1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28 #include "expression.h"
33 #include "complaints.h"
37 #include "cp-support.h"
39 #include "dwarf2/loc.h"
41 #include "floatformat.h"
44 #include "gmp-utils.h"
46 /* Initialize BADNESS constants. */
48 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
50 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
51 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
53 const struct rank EXACT_MATCH_BADNESS = {0,0};
55 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
56 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
57 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
58 const struct rank CV_CONVERSION_BADNESS = {1, 0};
59 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
60 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
61 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
62 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
63 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
64 const struct rank BASE_CONVERSION_BADNESS = {2,0};
65 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
66 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
67 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
68 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
69 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
71 /* Floatformat pairs. */
72 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_half_big,
74 &floatformat_ieee_half_little
76 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_single_big,
78 &floatformat_ieee_single_little
80 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_little
84 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_ieee_double_big,
86 &floatformat_ieee_double_littlebyte_bigword
88 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_i387_ext,
92 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_m68881_ext,
94 &floatformat_m68881_ext
96 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_arm_ext_big,
98 &floatformat_arm_ext_littlebyte_bigword
100 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_spill_big,
102 &floatformat_ia64_spill_little
104 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_ia64_quad_big,
106 &floatformat_ia64_quad_little
108 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
112 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
116 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
117 &floatformat_ibm_long_double_big,
118 &floatformat_ibm_long_double_little
120 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
121 &floatformat_bfloat16_big,
122 &floatformat_bfloat16_little
125 /* Should opaque types be resolved? */
127 static bool opaque_type_resolution = true;
129 /* See gdbtypes.h. */
131 unsigned int overload_debug = 0;
133 /* A flag to enable strict type checking. */
135 static bool strict_type_checking = true;
137 /* A function to show whether opaque types are resolved. */
140 show_opaque_type_resolution (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c,
144 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
145 "(if set before loading symbols) is %s.\n"),
149 /* A function to show whether C++ overload debugging is enabled. */
152 show_overload_debug (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
155 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
159 /* A function to show the status of strict type checking. */
162 show_strict_type_checking (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
165 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
169 /* Allocate a new OBJFILE-associated type structure and fill it
170 with some defaults. Space for the type structure is allocated
171 on the objfile's objfile_obstack. */
174 alloc_type (struct objfile *objfile)
178 gdb_assert (objfile != NULL);
180 /* Alloc the structure and start off with all fields zeroed. */
181 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
182 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
184 OBJSTAT (objfile, n_types++);
186 type->set_owner (objfile);
188 /* Initialize the fields that might not be zero. */
190 type->set_code (TYPE_CODE_UNDEF);
191 TYPE_CHAIN (type) = type; /* Chain back to itself. */
196 /* Allocate a new GDBARCH-associated type structure and fill it
197 with some defaults. Space for the type structure is allocated
198 on the obstack associated with GDBARCH. */
201 alloc_type_arch (struct gdbarch *gdbarch)
205 gdb_assert (gdbarch != NULL);
207 /* Alloc the structure and start off with all fields zeroed. */
209 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
210 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
212 type->set_owner (gdbarch);
214 /* Initialize the fields that might not be zero. */
216 type->set_code (TYPE_CODE_UNDEF);
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
222 /* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
227 alloc_type_copy (const struct type *type)
229 if (type->is_objfile_owned ())
230 return alloc_type (type->objfile_owner ());
232 return alloc_type_arch (type->arch_owner ());
235 /* See gdbtypes.h. */
240 struct gdbarch *arch;
242 if (this->is_objfile_owned ())
243 arch = this->objfile_owner ()->arch ();
245 arch = this->arch_owner ();
247 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
248 a gdbarch, however, this is very rare, and even then, in most cases
249 that type::arch is called, we assume that a non-NULL value is
251 gdb_assert (arch != nullptr);
255 /* See gdbtypes.h. */
258 get_target_type (struct type *type)
262 type = TYPE_TARGET_TYPE (type);
264 type = check_typedef (type);
270 /* See gdbtypes.h. */
273 type_length_units (struct type *type)
275 int unit_size = gdbarch_addressable_memory_unit_size (type->arch ());
277 return TYPE_LENGTH (type) / unit_size;
280 /* Alloc a new type instance structure, fill it with some defaults,
281 and point it at OLDTYPE. Allocate the new type instance from the
282 same place as OLDTYPE. */
285 alloc_type_instance (struct type *oldtype)
289 /* Allocate the structure. */
291 if (!oldtype->is_objfile_owned ())
292 type = GDBARCH_OBSTACK_ZALLOC (oldtype->arch_owner (), struct type);
294 type = OBSTACK_ZALLOC (&oldtype->objfile_owner ()->objfile_obstack,
297 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
299 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
304 /* Clear all remnants of the previous type at TYPE, in preparation for
305 replacing it with something else. Preserve owner information. */
308 smash_type (struct type *type)
310 bool objfile_owned = type->is_objfile_owned ();
311 objfile *objfile = type->objfile_owner ();
312 gdbarch *arch = type->arch_owner ();
314 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316 /* Restore owner information. */
318 type->set_owner (objfile);
320 type->set_owner (arch);
322 /* For now, delete the rings. */
323 TYPE_CHAIN (type) = type;
325 /* For now, leave the pointer/reference types alone. */
328 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
329 to a pointer to memory where the pointer type should be stored.
330 If *TYPEPTR is zero, update it to point to the pointer type we return.
331 We allocate new memory if needed. */
334 make_pointer_type (struct type *type, struct type **typeptr)
336 struct type *ntype; /* New type */
339 ntype = TYPE_POINTER_TYPE (type);
344 return ntype; /* Don't care about alloc,
345 and have new type. */
346 else if (*typeptr == 0)
348 *typeptr = ntype; /* Tracking alloc, and have new type. */
353 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
355 ntype = alloc_type_copy (type);
359 else /* We have storage, but need to reset it. */
362 chain = TYPE_CHAIN (ntype);
364 TYPE_CHAIN (ntype) = chain;
367 TYPE_TARGET_TYPE (ntype) = type;
368 TYPE_POINTER_TYPE (type) = ntype;
370 /* FIXME! Assumes the machine has only one representation for pointers! */
372 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT;
373 ntype->set_code (TYPE_CODE_PTR);
375 /* Mark pointers as unsigned. The target converts between pointers
376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
377 gdbarch_address_to_pointer. */
378 ntype->set_is_unsigned (true);
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
391 /* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
395 lookup_pointer_type (struct type *type)
397 return make_pointer_type (type, (struct type **) 0);
400 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
407 make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
410 struct type *ntype; /* New type */
411 struct type **reftype;
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
422 return ntype; /* Don't care about alloc,
423 and have new type. */
424 else if (*typeptr == 0)
426 *typeptr = ntype; /* Tracking alloc, and have new type. */
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
433 ntype = alloc_type_copy (type);
437 else /* We have storage, but need to reset it. */
440 chain = TYPE_CHAIN (ntype);
442 TYPE_CHAIN (ntype) = chain;
445 TYPE_TARGET_TYPE (ntype) = type;
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
455 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT;
456 ntype->set_code (refcode);
460 /* Update the length of all the other variants of this type. */
461 chain = TYPE_CHAIN (ntype);
462 while (chain != ntype)
464 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
465 chain = TYPE_CHAIN (chain);
471 /* Same as above, but caller doesn't care about memory allocation
475 lookup_reference_type (struct type *type, enum type_code refcode)
477 return make_reference_type (type, (struct type **) 0, refcode);
480 /* Lookup the lvalue reference type for the type TYPE. */
483 lookup_lvalue_reference_type (struct type *type)
485 return lookup_reference_type (type, TYPE_CODE_REF);
488 /* Lookup the rvalue reference type for the type TYPE. */
491 lookup_rvalue_reference_type (struct type *type)
493 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
496 /* Lookup a function type that returns type TYPE. TYPEPTR, if
497 nonzero, points to a pointer to memory where the function type
498 should be stored. If *TYPEPTR is zero, update it to point to the
499 function type we return. We allocate new memory if needed. */
502 make_function_type (struct type *type, struct type **typeptr)
504 struct type *ntype; /* New type */
506 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 ntype = alloc_type_copy (type);
512 else /* We have storage, but need to reset it. */
518 TYPE_TARGET_TYPE (ntype) = type;
520 TYPE_LENGTH (ntype) = 1;
521 ntype->set_code (TYPE_CODE_FUNC);
523 INIT_FUNC_SPECIFIC (ntype);
528 /* Given a type TYPE, return a type of functions that return that type.
529 May need to construct such a type if this is the first use. */
532 lookup_function_type (struct type *type)
534 return make_function_type (type, (struct type **) 0);
537 /* Given a type TYPE and argument types, return the appropriate
538 function type. If the final type in PARAM_TYPES is NULL, make a
542 lookup_function_type_with_arguments (struct type *type,
544 struct type **param_types)
546 struct type *fn = make_function_type (type, (struct type **) 0);
551 if (param_types[nparams - 1] == NULL)
554 fn->set_has_varargs (true);
556 else if (check_typedef (param_types[nparams - 1])->code ()
560 /* Caller should have ensured this. */
561 gdb_assert (nparams == 0);
562 fn->set_is_prototyped (true);
565 fn->set_is_prototyped (true);
568 fn->set_num_fields (nparams);
570 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
571 for (i = 0; i < nparams; ++i)
572 fn->field (i).set_type (param_types[i]);
577 /* Identify address space identifier by name -- return a
578 type_instance_flags. */
581 address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
582 const char *space_identifier)
584 type_instance_flags type_flags;
586 /* Check for known address space delimiters. */
587 if (!strcmp (space_identifier, "code"))
588 return TYPE_INSTANCE_FLAG_CODE_SPACE;
589 else if (!strcmp (space_identifier, "data"))
590 return TYPE_INSTANCE_FLAG_DATA_SPACE;
591 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
592 && gdbarch_address_class_name_to_type_flags (gdbarch,
597 error (_("Unknown address space specifier: \"%s\""), space_identifier);
600 /* Identify address space identifier by type_instance_flags and return
601 the string version of the adress space name. */
604 address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
605 type_instance_flags space_flag)
607 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
609 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
611 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
612 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
613 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
618 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
620 If STORAGE is non-NULL, create the new type instance there.
621 STORAGE must be in the same obstack as TYPE. */
624 make_qualified_type (struct type *type, type_instance_flags new_flags,
625 struct type *storage)
632 if (ntype->instance_flags () == new_flags)
634 ntype = TYPE_CHAIN (ntype);
636 while (ntype != type);
638 /* Create a new type instance. */
640 ntype = alloc_type_instance (type);
643 /* If STORAGE was provided, it had better be in the same objfile
644 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
645 if one objfile is freed and the other kept, we'd have
646 dangling pointers. */
647 gdb_assert (type->objfile_owner () == storage->objfile_owner ());
650 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
651 TYPE_CHAIN (ntype) = ntype;
654 /* Pointers or references to the original type are not relevant to
656 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
657 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
659 /* Chain the new qualified type to the old type. */
660 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
661 TYPE_CHAIN (type) = ntype;
663 /* Now set the instance flags and return the new type. */
664 ntype->set_instance_flags (new_flags);
666 /* Set length of new type to that of the original type. */
667 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
672 /* Make an address-space-delimited variant of a type -- a type that
673 is identical to the one supplied except that it has an address
674 space attribute attached to it (such as "code" or "data").
676 The space attributes "code" and "data" are for Harvard
677 architectures. The address space attributes are for architectures
678 which have alternately sized pointers or pointers with alternate
682 make_type_with_address_space (struct type *type,
683 type_instance_flags space_flag)
685 type_instance_flags new_flags = ((type->instance_flags ()
686 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
687 | TYPE_INSTANCE_FLAG_DATA_SPACE
688 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
691 return make_qualified_type (type, new_flags, NULL);
694 /* Make a "c-v" variant of a type -- a type that is identical to the
695 one supplied except that it may have const or volatile attributes
696 CNST is a flag for setting the const attribute
697 VOLTL is a flag for setting the volatile attribute
698 TYPE is the base type whose variant we are creating.
700 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
701 storage to hold the new qualified type; *TYPEPTR and TYPE must be
702 in the same objfile. Otherwise, allocate fresh memory for the new
703 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
704 new type we construct. */
707 make_cv_type (int cnst, int voltl,
709 struct type **typeptr)
711 struct type *ntype; /* New type */
713 type_instance_flags new_flags = (type->instance_flags ()
714 & ~(TYPE_INSTANCE_FLAG_CONST
715 | TYPE_INSTANCE_FLAG_VOLATILE));
718 new_flags |= TYPE_INSTANCE_FLAG_CONST;
721 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
723 if (typeptr && *typeptr != NULL)
725 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
726 a C-V variant chain that threads across objfiles: if one
727 objfile gets freed, then the other has a broken C-V chain.
729 This code used to try to copy over the main type from TYPE to
730 *TYPEPTR if they were in different objfiles, but that's
731 wrong, too: TYPE may have a field list or member function
732 lists, which refer to types of their own, etc. etc. The
733 whole shebang would need to be copied over recursively; you
734 can't have inter-objfile pointers. The only thing to do is
735 to leave stub types as stub types, and look them up afresh by
736 name each time you encounter them. */
737 gdb_assert ((*typeptr)->objfile_owner () == type->objfile_owner ());
740 ntype = make_qualified_type (type, new_flags,
741 typeptr ? *typeptr : NULL);
749 /* Make a 'restrict'-qualified version of TYPE. */
752 make_restrict_type (struct type *type)
754 return make_qualified_type (type,
755 (type->instance_flags ()
756 | TYPE_INSTANCE_FLAG_RESTRICT),
760 /* Make a type without const, volatile, or restrict. */
763 make_unqualified_type (struct type *type)
765 return make_qualified_type (type,
766 (type->instance_flags ()
767 & ~(TYPE_INSTANCE_FLAG_CONST
768 | TYPE_INSTANCE_FLAG_VOLATILE
769 | TYPE_INSTANCE_FLAG_RESTRICT)),
773 /* Make a '_Atomic'-qualified version of TYPE. */
776 make_atomic_type (struct type *type)
778 return make_qualified_type (type,
779 (type->instance_flags ()
780 | TYPE_INSTANCE_FLAG_ATOMIC),
784 /* Replace the contents of ntype with the type *type. This changes the
785 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
786 the changes are propogated to all types in the TYPE_CHAIN.
788 In order to build recursive types, it's inevitable that we'll need
789 to update types in place --- but this sort of indiscriminate
790 smashing is ugly, and needs to be replaced with something more
791 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
792 clear if more steps are needed. */
795 replace_type (struct type *ntype, struct type *type)
799 /* These two types had better be in the same objfile. Otherwise,
800 the assignment of one type's main type structure to the other
801 will produce a type with references to objects (names; field
802 lists; etc.) allocated on an objfile other than its own. */
803 gdb_assert (ntype->objfile_owner () == type->objfile_owner ());
805 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
807 /* The type length is not a part of the main type. Update it for
808 each type on the variant chain. */
812 /* Assert that this element of the chain has no address-class bits
813 set in its flags. Such type variants might have type lengths
814 which are supposed to be different from the non-address-class
815 variants. This assertion shouldn't ever be triggered because
816 symbol readers which do construct address-class variants don't
817 call replace_type(). */
818 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
820 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
821 chain = TYPE_CHAIN (chain);
823 while (ntype != chain);
825 /* Assert that the two types have equivalent instance qualifiers.
826 This should be true for at least all of our debug readers. */
827 gdb_assert (ntype->instance_flags () == type->instance_flags ());
830 /* Implement direct support for MEMBER_TYPE in GNU C++.
831 May need to construct such a type if this is the first use.
832 The TYPE is the type of the member. The DOMAIN is the type
833 of the aggregate that the member belongs to. */
836 lookup_memberptr_type (struct type *type, struct type *domain)
840 mtype = alloc_type_copy (type);
841 smash_to_memberptr_type (mtype, domain, type);
845 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
848 lookup_methodptr_type (struct type *to_type)
852 mtype = alloc_type_copy (to_type);
853 smash_to_methodptr_type (mtype, to_type);
857 /* Allocate a stub method whose return type is TYPE. This apparently
858 happens for speed of symbol reading, since parsing out the
859 arguments to the method is cpu-intensive, the way we are doing it.
860 So, we will fill in arguments later. This always returns a fresh
864 allocate_stub_method (struct type *type)
868 mtype = alloc_type_copy (type);
869 mtype->set_code (TYPE_CODE_METHOD);
870 TYPE_LENGTH (mtype) = 1;
871 mtype->set_is_stub (true);
872 TYPE_TARGET_TYPE (mtype) = type;
873 /* TYPE_SELF_TYPE (mtype) = unknown yet */
877 /* See gdbtypes.h. */
880 operator== (const dynamic_prop &l, const dynamic_prop &r)
882 if (l.kind () != r.kind ())
890 return l.const_val () == r.const_val ();
891 case PROP_ADDR_OFFSET:
894 return l.baton () == r.baton ();
895 case PROP_VARIANT_PARTS:
896 return l.variant_parts () == r.variant_parts ();
898 return l.original_type () == r.original_type ();
901 gdb_assert_not_reached ("unhandled dynamic_prop kind");
904 /* See gdbtypes.h. */
907 operator== (const range_bounds &l, const range_bounds &r)
909 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
911 return (FIELD_EQ (low)
913 && FIELD_EQ (flag_upper_bound_is_count)
914 && FIELD_EQ (flag_bound_evaluated)
920 /* Create a range type with a dynamic range from LOW_BOUND to
921 HIGH_BOUND, inclusive. See create_range_type for further details. */
924 create_range_type (struct type *result_type, struct type *index_type,
925 const struct dynamic_prop *low_bound,
926 const struct dynamic_prop *high_bound,
929 /* The INDEX_TYPE should be a type capable of holding the upper and lower
930 bounds, as such a zero sized, or void type makes no sense. */
931 gdb_assert (index_type->code () != TYPE_CODE_VOID);
932 gdb_assert (TYPE_LENGTH (index_type) > 0);
934 if (result_type == NULL)
935 result_type = alloc_type_copy (index_type);
936 result_type->set_code (TYPE_CODE_RANGE);
937 TYPE_TARGET_TYPE (result_type) = index_type;
938 if (index_type->is_stub ())
939 result_type->set_target_is_stub (true);
941 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
944 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
945 bounds->low = *low_bound;
946 bounds->high = *high_bound;
948 bounds->stride.set_const_val (0);
950 result_type->set_bounds (bounds);
952 if (index_type->code () == TYPE_CODE_FIXED_POINT)
953 result_type->set_is_unsigned (index_type->is_unsigned ());
954 /* Note that the signed-ness of a range type can't simply be copied
955 from the underlying type. Consider a case where the underlying
956 type is 'int', but the range type can hold 0..65535, and where
957 the range is further specified to fit into 16 bits. In this
958 case, if we copy the underlying type's sign, then reading some
959 range values will cause an unwanted sign extension. So, we have
960 some heuristics here instead. */
961 else if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
962 result_type->set_is_unsigned (true);
963 /* Ada allows the declaration of range types whose upper bound is
964 less than the lower bound, so checking the lower bound is not
965 enough. Make sure we do not mark a range type whose upper bound
966 is negative as unsigned. */
967 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
968 result_type->set_is_unsigned (false);
970 result_type->set_endianity_is_not_default
971 (index_type->endianity_is_not_default ());
976 /* See gdbtypes.h. */
979 create_range_type_with_stride (struct type *result_type,
980 struct type *index_type,
981 const struct dynamic_prop *low_bound,
982 const struct dynamic_prop *high_bound,
984 const struct dynamic_prop *stride,
987 result_type = create_range_type (result_type, index_type, low_bound,
990 gdb_assert (stride != nullptr);
991 result_type->bounds ()->stride = *stride;
992 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
999 /* Create a range type using either a blank type supplied in
1000 RESULT_TYPE, or creating a new type, inheriting the objfile from
1003 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
1004 to HIGH_BOUND, inclusive.
1006 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1007 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1010 create_static_range_type (struct type *result_type, struct type *index_type,
1011 LONGEST low_bound, LONGEST high_bound)
1013 struct dynamic_prop low, high;
1015 low.set_const_val (low_bound);
1016 high.set_const_val (high_bound);
1018 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1023 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1024 are static, otherwise returns 0. */
1027 has_static_range (const struct range_bounds *bounds)
1029 /* If the range doesn't have a defined stride then its stride field will
1030 be initialized to the constant 0. */
1031 return (bounds->low.kind () == PROP_CONST
1032 && bounds->high.kind () == PROP_CONST
1033 && bounds->stride.kind () == PROP_CONST);
1036 /* See gdbtypes.h. */
1038 gdb::optional<LONGEST>
1039 get_discrete_low_bound (struct type *type)
1041 type = check_typedef (type);
1042 switch (type->code ())
1044 case TYPE_CODE_RANGE:
1046 /* This function only works for ranges with a constant low bound. */
1047 if (type->bounds ()->low.kind () != PROP_CONST)
1050 LONGEST low = type->bounds ()->low.const_val ();
1052 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1054 gdb::optional<LONGEST> low_pos
1055 = discrete_position (TYPE_TARGET_TYPE (type), low);
1057 if (low_pos.has_value ())
1064 case TYPE_CODE_ENUM:
1066 if (type->num_fields () > 0)
1068 /* The enums may not be sorted by value, so search all
1070 LONGEST low = TYPE_FIELD_ENUMVAL (type, 0);
1072 for (int i = 0; i < type->num_fields (); i++)
1074 if (TYPE_FIELD_ENUMVAL (type, i) < low)
1075 low = TYPE_FIELD_ENUMVAL (type, i);
1078 /* Set unsigned indicator if warranted. */
1080 type->set_is_unsigned (true);
1088 case TYPE_CODE_BOOL:
1092 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1095 if (!type->is_unsigned ())
1096 return -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1099 case TYPE_CODE_CHAR:
1107 /* See gdbtypes.h. */
1109 gdb::optional<LONGEST>
1110 get_discrete_high_bound (struct type *type)
1112 type = check_typedef (type);
1113 switch (type->code ())
1115 case TYPE_CODE_RANGE:
1117 /* This function only works for ranges with a constant high bound. */
1118 if (type->bounds ()->high.kind () != PROP_CONST)
1121 LONGEST high = type->bounds ()->high.const_val ();
1123 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1125 gdb::optional<LONGEST> high_pos
1126 = discrete_position (TYPE_TARGET_TYPE (type), high);
1128 if (high_pos.has_value ())
1135 case TYPE_CODE_ENUM:
1137 if (type->num_fields () > 0)
1139 /* The enums may not be sorted by value, so search all
1141 LONGEST high = TYPE_FIELD_ENUMVAL (type, 0);
1143 for (int i = 0; i < type->num_fields (); i++)
1145 if (TYPE_FIELD_ENUMVAL (type, i) > high)
1146 high = TYPE_FIELD_ENUMVAL (type, i);
1155 case TYPE_CODE_BOOL:
1159 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1162 if (!type->is_unsigned ())
1164 LONGEST low = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1169 case TYPE_CODE_CHAR:
1171 /* This round-about calculation is to avoid shifting by
1172 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1173 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1174 LONGEST high = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1175 return (high - 1) | high;
1183 /* See gdbtypes.h. */
1186 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1188 gdb::optional<LONGEST> low = get_discrete_low_bound (type);
1189 if (!low.has_value ())
1192 gdb::optional<LONGEST> high = get_discrete_high_bound (type);
1193 if (!high.has_value ())
1202 /* See gdbtypes.h */
1205 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1207 struct type *index = type->index_type ();
1214 if (!get_discrete_bounds (index, &low, &high))
1226 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1227 representation of a value of this type, save the corresponding
1228 position number in POS.
1230 Its differs from VAL only in the case of enumeration types. In
1231 this case, the position number of the value of the first listed
1232 enumeration literal is zero; the position number of the value of
1233 each subsequent enumeration literal is one more than that of its
1234 predecessor in the list.
1236 Return 1 if the operation was successful. Return zero otherwise,
1237 in which case the value of POS is unmodified.
1240 gdb::optional<LONGEST>
1241 discrete_position (struct type *type, LONGEST val)
1243 if (type->code () == TYPE_CODE_RANGE)
1244 type = TYPE_TARGET_TYPE (type);
1246 if (type->code () == TYPE_CODE_ENUM)
1250 for (i = 0; i < type->num_fields (); i += 1)
1252 if (val == TYPE_FIELD_ENUMVAL (type, i))
1256 /* Invalid enumeration value. */
1263 /* If the array TYPE has static bounds calculate and update its
1264 size, then return true. Otherwise return false and leave TYPE
1268 update_static_array_size (struct type *type)
1270 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1272 struct type *range_type = type->index_type ();
1274 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1275 && has_static_range (range_type->bounds ())
1276 && (!type_not_associated (type)
1277 && !type_not_allocated (type)))
1279 LONGEST low_bound, high_bound;
1281 struct type *element_type;
1283 stride = type->bit_stride ();
1285 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1286 low_bound = high_bound = 0;
1288 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1289 /* Be careful when setting the array length. Ada arrays can be
1290 empty arrays with the high_bound being smaller than the low_bound.
1291 In such cases, the array length should be zero. */
1292 if (high_bound < low_bound)
1293 TYPE_LENGTH (type) = 0;
1294 else if (stride != 0)
1296 /* Ensure that the type length is always positive, even in the
1297 case where (for example in Fortran) we have a negative
1298 stride. It is possible to have a single element array with a
1299 negative stride in Fortran (this doesn't mean anything
1300 special, it's still just a single element array) so do
1301 consider that case when touching this code. */
1302 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1304 = ((std::abs (stride) * element_count) + 7) / 8;
1307 TYPE_LENGTH (type) =
1308 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1310 /* If this array's element is itself an array with a bit stride,
1311 then we want to update this array's bit stride to reflect the
1312 size of the sub-array. Otherwise, we'll end up using the
1313 wrong size when trying to find elements of the outer
1315 if (element_type->code () == TYPE_CODE_ARRAY
1316 && TYPE_LENGTH (element_type) != 0
1317 && TYPE_FIELD_BITSIZE (element_type, 0) != 0
1318 && get_array_bounds (element_type, &low_bound, &high_bound)
1319 && high_bound >= low_bound)
1320 TYPE_FIELD_BITSIZE (type, 0)
1321 = ((high_bound - low_bound + 1)
1322 * TYPE_FIELD_BITSIZE (element_type, 0));
1330 /* Create an array type using either a blank type supplied in
1331 RESULT_TYPE, or creating a new type, inheriting the objfile from
1334 Elements will be of type ELEMENT_TYPE, the indices will be of type
1337 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1338 This byte stride property is added to the resulting array type
1339 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1340 argument can only be used to create types that are objfile-owned
1341 (see add_dyn_prop), meaning that either this function must be called
1342 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1344 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1345 If BIT_STRIDE is not zero, build a packed array type whose element
1346 size is BIT_STRIDE. Otherwise, ignore this parameter.
1348 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1349 sure it is TYPE_CODE_UNDEF before we bash it into an array
1353 create_array_type_with_stride (struct type *result_type,
1354 struct type *element_type,
1355 struct type *range_type,
1356 struct dynamic_prop *byte_stride_prop,
1357 unsigned int bit_stride)
1359 if (byte_stride_prop != NULL
1360 && byte_stride_prop->kind () == PROP_CONST)
1362 /* The byte stride is actually not dynamic. Pretend we were
1363 called with bit_stride set instead of byte_stride_prop.
1364 This will give us the same result type, while avoiding
1365 the need to handle this as a special case. */
1366 bit_stride = byte_stride_prop->const_val () * 8;
1367 byte_stride_prop = NULL;
1370 if (result_type == NULL)
1371 result_type = alloc_type_copy (range_type);
1373 result_type->set_code (TYPE_CODE_ARRAY);
1374 TYPE_TARGET_TYPE (result_type) = element_type;
1376 result_type->set_num_fields (1);
1377 result_type->set_fields
1378 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1379 result_type->set_index_type (range_type);
1380 if (byte_stride_prop != NULL)
1381 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1382 else if (bit_stride > 0)
1383 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1385 if (!update_static_array_size (result_type))
1387 /* This type is dynamic and its length needs to be computed
1388 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1389 undefined by setting it to zero. Although we are not expected
1390 to trust TYPE_LENGTH in this case, setting the size to zero
1391 allows us to avoid allocating objects of random sizes in case
1392 we accidently do. */
1393 TYPE_LENGTH (result_type) = 0;
1396 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1397 if (TYPE_LENGTH (result_type) == 0)
1398 result_type->set_target_is_stub (true);
1403 /* Same as create_array_type_with_stride but with no bit_stride
1404 (BIT_STRIDE = 0), thus building an unpacked array. */
1407 create_array_type (struct type *result_type,
1408 struct type *element_type,
1409 struct type *range_type)
1411 return create_array_type_with_stride (result_type, element_type,
1412 range_type, NULL, 0);
1416 lookup_array_range_type (struct type *element_type,
1417 LONGEST low_bound, LONGEST high_bound)
1419 struct type *index_type;
1420 struct type *range_type;
1422 if (element_type->is_objfile_owned ())
1423 index_type = objfile_type (element_type->objfile_owner ())->builtin_int;
1425 index_type = builtin_type (element_type->arch_owner ())->builtin_int;
1427 range_type = create_static_range_type (NULL, index_type,
1428 low_bound, high_bound);
1430 return create_array_type (NULL, element_type, range_type);
1433 /* Create a string type using either a blank type supplied in
1434 RESULT_TYPE, or creating a new type. String types are similar
1435 enough to array of char types that we can use create_array_type to
1436 build the basic type and then bash it into a string type.
1438 For fixed length strings, the range type contains 0 as the lower
1439 bound and the length of the string minus one as the upper bound.
1441 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1442 sure it is TYPE_CODE_UNDEF before we bash it into a string
1446 create_string_type (struct type *result_type,
1447 struct type *string_char_type,
1448 struct type *range_type)
1450 result_type = create_array_type (result_type,
1453 result_type->set_code (TYPE_CODE_STRING);
1458 lookup_string_range_type (struct type *string_char_type,
1459 LONGEST low_bound, LONGEST high_bound)
1461 struct type *result_type;
1463 result_type = lookup_array_range_type (string_char_type,
1464 low_bound, high_bound);
1465 result_type->set_code (TYPE_CODE_STRING);
1470 create_set_type (struct type *result_type, struct type *domain_type)
1472 if (result_type == NULL)
1473 result_type = alloc_type_copy (domain_type);
1475 result_type->set_code (TYPE_CODE_SET);
1476 result_type->set_num_fields (1);
1477 result_type->set_fields
1478 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1480 if (!domain_type->is_stub ())
1482 LONGEST low_bound, high_bound, bit_length;
1484 if (!get_discrete_bounds (domain_type, &low_bound, &high_bound))
1485 low_bound = high_bound = 0;
1487 bit_length = high_bound - low_bound + 1;
1488 TYPE_LENGTH (result_type)
1489 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1491 result_type->set_is_unsigned (true);
1493 result_type->field (0).set_type (domain_type);
1498 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1499 and any array types nested inside it. */
1502 make_vector_type (struct type *array_type)
1504 struct type *inner_array, *elt_type;
1506 /* Find the innermost array type, in case the array is
1507 multi-dimensional. */
1508 inner_array = array_type;
1509 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1510 inner_array = TYPE_TARGET_TYPE (inner_array);
1512 elt_type = TYPE_TARGET_TYPE (inner_array);
1513 if (elt_type->code () == TYPE_CODE_INT)
1515 type_instance_flags flags
1516 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1517 elt_type = make_qualified_type (elt_type, flags, NULL);
1518 TYPE_TARGET_TYPE (inner_array) = elt_type;
1521 array_type->set_is_vector (true);
1525 init_vector_type (struct type *elt_type, int n)
1527 struct type *array_type;
1529 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1530 make_vector_type (array_type);
1534 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1535 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1536 confusing. "self" is a common enough replacement for "this".
1537 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1538 TYPE_CODE_METHOD. */
1541 internal_type_self_type (struct type *type)
1543 switch (type->code ())
1545 case TYPE_CODE_METHODPTR:
1546 case TYPE_CODE_MEMBERPTR:
1547 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1549 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1550 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1551 case TYPE_CODE_METHOD:
1552 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1554 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1555 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1557 gdb_assert_not_reached ("bad type");
1561 /* Set the type of the class that TYPE belongs to.
1562 In c++ this is the class of "this".
1563 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1564 TYPE_CODE_METHOD. */
1567 set_type_self_type (struct type *type, struct type *self_type)
1569 switch (type->code ())
1571 case TYPE_CODE_METHODPTR:
1572 case TYPE_CODE_MEMBERPTR:
1573 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1574 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1575 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1576 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1578 case TYPE_CODE_METHOD:
1579 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1580 INIT_FUNC_SPECIFIC (type);
1581 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1582 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1585 gdb_assert_not_reached ("bad type");
1589 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1590 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1591 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1592 TYPE doesn't include the offset (that's the value of the MEMBER
1593 itself), but does include the structure type into which it points
1596 When "smashing" the type, we preserve the objfile that the old type
1597 pointed to, since we aren't changing where the type is actually
1601 smash_to_memberptr_type (struct type *type, struct type *self_type,
1602 struct type *to_type)
1605 type->set_code (TYPE_CODE_MEMBERPTR);
1606 TYPE_TARGET_TYPE (type) = to_type;
1607 set_type_self_type (type, self_type);
1608 /* Assume that a data member pointer is the same size as a normal
1610 TYPE_LENGTH (type) = gdbarch_ptr_bit (to_type->arch ()) / TARGET_CHAR_BIT;
1613 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1615 When "smashing" the type, we preserve the objfile that the old type
1616 pointed to, since we aren't changing where the type is actually
1620 smash_to_methodptr_type (struct type *type, struct type *to_type)
1623 type->set_code (TYPE_CODE_METHODPTR);
1624 TYPE_TARGET_TYPE (type) = to_type;
1625 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1626 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1629 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1630 METHOD just means `function that gets an extra "this" argument'.
1632 When "smashing" the type, we preserve the objfile that the old type
1633 pointed to, since we aren't changing where the type is actually
1637 smash_to_method_type (struct type *type, struct type *self_type,
1638 struct type *to_type, struct field *args,
1639 int nargs, int varargs)
1642 type->set_code (TYPE_CODE_METHOD);
1643 TYPE_TARGET_TYPE (type) = to_type;
1644 set_type_self_type (type, self_type);
1645 type->set_fields (args);
1646 type->set_num_fields (nargs);
1648 type->set_has_varargs (true);
1649 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1652 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1653 Since GCC PR debug/47510 DWARF provides associated information to detect the
1654 anonymous class linkage name from its typedef.
1656 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1660 type_name_or_error (struct type *type)
1662 struct type *saved_type = type;
1664 struct objfile *objfile;
1666 type = check_typedef (type);
1668 name = type->name ();
1672 name = saved_type->name ();
1673 objfile = saved_type->objfile_owner ();
1674 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1675 name ? name : "<anonymous>",
1676 objfile ? objfile_name (objfile) : "<arch>");
1679 /* Lookup a typedef or primitive type named NAME, visible in lexical
1680 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1681 suitably defined. */
1684 lookup_typename (const struct language_defn *language,
1686 const struct block *block, int noerr)
1690 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1691 language->la_language, NULL).symbol;
1692 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1693 return SYMBOL_TYPE (sym);
1697 error (_("No type named %s."), name);
1701 lookup_unsigned_typename (const struct language_defn *language,
1704 char *uns = (char *) alloca (strlen (name) + 10);
1706 strcpy (uns, "unsigned ");
1707 strcpy (uns + 9, name);
1708 return lookup_typename (language, uns, NULL, 0);
1712 lookup_signed_typename (const struct language_defn *language, const char *name)
1715 char *uns = (char *) alloca (strlen (name) + 8);
1717 strcpy (uns, "signed ");
1718 strcpy (uns + 7, name);
1719 t = lookup_typename (language, uns, NULL, 1);
1720 /* If we don't find "signed FOO" just try again with plain "FOO". */
1723 return lookup_typename (language, name, NULL, 0);
1726 /* Lookup a structure type named "struct NAME",
1727 visible in lexical block BLOCK. */
1730 lookup_struct (const char *name, const struct block *block)
1734 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1738 error (_("No struct type named %s."), name);
1740 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1742 error (_("This context has class, union or enum %s, not a struct."),
1745 return (SYMBOL_TYPE (sym));
1748 /* Lookup a union type named "union NAME",
1749 visible in lexical block BLOCK. */
1752 lookup_union (const char *name, const struct block *block)
1757 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1760 error (_("No union type named %s."), name);
1762 t = SYMBOL_TYPE (sym);
1764 if (t->code () == TYPE_CODE_UNION)
1767 /* If we get here, it's not a union. */
1768 error (_("This context has class, struct or enum %s, not a union."),
1772 /* Lookup an enum type named "enum NAME",
1773 visible in lexical block BLOCK. */
1776 lookup_enum (const char *name, const struct block *block)
1780 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1783 error (_("No enum type named %s."), name);
1785 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1787 error (_("This context has class, struct or union %s, not an enum."),
1790 return (SYMBOL_TYPE (sym));
1793 /* Lookup a template type named "template NAME<TYPE>",
1794 visible in lexical block BLOCK. */
1797 lookup_template_type (const char *name, struct type *type,
1798 const struct block *block)
1801 char *nam = (char *)
1802 alloca (strlen (name) + strlen (type->name ()) + 4);
1806 strcat (nam, type->name ());
1807 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1809 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1813 error (_("No template type named %s."), name);
1815 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1817 error (_("This context has class, union or enum %s, not a struct."),
1820 return (SYMBOL_TYPE (sym));
1823 /* See gdbtypes.h. */
1826 lookup_struct_elt (struct type *type, const char *name, int noerr)
1832 type = check_typedef (type);
1833 if (type->code () != TYPE_CODE_PTR
1834 && type->code () != TYPE_CODE_REF)
1836 type = TYPE_TARGET_TYPE (type);
1839 if (type->code () != TYPE_CODE_STRUCT
1840 && type->code () != TYPE_CODE_UNION)
1842 std::string type_name = type_to_string (type);
1843 error (_("Type %s is not a structure or union type."),
1844 type_name.c_str ());
1847 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1849 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1851 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1853 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1855 else if (!t_field_name || *t_field_name == '\0')
1858 = lookup_struct_elt (type->field (i).type (), name, 1);
1859 if (elt.field != NULL)
1861 elt.offset += TYPE_FIELD_BITPOS (type, i);
1867 /* OK, it's not in this class. Recursively check the baseclasses. */
1868 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1870 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1871 if (elt.field != NULL)
1876 return {nullptr, 0};
1878 std::string type_name = type_to_string (type);
1879 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1882 /* See gdbtypes.h. */
1885 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1887 struct_elt elt = lookup_struct_elt (type, name, noerr);
1888 if (elt.field != NULL)
1889 return elt.field->type ();
1894 /* Return the largest number representable by unsigned integer type TYPE. */
1897 get_unsigned_type_max (struct type *type)
1901 type = check_typedef (type);
1902 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1903 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1905 /* Written this way to avoid overflow. */
1906 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1907 return ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1910 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1911 signed integer type TYPE. */
1914 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1918 type = check_typedef (type);
1919 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1920 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1922 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1923 *min = -((ULONGEST) 1 << (n - 1));
1924 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1927 /* Return the largest value representable by pointer type TYPE. */
1930 get_pointer_type_max (struct type *type)
1934 type = check_typedef (type);
1935 gdb_assert (type->code () == TYPE_CODE_PTR);
1936 gdb_assert (TYPE_LENGTH (type) <= sizeof (CORE_ADDR));
1938 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1939 return ((((CORE_ADDR) 1 << (n - 1)) - 1) << 1) | 1;
1942 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1943 cplus_stuff.vptr_fieldno.
1945 cplus_stuff is initialized to cplus_struct_default which does not
1946 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1947 designated initializers). We cope with that here. */
1950 internal_type_vptr_fieldno (struct type *type)
1952 type = check_typedef (type);
1953 gdb_assert (type->code () == TYPE_CODE_STRUCT
1954 || type->code () == TYPE_CODE_UNION);
1955 if (!HAVE_CPLUS_STRUCT (type))
1957 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1960 /* Set the value of cplus_stuff.vptr_fieldno. */
1963 set_type_vptr_fieldno (struct type *type, int fieldno)
1965 type = check_typedef (type);
1966 gdb_assert (type->code () == TYPE_CODE_STRUCT
1967 || type->code () == TYPE_CODE_UNION);
1968 if (!HAVE_CPLUS_STRUCT (type))
1969 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1970 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1973 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1974 cplus_stuff.vptr_basetype. */
1977 internal_type_vptr_basetype (struct type *type)
1979 type = check_typedef (type);
1980 gdb_assert (type->code () == TYPE_CODE_STRUCT
1981 || type->code () == TYPE_CODE_UNION);
1982 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1983 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1986 /* Set the value of cplus_stuff.vptr_basetype. */
1989 set_type_vptr_basetype (struct type *type, struct type *basetype)
1991 type = check_typedef (type);
1992 gdb_assert (type->code () == TYPE_CODE_STRUCT
1993 || type->code () == TYPE_CODE_UNION);
1994 if (!HAVE_CPLUS_STRUCT (type))
1995 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1996 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1999 /* Lookup the vptr basetype/fieldno values for TYPE.
2000 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
2001 vptr_fieldno. Also, if found and basetype is from the same objfile,
2003 If not found, return -1 and ignore BASETYPEP.
2004 Callers should be aware that in some cases (for example,
2005 the type or one of its baseclasses is a stub type and we are
2006 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
2007 this function will not be able to find the
2008 virtual function table pointer, and vptr_fieldno will remain -1 and
2009 vptr_basetype will remain NULL or incomplete. */
2012 get_vptr_fieldno (struct type *type, struct type **basetypep)
2014 type = check_typedef (type);
2016 if (TYPE_VPTR_FIELDNO (type) < 0)
2020 /* We must start at zero in case the first (and only) baseclass
2021 is virtual (and hence we cannot share the table pointer). */
2022 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2024 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2026 struct type *basetype;
2028 fieldno = get_vptr_fieldno (baseclass, &basetype);
2031 /* If the type comes from a different objfile we can't cache
2032 it, it may have a different lifetime. PR 2384 */
2033 if (type->objfile_owner () == basetype->objfile_owner ())
2035 set_type_vptr_fieldno (type, fieldno);
2036 set_type_vptr_basetype (type, basetype);
2039 *basetypep = basetype;
2050 *basetypep = TYPE_VPTR_BASETYPE (type);
2051 return TYPE_VPTR_FIELDNO (type);
2056 stub_noname_complaint (void)
2058 complaint (_("stub type has NULL name"));
2061 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
2062 attached to it, and that property has a non-constant value. */
2065 array_type_has_dynamic_stride (struct type *type)
2067 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2069 return (prop != NULL && prop->kind () != PROP_CONST);
2072 /* Worker for is_dynamic_type. */
2075 is_dynamic_type_internal (struct type *type, int top_level)
2077 type = check_typedef (type);
2079 /* We only want to recognize references at the outermost level. */
2080 if (top_level && type->code () == TYPE_CODE_REF)
2081 type = check_typedef (TYPE_TARGET_TYPE (type));
2083 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
2084 dynamic, even if the type itself is statically defined.
2085 From a user's point of view, this may appear counter-intuitive;
2086 but it makes sense in this context, because the point is to determine
2087 whether any part of the type needs to be resolved before it can
2089 if (TYPE_DATA_LOCATION (type) != NULL
2090 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
2091 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
2094 if (TYPE_ASSOCIATED_PROP (type))
2097 if (TYPE_ALLOCATED_PROP (type))
2100 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2101 if (prop != nullptr && prop->kind () != PROP_TYPE)
2104 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2107 switch (type->code ())
2109 case TYPE_CODE_RANGE:
2111 /* A range type is obviously dynamic if it has at least one
2112 dynamic bound. But also consider the range type to be
2113 dynamic when its subtype is dynamic, even if the bounds
2114 of the range type are static. It allows us to assume that
2115 the subtype of a static range type is also static. */
2116 return (!has_static_range (type->bounds ())
2117 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2120 case TYPE_CODE_STRING:
2121 /* Strings are very much like an array of characters, and can be
2122 treated as one here. */
2123 case TYPE_CODE_ARRAY:
2125 gdb_assert (type->num_fields () == 1);
2127 /* The array is dynamic if either the bounds are dynamic... */
2128 if (is_dynamic_type_internal (type->index_type (), 0))
2130 /* ... or the elements it contains have a dynamic contents... */
2131 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2133 /* ... or if it has a dynamic stride... */
2134 if (array_type_has_dynamic_stride (type))
2139 case TYPE_CODE_STRUCT:
2140 case TYPE_CODE_UNION:
2144 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2146 for (i = 0; i < type->num_fields (); ++i)
2148 /* Static fields can be ignored here. */
2149 if (field_is_static (&type->field (i)))
2151 /* If the field has dynamic type, then so does TYPE. */
2152 if (is_dynamic_type_internal (type->field (i).type (), 0))
2154 /* If the field is at a fixed offset, then it is not
2156 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2158 /* Do not consider C++ virtual base types to be dynamic
2159 due to the field's offset being dynamic; these are
2160 handled via other means. */
2161 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2172 /* See gdbtypes.h. */
2175 is_dynamic_type (struct type *type)
2177 return is_dynamic_type_internal (type, 1);
2180 static struct type *resolve_dynamic_type_internal
2181 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2183 /* Given a dynamic range type (dyn_range_type) and a stack of
2184 struct property_addr_info elements, return a static version
2187 When RESOLVE_P is true then the returned static range is created by
2188 actually evaluating any dynamic properties within the range type, while
2189 when RESOLVE_P is false the returned static range has all of the bounds
2190 and stride information set to undefined. The RESOLVE_P set to false
2191 case will be used when evaluating a dynamic array that is not
2192 allocated, or not associated, i.e. the bounds information might not be
2195 static struct type *
2196 resolve_dynamic_range (struct type *dyn_range_type,
2197 struct property_addr_info *addr_stack,
2198 bool resolve_p = true)
2201 struct type *static_range_type, *static_target_type;
2202 struct dynamic_prop low_bound, high_bound, stride;
2204 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2206 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2207 if (resolve_p && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2208 low_bound.set_const_val (value);
2210 low_bound.set_undefined ();
2212 prop = &dyn_range_type->bounds ()->high;
2213 if (resolve_p && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2215 high_bound.set_const_val (value);
2217 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2218 high_bound.set_const_val
2219 (low_bound.const_val () + high_bound.const_val () - 1);
2222 high_bound.set_undefined ();
2224 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2225 prop = &dyn_range_type->bounds ()->stride;
2226 if (resolve_p && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2228 stride.set_const_val (value);
2230 /* If we have a bit stride that is not an exact number of bytes then
2231 I really don't think this is going to work with current GDB, the
2232 array indexing code in GDB seems to be pretty heavily tied to byte
2233 offsets right now. Assuming 8 bits in a byte. */
2234 struct gdbarch *gdbarch = dyn_range_type->arch ();
2235 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2236 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2237 error (_("bit strides that are not a multiple of the byte size "
2238 "are currently not supported"));
2242 stride.set_undefined ();
2243 byte_stride_p = true;
2247 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2249 LONGEST bias = dyn_range_type->bounds ()->bias;
2250 static_range_type = create_range_type_with_stride
2251 (copy_type (dyn_range_type), static_target_type,
2252 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2253 static_range_type->bounds ()->flag_bound_evaluated = 1;
2254 return static_range_type;
2257 /* Resolves dynamic bound values of an array or string type TYPE to static
2258 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2259 needed during the dynamic resolution.
2261 When RESOLVE_P is true then the dynamic properties of TYPE are
2262 evaluated, otherwise the dynamic properties of TYPE are not evaluated,
2263 instead we assume the array is not allocated/associated yet. */
2265 static struct type *
2266 resolve_dynamic_array_or_string (struct type *type,
2267 struct property_addr_info *addr_stack,
2268 bool resolve_p = true)
2271 struct type *elt_type;
2272 struct type *range_type;
2273 struct type *ary_dim;
2274 struct dynamic_prop *prop;
2275 unsigned int bit_stride = 0;
2277 /* For dynamic type resolution strings can be treated like arrays of
2279 gdb_assert (type->code () == TYPE_CODE_ARRAY
2280 || type->code () == TYPE_CODE_STRING);
2282 type = copy_type (type);
2284 /* Resolve the allocated and associated properties before doing anything
2285 else. If an array is not allocated or not associated then (at least
2286 for Fortran) there is no guarantee that the data to define the upper
2287 bound, lower bound, or stride will be correct. If RESOLVE_P is
2288 already false at this point then this is not the first dimension of
2289 the array and a more outer dimension has already marked this array as
2290 not allocated/associated, as such we just ignore this property. This
2291 is fine as GDB only checks the allocated/associated on the outer most
2292 dimension of the array. */
2293 prop = TYPE_ALLOCATED_PROP (type);
2294 if (prop != NULL && resolve_p
2295 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2297 prop->set_const_val (value);
2302 prop = TYPE_ASSOCIATED_PROP (type);
2303 if (prop != NULL && resolve_p
2304 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2306 prop->set_const_val (value);
2311 range_type = check_typedef (type->index_type ());
2312 range_type = resolve_dynamic_range (range_type, addr_stack, resolve_p);
2314 ary_dim = check_typedef (TYPE_TARGET_TYPE (type));
2315 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2316 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack, resolve_p);
2318 elt_type = TYPE_TARGET_TYPE (type);
2320 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2321 if (prop != NULL && resolve_p)
2323 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2325 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2326 bit_stride = (unsigned int) (value * 8);
2330 /* Could be a bug in our code, but it could also happen
2331 if the DWARF info is not correct. Issue a warning,
2332 and assume no byte/bit stride (leave bit_stride = 0). */
2333 warning (_("cannot determine array stride for type %s"),
2334 type->name () ? type->name () : "<no name>");
2338 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2340 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2344 /* Resolve dynamic bounds of members of the union TYPE to static
2345 bounds. ADDR_STACK is a stack of struct property_addr_info
2346 to be used if needed during the dynamic resolution. */
2348 static struct type *
2349 resolve_dynamic_union (struct type *type,
2350 struct property_addr_info *addr_stack)
2352 struct type *resolved_type;
2354 unsigned int max_len = 0;
2356 gdb_assert (type->code () == TYPE_CODE_UNION);
2358 resolved_type = copy_type (type);
2359 resolved_type->set_fields
2361 TYPE_ALLOC (resolved_type,
2362 resolved_type->num_fields () * sizeof (struct field)));
2363 memcpy (resolved_type->fields (),
2365 resolved_type->num_fields () * sizeof (struct field));
2366 for (i = 0; i < resolved_type->num_fields (); ++i)
2370 if (field_is_static (&type->field (i)))
2373 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2375 resolved_type->field (i).set_type (t);
2377 struct type *real_type = check_typedef (t);
2378 if (TYPE_LENGTH (real_type) > max_len)
2379 max_len = TYPE_LENGTH (real_type);
2382 TYPE_LENGTH (resolved_type) = max_len;
2383 return resolved_type;
2386 /* See gdbtypes.h. */
2389 variant::matches (ULONGEST value, bool is_unsigned) const
2391 for (const discriminant_range &range : discriminants)
2392 if (range.contains (value, is_unsigned))
2398 compute_variant_fields_inner (struct type *type,
2399 struct property_addr_info *addr_stack,
2400 const variant_part &part,
2401 std::vector<bool> &flags);
2403 /* A helper function to determine which variant fields will be active.
2404 This handles both the variant's direct fields, and any variant
2405 parts embedded in this variant. TYPE is the type we're examining.
2406 ADDR_STACK holds information about the concrete object. VARIANT is
2407 the current variant to be handled. FLAGS is where the results are
2408 stored -- this function sets the Nth element in FLAGS if the
2409 corresponding field is enabled. ENABLED is whether this variant is
2413 compute_variant_fields_recurse (struct type *type,
2414 struct property_addr_info *addr_stack,
2415 const variant &variant,
2416 std::vector<bool> &flags,
2419 for (int field = variant.first_field; field < variant.last_field; ++field)
2420 flags[field] = enabled;
2422 for (const variant_part &new_part : variant.parts)
2425 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2428 for (const auto &sub_variant : new_part.variants)
2429 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2435 /* A helper function to determine which variant fields will be active.
2436 This evaluates the discriminant, decides which variant (if any) is
2437 active, and then updates FLAGS to reflect which fields should be
2438 available. TYPE is the type we're examining. ADDR_STACK holds
2439 information about the concrete object. VARIANT is the current
2440 variant to be handled. FLAGS is where the results are stored --
2441 this function sets the Nth element in FLAGS if the corresponding
2442 field is enabled. */
2445 compute_variant_fields_inner (struct type *type,
2446 struct property_addr_info *addr_stack,
2447 const variant_part &part,
2448 std::vector<bool> &flags)
2450 /* Evaluate the discriminant. */
2451 gdb::optional<ULONGEST> discr_value;
2452 if (part.discriminant_index != -1)
2454 int idx = part.discriminant_index;
2456 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2457 error (_("Cannot determine struct field location"
2458 " (invalid location kind)"));
2460 if (addr_stack->valaddr.data () != NULL)
2461 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2465 CORE_ADDR addr = (addr_stack->addr
2466 + (TYPE_FIELD_BITPOS (type, idx)
2467 / TARGET_CHAR_BIT));
2469 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2470 LONGEST size = bitsize / 8;
2472 size = TYPE_LENGTH (type->field (idx).type ());
2474 gdb_byte bits[sizeof (ULONGEST)];
2475 read_memory (addr, bits, size);
2477 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2480 discr_value = unpack_bits_as_long (type->field (idx).type (),
2481 bits, bitpos, bitsize);
2485 /* Go through each variant and see which applies. */
2486 const variant *default_variant = nullptr;
2487 const variant *applied_variant = nullptr;
2488 for (const auto &variant : part.variants)
2490 if (variant.is_default ())
2491 default_variant = &variant;
2492 else if (discr_value.has_value ()
2493 && variant.matches (*discr_value, part.is_unsigned))
2495 applied_variant = &variant;
2499 if (applied_variant == nullptr)
2500 applied_variant = default_variant;
2502 for (const auto &variant : part.variants)
2503 compute_variant_fields_recurse (type, addr_stack, variant,
2504 flags, applied_variant == &variant);
2507 /* Determine which variant fields are available in TYPE. The enabled
2508 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2509 about the concrete object. PARTS describes the top-level variant
2510 parts for this type. */
2513 compute_variant_fields (struct type *type,
2514 struct type *resolved_type,
2515 struct property_addr_info *addr_stack,
2516 const gdb::array_view<variant_part> &parts)
2518 /* Assume all fields are included by default. */
2519 std::vector<bool> flags (resolved_type->num_fields (), true);
2521 /* Now disable fields based on the variants that control them. */
2522 for (const auto &part : parts)
2523 compute_variant_fields_inner (type, addr_stack, part, flags);
2525 resolved_type->set_num_fields
2526 (std::count (flags.begin (), flags.end (), true));
2527 resolved_type->set_fields
2529 TYPE_ALLOC (resolved_type,
2530 resolved_type->num_fields () * sizeof (struct field)));
2533 for (int i = 0; i < type->num_fields (); ++i)
2538 resolved_type->field (out) = type->field (i);
2543 /* Resolve dynamic bounds of members of the struct TYPE to static
2544 bounds. ADDR_STACK is a stack of struct property_addr_info to
2545 be used if needed during the dynamic resolution. */
2547 static struct type *
2548 resolve_dynamic_struct (struct type *type,
2549 struct property_addr_info *addr_stack)
2551 struct type *resolved_type;
2553 unsigned resolved_type_bit_length = 0;
2555 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2557 resolved_type = copy_type (type);
2559 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2560 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2562 compute_variant_fields (type, resolved_type, addr_stack,
2563 *variant_prop->variant_parts ());
2564 /* We want to leave the property attached, so that the Rust code
2565 can tell whether the type was originally an enum. */
2566 variant_prop->set_original_type (type);
2570 resolved_type->set_fields
2572 TYPE_ALLOC (resolved_type,
2573 resolved_type->num_fields () * sizeof (struct field)));
2574 if (type->num_fields () > 0)
2575 memcpy (resolved_type->fields (),
2577 resolved_type->num_fields () * sizeof (struct field));
2580 for (i = 0; i < resolved_type->num_fields (); ++i)
2582 unsigned new_bit_length;
2583 struct property_addr_info pinfo;
2585 if (field_is_static (&resolved_type->field (i)))
2588 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2590 struct dwarf2_property_baton baton;
2592 = lookup_pointer_type (resolved_type->field (i).type ());
2593 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2595 struct dynamic_prop prop;
2596 prop.set_locexpr (&baton);
2599 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2601 SET_FIELD_BITPOS (resolved_type->field (i),
2602 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2605 /* As we know this field is not a static field, the field's
2606 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2607 this is the case, but only trigger a simple error rather
2608 than an internal error if that fails. While failing
2609 that verification indicates a bug in our code, the error
2610 is not severe enough to suggest to the user he stops
2611 his debugging session because of it. */
2612 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2613 error (_("Cannot determine struct field location"
2614 " (invalid location kind)"));
2616 pinfo.type = check_typedef (resolved_type->field (i).type ());
2617 pinfo.valaddr = addr_stack->valaddr;
2620 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2621 pinfo.next = addr_stack;
2623 resolved_type->field (i).set_type
2624 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2626 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2627 == FIELD_LOC_KIND_BITPOS);
2629 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2630 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2631 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2634 struct type *real_type
2635 = check_typedef (resolved_type->field (i).type ());
2637 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2640 /* Normally, we would use the position and size of the last field
2641 to determine the size of the enclosing structure. But GCC seems
2642 to be encoding the position of some fields incorrectly when
2643 the struct contains a dynamic field that is not placed last.
2644 So we compute the struct size based on the field that has
2645 the highest position + size - probably the best we can do. */
2646 if (new_bit_length > resolved_type_bit_length)
2647 resolved_type_bit_length = new_bit_length;
2650 /* The length of a type won't change for fortran, but it does for C and Ada.
2651 For fortran the size of dynamic fields might change over time but not the
2652 type length of the structure. If we adapt it, we run into problems
2653 when calculating the element offset for arrays of structs. */
2654 if (current_language->la_language != language_fortran)
2655 TYPE_LENGTH (resolved_type)
2656 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2658 /* The Ada language uses this field as a cache for static fixed types: reset
2659 it as RESOLVED_TYPE must have its own static fixed type. */
2660 TYPE_TARGET_TYPE (resolved_type) = NULL;
2662 return resolved_type;
2665 /* Worker for resolved_dynamic_type. */
2667 static struct type *
2668 resolve_dynamic_type_internal (struct type *type,
2669 struct property_addr_info *addr_stack,
2672 struct type *real_type = check_typedef (type);
2673 struct type *resolved_type = nullptr;
2674 struct dynamic_prop *prop;
2677 if (!is_dynamic_type_internal (real_type, top_level))
2680 gdb::optional<CORE_ADDR> type_length;
2681 prop = TYPE_DYNAMIC_LENGTH (type);
2683 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2684 type_length = value;
2686 if (type->code () == TYPE_CODE_TYPEDEF)
2688 resolved_type = copy_type (type);
2689 TYPE_TARGET_TYPE (resolved_type)
2690 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2695 /* Before trying to resolve TYPE, make sure it is not a stub. */
2698 switch (type->code ())
2702 struct property_addr_info pinfo;
2704 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2706 if (addr_stack->valaddr.data () != NULL)
2707 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2710 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2711 pinfo.next = addr_stack;
2713 resolved_type = copy_type (type);
2714 TYPE_TARGET_TYPE (resolved_type)
2715 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2720 case TYPE_CODE_STRING:
2721 /* Strings are very much like an array of characters, and can be
2722 treated as one here. */
2723 case TYPE_CODE_ARRAY:
2724 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2727 case TYPE_CODE_RANGE:
2728 resolved_type = resolve_dynamic_range (type, addr_stack);
2731 case TYPE_CODE_UNION:
2732 resolved_type = resolve_dynamic_union (type, addr_stack);
2735 case TYPE_CODE_STRUCT:
2736 resolved_type = resolve_dynamic_struct (type, addr_stack);
2741 if (resolved_type == nullptr)
2744 if (type_length.has_value ())
2746 TYPE_LENGTH (resolved_type) = *type_length;
2747 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2750 /* Resolve data_location attribute. */
2751 prop = TYPE_DATA_LOCATION (resolved_type);
2753 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2755 /* Start of Fortran hack. See comment in f-lang.h for what is going
2757 if (current_language->la_language == language_fortran
2758 && resolved_type->code () == TYPE_CODE_ARRAY)
2759 value = fortran_adjust_dynamic_array_base_address_hack (resolved_type,
2761 /* End of Fortran hack. */
2762 prop->set_const_val (value);
2765 return resolved_type;
2768 /* See gdbtypes.h */
2771 resolve_dynamic_type (struct type *type,
2772 gdb::array_view<const gdb_byte> valaddr,
2775 struct property_addr_info pinfo
2776 = {check_typedef (type), valaddr, addr, NULL};
2778 return resolve_dynamic_type_internal (type, &pinfo, 1);
2781 /* See gdbtypes.h */
2784 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2786 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2788 while (node != NULL)
2790 if (node->prop_kind == prop_kind)
2797 /* See gdbtypes.h */
2800 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2802 struct dynamic_prop_list *temp;
2804 gdb_assert (this->is_objfile_owned ());
2806 temp = XOBNEW (&this->objfile_owner ()->objfile_obstack,
2807 struct dynamic_prop_list);
2808 temp->prop_kind = prop_kind;
2810 temp->next = this->main_type->dyn_prop_list;
2812 this->main_type->dyn_prop_list = temp;
2815 /* See gdbtypes.h. */
2818 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2820 struct dynamic_prop_list *prev_node, *curr_node;
2822 curr_node = this->main_type->dyn_prop_list;
2825 while (NULL != curr_node)
2827 if (curr_node->prop_kind == kind)
2829 /* Update the linked list but don't free anything.
2830 The property was allocated on objstack and it is not known
2831 if we are on top of it. Nevertheless, everything is released
2832 when the complete objstack is freed. */
2833 if (NULL == prev_node)
2834 this->main_type->dyn_prop_list = curr_node->next;
2836 prev_node->next = curr_node->next;
2841 prev_node = curr_node;
2842 curr_node = curr_node->next;
2846 /* Find the real type of TYPE. This function returns the real type,
2847 after removing all layers of typedefs, and completing opaque or stub
2848 types. Completion changes the TYPE argument, but stripping of
2851 Instance flags (e.g. const/volatile) are preserved as typedefs are
2852 stripped. If necessary a new qualified form of the underlying type
2855 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2856 not been computed and we're either in the middle of reading symbols, or
2857 there was no name for the typedef in the debug info.
2859 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2860 QUITs in the symbol reading code can also throw.
2861 Thus this function can throw an exception.
2863 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2866 If this is a stubbed struct (i.e. declared as struct foo *), see if
2867 we can find a full definition in some other file. If so, copy this
2868 definition, so we can use it in future. There used to be a comment
2869 (but not any code) that if we don't find a full definition, we'd
2870 set a flag so we don't spend time in the future checking the same
2871 type. That would be a mistake, though--we might load in more
2872 symbols which contain a full definition for the type. */
2875 check_typedef (struct type *type)
2877 struct type *orig_type = type;
2881 /* While we're removing typedefs, we don't want to lose qualifiers.
2882 E.g., const/volatile. */
2883 type_instance_flags instance_flags = type->instance_flags ();
2885 while (type->code () == TYPE_CODE_TYPEDEF)
2887 if (!TYPE_TARGET_TYPE (type))
2892 /* It is dangerous to call lookup_symbol if we are currently
2893 reading a symtab. Infinite recursion is one danger. */
2894 if (currently_reading_symtab)
2895 return make_qualified_type (type, instance_flags, NULL);
2897 name = type->name ();
2898 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2899 VAR_DOMAIN as appropriate? */
2902 stub_noname_complaint ();
2903 return make_qualified_type (type, instance_flags, NULL);
2905 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2907 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2908 else /* TYPE_CODE_UNDEF */
2909 TYPE_TARGET_TYPE (type) = alloc_type_arch (type->arch ());
2911 type = TYPE_TARGET_TYPE (type);
2913 /* Preserve the instance flags as we traverse down the typedef chain.
2915 Handling address spaces/classes is nasty, what do we do if there's a
2917 E.g., what if an outer typedef marks the type as class_1 and an inner
2918 typedef marks the type as class_2?
2919 This is the wrong place to do such error checking. We leave it to
2920 the code that created the typedef in the first place to flag the
2921 error. We just pick the outer address space (akin to letting the
2922 outer cast in a chain of casting win), instead of assuming
2923 "it can't happen". */
2925 const type_instance_flags ALL_SPACES
2926 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2927 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2928 const type_instance_flags ALL_CLASSES
2929 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2931 type_instance_flags new_instance_flags = type->instance_flags ();
2933 /* Treat code vs data spaces and address classes separately. */
2934 if ((instance_flags & ALL_SPACES) != 0)
2935 new_instance_flags &= ~ALL_SPACES;
2936 if ((instance_flags & ALL_CLASSES) != 0)
2937 new_instance_flags &= ~ALL_CLASSES;
2939 instance_flags |= new_instance_flags;
2943 /* If this is a struct/class/union with no fields, then check
2944 whether a full definition exists somewhere else. This is for
2945 systems where a type definition with no fields is issued for such
2946 types, instead of identifying them as stub types in the first
2949 if (TYPE_IS_OPAQUE (type)
2950 && opaque_type_resolution
2951 && !currently_reading_symtab)
2953 const char *name = type->name ();
2954 struct type *newtype;
2958 stub_noname_complaint ();
2959 return make_qualified_type (type, instance_flags, NULL);
2961 newtype = lookup_transparent_type (name);
2965 /* If the resolved type and the stub are in the same
2966 objfile, then replace the stub type with the real deal.
2967 But if they're in separate objfiles, leave the stub
2968 alone; we'll just look up the transparent type every time
2969 we call check_typedef. We can't create pointers between
2970 types allocated to different objfiles, since they may
2971 have different lifetimes. Trying to copy NEWTYPE over to
2972 TYPE's objfile is pointless, too, since you'll have to
2973 move over any other types NEWTYPE refers to, which could
2974 be an unbounded amount of stuff. */
2975 if (newtype->objfile_owner () == type->objfile_owner ())
2976 type = make_qualified_type (newtype, type->instance_flags (), type);
2981 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2983 else if (type->is_stub () && !currently_reading_symtab)
2985 const char *name = type->name ();
2986 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2992 stub_noname_complaint ();
2993 return make_qualified_type (type, instance_flags, NULL);
2995 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2998 /* Same as above for opaque types, we can replace the stub
2999 with the complete type only if they are in the same
3001 if (SYMBOL_TYPE (sym)->objfile_owner () == type->objfile_owner ())
3002 type = make_qualified_type (SYMBOL_TYPE (sym),
3003 type->instance_flags (), type);
3005 type = SYMBOL_TYPE (sym);
3009 if (type->target_is_stub ())
3011 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
3013 if (target_type->is_stub () || target_type->target_is_stub ())
3015 /* Nothing we can do. */
3017 else if (type->code () == TYPE_CODE_RANGE)
3019 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
3020 type->set_target_is_stub (false);
3022 else if (type->code () == TYPE_CODE_ARRAY
3023 && update_static_array_size (type))
3024 type->set_target_is_stub (false);
3027 type = make_qualified_type (type, instance_flags, NULL);
3029 /* Cache TYPE_LENGTH for future use. */
3030 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
3035 /* Parse a type expression in the string [P..P+LENGTH). If an error
3036 occurs, silently return a void type. */
3038 static struct type *
3039 safe_parse_type (struct gdbarch *gdbarch, const char *p, int length)
3041 struct ui_file *saved_gdb_stderr;
3042 struct type *type = NULL; /* Initialize to keep gcc happy. */
3044 /* Suppress error messages. */
3045 saved_gdb_stderr = gdb_stderr;
3046 gdb_stderr = &null_stream;
3048 /* Call parse_and_eval_type() without fear of longjmp()s. */
3051 type = parse_and_eval_type (p, length);
3053 catch (const gdb_exception_error &except)
3055 type = builtin_type (gdbarch)->builtin_void;
3058 /* Stop suppressing error messages. */
3059 gdb_stderr = saved_gdb_stderr;
3064 /* Ugly hack to convert method stubs into method types.
3066 He ain't kiddin'. This demangles the name of the method into a
3067 string including argument types, parses out each argument type,
3068 generates a string casting a zero to that type, evaluates the
3069 string, and stuffs the resulting type into an argtype vector!!!
3070 Then it knows the type of the whole function (including argument
3071 types for overloading), which info used to be in the stab's but was
3072 removed to hack back the space required for them. */
3075 check_stub_method (struct type *type, int method_id, int signature_id)
3077 struct gdbarch *gdbarch = type->arch ();
3079 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
3080 char *demangled_name = gdb_demangle (mangled_name,
3081 DMGL_PARAMS | DMGL_ANSI);
3082 char *argtypetext, *p;
3083 int depth = 0, argcount = 1;
3084 struct field *argtypes;
3087 /* Make sure we got back a function string that we can use. */
3089 p = strchr (demangled_name, '(');
3093 if (demangled_name == NULL || p == NULL)
3094 error (_("Internal: Cannot demangle mangled name `%s'."),
3097 /* Now, read in the parameters that define this type. */
3102 if (*p == '(' || *p == '<')
3106 else if (*p == ')' || *p == '>')
3110 else if (*p == ',' && depth == 0)
3118 /* If we read one argument and it was ``void'', don't count it. */
3119 if (startswith (argtypetext, "(void)"))
3122 /* We need one extra slot, for the THIS pointer. */
3124 argtypes = (struct field *)
3125 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
3128 /* Add THIS pointer for non-static methods. */
3129 f = TYPE_FN_FIELDLIST1 (type, method_id);
3130 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3134 argtypes[0].set_type (lookup_pointer_type (type));
3138 if (*p != ')') /* () means no args, skip while. */
3143 if (depth <= 0 && (*p == ',' || *p == ')'))
3145 /* Avoid parsing of ellipsis, they will be handled below.
3146 Also avoid ``void'' as above. */
3147 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3148 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3150 argtypes[argcount].set_type
3151 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3154 argtypetext = p + 1;
3157 if (*p == '(' || *p == '<')
3161 else if (*p == ')' || *p == '>')
3170 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3172 /* Now update the old "stub" type into a real type. */
3173 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3174 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3175 We want a method (TYPE_CODE_METHOD). */
3176 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3177 argtypes, argcount, p[-2] == '.');
3178 mtype->set_is_stub (false);
3179 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3181 xfree (demangled_name);
3184 /* This is the external interface to check_stub_method, above. This
3185 function unstubs all of the signatures for TYPE's METHOD_ID method
3186 name. After calling this function TYPE_FN_FIELD_STUB will be
3187 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3190 This function unfortunately can not die until stabs do. */
3193 check_stub_method_group (struct type *type, int method_id)
3195 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3196 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3198 for (int j = 0; j < len; j++)
3200 if (TYPE_FN_FIELD_STUB (f, j))
3201 check_stub_method (type, method_id, j);
3205 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3206 const struct cplus_struct_type cplus_struct_default = { };
3209 allocate_cplus_struct_type (struct type *type)
3211 if (HAVE_CPLUS_STRUCT (type))
3212 /* Structure was already allocated. Nothing more to do. */
3215 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3216 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3217 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3218 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3219 set_type_vptr_fieldno (type, -1);
3222 const struct gnat_aux_type gnat_aux_default =
3225 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3226 and allocate the associated gnat-specific data. The gnat-specific
3227 data is also initialized to gnat_aux_default. */
3230 allocate_gnat_aux_type (struct type *type)
3232 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3233 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3234 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3235 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3238 /* Helper function to initialize a newly allocated type. Set type code
3239 to CODE and initialize the type-specific fields accordingly. */
3242 set_type_code (struct type *type, enum type_code code)
3244 type->set_code (code);
3248 case TYPE_CODE_STRUCT:
3249 case TYPE_CODE_UNION:
3250 case TYPE_CODE_NAMESPACE:
3251 INIT_CPLUS_SPECIFIC (type);
3254 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3256 case TYPE_CODE_FUNC:
3257 INIT_FUNC_SPECIFIC (type);
3259 case TYPE_CODE_FIXED_POINT:
3260 INIT_FIXED_POINT_SPECIFIC (type);
3265 /* Helper function to verify floating-point format and size.
3266 BIT is the type size in bits; if BIT equals -1, the size is
3267 determined by the floatformat. Returns size to be used. */
3270 verify_floatformat (int bit, const struct floatformat *floatformat)
3272 gdb_assert (floatformat != NULL);
3275 bit = floatformat->totalsize;
3277 gdb_assert (bit >= 0);
3278 gdb_assert (bit >= floatformat->totalsize);
3283 /* Return the floating-point format for a floating-point variable of
3286 const struct floatformat *
3287 floatformat_from_type (const struct type *type)
3289 gdb_assert (type->code () == TYPE_CODE_FLT);
3290 gdb_assert (TYPE_FLOATFORMAT (type));
3291 return TYPE_FLOATFORMAT (type);
3294 /* Helper function to initialize the standard scalar types.
3296 If NAME is non-NULL, then it is used to initialize the type name.
3297 Note that NAME is not copied; it is required to have a lifetime at
3298 least as long as OBJFILE. */
3301 init_type (struct objfile *objfile, enum type_code code, int bit,
3306 type = alloc_type (objfile);
3307 set_type_code (type, code);
3308 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3309 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3310 type->set_name (name);
3315 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3316 to use with variables that have no debug info. NAME is the type
3319 static struct type *
3320 init_nodebug_var_type (struct objfile *objfile, const char *name)
3322 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3325 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3326 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3327 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3330 init_integer_type (struct objfile *objfile,
3331 int bit, int unsigned_p, const char *name)
3335 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3337 t->set_is_unsigned (true);
3339 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3340 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3341 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3346 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3347 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3348 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3351 init_character_type (struct objfile *objfile,
3352 int bit, int unsigned_p, const char *name)
3356 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3358 t->set_is_unsigned (true);
3363 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3364 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3365 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3368 init_boolean_type (struct objfile *objfile,
3369 int bit, int unsigned_p, const char *name)
3373 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3375 t->set_is_unsigned (true);
3377 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3378 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3379 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3384 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3385 BIT is the type size in bits; if BIT equals -1, the size is
3386 determined by the floatformat. NAME is the type name. Set the
3387 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3388 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3389 order of the objfile's architecture is used. */
3392 init_float_type (struct objfile *objfile,
3393 int bit, const char *name,
3394 const struct floatformat **floatformats,
3395 enum bfd_endian byte_order)
3397 if (byte_order == BFD_ENDIAN_UNKNOWN)
3399 struct gdbarch *gdbarch = objfile->arch ();
3400 byte_order = gdbarch_byte_order (gdbarch);
3402 const struct floatformat *fmt = floatformats[byte_order];
3405 bit = verify_floatformat (bit, fmt);
3406 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3407 TYPE_FLOATFORMAT (t) = fmt;
3412 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3413 BIT is the type size in bits. NAME is the type name. */
3416 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3420 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3424 /* Return true if init_complex_type can be called with TARGET_TYPE. */
3427 can_create_complex_type (struct type *target_type)
3429 return (target_type->code () == TYPE_CODE_INT
3430 || target_type->code () == TYPE_CODE_FLT);
3433 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3434 name. TARGET_TYPE is the component type. */
3437 init_complex_type (const char *name, struct type *target_type)
3441 gdb_assert (can_create_complex_type (target_type));
3443 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3445 if (name == nullptr && target_type->name () != nullptr)
3448 = (char *) TYPE_ALLOC (target_type,
3449 strlen (target_type->name ())
3450 + strlen ("_Complex ") + 1);
3451 strcpy (new_name, "_Complex ");
3452 strcat (new_name, target_type->name ());
3456 t = alloc_type_copy (target_type);
3457 set_type_code (t, TYPE_CODE_COMPLEX);
3458 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3461 TYPE_TARGET_TYPE (t) = target_type;
3462 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3465 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3468 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3469 BIT is the pointer type size in bits. NAME is the type name.
3470 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3471 TYPE_UNSIGNED flag. */
3474 init_pointer_type (struct objfile *objfile,
3475 int bit, const char *name, struct type *target_type)
3479 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3480 TYPE_TARGET_TYPE (t) = target_type;
3481 t->set_is_unsigned (true);
3485 /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE.
3486 BIT is the pointer type size in bits.
3487 UNSIGNED_P should be nonzero if the type is unsigned.
3488 NAME is the type name. */
3491 init_fixed_point_type (struct objfile *objfile,
3492 int bit, int unsigned_p, const char *name)
3496 t = init_type (objfile, TYPE_CODE_FIXED_POINT, bit, name);
3498 t->set_is_unsigned (true);
3503 /* See gdbtypes.h. */
3506 type_raw_align (struct type *type)
3508 if (type->align_log2 != 0)
3509 return 1 << (type->align_log2 - 1);
3513 /* See gdbtypes.h. */
3516 type_align (struct type *type)
3518 /* Check alignment provided in the debug information. */
3519 unsigned raw_align = type_raw_align (type);
3523 /* Allow the architecture to provide an alignment. */
3524 ULONGEST align = gdbarch_type_align (type->arch (), type);
3528 switch (type->code ())
3531 case TYPE_CODE_FUNC:
3532 case TYPE_CODE_FLAGS:
3534 case TYPE_CODE_RANGE:
3536 case TYPE_CODE_ENUM:
3538 case TYPE_CODE_RVALUE_REF:
3539 case TYPE_CODE_CHAR:
3540 case TYPE_CODE_BOOL:
3541 case TYPE_CODE_DECFLOAT:
3542 case TYPE_CODE_METHODPTR:
3543 case TYPE_CODE_MEMBERPTR:
3544 align = type_length_units (check_typedef (type));
3547 case TYPE_CODE_ARRAY:
3548 case TYPE_CODE_COMPLEX:
3549 case TYPE_CODE_TYPEDEF:
3550 align = type_align (TYPE_TARGET_TYPE (type));
3553 case TYPE_CODE_STRUCT:
3554 case TYPE_CODE_UNION:
3556 int number_of_non_static_fields = 0;
3557 for (unsigned i = 0; i < type->num_fields (); ++i)
3559 if (!field_is_static (&type->field (i)))
3561 number_of_non_static_fields++;
3562 ULONGEST f_align = type_align (type->field (i).type ());
3565 /* Don't pretend we know something we don't. */
3569 if (f_align > align)
3573 /* A struct with no fields, or with only static fields has an
3575 if (number_of_non_static_fields == 0)
3581 case TYPE_CODE_STRING:
3582 /* Not sure what to do here, and these can't appear in C or C++
3586 case TYPE_CODE_VOID:
3590 case TYPE_CODE_ERROR:
3591 case TYPE_CODE_METHOD:
3596 if ((align & (align - 1)) != 0)
3598 /* Not a power of 2, so pass. */
3605 /* See gdbtypes.h. */
3608 set_type_align (struct type *type, ULONGEST align)
3610 /* Must be a power of 2. Zero is ok. */
3611 gdb_assert ((align & (align - 1)) == 0);
3613 unsigned result = 0;
3620 if (result >= (1 << TYPE_ALIGN_BITS))
3623 type->align_log2 = result;
3628 /* Queries on types. */
3631 can_dereference (struct type *t)
3633 /* FIXME: Should we return true for references as well as
3635 t = check_typedef (t);
3638 && t->code () == TYPE_CODE_PTR
3639 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3643 is_integral_type (struct type *t)
3645 t = check_typedef (t);
3648 && !is_fixed_point_type (t)
3649 && ((t->code () == TYPE_CODE_INT)
3650 || (t->code () == TYPE_CODE_ENUM)
3651 || (t->code () == TYPE_CODE_FLAGS)
3652 || (t->code () == TYPE_CODE_CHAR)
3653 || (t->code () == TYPE_CODE_RANGE)
3654 || (t->code () == TYPE_CODE_BOOL)));
3658 is_floating_type (struct type *t)
3660 t = check_typedef (t);
3663 && ((t->code () == TYPE_CODE_FLT)
3664 || (t->code () == TYPE_CODE_DECFLOAT)));
3667 /* Return true if TYPE is scalar. */
3670 is_scalar_type (struct type *type)
3672 type = check_typedef (type);
3674 if (is_fixed_point_type (type))
3675 return 0; /* Implemented as a scalar, but more like a floating point. */
3677 switch (type->code ())
3679 case TYPE_CODE_ARRAY:
3680 case TYPE_CODE_STRUCT:
3681 case TYPE_CODE_UNION:
3683 case TYPE_CODE_STRING:
3690 /* Return true if T is scalar, or a composite type which in practice has
3691 the memory layout of a scalar type. E.g., an array or struct with only
3692 one scalar element inside it, or a union with only scalar elements. */
3695 is_scalar_type_recursive (struct type *t)
3697 t = check_typedef (t);
3699 if (is_scalar_type (t))
3701 /* Are we dealing with an array or string of known dimensions? */
3702 else if ((t->code () == TYPE_CODE_ARRAY
3703 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3704 && t->index_type ()->code () == TYPE_CODE_RANGE)
3706 LONGEST low_bound, high_bound;
3707 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3709 if (get_discrete_bounds (t->index_type (), &low_bound, &high_bound))
3710 return (high_bound == low_bound
3711 && is_scalar_type_recursive (elt_type));
3715 /* Are we dealing with a struct with one element? */
3716 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3717 return is_scalar_type_recursive (t->field (0).type ());
3718 else if (t->code () == TYPE_CODE_UNION)
3720 int i, n = t->num_fields ();
3722 /* If all elements of the union are scalar, then the union is scalar. */
3723 for (i = 0; i < n; i++)
3724 if (!is_scalar_type_recursive (t->field (i).type ()))
3733 /* Return true is T is a class or a union. False otherwise. */
3736 class_or_union_p (const struct type *t)
3738 return (t->code () == TYPE_CODE_STRUCT
3739 || t->code () == TYPE_CODE_UNION);
3742 /* A helper function which returns true if types A and B represent the
3743 "same" class type. This is true if the types have the same main
3744 type, or the same name. */
3747 class_types_same_p (const struct type *a, const struct type *b)
3749 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3750 || (a->name () && b->name ()
3751 && !strcmp (a->name (), b->name ())));
3754 /* If BASE is an ancestor of DCLASS return the distance between them.
3755 otherwise return -1;
3759 class B: public A {};
3760 class C: public B {};
3763 distance_to_ancestor (A, A, 0) = 0
3764 distance_to_ancestor (A, B, 0) = 1
3765 distance_to_ancestor (A, C, 0) = 2
3766 distance_to_ancestor (A, D, 0) = 3
3768 If PUBLIC is 1 then only public ancestors are considered,
3769 and the function returns the distance only if BASE is a public ancestor
3773 distance_to_ancestor (A, D, 1) = -1. */
3776 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3781 base = check_typedef (base);
3782 dclass = check_typedef (dclass);
3784 if (class_types_same_p (base, dclass))
3787 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3789 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3792 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3800 /* Check whether BASE is an ancestor or base class or DCLASS
3801 Return 1 if so, and 0 if not.
3802 Note: If BASE and DCLASS are of the same type, this function
3803 will return 1. So for some class A, is_ancestor (A, A) will
3807 is_ancestor (struct type *base, struct type *dclass)
3809 return distance_to_ancestor (base, dclass, 0) >= 0;
3812 /* Like is_ancestor, but only returns true when BASE is a public
3813 ancestor of DCLASS. */
3816 is_public_ancestor (struct type *base, struct type *dclass)
3818 return distance_to_ancestor (base, dclass, 1) >= 0;
3821 /* A helper function for is_unique_ancestor. */
3824 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3826 const gdb_byte *valaddr, int embedded_offset,
3827 CORE_ADDR address, struct value *val)
3831 base = check_typedef (base);
3832 dclass = check_typedef (dclass);
3834 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3839 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3841 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3844 if (class_types_same_p (base, iter))
3846 /* If this is the first subclass, set *OFFSET and set count
3847 to 1. Otherwise, if this is at the same offset as
3848 previous instances, do nothing. Otherwise, increment
3852 *offset = this_offset;
3855 else if (this_offset == *offset)
3863 count += is_unique_ancestor_worker (base, iter, offset,
3865 embedded_offset + this_offset,
3872 /* Like is_ancestor, but only returns true if BASE is a unique base
3873 class of the type of VAL. */
3876 is_unique_ancestor (struct type *base, struct value *val)
3880 return is_unique_ancestor_worker (base, value_type (val), &offset,
3881 value_contents_for_printing (val),
3882 value_embedded_offset (val),
3883 value_address (val), val) == 1;
3886 /* See gdbtypes.h. */
3889 type_byte_order (const struct type *type)
3891 bfd_endian byteorder = gdbarch_byte_order (type->arch ());
3892 if (type->endianity_is_not_default ())
3894 if (byteorder == BFD_ENDIAN_BIG)
3895 return BFD_ENDIAN_LITTLE;
3898 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3899 return BFD_ENDIAN_BIG;
3907 /* Overload resolution. */
3909 /* Return the sum of the rank of A with the rank of B. */
3912 sum_ranks (struct rank a, struct rank b)
3915 c.rank = a.rank + b.rank;
3916 c.subrank = a.subrank + b.subrank;
3920 /* Compare rank A and B and return:
3922 1 if a is better than b
3923 -1 if b is better than a. */
3926 compare_ranks (struct rank a, struct rank b)
3928 if (a.rank == b.rank)
3930 if (a.subrank == b.subrank)
3932 if (a.subrank < b.subrank)
3934 if (a.subrank > b.subrank)
3938 if (a.rank < b.rank)
3941 /* a.rank > b.rank */
3945 /* Functions for overload resolution begin here. */
3947 /* Compare two badness vectors A and B and return the result.
3948 0 => A and B are identical
3949 1 => A and B are incomparable
3950 2 => A is better than B
3951 3 => A is worse than B */
3954 compare_badness (const badness_vector &a, const badness_vector &b)
3958 short found_pos = 0; /* any positives in c? */
3959 short found_neg = 0; /* any negatives in c? */
3961 /* differing sizes => incomparable */
3962 if (a.size () != b.size ())
3965 /* Subtract b from a */
3966 for (i = 0; i < a.size (); i++)
3968 tmp = compare_ranks (b[i], a[i]);
3978 return 1; /* incomparable */
3980 return 3; /* A > B */
3986 return 2; /* A < B */
3988 return 0; /* A == B */
3992 /* Rank a function by comparing its parameter types (PARMS), to the
3993 types of an argument list (ARGS). Return the badness vector. This
3994 has ARGS.size() + 1 entries. */
3997 rank_function (gdb::array_view<type *> parms,
3998 gdb::array_view<value *> args)
4000 /* add 1 for the length-match rank. */
4002 bv.reserve (1 + args.size ());
4004 /* First compare the lengths of the supplied lists.
4005 If there is a mismatch, set it to a high value. */
4007 /* pai/1997-06-03 FIXME: when we have debug info about default
4008 arguments and ellipsis parameter lists, we should consider those
4009 and rank the length-match more finely. */
4011 bv.push_back ((args.size () != parms.size ())
4012 ? LENGTH_MISMATCH_BADNESS
4013 : EXACT_MATCH_BADNESS);
4015 /* Now rank all the parameters of the candidate function. */
4016 size_t min_len = std::min (parms.size (), args.size ());
4018 for (size_t i = 0; i < min_len; i++)
4019 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
4022 /* If more arguments than parameters, add dummy entries. */
4023 for (size_t i = min_len; i < args.size (); i++)
4024 bv.push_back (TOO_FEW_PARAMS_BADNESS);
4029 /* Compare the names of two integer types, assuming that any sign
4030 qualifiers have been checked already. We do it this way because
4031 there may be an "int" in the name of one of the types. */
4034 integer_types_same_name_p (const char *first, const char *second)
4036 int first_p, second_p;
4038 /* If both are shorts, return 1; if neither is a short, keep
4040 first_p = (strstr (first, "short") != NULL);
4041 second_p = (strstr (second, "short") != NULL);
4042 if (first_p && second_p)
4044 if (first_p || second_p)
4047 /* Likewise for long. */
4048 first_p = (strstr (first, "long") != NULL);
4049 second_p = (strstr (second, "long") != NULL);
4050 if (first_p && second_p)
4052 if (first_p || second_p)
4055 /* Likewise for char. */
4056 first_p = (strstr (first, "char") != NULL);
4057 second_p = (strstr (second, "char") != NULL);
4058 if (first_p && second_p)
4060 if (first_p || second_p)
4063 /* They must both be ints. */
4067 /* Compares type A to type B. Returns true if they represent the same
4068 type, false otherwise. */
4071 types_equal (struct type *a, struct type *b)
4073 /* Identical type pointers. */
4074 /* However, this still doesn't catch all cases of same type for b
4075 and a. The reason is that builtin types are different from
4076 the same ones constructed from the object. */
4080 /* Resolve typedefs */
4081 if (a->code () == TYPE_CODE_TYPEDEF)
4082 a = check_typedef (a);
4083 if (b->code () == TYPE_CODE_TYPEDEF)
4084 b = check_typedef (b);
4086 /* Check if identical after resolving typedefs. */
4090 /* If after resolving typedefs a and b are not of the same type
4091 code then they are not equal. */
4092 if (a->code () != b->code ())
4095 /* If a and b are both pointers types or both reference types then
4096 they are equal of the same type iff the objects they refer to are
4097 of the same type. */
4098 if (a->code () == TYPE_CODE_PTR
4099 || a->code () == TYPE_CODE_REF)
4100 return types_equal (TYPE_TARGET_TYPE (a),
4101 TYPE_TARGET_TYPE (b));
4103 /* Well, damnit, if the names are exactly the same, I'll say they
4104 are exactly the same. This happens when we generate method
4105 stubs. The types won't point to the same address, but they
4106 really are the same. */
4108 if (a->name () && b->name ()
4109 && strcmp (a->name (), b->name ()) == 0)
4112 /* Two function types are equal if their argument and return types
4114 if (a->code () == TYPE_CODE_FUNC)
4118 if (a->num_fields () != b->num_fields ())
4121 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
4124 for (i = 0; i < a->num_fields (); ++i)
4125 if (!types_equal (a->field (i).type (), b->field (i).type ()))
4134 /* Deep comparison of types. */
4136 /* An entry in the type-equality bcache. */
4138 struct type_equality_entry
4140 type_equality_entry (struct type *t1, struct type *t2)
4146 struct type *type1, *type2;
4149 /* A helper function to compare two strings. Returns true if they are
4150 the same, false otherwise. Handles NULLs properly. */
4153 compare_maybe_null_strings (const char *s, const char *t)
4155 if (s == NULL || t == NULL)
4157 return strcmp (s, t) == 0;
4160 /* A helper function for check_types_worklist that checks two types for
4161 "deep" equality. Returns true if the types are considered the
4162 same, false otherwise. */
4165 check_types_equal (struct type *type1, struct type *type2,
4166 std::vector<type_equality_entry> *worklist)
4168 type1 = check_typedef (type1);
4169 type2 = check_typedef (type2);
4174 if (type1->code () != type2->code ()
4175 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4176 || type1->is_unsigned () != type2->is_unsigned ()
4177 || type1->has_no_signedness () != type2->has_no_signedness ()
4178 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
4179 || type1->has_varargs () != type2->has_varargs ()
4180 || type1->is_vector () != type2->is_vector ()
4181 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4182 || type1->instance_flags () != type2->instance_flags ()
4183 || type1->num_fields () != type2->num_fields ())
4186 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4188 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4191 if (type1->code () == TYPE_CODE_RANGE)
4193 if (*type1->bounds () != *type2->bounds ())
4200 for (i = 0; i < type1->num_fields (); ++i)
4202 const struct field *field1 = &type1->field (i);
4203 const struct field *field2 = &type2->field (i);
4205 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4206 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4207 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4209 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4210 FIELD_NAME (*field2)))
4212 switch (FIELD_LOC_KIND (*field1))
4214 case FIELD_LOC_KIND_BITPOS:
4215 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4218 case FIELD_LOC_KIND_ENUMVAL:
4219 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4221 /* Don't compare types of enum fields, because they don't
4224 case FIELD_LOC_KIND_PHYSADDR:
4225 if (FIELD_STATIC_PHYSADDR (*field1)
4226 != FIELD_STATIC_PHYSADDR (*field2))
4229 case FIELD_LOC_KIND_PHYSNAME:
4230 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4231 FIELD_STATIC_PHYSNAME (*field2)))
4234 case FIELD_LOC_KIND_DWARF_BLOCK:
4236 struct dwarf2_locexpr_baton *block1, *block2;
4238 block1 = FIELD_DWARF_BLOCK (*field1);
4239 block2 = FIELD_DWARF_BLOCK (*field2);
4240 if (block1->per_cu != block2->per_cu
4241 || block1->size != block2->size
4242 || memcmp (block1->data, block2->data, block1->size) != 0)
4247 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4248 "%d by check_types_equal"),
4249 FIELD_LOC_KIND (*field1));
4252 worklist->emplace_back (field1->type (), field2->type ());
4256 if (TYPE_TARGET_TYPE (type1) != NULL)
4258 if (TYPE_TARGET_TYPE (type2) == NULL)
4261 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4262 TYPE_TARGET_TYPE (type2));
4264 else if (TYPE_TARGET_TYPE (type2) != NULL)
4270 /* Check types on a worklist for equality. Returns false if any pair
4271 is not equal, true if they are all considered equal. */
4274 check_types_worklist (std::vector<type_equality_entry> *worklist,
4277 while (!worklist->empty ())
4281 struct type_equality_entry entry = std::move (worklist->back ());
4282 worklist->pop_back ();
4284 /* If the type pair has already been visited, we know it is
4286 cache->insert (&entry, sizeof (entry), &added);
4290 if (!check_types_equal (entry.type1, entry.type2, worklist))
4297 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4298 "deep comparison". Otherwise return false. */
4301 types_deeply_equal (struct type *type1, struct type *type2)
4303 std::vector<type_equality_entry> worklist;
4305 gdb_assert (type1 != NULL && type2 != NULL);
4307 /* Early exit for the simple case. */
4312 worklist.emplace_back (type1, type2);
4313 return check_types_worklist (&worklist, &cache);
4316 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4317 Otherwise return one. */
4320 type_not_allocated (const struct type *type)
4322 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4324 return (prop != nullptr && prop->kind () == PROP_CONST
4325 && prop->const_val () == 0);
4328 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4329 Otherwise return one. */
4332 type_not_associated (const struct type *type)
4334 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4336 return (prop != nullptr && prop->kind () == PROP_CONST
4337 && prop->const_val () == 0);
4340 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4343 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4345 struct rank rank = {0,0};
4347 switch (arg->code ())
4351 /* Allowed pointer conversions are:
4352 (a) pointer to void-pointer conversion. */
4353 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4354 return VOID_PTR_CONVERSION_BADNESS;
4356 /* (b) pointer to ancestor-pointer conversion. */
4357 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4358 TYPE_TARGET_TYPE (arg),
4360 if (rank.subrank >= 0)
4361 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4363 return INCOMPATIBLE_TYPE_BADNESS;
4364 case TYPE_CODE_ARRAY:
4366 struct type *t1 = TYPE_TARGET_TYPE (parm);
4367 struct type *t2 = TYPE_TARGET_TYPE (arg);
4369 if (types_equal (t1, t2))
4371 /* Make sure they are CV equal. */
4372 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4373 rank.subrank |= CV_CONVERSION_CONST;
4374 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4375 rank.subrank |= CV_CONVERSION_VOLATILE;
4376 if (rank.subrank != 0)
4377 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4378 return EXACT_MATCH_BADNESS;
4380 return INCOMPATIBLE_TYPE_BADNESS;
4382 case TYPE_CODE_FUNC:
4383 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4385 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4387 if (value_as_long (value) == 0)
4389 /* Null pointer conversion: allow it to be cast to a pointer.
4390 [4.10.1 of C++ standard draft n3290] */
4391 return NULL_POINTER_CONVERSION_BADNESS;
4395 /* If type checking is disabled, allow the conversion. */
4396 if (!strict_type_checking)
4397 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4401 case TYPE_CODE_ENUM:
4402 case TYPE_CODE_FLAGS:
4403 case TYPE_CODE_CHAR:
4404 case TYPE_CODE_RANGE:
4405 case TYPE_CODE_BOOL:
4407 return INCOMPATIBLE_TYPE_BADNESS;
4411 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4414 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4416 switch (arg->code ())
4419 case TYPE_CODE_ARRAY:
4420 return rank_one_type (TYPE_TARGET_TYPE (parm),
4421 TYPE_TARGET_TYPE (arg), NULL);
4423 return INCOMPATIBLE_TYPE_BADNESS;
4427 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4430 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4432 switch (arg->code ())
4434 case TYPE_CODE_PTR: /* funcptr -> func */
4435 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4437 return INCOMPATIBLE_TYPE_BADNESS;
4441 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4444 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4446 switch (arg->code ())
4449 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4451 /* Deal with signed, unsigned, and plain chars and
4452 signed and unsigned ints. */
4453 if (parm->has_no_signedness ())
4455 /* This case only for character types. */
4456 if (arg->has_no_signedness ())
4457 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4458 else /* signed/unsigned char -> plain char */
4459 return INTEGER_CONVERSION_BADNESS;
4461 else if (parm->is_unsigned ())
4463 if (arg->is_unsigned ())
4465 /* unsigned int -> unsigned int, or
4466 unsigned long -> unsigned long */
4467 if (integer_types_same_name_p (parm->name (),
4469 return EXACT_MATCH_BADNESS;
4470 else if (integer_types_same_name_p (arg->name (),
4472 && integer_types_same_name_p (parm->name (),
4474 /* unsigned int -> unsigned long */
4475 return INTEGER_PROMOTION_BADNESS;
4477 /* unsigned long -> unsigned int */
4478 return INTEGER_CONVERSION_BADNESS;
4482 if (integer_types_same_name_p (arg->name (),
4484 && integer_types_same_name_p (parm->name (),
4486 /* signed long -> unsigned int */
4487 return INTEGER_CONVERSION_BADNESS;
4489 /* signed int/long -> unsigned int/long */
4490 return INTEGER_CONVERSION_BADNESS;
4493 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4495 if (integer_types_same_name_p (parm->name (),
4497 return EXACT_MATCH_BADNESS;
4498 else if (integer_types_same_name_p (arg->name (),
4500 && integer_types_same_name_p (parm->name (),
4502 return INTEGER_PROMOTION_BADNESS;
4504 return INTEGER_CONVERSION_BADNESS;
4507 return INTEGER_CONVERSION_BADNESS;
4509 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4510 return INTEGER_PROMOTION_BADNESS;
4512 return INTEGER_CONVERSION_BADNESS;
4513 case TYPE_CODE_ENUM:
4514 case TYPE_CODE_FLAGS:
4515 case TYPE_CODE_CHAR:
4516 case TYPE_CODE_RANGE:
4517 case TYPE_CODE_BOOL:
4518 if (arg->is_declared_class ())
4519 return INCOMPATIBLE_TYPE_BADNESS;
4520 return INTEGER_PROMOTION_BADNESS;
4522 return INT_FLOAT_CONVERSION_BADNESS;
4524 return NS_POINTER_CONVERSION_BADNESS;
4526 return INCOMPATIBLE_TYPE_BADNESS;
4530 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4533 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4535 switch (arg->code ())
4538 case TYPE_CODE_CHAR:
4539 case TYPE_CODE_RANGE:
4540 case TYPE_CODE_BOOL:
4541 case TYPE_CODE_ENUM:
4542 if (parm->is_declared_class () || arg->is_declared_class ())
4543 return INCOMPATIBLE_TYPE_BADNESS;
4544 return INTEGER_CONVERSION_BADNESS;
4546 return INT_FLOAT_CONVERSION_BADNESS;
4548 return INCOMPATIBLE_TYPE_BADNESS;
4552 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4555 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4557 switch (arg->code ())
4559 case TYPE_CODE_RANGE:
4560 case TYPE_CODE_BOOL:
4561 case TYPE_CODE_ENUM:
4562 if (arg->is_declared_class ())
4563 return INCOMPATIBLE_TYPE_BADNESS;
4564 return INTEGER_CONVERSION_BADNESS;
4566 return INT_FLOAT_CONVERSION_BADNESS;
4568 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4569 return INTEGER_CONVERSION_BADNESS;
4570 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4571 return INTEGER_PROMOTION_BADNESS;
4573 case TYPE_CODE_CHAR:
4574 /* Deal with signed, unsigned, and plain chars for C++ and
4575 with int cases falling through from previous case. */
4576 if (parm->has_no_signedness ())
4578 if (arg->has_no_signedness ())
4579 return EXACT_MATCH_BADNESS;
4581 return INTEGER_CONVERSION_BADNESS;
4583 else if (parm->is_unsigned ())
4585 if (arg->is_unsigned ())
4586 return EXACT_MATCH_BADNESS;
4588 return INTEGER_PROMOTION_BADNESS;
4590 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4591 return EXACT_MATCH_BADNESS;
4593 return INTEGER_CONVERSION_BADNESS;
4595 return INCOMPATIBLE_TYPE_BADNESS;
4599 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4602 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4604 switch (arg->code ())
4607 case TYPE_CODE_CHAR:
4608 case TYPE_CODE_RANGE:
4609 case TYPE_CODE_BOOL:
4610 case TYPE_CODE_ENUM:
4611 return INTEGER_CONVERSION_BADNESS;
4613 return INT_FLOAT_CONVERSION_BADNESS;
4615 return INCOMPATIBLE_TYPE_BADNESS;
4619 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4622 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4624 switch (arg->code ())
4626 /* n3290 draft, section 4.12.1 (conv.bool):
4628 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4629 pointer to member type can be converted to a prvalue of type
4630 bool. A zero value, null pointer value, or null member pointer
4631 value is converted to false; any other value is converted to
4632 true. A prvalue of type std::nullptr_t can be converted to a
4633 prvalue of type bool; the resulting value is false." */
4635 case TYPE_CODE_CHAR:
4636 case TYPE_CODE_ENUM:
4638 case TYPE_CODE_MEMBERPTR:
4640 return BOOL_CONVERSION_BADNESS;
4641 case TYPE_CODE_RANGE:
4642 return INCOMPATIBLE_TYPE_BADNESS;
4643 case TYPE_CODE_BOOL:
4644 return EXACT_MATCH_BADNESS;
4646 return INCOMPATIBLE_TYPE_BADNESS;
4650 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4653 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4655 switch (arg->code ())
4658 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4659 return FLOAT_PROMOTION_BADNESS;
4660 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4661 return EXACT_MATCH_BADNESS;
4663 return FLOAT_CONVERSION_BADNESS;
4665 case TYPE_CODE_BOOL:
4666 case TYPE_CODE_ENUM:
4667 case TYPE_CODE_RANGE:
4668 case TYPE_CODE_CHAR:
4669 return INT_FLOAT_CONVERSION_BADNESS;
4671 return INCOMPATIBLE_TYPE_BADNESS;
4675 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4678 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4680 switch (arg->code ())
4681 { /* Strictly not needed for C++, but... */
4683 return FLOAT_PROMOTION_BADNESS;
4684 case TYPE_CODE_COMPLEX:
4685 return EXACT_MATCH_BADNESS;
4687 return INCOMPATIBLE_TYPE_BADNESS;
4691 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4694 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4696 struct rank rank = {0, 0};
4698 switch (arg->code ())
4700 case TYPE_CODE_STRUCT:
4701 /* Check for derivation */
4702 rank.subrank = distance_to_ancestor (parm, arg, 0);
4703 if (rank.subrank >= 0)
4704 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4707 return INCOMPATIBLE_TYPE_BADNESS;
4711 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4714 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4716 switch (arg->code ())
4720 return rank_one_type (parm->field (0).type (),
4721 arg->field (0).type (), NULL);
4723 return INCOMPATIBLE_TYPE_BADNESS;
4727 /* Compare one type (PARM) for compatibility with another (ARG).
4728 * PARM is intended to be the parameter type of a function; and
4729 * ARG is the supplied argument's type. This function tests if
4730 * the latter can be converted to the former.
4731 * VALUE is the argument's value or NULL if none (or called recursively)
4733 * Return 0 if they are identical types;
4734 * Otherwise, return an integer which corresponds to how compatible
4735 * PARM is to ARG. The higher the return value, the worse the match.
4736 * Generally the "bad" conversions are all uniformly assigned a 100. */
4739 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4741 struct rank rank = {0,0};
4743 /* Resolve typedefs */
4744 if (parm->code () == TYPE_CODE_TYPEDEF)
4745 parm = check_typedef (parm);
4746 if (arg->code () == TYPE_CODE_TYPEDEF)
4747 arg = check_typedef (arg);
4749 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4751 if (VALUE_LVAL (value) == not_lval)
4753 /* Rvalues should preferably bind to rvalue references or const
4754 lvalue references. */
4755 if (parm->code () == TYPE_CODE_RVALUE_REF)
4756 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4757 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4758 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4760 return INCOMPATIBLE_TYPE_BADNESS;
4761 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4765 /* It's illegal to pass an lvalue as an rvalue. */
4766 if (parm->code () == TYPE_CODE_RVALUE_REF)
4767 return INCOMPATIBLE_TYPE_BADNESS;
4771 if (types_equal (parm, arg))
4773 struct type *t1 = parm;
4774 struct type *t2 = arg;
4776 /* For pointers and references, compare target type. */
4777 if (parm->is_pointer_or_reference ())
4779 t1 = TYPE_TARGET_TYPE (parm);
4780 t2 = TYPE_TARGET_TYPE (arg);
4783 /* Make sure they are CV equal, too. */
4784 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4785 rank.subrank |= CV_CONVERSION_CONST;
4786 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4787 rank.subrank |= CV_CONVERSION_VOLATILE;
4788 if (rank.subrank != 0)
4789 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4790 return EXACT_MATCH_BADNESS;
4793 /* See through references, since we can almost make non-references
4796 if (TYPE_IS_REFERENCE (arg))
4797 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4798 REFERENCE_SEE_THROUGH_BADNESS));
4799 if (TYPE_IS_REFERENCE (parm))
4800 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4801 REFERENCE_SEE_THROUGH_BADNESS));
4804 /* Debugging only. */
4805 fprintf_filtered (gdb_stderr,
4806 "------ Arg is %s [%d], parm is %s [%d]\n",
4807 arg->name (), arg->code (),
4808 parm->name (), parm->code ());
4811 /* x -> y means arg of type x being supplied for parameter of type y. */
4813 switch (parm->code ())
4816 return rank_one_type_parm_ptr (parm, arg, value);
4817 case TYPE_CODE_ARRAY:
4818 return rank_one_type_parm_array (parm, arg, value);
4819 case TYPE_CODE_FUNC:
4820 return rank_one_type_parm_func (parm, arg, value);
4822 return rank_one_type_parm_int (parm, arg, value);
4823 case TYPE_CODE_ENUM:
4824 return rank_one_type_parm_enum (parm, arg, value);
4825 case TYPE_CODE_CHAR:
4826 return rank_one_type_parm_char (parm, arg, value);
4827 case TYPE_CODE_RANGE:
4828 return rank_one_type_parm_range (parm, arg, value);
4829 case TYPE_CODE_BOOL:
4830 return rank_one_type_parm_bool (parm, arg, value);
4832 return rank_one_type_parm_float (parm, arg, value);
4833 case TYPE_CODE_COMPLEX:
4834 return rank_one_type_parm_complex (parm, arg, value);
4835 case TYPE_CODE_STRUCT:
4836 return rank_one_type_parm_struct (parm, arg, value);
4838 return rank_one_type_parm_set (parm, arg, value);
4840 return INCOMPATIBLE_TYPE_BADNESS;
4841 } /* switch (arg->code ()) */
4844 /* End of functions for overload resolution. */
4846 /* Routines to pretty-print types. */
4849 print_bit_vector (B_TYPE *bits, int nbits)
4853 for (bitno = 0; bitno < nbits; bitno++)
4855 if ((bitno % 8) == 0)
4857 puts_filtered (" ");
4859 if (B_TST (bits, bitno))
4860 printf_filtered (("1"));
4862 printf_filtered (("0"));
4866 /* Note the first arg should be the "this" pointer, we may not want to
4867 include it since we may get into a infinitely recursive
4871 print_args (struct field *args, int nargs, int spaces)
4877 for (i = 0; i < nargs; i++)
4880 ("%*s[%d] name '%s'\n", spaces, "", i,
4881 args[i].name () != NULL ? args[i].name () : "<NULL>");
4882 recursive_dump_type (args[i].type (), spaces + 2);
4888 field_is_static (struct field *f)
4890 /* "static" fields are the fields whose location is not relative
4891 to the address of the enclosing struct. It would be nice to
4892 have a dedicated flag that would be set for static fields when
4893 the type is being created. But in practice, checking the field
4894 loc_kind should give us an accurate answer. */
4895 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4896 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4900 dump_fn_fieldlists (struct type *type, int spaces)
4906 printf_filtered ("%*sfn_fieldlists ", spaces, "");
4907 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4908 printf_filtered ("\n");
4909 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4911 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4912 printf_filtered ("%*s[%d] name '%s' (", spaces + 2, "",
4914 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4915 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4917 printf_filtered (_(") length %d\n"),
4918 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4919 for (overload_idx = 0;
4920 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4923 printf_filtered ("%*s[%d] physname '%s' (",
4924 spaces + 4, "", overload_idx,
4925 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4926 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4928 printf_filtered (")\n");
4929 printf_filtered ("%*stype ", spaces + 8, "");
4930 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4932 printf_filtered ("\n");
4934 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4937 printf_filtered ("%*sargs ", spaces + 8, "");
4938 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4940 printf_filtered ("\n");
4941 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4942 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4944 printf_filtered ("%*sfcontext ", spaces + 8, "");
4945 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4947 printf_filtered ("\n");
4949 printf_filtered ("%*sis_const %d\n", spaces + 8, "",
4950 TYPE_FN_FIELD_CONST (f, overload_idx));
4951 printf_filtered ("%*sis_volatile %d\n", spaces + 8, "",
4952 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4953 printf_filtered ("%*sis_private %d\n", spaces + 8, "",
4954 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4955 printf_filtered ("%*sis_protected %d\n", spaces + 8, "",
4956 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4957 printf_filtered ("%*sis_stub %d\n", spaces + 8, "",
4958 TYPE_FN_FIELD_STUB (f, overload_idx));
4959 printf_filtered ("%*sdefaulted %d\n", spaces + 8, "",
4960 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4961 printf_filtered ("%*sis_deleted %d\n", spaces + 8, "",
4962 TYPE_FN_FIELD_DELETED (f, overload_idx));
4963 printf_filtered ("%*svoffset %u\n", spaces + 8, "",
4964 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4970 print_cplus_stuff (struct type *type, int spaces)
4972 printf_filtered ("%*svptr_fieldno %d\n", spaces, "",
4973 TYPE_VPTR_FIELDNO (type));
4974 printf_filtered ("%*svptr_basetype ", spaces, "");
4975 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4976 puts_filtered ("\n");
4977 if (TYPE_VPTR_BASETYPE (type) != NULL)
4978 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4980 printf_filtered ("%*sn_baseclasses %d\n", spaces, "",
4981 TYPE_N_BASECLASSES (type));
4982 printf_filtered ("%*snfn_fields %d\n", spaces, "",
4983 TYPE_NFN_FIELDS (type));
4984 if (TYPE_N_BASECLASSES (type) > 0)
4986 printf_filtered ("%*svirtual_field_bits (%d bits at *",
4987 spaces, "", TYPE_N_BASECLASSES (type));
4988 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4990 printf_filtered (")");
4992 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4993 TYPE_N_BASECLASSES (type));
4994 puts_filtered ("\n");
4996 if (type->num_fields () > 0)
4998 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
5000 printf_filtered ("%*sprivate_field_bits (%d bits at *",
5001 spaces, "", type->num_fields ());
5002 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
5004 printf_filtered (")");
5005 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
5006 type->num_fields ());
5007 puts_filtered ("\n");
5009 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
5011 printf_filtered ("%*sprotected_field_bits (%d bits at *",
5012 spaces, "", type->num_fields ());
5013 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
5015 printf_filtered (")");
5016 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
5017 type->num_fields ());
5018 puts_filtered ("\n");
5021 if (TYPE_NFN_FIELDS (type) > 0)
5023 dump_fn_fieldlists (type, spaces);
5026 printf_filtered ("%*scalling_convention %d\n", spaces, "",
5027 TYPE_CPLUS_CALLING_CONVENTION (type));
5030 /* Print the contents of the TYPE's type_specific union, assuming that
5031 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
5034 print_gnat_stuff (struct type *type, int spaces)
5036 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
5038 if (descriptive_type == NULL)
5039 printf_filtered ("%*sno descriptive type\n", spaces + 2, "");
5042 printf_filtered ("%*sdescriptive type\n", spaces + 2, "");
5043 recursive_dump_type (descriptive_type, spaces + 4);
5047 /* Print the contents of the TYPE's type_specific union, assuming that
5048 its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */
5051 print_fixed_point_type_info (struct type *type, int spaces)
5053 printf_filtered ("%*sscaling factor: %s\n", spaces + 2, "",
5054 type->fixed_point_scaling_factor ().str ().c_str ());
5057 static struct obstack dont_print_type_obstack;
5059 /* Print the dynamic_prop PROP. */
5062 dump_dynamic_prop (dynamic_prop const& prop)
5064 switch (prop.kind ())
5067 printf_filtered ("%s", plongest (prop.const_val ()));
5069 case PROP_UNDEFINED:
5070 printf_filtered ("(undefined)");
5074 printf_filtered ("(dynamic)");
5077 gdb_assert_not_reached ("unhandled prop kind");
5083 recursive_dump_type (struct type *type, int spaces)
5088 obstack_begin (&dont_print_type_obstack, 0);
5090 if (type->num_fields () > 0
5091 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
5093 struct type **first_dont_print
5094 = (struct type **) obstack_base (&dont_print_type_obstack);
5096 int i = (struct type **)
5097 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
5101 if (type == first_dont_print[i])
5103 printf_filtered ("%*stype node ", spaces, "");
5104 gdb_print_host_address (type, gdb_stdout);
5105 printf_filtered (_(" <same as already seen type>\n"));
5110 obstack_ptr_grow (&dont_print_type_obstack, type);
5113 printf_filtered ("%*stype node ", spaces, "");
5114 gdb_print_host_address (type, gdb_stdout);
5115 printf_filtered ("\n");
5116 printf_filtered ("%*sname '%s' (", spaces, "",
5117 type->name () ? type->name () : "<NULL>");
5118 gdb_print_host_address (type->name (), gdb_stdout);
5119 printf_filtered (")\n");
5120 printf_filtered ("%*scode 0x%x ", spaces, "", type->code ());
5121 switch (type->code ())
5123 case TYPE_CODE_UNDEF:
5124 printf_filtered ("(TYPE_CODE_UNDEF)");
5127 printf_filtered ("(TYPE_CODE_PTR)");
5129 case TYPE_CODE_ARRAY:
5130 printf_filtered ("(TYPE_CODE_ARRAY)");
5132 case TYPE_CODE_STRUCT:
5133 printf_filtered ("(TYPE_CODE_STRUCT)");
5135 case TYPE_CODE_UNION:
5136 printf_filtered ("(TYPE_CODE_UNION)");
5138 case TYPE_CODE_ENUM:
5139 printf_filtered ("(TYPE_CODE_ENUM)");
5141 case TYPE_CODE_FLAGS:
5142 printf_filtered ("(TYPE_CODE_FLAGS)");
5144 case TYPE_CODE_FUNC:
5145 printf_filtered ("(TYPE_CODE_FUNC)");
5148 printf_filtered ("(TYPE_CODE_INT)");
5151 printf_filtered ("(TYPE_CODE_FLT)");
5153 case TYPE_CODE_VOID:
5154 printf_filtered ("(TYPE_CODE_VOID)");
5157 printf_filtered ("(TYPE_CODE_SET)");
5159 case TYPE_CODE_RANGE:
5160 printf_filtered ("(TYPE_CODE_RANGE)");
5162 case TYPE_CODE_STRING:
5163 printf_filtered ("(TYPE_CODE_STRING)");
5165 case TYPE_CODE_ERROR:
5166 printf_filtered ("(TYPE_CODE_ERROR)");
5168 case TYPE_CODE_MEMBERPTR:
5169 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
5171 case TYPE_CODE_METHODPTR:
5172 printf_filtered ("(TYPE_CODE_METHODPTR)");
5174 case TYPE_CODE_METHOD:
5175 printf_filtered ("(TYPE_CODE_METHOD)");
5178 printf_filtered ("(TYPE_CODE_REF)");
5180 case TYPE_CODE_CHAR:
5181 printf_filtered ("(TYPE_CODE_CHAR)");
5183 case TYPE_CODE_BOOL:
5184 printf_filtered ("(TYPE_CODE_BOOL)");
5186 case TYPE_CODE_COMPLEX:
5187 printf_filtered ("(TYPE_CODE_COMPLEX)");
5189 case TYPE_CODE_TYPEDEF:
5190 printf_filtered ("(TYPE_CODE_TYPEDEF)");
5192 case TYPE_CODE_NAMESPACE:
5193 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5195 case TYPE_CODE_FIXED_POINT:
5196 printf_filtered ("(TYPE_CODE_FIXED_POINT)");
5199 printf_filtered ("(UNKNOWN TYPE CODE)");
5202 puts_filtered ("\n");
5203 printf_filtered ("%*slength %s\n", spaces, "",
5204 pulongest (TYPE_LENGTH (type)));
5205 if (type->is_objfile_owned ())
5207 printf_filtered ("%*sobjfile ", spaces, "");
5208 gdb_print_host_address (type->objfile_owner (), gdb_stdout);
5212 printf_filtered ("%*sgdbarch ", spaces, "");
5213 gdb_print_host_address (type->arch_owner (), gdb_stdout);
5215 printf_filtered ("\n");
5216 printf_filtered ("%*starget_type ", spaces, "");
5217 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5218 printf_filtered ("\n");
5219 if (TYPE_TARGET_TYPE (type) != NULL)
5221 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5223 printf_filtered ("%*spointer_type ", spaces, "");
5224 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5225 printf_filtered ("\n");
5226 printf_filtered ("%*sreference_type ", spaces, "");
5227 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5228 printf_filtered ("\n");
5229 printf_filtered ("%*stype_chain ", spaces, "");
5230 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5231 printf_filtered ("\n");
5232 printf_filtered ("%*sinstance_flags 0x%x", spaces, "",
5233 (unsigned) type->instance_flags ());
5234 if (TYPE_CONST (type))
5236 puts_filtered (" TYPE_CONST");
5238 if (TYPE_VOLATILE (type))
5240 puts_filtered (" TYPE_VOLATILE");
5242 if (TYPE_CODE_SPACE (type))
5244 puts_filtered (" TYPE_CODE_SPACE");
5246 if (TYPE_DATA_SPACE (type))
5248 puts_filtered (" TYPE_DATA_SPACE");
5250 if (TYPE_ADDRESS_CLASS_1 (type))
5252 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5254 if (TYPE_ADDRESS_CLASS_2 (type))
5256 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5258 if (TYPE_RESTRICT (type))
5260 puts_filtered (" TYPE_RESTRICT");
5262 if (TYPE_ATOMIC (type))
5264 puts_filtered (" TYPE_ATOMIC");
5266 puts_filtered ("\n");
5268 printf_filtered ("%*sflags", spaces, "");
5269 if (type->is_unsigned ())
5271 puts_filtered (" TYPE_UNSIGNED");
5273 if (type->has_no_signedness ())
5275 puts_filtered (" TYPE_NOSIGN");
5277 if (type->endianity_is_not_default ())
5279 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5281 if (type->is_stub ())
5283 puts_filtered (" TYPE_STUB");
5285 if (type->target_is_stub ())
5287 puts_filtered (" TYPE_TARGET_STUB");
5289 if (type->is_prototyped ())
5291 puts_filtered (" TYPE_PROTOTYPED");
5293 if (type->has_varargs ())
5295 puts_filtered (" TYPE_VARARGS");
5297 /* This is used for things like AltiVec registers on ppc. Gcc emits
5298 an attribute for the array type, which tells whether or not we
5299 have a vector, instead of a regular array. */
5300 if (type->is_vector ())
5302 puts_filtered (" TYPE_VECTOR");
5304 if (type->is_fixed_instance ())
5306 puts_filtered (" TYPE_FIXED_INSTANCE");
5308 if (type->stub_is_supported ())
5310 puts_filtered (" TYPE_STUB_SUPPORTED");
5312 if (TYPE_NOTTEXT (type))
5314 puts_filtered (" TYPE_NOTTEXT");
5316 puts_filtered ("\n");
5317 printf_filtered ("%*snfields %d ", spaces, "", type->num_fields ());
5318 if (TYPE_ASSOCIATED_PROP (type) != nullptr
5319 || TYPE_ALLOCATED_PROP (type) != nullptr)
5321 printf_filtered ("%*s", spaces, "");
5322 if (TYPE_ASSOCIATED_PROP (type) != nullptr)
5324 printf_filtered ("associated ");
5325 dump_dynamic_prop (*TYPE_ASSOCIATED_PROP (type));
5327 if (TYPE_ALLOCATED_PROP (type) != nullptr)
5329 if (TYPE_ASSOCIATED_PROP (type) != nullptr)
5330 printf_filtered (" ");
5331 printf_filtered ("allocated ");
5332 dump_dynamic_prop (*TYPE_ALLOCATED_PROP (type));
5334 printf_filtered ("\n");
5336 gdb_print_host_address (type->fields (), gdb_stdout);
5337 puts_filtered ("\n");
5338 for (idx = 0; idx < type->num_fields (); idx++)
5340 if (type->code () == TYPE_CODE_ENUM)
5341 printf_filtered ("%*s[%d] enumval %s type ", spaces + 2, "",
5342 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5344 printf_filtered ("%*s[%d] bitpos %s bitsize %d type ", spaces + 2, "",
5345 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5346 TYPE_FIELD_BITSIZE (type, idx));
5347 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5348 printf_filtered (" name '%s' (",
5349 TYPE_FIELD_NAME (type, idx) != NULL
5350 ? TYPE_FIELD_NAME (type, idx)
5352 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5353 printf_filtered (")\n");
5354 if (type->field (idx).type () != NULL)
5356 recursive_dump_type (type->field (idx).type (), spaces + 4);
5359 if (type->code () == TYPE_CODE_RANGE)
5361 printf_filtered ("%*slow ", spaces, "");
5362 dump_dynamic_prop (type->bounds ()->low);
5363 printf_filtered (" high ");
5364 dump_dynamic_prop (type->bounds ()->high);
5365 printf_filtered ("\n");
5368 switch (TYPE_SPECIFIC_FIELD (type))
5370 case TYPE_SPECIFIC_CPLUS_STUFF:
5371 printf_filtered ("%*scplus_stuff ", spaces, "");
5372 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5374 puts_filtered ("\n");
5375 print_cplus_stuff (type, spaces);
5378 case TYPE_SPECIFIC_GNAT_STUFF:
5379 printf_filtered ("%*sgnat_stuff ", spaces, "");
5380 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5381 puts_filtered ("\n");
5382 print_gnat_stuff (type, spaces);
5385 case TYPE_SPECIFIC_FLOATFORMAT:
5386 printf_filtered ("%*sfloatformat ", spaces, "");
5387 if (TYPE_FLOATFORMAT (type) == NULL
5388 || TYPE_FLOATFORMAT (type)->name == NULL)
5389 puts_filtered ("(null)");
5391 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5392 puts_filtered ("\n");
5395 case TYPE_SPECIFIC_FUNC:
5396 printf_filtered ("%*scalling_convention %d\n", spaces, "",
5397 TYPE_CALLING_CONVENTION (type));
5398 /* tail_call_list is not printed. */
5401 case TYPE_SPECIFIC_SELF_TYPE:
5402 printf_filtered ("%*sself_type ", spaces, "");
5403 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5404 puts_filtered ("\n");
5407 case TYPE_SPECIFIC_FIXED_POINT:
5408 printf_filtered ("%*sfixed_point_info ", spaces, "");
5409 print_fixed_point_type_info (type, spaces);
5410 puts_filtered ("\n");
5413 case TYPE_SPECIFIC_INT:
5414 if (type->bit_size_differs_p ())
5416 unsigned bit_size = type->bit_size ();
5417 unsigned bit_off = type->bit_offset ();
5418 printf_filtered ("%*s bit size = %u, bit offset = %u\n", spaces, "",
5425 obstack_free (&dont_print_type_obstack, NULL);
5428 /* Trivial helpers for the libiberty hash table, for mapping one
5431 struct type_pair : public allocate_on_obstack
5433 type_pair (struct type *old_, struct type *newobj_)
5434 : old (old_), newobj (newobj_)
5437 struct type * const old, * const newobj;
5441 type_pair_hash (const void *item)
5443 const struct type_pair *pair = (const struct type_pair *) item;
5445 return htab_hash_pointer (pair->old);
5449 type_pair_eq (const void *item_lhs, const void *item_rhs)
5451 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5452 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5454 return lhs->old == rhs->old;
5457 /* Allocate the hash table used by copy_type_recursive to walk
5458 types without duplicates. We use OBJFILE's obstack, because
5459 OBJFILE is about to be deleted. */
5462 create_copied_types_hash (struct objfile *objfile)
5464 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5465 NULL, &objfile->objfile_obstack,
5466 hashtab_obstack_allocate,
5467 dummy_obstack_deallocate));
5470 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5472 static struct dynamic_prop_list *
5473 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5474 struct dynamic_prop_list *list)
5476 struct dynamic_prop_list *copy = list;
5477 struct dynamic_prop_list **node_ptr = ©
5479 while (*node_ptr != NULL)
5481 struct dynamic_prop_list *node_copy;
5483 node_copy = ((struct dynamic_prop_list *)
5484 obstack_copy (objfile_obstack, *node_ptr,
5485 sizeof (struct dynamic_prop_list)));
5486 node_copy->prop = (*node_ptr)->prop;
5487 *node_ptr = node_copy;
5489 node_ptr = &node_copy->next;
5495 /* Recursively copy (deep copy) TYPE, if it is associated with
5496 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5497 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5498 it is not associated with OBJFILE. */
5501 copy_type_recursive (struct objfile *objfile,
5503 htab_t copied_types)
5506 struct type *new_type;
5508 if (!type->is_objfile_owned ())
5511 /* This type shouldn't be pointing to any types in other objfiles;
5512 if it did, the type might disappear unexpectedly. */
5513 gdb_assert (type->objfile_owner () == objfile);
5515 struct type_pair pair (type, nullptr);
5517 slot = htab_find_slot (copied_types, &pair, INSERT);
5519 return ((struct type_pair *) *slot)->newobj;
5521 new_type = alloc_type_arch (type->arch ());
5523 /* We must add the new type to the hash table immediately, in case
5524 we encounter this type again during a recursive call below. */
5525 struct type_pair *stored
5526 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5530 /* Copy the common fields of types. For the main type, we simply
5531 copy the entire thing and then update specific fields as needed. */
5532 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5534 new_type->set_owner (type->arch ());
5537 new_type->set_name (xstrdup (type->name ()));
5539 new_type->set_instance_flags (type->instance_flags ());
5540 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5542 /* Copy the fields. */
5543 if (type->num_fields ())
5547 nfields = type->num_fields ();
5548 new_type->set_fields
5550 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5552 for (i = 0; i < nfields; i++)
5554 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5555 TYPE_FIELD_ARTIFICIAL (type, i);
5556 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5557 if (type->field (i).type ())
5558 new_type->field (i).set_type
5559 (copy_type_recursive (objfile, type->field (i).type (),
5561 if (TYPE_FIELD_NAME (type, i))
5562 new_type->field (i).set_name (xstrdup (TYPE_FIELD_NAME (type, i)));
5563 switch (TYPE_FIELD_LOC_KIND (type, i))
5565 case FIELD_LOC_KIND_BITPOS:
5566 SET_FIELD_BITPOS (new_type->field (i),
5567 TYPE_FIELD_BITPOS (type, i));
5569 case FIELD_LOC_KIND_ENUMVAL:
5570 SET_FIELD_ENUMVAL (new_type->field (i),
5571 TYPE_FIELD_ENUMVAL (type, i));
5573 case FIELD_LOC_KIND_PHYSADDR:
5574 SET_FIELD_PHYSADDR (new_type->field (i),
5575 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5577 case FIELD_LOC_KIND_PHYSNAME:
5578 SET_FIELD_PHYSNAME (new_type->field (i),
5579 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5582 case FIELD_LOC_KIND_DWARF_BLOCK:
5583 SET_FIELD_DWARF_BLOCK (new_type->field (i),
5584 TYPE_FIELD_DWARF_BLOCK (type, i));
5587 internal_error (__FILE__, __LINE__,
5588 _("Unexpected type field location kind: %d"),
5589 TYPE_FIELD_LOC_KIND (type, i));
5594 /* For range types, copy the bounds information. */
5595 if (type->code () == TYPE_CODE_RANGE)
5597 range_bounds *bounds
5598 = ((struct range_bounds *) TYPE_ALLOC
5599 (new_type, sizeof (struct range_bounds)));
5601 *bounds = *type->bounds ();
5602 new_type->set_bounds (bounds);
5605 if (type->main_type->dyn_prop_list != NULL)
5606 new_type->main_type->dyn_prop_list
5607 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5608 type->main_type->dyn_prop_list);
5611 /* Copy pointers to other types. */
5612 if (TYPE_TARGET_TYPE (type))
5613 TYPE_TARGET_TYPE (new_type) =
5614 copy_type_recursive (objfile,
5615 TYPE_TARGET_TYPE (type),
5618 /* Maybe copy the type_specific bits.
5620 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5621 base classes and methods. There's no fundamental reason why we
5622 can't, but at the moment it is not needed. */
5624 switch (TYPE_SPECIFIC_FIELD (type))
5626 case TYPE_SPECIFIC_NONE:
5628 case TYPE_SPECIFIC_FUNC:
5629 INIT_FUNC_SPECIFIC (new_type);
5630 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5631 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5632 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5634 case TYPE_SPECIFIC_FLOATFORMAT:
5635 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5637 case TYPE_SPECIFIC_CPLUS_STUFF:
5638 INIT_CPLUS_SPECIFIC (new_type);
5640 case TYPE_SPECIFIC_GNAT_STUFF:
5641 INIT_GNAT_SPECIFIC (new_type);
5643 case TYPE_SPECIFIC_SELF_TYPE:
5644 set_type_self_type (new_type,
5645 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5648 case TYPE_SPECIFIC_FIXED_POINT:
5649 INIT_FIXED_POINT_SPECIFIC (new_type);
5650 new_type->fixed_point_info ().scaling_factor
5651 = type->fixed_point_info ().scaling_factor;
5653 case TYPE_SPECIFIC_INT:
5654 TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
5655 TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
5656 = TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
5660 gdb_assert_not_reached ("bad type_specific_kind");
5666 /* Make a copy of the given TYPE, except that the pointer & reference
5667 types are not preserved.
5669 This function assumes that the given type has an associated objfile.
5670 This objfile is used to allocate the new type. */
5673 copy_type (const struct type *type)
5675 struct type *new_type;
5677 gdb_assert (type->is_objfile_owned ());
5679 new_type = alloc_type_copy (type);
5680 new_type->set_instance_flags (type->instance_flags ());
5681 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5682 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5683 sizeof (struct main_type));
5684 if (type->main_type->dyn_prop_list != NULL)
5685 new_type->main_type->dyn_prop_list
5686 = copy_dynamic_prop_list (&type->objfile_owner ()->objfile_obstack,
5687 type->main_type->dyn_prop_list);
5692 /* Helper functions to initialize architecture-specific types. */
5694 /* Allocate a type structure associated with GDBARCH and set its
5695 CODE, LENGTH, and NAME fields. */
5698 arch_type (struct gdbarch *gdbarch,
5699 enum type_code code, int bit, const char *name)
5703 type = alloc_type_arch (gdbarch);
5704 set_type_code (type, code);
5705 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5706 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5709 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5714 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5715 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5716 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5719 arch_integer_type (struct gdbarch *gdbarch,
5720 int bit, int unsigned_p, const char *name)
5724 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5726 t->set_is_unsigned (true);
5731 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5732 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5733 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5736 arch_character_type (struct gdbarch *gdbarch,
5737 int bit, int unsigned_p, const char *name)
5741 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5743 t->set_is_unsigned (true);
5748 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5749 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5750 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5753 arch_boolean_type (struct gdbarch *gdbarch,
5754 int bit, int unsigned_p, const char *name)
5758 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5760 t->set_is_unsigned (true);
5765 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5766 BIT is the type size in bits; if BIT equals -1, the size is
5767 determined by the floatformat. NAME is the type name. Set the
5768 TYPE_FLOATFORMAT from FLOATFORMATS. */
5771 arch_float_type (struct gdbarch *gdbarch,
5772 int bit, const char *name,
5773 const struct floatformat **floatformats)
5775 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5778 bit = verify_floatformat (bit, fmt);
5779 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5780 TYPE_FLOATFORMAT (t) = fmt;
5785 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5786 BIT is the type size in bits. NAME is the type name. */
5789 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5793 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5797 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5798 BIT is the pointer type size in bits. NAME is the type name.
5799 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5800 TYPE_UNSIGNED flag. */
5803 arch_pointer_type (struct gdbarch *gdbarch,
5804 int bit, const char *name, struct type *target_type)
5808 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5809 TYPE_TARGET_TYPE (t) = target_type;
5810 t->set_is_unsigned (true);
5814 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5815 NAME is the type name. BIT is the size of the flag word in bits. */
5818 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5822 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5823 type->set_is_unsigned (true);
5824 type->set_num_fields (0);
5825 /* Pre-allocate enough space assuming every field is one bit. */
5827 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5832 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5833 position BITPOS is called NAME. Pass NAME as "" for fields that
5834 should not be printed. */
5837 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5838 struct type *field_type, const char *name)
5840 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5841 int field_nr = type->num_fields ();
5843 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5844 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5845 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5846 gdb_assert (nr_bits >= 1 && (start_bitpos + nr_bits) <= type_bitsize);
5847 gdb_assert (name != NULL);
5849 type->field (field_nr).set_name (xstrdup (name));
5850 type->field (field_nr).set_type (field_type);
5851 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5852 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5853 type->set_num_fields (type->num_fields () + 1);
5856 /* Special version of append_flags_type_field to add a flag field.
5857 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5858 position BITPOS is called NAME. */
5861 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5863 append_flags_type_field (type, bitpos, 1,
5864 builtin_type (type->arch ())->builtin_bool,
5868 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5869 specified by CODE) associated with GDBARCH. NAME is the type name. */
5872 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5873 enum type_code code)
5877 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5878 t = arch_type (gdbarch, code, 0, NULL);
5880 INIT_CPLUS_SPECIFIC (t);
5884 /* Add new field with name NAME and type FIELD to composite type T.
5885 Do not set the field's position or adjust the type's length;
5886 the caller should do so. Return the new field. */
5889 append_composite_type_field_raw (struct type *t, const char *name,
5894 t->set_num_fields (t->num_fields () + 1);
5895 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5897 f = &t->field (t->num_fields () - 1);
5898 memset (f, 0, sizeof f[0]);
5899 f[0].set_type (field);
5900 f[0].set_name (name);
5904 /* Add new field with name NAME and type FIELD to composite type T.
5905 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5908 append_composite_type_field_aligned (struct type *t, const char *name,
5909 struct type *field, int alignment)
5911 struct field *f = append_composite_type_field_raw (t, name, field);
5913 if (t->code () == TYPE_CODE_UNION)
5915 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5916 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5918 else if (t->code () == TYPE_CODE_STRUCT)
5920 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5921 if (t->num_fields () > 1)
5923 SET_FIELD_BITPOS (f[0],
5924 (FIELD_BITPOS (f[-1])
5925 + (TYPE_LENGTH (f[-1].type ())
5926 * TARGET_CHAR_BIT)));
5932 alignment *= TARGET_CHAR_BIT;
5933 left = FIELD_BITPOS (f[0]) % alignment;
5937 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5938 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5945 /* Add new field with name NAME and type FIELD to composite type T. */
5948 append_composite_type_field (struct type *t, const char *name,
5951 append_composite_type_field_aligned (t, name, field, 0);
5956 /* We manage the lifetimes of fixed_point_type_info objects by
5957 attaching them to the objfile. Currently, these objects are
5958 modified during construction, and GMP does not provide a way to
5959 hash the contents of an mpq_t; so it's a bit of a pain to hash-cons
5960 them. If we did do this, they could be moved to the per-BFD and
5961 shared across objfiles. */
5962 typedef std::vector<std::unique_ptr<fixed_point_type_info>>
5963 fixed_point_type_storage;
5965 /* Key used for managing the storage of fixed-point type info. */
5966 static const struct objfile_key<fixed_point_type_storage>
5967 fixed_point_objfile_key;
5969 /* See gdbtypes.h. */
5972 allocate_fixed_point_type_info (struct type *type)
5974 std::unique_ptr<fixed_point_type_info> up (new fixed_point_type_info);
5975 fixed_point_type_info *info;
5977 if (type->is_objfile_owned ())
5979 fixed_point_type_storage *storage
5980 = fixed_point_objfile_key.get (type->objfile_owner ());
5981 if (storage == nullptr)
5982 storage = fixed_point_objfile_key.emplace (type->objfile_owner ());
5984 storage->push_back (std::move (up));
5988 /* We just leak the memory, because that's what we do generally
5989 for non-objfile-attached types. */
5990 info = up.release ();
5993 type->set_fixed_point_info (info);
5996 /* See gdbtypes.h. */
5999 is_fixed_point_type (struct type *type)
6001 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
6002 type = TYPE_TARGET_TYPE (check_typedef (type));
6003 type = check_typedef (type);
6005 return type->code () == TYPE_CODE_FIXED_POINT;
6008 /* See gdbtypes.h. */
6011 type::fixed_point_type_base_type ()
6013 struct type *type = this;
6015 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
6016 type = TYPE_TARGET_TYPE (check_typedef (type));
6017 type = check_typedef (type);
6019 gdb_assert (type->code () == TYPE_CODE_FIXED_POINT);
6023 /* See gdbtypes.h. */
6026 type::fixed_point_scaling_factor ()
6028 struct type *type = this->fixed_point_type_base_type ();
6030 return type->fixed_point_info ().scaling_factor;
6035 static struct gdbarch_data *gdbtypes_data;
6037 const struct builtin_type *
6038 builtin_type (struct gdbarch *gdbarch)
6040 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
6044 gdbtypes_post_init (struct gdbarch *gdbarch)
6046 struct builtin_type *builtin_type
6047 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
6050 builtin_type->builtin_void
6051 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
6052 builtin_type->builtin_char
6053 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
6054 !gdbarch_char_signed (gdbarch), "char");
6055 builtin_type->builtin_char->set_has_no_signedness (true);
6056 builtin_type->builtin_signed_char
6057 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
6059 builtin_type->builtin_unsigned_char
6060 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
6061 1, "unsigned char");
6062 builtin_type->builtin_short
6063 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
6065 builtin_type->builtin_unsigned_short
6066 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
6067 1, "unsigned short");
6068 builtin_type->builtin_int
6069 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
6071 builtin_type->builtin_unsigned_int
6072 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
6074 builtin_type->builtin_long
6075 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
6077 builtin_type->builtin_unsigned_long
6078 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
6079 1, "unsigned long");
6080 builtin_type->builtin_long_long
6081 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
6083 builtin_type->builtin_unsigned_long_long
6084 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
6085 1, "unsigned long long");
6086 builtin_type->builtin_half
6087 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
6088 "half", gdbarch_half_format (gdbarch));
6089 builtin_type->builtin_float
6090 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
6091 "float", gdbarch_float_format (gdbarch));
6092 builtin_type->builtin_bfloat16
6093 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
6094 "bfloat16", gdbarch_bfloat16_format (gdbarch));
6095 builtin_type->builtin_double
6096 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
6097 "double", gdbarch_double_format (gdbarch));
6098 builtin_type->builtin_long_double
6099 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
6100 "long double", gdbarch_long_double_format (gdbarch));
6101 builtin_type->builtin_complex
6102 = init_complex_type ("complex", builtin_type->builtin_float);
6103 builtin_type->builtin_double_complex
6104 = init_complex_type ("double complex", builtin_type->builtin_double);
6105 builtin_type->builtin_string
6106 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
6107 builtin_type->builtin_bool
6108 = arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "bool");
6110 /* The following three are about decimal floating point types, which
6111 are 32-bits, 64-bits and 128-bits respectively. */
6112 builtin_type->builtin_decfloat
6113 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
6114 builtin_type->builtin_decdouble
6115 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
6116 builtin_type->builtin_declong
6117 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
6119 /* "True" character types. */
6120 builtin_type->builtin_true_char
6121 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
6122 builtin_type->builtin_true_unsigned_char
6123 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
6125 /* Fixed-size integer types. */
6126 builtin_type->builtin_int0
6127 = arch_integer_type (gdbarch, 0, 0, "int0_t");
6128 builtin_type->builtin_int8
6129 = arch_integer_type (gdbarch, 8, 0, "int8_t");
6130 builtin_type->builtin_uint8
6131 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
6132 builtin_type->builtin_int16
6133 = arch_integer_type (gdbarch, 16, 0, "int16_t");
6134 builtin_type->builtin_uint16
6135 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
6136 builtin_type->builtin_int24
6137 = arch_integer_type (gdbarch, 24, 0, "int24_t");
6138 builtin_type->builtin_uint24
6139 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
6140 builtin_type->builtin_int32
6141 = arch_integer_type (gdbarch, 32, 0, "int32_t");
6142 builtin_type->builtin_uint32
6143 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
6144 builtin_type->builtin_int64
6145 = arch_integer_type (gdbarch, 64, 0, "int64_t");
6146 builtin_type->builtin_uint64
6147 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
6148 builtin_type->builtin_int128
6149 = arch_integer_type (gdbarch, 128, 0, "int128_t");
6150 builtin_type->builtin_uint128
6151 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
6153 builtin_type->builtin_int8->set_instance_flags
6154 (builtin_type->builtin_int8->instance_flags ()
6155 | TYPE_INSTANCE_FLAG_NOTTEXT);
6157 builtin_type->builtin_uint8->set_instance_flags
6158 (builtin_type->builtin_uint8->instance_flags ()
6159 | TYPE_INSTANCE_FLAG_NOTTEXT);
6161 /* Wide character types. */
6162 builtin_type->builtin_char16
6163 = arch_integer_type (gdbarch, 16, 1, "char16_t");
6164 builtin_type->builtin_char32
6165 = arch_integer_type (gdbarch, 32, 1, "char32_t");
6166 builtin_type->builtin_wchar
6167 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
6168 !gdbarch_wchar_signed (gdbarch), "wchar_t");
6170 /* Default data/code pointer types. */
6171 builtin_type->builtin_data_ptr
6172 = lookup_pointer_type (builtin_type->builtin_void);
6173 builtin_type->builtin_func_ptr
6174 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
6175 builtin_type->builtin_func_func
6176 = lookup_function_type (builtin_type->builtin_func_ptr);
6178 /* This type represents a GDB internal function. */
6179 builtin_type->internal_fn
6180 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
6181 "<internal function>");
6183 /* This type represents an xmethod. */
6184 builtin_type->xmethod
6185 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
6187 return builtin_type;
6190 /* This set of objfile-based types is intended to be used by symbol
6191 readers as basic types. */
6193 static const struct objfile_key<struct objfile_type,
6194 gdb::noop_deleter<struct objfile_type>>
6197 const struct objfile_type *
6198 objfile_type (struct objfile *objfile)
6200 struct gdbarch *gdbarch;
6201 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
6204 return objfile_type;
6206 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
6207 1, struct objfile_type);
6209 /* Use the objfile architecture to determine basic type properties. */
6210 gdbarch = objfile->arch ();
6213 objfile_type->builtin_void
6214 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
6215 objfile_type->builtin_char
6216 = init_integer_type (objfile, TARGET_CHAR_BIT,
6217 !gdbarch_char_signed (gdbarch), "char");
6218 objfile_type->builtin_char->set_has_no_signedness (true);
6219 objfile_type->builtin_signed_char
6220 = init_integer_type (objfile, TARGET_CHAR_BIT,
6222 objfile_type->builtin_unsigned_char
6223 = init_integer_type (objfile, TARGET_CHAR_BIT,
6224 1, "unsigned char");
6225 objfile_type->builtin_short
6226 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6228 objfile_type->builtin_unsigned_short
6229 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6230 1, "unsigned short");
6231 objfile_type->builtin_int
6232 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6234 objfile_type->builtin_unsigned_int
6235 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6237 objfile_type->builtin_long
6238 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6240 objfile_type->builtin_unsigned_long
6241 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6242 1, "unsigned long");
6243 objfile_type->builtin_long_long
6244 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6246 objfile_type->builtin_unsigned_long_long
6247 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6248 1, "unsigned long long");
6249 objfile_type->builtin_float
6250 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
6251 "float", gdbarch_float_format (gdbarch));
6252 objfile_type->builtin_double
6253 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
6254 "double", gdbarch_double_format (gdbarch));
6255 objfile_type->builtin_long_double
6256 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
6257 "long double", gdbarch_long_double_format (gdbarch));
6259 /* This type represents a type that was unrecognized in symbol read-in. */
6260 objfile_type->builtin_error
6261 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
6263 /* The following set of types is used for symbols with no
6264 debug information. */
6265 objfile_type->nodebug_text_symbol
6266 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6267 "<text variable, no debug info>");
6269 objfile_type->nodebug_text_gnu_ifunc_symbol
6270 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6271 "<text gnu-indirect-function variable, no debug info>");
6272 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
6274 objfile_type->nodebug_got_plt_symbol
6275 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
6276 "<text from jump slot in .got.plt, no debug info>",
6277 objfile_type->nodebug_text_symbol);
6278 objfile_type->nodebug_data_symbol
6279 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
6280 objfile_type->nodebug_unknown_symbol
6281 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
6282 objfile_type->nodebug_tls_symbol
6283 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
6285 /* NOTE: on some targets, addresses and pointers are not necessarily
6289 - gdb's `struct type' always describes the target's
6291 - gdb's `struct value' objects should always hold values in
6293 - gdb's CORE_ADDR values are addresses in the unified virtual
6294 address space that the assembler and linker work with. Thus,
6295 since target_read_memory takes a CORE_ADDR as an argument, it
6296 can access any memory on the target, even if the processor has
6297 separate code and data address spaces.
6299 In this context, objfile_type->builtin_core_addr is a bit odd:
6300 it's a target type for a value the target will never see. It's
6301 only used to hold the values of (typeless) linker symbols, which
6302 are indeed in the unified virtual address space. */
6304 objfile_type->builtin_core_addr
6305 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
6308 objfile_type_data.set (objfile, objfile_type);
6309 return objfile_type;
6312 void _initialize_gdbtypes ();
6314 _initialize_gdbtypes ()
6316 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
6318 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
6319 _("Set debugging of C++ overloading."),
6320 _("Show debugging of C++ overloading."),
6321 _("When enabled, ranking of the "
6322 "functions is displayed."),
6324 show_overload_debug,
6325 &setdebuglist, &showdebuglist);
6327 /* Add user knob for controlling resolution of opaque types. */
6328 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6329 &opaque_type_resolution,
6330 _("Set resolution of opaque struct/class/union"
6331 " types (if set before loading symbols)."),
6332 _("Show resolution of opaque struct/class/union"
6333 " types (if set before loading symbols)."),
6335 show_opaque_type_resolution,
6336 &setlist, &showlist);
6338 /* Add an option to permit non-strict type checking. */
6339 add_setshow_boolean_cmd ("type", class_support,
6340 &strict_type_checking,
6341 _("Set strict type checking."),
6342 _("Show strict type checking."),
6344 show_strict_type_checking,
6345 &setchecklist, &showchecklist);