3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2021 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
40 if test "${line}" = ""
43 elif test "${line}" = "#" -a "${comment}" = ""
46 elif expr "${line}" : "#" > /dev/null
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
63 if test -n "${garbage_at_eol:-}"
65 echo "Garbage at end-of-line in ${line}" 1>&2
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
74 if eval test "\"\${${r}}\" = ' '"
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
88 case "${invalid_p:-}" in
90 if test -n "${predefault}"
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
99 predicate="gdbarch->${function} != NULL"
103 echo "Predicate function ${function} with invalid_p." 1>&2
110 #NOT YET: See gdbarch.log for basic verification of
125 fallback_default_p ()
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
131 class_is_variable_p ()
139 class_is_function_p ()
142 *f* | *F* | *m* | *M* ) true ;;
147 class_is_multiarch_p ()
155 class_is_predicate_p ()
158 *F* | *V* | *M* ) true ;;
172 # dump out/verify the doco
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
197 # For functions, the return type; for variables, the data type
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
225 # If STATICDEFAULT is empty, zero is used.
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
234 # If PREDEFAULT is empty, zero is used.
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
240 # A zero PREDEFAULT function will force the fallback to call
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
252 # If POSTDEFAULT is empty, no post update is performed.
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
284 # See also PREDEFAULT and POSTDEFAULT.
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
294 garbage_at_eol ) : ;;
296 # Catches stray fields.
299 echo "Bad field ${field}"
307 # See below (DOCO) for description of each field
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
328 # The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
334 v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
336 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
345 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346 # starting with C++11.
347 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
348 # One if \`wchar_t' is signed, zero if unsigned.
349 v;int;wchar_signed;;;1;-1;1
351 # Returns the floating-point format to be used for values of length LENGTH.
352 # NAME, if non-NULL, is the type name, which may be used to distinguish
353 # different target formats of the same length.
354 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
356 # For most targets, a pointer on the target and its representation as an
357 # address in GDB have the same size and "look the same". For such a
358 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
359 # / addr_bit will be set from it.
361 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
362 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363 # gdbarch_address_to_pointer as well.
365 # ptr_bit is the size of a pointer on the target
366 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
367 # addr_bit is the size of a target address as represented in gdb
368 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
370 # dwarf2_addr_size is the target address size as used in the Dwarf debug
371 # info. For .debug_frame FDEs, this is supposed to be the target address
372 # size from the associated CU header, and which is equivalent to the
373 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374 # Unfortunately there is no good way to determine this value. Therefore
375 # dwarf2_addr_size simply defaults to the target pointer size.
377 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378 # defined using the target's pointer size so far.
380 # Note that dwarf2_addr_size only needs to be redefined by a target if the
381 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382 # and if Dwarf versions < 4 need to be supported.
383 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
385 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
386 v;int;char_signed;;;1;-1;1
388 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
389 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
390 # Function for getting target's idea of a frame pointer. FIXME: GDB's
391 # whole scheme for dealing with "frames" and "frame pointers" needs a
393 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
395 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
396 # Read a register into a new struct value. If the register is wholly
397 # or partly unavailable, this should call mark_value_bytes_unavailable
398 # as appropriate. If this is defined, then pseudo_register_read will
400 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
401 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
403 v;int;num_regs;;;0;-1
404 # This macro gives the number of pseudo-registers that live in the
405 # register namespace but do not get fetched or stored on the target.
406 # These pseudo-registers may be aliases for other registers,
407 # combinations of other registers, or they may be computed by GDB.
408 v;int;num_pseudo_regs;;;0;0;;0
410 # Assemble agent expression bytecode to collect pseudo-register REG.
411 # Return -1 if something goes wrong, 0 otherwise.
412 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
414 # Assemble agent expression bytecode to push the value of pseudo-register
415 # REG on the interpreter stack.
416 # Return -1 if something goes wrong, 0 otherwise.
417 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
419 # Some architectures can display additional information for specific
421 # UIOUT is the output stream where the handler will place information.
422 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
424 # GDB's standard (or well known) register numbers. These can map onto
425 # a real register or a pseudo (computed) register or not be defined at
427 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
428 v;int;sp_regnum;;;-1;-1;;0
429 v;int;pc_regnum;;;-1;-1;;0
430 v;int;ps_regnum;;;-1;-1;;0
431 v;int;fp0_regnum;;;0;-1;;0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
436 # Convert from an sdb register number to an internal gdb register number.
437 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
438 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
439 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
440 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441 m;const char *;register_name;int regnr;regnr;;0
443 # Return the type of a register specified by the architecture. Only
444 # the register cache should call this function directly; others should
445 # use "register_type".
446 M;struct type *;register_type;int reg_nr;reg_nr
448 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449 # a dummy frame. A dummy frame is created before an inferior call,
450 # the frame_id returned here must match the frame_id that was built
451 # for the inferior call. Usually this means the returned frame_id's
452 # stack address should match the address returned by
453 # gdbarch_push_dummy_call, and the returned frame_id's code address
454 # should match the address at which the breakpoint was set in the dummy
456 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
457 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
458 # deprecated_fp_regnum.
459 v;int;deprecated_fp_regnum;;;-1;-1;;0
461 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
462 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
465 # Return true if the code of FRAME is writable.
466 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
468 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
471 # MAP a GDB RAW register number onto a simulator register number. See
472 # also include/...-sim.h.
473 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
477 # Determine the address where a longjmp will land and save this address
478 # in PC. Return nonzero on success.
480 # FRAME corresponds to the longjmp frame.
481 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
484 v;int;believe_pcc_promotion;;;;;;;
486 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
495 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
499 # Return the return-value convention that will be used by FUNCTION
500 # to return a value of type VALTYPE. FUNCTION may be NULL in which
501 # case the return convention is computed based only on VALTYPE.
503 # If READBUF is not NULL, extract the return value and save it in this buffer.
505 # If WRITEBUF is not NULL, it contains a return value which will be
506 # stored into the appropriate register. This can be used when we want
507 # to force the value returned by a function (see the "return" command
509 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
511 # Return true if the return value of function is stored in the first hidden
512 # parameter. In theory, this feature should be language-dependent, specified
513 # by language and its ABI, such as C++. Unfortunately, compiler may
514 # implement it to a target-dependent feature. So that we need such hook here
515 # to be aware of this in GDB.
516 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
518 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
520 # On some platforms, a single function may provide multiple entry points,
521 # e.g. one that is used for function-pointer calls and a different one
522 # that is used for direct function calls.
523 # In order to ensure that breakpoints set on the function will trigger
524 # no matter via which entry point the function is entered, a platform
525 # may provide the skip_entrypoint callback. It is called with IP set
526 # to the main entry point of a function (as determined by the symbol table),
527 # and should return the address of the innermost entry point, where the
528 # actual breakpoint needs to be set. Note that skip_entrypoint is used
529 # by GDB common code even when debugging optimized code, where skip_prologue
531 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
533 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
536 # Return the breakpoint kind for this target based on *PCPTR.
537 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
539 # Return the software breakpoint from KIND. KIND can have target
540 # specific meaning like the Z0 kind parameter.
541 # SIZE is set to the software breakpoint's length in memory.
542 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
544 # Return the breakpoint kind for this target based on the current
545 # processor state (e.g. the current instruction mode on ARM) and the
546 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
547 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
549 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
554 # A function can be addressed by either it's "pointer" (possibly a
555 # descriptor address) or "entry point" (first executable instruction).
556 # The method "convert_from_func_ptr_addr" converting the former to the
557 # latter. gdbarch_deprecated_function_start_offset is being used to implement
558 # a simplified subset of that functionality - the function's address
559 # corresponds to the "function pointer" and the function's start
560 # corresponds to the "function entry point" - and hence is redundant.
562 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
564 # Return the remote protocol register number associated with this
565 # register. Normally the identity mapping.
566 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
568 # Fetch the target specific address used to represent a load module.
569 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
571 # Return the thread-local address at OFFSET in the thread-local
572 # storage for the thread PTID and the shared library or executable
573 # file given by LM_ADDR. If that block of thread-local storage hasn't
574 # been allocated yet, this function may throw an error. LM_ADDR may
575 # be zero for statically linked multithreaded inferiors.
577 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
579 v;CORE_ADDR;frame_args_skip;;;0;;;0
580 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
582 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583 # frame-base. Enable frame-base before frame-unwind.
584 F;int;frame_num_args;struct frame_info *frame;frame
586 M;CORE_ADDR;frame_align;CORE_ADDR address;address
587 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588 v;int;frame_red_zone_size
590 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
602 # On some machines, not all bits of an address word are significant.
603 # For example, on AArch64, the top bits of an address known as the "tag"
604 # are ignored by the kernel, the hardware, etc. and can be regarded as
605 # additional data associated with the address.
606 v;int;significant_addr_bit;;;;;;0
608 # Return a string representation of the memory tag TAG.
609 m;std::string;memtag_to_string;struct value *tag;tag;;default_memtag_to_string;;0
611 # Return true if ADDRESS contains a tag and false otherwise.
612 m;bool;tagged_address_p;struct value *address;address;;default_tagged_address_p;;0
614 # Return true if the tag from ADDRESS matches the memory tag for that
615 # particular address. Return false otherwise.
616 m;bool;memtag_matches_p;struct value *address;address;;default_memtag_matches_p;;0
618 # Set the tags of type TAG_TYPE, for the memory address range
619 # [ADDRESS, ADDRESS + LENGTH) to TAGS.
620 # Return true if successful and false otherwise.
621 m;bool;set_memtags;struct value *address, size_t length, const gdb::byte_vector \&tags, memtag_type tag_type;address, length, tags, tag_type;;default_set_memtags;;0
623 # Return the tag of type TAG_TYPE associated with the memory address ADDRESS,
624 # assuming ADDRESS is tagged.
625 m;struct value *;get_memtag;struct value *address, memtag_type tag_type;address, tag_type;;default_get_memtag;;0
627 # memtag_granule_size is the size of the allocation tag granule, for
628 # architectures that support memory tagging.
629 # This is 0 for architectures that do not support memory tagging.
630 # For a non-zero value, this represents the number of bytes of memory per tag.
631 v;CORE_ADDR;memtag_granule_size;;;;;;0
633 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
634 # indicates if the target needs software single step. An ISA method to
637 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
638 # target can single step. If not, then implement single step using breakpoints.
640 # Return a vector of addresses on which the software single step
641 # breakpoints should be inserted. NULL means software single step is
643 # Multiple breakpoints may be inserted for some instructions such as
644 # conditional branch. However, each implementation must always evaluate
645 # the condition and only put the breakpoint at the branch destination if
646 # the condition is true, so that we ensure forward progress when stepping
647 # past a conditional branch to self.
648 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
650 # Return non-zero if the processor is executing a delay slot and a
651 # further single-step is needed before the instruction finishes.
652 M;int;single_step_through_delay;struct frame_info *frame;frame
653 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
654 # disassembler. Perhaps objdump can handle it?
655 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
656 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
659 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
660 # evaluates non-zero, this is the address where the debugger will place
661 # a step-resume breakpoint to get us past the dynamic linker.
662 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
663 # Some systems also have trampoline code for returning from shared libs.
664 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
666 # Return true if PC lies inside an indirect branch thunk.
667 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
669 # A target might have problems with watchpoints as soon as the stack
670 # frame of the current function has been destroyed. This mostly happens
671 # as the first action in a function's epilogue. stack_frame_destroyed_p()
672 # is defined to return a non-zero value if either the given addr is one
673 # instruction after the stack destroying instruction up to the trailing
674 # return instruction or if we can figure out that the stack frame has
675 # already been invalidated regardless of the value of addr. Targets
676 # which don't suffer from that problem could just let this functionality
678 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
679 # Process an ELF symbol in the minimal symbol table in a backend-specific
680 # way. Normally this hook is supposed to do nothing, however if required,
681 # then this hook can be used to apply tranformations to symbols that are
682 # considered special in some way. For example the MIPS backend uses it
683 # to interpret \`st_other' information to mark compressed code symbols so
684 # that they can be treated in the appropriate manner in the processing of
685 # the main symbol table and DWARF-2 records.
686 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
687 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
688 # Process a symbol in the main symbol table in a backend-specific way.
689 # Normally this hook is supposed to do nothing, however if required,
690 # then this hook can be used to apply tranformations to symbols that
691 # are considered special in some way. This is currently used by the
692 # MIPS backend to make sure compressed code symbols have the ISA bit
693 # set. This in turn is needed for symbol values seen in GDB to match
694 # the values used at the runtime by the program itself, for function
695 # and label references.
696 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
697 # Adjust the address retrieved from a DWARF-2 record other than a line
698 # entry in a backend-specific way. Normally this hook is supposed to
699 # return the address passed unchanged, however if that is incorrect for
700 # any reason, then this hook can be used to fix the address up in the
701 # required manner. This is currently used by the MIPS backend to make
702 # sure addresses in FDE, range records, etc. referring to compressed
703 # code have the ISA bit set, matching line information and the symbol
705 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
706 # Adjust the address updated by a line entry in a backend-specific way.
707 # Normally this hook is supposed to return the address passed unchanged,
708 # however in the case of inconsistencies in these records, this hook can
709 # be used to fix them up in the required manner. This is currently used
710 # by the MIPS backend to make sure all line addresses in compressed code
711 # are presented with the ISA bit set, which is not always the case. This
712 # in turn ensures breakpoint addresses are correctly matched against the
714 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
715 v;int;cannot_step_breakpoint;;;0;0;;0
716 # See comment in target.h about continuable, steppable and
717 # non-steppable watchpoints.
718 v;int;have_nonsteppable_watchpoint;;;0;0;;0
719 F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
720 M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
721 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
722 # FS are passed from the generic execute_cfa_program function.
723 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
725 # Return the appropriate type_flags for the supplied address class.
726 # This function should return true if the address class was recognized and
727 # type_flags was set, false otherwise.
728 M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
729 # Is a register in a group
730 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
731 # Fetch the pointer to the ith function argument.
732 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
734 # Iterate over all supported register notes in a core file. For each
735 # supported register note section, the iterator must call CB and pass
736 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
737 # the supported register note sections based on the current register
738 # values. Otherwise it should enumerate all supported register note
740 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
742 # Create core file notes
743 M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
745 # Find core file memory regions
746 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
748 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
749 # core file into buffer READBUF with length LEN. Return the number of bytes read
750 # (zero indicates failure).
751 # failed, otherwise, return the red length of READBUF.
752 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
754 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
755 # libraries list from core file into buffer READBUF with length LEN.
756 # Return the number of bytes read (zero indicates failure).
757 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
759 # How the core target converts a PTID from a core file to a string.
760 M;std::string;core_pid_to_str;ptid_t ptid;ptid
762 # How the core target extracts the name of a thread from a core file.
763 M;const char *;core_thread_name;struct thread_info *thr;thr
765 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
766 # from core file into buffer READBUF with length LEN. Return the number
767 # of bytes read (zero indicates EOF, a negative value indicates failure).
768 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
770 # BFD target to use when generating a core file.
771 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
773 # If the elements of C++ vtables are in-place function descriptors rather
774 # than normal function pointers (which may point to code or a descriptor),
776 v;int;vtable_function_descriptors;;;0;0;;0
778 # Set if the least significant bit of the delta is used instead of the least
779 # significant bit of the pfn for pointers to virtual member functions.
780 v;int;vbit_in_delta;;;0;0;;0
782 # Advance PC to next instruction in order to skip a permanent breakpoint.
783 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
785 # The maximum length of an instruction on this architecture in bytes.
786 V;ULONGEST;max_insn_length;;;0;0
788 # Copy the instruction at FROM to TO, and make any adjustments
789 # necessary to single-step it at that address.
791 # REGS holds the state the thread's registers will have before
792 # executing the copied instruction; the PC in REGS will refer to FROM,
793 # not the copy at TO. The caller should update it to point at TO later.
795 # Return a pointer to data of the architecture's choice to be passed
796 # to gdbarch_displaced_step_fixup.
798 # For a general explanation of displaced stepping and how GDB uses it,
799 # see the comments in infrun.c.
801 # The TO area is only guaranteed to have space for
802 # gdbarch_max_insn_length (arch) bytes, so this function must not
803 # write more bytes than that to that area.
805 # If you do not provide this function, GDB assumes that the
806 # architecture does not support displaced stepping.
808 # If the instruction cannot execute out of line, return NULL. The
809 # core falls back to stepping past the instruction in-line instead in
811 M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
813 # Return true if GDB should use hardware single-stepping to execute a displaced
814 # step instruction. If false, GDB will simply restart execution at the
815 # displaced instruction location, and it is up to the target to ensure GDB will
816 # receive control again (e.g. by placing a software breakpoint instruction into
817 # the displaced instruction buffer).
819 # The default implementation returns false on all targets that provide a
820 # gdbarch_software_single_step routine, and true otherwise.
821 m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
823 # Fix up the state resulting from successfully single-stepping a
824 # displaced instruction, to give the result we would have gotten from
825 # stepping the instruction in its original location.
827 # REGS is the register state resulting from single-stepping the
828 # displaced instruction.
830 # CLOSURE is the result from the matching call to
831 # gdbarch_displaced_step_copy_insn.
833 # If you provide gdbarch_displaced_step_copy_insn.but not this
834 # function, then GDB assumes that no fixup is needed after
835 # single-stepping the instruction.
837 # For a general explanation of displaced stepping and how GDB uses it,
838 # see the comments in infrun.c.
839 M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
841 # Prepare THREAD for it to displaced step the instruction at its current PC.
843 # Throw an exception if any unexpected error happens.
844 M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread, CORE_ADDR &displaced_pc;thread, displaced_pc
846 # Clean up after a displaced step of THREAD.
847 m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
849 # Return the closure associated to the displaced step buffer that is at ADDR.
850 F;const displaced_step_copy_insn_closure *;displaced_step_copy_insn_closure_by_addr;inferior *inf, CORE_ADDR addr;inf, addr
852 # PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
853 # contents of all displaced step buffers in the child's address space.
854 f;void;displaced_step_restore_all_in_ptid;inferior *parent_inf, ptid_t child_ptid;parent_inf, child_ptid
856 # Relocate an instruction to execute at a different address. OLDLOC
857 # is the address in the inferior memory where the instruction to
858 # relocate is currently at. On input, TO points to the destination
859 # where we want the instruction to be copied (and possibly adjusted)
860 # to. On output, it points to one past the end of the resulting
861 # instruction(s). The effect of executing the instruction at TO shall
862 # be the same as if executing it at FROM. For example, call
863 # instructions that implicitly push the return address on the stack
864 # should be adjusted to return to the instruction after OLDLOC;
865 # relative branches, and other PC-relative instructions need the
866 # offset adjusted; etc.
867 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
869 # Refresh overlay mapped state for section OSECT.
870 F;void;overlay_update;struct obj_section *osect;osect
872 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
874 # Set if the address in N_SO or N_FUN stabs may be zero.
875 v;int;sofun_address_maybe_missing;;;0;0;;0
877 # Parse the instruction at ADDR storing in the record execution log
878 # the registers REGCACHE and memory ranges that will be affected when
879 # the instruction executes, along with their current values.
880 # Return -1 if something goes wrong, 0 otherwise.
881 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
883 # Save process state after a signal.
884 # Return -1 if something goes wrong, 0 otherwise.
885 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
887 # Signal translation: translate inferior's signal (target's) number
888 # into GDB's representation. The implementation of this method must
889 # be host independent. IOW, don't rely on symbols of the NAT_FILE
890 # header (the nm-*.h files), the host <signal.h> header, or similar
891 # headers. This is mainly used when cross-debugging core files ---
892 # "Live" targets hide the translation behind the target interface
893 # (target_wait, target_resume, etc.).
894 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
896 # Signal translation: translate the GDB's internal signal number into
897 # the inferior's signal (target's) representation. The implementation
898 # of this method must be host independent. IOW, don't rely on symbols
899 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
900 # header, or similar headers.
901 # Return the target signal number if found, or -1 if the GDB internal
902 # signal number is invalid.
903 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
905 # Extra signal info inspection.
907 # Return a type suitable to inspect extra signal information.
908 M;struct type *;get_siginfo_type;void;
910 # Record architecture-specific information from the symbol table.
911 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
913 # Function for the 'catch syscall' feature.
915 # Get architecture-specific system calls information from registers.
916 M;LONGEST;get_syscall_number;thread_info *thread;thread
918 # The filename of the XML syscall for this architecture.
919 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
921 # Information about system calls from this architecture
922 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
924 # SystemTap related fields and functions.
926 # A NULL-terminated array of prefixes used to mark an integer constant
927 # on the architecture's assembly.
928 # For example, on x86 integer constants are written as:
930 # \$10 ;; integer constant 10
932 # in this case, this prefix would be the character \`\$\'.
933 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
935 # A NULL-terminated array of suffixes used to mark an integer constant
936 # on the architecture's assembly.
937 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
939 # A NULL-terminated array of prefixes used to mark a register name on
940 # the architecture's assembly.
941 # For example, on x86 the register name is written as:
943 # \%eax ;; register eax
945 # in this case, this prefix would be the character \`\%\'.
946 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
948 # A NULL-terminated array of suffixes used to mark a register name on
949 # the architecture's assembly.
950 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
952 # A NULL-terminated array of prefixes used to mark a register
953 # indirection on the architecture's assembly.
954 # For example, on x86 the register indirection is written as:
956 # \(\%eax\) ;; indirecting eax
958 # in this case, this prefix would be the charater \`\(\'.
960 # Please note that we use the indirection prefix also for register
961 # displacement, e.g., \`4\(\%eax\)\' on x86.
962 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
964 # A NULL-terminated array of suffixes used to mark a register
965 # indirection on the architecture's assembly.
966 # For example, on x86 the register indirection is written as:
968 # \(\%eax\) ;; indirecting eax
970 # in this case, this prefix would be the charater \`\)\'.
972 # Please note that we use the indirection suffix also for register
973 # displacement, e.g., \`4\(\%eax\)\' on x86.
974 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
976 # Prefix(es) used to name a register using GDB's nomenclature.
978 # For example, on PPC a register is represented by a number in the assembly
979 # language (e.g., \`10\' is the 10th general-purpose register). However,
980 # inside GDB this same register has an \`r\' appended to its name, so the 10th
981 # register would be represented as \`r10\' internally.
982 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
984 # Suffix used to name a register using GDB's nomenclature.
985 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
987 # Check if S is a single operand.
989 # Single operands can be:
990 # \- Literal integers, e.g. \`\$10\' on x86
991 # \- Register access, e.g. \`\%eax\' on x86
992 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
993 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
995 # This function should check for these patterns on the string
996 # and return 1 if some were found, or zero otherwise. Please try to match
997 # as much info as you can from the string, i.e., if you have to match
998 # something like \`\(\%\', do not match just the \`\(\'.
999 M;int;stap_is_single_operand;const char *s;s
1001 # Function used to handle a "special case" in the parser.
1003 # A "special case" is considered to be an unknown token, i.e., a token
1004 # that the parser does not know how to parse. A good example of special
1005 # case would be ARM's register displacement syntax:
1007 # [R0, #4] ;; displacing R0 by 4
1009 # Since the parser assumes that a register displacement is of the form:
1011 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1013 # it means that it will not be able to recognize and parse this odd syntax.
1014 # Therefore, we should add a special case function that will handle this token.
1016 # This function should generate the proper expression form of the expression
1017 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1018 # and so on). It should also return 1 if the parsing was successful, or zero
1019 # if the token was not recognized as a special token (in this case, returning
1020 # zero means that the special parser is deferring the parsing to the generic
1021 # parser), and should advance the buffer pointer (p->arg).
1022 M;expr::operation_up;stap_parse_special_token;struct stap_parse_info *p;p
1024 # Perform arch-dependent adjustments to a register name.
1026 # In very specific situations, it may be necessary for the register
1027 # name present in a SystemTap probe's argument to be handled in a
1028 # special way. For example, on i386, GCC may over-optimize the
1029 # register allocation and use smaller registers than necessary. In
1030 # such cases, the client that is reading and evaluating the SystemTap
1031 # probe (ourselves) will need to actually fetch values from the wider
1032 # version of the register in question.
1034 # To illustrate the example, consider the following probe argument
1039 # This argument says that its value can be found at the %ax register,
1040 # which is a 16-bit register. However, the argument's prefix says
1041 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1042 # this case, GDB should actually fetch the probe's value from register
1043 # %eax, not %ax. In this scenario, this function would actually
1044 # replace the register name from %ax to %eax.
1046 # The rationale for this can be found at PR breakpoints/24541.
1047 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \®name, int regnum;p, regname, regnum
1049 # DTrace related functions.
1051 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1052 # NARG must be >= 0.
1053 M;expr::operation_up;dtrace_parse_probe_argument;int narg;narg
1055 # True if the given ADDR does not contain the instruction sequence
1056 # corresponding to a disabled DTrace is-enabled probe.
1057 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1059 # Enable a DTrace is-enabled probe at ADDR.
1060 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1062 # Disable a DTrace is-enabled probe at ADDR.
1063 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1065 # True if the list of shared libraries is one and only for all
1066 # processes, as opposed to a list of shared libraries per inferior.
1067 # This usually means that all processes, although may or may not share
1068 # an address space, will see the same set of symbols at the same
1070 v;int;has_global_solist;;;0;0;;0
1072 # On some targets, even though each inferior has its own private
1073 # address space, the debug interface takes care of making breakpoints
1074 # visible to all address spaces automatically. For such cases,
1075 # this property should be set to true.
1076 v;int;has_global_breakpoints;;;0;0;;0
1078 # True if inferiors share an address space (e.g., uClinux).
1079 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1081 # True if a fast tracepoint can be set at an address.
1082 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1084 # Guess register state based on tracepoint location. Used for tracepoints
1085 # where no registers have been collected, but there's only one location,
1086 # allowing us to guess the PC value, and perhaps some other registers.
1087 # On entry, regcache has all registers marked as unavailable.
1088 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1090 # Return the "auto" target charset.
1091 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1092 # Return the "auto" target wide charset.
1093 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1095 # If non-empty, this is a file extension that will be opened in place
1096 # of the file extension reported by the shared library list.
1098 # This is most useful for toolchains that use a post-linker tool,
1099 # where the names of the files run on the target differ in extension
1100 # compared to the names of the files GDB should load for debug info.
1101 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1103 # If true, the target OS has DOS-based file system semantics. That
1104 # is, absolute paths include a drive name, and the backslash is
1105 # considered a directory separator.
1106 v;int;has_dos_based_file_system;;;0;0;;0
1108 # Generate bytecodes to collect the return address in a frame.
1109 # Since the bytecodes run on the target, possibly with GDB not even
1110 # connected, the full unwinding machinery is not available, and
1111 # typically this function will issue bytecodes for one or more likely
1112 # places that the return address may be found.
1113 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1115 # Implement the "info proc" command.
1116 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1118 # Implement the "info proc" command for core files. Noe that there
1119 # are two "info_proc"-like methods on gdbarch -- one for core files,
1120 # one for live targets.
1121 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1123 # Iterate over all objfiles in the order that makes the most sense
1124 # for the architecture to make global symbol searches.
1126 # CB is a callback function where OBJFILE is the objfile to be searched,
1127 # and CB_DATA a pointer to user-defined data (the same data that is passed
1128 # when calling this gdbarch method). The iteration stops if this function
1131 # CB_DATA is a pointer to some user-defined data to be passed to
1134 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1135 # inspected when the symbol search was requested.
1136 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1138 # Ravenscar arch-dependent ops.
1139 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1141 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1142 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1144 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1145 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1147 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1148 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1150 # Return true if there's a program/permanent breakpoint planted in
1151 # memory at ADDRESS, return false otherwise.
1152 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1154 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1155 # Return 0 if *READPTR is already at the end of the buffer.
1156 # Return -1 if there is insufficient buffer for a whole entry.
1157 # Return 1 if an entry was read into *TYPEP and *VALP.
1158 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1160 # Print the description of a single auxv entry described by TYPE and VAL
1162 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1164 # Find the address range of the current inferior's vsyscall/vDSO, and
1165 # write it to *RANGE. If the vsyscall's length can't be determined, a
1166 # range with zero length is returned. Returns true if the vsyscall is
1167 # found, false otherwise.
1168 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1170 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1171 # PROT has GDB_MMAP_PROT_* bitmask format.
1172 # Throw an error if it is not possible. Returned address is always valid.
1173 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1175 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1176 # Print a warning if it is not possible.
1177 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1179 # Return string (caller has to use xfree for it) with options for GCC
1180 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1181 # These options are put before CU's DW_AT_producer compilation options so that
1182 # they can override it.
1183 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1185 # Return a regular expression that matches names used by this
1186 # architecture in GNU configury triplets. The result is statically
1187 # allocated and must not be freed. The default implementation simply
1188 # returns the BFD architecture name, which is correct in nearly every
1190 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1192 # Return the size in 8-bit bytes of an addressable memory unit on this
1193 # architecture. This corresponds to the number of 8-bit bytes associated to
1194 # each address in memory.
1195 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1197 # Functions for allowing a target to modify its disassembler options.
1198 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1199 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1200 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1202 # Type alignment override method. Return the architecture specific
1203 # alignment required for TYPE. If there is no special handling
1204 # required for TYPE then return the value 0, GDB will then apply the
1205 # default rules as laid out in gdbtypes.c:type_align.
1206 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1208 # Return a string containing any flags for the given PC in the given FRAME.
1209 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1211 # Read core file mappings
1212 m;void;read_core_file_mappings;struct bfd *cbfd, gdb::function_view<void (ULONGEST count)> pre_loop_cb, gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1221 function_list | while do_read
1224 ${class} ${returntype:-} ${function} (${formal:-})
1228 eval echo "\" ${r}=\${${r}}\""
1230 if class_is_predicate_p && fallback_default_p
1232 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1236 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1238 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1242 if class_is_multiarch_p
1244 if class_is_predicate_p ; then :
1245 elif test "x${predefault}" = "x"
1247 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1261 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1264 /* Dynamic architecture support for GDB, the GNU debugger.
1266 Copyright (C) 1998-2021 Free Software Foundation, Inc.
1268 This file is part of GDB.
1270 This program is free software; you can redistribute it and/or modify
1271 it under the terms of the GNU General Public License as published by
1272 the Free Software Foundation; either version 3 of the License, or
1273 (at your option) any later version.
1275 This program is distributed in the hope that it will be useful,
1276 but WITHOUT ANY WARRANTY; without even the implied warranty of
1277 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1278 GNU General Public License for more details.
1280 You should have received a copy of the GNU General Public License
1281 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1283 /* This file was created with the aid of \`\`gdbarch.sh''. */
1292 exec > new-gdbarch.h
1300 #include "dis-asm.h"
1301 #include "gdb_obstack.h"
1304 #include "displaced-stepping.h"
1311 struct minimal_symbol;
1315 struct disassemble_info;
1318 struct bp_target_info;
1324 struct stap_parse_info;
1325 struct expr_builder;
1326 struct ravenscar_arch_ops;
1328 struct syscalls_info;
1333 #include "regcache.h"
1335 /* The architecture associated with the inferior through the
1336 connection to the target.
1338 The architecture vector provides some information that is really a
1339 property of the inferior, accessed through a particular target:
1340 ptrace operations; the layout of certain RSP packets; the solib_ops
1341 vector; etc. To differentiate architecture accesses to
1342 per-inferior/target properties from
1343 per-thread/per-frame/per-objfile properties, accesses to
1344 per-inferior/target properties should be made through this
1347 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1348 extern struct gdbarch *target_gdbarch (void);
1350 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1353 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1354 (struct objfile *objfile, void *cb_data);
1356 /* Callback type for regset section iterators. The callback usually
1357 invokes the REGSET's supply or collect method, to which it must
1358 pass a buffer - for collects this buffer will need to be created using
1359 COLLECT_SIZE, for supply the existing buffer being read from should
1360 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1361 is used for diagnostic messages. CB_DATA should have been passed
1362 unchanged through the iterator. */
1364 typedef void (iterate_over_regset_sections_cb)
1365 (const char *sect_name, int supply_size, int collect_size,
1366 const struct regset *regset, const char *human_name, void *cb_data);
1368 /* For a function call, does the function return a value using a
1369 normal value return or a structure return - passing a hidden
1370 argument pointing to storage. For the latter, there are two
1371 cases: language-mandated structure return and target ABI
1372 structure return. */
1374 enum function_call_return_method
1376 /* Standard value return. */
1377 return_method_normal = 0,
1379 /* Language ABI structure return. This is handled
1380 by passing the return location as the first parameter to
1381 the function, even preceding "this". */
1382 return_method_hidden_param,
1384 /* Target ABI struct return. This is target-specific; for instance,
1385 on ia64 the first argument is passed in out0 but the hidden
1386 structure return pointer would normally be passed in r8. */
1387 return_method_struct,
1390 enum class memtag_type
1392 /* Logical tag, the tag that is stored in unused bits of a pointer to a
1396 /* Allocation tag, the tag that is associated with every granule of memory in
1397 the physical address space. Allocation tags are used to validate memory
1398 accesses via pointers containing logical tags. */
1404 # function typedef's
1407 printf "/* The following are pre-initialized by GDBARCH. */\n"
1408 function_list | while do_read
1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1414 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1418 # function typedef's
1421 printf "/* The following are initialized by the target dependent code. */\n"
1422 function_list | while do_read
1424 if [ -n "${comment}" ]
1426 echo "${comment}" | sed \
1432 if class_is_predicate_p
1435 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1437 if class_is_variable_p
1440 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1441 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1443 if class_is_function_p
1446 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1448 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1449 elif class_is_multiarch_p
1451 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1453 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1455 if [ "x${formal}" = "xvoid" ]
1457 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1459 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1461 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1468 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1471 /* Mechanism for co-ordinating the selection of a specific
1474 GDB targets (*-tdep.c) can register an interest in a specific
1475 architecture. Other GDB components can register a need to maintain
1476 per-architecture data.
1478 The mechanisms below ensures that there is only a loose connection
1479 between the set-architecture command and the various GDB
1480 components. Each component can independently register their need
1481 to maintain architecture specific data with gdbarch.
1485 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1488 The more traditional mega-struct containing architecture specific
1489 data for all the various GDB components was also considered. Since
1490 GDB is built from a variable number of (fairly independent)
1491 components it was determined that the global aproach was not
1495 /* Register a new architectural family with GDB.
1497 Register support for the specified ARCHITECTURE with GDB. When
1498 gdbarch determines that the specified architecture has been
1499 selected, the corresponding INIT function is called.
1503 The INIT function takes two parameters: INFO which contains the
1504 information available to gdbarch about the (possibly new)
1505 architecture; ARCHES which is a list of the previously created
1506 \`\`struct gdbarch'' for this architecture.
1508 The INFO parameter is, as far as possible, be pre-initialized with
1509 information obtained from INFO.ABFD or the global defaults.
1511 The ARCHES parameter is a linked list (sorted most recently used)
1512 of all the previously created architures for this architecture
1513 family. The (possibly NULL) ARCHES->gdbarch can used to access
1514 values from the previously selected architecture for this
1515 architecture family.
1517 The INIT function shall return any of: NULL - indicating that it
1518 doesn't recognize the selected architecture; an existing \`\`struct
1519 gdbarch'' from the ARCHES list - indicating that the new
1520 architecture is just a synonym for an earlier architecture (see
1521 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1522 - that describes the selected architecture (see gdbarch_alloc()).
1524 The DUMP_TDEP function shall print out all target specific values.
1525 Care should be taken to ensure that the function works in both the
1526 multi-arch and non- multi-arch cases. */
1530 struct gdbarch *gdbarch;
1531 struct gdbarch_list *next;
1536 /* Use default: NULL (ZERO). */
1537 const struct bfd_arch_info *bfd_arch_info;
1539 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1540 enum bfd_endian byte_order;
1542 enum bfd_endian byte_order_for_code;
1544 /* Use default: NULL (ZERO). */
1547 /* Use default: NULL (ZERO). */
1550 /* Architecture-specific information. The generic form for targets
1551 that have extra requirements. */
1552 struct gdbarch_tdep_info *tdep_info;
1554 /* Architecture-specific target description data. Numerous targets
1555 need only this, so give them an easy way to hold it. */
1556 struct tdesc_arch_data *tdesc_data;
1558 /* SPU file system ID. This is a single integer, so using the
1559 generic form would only complicate code. Other targets may
1560 reuse this member if suitable. */
1564 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1565 enum gdb_osabi osabi;
1567 /* Use default: NULL (ZERO). */
1568 const struct target_desc *target_desc;
1571 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1572 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1574 /* DEPRECATED - use gdbarch_register() */
1575 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1577 extern void gdbarch_register (enum bfd_architecture architecture,
1578 gdbarch_init_ftype *,
1579 gdbarch_dump_tdep_ftype *);
1582 /* Return a freshly allocated, NULL terminated, array of the valid
1583 architecture names. Since architectures are registered during the
1584 _initialize phase this function only returns useful information
1585 once initialization has been completed. */
1587 extern const char **gdbarch_printable_names (void);
1590 /* Helper function. Search the list of ARCHES for a GDBARCH that
1591 matches the information provided by INFO. */
1593 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1596 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1597 basic initialization using values obtained from the INFO and TDEP
1598 parameters. set_gdbarch_*() functions are called to complete the
1599 initialization of the object. */
1601 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1604 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1605 It is assumed that the caller freeds the \`\`struct
1608 extern void gdbarch_free (struct gdbarch *);
1610 /* Get the obstack owned by ARCH. */
1612 extern obstack *gdbarch_obstack (gdbarch *arch);
1614 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1615 obstack. The memory is freed when the corresponding architecture
1618 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1619 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1621 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1622 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1624 /* Duplicate STRING, returning an equivalent string that's allocated on the
1625 obstack associated with GDBARCH. The string is freed when the corresponding
1626 architecture is also freed. */
1628 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1630 /* Helper function. Force an update of the current architecture.
1632 The actual architecture selected is determined by INFO, \`\`(gdb) set
1633 architecture'' et.al., the existing architecture and BFD's default
1634 architecture. INFO should be initialized to zero and then selected
1635 fields should be updated.
1637 Returns non-zero if the update succeeds. */
1639 extern int gdbarch_update_p (struct gdbarch_info info);
1642 /* Helper function. Find an architecture matching info.
1644 INFO should be initialized using gdbarch_info_init, relevant fields
1645 set, and then finished using gdbarch_info_fill.
1647 Returns the corresponding architecture, or NULL if no matching
1648 architecture was found. */
1650 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1653 /* Helper function. Set the target gdbarch to "gdbarch". */
1655 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1658 /* Register per-architecture data-pointer.
1660 Reserve space for a per-architecture data-pointer. An identifier
1661 for the reserved data-pointer is returned. That identifer should
1662 be saved in a local static variable.
1664 Memory for the per-architecture data shall be allocated using
1665 gdbarch_obstack_zalloc. That memory will be deleted when the
1666 corresponding architecture object is deleted.
1668 When a previously created architecture is re-selected, the
1669 per-architecture data-pointer for that previous architecture is
1670 restored. INIT() is not re-called.
1672 Multiple registrarants for any architecture are allowed (and
1673 strongly encouraged). */
1675 struct gdbarch_data;
1677 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1678 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1679 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1680 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1682 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1685 /* Set the dynamic target-system-dependent parameters (architecture,
1686 byte-order, ...) using information found in the BFD. */
1688 extern void set_gdbarch_from_file (bfd *);
1691 /* Initialize the current architecture to the "first" one we find on
1694 extern void initialize_current_architecture (void);
1696 /* gdbarch trace variable */
1697 extern unsigned int gdbarch_debug;
1699 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1701 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1704 gdbarch_num_cooked_regs (gdbarch *arch)
1706 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1712 ../move-if-change new-gdbarch.h gdbarch.h
1720 exec > new-gdbarch.c
1725 #include "arch-utils.h"
1728 #include "inferior.h"
1731 #include "floatformat.h"
1732 #include "reggroups.h"
1734 #include "gdb_obstack.h"
1735 #include "observable.h"
1736 #include "regcache.h"
1737 #include "objfiles.h"
1739 #include "frame-unwind.h"
1740 #include "dummy-frame.h"
1742 /* Static function declarations */
1744 static void alloc_gdbarch_data (struct gdbarch *);
1746 /* Non-zero if we want to trace architecture code. */
1748 #ifndef GDBARCH_DEBUG
1749 #define GDBARCH_DEBUG 0
1751 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1753 show_gdbarch_debug (struct ui_file *file, int from_tty,
1754 struct cmd_list_element *c, const char *value)
1756 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1760 pformat (const struct floatformat **format)
1765 /* Just print out one of them - this is only for diagnostics. */
1766 return format[0]->name;
1770 pstring (const char *string)
1778 pstring_ptr (char **string)
1780 if (string == NULL || *string == NULL)
1785 /* Helper function to print a list of strings, represented as "const
1786 char *const *". The list is printed comma-separated. */
1789 pstring_list (const char *const *list)
1791 static char ret[100];
1792 const char *const *p;
1799 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1801 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1807 gdb_assert (offset - 2 < sizeof (ret));
1808 ret[offset - 2] = '\0';
1816 # gdbarch open the gdbarch object
1818 printf "/* Maintain the struct gdbarch object. */\n"
1820 printf "struct gdbarch\n"
1822 printf " /* Has this architecture been fully initialized? */\n"
1823 printf " int initialized_p;\n"
1825 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1826 printf " struct obstack *obstack;\n"
1828 printf " /* basic architectural information. */\n"
1829 function_list | while do_read
1833 printf " %s %s;\n" "$returntype" "$function"
1837 printf " /* target specific vector. */\n"
1838 printf " struct gdbarch_tdep *tdep;\n"
1839 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1841 printf " /* per-architecture data-pointers. */\n"
1842 printf " unsigned nr_data;\n"
1843 printf " void **data;\n"
1846 /* Multi-arch values.
1848 When extending this structure you must:
1850 Add the field below.
1852 Declare set/get functions and define the corresponding
1855 gdbarch_alloc(): If zero/NULL is not a suitable default,
1856 initialize the new field.
1858 verify_gdbarch(): Confirm that the target updated the field
1861 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1864 get_gdbarch(): Implement the set/get functions (probably using
1865 the macro's as shortcuts).
1870 function_list | while do_read
1872 if class_is_variable_p
1874 printf " %s %s;\n" "$returntype" "$function"
1875 elif class_is_function_p
1877 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1882 # Create a new gdbarch struct
1885 /* Create a new \`\`struct gdbarch'' based on information provided by
1886 \`\`struct gdbarch_info''. */
1891 gdbarch_alloc (const struct gdbarch_info *info,
1892 struct gdbarch_tdep *tdep)
1894 struct gdbarch *gdbarch;
1896 /* Create an obstack for allocating all the per-architecture memory,
1897 then use that to allocate the architecture vector. */
1898 struct obstack *obstack = XNEW (struct obstack);
1899 obstack_init (obstack);
1900 gdbarch = XOBNEW (obstack, struct gdbarch);
1901 memset (gdbarch, 0, sizeof (*gdbarch));
1902 gdbarch->obstack = obstack;
1904 alloc_gdbarch_data (gdbarch);
1906 gdbarch->tdep = tdep;
1909 function_list | while do_read
1913 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1917 printf " /* Force the explicit initialization of these. */\n"
1918 function_list | while do_read
1920 if class_is_function_p || class_is_variable_p
1922 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1924 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1929 /* gdbarch_alloc() */
1935 # Free a gdbarch struct.
1940 obstack *gdbarch_obstack (gdbarch *arch)
1942 return arch->obstack;
1945 /* See gdbarch.h. */
1948 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1950 return obstack_strdup (arch->obstack, string);
1954 /* Free a gdbarch struct. This should never happen in normal
1955 operation --- once you've created a gdbarch, you keep it around.
1956 However, if an architecture's init function encounters an error
1957 building the structure, it may need to clean up a partially
1958 constructed gdbarch. */
1961 gdbarch_free (struct gdbarch *arch)
1963 struct obstack *obstack;
1965 gdb_assert (arch != NULL);
1966 gdb_assert (!arch->initialized_p);
1967 obstack = arch->obstack;
1968 obstack_free (obstack, 0); /* Includes the ARCH. */
1973 # verify a new architecture
1977 /* Ensure that all values in a GDBARCH are reasonable. */
1980 verify_gdbarch (struct gdbarch *gdbarch)
1985 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1986 log.puts ("\n\tbyte-order");
1987 if (gdbarch->bfd_arch_info == NULL)
1988 log.puts ("\n\tbfd_arch_info");
1989 /* Check those that need to be defined for the given multi-arch level. */
1991 function_list | while do_read
1993 if class_is_function_p || class_is_variable_p
1995 if [ "x${invalid_p}" = "x0" ]
1997 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1998 elif class_is_predicate_p
2000 printf " /* Skip verify of %s, has predicate. */\n" "$function"
2001 # FIXME: See do_read for potential simplification
2002 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
2004 printf " if (%s)\n" "$invalid_p"
2005 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2006 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
2008 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2009 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2010 elif [ -n "${postdefault}" ]
2012 printf " if (gdbarch->%s == 0)\n" "$function"
2013 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2014 elif [ -n "${invalid_p}" ]
2016 printf " if (%s)\n" "$invalid_p"
2017 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
2018 elif [ -n "${predefault}" ]
2020 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2021 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
2027 internal_error (__FILE__, __LINE__,
2028 _("verify_gdbarch: the following are invalid ...%s"),
2033 # dump the structure
2037 /* Print out the details of the current architecture. */
2040 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2042 const char *gdb_nm_file = "<not-defined>";
2044 #if defined (GDB_NM_FILE)
2045 gdb_nm_file = GDB_NM_FILE;
2047 fprintf_unfiltered (file,
2048 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2051 function_list | sort '-t;' -k 3 | while do_read
2053 # First the predicate
2054 if class_is_predicate_p
2056 printf " fprintf_unfiltered (file,\n"
2057 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2058 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2060 # Print the corresponding value.
2061 if class_is_function_p
2063 printf " fprintf_unfiltered (file,\n"
2064 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2065 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2068 case "${print}:${returntype}" in
2071 print="core_addr_to_string_nz (gdbarch->${function})"
2075 print="plongest (gdbarch->${function})"
2081 printf " fprintf_unfiltered (file,\n"
2082 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2083 printf " %s);\n" "$print"
2087 if (gdbarch->dump_tdep != NULL)
2088 gdbarch->dump_tdep (gdbarch, file);
2096 struct gdbarch_tdep *
2097 gdbarch_tdep (struct gdbarch *gdbarch)
2099 if (gdbarch_debug >= 2)
2100 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2101 return gdbarch->tdep;
2105 function_list | while do_read
2107 if class_is_predicate_p
2111 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2113 printf " gdb_assert (gdbarch != NULL);\n"
2114 printf " return %s;\n" "$predicate"
2117 if class_is_function_p
2120 printf "%s\n" "$returntype"
2121 if [ "x${formal}" = "xvoid" ]
2123 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2125 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2128 printf " gdb_assert (gdbarch != NULL);\n"
2129 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2130 if class_is_predicate_p && test -n "${predefault}"
2132 # Allow a call to a function with a predicate.
2133 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2135 printf " if (gdbarch_debug >= 2)\n"
2136 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2137 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2139 if class_is_multiarch_p
2146 if class_is_multiarch_p
2148 params="gdbarch, ${actual}"
2153 if [ "x${returntype}" = "xvoid" ]
2155 printf " gdbarch->%s (%s);\n" "$function" "$params"
2157 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2162 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2163 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2165 printf " gdbarch->%s = %s;\n" "$function" "$function"
2167 elif class_is_variable_p
2170 printf "%s\n" "$returntype"
2171 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2173 printf " gdb_assert (gdbarch != NULL);\n"
2174 if [ "x${invalid_p}" = "x0" ]
2176 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2177 elif [ -n "${invalid_p}" ]
2179 printf " /* Check variable is valid. */\n"
2180 printf " gdb_assert (!(%s));\n" "$invalid_p"
2181 elif [ -n "${predefault}" ]
2183 printf " /* Check variable changed from pre-default. */\n"
2184 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2186 printf " if (gdbarch_debug >= 2)\n"
2187 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2188 printf " return gdbarch->%s;\n" "$function"
2192 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2193 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2195 printf " gdbarch->%s = %s;\n" "$function" "$function"
2197 elif class_is_info_p
2200 printf "%s\n" "$returntype"
2201 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2203 printf " gdb_assert (gdbarch != NULL);\n"
2204 printf " if (gdbarch_debug >= 2)\n"
2205 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2206 printf " return gdbarch->%s;\n" "$function"
2211 # All the trailing guff
2215 /* Keep a registry of per-architecture data-pointers required by GDB
2222 gdbarch_data_pre_init_ftype *pre_init;
2223 gdbarch_data_post_init_ftype *post_init;
2226 struct gdbarch_data_registration
2228 struct gdbarch_data *data;
2229 struct gdbarch_data_registration *next;
2232 struct gdbarch_data_registry
2235 struct gdbarch_data_registration *registrations;
2238 static struct gdbarch_data_registry gdbarch_data_registry =
2243 static struct gdbarch_data *
2244 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2245 gdbarch_data_post_init_ftype *post_init)
2247 struct gdbarch_data_registration **curr;
2249 /* Append the new registration. */
2250 for (curr = &gdbarch_data_registry.registrations;
2252 curr = &(*curr)->next);
2253 (*curr) = XNEW (struct gdbarch_data_registration);
2254 (*curr)->next = NULL;
2255 (*curr)->data = XNEW (struct gdbarch_data);
2256 (*curr)->data->index = gdbarch_data_registry.nr++;
2257 (*curr)->data->pre_init = pre_init;
2258 (*curr)->data->post_init = post_init;
2259 (*curr)->data->init_p = 1;
2260 return (*curr)->data;
2263 struct gdbarch_data *
2264 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2266 return gdbarch_data_register (pre_init, NULL);
2269 struct gdbarch_data *
2270 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2272 return gdbarch_data_register (NULL, post_init);
2275 /* Create/delete the gdbarch data vector. */
2278 alloc_gdbarch_data (struct gdbarch *gdbarch)
2280 gdb_assert (gdbarch->data == NULL);
2281 gdbarch->nr_data = gdbarch_data_registry.nr;
2282 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2285 /* Return the current value of the specified per-architecture
2289 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2291 gdb_assert (data->index < gdbarch->nr_data);
2292 if (gdbarch->data[data->index] == NULL)
2294 /* The data-pointer isn't initialized, call init() to get a
2296 if (data->pre_init != NULL)
2297 /* Mid architecture creation: pass just the obstack, and not
2298 the entire architecture, as that way it isn't possible for
2299 pre-init code to refer to undefined architecture
2301 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2302 else if (gdbarch->initialized_p
2303 && data->post_init != NULL)
2304 /* Post architecture creation: pass the entire architecture
2305 (as all fields are valid), but be careful to also detect
2306 recursive references. */
2308 gdb_assert (data->init_p);
2310 gdbarch->data[data->index] = data->post_init (gdbarch);
2314 internal_error (__FILE__, __LINE__,
2315 _("gdbarch post-init data field can only be used "
2316 "after gdbarch is fully initialised"));
2317 gdb_assert (gdbarch->data[data->index] != NULL);
2319 return gdbarch->data[data->index];
2323 /* Keep a registry of the architectures known by GDB. */
2325 struct gdbarch_registration
2327 enum bfd_architecture bfd_architecture;
2328 gdbarch_init_ftype *init;
2329 gdbarch_dump_tdep_ftype *dump_tdep;
2330 struct gdbarch_list *arches;
2331 struct gdbarch_registration *next;
2334 static struct gdbarch_registration *gdbarch_registry = NULL;
2337 append_name (const char ***buf, int *nr, const char *name)
2339 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2345 gdbarch_printable_names (void)
2347 /* Accumulate a list of names based on the registed list of
2350 const char **arches = NULL;
2351 struct gdbarch_registration *rego;
2353 for (rego = gdbarch_registry;
2357 const struct bfd_arch_info *ap;
2358 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2360 internal_error (__FILE__, __LINE__,
2361 _("gdbarch_architecture_names: multi-arch unknown"));
2364 append_name (&arches, &nr_arches, ap->printable_name);
2369 append_name (&arches, &nr_arches, NULL);
2375 gdbarch_register (enum bfd_architecture bfd_architecture,
2376 gdbarch_init_ftype *init,
2377 gdbarch_dump_tdep_ftype *dump_tdep)
2379 struct gdbarch_registration **curr;
2380 const struct bfd_arch_info *bfd_arch_info;
2382 /* Check that BFD recognizes this architecture */
2383 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2384 if (bfd_arch_info == NULL)
2386 internal_error (__FILE__, __LINE__,
2387 _("gdbarch: Attempt to register "
2388 "unknown architecture (%d)"),
2391 /* Check that we haven't seen this architecture before. */
2392 for (curr = &gdbarch_registry;
2394 curr = &(*curr)->next)
2396 if (bfd_architecture == (*curr)->bfd_architecture)
2397 internal_error (__FILE__, __LINE__,
2398 _("gdbarch: Duplicate registration "
2399 "of architecture (%s)"),
2400 bfd_arch_info->printable_name);
2404 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2405 bfd_arch_info->printable_name,
2406 host_address_to_string (init));
2408 (*curr) = XNEW (struct gdbarch_registration);
2409 (*curr)->bfd_architecture = bfd_architecture;
2410 (*curr)->init = init;
2411 (*curr)->dump_tdep = dump_tdep;
2412 (*curr)->arches = NULL;
2413 (*curr)->next = NULL;
2417 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2418 gdbarch_init_ftype *init)
2420 gdbarch_register (bfd_architecture, init, NULL);
2424 /* Look for an architecture using gdbarch_info. */
2426 struct gdbarch_list *
2427 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2428 const struct gdbarch_info *info)
2430 for (; arches != NULL; arches = arches->next)
2432 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2434 if (info->byte_order != arches->gdbarch->byte_order)
2436 if (info->osabi != arches->gdbarch->osabi)
2438 if (info->target_desc != arches->gdbarch->target_desc)
2446 /* Find an architecture that matches the specified INFO. Create a new
2447 architecture if needed. Return that new architecture. */
2450 gdbarch_find_by_info (struct gdbarch_info info)
2452 struct gdbarch *new_gdbarch;
2453 struct gdbarch_registration *rego;
2455 /* Fill in missing parts of the INFO struct using a number of
2456 sources: "set ..."; INFOabfd supplied; and the global
2458 gdbarch_info_fill (&info);
2460 /* Must have found some sort of architecture. */
2461 gdb_assert (info.bfd_arch_info != NULL);
2465 fprintf_unfiltered (gdb_stdlog,
2466 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2467 (info.bfd_arch_info != NULL
2468 ? info.bfd_arch_info->printable_name
2470 fprintf_unfiltered (gdb_stdlog,
2471 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2473 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2474 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2476 fprintf_unfiltered (gdb_stdlog,
2477 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2478 info.osabi, gdbarch_osabi_name (info.osabi));
2479 fprintf_unfiltered (gdb_stdlog,
2480 "gdbarch_find_by_info: info.abfd %s\n",
2481 host_address_to_string (info.abfd));
2482 fprintf_unfiltered (gdb_stdlog,
2483 "gdbarch_find_by_info: info.tdep_info %s\n",
2484 host_address_to_string (info.tdep_info));
2487 /* Find the tdep code that knows about this architecture. */
2488 for (rego = gdbarch_registry;
2491 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2496 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2497 "No matching architecture\n");
2501 /* Ask the tdep code for an architecture that matches "info". */
2502 new_gdbarch = rego->init (info, rego->arches);
2504 /* Did the tdep code like it? No. Reject the change and revert to
2505 the old architecture. */
2506 if (new_gdbarch == NULL)
2509 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2510 "Target rejected architecture\n");
2514 /* Is this a pre-existing architecture (as determined by already
2515 being initialized)? Move it to the front of the architecture
2516 list (keeping the list sorted Most Recently Used). */
2517 if (new_gdbarch->initialized_p)
2519 struct gdbarch_list **list;
2520 struct gdbarch_list *self;
2522 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2523 "Previous architecture %s (%s) selected\n",
2524 host_address_to_string (new_gdbarch),
2525 new_gdbarch->bfd_arch_info->printable_name);
2526 /* Find the existing arch in the list. */
2527 for (list = ®o->arches;
2528 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2529 list = &(*list)->next);
2530 /* It had better be in the list of architectures. */
2531 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2534 (*list) = self->next;
2535 /* Insert SELF at the front. */
2536 self->next = rego->arches;
2537 rego->arches = self;
2542 /* It's a new architecture. */
2544 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2545 "New architecture %s (%s) selected\n",
2546 host_address_to_string (new_gdbarch),
2547 new_gdbarch->bfd_arch_info->printable_name);
2549 /* Insert the new architecture into the front of the architecture
2550 list (keep the list sorted Most Recently Used). */
2552 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2553 self->next = rego->arches;
2554 self->gdbarch = new_gdbarch;
2555 rego->arches = self;
2558 /* Check that the newly installed architecture is valid. Plug in
2559 any post init values. */
2560 new_gdbarch->dump_tdep = rego->dump_tdep;
2561 verify_gdbarch (new_gdbarch);
2562 new_gdbarch->initialized_p = 1;
2565 gdbarch_dump (new_gdbarch, gdb_stdlog);
2570 /* Make the specified architecture current. */
2573 set_target_gdbarch (struct gdbarch *new_gdbarch)
2575 gdb_assert (new_gdbarch != NULL);
2576 gdb_assert (new_gdbarch->initialized_p);
2577 current_inferior ()->gdbarch = new_gdbarch;
2578 gdb::observers::architecture_changed.notify (new_gdbarch);
2579 registers_changed ();
2582 /* Return the current inferior's arch. */
2585 target_gdbarch (void)
2587 return current_inferior ()->gdbarch;
2590 void _initialize_gdbarch ();
2592 _initialize_gdbarch ()
2594 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2595 Set architecture debugging."), _("\\
2596 Show architecture debugging."), _("\\
2597 When non-zero, architecture debugging is enabled."),
2600 &setdebuglist, &showdebuglist);
2606 ../move-if-change new-gdbarch.c gdbarch.c