_msg;
12043 e_msg = ada_exception_message_1 ();
12045 catch (const gdb_exception_error &e)
12047 e_msg.reset (nullptr);
12053 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12054 any error that ada_exception_name_addr_1 might cause to be thrown.
12055 When an error is intercepted, a warning with the error message is printed,
12056 and zero is returned. */
12059 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12060 struct breakpoint *b)
12062 CORE_ADDR result = 0;
12066 result = ada_exception_name_addr_1 (ex, b);
12069 catch (const gdb_exception_error &e)
12071 warning (_("failed to get exception name: %s"), e.what ());
12078 static std::string ada_exception_catchpoint_cond_string
12079 (const char *excep_string,
12080 enum ada_exception_catchpoint_kind ex);
12082 /* Ada catchpoints.
12084 In the case of catchpoints on Ada exceptions, the catchpoint will
12085 stop the target on every exception the program throws. When a user
12086 specifies the name of a specific exception, we translate this
12087 request into a condition expression (in text form), and then parse
12088 it into an expression stored in each of the catchpoint's locations.
12089 We then use this condition to check whether the exception that was
12090 raised is the one the user is interested in. If not, then the
12091 target is resumed again. We store the name of the requested
12092 exception, in order to be able to re-set the condition expression
12093 when symbols change. */
12095 /* An instance of this type is used to represent an Ada catchpoint
12096 breakpoint location. */
12098 class ada_catchpoint_location : public bp_location
12101 ada_catchpoint_location (breakpoint *owner)
12102 : bp_location (owner, bp_loc_software_breakpoint)
12105 /* The condition that checks whether the exception that was raised
12106 is the specific exception the user specified on catchpoint
12108 expression_up excep_cond_expr;
12111 /* An instance of this type is used to represent an Ada catchpoint. */
12113 struct ada_catchpoint : public breakpoint
12115 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12120 /* The name of the specific exception the user specified. */
12121 std::string excep_string;
12123 /* What kind of catchpoint this is. */
12124 enum ada_exception_catchpoint_kind m_kind;
12127 /* Parse the exception condition string in the context of each of the
12128 catchpoint's locations, and store them for later evaluation. */
12131 create_excep_cond_exprs (struct ada_catchpoint *c,
12132 enum ada_exception_catchpoint_kind ex)
12134 /* Nothing to do if there's no specific exception to catch. */
12135 if (c->excep_string.empty ())
12138 /* Same if there are no locations... */
12139 if (c->loc == NULL)
12142 /* Compute the condition expression in text form, from the specific
12143 expection we want to catch. */
12144 std::string cond_string
12145 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12147 /* Iterate over all the catchpoint's locations, and parse an
12148 expression for each. */
12149 for (bp_location *bl : c->locations ())
12151 struct ada_catchpoint_location *ada_loc
12152 = (struct ada_catchpoint_location *) bl;
12155 if (!bl->shlib_disabled)
12159 s = cond_string.c_str ();
12162 exp = parse_exp_1 (&s, bl->address,
12163 block_for_pc (bl->address),
12166 catch (const gdb_exception_error &e)
12168 warning (_("failed to reevaluate internal exception condition "
12169 "for catchpoint %d: %s"),
12170 c->number, e.what ());
12174 ada_loc->excep_cond_expr = std::move (exp);
12178 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12179 structure for all exception catchpoint kinds. */
12181 static struct bp_location *
12182 allocate_location_exception (struct breakpoint *self)
12184 return new ada_catchpoint_location (self);
12187 /* Implement the RE_SET method in the breakpoint_ops structure for all
12188 exception catchpoint kinds. */
12191 re_set_exception (struct breakpoint *b)
12193 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12195 /* Call the base class's method. This updates the catchpoint's
12197 bkpt_breakpoint_ops.re_set (b);
12199 /* Reparse the exception conditional expressions. One for each
12201 create_excep_cond_exprs (c, c->m_kind);
12204 /* Returns true if we should stop for this breakpoint hit. If the
12205 user specified a specific exception, we only want to cause a stop
12206 if the program thrown that exception. */
12209 should_stop_exception (const struct bp_location *bl)
12211 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12212 const struct ada_catchpoint_location *ada_loc
12213 = (const struct ada_catchpoint_location *) bl;
12216 struct internalvar *var = lookup_internalvar ("_ada_exception");
12217 if (c->m_kind == ada_catch_assert)
12218 clear_internalvar (var);
12225 if (c->m_kind == ada_catch_handlers)
12226 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12227 ".all.occurrence.id");
12231 struct value *exc = parse_and_eval (expr);
12232 set_internalvar (var, exc);
12234 catch (const gdb_exception_error &ex)
12236 clear_internalvar (var);
12240 /* With no specific exception, should always stop. */
12241 if (c->excep_string.empty ())
12244 if (ada_loc->excep_cond_expr == NULL)
12246 /* We will have a NULL expression if back when we were creating
12247 the expressions, this location's had failed to parse. */
12254 struct value *mark;
12256 mark = value_mark ();
12257 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12258 value_free_to_mark (mark);
12260 catch (const gdb_exception &ex)
12262 exception_fprintf (gdb_stderr, ex,
12263 _("Error in testing exception condition:\n"));
12269 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12270 for all exception catchpoint kinds. */
12273 check_status_exception (bpstat *bs)
12275 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12278 /* Implement the PRINT_IT method in the breakpoint_ops structure
12279 for all exception catchpoint kinds. */
12281 static enum print_stop_action
12282 print_it_exception (bpstat *bs)
12284 struct ui_out *uiout = current_uiout;
12285 struct breakpoint *b = bs->breakpoint_at;
12287 annotate_catchpoint (b->number);
12289 if (uiout->is_mi_like_p ())
12291 uiout->field_string ("reason",
12292 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12293 uiout->field_string ("disp", bpdisp_text (b->disposition));
12296 uiout->text (b->disposition == disp_del
12297 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12298 uiout->field_signed ("bkptno", b->number);
12299 uiout->text (", ");
12301 /* ada_exception_name_addr relies on the selected frame being the
12302 current frame. Need to do this here because this function may be
12303 called more than once when printing a stop, and below, we'll
12304 select the first frame past the Ada run-time (see
12305 ada_find_printable_frame). */
12306 select_frame (get_current_frame ());
12308 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12311 case ada_catch_exception:
12312 case ada_catch_exception_unhandled:
12313 case ada_catch_handlers:
12315 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12316 char exception_name[256];
12320 read_memory (addr, (gdb_byte *) exception_name,
12321 sizeof (exception_name) - 1);
12322 exception_name [sizeof (exception_name) - 1] = '\0';
12326 /* For some reason, we were unable to read the exception
12327 name. This could happen if the Runtime was compiled
12328 without debugging info, for instance. In that case,
12329 just replace the exception name by the generic string
12330 "exception" - it will read as "an exception" in the
12331 notification we are about to print. */
12332 memcpy (exception_name, "exception", sizeof ("exception"));
12334 /* In the case of unhandled exception breakpoints, we print
12335 the exception name as "unhandled EXCEPTION_NAME", to make
12336 it clearer to the user which kind of catchpoint just got
12337 hit. We used ui_out_text to make sure that this extra
12338 info does not pollute the exception name in the MI case. */
12339 if (c->m_kind == ada_catch_exception_unhandled)
12340 uiout->text ("unhandled ");
12341 uiout->field_string ("exception-name", exception_name);
12344 case ada_catch_assert:
12345 /* In this case, the name of the exception is not really
12346 important. Just print "failed assertion" to make it clearer
12347 that his program just hit an assertion-failure catchpoint.
12348 We used ui_out_text because this info does not belong in
12350 uiout->text ("failed assertion");
12354 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12355 if (exception_message != NULL)
12357 uiout->text (" (");
12358 uiout->field_string ("exception-message", exception_message.get ());
12362 uiout->text (" at ");
12363 ada_find_printable_frame (get_current_frame ());
12365 return PRINT_SRC_AND_LOC;
12368 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12369 for all exception catchpoint kinds. */
12372 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12374 struct ui_out *uiout = current_uiout;
12375 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12376 struct value_print_options opts;
12378 get_user_print_options (&opts);
12380 if (opts.addressprint)
12381 uiout->field_skip ("addr");
12383 annotate_field (5);
12386 case ada_catch_exception:
12387 if (!c->excep_string.empty ())
12389 std::string msg = string_printf (_("`%s' Ada exception"),
12390 c->excep_string.c_str ());
12392 uiout->field_string ("what", msg);
12395 uiout->field_string ("what", "all Ada exceptions");
12399 case ada_catch_exception_unhandled:
12400 uiout->field_string ("what", "unhandled Ada exceptions");
12403 case ada_catch_handlers:
12404 if (!c->excep_string.empty ())
12406 uiout->field_fmt ("what",
12407 _("`%s' Ada exception handlers"),
12408 c->excep_string.c_str ());
12411 uiout->field_string ("what", "all Ada exceptions handlers");
12414 case ada_catch_assert:
12415 uiout->field_string ("what", "failed Ada assertions");
12419 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12424 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12425 for all exception catchpoint kinds. */
12428 print_mention_exception (struct breakpoint *b)
12430 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12431 struct ui_out *uiout = current_uiout;
12433 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12434 : _("Catchpoint "));
12435 uiout->field_signed ("bkptno", b->number);
12436 uiout->text (": ");
12440 case ada_catch_exception:
12441 if (!c->excep_string.empty ())
12443 std::string info = string_printf (_("`%s' Ada exception"),
12444 c->excep_string.c_str ());
12445 uiout->text (info);
12448 uiout->text (_("all Ada exceptions"));
12451 case ada_catch_exception_unhandled:
12452 uiout->text (_("unhandled Ada exceptions"));
12455 case ada_catch_handlers:
12456 if (!c->excep_string.empty ())
12459 = string_printf (_("`%s' Ada exception handlers"),
12460 c->excep_string.c_str ());
12461 uiout->text (info);
12464 uiout->text (_("all Ada exceptions handlers"));
12467 case ada_catch_assert:
12468 uiout->text (_("failed Ada assertions"));
12472 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12477 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12478 for all exception catchpoint kinds. */
12481 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12483 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12487 case ada_catch_exception:
12488 gdb_printf (fp, "catch exception");
12489 if (!c->excep_string.empty ())
12490 gdb_printf (fp, " %s", c->excep_string.c_str ());
12493 case ada_catch_exception_unhandled:
12494 gdb_printf (fp, "catch exception unhandled");
12497 case ada_catch_handlers:
12498 gdb_printf (fp, "catch handlers");
12501 case ada_catch_assert:
12502 gdb_printf (fp, "catch assert");
12506 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12508 print_recreate_thread (b, fp);
12511 /* Virtual table for breakpoint type. */
12512 static struct breakpoint_ops catch_exception_breakpoint_ops;
12514 /* See ada-lang.h. */
12517 is_ada_exception_catchpoint (breakpoint *bp)
12519 return bp->ops == &catch_exception_breakpoint_ops;
12522 /* Split the arguments specified in a "catch exception" command.
12523 Set EX to the appropriate catchpoint type.
12524 Set EXCEP_STRING to the name of the specific exception if
12525 specified by the user.
12526 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12527 "catch handlers" command. False otherwise.
12528 If a condition is found at the end of the arguments, the condition
12529 expression is stored in COND_STRING (memory must be deallocated
12530 after use). Otherwise COND_STRING is set to NULL. */
12533 catch_ada_exception_command_split (const char *args,
12534 bool is_catch_handlers_cmd,
12535 enum ada_exception_catchpoint_kind *ex,
12536 std::string *excep_string,
12537 std::string *cond_string)
12539 std::string exception_name;
12541 exception_name = extract_arg (&args);
12542 if (exception_name == "if")
12544 /* This is not an exception name; this is the start of a condition
12545 expression for a catchpoint on all exceptions. So, "un-get"
12546 this token, and set exception_name to NULL. */
12547 exception_name.clear ();
12551 /* Check to see if we have a condition. */
12553 args = skip_spaces (args);
12554 if (startswith (args, "if")
12555 && (isspace (args[2]) || args[2] == '\0'))
12558 args = skip_spaces (args);
12560 if (args[0] == '\0')
12561 error (_("Condition missing after `if' keyword"));
12562 *cond_string = args;
12564 args += strlen (args);
12567 /* Check that we do not have any more arguments. Anything else
12570 if (args[0] != '\0')
12571 error (_("Junk at end of expression"));
12573 if (is_catch_handlers_cmd)
12575 /* Catch handling of exceptions. */
12576 *ex = ada_catch_handlers;
12577 *excep_string = exception_name;
12579 else if (exception_name.empty ())
12581 /* Catch all exceptions. */
12582 *ex = ada_catch_exception;
12583 excep_string->clear ();
12585 else if (exception_name == "unhandled")
12587 /* Catch unhandled exceptions. */
12588 *ex = ada_catch_exception_unhandled;
12589 excep_string->clear ();
12593 /* Catch a specific exception. */
12594 *ex = ada_catch_exception;
12595 *excep_string = exception_name;
12599 /* Return the name of the symbol on which we should break in order to
12600 implement a catchpoint of the EX kind. */
12602 static const char *
12603 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12605 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12607 gdb_assert (data->exception_info != NULL);
12611 case ada_catch_exception:
12612 return (data->exception_info->catch_exception_sym);
12614 case ada_catch_exception_unhandled:
12615 return (data->exception_info->catch_exception_unhandled_sym);
12617 case ada_catch_assert:
12618 return (data->exception_info->catch_assert_sym);
12620 case ada_catch_handlers:
12621 return (data->exception_info->catch_handlers_sym);
12624 internal_error (__FILE__, __LINE__,
12625 _("unexpected catchpoint kind (%d)"), ex);
12629 /* Return the condition that will be used to match the current exception
12630 being raised with the exception that the user wants to catch. This
12631 assumes that this condition is used when the inferior just triggered
12632 an exception catchpoint.
12633 EX: the type of catchpoints used for catching Ada exceptions. */
12636 ada_exception_catchpoint_cond_string (const char *excep_string,
12637 enum ada_exception_catchpoint_kind ex)
12639 bool is_standard_exc = false;
12640 std::string result;
12642 if (ex == ada_catch_handlers)
12644 /* For exception handlers catchpoints, the condition string does
12645 not use the same parameter as for the other exceptions. */
12646 result = ("long_integer (GNAT_GCC_exception_Access"
12647 "(gcc_exception).all.occurrence.id)");
12650 result = "long_integer (e)";
12652 /* The standard exceptions are a special case. They are defined in
12653 runtime units that have been compiled without debugging info; if
12654 EXCEP_STRING is the not-fully-qualified name of a standard
12655 exception (e.g. "constraint_error") then, during the evaluation
12656 of the condition expression, the symbol lookup on this name would
12657 *not* return this standard exception. The catchpoint condition
12658 may then be set only on user-defined exceptions which have the
12659 same not-fully-qualified name (e.g. my_package.constraint_error).
12661 To avoid this unexcepted behavior, these standard exceptions are
12662 systematically prefixed by "standard". This means that "catch
12663 exception constraint_error" is rewritten into "catch exception
12664 standard.constraint_error".
12666 If an exception named constraint_error is defined in another package of
12667 the inferior program, then the only way to specify this exception as a
12668 breakpoint condition is to use its fully-qualified named:
12669 e.g. my_package.constraint_error. */
12671 for (const char *name : standard_exc)
12673 if (strcmp (name, excep_string) == 0)
12675 is_standard_exc = true;
12682 if (is_standard_exc)
12683 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12685 string_appendf (result, "long_integer (&%s)", excep_string);
12690 /* Return the symtab_and_line that should be used to insert an exception
12691 catchpoint of the TYPE kind.
12693 ADDR_STRING returns the name of the function where the real
12694 breakpoint that implements the catchpoints is set, depending on the
12695 type of catchpoint we need to create. */
12697 static struct symtab_and_line
12698 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12699 std::string *addr_string, const struct breakpoint_ops **ops)
12701 const char *sym_name;
12702 struct symbol *sym;
12704 /* First, find out which exception support info to use. */
12705 ada_exception_support_info_sniffer ();
12707 /* Then lookup the function on which we will break in order to catch
12708 the Ada exceptions requested by the user. */
12709 sym_name = ada_exception_sym_name (ex);
12710 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12713 error (_("Catchpoint symbol not found: %s"), sym_name);
12715 if (sym->aclass () != LOC_BLOCK)
12716 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12718 /* Set ADDR_STRING. */
12719 *addr_string = sym_name;
12722 *ops = &catch_exception_breakpoint_ops;
12724 return find_function_start_sal (sym, 1);
12727 /* Create an Ada exception catchpoint.
12729 EX_KIND is the kind of exception catchpoint to be created.
12731 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12732 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12733 of the exception to which this catchpoint applies.
12735 COND_STRING, if not empty, is the catchpoint condition.
12737 TEMPFLAG, if nonzero, means that the underlying breakpoint
12738 should be temporary.
12740 FROM_TTY is the usual argument passed to all commands implementations. */
12743 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12744 enum ada_exception_catchpoint_kind ex_kind,
12745 const std::string &excep_string,
12746 const std::string &cond_string,
12751 std::string addr_string;
12752 const struct breakpoint_ops *ops = NULL;
12753 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12755 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12756 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12757 ops, tempflag, disabled, from_tty);
12758 c->excep_string = excep_string;
12759 create_excep_cond_exprs (c.get (), ex_kind);
12760 if (!cond_string.empty ())
12761 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12762 install_breakpoint (0, std::move (c), 1);
12765 /* Implement the "catch exception" command. */
12768 catch_ada_exception_command (const char *arg_entry, int from_tty,
12769 struct cmd_list_element *command)
12771 const char *arg = arg_entry;
12772 struct gdbarch *gdbarch = get_current_arch ();
12774 enum ada_exception_catchpoint_kind ex_kind;
12775 std::string excep_string;
12776 std::string cond_string;
12778 tempflag = command->context () == CATCH_TEMPORARY;
12782 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12784 create_ada_exception_catchpoint (gdbarch, ex_kind,
12785 excep_string, cond_string,
12786 tempflag, 1 /* enabled */,
12790 /* Implement the "catch handlers" command. */
12793 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12794 struct cmd_list_element *command)
12796 const char *arg = arg_entry;
12797 struct gdbarch *gdbarch = get_current_arch ();
12799 enum ada_exception_catchpoint_kind ex_kind;
12800 std::string excep_string;
12801 std::string cond_string;
12803 tempflag = command->context () == CATCH_TEMPORARY;
12807 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12809 create_ada_exception_catchpoint (gdbarch, ex_kind,
12810 excep_string, cond_string,
12811 tempflag, 1 /* enabled */,
12815 /* Completion function for the Ada "catch" commands. */
12818 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12819 const char *text, const char *word)
12821 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12823 for (const ada_exc_info &info : exceptions)
12825 if (startswith (info.name, word))
12826 tracker.add_completion (make_unique_xstrdup (info.name));
12830 /* Split the arguments specified in a "catch assert" command.
12832 ARGS contains the command's arguments (or the empty string if
12833 no arguments were passed).
12835 If ARGS contains a condition, set COND_STRING to that condition
12836 (the memory needs to be deallocated after use). */
12839 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12841 args = skip_spaces (args);
12843 /* Check whether a condition was provided. */
12844 if (startswith (args, "if")
12845 && (isspace (args[2]) || args[2] == '\0'))
12848 args = skip_spaces (args);
12849 if (args[0] == '\0')
12850 error (_("condition missing after `if' keyword"));
12851 cond_string.assign (args);
12854 /* Otherwise, there should be no other argument at the end of
12856 else if (args[0] != '\0')
12857 error (_("Junk at end of arguments."));
12860 /* Implement the "catch assert" command. */
12863 catch_assert_command (const char *arg_entry, int from_tty,
12864 struct cmd_list_element *command)
12866 const char *arg = arg_entry;
12867 struct gdbarch *gdbarch = get_current_arch ();
12869 std::string cond_string;
12871 tempflag = command->context () == CATCH_TEMPORARY;
12875 catch_ada_assert_command_split (arg, cond_string);
12876 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12878 tempflag, 1 /* enabled */,
12882 /* Return non-zero if the symbol SYM is an Ada exception object. */
12885 ada_is_exception_sym (struct symbol *sym)
12887 const char *type_name = sym->type ()->name ();
12889 return (sym->aclass () != LOC_TYPEDEF
12890 && sym->aclass () != LOC_BLOCK
12891 && sym->aclass () != LOC_CONST
12892 && sym->aclass () != LOC_UNRESOLVED
12893 && type_name != NULL && strcmp (type_name, "exception") == 0);
12896 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12897 Ada exception object. This matches all exceptions except the ones
12898 defined by the Ada language. */
12901 ada_is_non_standard_exception_sym (struct symbol *sym)
12903 if (!ada_is_exception_sym (sym))
12906 for (const char *name : standard_exc)
12907 if (strcmp (sym->linkage_name (), name) == 0)
12908 return 0; /* A standard exception. */
12910 /* Numeric_Error is also a standard exception, so exclude it.
12911 See the STANDARD_EXC description for more details as to why
12912 this exception is not listed in that array. */
12913 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12919 /* A helper function for std::sort, comparing two struct ada_exc_info
12922 The comparison is determined first by exception name, and then
12923 by exception address. */
12926 ada_exc_info::operator< (const ada_exc_info &other) const
12930 result = strcmp (name, other.name);
12933 if (result == 0 && addr < other.addr)
12939 ada_exc_info::operator== (const ada_exc_info &other) const
12941 return addr == other.addr && strcmp (name, other.name) == 0;
12944 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12945 routine, but keeping the first SKIP elements untouched.
12947 All duplicates are also removed. */
12950 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12953 std::sort (exceptions->begin () + skip, exceptions->end ());
12954 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12955 exceptions->end ());
12958 /* Add all exceptions defined by the Ada standard whose name match
12959 a regular expression.
12961 If PREG is not NULL, then this regexp_t object is used to
12962 perform the symbol name matching. Otherwise, no name-based
12963 filtering is performed.
12965 EXCEPTIONS is a vector of exceptions to which matching exceptions
12969 ada_add_standard_exceptions (compiled_regex *preg,
12970 std::vector<ada_exc_info> *exceptions)
12972 for (const char *name : standard_exc)
12974 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
12976 struct bound_minimal_symbol msymbol
12977 = ada_lookup_simple_minsym (name);
12979 if (msymbol.minsym != NULL)
12981 struct ada_exc_info info
12982 = {name, BMSYMBOL_VALUE_ADDRESS (msymbol)};
12984 exceptions->push_back (info);
12990 /* Add all Ada exceptions defined locally and accessible from the given
12993 If PREG is not NULL, then this regexp_t object is used to
12994 perform the symbol name matching. Otherwise, no name-based
12995 filtering is performed.
12997 EXCEPTIONS is a vector of exceptions to which matching exceptions
13001 ada_add_exceptions_from_frame (compiled_regex *preg,
13002 struct frame_info *frame,
13003 std::vector<ada_exc_info> *exceptions)
13005 const struct block *block = get_frame_block (frame, 0);
13009 struct block_iterator iter;
13010 struct symbol *sym;
13012 ALL_BLOCK_SYMBOLS (block, iter, sym)
13014 switch (sym->aclass ())
13021 if (ada_is_exception_sym (sym))
13023 struct ada_exc_info info = {sym->print_name (),
13024 SYMBOL_VALUE_ADDRESS (sym)};
13026 exceptions->push_back (info);
13030 if (BLOCK_FUNCTION (block) != NULL)
13032 block = BLOCK_SUPERBLOCK (block);
13036 /* Return true if NAME matches PREG or if PREG is NULL. */
13039 name_matches_regex (const char *name, compiled_regex *preg)
13041 return (preg == NULL
13042 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13045 /* Add all exceptions defined globally whose name name match
13046 a regular expression, excluding standard exceptions.
13048 The reason we exclude standard exceptions is that they need
13049 to be handled separately: Standard exceptions are defined inside
13050 a runtime unit which is normally not compiled with debugging info,
13051 and thus usually do not show up in our symbol search. However,
13052 if the unit was in fact built with debugging info, we need to
13053 exclude them because they would duplicate the entry we found
13054 during the special loop that specifically searches for those
13055 standard exceptions.
13057 If PREG is not NULL, then this regexp_t object is used to
13058 perform the symbol name matching. Otherwise, no name-based
13059 filtering is performed.
13061 EXCEPTIONS is a vector of exceptions to which matching exceptions
13065 ada_add_global_exceptions (compiled_regex *preg,
13066 std::vector<ada_exc_info> *exceptions)
13068 /* In Ada, the symbol "search name" is a linkage name, whereas the
13069 regular expression used to do the matching refers to the natural
13070 name. So match against the decoded name. */
13071 expand_symtabs_matching (NULL,
13072 lookup_name_info::match_any (),
13073 [&] (const char *search_name)
13075 std::string decoded = ada_decode (search_name);
13076 return name_matches_regex (decoded.c_str (), preg);
13079 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13082 for (objfile *objfile : current_program_space->objfiles ())
13084 for (compunit_symtab *s : objfile->compunits ())
13086 const struct blockvector *bv = s->blockvector ();
13089 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13091 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13092 struct block_iterator iter;
13093 struct symbol *sym;
13095 ALL_BLOCK_SYMBOLS (b, iter, sym)
13096 if (ada_is_non_standard_exception_sym (sym)
13097 && name_matches_regex (sym->natural_name (), preg))
13099 struct ada_exc_info info
13100 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13102 exceptions->push_back (info);
13109 /* Implements ada_exceptions_list with the regular expression passed
13110 as a regex_t, rather than a string.
13112 If not NULL, PREG is used to filter out exceptions whose names
13113 do not match. Otherwise, all exceptions are listed. */
13115 static std::vector<ada_exc_info>
13116 ada_exceptions_list_1 (compiled_regex *preg)
13118 std::vector<ada_exc_info> result;
13121 /* First, list the known standard exceptions. These exceptions
13122 need to be handled separately, as they are usually defined in
13123 runtime units that have been compiled without debugging info. */
13125 ada_add_standard_exceptions (preg, &result);
13127 /* Next, find all exceptions whose scope is local and accessible
13128 from the currently selected frame. */
13130 if (has_stack_frames ())
13132 prev_len = result.size ();
13133 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13135 if (result.size () > prev_len)
13136 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13139 /* Add all exceptions whose scope is global. */
13141 prev_len = result.size ();
13142 ada_add_global_exceptions (preg, &result);
13143 if (result.size () > prev_len)
13144 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13149 /* Return a vector of ada_exc_info.
13151 If REGEXP is NULL, all exceptions are included in the result.
13152 Otherwise, it should contain a valid regular expression,
13153 and only the exceptions whose names match that regular expression
13154 are included in the result.
13156 The exceptions are sorted in the following order:
13157 - Standard exceptions (defined by the Ada language), in
13158 alphabetical order;
13159 - Exceptions only visible from the current frame, in
13160 alphabetical order;
13161 - Exceptions whose scope is global, in alphabetical order. */
13163 std::vector<ada_exc_info>
13164 ada_exceptions_list (const char *regexp)
13166 if (regexp == NULL)
13167 return ada_exceptions_list_1 (NULL);
13169 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13170 return ada_exceptions_list_1 (®);
13173 /* Implement the "info exceptions" command. */
13176 info_exceptions_command (const char *regexp, int from_tty)
13178 struct gdbarch *gdbarch = get_current_arch ();
13180 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13182 if (regexp != NULL)
13184 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13186 gdb_printf (_("All defined Ada exceptions:\n"));
13188 for (const ada_exc_info &info : exceptions)
13189 gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13193 /* Language vector */
13195 /* symbol_name_matcher_ftype adapter for wild_match. */
13198 do_wild_match (const char *symbol_search_name,
13199 const lookup_name_info &lookup_name,
13200 completion_match_result *comp_match_res)
13202 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13205 /* symbol_name_matcher_ftype adapter for full_match. */
13208 do_full_match (const char *symbol_search_name,
13209 const lookup_name_info &lookup_name,
13210 completion_match_result *comp_match_res)
13212 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13214 /* If both symbols start with "_ada_", just let the loop below
13215 handle the comparison. However, if only the symbol name starts
13216 with "_ada_", skip the prefix and let the match proceed as
13218 if (startswith (symbol_search_name, "_ada_")
13219 && !startswith (lname, "_ada"))
13220 symbol_search_name += 5;
13222 int uscore_count = 0;
13223 while (*lname != '\0')
13225 if (*symbol_search_name != *lname)
13227 if (*symbol_search_name == 'B' && uscore_count == 2
13228 && symbol_search_name[1] == '_')
13230 symbol_search_name += 2;
13231 while (isdigit (*symbol_search_name))
13232 ++symbol_search_name;
13233 if (symbol_search_name[0] == '_'
13234 && symbol_search_name[1] == '_')
13236 symbol_search_name += 2;
13243 if (*symbol_search_name == '_')
13248 ++symbol_search_name;
13252 return is_name_suffix (symbol_search_name);
13255 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13258 do_exact_match (const char *symbol_search_name,
13259 const lookup_name_info &lookup_name,
13260 completion_match_result *comp_match_res)
13262 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13265 /* Build the Ada lookup name for LOOKUP_NAME. */
13267 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13269 gdb::string_view user_name = lookup_name.name ();
13271 if (!user_name.empty () && user_name[0] == '<')
13273 if (user_name.back () == '>')
13275 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13278 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13279 m_encoded_p = true;
13280 m_verbatim_p = true;
13281 m_wild_match_p = false;
13282 m_standard_p = false;
13286 m_verbatim_p = false;
13288 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13292 const char *folded = ada_fold_name (user_name);
13293 m_encoded_name = ada_encode_1 (folded, false);
13294 if (m_encoded_name.empty ())
13295 m_encoded_name = gdb::to_string (user_name);
13298 m_encoded_name = gdb::to_string (user_name);
13300 /* Handle the 'package Standard' special case. See description
13301 of m_standard_p. */
13302 if (startswith (m_encoded_name.c_str (), "standard__"))
13304 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13305 m_standard_p = true;
13308 m_standard_p = false;
13310 /* If the name contains a ".", then the user is entering a fully
13311 qualified entity name, and the match must not be done in wild
13312 mode. Similarly, if the user wants to complete what looks
13313 like an encoded name, the match must not be done in wild
13314 mode. Also, in the standard__ special case always do
13315 non-wild matching. */
13317 = (lookup_name.match_type () != symbol_name_match_type::FULL
13320 && user_name.find ('.') == std::string::npos);
13324 /* symbol_name_matcher_ftype method for Ada. This only handles
13325 completion mode. */
13328 ada_symbol_name_matches (const char *symbol_search_name,
13329 const lookup_name_info &lookup_name,
13330 completion_match_result *comp_match_res)
13332 return lookup_name.ada ().matches (symbol_search_name,
13333 lookup_name.match_type (),
13337 /* A name matcher that matches the symbol name exactly, with
13341 literal_symbol_name_matcher (const char *symbol_search_name,
13342 const lookup_name_info &lookup_name,
13343 completion_match_result *comp_match_res)
13345 gdb::string_view name_view = lookup_name.name ();
13347 if (lookup_name.completion_mode ()
13348 ? (strncmp (symbol_search_name, name_view.data (),
13349 name_view.size ()) == 0)
13350 : symbol_search_name == name_view)
13352 if (comp_match_res != NULL)
13353 comp_match_res->set_match (symbol_search_name);
13360 /* Implement the "get_symbol_name_matcher" language_defn method for
13363 static symbol_name_matcher_ftype *
13364 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13366 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13367 return literal_symbol_name_matcher;
13369 if (lookup_name.completion_mode ())
13370 return ada_symbol_name_matches;
13373 if (lookup_name.ada ().wild_match_p ())
13374 return do_wild_match;
13375 else if (lookup_name.ada ().verbatim_p ())
13376 return do_exact_match;
13378 return do_full_match;
13382 /* Class representing the Ada language. */
13384 class ada_language : public language_defn
13388 : language_defn (language_ada)
13391 /* See language.h. */
13393 const char *name () const override
13396 /* See language.h. */
13398 const char *natural_name () const override
13401 /* See language.h. */
13403 const std::vector<const char *> &filename_extensions () const override
13405 static const std::vector<const char *> extensions
13406 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13410 /* Print an array element index using the Ada syntax. */
13412 void print_array_index (struct type *index_type,
13414 struct ui_file *stream,
13415 const value_print_options *options) const override
13417 struct value *index_value = val_atr (index_type, index);
13419 value_print (index_value, stream, options);
13420 gdb_printf (stream, " => ");
13423 /* Implement the "read_var_value" language_defn method for Ada. */
13425 struct value *read_var_value (struct symbol *var,
13426 const struct block *var_block,
13427 struct frame_info *frame) const override
13429 /* The only case where default_read_var_value is not sufficient
13430 is when VAR is a renaming... */
13431 if (frame != nullptr)
13433 const struct block *frame_block = get_frame_block (frame, NULL);
13434 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13435 return ada_read_renaming_var_value (var, frame_block);
13438 /* This is a typical case where we expect the default_read_var_value
13439 function to work. */
13440 return language_defn::read_var_value (var, var_block, frame);
13443 /* See language.h. */
13444 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
13446 return symbol->artificial;
13449 /* See language.h. */
13450 void language_arch_info (struct gdbarch *gdbarch,
13451 struct language_arch_info *lai) const override
13453 const struct builtin_type *builtin = builtin_type (gdbarch);
13455 /* Helper function to allow shorter lines below. */
13456 auto add = [&] (struct type *t)
13458 lai->add_primitive_type (t);
13461 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13463 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13464 0, "long_integer"));
13465 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13466 0, "short_integer"));
13467 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13469 lai->set_string_char_type (char_type);
13471 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13472 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
13473 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13474 "float", gdbarch_float_format (gdbarch)));
13475 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13476 "long_float", gdbarch_double_format (gdbarch)));
13477 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13478 0, "long_long_integer"));
13479 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13481 gdbarch_long_double_format (gdbarch)));
13482 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13484 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13486 add (builtin->builtin_void);
13488 struct type *system_addr_ptr
13489 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13491 system_addr_ptr->set_name ("system__address");
13492 add (system_addr_ptr);
13494 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13495 type. This is a signed integral type whose size is the same as
13496 the size of addresses. */
13497 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13498 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13499 "storage_offset"));
13501 lai->set_bool_type (builtin->builtin_bool);
13504 /* See language.h. */
13506 bool iterate_over_symbols
13507 (const struct block *block, const lookup_name_info &name,
13508 domain_enum domain,
13509 gdb::function_view<symbol_found_callback_ftype> callback) const override
13511 std::vector<struct block_symbol> results
13512 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13513 for (block_symbol &sym : results)
13515 if (!callback (&sym))
13522 /* See language.h. */
13523 bool sniff_from_mangled_name
13524 (const char *mangled,
13525 gdb::unique_xmalloc_ptr<char> *out) const override
13527 std::string demangled = ada_decode (mangled);
13531 if (demangled != mangled && demangled[0] != '<')
13533 /* Set the gsymbol language to Ada, but still return 0.
13534 Two reasons for that:
13536 1. For Ada, we prefer computing the symbol's decoded name
13537 on the fly rather than pre-compute it, in order to save
13538 memory (Ada projects are typically very large).
13540 2. There are some areas in the definition of the GNAT
13541 encoding where, with a bit of bad luck, we might be able
13542 to decode a non-Ada symbol, generating an incorrect
13543 demangled name (Eg: names ending with "TB" for instance
13544 are identified as task bodies and so stripped from
13545 the decoded name returned).
13547 Returning true, here, but not setting *DEMANGLED, helps us get
13548 a little bit of the best of both worlds. Because we're last,
13549 we should not affect any of the other languages that were
13550 able to demangle the symbol before us; we get to correctly
13551 tag Ada symbols as such; and even if we incorrectly tagged a
13552 non-Ada symbol, which should be rare, any routing through the
13553 Ada language should be transparent (Ada tries to behave much
13554 like C/C++ with non-Ada symbols). */
13561 /* See language.h. */
13563 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13564 int options) const override
13566 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13569 /* See language.h. */
13571 void print_type (struct type *type, const char *varstring,
13572 struct ui_file *stream, int show, int level,
13573 const struct type_print_options *flags) const override
13575 ada_print_type (type, varstring, stream, show, level, flags);
13578 /* See language.h. */
13580 const char *word_break_characters (void) const override
13582 return ada_completer_word_break_characters;
13585 /* See language.h. */
13587 void collect_symbol_completion_matches (completion_tracker &tracker,
13588 complete_symbol_mode mode,
13589 symbol_name_match_type name_match_type,
13590 const char *text, const char *word,
13591 enum type_code code) const override
13593 struct symbol *sym;
13594 const struct block *b, *surrounding_static_block = 0;
13595 struct block_iterator iter;
13597 gdb_assert (code == TYPE_CODE_UNDEF);
13599 lookup_name_info lookup_name (text, name_match_type, true);
13601 /* First, look at the partial symtab symbols. */
13602 expand_symtabs_matching (NULL,
13606 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13609 /* At this point scan through the misc symbol vectors and add each
13610 symbol you find to the list. Eventually we want to ignore
13611 anything that isn't a text symbol (everything else will be
13612 handled by the psymtab code above). */
13614 for (objfile *objfile : current_program_space->objfiles ())
13616 for (minimal_symbol *msymbol : objfile->msymbols ())
13620 if (completion_skip_symbol (mode, msymbol))
13623 language symbol_language = msymbol->language ();
13625 /* Ada minimal symbols won't have their language set to Ada. If
13626 we let completion_list_add_name compare using the
13627 default/C-like matcher, then when completing e.g., symbols in a
13628 package named "pck", we'd match internal Ada symbols like
13629 "pckS", which are invalid in an Ada expression, unless you wrap
13630 them in '<' '>' to request a verbatim match.
13632 Unfortunately, some Ada encoded names successfully demangle as
13633 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13634 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13635 with the wrong language set. Paper over that issue here. */
13636 if (symbol_language == language_auto
13637 || symbol_language == language_cplus)
13638 symbol_language = language_ada;
13640 completion_list_add_name (tracker,
13642 msymbol->linkage_name (),
13643 lookup_name, text, word);
13647 /* Search upwards from currently selected frame (so that we can
13648 complete on local vars. */
13650 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13652 if (!BLOCK_SUPERBLOCK (b))
13653 surrounding_static_block = b; /* For elmin of dups */
13655 ALL_BLOCK_SYMBOLS (b, iter, sym)
13657 if (completion_skip_symbol (mode, sym))
13660 completion_list_add_name (tracker,
13662 sym->linkage_name (),
13663 lookup_name, text, word);
13667 /* Go through the symtabs and check the externs and statics for
13668 symbols which match. */
13670 for (objfile *objfile : current_program_space->objfiles ())
13672 for (compunit_symtab *s : objfile->compunits ())
13675 b = BLOCKVECTOR_BLOCK (s->blockvector (), GLOBAL_BLOCK);
13676 ALL_BLOCK_SYMBOLS (b, iter, sym)
13678 if (completion_skip_symbol (mode, sym))
13681 completion_list_add_name (tracker,
13683 sym->linkage_name (),
13684 lookup_name, text, word);
13689 for (objfile *objfile : current_program_space->objfiles ())
13691 for (compunit_symtab *s : objfile->compunits ())
13694 b = BLOCKVECTOR_BLOCK (s->blockvector (), STATIC_BLOCK);
13695 /* Don't do this block twice. */
13696 if (b == surrounding_static_block)
13698 ALL_BLOCK_SYMBOLS (b, iter, sym)
13700 if (completion_skip_symbol (mode, sym))
13703 completion_list_add_name (tracker,
13705 sym->linkage_name (),
13706 lookup_name, text, word);
13712 /* See language.h. */
13714 gdb::unique_xmalloc_ptr<char> watch_location_expression
13715 (struct type *type, CORE_ADDR addr) const override
13717 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13718 std::string name = type_to_string (type);
13719 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13722 /* See language.h. */
13724 void value_print (struct value *val, struct ui_file *stream,
13725 const struct value_print_options *options) const override
13727 return ada_value_print (val, stream, options);
13730 /* See language.h. */
13732 void value_print_inner
13733 (struct value *val, struct ui_file *stream, int recurse,
13734 const struct value_print_options *options) const override
13736 return ada_value_print_inner (val, stream, recurse, options);
13739 /* See language.h. */
13741 struct block_symbol lookup_symbol_nonlocal
13742 (const char *name, const struct block *block,
13743 const domain_enum domain) const override
13745 struct block_symbol sym;
13747 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13748 if (sym.symbol != NULL)
13751 /* If we haven't found a match at this point, try the primitive
13752 types. In other languages, this search is performed before
13753 searching for global symbols in order to short-circuit that
13754 global-symbol search if it happens that the name corresponds
13755 to a primitive type. But we cannot do the same in Ada, because
13756 it is perfectly legitimate for a program to declare a type which
13757 has the same name as a standard type. If looking up a type in
13758 that situation, we have traditionally ignored the primitive type
13759 in favor of user-defined types. This is why, unlike most other
13760 languages, we search the primitive types this late and only after
13761 having searched the global symbols without success. */
13763 if (domain == VAR_DOMAIN)
13765 struct gdbarch *gdbarch;
13768 gdbarch = target_gdbarch ();
13770 gdbarch = block_gdbarch (block);
13772 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13773 if (sym.symbol != NULL)
13780 /* See language.h. */
13782 int parser (struct parser_state *ps) const override
13784 warnings_issued = 0;
13785 return ada_parse (ps);
13788 /* See language.h. */
13790 void emitchar (int ch, struct type *chtype,
13791 struct ui_file *stream, int quoter) const override
13793 ada_emit_char (ch, chtype, stream, quoter, 1);
13796 /* See language.h. */
13798 void printchar (int ch, struct type *chtype,
13799 struct ui_file *stream) const override
13801 ada_printchar (ch, chtype, stream);
13804 /* See language.h. */
13806 void printstr (struct ui_file *stream, struct type *elttype,
13807 const gdb_byte *string, unsigned int length,
13808 const char *encoding, int force_ellipses,
13809 const struct value_print_options *options) const override
13811 ada_printstr (stream, elttype, string, length, encoding,
13812 force_ellipses, options);
13815 /* See language.h. */
13817 void print_typedef (struct type *type, struct symbol *new_symbol,
13818 struct ui_file *stream) const override
13820 ada_print_typedef (type, new_symbol, stream);
13823 /* See language.h. */
13825 bool is_string_type_p (struct type *type) const override
13827 return ada_is_string_type (type);
13830 /* See language.h. */
13832 const char *struct_too_deep_ellipsis () const override
13833 { return "(...)"; }
13835 /* See language.h. */
13837 bool c_style_arrays_p () const override
13840 /* See language.h. */
13842 bool store_sym_names_in_linkage_form_p () const override
13845 /* See language.h. */
13847 const struct lang_varobj_ops *varobj_ops () const override
13848 { return &ada_varobj_ops; }
13851 /* See language.h. */
13853 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13854 (const lookup_name_info &lookup_name) const override
13856 return ada_get_symbol_name_matcher (lookup_name);
13860 /* Single instance of the Ada language class. */
13862 static ada_language ada_language_defn;
13864 /* Command-list for the "set/show ada" prefix command. */
13865 static struct cmd_list_element *set_ada_list;
13866 static struct cmd_list_element *show_ada_list;
13869 initialize_ada_catchpoint_ops (void)
13871 struct breakpoint_ops *ops;
13873 initialize_breakpoint_ops ();
13875 ops = &catch_exception_breakpoint_ops;
13876 *ops = bkpt_breakpoint_ops;
13877 ops->allocate_location = allocate_location_exception;
13878 ops->re_set = re_set_exception;
13879 ops->check_status = check_status_exception;
13880 ops->print_it = print_it_exception;
13881 ops->print_one = print_one_exception;
13882 ops->print_mention = print_mention_exception;
13883 ops->print_recreate = print_recreate_exception;
13886 /* This module's 'new_objfile' observer. */
13889 ada_new_objfile_observer (struct objfile *objfile)
13891 ada_clear_symbol_cache ();
13894 /* This module's 'free_objfile' observer. */
13897 ada_free_objfile_observer (struct objfile *objfile)
13899 ada_clear_symbol_cache ();
13902 /* Charsets known to GNAT. */
13903 static const char * const gnat_source_charsets[] =
13905 /* Note that code below assumes that the default comes first.
13906 Latin-1 is the default here, because that is also GNAT's
13916 /* Note that this value is special-cased in the encoder and
13922 void _initialize_ada_language ();
13924 _initialize_ada_language ()
13926 initialize_ada_catchpoint_ops ();
13928 add_setshow_prefix_cmd
13930 _("Prefix command for changing Ada-specific settings."),
13931 _("Generic command for showing Ada-specific settings."),
13932 &set_ada_list, &show_ada_list,
13933 &setlist, &showlist);
13935 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13936 &trust_pad_over_xvs, _("\
13937 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13938 Show whether an optimization trusting PAD types over XVS types is activated."),
13940 This is related to the encoding used by the GNAT compiler. The debugger\n\
13941 should normally trust the contents of PAD types, but certain older versions\n\
13942 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13943 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13944 work around this bug. It is always safe to turn this option \"off\", but\n\
13945 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13946 this option to \"off\" unless necessary."),
13947 NULL, NULL, &set_ada_list, &show_ada_list);
13949 add_setshow_boolean_cmd ("print-signatures", class_vars,
13950 &print_signatures, _("\
13951 Enable or disable the output of formal and return types for functions in the \
13952 overloads selection menu."), _("\
13953 Show whether the output of formal and return types for functions in the \
13954 overloads selection menu is activated."),
13955 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13957 ada_source_charset = gnat_source_charsets[0];
13958 add_setshow_enum_cmd ("source-charset", class_files,
13959 gnat_source_charsets,
13960 &ada_source_charset, _("\
13961 Set the Ada source character set."), _("\
13962 Show the Ada source character set."), _("\
13963 The character set used for Ada source files.\n\
13964 This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
13966 &set_ada_list, &show_ada_list);
13968 add_catch_command ("exception", _("\
13969 Catch Ada exceptions, when raised.\n\
13970 Usage: catch exception [ARG] [if CONDITION]\n\
13971 Without any argument, stop when any Ada exception is raised.\n\
13972 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13973 being raised does not have a handler (and will therefore lead to the task's\n\
13975 Otherwise, the catchpoint only stops when the name of the exception being\n\
13976 raised is the same as ARG.\n\
13977 CONDITION is a boolean expression that is evaluated to see whether the\n\
13978 exception should cause a stop."),
13979 catch_ada_exception_command,
13980 catch_ada_completer,
13984 add_catch_command ("handlers", _("\
13985 Catch Ada exceptions, when handled.\n\
13986 Usage: catch handlers [ARG] [if CONDITION]\n\
13987 Without any argument, stop when any Ada exception is handled.\n\
13988 With an argument, catch only exceptions with the given name.\n\
13989 CONDITION is a boolean expression that is evaluated to see whether the\n\
13990 exception should cause a stop."),
13991 catch_ada_handlers_command,
13992 catch_ada_completer,
13995 add_catch_command ("assert", _("\
13996 Catch failed Ada assertions, when raised.\n\
13997 Usage: catch assert [if CONDITION]\n\
13998 CONDITION is a boolean expression that is evaluated to see whether the\n\
13999 exception should cause a stop."),
14000 catch_assert_command,
14005 add_info ("exceptions", info_exceptions_command,
14007 List all Ada exception names.\n\
14008 Usage: info exceptions [REGEXP]\n\
14009 If a regular expression is passed as an argument, only those matching\n\
14010 the regular expression are listed."));
14012 add_setshow_prefix_cmd ("ada", class_maintenance,
14013 _("Set Ada maintenance-related variables."),
14014 _("Show Ada maintenance-related variables."),
14015 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
14016 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
14018 add_setshow_boolean_cmd
14019 ("ignore-descriptive-types", class_maintenance,
14020 &ada_ignore_descriptive_types_p,
14021 _("Set whether descriptive types generated by GNAT should be ignored."),
14022 _("Show whether descriptive types generated by GNAT should be ignored."),
14024 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14025 DWARF attribute."),
14026 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14028 decoded_names_store = htab_create_alloc (256, htab_hash_string,
14030 NULL, xcalloc, xfree);
14032 /* The ada-lang observers. */
14033 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
14034 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
14035 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");