1 /* Definitions to make GDB target for an ARM under RISCiX (4.3bsd).
2 Copyright 1986, 1987, 1989, 1991, 1993 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
22 /* IEEE format floating point */
26 /* I provide my own xfer_core_file to cope with shared libraries */
28 #define XFER_CORE_FILE
30 /* Offset from address of function to start of its code.
31 Zero on most machines. */
33 #define FUNCTION_START_OFFSET 0
35 /* Advance PC across any function entry prologue instructions
36 to reach some "real" code. */
38 #define SKIP_PROLOGUE(pc) pc = skip_prologue(pc)
40 /* Immediately after a function call, return the saved pc.
41 Can't always go through the frames for this because on some machines
42 the new frame is not set up until the new function executes
45 #define SAVED_PC_AFTER_CALL(frame) (read_register (LR_REGNUM) & 0x03fffffc)
47 /* I don't know the real values for these. */
48 #define TARGET_UPAGES UPAGES
49 #define TARGET_NBPG NBPG
51 /* Address of end of stack space. */
53 #define STACK_END_ADDR (0x01000000 - (TARGET_UPAGES * TARGET_NBPG))
55 /* Stack grows downward. */
59 /* Sequence of bytes for breakpoint instruction. */
61 #define BREAKPOINT {0x00,0x00,0x18,0xef} /* BKPT_SWI from <sys/ptrace.h> */
63 /* Amount PC must be decremented by after a breakpoint.
64 This is often the number of bytes in BREAKPOINT
67 #define DECR_PC_AFTER_BREAK 0
69 /* Nonzero if instruction at PC is a return instruction. */
71 #define ABOUT_TO_RETURN(pc) \
72 ((read_memory_integer(pc, 4) & 0x0fffffff == 0x01b0f00e) || \
73 (read_memory_integer(pc, 4) & 0x0ffff800 == 0x09eba800))
75 /* Return 1 if P points to an invalid floating point value.
76 LEN is the length in bytes. */
78 #define INVALID_FLOAT(p, len) 0
80 /* code to execute to print interesting information about the
81 * floating point processor (if any)
82 * No need to define if there is nothing to do.
84 #define FLOAT_INFO { arm_float_info (); }
86 /* Say how long (ordinary) registers are. */
88 #define REGISTER_TYPE long
90 /* Number of machine registers */
92 /* Note: I make a fake copy of the pc in register 25 (calling it ps) so
93 that I can clear the status bits from pc (register 15) */
97 /* Initializer for an array of names of registers.
98 There should be NUM_REGS strings in this initializer. */
100 #define REGISTER_NAMES \
101 { "a1", "a2", "a3", "a4", \
102 "v1", "v2", "v3", "v4", "v5", "v6", \
103 "sl", "fp", "ip", "sp", "lr", "pc", \
104 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "fps", "ps" }
106 /* Register numbers of various important registers.
107 Note that some of these values are "real" register numbers,
108 and correspond to the general registers of the machine,
109 and some are "phony" register numbers which are too large
110 to be actual register numbers as far as the user is concerned
111 but do serve to get the desired values when passed to read_register. */
114 #define FP_REGNUM 11 /* Contains address of executing stack frame */
115 #define SP_REGNUM 13 /* Contains address of top of stack */
116 #define LR_REGNUM 14 /* address to return to from a function call */
117 #define PC_REGNUM 15 /* Contains program counter */
118 #define F0_REGNUM 16 /* first floating point register */
119 #define FPS_REGNUM 24 /* floating point status register */
120 #define PS_REGNUM 25 /* Contains processor status */
123 /* Total amount of space needed to store our copies of the machine's
124 register state, the array `registers'. */
125 #define REGISTER_BYTES (16*4 + 12*8 + 4 + 4)
127 /* Index within `registers' of the first byte of the space for
130 #define REGISTER_BYTE(N) (((N) < F0_REGNUM) ? (N)*4 : \
131 (((N) < PS_REGNUM) ? 16*4 + ((N) - 16)*12 : \
132 16*4 + 8*12 + ((N) - FPS_REGNUM) * 4))
134 /* Number of bytes of storage in the actual machine representation
135 for register N. On the vax, all regs are 4 bytes. */
137 #define REGISTER_RAW_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 12)
139 /* Number of bytes of storage in the program's representation
140 for register N. On the vax, all regs are 4 bytes. */
142 #define REGISTER_VIRTUAL_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 8)
144 /* Largest value REGISTER_RAW_SIZE can have. */
146 #define MAX_REGISTER_RAW_SIZE 12
148 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
150 #define MAX_REGISTER_VIRTUAL_SIZE 8
152 /* Nonzero if register N requires conversion
153 from raw format to virtual format. */
155 #define REGISTER_CONVERTIBLE(N) ((unsigned)(N) - F0_REGNUM < 8)
157 /* Convert data from raw format for register REGNUM
158 to virtual format for register REGNUM. */
160 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
161 if (REGISTER_CONVERTIBLE(REGNUM)) \
162 convert_from_extended((FROM), (TO)); \
164 memcpy ((TO), (FROM), 4);
166 /* Convert data from virtual format for register REGNUM
167 to raw format for register REGNUM. */
169 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
170 if (REGISTER_CONVERTIBLE(REGNUM)) \
171 convert_to_extended((FROM), (TO)); \
173 memcpy ((TO), (FROM), 4);
175 /* Return the GDB type object for the "standard" data type
176 of data in register N. */
178 #define REGISTER_VIRTUAL_TYPE(N) \
179 (((unsigned)(N) - F0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
181 /* The system C compiler uses a similar structure return convention to gcc */
183 #define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH (type) > 4)
185 /* Store the address of the place in which to copy the structure the
186 subroutine will return. This is called from call_function. */
188 #define STORE_STRUCT_RETURN(ADDR, SP) \
189 { write_register (0, (ADDR)); }
191 /* Extract from an array REGBUF containing the (raw) register state
192 a function return value of type TYPE, and copy that, in virtual format,
195 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
196 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
197 convert_from_extended(REGBUF + REGISTER_BYTE (F0_REGNUM), VALBUF); \
199 memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE))
201 /* Write into appropriate registers a function return value
202 of type TYPE, given in virtual format. */
204 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
205 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
206 char _buf[MAX_REGISTER_RAW_SIZE]; \
207 convert_to_extended(VALBUF, _buf); \
208 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
210 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
212 /* Extract from an array REGBUF containing the (raw) register state
213 the address in which a function should return its structure value,
214 as a CORE_ADDR (or an expression that can be used as one). */
216 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
218 /* Specify that for the native compiler variables for a particular
219 lexical context are listed after the beginning LBRAC instead of
220 before in the executables list of symbols. */
221 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
224 /* Describe the pointer in each stack frame to the previous stack frame
227 /* FRAME_CHAIN takes a frame's nominal address
228 and produces the frame's chain-pointer.
230 However, if FRAME_CHAIN_VALID returns zero,
231 it means the given frame is the outermost one and has no caller. */
233 /* In the case of the ARM, the frame's nominal address is the FP value,
234 and 12 bytes before comes the saved previous FP value as a 4-byte word. */
236 #define FRAME_CHAIN(thisframe) \
237 ((thisframe)->pc >= first_object_file_end ? \
238 read_memory_integer ((thisframe)->frame - 12, 4) :\
241 #define FRAME_CHAIN_VALID(chain, thisframe) \
242 (chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end))
244 /* Define other aspects of the stack frame. */
246 /* A macro that tells us whether the function invocation represented
247 by FI does not have a frame on the stack associated with it. If it
248 does not, FRAMELESS is set to 1, else 0. */
249 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
251 CORE_ADDR func_start, after_prologue; \
252 func_start = (get_pc_function_start ((FI)->pc) + \
253 FUNCTION_START_OFFSET); \
254 after_prologue = func_start; \
255 SKIP_PROLOGUE (after_prologue); \
256 (FRAMELESS) = (after_prologue == func_start); \
261 #define FRAME_SAVED_PC(FRAME) \
262 (read_memory_integer ((FRAME)->frame - 4, 4) & 0x03fffffc)
264 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
266 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
268 /* Return number of args passed to a frame.
269 Can return -1, meaning no way to tell. */
271 #define FRAME_NUM_ARGS(numargs, fi) (numargs = -1)
273 /* Return number of bytes at start of arglist that are not really args. */
275 #define FRAME_ARGS_SKIP 0
277 /* Put here the code to store, into a struct frame_saved_regs,
278 the addresses of the saved registers of frame described by FRAME_INFO.
279 This includes special registers such as pc and fp saved in special
280 ways in the stack frame. sp is even more special:
281 the address we return for it IS the sp for the next frame. */
283 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
285 register int regnum; \
286 register int frame; \
287 register int next_addr; \
288 register int return_data_save; \
289 register int saved_register_mask; \
290 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
291 frame = (frame_info)->frame; \
292 return_data_save = read_memory_integer(frame, 4) & 0x03fffffc - 12; \
293 saved_register_mask = \
294 read_memory_integer(return_data_save, 4); \
295 next_addr = frame - 12; \
296 for (regnum = 4; regnum < 10; regnum++) \
297 if (saved_register_mask & (1<<regnum)) { \
299 (frame_saved_regs).regs[regnum] = next_addr; \
301 if (read_memory_integer(return_data_save + 4, 4) == 0xed6d7103) { \
303 (frame_saved_regs).regs[F0_REGNUM + 7] = next_addr; \
305 if (read_memory_integer(return_data_save + 8, 4) == 0xed6d6103) { \
307 (frame_saved_regs).regs[F0_REGNUM + 6] = next_addr; \
309 if (read_memory_integer(return_data_save + 12, 4) == 0xed6d5103) { \
311 (frame_saved_regs).regs[F0_REGNUM + 5] = next_addr; \
313 if (read_memory_integer(return_data_save + 16, 4) == 0xed6d4103) { \
315 (frame_saved_regs).regs[F0_REGNUM + 4] = next_addr; \
317 (frame_saved_regs).regs[SP_REGNUM] = next_addr; \
318 (frame_saved_regs).regs[PC_REGNUM] = frame - 4; \
319 (frame_saved_regs).regs[PS_REGNUM] = frame - 4; \
320 (frame_saved_regs).regs[FP_REGNUM] = frame - 12; \
323 /* Things needed for making the inferior call functions. */
325 /* Push an empty stack frame, to record the current PC, etc. */
327 #define PUSH_DUMMY_FRAME \
329 register CORE_ADDR sp = read_register (SP_REGNUM); \
330 register int regnum; \
331 /* opcode for ldmdb fp,{v1-v6,fp,ip,lr,pc}^ */ \
332 sp = push_word(sp, 0xe92dbf0); /* dummy return_data_save ins */ \
333 /* push a pointer to the dummy instruction minus 12 */ \
334 sp = push_word(sp, read_register (SP_REGNUM) - 16); \
335 sp = push_word(sp, read_register (PS_REGNUM)); \
336 sp = push_word(sp, read_register (SP_REGNUM)); \
337 sp = push_word(sp, read_register (FP_REGNUM)); \
338 for (regnum = 9; regnum >= 4; regnum --) \
339 sp = push_word(sp, read_register (regnum)); \
340 write_register (FP_REGNUM, read_register (SP_REGNUM) - 8); \
341 write_register (SP_REGNUM, sp); }
343 /* Discard from the stack the innermost frame, restoring all registers. */
347 register CORE_ADDR fp = read_register (FP_REGNUM); \
348 register unsigned long return_data_save = \
349 read_memory_integer ( (read_memory_integer (fp, 4) & \
350 0x03fffffc) - 12, 4); \
351 register int regnum; \
352 write_register (PS_REGNUM, read_memory_integer (fp - 4, 4)); \
353 write_register (PC_REGNUM, read_register (PS_REGNUM) & 0x03fffffc); \
354 write_register (SP_REGNUM, read_memory_integer (fp - 8, 4)); \
355 write_register (FP_REGNUM, read_memory_integer (fp - 12, 4)); \
357 for (regnum = 9; regnum >= 4; regnum--) \
358 if (return_data_save & (1<<regnum)) { \
360 write_register (regnum, read_memory_integer(fp, 4)); \
362 flush_cached_frames (); \
363 set_current_frame (create_new_frame (read_register (FP_REGNUM), \
367 /* This sequence of words is the instructions
374 Note this is 16 bytes. */
376 #define CALL_DUMMY {0xe8bd000f, 0xe1a0e00f, 0xeb000000, 0xef180000}
378 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
380 /* Insert the specified number of args and function address
381 into a call sequence of the above form stored at DUMMYNAME. */
383 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
385 register enum type_code code = TYPE_CODE (type); \
386 register nargs_in_registers, struct_return = 0; \
387 /* fix the load-arguments mask to move the first 4 or less arguments \
388 into a1-a4 but make sure the structure return address in a1 is \
389 not disturbed if the function is returning a structure */ \
390 if ((code == TYPE_CODE_STRUCT || \
391 code == TYPE_CODE_UNION || \
392 code == TYPE_CODE_ARRAY) && \
393 TYPE_LENGTH (type) > 4) { \
394 nargs_in_registers = min(nargs + 1, 4); \
397 nargs_in_registers = min(nargs, 4); \
398 *(char *) dummyname = (1 << nargs_in_registers) - 1 - struct_return; \
399 *(int *)((char *) dummyname + 8) = \
400 (((fun - (pc + 16)) / 4) & 0x00ffffff) | 0xeb000000; }