]> Git Repo - binutils.git/blob - gold/object.cc
2012-09-06 Cary Coutant <[email protected]>
[binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <[email protected]>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <cstdarg>
29 #include "demangle.h"
30 #include "libiberty.h"
31
32 #include "gc.h"
33 #include "target-select.h"
34 #include "dwarf_reader.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "symtab.h"
38 #include "cref.h"
39 #include "reloc.h"
40 #include "object.h"
41 #include "dynobj.h"
42 #include "plugin.h"
43 #include "compressed_output.h"
44 #include "incremental.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 // To copy the symbols data read from the file to a local data structure.
273 // This function is called from do_layout only while doing garbage
274 // collection.
275
276 void
277 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
278                           unsigned int section_header_size)
279 {
280   gc_sd->section_headers_data =
281          new unsigned char[(section_header_size)];
282   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
283          section_header_size);
284   gc_sd->section_names_data =
285          new unsigned char[sd->section_names_size];
286   memcpy(gc_sd->section_names_data, sd->section_names->data(),
287          sd->section_names_size);
288   gc_sd->section_names_size = sd->section_names_size;
289   if (sd->symbols != NULL)
290     {
291       gc_sd->symbols_data =
292              new unsigned char[sd->symbols_size];
293       memcpy(gc_sd->symbols_data, sd->symbols->data(),
294             sd->symbols_size);
295     }
296   else
297     {
298       gc_sd->symbols_data = NULL;
299     }
300   gc_sd->symbols_size = sd->symbols_size;
301   gc_sd->external_symbols_offset = sd->external_symbols_offset;
302   if (sd->symbol_names != NULL)
303     {
304       gc_sd->symbol_names_data =
305              new unsigned char[sd->symbol_names_size];
306       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
307             sd->symbol_names_size);
308     }
309   else
310     {
311       gc_sd->symbol_names_data = NULL;
312     }
313   gc_sd->symbol_names_size = sd->symbol_names_size;
314 }
315
316 // This function determines if a particular section name must be included
317 // in the link.  This is used during garbage collection to determine the
318 // roots of the worklist.
319
320 bool
321 Relobj::is_section_name_included(const char* name)
322 {
323   if (is_prefix_of(".ctors", name)
324       || is_prefix_of(".dtors", name)
325       || is_prefix_of(".note", name)
326       || is_prefix_of(".init", name)
327       || is_prefix_of(".fini", name)
328       || is_prefix_of(".gcc_except_table", name)
329       || is_prefix_of(".jcr", name)
330       || is_prefix_of(".preinit_array", name)
331       || (is_prefix_of(".text", name)
332           && strstr(name, "personality"))
333       || (is_prefix_of(".data", name)
334           &&  strstr(name, "personality"))
335       || (is_prefix_of(".gnu.linkonce.d", name)
336           && strstr(name, "personality")))
337     {
338       return true;
339     }
340   return false;
341 }
342
343 // Finalize the incremental relocation information.  Allocates a block
344 // of relocation entries for each symbol, and sets the reloc_bases_
345 // array to point to the first entry in each block.  If CLEAR_COUNTS
346 // is TRUE, also clear the per-symbol relocation counters.
347
348 void
349 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
350 {
351   unsigned int nsyms = this->get_global_symbols()->size();
352   this->reloc_bases_ = new unsigned int[nsyms];
353
354   gold_assert(this->reloc_bases_ != NULL);
355   gold_assert(layout->incremental_inputs() != NULL);
356
357   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
358   for (unsigned int i = 0; i < nsyms; ++i)
359     {
360       this->reloc_bases_[i] = rindex;
361       rindex += this->reloc_counts_[i];
362       if (clear_counts)
363         this->reloc_counts_[i] = 0;
364     }
365   layout->incremental_inputs()->set_reloc_count(rindex);
366 }
367
368 // Class Sized_relobj.
369
370 // Iterate over local symbols, calling a visitor class V for each GOT offset
371 // associated with a local symbol.
372
373 template<int size, bool big_endian>
374 void
375 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
376     Got_offset_list::Visitor* v) const
377 {
378   unsigned int nsyms = this->local_symbol_count();
379   for (unsigned int i = 0; i < nsyms; i++)
380     {
381       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
382       if (p != this->local_got_offsets_.end())
383         {
384           const Got_offset_list* got_offsets = p->second;
385           got_offsets->for_all_got_offsets(v);
386         }
387     }
388 }
389
390 // Class Sized_relobj_file.
391
392 template<int size, bool big_endian>
393 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
394     const std::string& name,
395     Input_file* input_file,
396     off_t offset,
397     const elfcpp::Ehdr<size, big_endian>& ehdr)
398   : Sized_relobj<size, big_endian>(name, input_file, offset),
399     elf_file_(this, ehdr),
400     symtab_shndx_(-1U),
401     local_symbol_count_(0),
402     output_local_symbol_count_(0),
403     output_local_dynsym_count_(0),
404     symbols_(),
405     defined_count_(0),
406     local_symbol_offset_(0),
407     local_dynsym_offset_(0),
408     local_values_(),
409     local_plt_offsets_(),
410     kept_comdat_sections_(),
411     has_eh_frame_(false),
412     discarded_eh_frame_shndx_(-1U),
413     deferred_layout_(),
414     deferred_layout_relocs_(),
415     compressed_sections_()
416 {
417   this->e_type_ = ehdr.get_e_type();
418 }
419
420 template<int size, bool big_endian>
421 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
422 {
423 }
424
425 // Set up an object file based on the file header.  This sets up the
426 // section information.
427
428 template<int size, bool big_endian>
429 void
430 Sized_relobj_file<size, big_endian>::do_setup()
431 {
432   const unsigned int shnum = this->elf_file_.shnum();
433   this->set_shnum(shnum);
434 }
435
436 // Find the SHT_SYMTAB section, given the section headers.  The ELF
437 // standard says that maybe in the future there can be more than one
438 // SHT_SYMTAB section.  Until somebody figures out how that could
439 // work, we assume there is only one.
440
441 template<int size, bool big_endian>
442 void
443 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
444 {
445   const unsigned int shnum = this->shnum();
446   this->symtab_shndx_ = 0;
447   if (shnum > 0)
448     {
449       // Look through the sections in reverse order, since gas tends
450       // to put the symbol table at the end.
451       const unsigned char* p = pshdrs + shnum * This::shdr_size;
452       unsigned int i = shnum;
453       unsigned int xindex_shndx = 0;
454       unsigned int xindex_link = 0;
455       while (i > 0)
456         {
457           --i;
458           p -= This::shdr_size;
459           typename This::Shdr shdr(p);
460           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
461             {
462               this->symtab_shndx_ = i;
463               if (xindex_shndx > 0 && xindex_link == i)
464                 {
465                   Xindex* xindex =
466                     new Xindex(this->elf_file_.large_shndx_offset());
467                   xindex->read_symtab_xindex<size, big_endian>(this,
468                                                                xindex_shndx,
469                                                                pshdrs);
470                   this->set_xindex(xindex);
471                 }
472               break;
473             }
474
475           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
476           // one.  This will work if it follows the SHT_SYMTAB
477           // section.
478           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
479             {
480               xindex_shndx = i;
481               xindex_link = this->adjust_shndx(shdr.get_sh_link());
482             }
483         }
484     }
485 }
486
487 // Return the Xindex structure to use for object with lots of
488 // sections.
489
490 template<int size, bool big_endian>
491 Xindex*
492 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
493 {
494   gold_assert(this->symtab_shndx_ != -1U);
495   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
496   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
497   return xindex;
498 }
499
500 // Return whether SHDR has the right type and flags to be a GNU
501 // .eh_frame section.
502
503 template<int size, bool big_endian>
504 bool
505 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
506     const elfcpp::Shdr<size, big_endian>* shdr) const
507 {
508   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
509   return ((sh_type == elfcpp::SHT_PROGBITS
510            || sh_type == elfcpp::SHT_X86_64_UNWIND)
511           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
512 }
513
514 // Find the section header with the given name.
515
516 template<int size, bool big_endian>
517 const unsigned char*
518 Sized_relobj_file<size, big_endian>::find_shdr(
519     const unsigned char* pshdrs,
520     const char* name,
521     const char* names,
522     section_size_type names_size,
523     const unsigned char* hdr) const
524 {
525   const unsigned int shnum = this->shnum();
526   const unsigned char* hdr_end = pshdrs + This::shdr_size * shnum;
527   size_t sh_name = 0;
528
529   while (1)
530     {
531       if (hdr)
532         {
533           // We found HDR last time we were called, continue looking.
534           typename This::Shdr shdr(hdr);
535           sh_name = shdr.get_sh_name();
536         }
537       else
538         {
539           // Look for the next occurrence of NAME in NAMES.
540           // The fact that .shstrtab produced by current GNU tools is
541           // string merged means we shouldn't have both .not.foo and
542           // .foo in .shstrtab, and multiple .foo sections should all
543           // have the same sh_name.  However, this is not guaranteed
544           // by the ELF spec and not all ELF object file producers may
545           // be so clever.
546           size_t len = strlen(name) + 1;
547           const char *p = sh_name ? names + sh_name + len : names;
548           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
549                                                    name, len));
550           if (p == NULL)
551             return NULL;
552           sh_name = p - names;
553           hdr = pshdrs;
554           if (sh_name == 0)
555             return hdr;
556         }
557
558       hdr += This::shdr_size;
559       while (hdr < hdr_end)
560         {
561           typename This::Shdr shdr(hdr);
562           if (shdr.get_sh_name() == sh_name)
563             return hdr;
564           hdr += This::shdr_size;
565         }
566       hdr = NULL;
567       if (sh_name == 0)
568         return hdr;
569     }
570 }
571
572 // Return whether there is a GNU .eh_frame section, given the section
573 // headers and the section names.
574
575 template<int size, bool big_endian>
576 bool
577 Sized_relobj_file<size, big_endian>::find_eh_frame(
578     const unsigned char* pshdrs,
579     const char* names,
580     section_size_type names_size) const
581 {
582   const unsigned char* s = NULL;
583
584   while (1)
585     {
586       s = this->find_shdr(pshdrs, ".eh_frame", names, names_size, s);
587       if (s == NULL)
588         return false;
589
590       typename This::Shdr shdr(s);
591       if (this->check_eh_frame_flags(&shdr))
592         return true;
593     }
594 }
595
596 // Return TRUE if this is a section whose contents will be needed in the
597 // Add_symbols task.  This function is only called for sections that have
598 // already passed the test in is_compressed_debug_section(), so we know
599 // that the section name begins with ".zdebug".
600
601 static bool
602 need_decompressed_section(const char* name)
603 {
604   // Skip over the ".zdebug" and a quick check for the "_".
605   name += 7;
606   if (*name++ != '_')
607     return false;
608
609 #ifdef ENABLE_THREADS
610   // Decompressing these sections now will help only if we're
611   // multithreaded.
612   if (parameters->options().threads())
613     {
614       // We will need .zdebug_str if this is not an incremental link
615       // (i.e., we are processing string merge sections) or if we need
616       // to build a gdb index.
617       if ((!parameters->incremental() || parameters->options().gdb_index())
618           && strcmp(name, "str") == 0)
619         return true;
620
621       // We will need these other sections when building a gdb index.
622       if (parameters->options().gdb_index()
623           && (strcmp(name, "info") == 0
624               || strcmp(name, "types") == 0
625               || strcmp(name, "pubnames") == 0
626               || strcmp(name, "pubtypes") == 0
627               || strcmp(name, "ranges") == 0
628               || strcmp(name, "abbrev") == 0))
629         return true;
630     }
631 #endif
632
633   // Even when single-threaded, we will need .zdebug_str if this is
634   // not an incremental link and we are building a gdb index.
635   // Otherwise, we would decompress the section twice: once for
636   // string merge processing, and once for building the gdb index.
637   if (!parameters->incremental()
638       && parameters->options().gdb_index()
639       && strcmp(name, "str") == 0)
640     return true;
641
642   return false;
643 }
644
645 // Build a table for any compressed debug sections, mapping each section index
646 // to the uncompressed size and (if needed) the decompressed contents.
647
648 template<int size, bool big_endian>
649 Compressed_section_map*
650 build_compressed_section_map(
651     const unsigned char* pshdrs,
652     unsigned int shnum,
653     const char* names,
654     section_size_type names_size,
655     Sized_relobj_file<size, big_endian>* obj)
656 {
657   Compressed_section_map* uncompressed_map = new Compressed_section_map();
658   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
659   const unsigned char* p = pshdrs + shdr_size;
660
661   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
662     {
663       typename elfcpp::Shdr<size, big_endian> shdr(p);
664       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
665           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
666         {
667           if (shdr.get_sh_name() >= names_size)
668             {
669               obj->error(_("bad section name offset for section %u: %lu"),
670                          i, static_cast<unsigned long>(shdr.get_sh_name()));
671               continue;
672             }
673
674           const char* name = names + shdr.get_sh_name();
675           if (is_compressed_debug_section(name))
676             {
677               section_size_type len;
678               const unsigned char* contents =
679                   obj->section_contents(i, &len, false);
680               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
681               Compressed_section_info info;
682               info.size = convert_to_section_size_type(uncompressed_size);
683               info.contents = NULL;
684               if (uncompressed_size != -1ULL)
685                 {
686                   unsigned char* uncompressed_data = NULL;
687                   if (need_decompressed_section(name))
688                     {
689                       uncompressed_data = new unsigned char[uncompressed_size];
690                       if (decompress_input_section(contents, len,
691                                                    uncompressed_data,
692                                                    uncompressed_size))
693                         info.contents = uncompressed_data;
694                       else
695                         delete[] uncompressed_data;
696                     }
697                   (*uncompressed_map)[i] = info;
698                 }
699             }
700         }
701     }
702   return uncompressed_map;
703 }
704
705 // Stash away info for a number of special sections.
706 // Return true if any of the sections found require local symbols to be read.
707
708 template<int size, bool big_endian>
709 bool
710 Sized_relobj_file<size, big_endian>::do_find_special_sections(
711     Read_symbols_data* sd)
712 {
713   const unsigned char* const pshdrs = sd->section_headers->data();
714   const unsigned char* namesu = sd->section_names->data();
715   const char* names = reinterpret_cast<const char*>(namesu);
716
717   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
718     this->has_eh_frame_ = true;
719
720   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
721     this->compressed_sections_
722       = build_compressed_section_map(pshdrs, this->shnum(), names,
723                                      sd->section_names_size, this);
724   return (this->has_eh_frame_
725           || (!parameters->options().relocatable()
726               && parameters->options().gdb_index()
727               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
728                   || memmem(names, sd->section_names_size, "debug_types",
729                             13) == 0)));
730 }
731
732 // Read the sections and symbols from an object file.
733
734 template<int size, bool big_endian>
735 void
736 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
737 {
738   this->read_section_data(&this->elf_file_, sd);
739
740   const unsigned char* const pshdrs = sd->section_headers->data();
741
742   this->find_symtab(pshdrs);
743
744   bool need_local_symbols = this->do_find_special_sections(sd);
745
746   sd->symbols = NULL;
747   sd->symbols_size = 0;
748   sd->external_symbols_offset = 0;
749   sd->symbol_names = NULL;
750   sd->symbol_names_size = 0;
751
752   if (this->symtab_shndx_ == 0)
753     {
754       // No symbol table.  Weird but legal.
755       return;
756     }
757
758   // Get the symbol table section header.
759   typename This::Shdr symtabshdr(pshdrs
760                                  + this->symtab_shndx_ * This::shdr_size);
761   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
762
763   // If this object has a .eh_frame section, or if building a .gdb_index
764   // section and there is debug info, we need all the symbols.
765   // Otherwise we only need the external symbols.  While it would be
766   // simpler to just always read all the symbols, I've seen object
767   // files with well over 2000 local symbols, which for a 64-bit
768   // object file format is over 5 pages that we don't need to read
769   // now.
770
771   const int sym_size = This::sym_size;
772   const unsigned int loccount = symtabshdr.get_sh_info();
773   this->local_symbol_count_ = loccount;
774   this->local_values_.resize(loccount);
775   section_offset_type locsize = loccount * sym_size;
776   off_t dataoff = symtabshdr.get_sh_offset();
777   section_size_type datasize =
778     convert_to_section_size_type(symtabshdr.get_sh_size());
779   off_t extoff = dataoff + locsize;
780   section_size_type extsize = datasize - locsize;
781
782   off_t readoff = need_local_symbols ? dataoff : extoff;
783   section_size_type readsize = need_local_symbols ? datasize : extsize;
784
785   if (readsize == 0)
786     {
787       // No external symbols.  Also weird but also legal.
788       return;
789     }
790
791   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
792
793   // Read the section header for the symbol names.
794   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
795   if (strtab_shndx >= this->shnum())
796     {
797       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
798       return;
799     }
800   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
801   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
802     {
803       this->error(_("symbol table name section has wrong type: %u"),
804                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
805       return;
806     }
807
808   // Read the symbol names.
809   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
810                                                strtabshdr.get_sh_size(),
811                                                false, true);
812
813   sd->symbols = fvsymtab;
814   sd->symbols_size = readsize;
815   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
816   sd->symbol_names = fvstrtab;
817   sd->symbol_names_size =
818     convert_to_section_size_type(strtabshdr.get_sh_size());
819 }
820
821 // Return the section index of symbol SYM.  Set *VALUE to its value in
822 // the object file.  Set *IS_ORDINARY if this is an ordinary section
823 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
824 // Note that for a symbol which is not defined in this object file,
825 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
826 // the final value of the symbol in the link.
827
828 template<int size, bool big_endian>
829 unsigned int
830 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
831                                                               Address* value,
832                                                               bool* is_ordinary)
833 {
834   section_size_type symbols_size;
835   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
836                                                         &symbols_size,
837                                                         false);
838
839   const size_t count = symbols_size / This::sym_size;
840   gold_assert(sym < count);
841
842   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
843   *value = elfsym.get_st_value();
844
845   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
846 }
847
848 // Return whether to include a section group in the link.  LAYOUT is
849 // used to keep track of which section groups we have already seen.
850 // INDEX is the index of the section group and SHDR is the section
851 // header.  If we do not want to include this group, we set bits in
852 // OMIT for each section which should be discarded.
853
854 template<int size, bool big_endian>
855 bool
856 Sized_relobj_file<size, big_endian>::include_section_group(
857     Symbol_table* symtab,
858     Layout* layout,
859     unsigned int index,
860     const char* name,
861     const unsigned char* shdrs,
862     const char* section_names,
863     section_size_type section_names_size,
864     std::vector<bool>* omit)
865 {
866   // Read the section contents.
867   typename This::Shdr shdr(shdrs + index * This::shdr_size);
868   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
869                                              shdr.get_sh_size(), true, false);
870   const elfcpp::Elf_Word* pword =
871     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
872
873   // The first word contains flags.  We only care about COMDAT section
874   // groups.  Other section groups are always included in the link
875   // just like ordinary sections.
876   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
877
878   // Look up the group signature, which is the name of a symbol.  ELF
879   // uses a symbol name because some group signatures are long, and
880   // the name is generally already in the symbol table, so it makes
881   // sense to put the long string just once in .strtab rather than in
882   // both .strtab and .shstrtab.
883
884   // Get the appropriate symbol table header (this will normally be
885   // the single SHT_SYMTAB section, but in principle it need not be).
886   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
887   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
888
889   // Read the symbol table entry.
890   unsigned int symndx = shdr.get_sh_info();
891   if (symndx >= symshdr.get_sh_size() / This::sym_size)
892     {
893       this->error(_("section group %u info %u out of range"),
894                   index, symndx);
895       return false;
896     }
897   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
898   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
899                                              false);
900   elfcpp::Sym<size, big_endian> sym(psym);
901
902   // Read the symbol table names.
903   section_size_type symnamelen;
904   const unsigned char* psymnamesu;
905   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
906                                       &symnamelen, true);
907   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
908
909   // Get the section group signature.
910   if (sym.get_st_name() >= symnamelen)
911     {
912       this->error(_("symbol %u name offset %u out of range"),
913                   symndx, sym.get_st_name());
914       return false;
915     }
916
917   std::string signature(psymnames + sym.get_st_name());
918
919   // It seems that some versions of gas will create a section group
920   // associated with a section symbol, and then fail to give a name to
921   // the section symbol.  In such a case, use the name of the section.
922   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
923     {
924       bool is_ordinary;
925       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
926                                                       sym.get_st_shndx(),
927                                                       &is_ordinary);
928       if (!is_ordinary || sym_shndx >= this->shnum())
929         {
930           this->error(_("symbol %u invalid section index %u"),
931                       symndx, sym_shndx);
932           return false;
933         }
934       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
935       if (member_shdr.get_sh_name() < section_names_size)
936         signature = section_names + member_shdr.get_sh_name();
937     }
938
939   // Record this section group in the layout, and see whether we've already
940   // seen one with the same signature.
941   bool include_group;
942   bool is_comdat;
943   Kept_section* kept_section = NULL;
944
945   if ((flags & elfcpp::GRP_COMDAT) == 0)
946     {
947       include_group = true;
948       is_comdat = false;
949     }
950   else
951     {
952       include_group = layout->find_or_add_kept_section(signature,
953                                                        this, index, true,
954                                                        true, &kept_section);
955       is_comdat = true;
956     }
957
958   if (is_comdat && include_group)
959     {
960       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
961       if (incremental_inputs != NULL)
962         incremental_inputs->report_comdat_group(this, signature.c_str());
963     }
964
965   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
966
967   std::vector<unsigned int> shndxes;
968   bool relocate_group = include_group && parameters->options().relocatable();
969   if (relocate_group)
970     shndxes.reserve(count - 1);
971
972   for (size_t i = 1; i < count; ++i)
973     {
974       elfcpp::Elf_Word shndx =
975         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
976
977       if (relocate_group)
978         shndxes.push_back(shndx);
979
980       if (shndx >= this->shnum())
981         {
982           this->error(_("section %u in section group %u out of range"),
983                       shndx, index);
984           continue;
985         }
986
987       // Check for an earlier section number, since we're going to get
988       // it wrong--we may have already decided to include the section.
989       if (shndx < index)
990         this->error(_("invalid section group %u refers to earlier section %u"),
991                     index, shndx);
992
993       // Get the name of the member section.
994       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
995       if (member_shdr.get_sh_name() >= section_names_size)
996         {
997           // This is an error, but it will be diagnosed eventually
998           // in do_layout, so we don't need to do anything here but
999           // ignore it.
1000           continue;
1001         }
1002       std::string mname(section_names + member_shdr.get_sh_name());
1003
1004       if (include_group)
1005         {
1006           if (is_comdat)
1007             kept_section->add_comdat_section(mname, shndx,
1008                                              member_shdr.get_sh_size());
1009         }
1010       else
1011         {
1012           (*omit)[shndx] = true;
1013
1014           if (is_comdat)
1015             {
1016               Relobj* kept_object = kept_section->object();
1017               if (kept_section->is_comdat())
1018                 {
1019                   // Find the corresponding kept section, and store
1020                   // that info in the discarded section table.
1021                   unsigned int kept_shndx;
1022                   uint64_t kept_size;
1023                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1024                                                         &kept_size))
1025                     {
1026                       // We don't keep a mapping for this section if
1027                       // it has a different size.  The mapping is only
1028                       // used for relocation processing, and we don't
1029                       // want to treat the sections as similar if the
1030                       // sizes are different.  Checking the section
1031                       // size is the approach used by the GNU linker.
1032                       if (kept_size == member_shdr.get_sh_size())
1033                         this->set_kept_comdat_section(shndx, kept_object,
1034                                                       kept_shndx);
1035                     }
1036                 }
1037               else
1038                 {
1039                   // The existing section is a linkonce section.  Add
1040                   // a mapping if there is exactly one section in the
1041                   // group (which is true when COUNT == 2) and if it
1042                   // is the same size.
1043                   if (count == 2
1044                       && (kept_section->linkonce_size()
1045                           == member_shdr.get_sh_size()))
1046                     this->set_kept_comdat_section(shndx, kept_object,
1047                                                   kept_section->shndx());
1048                 }
1049             }
1050         }
1051     }
1052
1053   if (relocate_group)
1054     layout->layout_group(symtab, this, index, name, signature.c_str(),
1055                          shdr, flags, &shndxes);
1056
1057   return include_group;
1058 }
1059
1060 // Whether to include a linkonce section in the link.  NAME is the
1061 // name of the section and SHDR is the section header.
1062
1063 // Linkonce sections are a GNU extension implemented in the original
1064 // GNU linker before section groups were defined.  The semantics are
1065 // that we only include one linkonce section with a given name.  The
1066 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1067 // where T is the type of section and SYMNAME is the name of a symbol.
1068 // In an attempt to make linkonce sections interact well with section
1069 // groups, we try to identify SYMNAME and use it like a section group
1070 // signature.  We want to block section groups with that signature,
1071 // but not other linkonce sections with that signature.  We also use
1072 // the full name of the linkonce section as a normal section group
1073 // signature.
1074
1075 template<int size, bool big_endian>
1076 bool
1077 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1078     Layout* layout,
1079     unsigned int index,
1080     const char* name,
1081     const elfcpp::Shdr<size, big_endian>& shdr)
1082 {
1083   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1084   // In general the symbol name we want will be the string following
1085   // the last '.'.  However, we have to handle the case of
1086   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1087   // some versions of gcc.  So we use a heuristic: if the name starts
1088   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1089   // we look for the last '.'.  We can't always simply skip
1090   // ".gnu.linkonce.X", because we have to deal with cases like
1091   // ".gnu.linkonce.d.rel.ro.local".
1092   const char* const linkonce_t = ".gnu.linkonce.t.";
1093   const char* symname;
1094   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1095     symname = name + strlen(linkonce_t);
1096   else
1097     symname = strrchr(name, '.') + 1;
1098   std::string sig1(symname);
1099   std::string sig2(name);
1100   Kept_section* kept1;
1101   Kept_section* kept2;
1102   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1103                                                    false, &kept1);
1104   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1105                                                    true, &kept2);
1106
1107   if (!include2)
1108     {
1109       // We are not including this section because we already saw the
1110       // name of the section as a signature.  This normally implies
1111       // that the kept section is another linkonce section.  If it is
1112       // the same size, record it as the section which corresponds to
1113       // this one.
1114       if (kept2->object() != NULL
1115           && !kept2->is_comdat()
1116           && kept2->linkonce_size() == sh_size)
1117         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1118     }
1119   else if (!include1)
1120     {
1121       // The section is being discarded on the basis of its symbol
1122       // name.  This means that the corresponding kept section was
1123       // part of a comdat group, and it will be difficult to identify
1124       // the specific section within that group that corresponds to
1125       // this linkonce section.  We'll handle the simple case where
1126       // the group has only one member section.  Otherwise, it's not
1127       // worth the effort.
1128       unsigned int kept_shndx;
1129       uint64_t kept_size;
1130       if (kept1->object() != NULL
1131           && kept1->is_comdat()
1132           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1133           && kept_size == sh_size)
1134         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1135     }
1136   else
1137     {
1138       kept1->set_linkonce_size(sh_size);
1139       kept2->set_linkonce_size(sh_size);
1140     }
1141
1142   return include1 && include2;
1143 }
1144
1145 // Layout an input section.
1146
1147 template<int size, bool big_endian>
1148 inline void
1149 Sized_relobj_file<size, big_endian>::layout_section(
1150     Layout* layout,
1151     unsigned int shndx,
1152     const char* name,
1153     const typename This::Shdr& shdr,
1154     unsigned int reloc_shndx,
1155     unsigned int reloc_type)
1156 {
1157   off_t offset;
1158   Output_section* os = layout->layout(this, shndx, name, shdr,
1159                                           reloc_shndx, reloc_type, &offset);
1160
1161   this->output_sections()[shndx] = os;
1162   if (offset == -1)
1163     this->section_offsets()[shndx] = invalid_address;
1164   else
1165     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1166
1167   // If this section requires special handling, and if there are
1168   // relocs that apply to it, then we must do the special handling
1169   // before we apply the relocs.
1170   if (offset == -1 && reloc_shndx != 0)
1171     this->set_relocs_must_follow_section_writes();
1172 }
1173
1174 // Layout an input .eh_frame section.
1175
1176 template<int size, bool big_endian>
1177 void
1178 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1179     Layout* layout,
1180     const unsigned char* symbols_data,
1181     section_size_type symbols_size,
1182     const unsigned char* symbol_names_data,
1183     section_size_type symbol_names_size,
1184     unsigned int shndx,
1185     const typename This::Shdr& shdr,
1186     unsigned int reloc_shndx,
1187     unsigned int reloc_type)
1188 {
1189   gold_assert(this->has_eh_frame_);
1190
1191   off_t offset;
1192   Output_section* os = layout->layout_eh_frame(this,
1193                                                symbols_data,
1194                                                symbols_size,
1195                                                symbol_names_data,
1196                                                symbol_names_size,
1197                                                shndx,
1198                                                shdr,
1199                                                reloc_shndx,
1200                                                reloc_type,
1201                                                &offset);
1202   this->output_sections()[shndx] = os;
1203   if (os == NULL || offset == -1)
1204     {
1205       // An object can contain at most one section holding exception
1206       // frame information.
1207       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1208       this->discarded_eh_frame_shndx_ = shndx;
1209       this->section_offsets()[shndx] = invalid_address;
1210     }
1211   else
1212     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1213
1214   // If this section requires special handling, and if there are
1215   // relocs that aply to it, then we must do the special handling
1216   // before we apply the relocs.
1217   if (os != NULL && offset == -1 && reloc_shndx != 0)
1218     this->set_relocs_must_follow_section_writes();
1219 }
1220
1221 // Lay out the input sections.  We walk through the sections and check
1222 // whether they should be included in the link.  If they should, we
1223 // pass them to the Layout object, which will return an output section
1224 // and an offset.
1225 // This function is called twice sometimes, two passes, when mapping
1226 // of input sections to output sections must be delayed.
1227 // This is true for the following :
1228 // * Garbage collection (--gc-sections): Some input sections will be
1229 // discarded and hence the assignment must wait until the second pass.
1230 // In the first pass,  it is for setting up some sections as roots to
1231 // a work-list for --gc-sections and to do comdat processing.
1232 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1233 // will be folded and hence the assignment must wait.
1234 // * Using plugins to map some sections to unique segments: Mapping
1235 // some sections to unique segments requires mapping them to unique
1236 // output sections too.  This can be done via plugins now and this
1237 // information is not available in the first pass.
1238
1239 template<int size, bool big_endian>
1240 void
1241 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1242                                                Layout* layout,
1243                                                Read_symbols_data* sd)
1244 {
1245   const unsigned int shnum = this->shnum();
1246
1247   /* Should this function be called twice?  */
1248   bool is_two_pass = (parameters->options().gc_sections()
1249                       || parameters->options().icf_enabled()
1250                       || layout->is_unique_segment_for_sections_specified());
1251
1252   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1253      a two-pass approach is not needed.  */
1254   bool is_pass_one = false;
1255   bool is_pass_two = false;
1256
1257   Symbols_data* gc_sd = NULL;
1258
1259   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1260      should happen.  In the first pass, the data in sd is saved to be used
1261      later in the second pass.  */
1262   if (is_two_pass)
1263     {
1264       gc_sd = this->get_symbols_data();
1265       if (gc_sd == NULL)
1266         {
1267           gold_assert(sd != NULL);
1268           is_pass_one = true;
1269         }
1270       else
1271         {
1272           if (parameters->options().gc_sections())
1273             gold_assert(symtab->gc()->is_worklist_ready());
1274           if (parameters->options().icf_enabled())
1275             gold_assert(symtab->icf()->is_icf_ready()); 
1276           is_pass_two = true;
1277         }
1278     }
1279     
1280   if (shnum == 0)
1281     return;
1282
1283   if (is_pass_one)
1284     {
1285       // During garbage collection save the symbols data to use it when
1286       // re-entering this function.
1287       gc_sd = new Symbols_data;
1288       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1289       this->set_symbols_data(gc_sd);
1290     }
1291
1292   const unsigned char* section_headers_data = NULL;
1293   section_size_type section_names_size;
1294   const unsigned char* symbols_data = NULL;
1295   section_size_type symbols_size;
1296   const unsigned char* symbol_names_data = NULL;
1297   section_size_type symbol_names_size;
1298
1299   if (is_two_pass)
1300     {
1301       section_headers_data = gc_sd->section_headers_data;
1302       section_names_size = gc_sd->section_names_size;
1303       symbols_data = gc_sd->symbols_data;
1304       symbols_size = gc_sd->symbols_size;
1305       symbol_names_data = gc_sd->symbol_names_data;
1306       symbol_names_size = gc_sd->symbol_names_size;
1307     }
1308   else
1309     {
1310       section_headers_data = sd->section_headers->data();
1311       section_names_size = sd->section_names_size;
1312       if (sd->symbols != NULL)
1313         symbols_data = sd->symbols->data();
1314       symbols_size = sd->symbols_size;
1315       if (sd->symbol_names != NULL)
1316         symbol_names_data = sd->symbol_names->data();
1317       symbol_names_size = sd->symbol_names_size;
1318     }
1319
1320   // Get the section headers.
1321   const unsigned char* shdrs = section_headers_data;
1322   const unsigned char* pshdrs;
1323
1324   // Get the section names.
1325   const unsigned char* pnamesu = (is_two_pass
1326                                   ? gc_sd->section_names_data
1327                                   : sd->section_names->data());
1328
1329   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1330
1331   // If any input files have been claimed by plugins, we need to defer
1332   // actual layout until the replacement files have arrived.
1333   const bool should_defer_layout =
1334       (parameters->options().has_plugins()
1335        && parameters->options().plugins()->should_defer_layout());
1336   unsigned int num_sections_to_defer = 0;
1337
1338   // For each section, record the index of the reloc section if any.
1339   // Use 0 to mean that there is no reloc section, -1U to mean that
1340   // there is more than one.
1341   std::vector<unsigned int> reloc_shndx(shnum, 0);
1342   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1343   // Skip the first, dummy, section.
1344   pshdrs = shdrs + This::shdr_size;
1345   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1346     {
1347       typename This::Shdr shdr(pshdrs);
1348
1349       // Count the number of sections whose layout will be deferred.
1350       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1351         ++num_sections_to_defer;
1352
1353       unsigned int sh_type = shdr.get_sh_type();
1354       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1355         {
1356           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1357           if (target_shndx == 0 || target_shndx >= shnum)
1358             {
1359               this->error(_("relocation section %u has bad info %u"),
1360                           i, target_shndx);
1361               continue;
1362             }
1363
1364           if (reloc_shndx[target_shndx] != 0)
1365             reloc_shndx[target_shndx] = -1U;
1366           else
1367             {
1368               reloc_shndx[target_shndx] = i;
1369               reloc_type[target_shndx] = sh_type;
1370             }
1371         }
1372     }
1373
1374   Output_sections& out_sections(this->output_sections());
1375   std::vector<Address>& out_section_offsets(this->section_offsets());
1376
1377   if (!is_pass_two)
1378     {
1379       out_sections.resize(shnum);
1380       out_section_offsets.resize(shnum);
1381     }
1382
1383   // If we are only linking for symbols, then there is nothing else to
1384   // do here.
1385   if (this->input_file()->just_symbols())
1386     {
1387       if (!is_pass_two)
1388         {
1389           delete sd->section_headers;
1390           sd->section_headers = NULL;
1391           delete sd->section_names;
1392           sd->section_names = NULL;
1393         }
1394       return;
1395     }
1396
1397   if (num_sections_to_defer > 0)
1398     {
1399       parameters->options().plugins()->add_deferred_layout_object(this);
1400       this->deferred_layout_.reserve(num_sections_to_defer);
1401     }
1402
1403   // Whether we've seen a .note.GNU-stack section.
1404   bool seen_gnu_stack = false;
1405   // The flags of a .note.GNU-stack section.
1406   uint64_t gnu_stack_flags = 0;
1407
1408   // Keep track of which sections to omit.
1409   std::vector<bool> omit(shnum, false);
1410
1411   // Keep track of reloc sections when emitting relocations.
1412   const bool relocatable = parameters->options().relocatable();
1413   const bool emit_relocs = (relocatable
1414                             || parameters->options().emit_relocs());
1415   std::vector<unsigned int> reloc_sections;
1416
1417   // Keep track of .eh_frame sections.
1418   std::vector<unsigned int> eh_frame_sections;
1419
1420   // Keep track of .debug_info and .debug_types sections.
1421   std::vector<unsigned int> debug_info_sections;
1422   std::vector<unsigned int> debug_types_sections;
1423
1424   // Skip the first, dummy, section.
1425   pshdrs = shdrs + This::shdr_size;
1426   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1427     {
1428       typename This::Shdr shdr(pshdrs);
1429
1430       if (shdr.get_sh_name() >= section_names_size)
1431         {
1432           this->error(_("bad section name offset for section %u: %lu"),
1433                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1434           return;
1435         }
1436
1437       const char* name = pnames + shdr.get_sh_name();
1438
1439       if (!is_pass_two)
1440         {
1441           if (this->handle_gnu_warning_section(name, i, symtab))
1442             {
1443               if (!relocatable && !parameters->options().shared())
1444                 omit[i] = true;
1445             }
1446
1447           // The .note.GNU-stack section is special.  It gives the
1448           // protection flags that this object file requires for the stack
1449           // in memory.
1450           if (strcmp(name, ".note.GNU-stack") == 0)
1451             {
1452               seen_gnu_stack = true;
1453               gnu_stack_flags |= shdr.get_sh_flags();
1454               omit[i] = true;
1455             }
1456
1457           // The .note.GNU-split-stack section is also special.  It
1458           // indicates that the object was compiled with
1459           // -fsplit-stack.
1460           if (this->handle_split_stack_section(name))
1461             {
1462               if (!relocatable && !parameters->options().shared())
1463                 omit[i] = true;
1464             }
1465
1466           // Skip attributes section.
1467           if (parameters->target().is_attributes_section(name))
1468             {
1469               omit[i] = true;
1470             }
1471
1472           bool discard = omit[i];
1473           if (!discard)
1474             {
1475               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1476                 {
1477                   if (!this->include_section_group(symtab, layout, i, name,
1478                                                    shdrs, pnames,
1479                                                    section_names_size,
1480                                                    &omit))
1481                     discard = true;
1482                 }
1483               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1484                        && Layout::is_linkonce(name))
1485                 {
1486                   if (!this->include_linkonce_section(layout, i, name, shdr))
1487                     discard = true;
1488                 }
1489             }
1490
1491           // Add the section to the incremental inputs layout.
1492           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1493           if (incremental_inputs != NULL
1494               && !discard
1495               && can_incremental_update(shdr.get_sh_type()))
1496             {
1497               off_t sh_size = shdr.get_sh_size();
1498               section_size_type uncompressed_size;
1499               if (this->section_is_compressed(i, &uncompressed_size))
1500                 sh_size = uncompressed_size;
1501               incremental_inputs->report_input_section(this, i, name, sh_size);
1502             }
1503
1504           if (discard)
1505             {
1506               // Do not include this section in the link.
1507               out_sections[i] = NULL;
1508               out_section_offsets[i] = invalid_address;
1509               continue;
1510             }
1511         }
1512
1513       if (is_pass_one && parameters->options().gc_sections())
1514         {
1515           if (this->is_section_name_included(name)
1516               || layout->keep_input_section (this, name)
1517               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1518               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1519             {
1520               symtab->gc()->worklist().push(Section_id(this, i));
1521             }
1522           // If the section name XXX can be represented as a C identifier
1523           // it cannot be discarded if there are references to
1524           // __start_XXX and __stop_XXX symbols.  These need to be
1525           // specially handled.
1526           if (is_cident(name))
1527             {
1528               symtab->gc()->add_cident_section(name, Section_id(this, i));
1529             }
1530         }
1531
1532       // When doing a relocatable link we are going to copy input
1533       // reloc sections into the output.  We only want to copy the
1534       // ones associated with sections which are not being discarded.
1535       // However, we don't know that yet for all sections.  So save
1536       // reloc sections and process them later. Garbage collection is
1537       // not triggered when relocatable code is desired.
1538       if (emit_relocs
1539           && (shdr.get_sh_type() == elfcpp::SHT_REL
1540               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1541         {
1542           reloc_sections.push_back(i);
1543           continue;
1544         }
1545
1546       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1547         continue;
1548
1549       // The .eh_frame section is special.  It holds exception frame
1550       // information that we need to read in order to generate the
1551       // exception frame header.  We process these after all the other
1552       // sections so that the exception frame reader can reliably
1553       // determine which sections are being discarded, and discard the
1554       // corresponding information.
1555       if (!relocatable
1556           && strcmp(name, ".eh_frame") == 0
1557           && this->check_eh_frame_flags(&shdr))
1558         {
1559           if (is_pass_one)
1560             {
1561               out_sections[i] = reinterpret_cast<Output_section*>(1);
1562               out_section_offsets[i] = invalid_address;
1563             }
1564           else if (should_defer_layout)
1565             this->deferred_layout_.push_back(Deferred_layout(i, name,
1566                                                              pshdrs,
1567                                                              reloc_shndx[i],
1568                                                              reloc_type[i]));
1569           else
1570             eh_frame_sections.push_back(i);
1571           continue;
1572         }
1573
1574       if (is_pass_two && parameters->options().gc_sections())
1575         {
1576           // This is executed during the second pass of garbage
1577           // collection. do_layout has been called before and some
1578           // sections have been already discarded. Simply ignore
1579           // such sections this time around.
1580           if (out_sections[i] == NULL)
1581             {
1582               gold_assert(out_section_offsets[i] == invalid_address);
1583               continue;
1584             }
1585           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1586               && symtab->gc()->is_section_garbage(this, i))
1587               {
1588                 if (parameters->options().print_gc_sections())
1589                   gold_info(_("%s: removing unused section from '%s'"
1590                               " in file '%s'"),
1591                             program_name, this->section_name(i).c_str(),
1592                             this->name().c_str());
1593                 out_sections[i] = NULL;
1594                 out_section_offsets[i] = invalid_address;
1595                 continue;
1596               }
1597         }
1598
1599       if (is_pass_two && parameters->options().icf_enabled())
1600         {
1601           if (out_sections[i] == NULL)
1602             {
1603               gold_assert(out_section_offsets[i] == invalid_address);
1604               continue;
1605             }
1606           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1607               && symtab->icf()->is_section_folded(this, i))
1608               {
1609                 if (parameters->options().print_icf_sections())
1610                   {
1611                     Section_id folded =
1612                                 symtab->icf()->get_folded_section(this, i);
1613                     Relobj* folded_obj =
1614                                 reinterpret_cast<Relobj*>(folded.first);
1615                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1616                                 "into '%s' in file '%s'"),
1617                               program_name, this->section_name(i).c_str(),
1618                               this->name().c_str(),
1619                               folded_obj->section_name(folded.second).c_str(),
1620                               folded_obj->name().c_str());
1621                   }
1622                 out_sections[i] = NULL;
1623                 out_section_offsets[i] = invalid_address;
1624                 continue;
1625               }
1626         }
1627
1628       // Defer layout here if input files are claimed by plugins.  When gc
1629       // is turned on this function is called twice.  For the second call
1630       // should_defer_layout should be false.
1631       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1632         {
1633           gold_assert(!is_pass_two);
1634           this->deferred_layout_.push_back(Deferred_layout(i, name,
1635                                                            pshdrs,
1636                                                            reloc_shndx[i],
1637                                                            reloc_type[i]));
1638           // Put dummy values here; real values will be supplied by
1639           // do_layout_deferred_sections.
1640           out_sections[i] = reinterpret_cast<Output_section*>(2);
1641           out_section_offsets[i] = invalid_address;
1642           continue;
1643         }
1644
1645       // During gc_pass_two if a section that was previously deferred is
1646       // found, do not layout the section as layout_deferred_sections will
1647       // do it later from gold.cc.
1648       if (is_pass_two
1649           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1650         continue;
1651
1652       if (is_pass_one)
1653         {
1654           // This is during garbage collection. The out_sections are
1655           // assigned in the second call to this function.
1656           out_sections[i] = reinterpret_cast<Output_section*>(1);
1657           out_section_offsets[i] = invalid_address;
1658         }
1659       else
1660         {
1661           // When garbage collection is switched on the actual layout
1662           // only happens in the second call.
1663           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1664                                reloc_type[i]);
1665
1666           // When generating a .gdb_index section, we do additional
1667           // processing of .debug_info and .debug_types sections after all
1668           // the other sections for the same reason as above.
1669           if (!relocatable
1670               && parameters->options().gdb_index()
1671               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1672             {
1673               if (strcmp(name, ".debug_info") == 0
1674                   || strcmp(name, ".zdebug_info") == 0)
1675                 debug_info_sections.push_back(i);
1676               else if (strcmp(name, ".debug_types") == 0
1677                        || strcmp(name, ".zdebug_types") == 0)
1678                 debug_types_sections.push_back(i);
1679             }
1680         }
1681     }
1682
1683   if (!is_pass_two)
1684     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1685
1686   // When doing a relocatable link handle the reloc sections at the
1687   // end.  Garbage collection  and Identical Code Folding is not
1688   // turned on for relocatable code.
1689   if (emit_relocs)
1690     this->size_relocatable_relocs();
1691
1692   gold_assert(!is_two_pass || reloc_sections.empty());
1693
1694   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1695        p != reloc_sections.end();
1696        ++p)
1697     {
1698       unsigned int i = *p;
1699       const unsigned char* pshdr;
1700       pshdr = section_headers_data + i * This::shdr_size;
1701       typename This::Shdr shdr(pshdr);
1702
1703       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1704       if (data_shndx >= shnum)
1705         {
1706           // We already warned about this above.
1707           continue;
1708         }
1709
1710       Output_section* data_section = out_sections[data_shndx];
1711       if (data_section == reinterpret_cast<Output_section*>(2))
1712         {
1713           // The layout for the data section was deferred, so we need
1714           // to defer the relocation section, too.
1715           const char* name = pnames + shdr.get_sh_name();
1716           this->deferred_layout_relocs_.push_back(
1717               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1718           out_sections[i] = reinterpret_cast<Output_section*>(2);
1719           out_section_offsets[i] = invalid_address;
1720           continue;
1721         }
1722       if (data_section == NULL)
1723         {
1724           out_sections[i] = NULL;
1725           out_section_offsets[i] = invalid_address;
1726           continue;
1727         }
1728
1729       Relocatable_relocs* rr = new Relocatable_relocs();
1730       this->set_relocatable_relocs(i, rr);
1731
1732       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1733                                                 rr);
1734       out_sections[i] = os;
1735       out_section_offsets[i] = invalid_address;
1736     }
1737
1738   // Handle the .eh_frame sections at the end.
1739   gold_assert(!is_pass_one || eh_frame_sections.empty());
1740   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1741        p != eh_frame_sections.end();
1742        ++p)
1743     {
1744       unsigned int i = *p;
1745       const unsigned char* pshdr;
1746       pshdr = section_headers_data + i * This::shdr_size;
1747       typename This::Shdr shdr(pshdr);
1748
1749       this->layout_eh_frame_section(layout,
1750                                     symbols_data,
1751                                     symbols_size,
1752                                     symbol_names_data,
1753                                     symbol_names_size,
1754                                     i,
1755                                     shdr,
1756                                     reloc_shndx[i],
1757                                     reloc_type[i]);
1758     }
1759
1760   // When building a .gdb_index section, scan the .debug_info and
1761   // .debug_types sections.
1762   gold_assert(!is_pass_one
1763               || (debug_info_sections.empty() && debug_types_sections.empty()));
1764   for (std::vector<unsigned int>::const_iterator p
1765            = debug_info_sections.begin();
1766        p != debug_info_sections.end();
1767        ++p)
1768     {
1769       unsigned int i = *p;
1770       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1771                                i, reloc_shndx[i], reloc_type[i]);
1772     }
1773   for (std::vector<unsigned int>::const_iterator p
1774            = debug_types_sections.begin();
1775        p != debug_types_sections.end();
1776        ++p)
1777     {
1778       unsigned int i = *p;
1779       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1780                                i, reloc_shndx[i], reloc_type[i]);
1781     }
1782
1783   if (is_pass_two)
1784     {
1785       delete[] gc_sd->section_headers_data;
1786       delete[] gc_sd->section_names_data;
1787       delete[] gc_sd->symbols_data;
1788       delete[] gc_sd->symbol_names_data;
1789       this->set_symbols_data(NULL);
1790     }
1791   else
1792     {
1793       delete sd->section_headers;
1794       sd->section_headers = NULL;
1795       delete sd->section_names;
1796       sd->section_names = NULL;
1797     }
1798 }
1799
1800 // Layout sections whose layout was deferred while waiting for
1801 // input files from a plugin.
1802
1803 template<int size, bool big_endian>
1804 void
1805 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1806 {
1807   typename std::vector<Deferred_layout>::iterator deferred;
1808
1809   for (deferred = this->deferred_layout_.begin();
1810        deferred != this->deferred_layout_.end();
1811        ++deferred)
1812     {
1813       typename This::Shdr shdr(deferred->shdr_data_);
1814       // If the section is not included, it is because the garbage collector
1815       // decided it is not needed.  Avoid reverting that decision.
1816       if (!this->is_section_included(deferred->shndx_))
1817         continue;
1818
1819       if (parameters->options().relocatable()
1820           || deferred->name_ != ".eh_frame"
1821           || !this->check_eh_frame_flags(&shdr))
1822         this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1823                              shdr, deferred->reloc_shndx_,
1824                              deferred->reloc_type_);
1825       else
1826         {
1827           // Reading the symbols again here may be slow.
1828           Read_symbols_data sd;
1829           this->read_symbols(&sd);
1830           this->layout_eh_frame_section(layout,
1831                                         sd.symbols->data(),
1832                                         sd.symbols_size,
1833                                         sd.symbol_names->data(),
1834                                         sd.symbol_names_size,
1835                                         deferred->shndx_,
1836                                         shdr,
1837                                         deferred->reloc_shndx_,
1838                                         deferred->reloc_type_);
1839         }
1840     }
1841
1842   this->deferred_layout_.clear();
1843
1844   // Now handle the deferred relocation sections.
1845
1846   Output_sections& out_sections(this->output_sections());
1847   std::vector<Address>& out_section_offsets(this->section_offsets());
1848
1849   for (deferred = this->deferred_layout_relocs_.begin();
1850        deferred != this->deferred_layout_relocs_.end();
1851        ++deferred)
1852     {
1853       unsigned int shndx = deferred->shndx_;
1854       typename This::Shdr shdr(deferred->shdr_data_);
1855       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1856
1857       Output_section* data_section = out_sections[data_shndx];
1858       if (data_section == NULL)
1859         {
1860           out_sections[shndx] = NULL;
1861           out_section_offsets[shndx] = invalid_address;
1862           continue;
1863         }
1864
1865       Relocatable_relocs* rr = new Relocatable_relocs();
1866       this->set_relocatable_relocs(shndx, rr);
1867
1868       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1869                                                 data_section, rr);
1870       out_sections[shndx] = os;
1871       out_section_offsets[shndx] = invalid_address;
1872     }
1873 }
1874
1875 // Add the symbols to the symbol table.
1876
1877 template<int size, bool big_endian>
1878 void
1879 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1880                                                     Read_symbols_data* sd,
1881                                                     Layout*)
1882 {
1883   if (sd->symbols == NULL)
1884     {
1885       gold_assert(sd->symbol_names == NULL);
1886       return;
1887     }
1888
1889   const int sym_size = This::sym_size;
1890   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1891                      / sym_size);
1892   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1893     {
1894       this->error(_("size of symbols is not multiple of symbol size"));
1895       return;
1896     }
1897
1898   this->symbols_.resize(symcount);
1899
1900   const char* sym_names =
1901     reinterpret_cast<const char*>(sd->symbol_names->data());
1902   symtab->add_from_relobj(this,
1903                           sd->symbols->data() + sd->external_symbols_offset,
1904                           symcount, this->local_symbol_count_,
1905                           sym_names, sd->symbol_names_size,
1906                           &this->symbols_,
1907                           &this->defined_count_);
1908
1909   delete sd->symbols;
1910   sd->symbols = NULL;
1911   delete sd->symbol_names;
1912   sd->symbol_names = NULL;
1913 }
1914
1915 // Find out if this object, that is a member of a lib group, should be included
1916 // in the link. We check every symbol defined by this object. If the symbol
1917 // table has a strong undefined reference to that symbol, we have to include
1918 // the object.
1919
1920 template<int size, bool big_endian>
1921 Archive::Should_include
1922 Sized_relobj_file<size, big_endian>::do_should_include_member(
1923     Symbol_table* symtab,
1924     Layout* layout,
1925     Read_symbols_data* sd,
1926     std::string* why)
1927 {
1928   char* tmpbuf = NULL;
1929   size_t tmpbuflen = 0;
1930   const char* sym_names =
1931       reinterpret_cast<const char*>(sd->symbol_names->data());
1932   const unsigned char* syms =
1933       sd->symbols->data() + sd->external_symbols_offset;
1934   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1935   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1936                          / sym_size);
1937
1938   const unsigned char* p = syms;
1939
1940   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1941     {
1942       elfcpp::Sym<size, big_endian> sym(p);
1943       unsigned int st_shndx = sym.get_st_shndx();
1944       if (st_shndx == elfcpp::SHN_UNDEF)
1945         continue;
1946
1947       unsigned int st_name = sym.get_st_name();
1948       const char* name = sym_names + st_name;
1949       Symbol* symbol;
1950       Archive::Should_include t = Archive::should_include_member(symtab,
1951                                                                  layout,
1952                                                                  name,
1953                                                                  &symbol, why,
1954                                                                  &tmpbuf,
1955                                                                  &tmpbuflen);
1956       if (t == Archive::SHOULD_INCLUDE_YES)
1957         {
1958           if (tmpbuf != NULL)
1959             free(tmpbuf);
1960           return t;
1961         }
1962     }
1963   if (tmpbuf != NULL)
1964     free(tmpbuf);
1965   return Archive::SHOULD_INCLUDE_UNKNOWN;
1966 }
1967
1968 // Iterate over global defined symbols, calling a visitor class V for each.
1969
1970 template<int size, bool big_endian>
1971 void
1972 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1973     Read_symbols_data* sd,
1974     Library_base::Symbol_visitor_base* v)
1975 {
1976   const char* sym_names =
1977       reinterpret_cast<const char*>(sd->symbol_names->data());
1978   const unsigned char* syms =
1979       sd->symbols->data() + sd->external_symbols_offset;
1980   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1981   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1982                      / sym_size);
1983   const unsigned char* p = syms;
1984
1985   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1986     {
1987       elfcpp::Sym<size, big_endian> sym(p);
1988       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1989         v->visit(sym_names + sym.get_st_name());
1990     }
1991 }
1992
1993 // Return whether the local symbol SYMNDX has a PLT offset.
1994
1995 template<int size, bool big_endian>
1996 bool
1997 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1998     unsigned int symndx) const
1999 {
2000   typename Local_plt_offsets::const_iterator p =
2001     this->local_plt_offsets_.find(symndx);
2002   return p != this->local_plt_offsets_.end();
2003 }
2004
2005 // Get the PLT offset of a local symbol.
2006
2007 template<int size, bool big_endian>
2008 unsigned int
2009 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2010     unsigned int symndx) const
2011 {
2012   typename Local_plt_offsets::const_iterator p =
2013     this->local_plt_offsets_.find(symndx);
2014   gold_assert(p != this->local_plt_offsets_.end());
2015   return p->second;
2016 }
2017
2018 // Set the PLT offset of a local symbol.
2019
2020 template<int size, bool big_endian>
2021 void
2022 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2023     unsigned int symndx, unsigned int plt_offset)
2024 {
2025   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2026     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2027   gold_assert(ins.second);
2028 }
2029
2030 // First pass over the local symbols.  Here we add their names to
2031 // *POOL and *DYNPOOL, and we store the symbol value in
2032 // THIS->LOCAL_VALUES_.  This function is always called from a
2033 // singleton thread.  This is followed by a call to
2034 // finalize_local_symbols.
2035
2036 template<int size, bool big_endian>
2037 void
2038 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2039                                                             Stringpool* dynpool)
2040 {
2041   gold_assert(this->symtab_shndx_ != -1U);
2042   if (this->symtab_shndx_ == 0)
2043     {
2044       // This object has no symbols.  Weird but legal.
2045       return;
2046     }
2047
2048   // Read the symbol table section header.
2049   const unsigned int symtab_shndx = this->symtab_shndx_;
2050   typename This::Shdr symtabshdr(this,
2051                                  this->elf_file_.section_header(symtab_shndx));
2052   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2053
2054   // Read the local symbols.
2055   const int sym_size = This::sym_size;
2056   const unsigned int loccount = this->local_symbol_count_;
2057   gold_assert(loccount == symtabshdr.get_sh_info());
2058   off_t locsize = loccount * sym_size;
2059   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2060                                               locsize, true, true);
2061
2062   // Read the symbol names.
2063   const unsigned int strtab_shndx =
2064     this->adjust_shndx(symtabshdr.get_sh_link());
2065   section_size_type strtab_size;
2066   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2067                                                         &strtab_size,
2068                                                         true);
2069   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2070
2071   // Loop over the local symbols.
2072
2073   const Output_sections& out_sections(this->output_sections());
2074   unsigned int shnum = this->shnum();
2075   unsigned int count = 0;
2076   unsigned int dyncount = 0;
2077   // Skip the first, dummy, symbol.
2078   psyms += sym_size;
2079   bool strip_all = parameters->options().strip_all();
2080   bool discard_all = parameters->options().discard_all();
2081   bool discard_locals = parameters->options().discard_locals();
2082   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2083     {
2084       elfcpp::Sym<size, big_endian> sym(psyms);
2085
2086       Symbol_value<size>& lv(this->local_values_[i]);
2087
2088       bool is_ordinary;
2089       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2090                                                   &is_ordinary);
2091       lv.set_input_shndx(shndx, is_ordinary);
2092
2093       if (sym.get_st_type() == elfcpp::STT_SECTION)
2094         lv.set_is_section_symbol();
2095       else if (sym.get_st_type() == elfcpp::STT_TLS)
2096         lv.set_is_tls_symbol();
2097       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2098         lv.set_is_ifunc_symbol();
2099
2100       // Save the input symbol value for use in do_finalize_local_symbols().
2101       lv.set_input_value(sym.get_st_value());
2102
2103       // Decide whether this symbol should go into the output file.
2104
2105       if ((shndx < shnum && out_sections[shndx] == NULL)
2106           || shndx == this->discarded_eh_frame_shndx_)
2107         {
2108           lv.set_no_output_symtab_entry();
2109           gold_assert(!lv.needs_output_dynsym_entry());
2110           continue;
2111         }
2112
2113       if (sym.get_st_type() == elfcpp::STT_SECTION)
2114         {
2115           lv.set_no_output_symtab_entry();
2116           gold_assert(!lv.needs_output_dynsym_entry());
2117           continue;
2118         }
2119
2120       if (sym.get_st_name() >= strtab_size)
2121         {
2122           this->error(_("local symbol %u section name out of range: %u >= %u"),
2123                       i, sym.get_st_name(),
2124                       static_cast<unsigned int>(strtab_size));
2125           lv.set_no_output_symtab_entry();
2126           continue;
2127         }
2128
2129       const char* name = pnames + sym.get_st_name();
2130
2131       // If needed, add the symbol to the dynamic symbol table string pool.
2132       if (lv.needs_output_dynsym_entry())
2133         {
2134           dynpool->add(name, true, NULL);
2135           ++dyncount;
2136         }
2137
2138       if (strip_all
2139           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2140         {
2141           lv.set_no_output_symtab_entry();
2142           continue;
2143         }
2144
2145       // If --discard-locals option is used, discard all temporary local
2146       // symbols.  These symbols start with system-specific local label
2147       // prefixes, typically .L for ELF system.  We want to be compatible
2148       // with GNU ld so here we essentially use the same check in
2149       // bfd_is_local_label().  The code is different because we already
2150       // know that:
2151       //
2152       //   - the symbol is local and thus cannot have global or weak binding.
2153       //   - the symbol is not a section symbol.
2154       //   - the symbol has a name.
2155       //
2156       // We do not discard a symbol if it needs a dynamic symbol entry.
2157       if (discard_locals
2158           && sym.get_st_type() != elfcpp::STT_FILE
2159           && !lv.needs_output_dynsym_entry()
2160           && lv.may_be_discarded_from_output_symtab()
2161           && parameters->target().is_local_label_name(name))
2162         {
2163           lv.set_no_output_symtab_entry();
2164           continue;
2165         }
2166
2167       // Discard the local symbol if -retain_symbols_file is specified
2168       // and the local symbol is not in that file.
2169       if (!parameters->options().should_retain_symbol(name))
2170         {
2171           lv.set_no_output_symtab_entry();
2172           continue;
2173         }
2174
2175       // Add the symbol to the symbol table string pool.
2176       pool->add(name, true, NULL);
2177       ++count;
2178     }
2179
2180   this->output_local_symbol_count_ = count;
2181   this->output_local_dynsym_count_ = dyncount;
2182 }
2183
2184 // Compute the final value of a local symbol.
2185
2186 template<int size, bool big_endian>
2187 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2188 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2189     unsigned int r_sym,
2190     const Symbol_value<size>* lv_in,
2191     Symbol_value<size>* lv_out,
2192     bool relocatable,
2193     const Output_sections& out_sections,
2194     const std::vector<Address>& out_offsets,
2195     const Symbol_table* symtab)
2196 {
2197   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2198   // we may have a memory leak.
2199   gold_assert(lv_out->has_output_value());
2200
2201   bool is_ordinary;
2202   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2203
2204   // Set the output symbol value.
2205
2206   if (!is_ordinary)
2207     {
2208       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2209         lv_out->set_output_value(lv_in->input_value());
2210       else
2211         {
2212           this->error(_("unknown section index %u for local symbol %u"),
2213                       shndx, r_sym);
2214           lv_out->set_output_value(0);
2215           return This::CFLV_ERROR;
2216         }
2217     }
2218   else
2219     {
2220       if (shndx >= this->shnum())
2221         {
2222           this->error(_("local symbol %u section index %u out of range"),
2223                       r_sym, shndx);
2224           lv_out->set_output_value(0);
2225           return This::CFLV_ERROR;
2226         }
2227
2228       Output_section* os = out_sections[shndx];
2229       Address secoffset = out_offsets[shndx];
2230       if (symtab->is_section_folded(this, shndx))
2231         {
2232           gold_assert(os == NULL && secoffset == invalid_address);
2233           // Get the os of the section it is folded onto.
2234           Section_id folded = symtab->icf()->get_folded_section(this,
2235                                                                 shndx);
2236           gold_assert(folded.first != NULL);
2237           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2238             <Sized_relobj_file<size, big_endian>*>(folded.first);
2239           os = folded_obj->output_section(folded.second);
2240           gold_assert(os != NULL);
2241           secoffset = folded_obj->get_output_section_offset(folded.second);
2242
2243           // This could be a relaxed input section.
2244           if (secoffset == invalid_address)
2245             {
2246               const Output_relaxed_input_section* relaxed_section =
2247                 os->find_relaxed_input_section(folded_obj, folded.second);
2248               gold_assert(relaxed_section != NULL);
2249               secoffset = relaxed_section->address() - os->address();
2250             }
2251         }
2252
2253       if (os == NULL)
2254         {
2255           // This local symbol belongs to a section we are discarding.
2256           // In some cases when applying relocations later, we will
2257           // attempt to match it to the corresponding kept section,
2258           // so we leave the input value unchanged here.
2259           return This::CFLV_DISCARDED;
2260         }
2261       else if (secoffset == invalid_address)
2262         {
2263           uint64_t start;
2264
2265           // This is a SHF_MERGE section or one which otherwise
2266           // requires special handling.
2267           if (shndx == this->discarded_eh_frame_shndx_)
2268             {
2269               // This local symbol belongs to a discarded .eh_frame
2270               // section.  Just treat it like the case in which
2271               // os == NULL above.
2272               gold_assert(this->has_eh_frame_);
2273               return This::CFLV_DISCARDED;
2274             }
2275           else if (!lv_in->is_section_symbol())
2276             {
2277               // This is not a section symbol.  We can determine
2278               // the final value now.
2279               lv_out->set_output_value(
2280                   os->output_address(this, shndx, lv_in->input_value()));
2281             }
2282           else if (!os->find_starting_output_address(this, shndx, &start))
2283             {
2284               // This is a section symbol, but apparently not one in a
2285               // merged section.  First check to see if this is a relaxed
2286               // input section.  If so, use its address.  Otherwise just
2287               // use the start of the output section.  This happens with
2288               // relocatable links when the input object has section
2289               // symbols for arbitrary non-merge sections.
2290               const Output_section_data* posd =
2291                 os->find_relaxed_input_section(this, shndx);
2292               if (posd != NULL)
2293                 {
2294                   Address relocatable_link_adjustment =
2295                     relocatable ? os->address() : 0;
2296                   lv_out->set_output_value(posd->address()
2297                                            - relocatable_link_adjustment);
2298                 }
2299               else
2300                 lv_out->set_output_value(os->address());
2301             }
2302           else
2303             {
2304               // We have to consider the addend to determine the
2305               // value to use in a relocation.  START is the start
2306               // of this input section.  If we are doing a relocatable
2307               // link, use offset from start output section instead of
2308               // address.
2309               Address adjusted_start =
2310                 relocatable ? start - os->address() : start;
2311               Merged_symbol_value<size>* msv =
2312                 new Merged_symbol_value<size>(lv_in->input_value(),
2313                                               adjusted_start);
2314               lv_out->set_merged_symbol_value(msv);
2315             }
2316         }
2317       else if (lv_in->is_tls_symbol())
2318         lv_out->set_output_value(os->tls_offset()
2319                                  + secoffset
2320                                  + lv_in->input_value());
2321       else
2322         lv_out->set_output_value((relocatable ? 0 : os->address())
2323                                  + secoffset
2324                                  + lv_in->input_value());
2325     }
2326   return This::CFLV_OK;
2327 }
2328
2329 // Compute final local symbol value.  R_SYM is the index of a local
2330 // symbol in symbol table.  LV points to a symbol value, which is
2331 // expected to hold the input value and to be over-written by the
2332 // final value.  SYMTAB points to a symbol table.  Some targets may want
2333 // to know would-be-finalized local symbol values in relaxation.
2334 // Hence we provide this method.  Since this method updates *LV, a
2335 // callee should make a copy of the original local symbol value and
2336 // use the copy instead of modifying an object's local symbols before
2337 // everything is finalized.  The caller should also free up any allocated
2338 // memory in the return value in *LV.
2339 template<int size, bool big_endian>
2340 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2341 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2342     unsigned int r_sym,
2343     const Symbol_value<size>* lv_in,
2344     Symbol_value<size>* lv_out,
2345     const Symbol_table* symtab)
2346 {
2347   // This is just a wrapper of compute_final_local_value_internal.
2348   const bool relocatable = parameters->options().relocatable();
2349   const Output_sections& out_sections(this->output_sections());
2350   const std::vector<Address>& out_offsets(this->section_offsets());
2351   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2352                                                   relocatable, out_sections,
2353                                                   out_offsets, symtab);
2354 }
2355
2356 // Finalize the local symbols.  Here we set the final value in
2357 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2358 // This function is always called from a singleton thread.  The actual
2359 // output of the local symbols will occur in a separate task.
2360
2361 template<int size, bool big_endian>
2362 unsigned int
2363 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2364     unsigned int index,
2365     off_t off,
2366     Symbol_table* symtab)
2367 {
2368   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2369
2370   const unsigned int loccount = this->local_symbol_count_;
2371   this->local_symbol_offset_ = off;
2372
2373   const bool relocatable = parameters->options().relocatable();
2374   const Output_sections& out_sections(this->output_sections());
2375   const std::vector<Address>& out_offsets(this->section_offsets());
2376
2377   for (unsigned int i = 1; i < loccount; ++i)
2378     {
2379       Symbol_value<size>* lv = &this->local_values_[i];
2380
2381       Compute_final_local_value_status cflv_status =
2382         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2383                                                  out_sections, out_offsets,
2384                                                  symtab);
2385       switch (cflv_status)
2386         {
2387         case CFLV_OK:
2388           if (!lv->is_output_symtab_index_set())
2389             {
2390               lv->set_output_symtab_index(index);
2391               ++index;
2392             }
2393           break;
2394         case CFLV_DISCARDED:
2395         case CFLV_ERROR:
2396           // Do nothing.
2397           break;
2398         default:
2399           gold_unreachable();
2400         }
2401     }
2402   return index;
2403 }
2404
2405 // Set the output dynamic symbol table indexes for the local variables.
2406
2407 template<int size, bool big_endian>
2408 unsigned int
2409 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2410     unsigned int index)
2411 {
2412   const unsigned int loccount = this->local_symbol_count_;
2413   for (unsigned int i = 1; i < loccount; ++i)
2414     {
2415       Symbol_value<size>& lv(this->local_values_[i]);
2416       if (lv.needs_output_dynsym_entry())
2417         {
2418           lv.set_output_dynsym_index(index);
2419           ++index;
2420         }
2421     }
2422   return index;
2423 }
2424
2425 // Set the offset where local dynamic symbol information will be stored.
2426 // Returns the count of local symbols contributed to the symbol table by
2427 // this object.
2428
2429 template<int size, bool big_endian>
2430 unsigned int
2431 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2432 {
2433   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2434   this->local_dynsym_offset_ = off;
2435   return this->output_local_dynsym_count_;
2436 }
2437
2438 // If Symbols_data is not NULL get the section flags from here otherwise
2439 // get it from the file.
2440
2441 template<int size, bool big_endian>
2442 uint64_t
2443 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2444 {
2445   Symbols_data* sd = this->get_symbols_data();
2446   if (sd != NULL)
2447     {
2448       const unsigned char* pshdrs = sd->section_headers_data
2449                                     + This::shdr_size * shndx;
2450       typename This::Shdr shdr(pshdrs);
2451       return shdr.get_sh_flags();
2452     }
2453   // If sd is NULL, read the section header from the file.
2454   return this->elf_file_.section_flags(shndx);
2455 }
2456
2457 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2458 // in icf.cc
2459
2460 template<int size, bool big_endian>
2461 uint64_t
2462 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2463 {
2464   Symbols_data* sd = this->get_symbols_data();
2465   gold_assert(sd != NULL);
2466
2467   const unsigned char* pshdrs = sd->section_headers_data
2468                                 + This::shdr_size * shndx;
2469   typename This::Shdr shdr(pshdrs);
2470   return shdr.get_sh_entsize();
2471 }
2472
2473 // Write out the local symbols.
2474
2475 template<int size, bool big_endian>
2476 void
2477 Sized_relobj_file<size, big_endian>::write_local_symbols(
2478     Output_file* of,
2479     const Stringpool* sympool,
2480     const Stringpool* dynpool,
2481     Output_symtab_xindex* symtab_xindex,
2482     Output_symtab_xindex* dynsym_xindex,
2483     off_t symtab_off)
2484 {
2485   const bool strip_all = parameters->options().strip_all();
2486   if (strip_all)
2487     {
2488       if (this->output_local_dynsym_count_ == 0)
2489         return;
2490       this->output_local_symbol_count_ = 0;
2491     }
2492
2493   gold_assert(this->symtab_shndx_ != -1U);
2494   if (this->symtab_shndx_ == 0)
2495     {
2496       // This object has no symbols.  Weird but legal.
2497       return;
2498     }
2499
2500   // Read the symbol table section header.
2501   const unsigned int symtab_shndx = this->symtab_shndx_;
2502   typename This::Shdr symtabshdr(this,
2503                                  this->elf_file_.section_header(symtab_shndx));
2504   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2505   const unsigned int loccount = this->local_symbol_count_;
2506   gold_assert(loccount == symtabshdr.get_sh_info());
2507
2508   // Read the local symbols.
2509   const int sym_size = This::sym_size;
2510   off_t locsize = loccount * sym_size;
2511   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2512                                               locsize, true, false);
2513
2514   // Read the symbol names.
2515   const unsigned int strtab_shndx =
2516     this->adjust_shndx(symtabshdr.get_sh_link());
2517   section_size_type strtab_size;
2518   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2519                                                         &strtab_size,
2520                                                         false);
2521   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2522
2523   // Get views into the output file for the portions of the symbol table
2524   // and the dynamic symbol table that we will be writing.
2525   off_t output_size = this->output_local_symbol_count_ * sym_size;
2526   unsigned char* oview = NULL;
2527   if (output_size > 0)
2528     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2529                                 output_size);
2530
2531   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2532   unsigned char* dyn_oview = NULL;
2533   if (dyn_output_size > 0)
2534     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2535                                     dyn_output_size);
2536
2537   const Output_sections out_sections(this->output_sections());
2538
2539   gold_assert(this->local_values_.size() == loccount);
2540
2541   unsigned char* ov = oview;
2542   unsigned char* dyn_ov = dyn_oview;
2543   psyms += sym_size;
2544   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2545     {
2546       elfcpp::Sym<size, big_endian> isym(psyms);
2547
2548       Symbol_value<size>& lv(this->local_values_[i]);
2549
2550       bool is_ordinary;
2551       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2552                                                      &is_ordinary);
2553       if (is_ordinary)
2554         {
2555           gold_assert(st_shndx < out_sections.size());
2556           if (out_sections[st_shndx] == NULL)
2557             continue;
2558           st_shndx = out_sections[st_shndx]->out_shndx();
2559           if (st_shndx >= elfcpp::SHN_LORESERVE)
2560             {
2561               if (lv.has_output_symtab_entry())
2562                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2563               if (lv.has_output_dynsym_entry())
2564                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2565               st_shndx = elfcpp::SHN_XINDEX;
2566             }
2567         }
2568
2569       // Write the symbol to the output symbol table.
2570       if (lv.has_output_symtab_entry())
2571         {
2572           elfcpp::Sym_write<size, big_endian> osym(ov);
2573
2574           gold_assert(isym.get_st_name() < strtab_size);
2575           const char* name = pnames + isym.get_st_name();
2576           osym.put_st_name(sympool->get_offset(name));
2577           osym.put_st_value(this->local_values_[i].value(this, 0));
2578           osym.put_st_size(isym.get_st_size());
2579           osym.put_st_info(isym.get_st_info());
2580           osym.put_st_other(isym.get_st_other());
2581           osym.put_st_shndx(st_shndx);
2582
2583           ov += sym_size;
2584         }
2585
2586       // Write the symbol to the output dynamic symbol table.
2587       if (lv.has_output_dynsym_entry())
2588         {
2589           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2590           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2591
2592           gold_assert(isym.get_st_name() < strtab_size);
2593           const char* name = pnames + isym.get_st_name();
2594           osym.put_st_name(dynpool->get_offset(name));
2595           osym.put_st_value(this->local_values_[i].value(this, 0));
2596           osym.put_st_size(isym.get_st_size());
2597           osym.put_st_info(isym.get_st_info());
2598           osym.put_st_other(isym.get_st_other());
2599           osym.put_st_shndx(st_shndx);
2600
2601           dyn_ov += sym_size;
2602         }
2603     }
2604
2605
2606   if (output_size > 0)
2607     {
2608       gold_assert(ov - oview == output_size);
2609       of->write_output_view(symtab_off + this->local_symbol_offset_,
2610                             output_size, oview);
2611     }
2612
2613   if (dyn_output_size > 0)
2614     {
2615       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2616       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2617                             dyn_oview);
2618     }
2619 }
2620
2621 // Set *INFO to symbolic information about the offset OFFSET in the
2622 // section SHNDX.  Return true if we found something, false if we
2623 // found nothing.
2624
2625 template<int size, bool big_endian>
2626 bool
2627 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2628     unsigned int shndx,
2629     off_t offset,
2630     Symbol_location_info* info)
2631 {
2632   if (this->symtab_shndx_ == 0)
2633     return false;
2634
2635   section_size_type symbols_size;
2636   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2637                                                         &symbols_size,
2638                                                         false);
2639
2640   unsigned int symbol_names_shndx =
2641     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2642   section_size_type names_size;
2643   const unsigned char* symbol_names_u =
2644     this->section_contents(symbol_names_shndx, &names_size, false);
2645   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2646
2647   const int sym_size = This::sym_size;
2648   const size_t count = symbols_size / sym_size;
2649
2650   const unsigned char* p = symbols;
2651   for (size_t i = 0; i < count; ++i, p += sym_size)
2652     {
2653       elfcpp::Sym<size, big_endian> sym(p);
2654
2655       if (sym.get_st_type() == elfcpp::STT_FILE)
2656         {
2657           if (sym.get_st_name() >= names_size)
2658             info->source_file = "(invalid)";
2659           else
2660             info->source_file = symbol_names + sym.get_st_name();
2661           continue;
2662         }
2663
2664       bool is_ordinary;
2665       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2666                                                      &is_ordinary);
2667       if (is_ordinary
2668           && st_shndx == shndx
2669           && static_cast<off_t>(sym.get_st_value()) <= offset
2670           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2671               > offset))
2672         {
2673           if (sym.get_st_name() > names_size)
2674             info->enclosing_symbol_name = "(invalid)";
2675           else
2676             {
2677               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2678               if (parameters->options().do_demangle())
2679                 {
2680                   char* demangled_name = cplus_demangle(
2681                       info->enclosing_symbol_name.c_str(),
2682                       DMGL_ANSI | DMGL_PARAMS);
2683                   if (demangled_name != NULL)
2684                     {
2685                       info->enclosing_symbol_name.assign(demangled_name);
2686                       free(demangled_name);
2687                     }
2688                 }
2689             }
2690           return true;
2691         }
2692     }
2693
2694   return false;
2695 }
2696
2697 // Look for a kept section corresponding to the given discarded section,
2698 // and return its output address.  This is used only for relocations in
2699 // debugging sections.  If we can't find the kept section, return 0.
2700
2701 template<int size, bool big_endian>
2702 typename Sized_relobj_file<size, big_endian>::Address
2703 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2704     unsigned int shndx,
2705     bool* found) const
2706 {
2707   Relobj* kept_object;
2708   unsigned int kept_shndx;
2709   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2710     {
2711       Sized_relobj_file<size, big_endian>* kept_relobj =
2712         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2713       Output_section* os = kept_relobj->output_section(kept_shndx);
2714       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2715       if (os != NULL && offset != invalid_address)
2716         {
2717           *found = true;
2718           return os->address() + offset;
2719         }
2720     }
2721   *found = false;
2722   return 0;
2723 }
2724
2725 // Get symbol counts.
2726
2727 template<int size, bool big_endian>
2728 void
2729 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2730     const Symbol_table*,
2731     size_t* defined,
2732     size_t* used) const
2733 {
2734   *defined = this->defined_count_;
2735   size_t count = 0;
2736   for (typename Symbols::const_iterator p = this->symbols_.begin();
2737        p != this->symbols_.end();
2738        ++p)
2739     if (*p != NULL
2740         && (*p)->source() == Symbol::FROM_OBJECT
2741         && (*p)->object() == this
2742         && (*p)->is_defined())
2743       ++count;
2744   *used = count;
2745 }
2746
2747 // Return a view of the decompressed contents of a section.  Set *PLEN
2748 // to the size.  Set *IS_NEW to true if the contents need to be freed
2749 // by the caller.
2750
2751 template<int size, bool big_endian>
2752 const unsigned char*
2753 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2754     unsigned int shndx,
2755     section_size_type* plen,
2756     bool* is_new)
2757 {
2758   section_size_type buffer_size;
2759   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2760                                                           false);
2761
2762   if (this->compressed_sections_ == NULL)
2763     {
2764       *plen = buffer_size;
2765       *is_new = false;
2766       return buffer;
2767     }
2768
2769   Compressed_section_map::const_iterator p =
2770       this->compressed_sections_->find(shndx);
2771   if (p == this->compressed_sections_->end())
2772     {
2773       *plen = buffer_size;
2774       *is_new = false;
2775       return buffer;
2776     }
2777
2778   section_size_type uncompressed_size = p->second.size;
2779   if (p->second.contents != NULL)
2780     {
2781       *plen = uncompressed_size;
2782       *is_new = false;
2783       return p->second.contents;
2784     }
2785
2786   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2787   if (!decompress_input_section(buffer,
2788                                 buffer_size,
2789                                 uncompressed_data,
2790                                 uncompressed_size))
2791     this->error(_("could not decompress section %s"),
2792                 this->do_section_name(shndx).c_str());
2793
2794   // We could cache the results in p->second.contents and store
2795   // false in *IS_NEW, but build_compressed_section_map() would
2796   // have done so if it had expected it to be profitable.  If
2797   // we reach this point, we expect to need the contents only
2798   // once in this pass.
2799   *plen = uncompressed_size;
2800   *is_new = true;
2801   return uncompressed_data;
2802 }
2803
2804 // Discard any buffers of uncompressed sections.  This is done
2805 // at the end of the Add_symbols task.
2806
2807 template<int size, bool big_endian>
2808 void
2809 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2810 {
2811   if (this->compressed_sections_ == NULL)
2812     return;
2813
2814   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2815        p != this->compressed_sections_->end();
2816        ++p)
2817     {
2818       if (p->second.contents != NULL)
2819         {
2820           delete[] p->second.contents;
2821           p->second.contents = NULL;
2822         }
2823     }
2824 }
2825
2826 // Input_objects methods.
2827
2828 // Add a regular relocatable object to the list.  Return false if this
2829 // object should be ignored.
2830
2831 bool
2832 Input_objects::add_object(Object* obj)
2833 {
2834   // Print the filename if the -t/--trace option is selected.
2835   if (parameters->options().trace())
2836     gold_info("%s", obj->name().c_str());
2837
2838   if (!obj->is_dynamic())
2839     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2840   else
2841     {
2842       // See if this is a duplicate SONAME.
2843       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2844       const char* soname = dynobj->soname();
2845
2846       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2847         this->sonames_.insert(soname);
2848       if (!ins.second)
2849         {
2850           // We have already seen a dynamic object with this soname.
2851           return false;
2852         }
2853
2854       this->dynobj_list_.push_back(dynobj);
2855     }
2856
2857   // Add this object to the cross-referencer if requested.
2858   if (parameters->options().user_set_print_symbol_counts()
2859       || parameters->options().cref())
2860     {
2861       if (this->cref_ == NULL)
2862         this->cref_ = new Cref();
2863       this->cref_->add_object(obj);
2864     }
2865
2866   return true;
2867 }
2868
2869 // For each dynamic object, record whether we've seen all of its
2870 // explicit dependencies.
2871
2872 void
2873 Input_objects::check_dynamic_dependencies() const
2874 {
2875   bool issued_copy_dt_needed_error = false;
2876   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2877        p != this->dynobj_list_.end();
2878        ++p)
2879     {
2880       const Dynobj::Needed& needed((*p)->needed());
2881       bool found_all = true;
2882       Dynobj::Needed::const_iterator pneeded;
2883       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2884         {
2885           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2886             {
2887               found_all = false;
2888               break;
2889             }
2890         }
2891       (*p)->set_has_unknown_needed_entries(!found_all);
2892
2893       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2894       // that gold does not support.  However, they cause no trouble
2895       // unless there is a DT_NEEDED entry that we don't know about;
2896       // warn only in that case.
2897       if (!found_all
2898           && !issued_copy_dt_needed_error
2899           && (parameters->options().copy_dt_needed_entries()
2900               || parameters->options().add_needed()))
2901         {
2902           const char* optname;
2903           if (parameters->options().copy_dt_needed_entries())
2904             optname = "--copy-dt-needed-entries";
2905           else
2906             optname = "--add-needed";
2907           gold_error(_("%s is not supported but is required for %s in %s"),
2908                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2909           issued_copy_dt_needed_error = true;
2910         }
2911     }
2912 }
2913
2914 // Start processing an archive.
2915
2916 void
2917 Input_objects::archive_start(Archive* archive)
2918 {
2919   if (parameters->options().user_set_print_symbol_counts()
2920       || parameters->options().cref())
2921     {
2922       if (this->cref_ == NULL)
2923         this->cref_ = new Cref();
2924       this->cref_->add_archive_start(archive);
2925     }
2926 }
2927
2928 // Stop processing an archive.
2929
2930 void
2931 Input_objects::archive_stop(Archive* archive)
2932 {
2933   if (parameters->options().user_set_print_symbol_counts()
2934       || parameters->options().cref())
2935     this->cref_->add_archive_stop(archive);
2936 }
2937
2938 // Print symbol counts
2939
2940 void
2941 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2942 {
2943   if (parameters->options().user_set_print_symbol_counts()
2944       && this->cref_ != NULL)
2945     this->cref_->print_symbol_counts(symtab);
2946 }
2947
2948 // Print a cross reference table.
2949
2950 void
2951 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2952 {
2953   if (parameters->options().cref() && this->cref_ != NULL)
2954     this->cref_->print_cref(symtab, f);
2955 }
2956
2957 // Relocate_info methods.
2958
2959 // Return a string describing the location of a relocation when file
2960 // and lineno information is not available.  This is only used in
2961 // error messages.
2962
2963 template<int size, bool big_endian>
2964 std::string
2965 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2966 {
2967   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2968   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2969   if (!ret.empty())
2970     return ret;
2971
2972   ret = this->object->name();
2973
2974   Symbol_location_info info;
2975   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2976     {
2977       if (!info.source_file.empty())
2978         {
2979           ret += ":";
2980           ret += info.source_file;
2981         }
2982       size_t len = info.enclosing_symbol_name.length() + 100;
2983       char* buf = new char[len];
2984       snprintf(buf, len, _(":function %s"),
2985                info.enclosing_symbol_name.c_str());
2986       ret += buf;
2987       delete[] buf;
2988       return ret;
2989     }
2990
2991   ret += "(";
2992   ret += this->object->section_name(this->data_shndx);
2993   char buf[100];
2994   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2995   ret += buf;
2996   return ret;
2997 }
2998
2999 } // End namespace gold.
3000
3001 namespace
3002 {
3003
3004 using namespace gold;
3005
3006 // Read an ELF file with the header and return the appropriate
3007 // instance of Object.
3008
3009 template<int size, bool big_endian>
3010 Object*
3011 make_elf_sized_object(const std::string& name, Input_file* input_file,
3012                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3013                       bool* punconfigured)
3014 {
3015   Target* target = select_target(input_file, offset,
3016                                  ehdr.get_e_machine(), size, big_endian,
3017                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3018                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3019   if (target == NULL)
3020     gold_fatal(_("%s: unsupported ELF machine number %d"),
3021                name.c_str(), ehdr.get_e_machine());
3022
3023   if (!parameters->target_valid())
3024     set_parameters_target(target);
3025   else if (target != &parameters->target())
3026     {
3027       if (punconfigured != NULL)
3028         *punconfigured = true;
3029       else
3030         gold_error(_("%s: incompatible target"), name.c_str());
3031       return NULL;
3032     }
3033
3034   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3035                                                    ehdr);
3036 }
3037
3038 } // End anonymous namespace.
3039
3040 namespace gold
3041 {
3042
3043 // Return whether INPUT_FILE is an ELF object.
3044
3045 bool
3046 is_elf_object(Input_file* input_file, off_t offset,
3047               const unsigned char** start, int* read_size)
3048 {
3049   off_t filesize = input_file->file().filesize();
3050   int want = elfcpp::Elf_recognizer::max_header_size;
3051   if (filesize - offset < want)
3052     want = filesize - offset;
3053
3054   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3055                                                        true, false);
3056   *start = p;
3057   *read_size = want;
3058
3059   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3060 }
3061
3062 // Read an ELF file and return the appropriate instance of Object.
3063
3064 Object*
3065 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3066                 const unsigned char* p, section_offset_type bytes,
3067                 bool* punconfigured)
3068 {
3069   if (punconfigured != NULL)
3070     *punconfigured = false;
3071
3072   std::string error;
3073   bool big_endian = false;
3074   int size = 0;
3075   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3076                                                &big_endian, &error))
3077     {
3078       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3079       return NULL;
3080     }
3081
3082   if (size == 32)
3083     {
3084       if (big_endian)
3085         {
3086 #ifdef HAVE_TARGET_32_BIG
3087           elfcpp::Ehdr<32, true> ehdr(p);
3088           return make_elf_sized_object<32, true>(name, input_file,
3089                                                  offset, ehdr, punconfigured);
3090 #else
3091           if (punconfigured != NULL)
3092             *punconfigured = true;
3093           else
3094             gold_error(_("%s: not configured to support "
3095                          "32-bit big-endian object"),
3096                        name.c_str());
3097           return NULL;
3098 #endif
3099         }
3100       else
3101         {
3102 #ifdef HAVE_TARGET_32_LITTLE
3103           elfcpp::Ehdr<32, false> ehdr(p);
3104           return make_elf_sized_object<32, false>(name, input_file,
3105                                                   offset, ehdr, punconfigured);
3106 #else
3107           if (punconfigured != NULL)
3108             *punconfigured = true;
3109           else
3110             gold_error(_("%s: not configured to support "
3111                          "32-bit little-endian object"),
3112                        name.c_str());
3113           return NULL;
3114 #endif
3115         }
3116     }
3117   else if (size == 64)
3118     {
3119       if (big_endian)
3120         {
3121 #ifdef HAVE_TARGET_64_BIG
3122           elfcpp::Ehdr<64, true> ehdr(p);
3123           return make_elf_sized_object<64, true>(name, input_file,
3124                                                  offset, ehdr, punconfigured);
3125 #else
3126           if (punconfigured != NULL)
3127             *punconfigured = true;
3128           else
3129             gold_error(_("%s: not configured to support "
3130                          "64-bit big-endian object"),
3131                        name.c_str());
3132           return NULL;
3133 #endif
3134         }
3135       else
3136         {
3137 #ifdef HAVE_TARGET_64_LITTLE
3138           elfcpp::Ehdr<64, false> ehdr(p);
3139           return make_elf_sized_object<64, false>(name, input_file,
3140                                                   offset, ehdr, punconfigured);
3141 #else
3142           if (punconfigured != NULL)
3143             *punconfigured = true;
3144           else
3145             gold_error(_("%s: not configured to support "
3146                          "64-bit little-endian object"),
3147                        name.c_str());
3148           return NULL;
3149 #endif
3150         }
3151     }
3152   else
3153     gold_unreachable();
3154 }
3155
3156 // Instantiate the templates we need.
3157
3158 #ifdef HAVE_TARGET_32_LITTLE
3159 template
3160 void
3161 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3162                                      Read_symbols_data*);
3163 #endif
3164
3165 #ifdef HAVE_TARGET_32_BIG
3166 template
3167 void
3168 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3169                                     Read_symbols_data*);
3170 #endif
3171
3172 #ifdef HAVE_TARGET_64_LITTLE
3173 template
3174 void
3175 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3176                                      Read_symbols_data*);
3177 #endif
3178
3179 #ifdef HAVE_TARGET_64_BIG
3180 template
3181 void
3182 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3183                                     Read_symbols_data*);
3184 #endif
3185
3186 #ifdef HAVE_TARGET_32_LITTLE
3187 template
3188 class Sized_relobj_file<32, false>;
3189 #endif
3190
3191 #ifdef HAVE_TARGET_32_BIG
3192 template
3193 class Sized_relobj_file<32, true>;
3194 #endif
3195
3196 #ifdef HAVE_TARGET_64_LITTLE
3197 template
3198 class Sized_relobj_file<64, false>;
3199 #endif
3200
3201 #ifdef HAVE_TARGET_64_BIG
3202 template
3203 class Sized_relobj_file<64, true>;
3204 #endif
3205
3206 #ifdef HAVE_TARGET_32_LITTLE
3207 template
3208 struct Relocate_info<32, false>;
3209 #endif
3210
3211 #ifdef HAVE_TARGET_32_BIG
3212 template
3213 struct Relocate_info<32, true>;
3214 #endif
3215
3216 #ifdef HAVE_TARGET_64_LITTLE
3217 template
3218 struct Relocate_info<64, false>;
3219 #endif
3220
3221 #ifdef HAVE_TARGET_64_BIG
3222 template
3223 struct Relocate_info<64, true>;
3224 #endif
3225
3226 #ifdef HAVE_TARGET_32_LITTLE
3227 template
3228 void
3229 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3230
3231 template
3232 void
3233 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3234                                       const unsigned char*);
3235 #endif
3236
3237 #ifdef HAVE_TARGET_32_BIG
3238 template
3239 void
3240 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3241
3242 template
3243 void
3244 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3245                                      const unsigned char*);
3246 #endif
3247
3248 #ifdef HAVE_TARGET_64_LITTLE
3249 template
3250 void
3251 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3252
3253 template
3254 void
3255 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3256                                       const unsigned char*);
3257 #endif
3258
3259 #ifdef HAVE_TARGET_64_BIG
3260 template
3261 void
3262 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3263
3264 template
3265 void
3266 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3267                                      const unsigned char*);
3268 #endif
3269
3270 } // End namespace gold.
This page took 0.206977 seconds and 4 git commands to generate.