1 /* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 #include "ieee-float.h" /* for ext_format & friends */
31 /* Size of an instruction */
32 #define BYTES_PER_88K_INSN 4
34 void frame_find_saved_regs ();
36 /* is this target an m88110? Otherwise assume m88100. This has
37 relevance for the ways in which we screw with instruction pointers. */
38 int target_is_m88110 = 0;
40 /* FIXME: this is really just a guess based on m88110 being big
42 const struct ext_format ext_format_m88110 = {
43 /* tot sbyte smask expbyte manbyte */
44 10, 0, 0x80, 0,1, 4,8 /* m88110 */
47 /* Given a GDB frame, determine the address of the calling function's frame.
48 This will be used to create a new GDB frame struct, and then
49 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
51 For us, the frame address is its stack pointer value, so we look up
52 the function prologue to determine the caller's sp value, and return it. */
55 frame_chain (thisframe)
59 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
60 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
61 the ADDRESS, of SP_REGNUM. It also depends on the cache of
62 frame_find_saved_regs results. */
63 if (thisframe->fsr->regs[SP_REGNUM])
64 return thisframe->fsr->regs[SP_REGNUM];
66 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
70 frameless_function_invocation (frame)
74 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
75 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
76 the ADDRESS, of SP_REGNUM. It also depends on the cache of
77 frame_find_saved_regs results. */
78 if (frame->fsr->regs[SP_REGNUM])
79 return 0; /* Frameful -- return addr saved somewhere */
81 return 1; /* Frameless -- no saved return address */
85 init_extra_frame_info (fromleaf, fi)
87 struct frame_info *fi;
89 fi->fsr = 0; /* Not yet allocated */
90 fi->args_pointer = 0; /* Unknown */
91 fi->locals_pointer = 0; /* Unknown */
94 /* Examine an m88k function prologue, recording the addresses at which
95 registers are saved explicitly by the prologue code, and returning
96 the address of the first instruction after the prologue (but not
97 after the instruction at address LIMIT, as explained below).
99 LIMIT places an upper bound on addresses of the instructions to be
100 examined. If the prologue code scan reaches LIMIT, the scan is
101 aborted and LIMIT is returned. This is used, when examining the
102 prologue for the current frame, to keep examine_prologue () from
103 claiming that a given register has been saved when in fact the
104 instruction that saves it has not yet been executed. LIMIT is used
105 at other times to stop the scan when we hit code after the true
106 function prologue (e.g. for the first source line) which might
107 otherwise be mistaken for function prologue.
109 The format of the function prologue matched by this routine is
110 derived from examination of the source to gcc 1.95, particularly
111 the routine output_prologue () in config/out-m88k.c.
113 subu r31,r31,n # stack pointer update
115 (st rn,r31,offset)? # save incoming regs
116 (st.d rn,r31,offset)?
118 (addu r30,r31,n)? # frame pointer update
120 (pic sequence)? # PIC code prologue
122 (or rn,rm,0)? # Move parameters to other regs
125 /* Macros for extracting fields from instructions. */
127 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
128 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
130 /* Prologue code that handles position-independent-code setup. */
132 struct pic_prologue_code {
133 unsigned long insn, mask;
136 static struct pic_prologue_code pic_prologue_code [] = {
137 /* FIXME -- until this is translated to hex, we won't match it... */
139 /* or r10,r1,0 (if not saved) */
141 /* or.u r25,r0,const */
142 /*LabN: or r25,r25,const2 */
144 /* or r1,r10,0 (if not saved) */
147 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
148 is not the address of a valid instruction, the address of the next
149 instruction beyond ADDR otherwise. *PWORD1 receives the first word
150 of the instruction. PWORD2 is ignored -- a remnant of the original
153 #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
154 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
156 /* Read the m88k instruction at 'memaddr' and return the address of
157 the next instruction after that, or 0 if 'memaddr' is not the
158 address of a valid instruction. The instruction
159 is stored at 'pword1'. */
162 next_insn (memaddr, pword1)
163 unsigned long *pword1;
166 *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
167 return memaddr + BYTES_PER_88K_INSN;
170 /* Read a register from frames called by us (or from the hardware regs). */
173 read_next_frame_reg(fi, regno)
177 for (; fi; fi = fi->next) {
178 if (regno == SP_REGNUM) return fi->frame;
179 else if (fi->fsr->regs[regno])
180 return read_memory_integer(fi->fsr->regs[regno], 4);
182 return read_register(regno);
185 /* Examine the prologue of a function. `ip' points to the first instruction.
186 `limit' is the limit of the prologue (e.g. the addr of the first
187 linenumber, or perhaps the program counter if we're stepping through).
188 `frame_sp' is the stack pointer value in use in this frame.
189 `fsr' is a pointer to a frame_saved_regs structure into which we put
190 info about the registers saved by this frame.
191 `fi' is a struct frame_info pointer; we fill in various fields in it
192 to reflect the offsets of the arg pointer and the locals pointer. */
195 examine_prologue (ip, limit, frame_sp, fsr, fi)
196 register CORE_ADDR ip;
197 register CORE_ADDR limit;
199 struct frame_saved_regs *fsr;
200 struct frame_info *fi;
202 register CORE_ADDR next_ip;
204 register struct pic_prologue_code *pcode;
207 char must_adjust[32]; /* If set, must adjust offsets in fsr */
208 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
209 int fp_offset = -1; /* -1 means not set */
212 memset (must_adjust, '\0', sizeof (must_adjust));
213 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
215 /* Accept move of incoming registers to other registers, using
216 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
217 We don't have to worry about walking into the first lines of code,
218 since the first line number will stop us (assuming we have symbols).
219 What we have actually seen is "or r10,r0,r12". */
221 #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
222 #define OR_MOVE_MASK 0xF800FFFF
223 #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
224 #define OR_REG_MOVE1_MASK 0xFC1FFFE0
225 #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
226 #define OR_REG_MOVE2_MASK 0xFC00FFFF
228 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
229 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
230 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
234 /* We don't care what moves to where. The result of the moves
235 has already been reflected in what the compiler tells us is the
236 location of these parameters. */
238 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
241 /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
243 #define SUBU_SP_INSN 0x67ff0000
244 #define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
245 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
247 ((insn & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
249 sp_offset = -SUBU_OFFSET (insn);
251 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
254 /* The function must start with a stack-pointer adjustment, or
255 we don't know WHAT'S going on... */
259 /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
260 This may cause us to mistake the copying of a register
261 parameter to the frame for the saving of a callee-saved
262 register, but that can't be helped, since with the
263 "-fcall-saved" flag, any register can be made callee-saved.
264 This probably doesn't matter, since the ``saved'' caller's values of
265 non-callee-saved registers are not relevant anyway. */
267 #define STD_STACK_INSN 0x201f0000
268 #define STD_STACK_MASK 0xfc1f0000
269 #define ST_STACK_INSN 0x241f0000
270 #define ST_STACK_MASK 0xfc1f0000
271 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
272 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
276 if ((insn & ST_STACK_MASK) == ST_STACK_INSN)
278 else if ((insn & STD_STACK_MASK) == STD_STACK_INSN)
284 offset = ST_OFFSET (insn);
287 must_adjust[src] = 1;
288 fsr->regs[src++] = offset; /* Will be adjusted later */
292 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
295 /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
297 #define ADDU_FP_INSN 0x63df0000
298 #define ADDU_FP_MASK 0xffff0000
299 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
301 ((insn & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
303 fp_offset = ADDU_OFFSET (insn);
305 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
308 /* Accept the PIC prologue code if present. */
310 pcode = pic_prologue_code;
311 size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
312 /* If return addr is saved, we don't use first or last insn of PICstuff. */
313 if (fsr->regs[SRP_REGNUM]) {
318 while (size-- && next_ip && (pcode->insn == (pcode->mask & insn)))
322 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
325 /* Accept moves of parameter registers to other registers, using
326 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
327 We don't have to worry about walking into the first lines of code,
328 since the first line number will stop us (assuming we have symbols).
329 What gcc actually seems to produce is "or rd,r0,rs". */
331 #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
332 #define OR_MOVE_MASK 0xF800FFFF
333 #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
334 #define OR_REG_MOVE1_MASK 0xFC1FFFE0
335 #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
336 #define OR_REG_MOVE2_MASK 0xFC00FFFF
338 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
339 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
340 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
344 /* We don't care what moves to where. The result of the moves
345 has already been reflected in what the compiler tells us is the
346 location of these parameters. */
348 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
351 /* We're done with the prologue. If we don't care about the stack
352 frame itself, just return. (Note that fsr->regs has been trashed,
353 but the one caller who calls with fi==0 passes a dummy there.) */
361 sp_offset original (before any alloca calls) displacement of SP
364 fp_offset displacement from original SP to the FP for this frame
367 fsr->regs[0..31] displacement from original SP to the stack
368 location where reg[0..31] is stored.
370 must_adjust[0..31] set if corresponding offset was set.
372 If alloca has been called between the function prologue and the current
373 IP, then the current SP (frame_sp) will not be the original SP as set by
374 the function prologue. If the current SP is not the original SP, then the
375 compiler will have allocated an FP for this frame, fp_offset will be set,
376 and we can use it to calculate the original SP.
378 Then, we figure out where the arguments and locals are, and relocate the
379 offsets in fsr->regs to absolute addresses. */
381 if (fp_offset != -1) {
382 /* We have a frame pointer, so get it, and base our calc's on it. */
383 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
384 frame_sp = frame_fp - fp_offset;
386 /* We have no frame pointer, therefore frame_sp is still the same value
387 as set by prologue. But where is the frame itself? */
388 if (must_adjust[SRP_REGNUM]) {
389 /* Function header saved SRP (r1), the return address. Frame starts
390 4 bytes down from where it was saved. */
391 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
392 fi->locals_pointer = frame_fp;
394 /* Function header didn't save SRP (r1), so we are in a leaf fn or
395 are otherwise confused. */
400 /* The locals are relative to the FP (whether it exists as an allocated
401 register, or just as an assumed offset from the SP) */
402 fi->locals_pointer = frame_fp;
404 /* The arguments are just above the SP as it was before we adjusted it
406 fi->args_pointer = frame_sp - sp_offset;
408 /* Now that we know the SP value used by the prologue, we know where
409 it saved all the registers. */
410 for (src = 0; src < 32; src++)
411 if (must_adjust[src])
412 fsr->regs[src] += frame_sp;
414 /* The saved value of the SP is always known. */
416 if (fsr->regs[SP_REGNUM] != 0
417 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
418 fprintf_unfiltered(gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
419 fsr->regs[SP_REGNUM],
420 frame_sp - sp_offset, sp_offset);
422 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
427 /* Given an ip value corresponding to the start of a function,
428 return the ip of the first instruction after the function
435 struct frame_saved_regs saved_regs_dummy;
436 struct symtab_and_line sal;
439 sal = find_pc_line (ip, 0);
440 limit = (sal.end) ? sal.end : 0xffffffff;
442 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
443 (struct frame_info *)0 ));
446 /* Put here the code to store, into a struct frame_saved_regs,
447 the addresses of the saved registers of frame described by FRAME_INFO.
448 This includes special registers such as pc and fp saved in special
449 ways in the stack frame. sp is even more special:
450 the address we return for it IS the sp for the next frame.
452 We cache the result of doing this in the frame_cache_obstack, since
453 it is fairly expensive. */
456 frame_find_saved_regs (fi, fsr)
457 struct frame_info *fi;
458 struct frame_saved_regs *fsr;
460 register struct frame_saved_regs *cache_fsr;
461 extern struct obstack frame_cache_obstack;
463 struct symtab_and_line sal;
468 cache_fsr = (struct frame_saved_regs *)
469 obstack_alloc (&frame_cache_obstack,
470 sizeof (struct frame_saved_regs));
471 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
474 /* Find the start and end of the function prologue. If the PC
475 is in the function prologue, we only consider the part that
476 has executed already. */
478 ip = get_pc_function_start (fi->pc);
479 sal = find_pc_line (ip, 0);
480 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
482 /* This will fill in fields in *fi as well as in cache_fsr. */
483 #ifdef SIGTRAMP_FRAME_FIXUP
484 if (fi->signal_handler_caller)
485 SIGTRAMP_FRAME_FIXUP(fi->frame);
487 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
488 #ifdef SIGTRAMP_SP_FIXUP
489 if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
490 SIGTRAMP_SP_FIXUP(fi->fsr->regs[SP_REGNUM]);
498 /* Return the address of the locals block for the frame
499 described by FI. Returns 0 if the address is unknown.
500 NOTE! Frame locals are referred to by negative offsets from the
501 argument pointer, so this is the same as frame_args_address(). */
504 frame_locals_address (fi)
505 struct frame_info *fi;
507 struct frame_saved_regs fsr;
509 if (fi->args_pointer) /* Cached value is likely there. */
510 return fi->args_pointer;
512 /* Nope, generate it. */
514 get_frame_saved_regs (fi, &fsr);
516 return fi->args_pointer;
519 /* Return the address of the argument block for the frame
520 described by FI. Returns 0 if the address is unknown. */
523 frame_args_address (fi)
524 struct frame_info *fi;
526 struct frame_saved_regs fsr;
528 if (fi->args_pointer) /* Cached value is likely there. */
529 return fi->args_pointer;
531 /* Nope, generate it. */
533 get_frame_saved_regs (fi, &fsr);
535 return fi->args_pointer;
538 /* Return the saved PC from this frame.
540 If the frame has a memory copy of SRP_REGNUM, use that. If not,
541 just use the register SRP_REGNUM itself. */
544 frame_saved_pc (frame)
547 return read_next_frame_reg(frame, SRP_REGNUM);
551 /* I believe this is all obsolete call dummy stuff. */
553 pushed_size (prev_words, v)
557 switch (TYPE_CODE (VALUE_TYPE (v)))
559 case TYPE_CODE_VOID: /* Void type (values zero length) */
561 return 0; /* That was easy! */
563 case TYPE_CODE_PTR: /* Pointer type */
564 case TYPE_CODE_ENUM: /* Enumeration type */
565 case TYPE_CODE_INT: /* Integer type */
566 case TYPE_CODE_REF: /* C++ Reference types */
567 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
571 case TYPE_CODE_FLT: /* Floating type */
573 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
576 /* Assume that it must be a double. */
577 if (prev_words & 1) /* at an odd-word boundary */
578 return 3; /* round to 8-byte boundary */
582 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
583 case TYPE_CODE_UNION: /* C union or Pascal variant part */
585 return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
587 case TYPE_CODE_FUNC: /* Function type */
588 case TYPE_CODE_SET: /* Pascal sets */
589 case TYPE_CODE_RANGE: /* Range (integers within bounds) */
590 case TYPE_CODE_STRING: /* String type */
591 case TYPE_CODE_MEMBER: /* Member type */
592 case TYPE_CODE_METHOD: /* Method type */
593 /* Don't know how to pass these yet. */
595 case TYPE_CODE_UNDEF: /* Not used; catches errors */
602 store_parm_word (address, val)
606 write_memory (address, (char *)&val, 4);
610 store_parm (prev_words, left_parm_addr, v)
611 unsigned int prev_words;
612 CORE_ADDR left_parm_addr;
615 CORE_ADDR start = left_parm_addr + (prev_words * 4);
616 int *val_addr = (int *)VALUE_CONTENTS(v);
618 switch (TYPE_CODE (VALUE_TYPE (v)))
620 case TYPE_CODE_VOID: /* Void type (values zero length) */
624 case TYPE_CODE_PTR: /* Pointer type */
625 case TYPE_CODE_ENUM: /* Enumeration type */
626 case TYPE_CODE_INT: /* Integer type */
627 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
628 case TYPE_CODE_REF: /* C++ Reference types */
630 store_parm_word (start, *val_addr);
633 case TYPE_CODE_FLT: /* Floating type */
635 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
637 store_parm_word (start, *val_addr);
642 store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
643 store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
644 return 2 + (prev_words & 1);
647 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
648 case TYPE_CODE_UNION: /* C union or Pascal variant part */
651 unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
654 for (word = 0; word < words; word++)
655 store_parm_word (start + (word * 4), val_addr[word]);
664 /* This routine sets up all of the parameter values needed to make a pseudo
665 call. The name "push_parameters" is a misnomer on some archs,
666 because (on the m88k) most parameters generally end up being passed in
667 registers rather than on the stack. In this routine however, we do
668 end up storing *all* parameter values onto the stack (even if we will
669 realize later that some of these stores were unnecessary). */
671 #define FIRST_PARM_REGNUM 2
674 push_parameters (return_type, struct_conv, nargs, args)
675 struct type *return_type;
681 unsigned int p_words = 0;
682 CORE_ADDR left_parm_addr;
684 /* Start out by creating a space for the return value (if need be). We
685 only need to do this if the return value is a struct or union. If we
686 do make a space for a struct or union return value, then we must also
687 arrange for the base address of that space to go into r12, which is the
688 standard place to pass the address of the return value area to the
689 callee. Note that only structs and unions are returned in this fashion.
690 Ints, enums, pointers, and floats are returned into r2. Doubles are
691 returned into the register pair {r2,r3}. Note also that the space
692 reserved for a struct or union return value only has to be word aligned
693 (not double-word) but it is double-word aligned here anyway (just in
694 case that becomes important someday). */
696 switch (TYPE_CODE (return_type))
698 case TYPE_CODE_STRUCT:
699 case TYPE_CODE_UNION:
701 int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
704 rv_addr = read_register (SP_REGNUM) - return_bytes;
706 write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
707 write_register (SRA_REGNUM, rv_addr);/* set return value register */
713 /* Here we make a pre-pass on the whole parameter list to figure out exactly
714 how many words worth of stuff we are going to pass. */
716 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
717 p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
719 /* Now, check to see if we have to round up the number of parameter words
720 to get up to the next 8-bytes boundary. This may be necessary because
721 of the software convention to always keep the stack aligned on an 8-byte
725 p_words++; /* round to 8-byte boundary */
727 /* Now figure out the absolute address of the leftmost parameter, and update
728 the stack pointer to point at that address. */
730 left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
731 write_register (SP_REGNUM, left_parm_addr);
733 /* Now we can go through all of the parameters (in left-to-right order)
734 and write them to their parameter stack slots. Note that we are not
735 really "pushing" the parameter values. The stack space for these values
736 was already allocated above. Now we are just filling it up. */
738 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
740 store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
742 /* Now that we are all done storing the parameter values into the stack, we
743 must go back and load up the parameter registers with the values from the
744 corresponding stack slots. Note that in the two cases of (a) gaps in the
745 parameter word sequence causes by (otherwise) misaligned doubles, and (b)
746 slots correcponding to structs or unions, the work we do here in loading
747 some parameter registers may be unnecessary, but who cares? */
749 for (p_words = 0; p_words < 8; p_words++)
751 write_register (FIRST_PARM_REGNUM + p_words,
752 read_memory_integer (left_parm_addr + (p_words * 4), 4));
757 collect_returned_value (rval, value_type, struct_return, nargs, args)
759 struct type *value_type;
764 char retbuf[REGISTER_BYTES];
766 memcpy (retbuf, registers, REGISTER_BYTES);
767 *rval = value_being_returned (value_type, retbuf, struct_return);
772 /*start of lines added by kev*/
774 #define DUMMY_FRAME_SIZE 192
777 write_word (sp, word)
779 unsigned LONGEST word;
781 register int len = REGISTER_SIZE;
782 char buffer[MAX_REGISTER_RAW_SIZE];
784 store_unsigned_integer (buffer, len, word);
785 write_memory (sp, buffer, len);
789 m88k_push_dummy_frame()
791 register CORE_ADDR sp = read_register (SP_REGNUM);
795 sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
797 for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset+=4)
798 write_word (sp+offset, read_register(rn));
800 write_word (sp+offset, read_register (SXIP_REGNUM));
803 write_word (sp+offset, read_register (SNIP_REGNUM));
806 write_word (sp+offset, read_register (SFIP_REGNUM));
809 write_word (sp+offset, read_register (PSR_REGNUM));
812 write_word (sp+offset, read_register (FPSR_REGNUM));
815 write_word (sp+offset, read_register (FPCR_REGNUM));
818 write_register (SP_REGNUM, sp);
819 write_register (ACTUAL_FP_REGNUM, sp);
825 register FRAME frame = get_current_frame ();
826 register CORE_ADDR fp;
828 struct frame_saved_regs fsr;
829 struct frame_info *fi;
831 fi = get_frame_info (frame);
833 get_frame_saved_regs (fi, &fsr);
835 if (PC_IN_CALL_DUMMY (read_pc(), read_register(SP_REGNUM), FRAME_FP(fi)))
837 /* FIXME: I think get_frame_saved_regs should be handling this so
838 that we can deal with the saved registers properly (e.g. frame
839 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
840 register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
843 for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset+=4)
844 (void) write_register (regnum, read_memory_integer (sp+offset, 4));
846 write_register (SXIP_REGNUM, read_memory_integer (sp+offset, 4));
849 write_register (SNIP_REGNUM, read_memory_integer (sp+offset, 4));
852 write_register (SFIP_REGNUM, read_memory_integer (sp+offset, 4));
855 write_register (PSR_REGNUM, read_memory_integer (sp+offset, 4));
858 write_register (FPSR_REGNUM, read_memory_integer (sp+offset, 4));
861 write_register (FPCR_REGNUM, read_memory_integer (sp+offset, 4));
867 for (regnum = FP_REGNUM ; regnum > 0 ; regnum--)
868 if (fsr.regs[regnum])
869 write_register (regnum,
870 read_memory_integer (fsr.regs[regnum], 4));
871 write_pc(frame_saved_pc(frame));
873 reinit_frame_cache ();