1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
40 #include "arch-utils.h"
43 #include "mips-tdep.h"
45 #include "reggroups.h"
46 #include "opcode/mips.h"
50 #include "sim-regno.h"
53 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
54 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
56 /* A useful bit in the CP0 status register (PS_REGNUM). */
57 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58 #define ST0_FR (1 << 26)
60 /* The sizes of floating point registers. */
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
69 static const char *mips_abi_string;
71 static const char *mips_abi_strings[] = {
82 struct frame_extra_info
84 mips_extra_func_info_t proc_desc;
88 /* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
92 static const char size_auto[] = "auto";
93 static const char size_32[] = "32";
94 static const char size_64[] = "64";
96 static const char *size_enums[] = {
103 /* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
120 static int mips_debug = 0;
122 /* MIPS specific per-architecture information */
125 /* from the elf header */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int mips_default_saved_regsize;
135 int mips_fp_register_double;
136 int mips_default_stack_argsize;
137 int gdb_target_is_mips64;
138 int default_mask_address_p;
141 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
142 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
144 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
146 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
148 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
150 /* Return the currently configured (or set) saved register size. */
152 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
154 static const char *mips_saved_regsize_string = size_auto;
156 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
158 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
159 functions to test, set, or clear bit 0 of addresses. */
162 is_mips16_addr (CORE_ADDR addr)
168 make_mips16_addr (CORE_ADDR addr)
174 unmake_mips16_addr (CORE_ADDR addr)
176 return ((addr) & ~1);
179 /* Return the contents of register REGNUM as a signed integer. */
182 read_signed_register (int regnum)
184 void *buf = alloca (DEPRECATED_REGISTER_RAW_SIZE (regnum));
185 deprecated_read_register_gen (regnum, buf);
186 return (extract_signed_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum)));
190 read_signed_register_pid (int regnum, ptid_t ptid)
195 if (ptid_equal (ptid, inferior_ptid))
196 return read_signed_register (regnum);
198 save_ptid = inferior_ptid;
200 inferior_ptid = ptid;
202 retval = read_signed_register (regnum);
204 inferior_ptid = save_ptid;
209 /* Return the MIPS ABI associated with GDBARCH. */
211 mips_abi (struct gdbarch *gdbarch)
213 return gdbarch_tdep (gdbarch)->mips_abi;
217 mips_saved_regsize (void)
219 if (mips_saved_regsize_string == size_auto)
220 return MIPS_DEFAULT_SAVED_REGSIZE;
221 else if (mips_saved_regsize_string == size_64)
223 else /* if (mips_saved_regsize_string == size_32) */
227 /* Functions for setting and testing a bit in a minimal symbol that
228 marks it as 16-bit function. The MSB of the minimal symbol's
229 "info" field is used for this purpose. This field is already
230 being used to store the symbol size, so the assumption is
231 that the symbol size cannot exceed 2^31.
233 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
234 i.e. refers to a 16-bit function, and sets a "special" bit in a
235 minimal symbol to mark it as a 16-bit function
237 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
238 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
239 the "info" field with the "special" bit masked out */
242 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
244 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
246 MSYMBOL_INFO (msym) = (char *)
247 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
248 SYMBOL_VALUE_ADDRESS (msym) |= 1;
253 msymbol_is_special (struct minimal_symbol *msym)
255 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
259 msymbol_size (struct minimal_symbol *msym)
261 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
264 /* XFER a value from the big/little/left end of the register.
265 Depending on the size of the value it might occupy the entire
266 register or just part of it. Make an allowance for this, aligning
267 things accordingly. */
270 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
271 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
274 bfd_byte reg[MAX_REGISTER_SIZE];
276 gdb_assert (reg_num >= NUM_REGS);
277 /* Need to transfer the left or right part of the register, based on
278 the targets byte order. */
282 reg_offset = DEPRECATED_REGISTER_RAW_SIZE (reg_num) - length;
284 case BFD_ENDIAN_LITTLE:
287 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
291 internal_error (__FILE__, __LINE__, "bad switch");
294 fprintf_unfiltered (gdb_stderr,
295 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
296 reg_num, reg_offset, buf_offset, length);
297 if (mips_debug && out != NULL)
300 fprintf_unfiltered (gdb_stdlog, "out ");
301 for (i = 0; i < length; i++)
302 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
305 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
307 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
308 if (mips_debug && in != NULL)
311 fprintf_unfiltered (gdb_stdlog, "in ");
312 for (i = 0; i < length; i++)
313 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
316 fprintf_unfiltered (gdb_stdlog, "\n");
319 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
320 compatiblity mode. A return value of 1 means that we have
321 physical 64-bit registers, but should treat them as 32-bit registers. */
324 mips2_fp_compat (void)
326 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
328 if (DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
332 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
333 in all the places we deal with FP registers. PR gdb/413. */
334 /* Otherwise check the FR bit in the status register - it controls
335 the FP compatiblity mode. If it is clear we are in compatibility
337 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
344 /* Indicate that the ABI makes use of double-precision registers
345 provided by the FPU (rather than combining pairs of registers to
346 form double-precision values). Do not use "TARGET_IS_MIPS64" to
347 determine if the ABI is using double-precision registers. See also
349 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
351 /* The amount of space reserved on the stack for registers. This is
352 different to MIPS_SAVED_REGSIZE as it determines the alignment of
353 data allocated after the registers have run out. */
355 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
357 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
359 static const char *mips_stack_argsize_string = size_auto;
362 mips_stack_argsize (void)
364 if (mips_stack_argsize_string == size_auto)
365 return MIPS_DEFAULT_STACK_ARGSIZE;
366 else if (mips_stack_argsize_string == size_64)
368 else /* if (mips_stack_argsize_string == size_32) */
372 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
374 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
376 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
378 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
379 struct frame_info *, int);
381 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
383 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
385 static int mips_set_processor_type (char *);
387 static void mips_show_processor_type_command (char *, int);
389 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
391 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
392 struct frame_info *next_frame,
395 static CORE_ADDR after_prologue (CORE_ADDR pc,
396 mips_extra_func_info_t proc_desc);
398 static struct type *mips_float_register_type (void);
399 static struct type *mips_double_register_type (void);
401 /* This value is the model of MIPS in use. It is derived from the value
402 of the PrID register. */
404 char *mips_processor_type;
406 char *tmp_mips_processor_type;
408 /* The list of available "set mips " and "show mips " commands */
410 static struct cmd_list_element *setmipscmdlist = NULL;
411 static struct cmd_list_element *showmipscmdlist = NULL;
413 /* A set of original names, to be used when restoring back to generic
414 registers from a specific set. */
415 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
417 /* Integer registers 0 thru 31 are handled explicitly by
418 mips_register_name(). Processor specific registers 32 and above
419 are listed in the sets of register names assigned to
420 mips_processor_reg_names. */
421 static char **mips_processor_reg_names = mips_generic_reg_names;
423 /* Return the name of the register corresponding to REGNO. */
425 mips_register_name (int regno)
427 /* GPR names for all ABIs other than n32/n64. */
428 static char *mips_gpr_names[] = {
429 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
430 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
431 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
432 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
435 /* GPR names for n32 and n64 ABIs. */
436 static char *mips_n32_n64_gpr_names[] = {
437 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
438 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
439 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
440 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
443 enum mips_abi abi = mips_abi (current_gdbarch);
445 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
446 don't make the raw register names visible. */
447 int rawnum = regno % NUM_REGS;
448 if (regno < NUM_REGS)
451 /* The MIPS integer registers are always mapped from 0 to 31. The
452 names of the registers (which reflects the conventions regarding
453 register use) vary depending on the ABI. */
454 if (0 <= rawnum && rawnum < 32)
456 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
457 return mips_n32_n64_gpr_names[rawnum];
459 return mips_gpr_names[rawnum];
461 else if (32 <= rawnum && rawnum < NUM_REGS)
462 return mips_processor_reg_names[rawnum - 32];
464 internal_error (__FILE__, __LINE__,
465 "mips_register_name: bad register number %d", rawnum);
469 /* Names of IDT R3041 registers. */
471 char *mips_r3041_reg_names[] = {
472 "sr", "lo", "hi", "bad", "cause","pc",
473 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
474 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
475 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
476 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
477 "fsr", "fir", "",/*"fp"*/ "",
478 "", "", "bus", "ccfg", "", "", "", "",
479 "", "", "port", "cmp", "", "", "epc", "prid",
482 /* Names of IDT R3051 registers. */
484 char *mips_r3051_reg_names[] = {
485 "sr", "lo", "hi", "bad", "cause","pc",
486 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
487 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
488 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
489 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
490 "fsr", "fir", ""/*"fp"*/, "",
491 "inx", "rand", "elo", "", "ctxt", "", "", "",
492 "", "", "ehi", "", "", "", "epc", "prid",
495 /* Names of IDT R3081 registers. */
497 char *mips_r3081_reg_names[] = {
498 "sr", "lo", "hi", "bad", "cause","pc",
499 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
500 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
501 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
502 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
503 "fsr", "fir", ""/*"fp"*/, "",
504 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
505 "", "", "ehi", "", "", "", "epc", "prid",
508 /* Names of LSI 33k registers. */
510 char *mips_lsi33k_reg_names[] = {
511 "epc", "hi", "lo", "sr", "cause","badvaddr",
512 "dcic", "bpc", "bda", "", "", "", "", "",
513 "", "", "", "", "", "", "", "",
514 "", "", "", "", "", "", "", "",
515 "", "", "", "", "", "", "", "",
517 "", "", "", "", "", "", "", "",
518 "", "", "", "", "", "", "", "",
524 } mips_processor_type_table[] = {
525 { "generic", mips_generic_reg_names },
526 { "r3041", mips_r3041_reg_names },
527 { "r3051", mips_r3051_reg_names },
528 { "r3071", mips_r3081_reg_names },
529 { "r3081", mips_r3081_reg_names },
530 { "lsi33k", mips_lsi33k_reg_names },
535 /* Return the groups that a MIPS register can be categorised into. */
538 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
539 struct reggroup *reggroup)
544 int rawnum = regnum % NUM_REGS;
545 int pseudo = regnum / NUM_REGS;
546 if (reggroup == all_reggroup)
548 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
549 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
550 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
551 (gdbarch), as not all architectures are multi-arch. */
552 raw_p = rawnum < NUM_REGS;
553 if (REGISTER_NAME (regnum) == NULL
554 || REGISTER_NAME (regnum)[0] == '\0')
556 if (reggroup == float_reggroup)
557 return float_p && pseudo;
558 if (reggroup == vector_reggroup)
559 return vector_p && pseudo;
560 if (reggroup == general_reggroup)
561 return (!vector_p && !float_p) && pseudo;
562 /* Save the pseudo registers. Need to make certain that any code
563 extracting register values from a saved register cache also uses
565 if (reggroup == save_reggroup)
566 return raw_p && pseudo;
567 /* Restore the same pseudo register. */
568 if (reggroup == restore_reggroup)
569 return raw_p && pseudo;
573 /* Map the symbol table registers which live in the range [1 *
574 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
578 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
579 int cookednum, void *buf)
581 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
582 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
586 mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
587 int cookednum, const void *buf)
589 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
590 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
593 /* Table to translate MIPS16 register field to actual register number. */
594 static int mips16_to_32_reg[8] =
595 {16, 17, 2, 3, 4, 5, 6, 7};
597 /* Heuristic_proc_start may hunt through the text section for a long
598 time across a 2400 baud serial line. Allows the user to limit this
601 static unsigned int heuristic_fence_post = 0;
603 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
604 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
605 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
606 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
607 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
608 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
609 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
610 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
611 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
612 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
613 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
614 this will corrupt pdr.iline. Fortunately we don't use it. */
615 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
616 #define _PROC_MAGIC_ 0x0F0F0F0F
617 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
618 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
620 struct linked_proc_info
622 struct mips_extra_func_info info;
623 struct linked_proc_info *next;
625 *linked_proc_desc_table = NULL;
628 mips_print_extra_frame_info (struct frame_info *fi)
631 && get_frame_extra_info (fi)
632 && get_frame_extra_info (fi)->proc_desc
633 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
634 printf_filtered (" frame pointer is at %s+%s\n",
635 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
636 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
639 /* Number of bytes of storage in the actual machine representation for
640 register N. NOTE: This indirectly defines the register size
641 transfered by the GDB protocol. */
643 static int mips64_transfers_32bit_regs_p = 0;
646 mips_register_raw_size (int regnum)
648 gdb_assert (regnum >= 0);
649 if (regnum < NUM_REGS)
651 /* For compatibility with old code, implemnt the broken register raw
652 size map for the raw registers.
654 NOTE: cagney/2003-06-15: This is so bogus. The register's
655 raw size is changing according to the ABI
656 (FP_REGISTER_DOUBLE). Also, GDB's protocol is defined by a
657 combination of DEPRECATED_REGISTER_RAW_SIZE and DEPRECATED_REGISTER_BYTE. */
658 if (mips64_transfers_32bit_regs_p)
659 return DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
660 else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32
661 && FP_REGISTER_DOUBLE)
662 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
668 else if (regnum < 2 * NUM_REGS)
670 /* For the moment map [NUM_REGS .. 2*NUM_REGS) onto the same raw
671 registers, but always return the virtual size. */
672 int rawnum = regnum % NUM_REGS;
673 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, rawnum));
676 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
679 /* Register offset in a buffer for each register.
681 FIXME: cagney/2003-06-15: This is so bogus. Instead REGISTER_TYPE
682 should strictly return the layout of the buffer. Unfortunately
683 remote.c and the MIPS have come to rely on a custom layout that
684 doesn't 1:1 map onto the register type. */
687 mips_register_byte (int regnum)
689 gdb_assert (regnum >= 0);
690 if (regnum < NUM_REGS)
691 /* Pick up the relevant per-tm file register byte method. */
692 return MIPS_REGISTER_BYTE (regnum);
693 else if (regnum < 2 * NUM_REGS)
697 /* Start with the end of the raw register buffer - assum that
698 MIPS_REGISTER_BYTE (NUM_REGS) returns that end. */
699 byte = MIPS_REGISTER_BYTE (NUM_REGS);
700 /* Add space for all the proceeding registers based on their
702 for (reg = NUM_REGS; reg < regnum; reg++)
703 byte += TYPE_LENGTH (gdbarch_register_type (current_gdbarch,
708 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
711 /* Convert between RAW and VIRTUAL registers. The RAW register size
712 defines the remote-gdb packet. */
715 mips_register_convertible (int reg_nr)
717 if (mips64_transfers_32bit_regs_p)
720 return (DEPRECATED_REGISTER_RAW_SIZE (reg_nr) > DEPRECATED_REGISTER_VIRTUAL_SIZE (reg_nr));
724 mips_register_convert_to_virtual (int n, struct type *virtual_type,
725 char *raw_buf, char *virt_buf)
727 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
729 raw_buf + (DEPRECATED_REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
730 TYPE_LENGTH (virtual_type));
734 TYPE_LENGTH (virtual_type));
738 mips_register_convert_to_raw (struct type *virtual_type, int n,
739 const char *virt_buf, char *raw_buf)
741 memset (raw_buf, 0, DEPRECATED_REGISTER_RAW_SIZE (n));
742 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
743 memcpy (raw_buf + (DEPRECATED_REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
745 TYPE_LENGTH (virtual_type));
749 TYPE_LENGTH (virtual_type));
753 mips_convert_register_p (int regnum, struct type *type)
755 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
756 && DEPRECATED_REGISTER_RAW_SIZE (regnum) == 4
757 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
758 && TYPE_CODE(type) == TYPE_CODE_FLT
759 && TYPE_LENGTH(type) == 8);
763 mips_register_to_value (struct frame_info *frame, int regnum,
764 struct type *type, void *to)
766 get_frame_register (frame, regnum + 0, (char *) to + 4);
767 get_frame_register (frame, regnum + 1, (char *) to + 0);
771 mips_value_to_register (struct frame_info *frame, int regnum,
772 struct type *type, const void *from)
774 put_frame_register (frame, regnum + 0, (const char *) from + 4);
775 put_frame_register (frame, regnum + 1, (const char *) from + 0);
778 /* Return the GDB type object for the "standard" data type of data in
782 mips_register_type (struct gdbarch *gdbarch, int regnum)
784 /* For moment, map [NUM_REGS .. 2*NUM_REGS) onto the same raw
785 registers. Even return the same type. */
786 int rawnum = regnum % NUM_REGS;
787 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
788 #ifdef MIPS_REGISTER_TYPE
789 return MIPS_REGISTER_TYPE (rawnum);
791 if (FP0_REGNUM <= rawnum && rawnum < FP0_REGNUM + 32)
793 /* Floating point registers... */
794 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
795 return builtin_type_ieee_double_big;
797 return builtin_type_ieee_double_little;
799 else if (rawnum == PS_REGNUM /* CR */)
800 return builtin_type_uint32;
801 else if (FCRCS_REGNUM <= rawnum && rawnum <= LAST_EMBED_REGNUM)
802 return builtin_type_uint32;
805 /* Everything else...
806 Return type appropriate for width of register. */
807 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
808 return builtin_type_uint64;
810 return builtin_type_uint32;
815 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
820 return read_signed_register (SP_REGNUM);
823 /* Should the upper word of 64-bit addresses be zeroed? */
824 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
827 mips_mask_address_p (void)
829 switch (mask_address_var)
831 case AUTO_BOOLEAN_TRUE:
833 case AUTO_BOOLEAN_FALSE:
836 case AUTO_BOOLEAN_AUTO:
837 return MIPS_DEFAULT_MASK_ADDRESS_P;
839 internal_error (__FILE__, __LINE__,
840 "mips_mask_address_p: bad switch");
846 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
848 switch (mask_address_var)
850 case AUTO_BOOLEAN_TRUE:
851 printf_filtered ("The 32 bit mips address mask is enabled\n");
853 case AUTO_BOOLEAN_FALSE:
854 printf_filtered ("The 32 bit mips address mask is disabled\n");
856 case AUTO_BOOLEAN_AUTO:
857 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
858 mips_mask_address_p () ? "enabled" : "disabled");
861 internal_error (__FILE__, __LINE__,
862 "show_mask_address: bad switch");
867 /* Should call_function allocate stack space for a struct return? */
870 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
872 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
876 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
878 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
881 /* Should call_function pass struct by reference?
882 For each architecture, structs are passed either by
883 value or by reference, depending on their size. */
886 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
888 enum type_code typecode = TYPE_CODE (check_typedef (type));
889 int len = TYPE_LENGTH (check_typedef (type));
891 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
892 return (len > MIPS_SAVED_REGSIZE);
898 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
900 return 0; /* Assumption: N32/N64 never passes struct by ref. */
904 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
906 return 0; /* Assumption: O32/O64 never passes struct by ref. */
909 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
912 pc_is_mips16 (bfd_vma memaddr)
914 struct minimal_symbol *sym;
916 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
917 if (is_mips16_addr (memaddr))
920 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
921 the high bit of the info field. Use this to decide if the function is
922 MIPS16 or normal MIPS. */
923 sym = lookup_minimal_symbol_by_pc (memaddr);
925 return msymbol_is_special (sym);
930 /* MIPS believes that the PC has a sign extended value. Perhaphs the
931 all registers should be sign extended for simplicity? */
934 mips_read_pc (ptid_t ptid)
936 return read_signed_register_pid (PC_REGNUM, ptid);
939 /* This returns the PC of the first inst after the prologue. If we can't
940 find the prologue, then return 0. */
943 after_prologue (CORE_ADDR pc,
944 mips_extra_func_info_t proc_desc)
946 struct symtab_and_line sal;
947 CORE_ADDR func_addr, func_end;
949 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
950 to read the stack pointer from the current machine state, because
951 the current machine state has nothing to do with the information
952 we need from the proc_desc; and the process may or may not exist
955 proc_desc = find_proc_desc (pc, NULL, 0);
959 /* If function is frameless, then we need to do it the hard way. I
960 strongly suspect that frameless always means prologueless... */
961 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
962 && PROC_FRAME_OFFSET (proc_desc) == 0)
966 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
967 return 0; /* Unknown */
969 sal = find_pc_line (func_addr, 0);
971 if (sal.end < func_end)
974 /* The line after the prologue is after the end of the function. In this
975 case, tell the caller to find the prologue the hard way. */
980 /* Decode a MIPS32 instruction that saves a register in the stack, and
981 set the appropriate bit in the general register mask or float register mask
982 to indicate which register is saved. This is a helper function
983 for mips_find_saved_regs. */
986 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
987 unsigned long *float_mask)
991 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
992 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
993 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
995 /* It might be possible to use the instruction to
996 find the offset, rather than the code below which
997 is based on things being in a certain order in the
998 frame, but figuring out what the instruction's offset
999 is relative to might be a little tricky. */
1000 reg = (inst & 0x001f0000) >> 16;
1001 *gen_mask |= (1 << reg);
1003 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
1004 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
1005 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
1008 reg = ((inst & 0x001f0000) >> 16);
1009 *float_mask |= (1 << reg);
1013 /* Decode a MIPS16 instruction that saves a register in the stack, and
1014 set the appropriate bit in the general register or float register mask
1015 to indicate which register is saved. This is a helper function
1016 for mips_find_saved_regs. */
1019 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
1021 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1023 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1024 *gen_mask |= (1 << reg);
1026 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1028 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1029 *gen_mask |= (1 << reg);
1031 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
1032 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1033 *gen_mask |= (1 << RA_REGNUM);
1037 /* Fetch and return instruction from the specified location. If the PC
1038 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
1041 mips_fetch_instruction (CORE_ADDR addr)
1043 char buf[MIPS_INSTLEN];
1047 if (pc_is_mips16 (addr))
1049 instlen = MIPS16_INSTLEN;
1050 addr = unmake_mips16_addr (addr);
1053 instlen = MIPS_INSTLEN;
1054 status = read_memory_nobpt (addr, buf, instlen);
1056 memory_error (status, addr);
1057 return extract_unsigned_integer (buf, instlen);
1061 /* These the fields of 32 bit mips instructions */
1062 #define mips32_op(x) (x >> 26)
1063 #define itype_op(x) (x >> 26)
1064 #define itype_rs(x) ((x >> 21) & 0x1f)
1065 #define itype_rt(x) ((x >> 16) & 0x1f)
1066 #define itype_immediate(x) (x & 0xffff)
1068 #define jtype_op(x) (x >> 26)
1069 #define jtype_target(x) (x & 0x03ffffff)
1071 #define rtype_op(x) (x >> 26)
1072 #define rtype_rs(x) ((x >> 21) & 0x1f)
1073 #define rtype_rt(x) ((x >> 16) & 0x1f)
1074 #define rtype_rd(x) ((x >> 11) & 0x1f)
1075 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1076 #define rtype_funct(x) (x & 0x3f)
1079 mips32_relative_offset (unsigned long inst)
1082 x = itype_immediate (inst);
1083 if (x & 0x8000) /* sign bit set */
1085 x |= 0xffff0000; /* sign extension */
1091 /* Determine whate to set a single step breakpoint while considering
1092 branch prediction */
1094 mips32_next_pc (CORE_ADDR pc)
1098 inst = mips_fetch_instruction (pc);
1099 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1101 if (itype_op (inst) >> 2 == 5)
1102 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1104 op = (itype_op (inst) & 0x03);
1114 goto greater_branch;
1119 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1120 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1122 int tf = itype_rt (inst) & 0x01;
1123 int cnum = itype_rt (inst) >> 2;
1124 int fcrcs = read_signed_register (FCRCS_REGNUM);
1125 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1127 if (((cond >> cnum) & 0x01) == tf)
1128 pc += mips32_relative_offset (inst) + 4;
1133 pc += 4; /* Not a branch, next instruction is easy */
1136 { /* This gets way messy */
1138 /* Further subdivide into SPECIAL, REGIMM and other */
1139 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1141 case 0: /* SPECIAL */
1142 op = rtype_funct (inst);
1147 /* Set PC to that address */
1148 pc = read_signed_register (rtype_rs (inst));
1154 break; /* end SPECIAL */
1155 case 1: /* REGIMM */
1157 op = itype_rt (inst); /* branch condition */
1162 case 16: /* BLTZAL */
1163 case 18: /* BLTZALL */
1165 if (read_signed_register (itype_rs (inst)) < 0)
1166 pc += mips32_relative_offset (inst) + 4;
1168 pc += 8; /* after the delay slot */
1172 case 17: /* BGEZAL */
1173 case 19: /* BGEZALL */
1174 greater_equal_branch:
1175 if (read_signed_register (itype_rs (inst)) >= 0)
1176 pc += mips32_relative_offset (inst) + 4;
1178 pc += 8; /* after the delay slot */
1180 /* All of the other instructions in the REGIMM category */
1185 break; /* end REGIMM */
1190 reg = jtype_target (inst) << 2;
1191 /* Upper four bits get never changed... */
1192 pc = reg + ((pc + 4) & 0xf0000000);
1195 /* FIXME case JALX : */
1198 reg = jtype_target (inst) << 2;
1199 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1200 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1202 break; /* The new PC will be alternate mode */
1203 case 4: /* BEQ, BEQL */
1205 if (read_signed_register (itype_rs (inst)) ==
1206 read_signed_register (itype_rt (inst)))
1207 pc += mips32_relative_offset (inst) + 4;
1211 case 5: /* BNE, BNEL */
1213 if (read_signed_register (itype_rs (inst)) !=
1214 read_signed_register (itype_rt (inst)))
1215 pc += mips32_relative_offset (inst) + 4;
1219 case 6: /* BLEZ, BLEZL */
1221 if (read_signed_register (itype_rs (inst) <= 0))
1222 pc += mips32_relative_offset (inst) + 4;
1228 greater_branch: /* BGTZ, BGTZL */
1229 if (read_signed_register (itype_rs (inst) > 0))
1230 pc += mips32_relative_offset (inst) + 4;
1237 } /* mips32_next_pc */
1239 /* Decoding the next place to set a breakpoint is irregular for the
1240 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1241 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1242 We dont want to set a single step instruction on the extend instruction
1246 /* Lots of mips16 instruction formats */
1247 /* Predicting jumps requires itype,ritype,i8type
1248 and their extensions extItype,extritype,extI8type
1250 enum mips16_inst_fmts
1252 itype, /* 0 immediate 5,10 */
1253 ritype, /* 1 5,3,8 */
1254 rrtype, /* 2 5,3,3,5 */
1255 rritype, /* 3 5,3,3,5 */
1256 rrrtype, /* 4 5,3,3,3,2 */
1257 rriatype, /* 5 5,3,3,1,4 */
1258 shifttype, /* 6 5,3,3,3,2 */
1259 i8type, /* 7 5,3,8 */
1260 i8movtype, /* 8 5,3,3,5 */
1261 i8mov32rtype, /* 9 5,3,5,3 */
1262 i64type, /* 10 5,3,8 */
1263 ri64type, /* 11 5,3,3,5 */
1264 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1265 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1266 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1267 extRRItype, /* 15 5,5,5,5,3,3,5 */
1268 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1269 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1270 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1271 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1272 extRi64type, /* 20 5,6,5,5,3,3,5 */
1273 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1275 /* I am heaping all the fields of the formats into one structure and
1276 then, only the fields which are involved in instruction extension */
1280 unsigned int regx; /* Function in i8 type */
1285 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1286 for the bits which make up the immediatate extension. */
1289 extended_offset (unsigned int extension)
1292 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1294 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1296 value |= extension & 0x01f; /* extract 4:0 */
1300 /* Only call this function if you know that this is an extendable
1301 instruction, It wont malfunction, but why make excess remote memory references?
1302 If the immediate operands get sign extended or somthing, do it after
1303 the extension is performed.
1305 /* FIXME: Every one of these cases needs to worry about sign extension
1306 when the offset is to be used in relative addressing */
1310 fetch_mips_16 (CORE_ADDR pc)
1313 pc &= 0xfffffffe; /* clear the low order bit */
1314 target_read_memory (pc, buf, 2);
1315 return extract_unsigned_integer (buf, 2);
1319 unpack_mips16 (CORE_ADDR pc,
1320 unsigned int extension,
1322 enum mips16_inst_fmts insn_format,
1323 struct upk_mips16 *upk)
1328 switch (insn_format)
1335 value = extended_offset (extension);
1336 value = value << 11; /* rom for the original value */
1337 value |= inst & 0x7ff; /* eleven bits from instruction */
1341 value = inst & 0x7ff;
1342 /* FIXME : Consider sign extension */
1351 { /* A register identifier and an offset */
1352 /* Most of the fields are the same as I type but the
1353 immediate value is of a different length */
1357 value = extended_offset (extension);
1358 value = value << 8; /* from the original instruction */
1359 value |= inst & 0xff; /* eleven bits from instruction */
1360 regx = (extension >> 8) & 0x07; /* or i8 funct */
1361 if (value & 0x4000) /* test the sign bit , bit 26 */
1363 value &= ~0x3fff; /* remove the sign bit */
1369 value = inst & 0xff; /* 8 bits */
1370 regx = (inst >> 8) & 0x07; /* or i8 funct */
1371 /* FIXME: Do sign extension , this format needs it */
1372 if (value & 0x80) /* THIS CONFUSES ME */
1374 value &= 0xef; /* remove the sign bit */
1384 unsigned long value;
1385 unsigned int nexthalf;
1386 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1387 value = value << 16;
1388 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1396 internal_error (__FILE__, __LINE__,
1399 upk->offset = offset;
1406 add_offset_16 (CORE_ADDR pc, int offset)
1408 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1412 extended_mips16_next_pc (CORE_ADDR pc,
1413 unsigned int extension,
1416 int op = (insn >> 11);
1419 case 2: /* Branch */
1422 struct upk_mips16 upk;
1423 unpack_mips16 (pc, extension, insn, itype, &upk);
1424 offset = upk.offset;
1430 pc += (offset << 1) + 2;
1433 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1435 struct upk_mips16 upk;
1436 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1437 pc = add_offset_16 (pc, upk.offset);
1438 if ((insn >> 10) & 0x01) /* Exchange mode */
1439 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1446 struct upk_mips16 upk;
1448 unpack_mips16 (pc, extension, insn, ritype, &upk);
1449 reg = read_signed_register (upk.regx);
1451 pc += (upk.offset << 1) + 2;
1458 struct upk_mips16 upk;
1460 unpack_mips16 (pc, extension, insn, ritype, &upk);
1461 reg = read_signed_register (upk.regx);
1463 pc += (upk.offset << 1) + 2;
1468 case 12: /* I8 Formats btez btnez */
1470 struct upk_mips16 upk;
1472 unpack_mips16 (pc, extension, insn, i8type, &upk);
1473 /* upk.regx contains the opcode */
1474 reg = read_signed_register (24); /* Test register is 24 */
1475 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1476 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1477 /* pc = add_offset_16(pc,upk.offset) ; */
1478 pc += (upk.offset << 1) + 2;
1483 case 29: /* RR Formats JR, JALR, JALR-RA */
1485 struct upk_mips16 upk;
1486 /* upk.fmt = rrtype; */
1491 upk.regx = (insn >> 8) & 0x07;
1492 upk.regy = (insn >> 5) & 0x07;
1500 break; /* Function return instruction */
1506 break; /* BOGUS Guess */
1508 pc = read_signed_register (reg);
1515 /* This is an instruction extension. Fetch the real instruction
1516 (which follows the extension) and decode things based on
1520 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1533 mips16_next_pc (CORE_ADDR pc)
1535 unsigned int insn = fetch_mips_16 (pc);
1536 return extended_mips16_next_pc (pc, 0, insn);
1539 /* The mips_next_pc function supports single_step when the remote
1540 target monitor or stub is not developed enough to do a single_step.
1541 It works by decoding the current instruction and predicting where a
1542 branch will go. This isnt hard because all the data is available.
1543 The MIPS32 and MIPS16 variants are quite different */
1545 mips_next_pc (CORE_ADDR pc)
1548 return mips16_next_pc (pc);
1550 return mips32_next_pc (pc);
1553 /* Set up the 'saved_regs' array. This is a data structure containing
1554 the addresses on the stack where each register has been saved, for
1555 each stack frame. Registers that have not been saved will have
1556 zero here. The stack pointer register is special: rather than the
1557 address where the stack register has been saved,
1558 saved_regs[SP_REGNUM] will have the actual value of the previous
1559 frame's stack register. */
1562 mips_find_saved_regs (struct frame_info *fci)
1565 /* r0 bit means kernel trap */
1567 /* What registers have been saved? Bitmasks. */
1568 unsigned long gen_mask, float_mask;
1569 mips_extra_func_info_t proc_desc;
1571 CORE_ADDR *saved_regs;
1573 if (deprecated_get_frame_saved_regs (fci) != NULL)
1575 saved_regs = frame_saved_regs_zalloc (fci);
1577 /* If it is the frame for sigtramp, the saved registers are located
1578 in a sigcontext structure somewhere on the stack. If the stack
1579 layout for sigtramp changes we might have to change these
1580 constants and the companion fixup_sigtramp in mdebugread.c */
1581 #ifndef SIGFRAME_BASE
1582 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1583 above the sigtramp frame. */
1584 #define SIGFRAME_BASE MIPS_REGSIZE
1585 /* FIXME! Are these correct?? */
1586 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1587 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1588 #define SIGFRAME_FPREGSAVE_OFF \
1589 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1591 #ifndef SIGFRAME_REG_SIZE
1592 /* FIXME! Is this correct?? */
1593 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1595 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1597 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1599 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1600 + ireg * SIGFRAME_REG_SIZE);
1601 set_reg_offset (saved_regs, ireg, reg_position);
1603 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1605 CORE_ADDR reg_position = (get_frame_base (fci)
1606 + SIGFRAME_FPREGSAVE_OFF
1607 + ireg * SIGFRAME_REG_SIZE);
1608 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1611 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1612 /* SP_REGNUM, contains the value and not the address. */
1613 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1617 proc_desc = get_frame_extra_info (fci)->proc_desc;
1618 if (proc_desc == NULL)
1619 /* I'm not sure how/whether this can happen. Normally when we
1620 can't find a proc_desc, we "synthesize" one using
1621 heuristic_proc_desc and set the saved_regs right away. */
1624 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1625 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1626 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1628 if (/* In any frame other than the innermost or a frame interrupted
1629 by a signal, we assume that all registers have been saved.
1630 This assumes that all register saves in a function happen
1631 before the first function call. */
1632 (get_next_frame (fci) == NULL
1633 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1635 /* In a dummy frame we know exactly where things are saved. */
1636 && !PROC_DESC_IS_DUMMY (proc_desc)
1638 /* Don't bother unless we are inside a function prologue.
1639 Outside the prologue, we know where everything is. */
1641 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1643 /* Not sure exactly what kernel_trap means, but if it means the
1644 kernel saves the registers without a prologue doing it, we
1645 better not examine the prologue to see whether registers
1646 have been saved yet. */
1649 /* We need to figure out whether the registers that the
1650 proc_desc claims are saved have been saved yet. */
1654 /* Bitmasks; set if we have found a save for the register. */
1655 unsigned long gen_save_found = 0;
1656 unsigned long float_save_found = 0;
1659 /* If the address is odd, assume this is MIPS16 code. */
1660 addr = PROC_LOW_ADDR (proc_desc);
1661 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1663 /* Scan through this function's instructions preceding the
1664 current PC, and look for those that save registers. */
1665 while (addr < get_frame_pc (fci))
1667 inst = mips_fetch_instruction (addr);
1668 if (pc_is_mips16 (addr))
1669 mips16_decode_reg_save (inst, &gen_save_found);
1671 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1674 gen_mask = gen_save_found;
1675 float_mask = float_save_found;
1678 /* Fill in the offsets for the registers which gen_mask says were
1681 CORE_ADDR reg_position = (get_frame_base (fci)
1682 + PROC_REG_OFFSET (proc_desc));
1683 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1684 if (gen_mask & 0x80000000)
1686 set_reg_offset (saved_regs, ireg, reg_position);
1687 reg_position -= MIPS_SAVED_REGSIZE;
1691 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1692 order of that normally used by gcc. Therefore, we have to fetch
1693 the first instruction of the function, and if it's an entry
1694 instruction that saves $s0 or $s1, correct their saved addresses. */
1695 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1697 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1698 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1702 int sreg_count = (inst >> 6) & 3;
1704 /* Check if the ra register was pushed on the stack. */
1705 CORE_ADDR reg_position = (get_frame_base (fci)
1706 + PROC_REG_OFFSET (proc_desc));
1708 reg_position -= MIPS_SAVED_REGSIZE;
1710 /* Check if the s0 and s1 registers were pushed on the
1712 for (reg = 16; reg < sreg_count + 16; reg++)
1714 set_reg_offset (saved_regs, reg, reg_position);
1715 reg_position -= MIPS_SAVED_REGSIZE;
1720 /* Fill in the offsets for the registers which float_mask says were
1723 CORE_ADDR reg_position = (get_frame_base (fci)
1724 + PROC_FREG_OFFSET (proc_desc));
1726 /* Fill in the offsets for the float registers which float_mask
1728 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1729 if (float_mask & 0x80000000)
1731 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1733 /* On a big endian 32 bit ABI, floating point registers
1734 are paired to form doubles such that the most
1735 significant part is in $f[N+1] and the least
1736 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1737 registers are also spilled as a pair and stored as a
1740 When little-endian the least significant part is
1741 stored first leading to the memory order $f[N] and
1744 Unfortunately, when big-endian the most significant
1745 part of the double is stored first, and the least
1746 significant is stored second. This leads to the
1747 registers being ordered in memory as firt $f[N+1] and
1750 For the big-endian case make certain that the
1751 addresses point at the correct (swapped) locations
1752 $f[N] and $f[N+1] pair (keep in mind that
1753 reg_position is decremented each time through the
1756 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1757 reg_position - MIPS_SAVED_REGSIZE);
1759 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1760 reg_position + MIPS_SAVED_REGSIZE);
1763 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1764 reg_position -= MIPS_SAVED_REGSIZE;
1767 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1770 /* SP_REGNUM, contains the value and not the address. */
1771 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1775 read_next_frame_reg (struct frame_info *fi, int regno)
1777 /* Always a pseudo. */
1778 gdb_assert (regno >= NUM_REGS);
1782 regcache_cooked_read_signed (current_regcache, regno, &val);
1785 else if ((regno % NUM_REGS) == SP_REGNUM)
1786 /* The SP_REGNUM is special, its value is stored in saved_regs.
1787 In fact, it is so special that it can even only be fetched
1788 using a raw register number! Once this code as been converted
1789 to frame-unwind the problem goes away. */
1790 return frame_unwind_register_signed (fi, regno % NUM_REGS);
1792 return frame_unwind_register_signed (fi, regno);
1796 /* mips_addr_bits_remove - remove useless address bits */
1799 mips_addr_bits_remove (CORE_ADDR addr)
1801 if (GDB_TARGET_IS_MIPS64)
1803 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1805 /* This hack is a work-around for existing boards using
1806 PMON, the simulator, and any other 64-bit targets that
1807 doesn't have true 64-bit addressing. On these targets,
1808 the upper 32 bits of addresses are ignored by the
1809 hardware. Thus, the PC or SP are likely to have been
1810 sign extended to all 1s by instruction sequences that
1811 load 32-bit addresses. For example, a typical piece of
1812 code that loads an address is this:
1813 lui $r2, <upper 16 bits>
1814 ori $r2, <lower 16 bits>
1815 But the lui sign-extends the value such that the upper 32
1816 bits may be all 1s. The workaround is simply to mask off
1817 these bits. In the future, gcc may be changed to support
1818 true 64-bit addressing, and this masking will have to be
1820 addr &= (CORE_ADDR) 0xffffffff;
1823 else if (mips_mask_address_p ())
1825 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1826 masking off bits, instead, the actual target should be asking
1827 for the address to be converted to a valid pointer. */
1828 /* Even when GDB is configured for some 32-bit targets
1829 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1830 so CORE_ADDR is 64 bits. So we still have to mask off
1831 useless bits from addresses. */
1832 addr &= (CORE_ADDR) 0xffffffff;
1837 /* mips_software_single_step() is called just before we want to resume
1838 the inferior, if we want to single-step it but there is no hardware
1839 or kernel single-step support (MIPS on GNU/Linux for example). We find
1840 the target of the coming instruction and breakpoint it.
1842 single_step is also called just after the inferior stops. If we had
1843 set up a simulated single-step, we undo our damage. */
1846 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1848 static CORE_ADDR next_pc;
1849 typedef char binsn_quantum[BREAKPOINT_MAX];
1850 static binsn_quantum break_mem;
1853 if (insert_breakpoints_p)
1855 pc = read_register (PC_REGNUM);
1856 next_pc = mips_next_pc (pc);
1858 target_insert_breakpoint (next_pc, break_mem);
1861 target_remove_breakpoint (next_pc, break_mem);
1865 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1870 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1871 : get_next_frame (prev)
1872 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1874 tmp = SKIP_TRAMPOLINE_CODE (pc);
1875 return tmp ? tmp : pc;
1880 mips_frame_saved_pc (struct frame_info *frame)
1884 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1887 /* Always unwind the cooked PC register value. */
1888 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
1893 mips_extra_func_info_t proc_desc
1894 = get_frame_extra_info (frame)->proc_desc;
1895 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1896 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1899 /* We have to get the saved pc from the sigcontext if it is
1900 a signal handler frame. */
1901 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1902 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1903 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1906 return ADDR_BITS_REMOVE (saved_pc);
1909 static struct mips_extra_func_info temp_proc_desc;
1911 /* This hack will go away once the get_prev_frame() code has been
1912 modified to set the frame's type first. That is BEFORE init extra
1913 frame info et.al. is called. This is because it will become
1914 possible to skip the init extra info call for sigtramp and dummy
1916 static CORE_ADDR *temp_saved_regs;
1918 /* Set a register's saved stack address in temp_saved_regs. If an
1919 address has already been set for this register, do nothing; this
1920 way we will only recognize the first save of a given register in a
1923 For simplicity, save the address in both [0 .. NUM_REGS) and
1924 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1925 is used as it is only second range (the ABI instead of ISA
1926 registers) that comes into play when finding saved registers in a
1930 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1932 if (saved_regs[regno] == 0)
1934 saved_regs[regno + 0 * NUM_REGS] = offset;
1935 saved_regs[regno + 1 * NUM_REGS] = offset;
1940 /* Test whether the PC points to the return instruction at the
1941 end of a function. */
1944 mips_about_to_return (CORE_ADDR pc)
1946 if (pc_is_mips16 (pc))
1947 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1948 generates a "jr $ra"; other times it generates code to load
1949 the return address from the stack to an accessible register (such
1950 as $a3), then a "jr" using that register. This second case
1951 is almost impossible to distinguish from an indirect jump
1952 used for switch statements, so we don't even try. */
1953 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1955 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1959 /* This fencepost looks highly suspicious to me. Removing it also
1960 seems suspicious as it could affect remote debugging across serial
1964 heuristic_proc_start (CORE_ADDR pc)
1971 pc = ADDR_BITS_REMOVE (pc);
1973 fence = start_pc - heuristic_fence_post;
1977 if (heuristic_fence_post == UINT_MAX
1978 || fence < VM_MIN_ADDRESS)
1979 fence = VM_MIN_ADDRESS;
1981 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1983 /* search back for previous return */
1984 for (start_pc -= instlen;; start_pc -= instlen)
1985 if (start_pc < fence)
1987 /* It's not clear to me why we reach this point when
1988 stop_soon, but with this test, at least we
1989 don't print out warnings for every child forked (eg, on
1991 if (stop_soon == NO_STOP_QUIETLY)
1993 static int blurb_printed = 0;
1995 warning ("Warning: GDB can't find the start of the function at 0x%s.",
2000 /* This actually happens frequently in embedded
2001 development, when you first connect to a board
2002 and your stack pointer and pc are nowhere in
2003 particular. This message needs to give people
2004 in that situation enough information to
2005 determine that it's no big deal. */
2006 printf_filtered ("\n\
2007 GDB is unable to find the start of the function at 0x%s\n\
2008 and thus can't determine the size of that function's stack frame.\n\
2009 This means that GDB may be unable to access that stack frame, or\n\
2010 the frames below it.\n\
2011 This problem is most likely caused by an invalid program counter or\n\
2013 However, if you think GDB should simply search farther back\n\
2014 from 0x%s for code which looks like the beginning of a\n\
2015 function, you can increase the range of the search using the `set\n\
2016 heuristic-fence-post' command.\n",
2017 paddr_nz (pc), paddr_nz (pc));
2024 else if (pc_is_mips16 (start_pc))
2026 unsigned short inst;
2028 /* On MIPS16, any one of the following is likely to be the
2029 start of a function:
2033 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2034 inst = mips_fetch_instruction (start_pc);
2035 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2036 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2037 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2038 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2040 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2041 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2046 else if (mips_about_to_return (start_pc))
2048 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
2055 /* Fetch the immediate value from a MIPS16 instruction.
2056 If the previous instruction was an EXTEND, use it to extend
2057 the upper bits of the immediate value. This is a helper function
2058 for mips16_heuristic_proc_desc. */
2061 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2062 unsigned short inst, /* current instruction */
2063 int nbits, /* number of bits in imm field */
2064 int scale, /* scale factor to be applied to imm */
2065 int is_signed) /* is the imm field signed? */
2069 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2071 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2072 if (offset & 0x8000) /* check for negative extend */
2073 offset = 0 - (0x10000 - (offset & 0xffff));
2074 return offset | (inst & 0x1f);
2078 int max_imm = 1 << nbits;
2079 int mask = max_imm - 1;
2080 int sign_bit = max_imm >> 1;
2082 offset = inst & mask;
2083 if (is_signed && (offset & sign_bit))
2084 offset = 0 - (max_imm - offset);
2085 return offset * scale;
2090 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
2091 stream from start_pc to limit_pc. */
2094 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2095 struct frame_info *next_frame, CORE_ADDR sp)
2098 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2099 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2100 unsigned inst = 0; /* current instruction */
2101 unsigned entry_inst = 0; /* the entry instruction */
2104 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2105 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2107 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2109 /* Save the previous instruction. If it's an EXTEND, we'll extract
2110 the immediate offset extension from it in mips16_get_imm. */
2113 /* Fetch and decode the instruction. */
2114 inst = (unsigned short) mips_fetch_instruction (cur_pc);
2115 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2116 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2118 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2119 if (offset < 0) /* negative stack adjustment? */
2120 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2122 /* Exit loop if a positive stack adjustment is found, which
2123 usually means that the stack cleanup code in the function
2124 epilogue is reached. */
2127 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2129 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2130 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2131 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2132 set_reg_offset (temp_saved_regs, reg, sp + offset);
2134 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2136 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2137 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2138 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2139 set_reg_offset (temp_saved_regs, reg, sp + offset);
2141 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2143 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2144 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2145 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2147 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2149 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2150 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2151 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2153 else if (inst == 0x673d) /* move $s1, $sp */
2156 PROC_FRAME_REG (&temp_proc_desc) = 17;
2158 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2160 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2161 frame_addr = sp + offset;
2162 PROC_FRAME_REG (&temp_proc_desc) = 17;
2163 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2165 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2167 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2168 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2169 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2170 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2172 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2174 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2175 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2176 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2177 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2179 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2180 entry_inst = inst; /* save for later processing */
2181 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2182 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2185 /* The entry instruction is typically the first instruction in a function,
2186 and it stores registers at offsets relative to the value of the old SP
2187 (before the prologue). But the value of the sp parameter to this
2188 function is the new SP (after the prologue has been executed). So we
2189 can't calculate those offsets until we've seen the entire prologue,
2190 and can calculate what the old SP must have been. */
2191 if (entry_inst != 0)
2193 int areg_count = (entry_inst >> 8) & 7;
2194 int sreg_count = (entry_inst >> 6) & 3;
2196 /* The entry instruction always subtracts 32 from the SP. */
2197 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2199 /* Now we can calculate what the SP must have been at the
2200 start of the function prologue. */
2201 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2203 /* Check if a0-a3 were saved in the caller's argument save area. */
2204 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2206 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2207 set_reg_offset (temp_saved_regs, reg, sp + offset);
2208 offset += MIPS_SAVED_REGSIZE;
2211 /* Check if the ra register was pushed on the stack. */
2213 if (entry_inst & 0x20)
2215 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2216 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2217 offset -= MIPS_SAVED_REGSIZE;
2220 /* Check if the s0 and s1 registers were pushed on the stack. */
2221 for (reg = 16; reg < sreg_count + 16; reg++)
2223 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2224 set_reg_offset (temp_saved_regs, reg, sp + offset);
2225 offset -= MIPS_SAVED_REGSIZE;
2231 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2232 struct frame_info *next_frame, CORE_ADDR sp)
2235 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2237 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2238 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2239 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2240 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2241 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2243 unsigned long inst, high_word, low_word;
2246 /* Fetch the instruction. */
2247 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2249 /* Save some code by pre-extracting some useful fields. */
2250 high_word = (inst >> 16) & 0xffff;
2251 low_word = inst & 0xffff;
2252 reg = high_word & 0x1f;
2254 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2255 || high_word == 0x23bd /* addi $sp,$sp,-i */
2256 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2258 if (low_word & 0x8000) /* negative stack adjustment? */
2259 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2261 /* Exit loop if a positive stack adjustment is found, which
2262 usually means that the stack cleanup code in the function
2263 epilogue is reached. */
2266 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2268 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2269 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2271 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2273 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2274 but the register size used is only 32 bits. Make the address
2275 for the saved register point to the lower 32 bits. */
2276 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2277 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2279 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2281 /* Old gcc frame, r30 is virtual frame pointer. */
2282 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2283 frame_addr = sp + low_word;
2284 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2286 unsigned alloca_adjust;
2287 PROC_FRAME_REG (&temp_proc_desc) = 30;
2288 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2289 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2290 if (alloca_adjust > 0)
2292 /* FP > SP + frame_size. This may be because
2293 * of an alloca or somethings similar.
2294 * Fix sp to "pre-alloca" value, and try again.
2296 sp += alloca_adjust;
2301 /* move $30,$sp. With different versions of gas this will be either
2302 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2303 Accept any one of these. */
2304 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2306 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2307 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2309 unsigned alloca_adjust;
2310 PROC_FRAME_REG (&temp_proc_desc) = 30;
2311 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2312 alloca_adjust = (unsigned) (frame_addr - sp);
2313 if (alloca_adjust > 0)
2315 /* FP > SP + frame_size. This may be because
2316 * of an alloca or somethings similar.
2317 * Fix sp to "pre-alloca" value, and try again.
2319 sp += alloca_adjust;
2324 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2326 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2327 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2332 static mips_extra_func_info_t
2333 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2334 struct frame_info *next_frame, int cur_frame)
2339 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
2345 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2346 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2347 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2348 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2349 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2350 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2352 if (start_pc + 200 < limit_pc)
2353 limit_pc = start_pc + 200;
2354 if (pc_is_mips16 (start_pc))
2355 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2357 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2358 return &temp_proc_desc;
2361 struct mips_objfile_private
2367 /* Global used to communicate between non_heuristic_proc_desc and
2368 compare_pdr_entries within qsort (). */
2369 static bfd *the_bfd;
2372 compare_pdr_entries (const void *a, const void *b)
2374 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2375 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2379 else if (lhs == rhs)
2385 static mips_extra_func_info_t
2386 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2388 CORE_ADDR startaddr;
2389 mips_extra_func_info_t proc_desc;
2390 struct block *b = block_for_pc (pc);
2392 struct obj_section *sec;
2393 struct mips_objfile_private *priv;
2395 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2398 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2400 *addrptr = startaddr;
2404 sec = find_pc_section (pc);
2407 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2409 /* Search the ".pdr" section generated by GAS. This includes most of
2410 the information normally found in ECOFF PDRs. */
2412 the_bfd = sec->objfile->obfd;
2414 && (the_bfd->format == bfd_object
2415 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2416 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2418 /* Right now GAS only outputs the address as a four-byte sequence.
2419 This means that we should not bother with this method on 64-bit
2420 targets (until that is fixed). */
2422 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2423 sizeof (struct mips_objfile_private));
2425 sec->objfile->obj_private = priv;
2427 else if (priv == NULL)
2431 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2432 sizeof (struct mips_objfile_private));
2434 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2437 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2438 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2440 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2441 priv->contents, 0, priv->size);
2443 /* In general, the .pdr section is sorted. However, in the
2444 presence of multiple code sections (and other corner cases)
2445 it can become unsorted. Sort it so that we can use a faster
2447 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2452 sec->objfile->obj_private = priv;
2456 if (priv->size != 0)
2462 high = priv->size / 32;
2468 mid = (low + high) / 2;
2470 ptr = priv->contents + mid * 32;
2471 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2472 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2473 SECT_OFF_TEXT (sec->objfile));
2474 if (pdr_pc == startaddr)
2476 if (pdr_pc > startaddr)
2481 while (low != high);
2485 struct symbol *sym = find_pc_function (pc);
2487 /* Fill in what we need of the proc_desc. */
2488 proc_desc = (mips_extra_func_info_t)
2489 obstack_alloc (&sec->objfile->psymbol_obstack,
2490 sizeof (struct mips_extra_func_info));
2491 PROC_LOW_ADDR (proc_desc) = startaddr;
2493 /* Only used for dummy frames. */
2494 PROC_HIGH_ADDR (proc_desc) = 0;
2496 PROC_FRAME_OFFSET (proc_desc)
2497 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2498 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2500 PROC_FRAME_ADJUST (proc_desc) = 0;
2501 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2503 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2505 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2507 PROC_FREG_OFFSET (proc_desc)
2508 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2509 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2511 proc_desc->pdr.isym = (long) sym;
2521 if (startaddr > BLOCK_START (b))
2523 /* This is the "pathological" case referred to in a comment in
2524 print_frame_info. It might be better to move this check into
2529 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2531 /* If we never found a PDR for this function in symbol reading, then
2532 examine prologues to find the information. */
2535 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2536 if (PROC_FRAME_REG (proc_desc) == -1)
2546 static mips_extra_func_info_t
2547 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2549 mips_extra_func_info_t proc_desc;
2550 CORE_ADDR startaddr = 0;
2552 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2556 /* IF this is the topmost frame AND
2557 * (this proc does not have debugging information OR
2558 * the PC is in the procedure prologue)
2559 * THEN create a "heuristic" proc_desc (by analyzing
2560 * the actual code) to replace the "official" proc_desc.
2562 if (next_frame == NULL)
2564 struct symtab_and_line val;
2565 struct symbol *proc_symbol =
2566 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2570 val = find_pc_line (BLOCK_START
2571 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2573 val.pc = val.end ? val.end : pc;
2575 if (!proc_symbol || pc < val.pc)
2577 mips_extra_func_info_t found_heuristic =
2578 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2579 pc, next_frame, cur_frame);
2580 if (found_heuristic)
2581 proc_desc = found_heuristic;
2587 /* Is linked_proc_desc_table really necessary? It only seems to be used
2588 by procedure call dummys. However, the procedures being called ought
2589 to have their own proc_descs, and even if they don't,
2590 heuristic_proc_desc knows how to create them! */
2592 struct linked_proc_info *link;
2594 for (link = linked_proc_desc_table; link; link = link->next)
2595 if (PROC_LOW_ADDR (&link->info) <= pc
2596 && PROC_HIGH_ADDR (&link->info) > pc)
2600 startaddr = heuristic_proc_start (pc);
2603 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2609 get_frame_pointer (struct frame_info *frame,
2610 mips_extra_func_info_t proc_desc)
2612 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
2613 + PROC_FRAME_OFFSET (proc_desc)
2614 - PROC_FRAME_ADJUST (proc_desc));
2617 static mips_extra_func_info_t cached_proc_desc;
2620 mips_frame_chain (struct frame_info *frame)
2622 mips_extra_func_info_t proc_desc;
2624 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2626 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
2629 /* Check if the PC is inside a call stub. If it is, fetch the
2630 PC of the caller of that stub. */
2631 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2634 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2636 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2637 is well, frame->frame the bottom of the current frame will
2638 contain that value. */
2639 return get_frame_base (frame);
2642 /* Look up the procedure descriptor for this PC. */
2643 proc_desc = find_proc_desc (saved_pc, frame, 1);
2647 cached_proc_desc = proc_desc;
2649 /* If no frame pointer and frame size is zero, we must be at end
2650 of stack (or otherwise hosed). If we don't check frame size,
2651 we loop forever if we see a zero size frame. */
2652 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2653 && PROC_FRAME_OFFSET (proc_desc) == 0
2654 /* The previous frame from a sigtramp frame might be frameless
2655 and have frame size zero. */
2656 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2657 /* For a generic dummy frame, let get_frame_pointer() unwind a
2658 register value saved as part of the dummy frame call. */
2659 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2662 return get_frame_pointer (frame, proc_desc);
2666 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2669 mips_extra_func_info_t proc_desc;
2671 if (get_frame_type (fci) == DUMMY_FRAME)
2674 /* Use proc_desc calculated in frame_chain. When there is no
2675 next frame, i.e, get_next_frame (fci) == NULL, we call
2676 find_proc_desc () to calculate it, passing an explicit
2677 NULL as the frame parameter. */
2679 get_next_frame (fci)
2681 : find_proc_desc (get_frame_pc (fci),
2682 NULL /* i.e, get_next_frame (fci) */,
2685 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2687 deprecated_set_frame_saved_regs_hack (fci, NULL);
2688 get_frame_extra_info (fci)->proc_desc =
2689 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2692 /* Fixup frame-pointer - only needed for top frame */
2693 /* This may not be quite right, if proc has a real frame register.
2694 Get the value of the frame relative sp, procedure might have been
2695 interrupted by a signal at it's very start. */
2696 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2697 && !PROC_DESC_IS_DUMMY (proc_desc))
2698 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
2699 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2700 /* Do not ``fix'' fci->frame. It will have the value of the
2701 generic dummy frame's top-of-stack (since the draft
2702 fci->frame is obtained by returning the unwound stack
2703 pointer) and that is what we want. That way the fci->frame
2704 value will match the top-of-stack value that was saved as
2705 part of the dummy frames data. */
2708 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2710 if (proc_desc == &temp_proc_desc)
2714 /* Do not set the saved registers for a sigtramp frame,
2715 mips_find_saved_registers will do that for us. We can't
2716 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2718 /* FIXME: cagney/2002-11-18: This problem will go away once
2719 frame.c:get_prev_frame() is modified to set the frame's
2720 type before calling functions like this. */
2721 find_pc_partial_function (get_frame_pc (fci), &name,
2722 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2723 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2725 frame_saved_regs_zalloc (fci);
2726 /* Set value of previous frame's stack pointer.
2727 Remember that saved_regs[SP_REGNUM] is special in
2728 that it contains the value of the stack pointer
2729 register. The other saved_regs values are addresses
2730 (in the inferior) at which a given register's value
2732 set_reg_offset (temp_saved_regs, SP_REGNUM,
2733 get_frame_base (fci));
2734 set_reg_offset (temp_saved_regs, PC_REGNUM,
2735 temp_saved_regs[RA_REGNUM]);
2736 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
2737 SIZEOF_FRAME_SAVED_REGS);
2741 /* hack: if argument regs are saved, guess these contain args */
2742 /* assume we can't tell how many args for now */
2743 get_frame_extra_info (fci)->num_args = -1;
2744 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2746 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2748 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2755 /* MIPS stack frames are almost impenetrable. When execution stops,
2756 we basically have to look at symbol information for the function
2757 that we stopped in, which tells us *which* register (if any) is
2758 the base of the frame pointer, and what offset from that register
2759 the frame itself is at.
2761 This presents a problem when trying to examine a stack in memory
2762 (that isn't executing at the moment), using the "frame" command. We
2763 don't have a PC, nor do we have any registers except SP.
2765 This routine takes two arguments, SP and PC, and tries to make the
2766 cached frames look as if these two arguments defined a frame on the
2767 cache. This allows the rest of info frame to extract the important
2768 arguments without difficulty. */
2771 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2774 error ("MIPS frame specifications require two arguments: sp and pc");
2776 return create_new_frame (argv[0], argv[1]);
2779 /* According to the current ABI, should the type be passed in a
2780 floating-point register (assuming that there is space)? When there
2781 is no FPU, FP are not even considered as possibile candidates for
2782 FP registers and, consequently this returns false - forces FP
2783 arguments into integer registers. */
2786 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2788 return ((typecode == TYPE_CODE_FLT
2790 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2791 && TYPE_NFIELDS (arg_type) == 1
2792 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2793 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2796 /* On o32, argument passing in GPRs depends on the alignment of the type being
2797 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2800 mips_type_needs_double_align (struct type *type)
2802 enum type_code typecode = TYPE_CODE (type);
2804 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2806 else if (typecode == TYPE_CODE_STRUCT)
2808 if (TYPE_NFIELDS (type) < 1)
2810 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2812 else if (typecode == TYPE_CODE_UNION)
2816 n = TYPE_NFIELDS (type);
2817 for (i = 0; i < n; i++)
2818 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2825 /* Adjust the address downward (direction of stack growth) so that it
2826 is correctly aligned for a new stack frame. */
2828 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2830 return align_down (addr, 16);
2834 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2835 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2836 struct value **args, CORE_ADDR sp, int struct_return,
2837 CORE_ADDR struct_addr)
2843 int stack_offset = 0;
2845 /* For shared libraries, "t9" needs to point at the function
2847 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2849 /* Set the return address register to point to the entry point of
2850 the program, where a breakpoint lies in wait. */
2851 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2853 /* First ensure that the stack and structure return address (if any)
2854 are properly aligned. The stack has to be at least 64-bit
2855 aligned even on 32-bit machines, because doubles must be 64-bit
2856 aligned. For n32 and n64, stack frames need to be 128-bit
2857 aligned, so we round to this widest known alignment. */
2859 sp = align_down (sp, 16);
2860 struct_addr = align_down (struct_addr, 16);
2862 /* Now make space on the stack for the args. We allocate more
2863 than necessary for EABI, because the first few arguments are
2864 passed in registers, but that's OK. */
2865 for (argnum = 0; argnum < nargs; argnum++)
2866 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2867 MIPS_STACK_ARGSIZE);
2868 sp -= align_up (len, 16);
2871 fprintf_unfiltered (gdb_stdlog,
2872 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2873 paddr_nz (sp), (long) align_up (len, 16));
2875 /* Initialize the integer and float register pointers. */
2877 float_argreg = FPA0_REGNUM;
2879 /* The struct_return pointer occupies the first parameter-passing reg. */
2883 fprintf_unfiltered (gdb_stdlog,
2884 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2885 argreg, paddr_nz (struct_addr));
2886 write_register (argreg++, struct_addr);
2889 /* Now load as many as possible of the first arguments into
2890 registers, and push the rest onto the stack. Loop thru args
2891 from first to last. */
2892 for (argnum = 0; argnum < nargs; argnum++)
2895 char valbuf[MAX_REGISTER_SIZE];
2896 struct value *arg = args[argnum];
2897 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2898 int len = TYPE_LENGTH (arg_type);
2899 enum type_code typecode = TYPE_CODE (arg_type);
2902 fprintf_unfiltered (gdb_stdlog,
2903 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2904 argnum + 1, len, (int) typecode);
2906 /* The EABI passes structures that do not fit in a register by
2908 if (len > MIPS_SAVED_REGSIZE
2909 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2911 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2912 typecode = TYPE_CODE_PTR;
2913 len = MIPS_SAVED_REGSIZE;
2916 fprintf_unfiltered (gdb_stdlog, " push");
2919 val = (char *) VALUE_CONTENTS (arg);
2921 /* 32-bit ABIs always start floating point arguments in an
2922 even-numbered floating point register. Round the FP register
2923 up before the check to see if there are any FP registers
2924 left. Non MIPS_EABI targets also pass the FP in the integer
2925 registers so also round up normal registers. */
2926 if (!FP_REGISTER_DOUBLE
2927 && fp_register_arg_p (typecode, arg_type))
2929 if ((float_argreg & 1))
2933 /* Floating point arguments passed in registers have to be
2934 treated specially. On 32-bit architectures, doubles
2935 are passed in register pairs; the even register gets
2936 the low word, and the odd register gets the high word.
2937 On non-EABI processors, the first two floating point arguments are
2938 also copied to general registers, because MIPS16 functions
2939 don't use float registers for arguments. This duplication of
2940 arguments in general registers can't hurt non-MIPS16 functions
2941 because those registers are normally skipped. */
2942 /* MIPS_EABI squeezes a struct that contains a single floating
2943 point value into an FP register instead of pushing it onto the
2945 if (fp_register_arg_p (typecode, arg_type)
2946 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2948 if (!FP_REGISTER_DOUBLE && len == 8)
2950 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2951 unsigned long regval;
2953 /* Write the low word of the double to the even register(s). */
2954 regval = extract_unsigned_integer (val + low_offset, 4);
2956 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2957 float_argreg, phex (regval, 4));
2958 write_register (float_argreg++, regval);
2960 /* Write the high word of the double to the odd register(s). */
2961 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2963 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2964 float_argreg, phex (regval, 4));
2965 write_register (float_argreg++, regval);
2969 /* This is a floating point value that fits entirely
2970 in a single register. */
2971 /* On 32 bit ABI's the float_argreg is further adjusted
2972 above to ensure that it is even register aligned. */
2973 LONGEST regval = extract_unsigned_integer (val, len);
2975 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2976 float_argreg, phex (regval, len));
2977 write_register (float_argreg++, regval);
2982 /* Copy the argument to general registers or the stack in
2983 register-sized pieces. Large arguments are split between
2984 registers and stack. */
2985 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2986 are treated specially: Irix cc passes them in registers
2987 where gcc sometimes puts them on the stack. For maximum
2988 compatibility, we will put them in both places. */
2989 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2990 (len % MIPS_SAVED_REGSIZE != 0));
2992 /* Note: Floating-point values that didn't fit into an FP
2993 register are only written to memory. */
2996 /* Remember if the argument was written to the stack. */
2997 int stack_used_p = 0;
2999 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3002 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3005 /* Write this portion of the argument to the stack. */
3006 if (argreg > MIPS_LAST_ARG_REGNUM
3008 || fp_register_arg_p (typecode, arg_type))
3010 /* Should shorter than int integer values be
3011 promoted to int before being stored? */
3012 int longword_offset = 0;
3015 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3017 if (MIPS_STACK_ARGSIZE == 8 &&
3018 (typecode == TYPE_CODE_INT ||
3019 typecode == TYPE_CODE_PTR ||
3020 typecode == TYPE_CODE_FLT) && len <= 4)
3021 longword_offset = MIPS_STACK_ARGSIZE - len;
3022 else if ((typecode == TYPE_CODE_STRUCT ||
3023 typecode == TYPE_CODE_UNION) &&
3024 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
3025 longword_offset = MIPS_STACK_ARGSIZE - len;
3030 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3031 paddr_nz (stack_offset));
3032 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3033 paddr_nz (longword_offset));
3036 addr = sp + stack_offset + longword_offset;
3041 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3043 for (i = 0; i < partial_len; i++)
3045 fprintf_unfiltered (gdb_stdlog, "%02x",
3049 write_memory (addr, val, partial_len);
3052 /* Note!!! This is NOT an else clause. Odd sized
3053 structs may go thru BOTH paths. Floating point
3054 arguments will not. */
3055 /* Write this portion of the argument to a general
3056 purpose register. */
3057 if (argreg <= MIPS_LAST_ARG_REGNUM
3058 && !fp_register_arg_p (typecode, arg_type))
3060 LONGEST regval = extract_unsigned_integer (val, partial_len);
3063 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3065 phex (regval, MIPS_SAVED_REGSIZE));
3066 write_register (argreg, regval);
3073 /* Compute the the offset into the stack at which we
3074 will copy the next parameter.
3076 In the new EABI (and the NABI32), the stack_offset
3077 only needs to be adjusted when it has been used. */
3080 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3084 fprintf_unfiltered (gdb_stdlog, "\n");
3087 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3089 /* Return adjusted stack pointer. */
3093 /* N32/N64 version of push_dummy_call. */
3096 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3097 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3098 struct value **args, CORE_ADDR sp, int struct_return,
3099 CORE_ADDR struct_addr)
3105 int stack_offset = 0;
3107 /* For shared libraries, "t9" needs to point at the function
3109 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3111 /* Set the return address register to point to the entry point of
3112 the program, where a breakpoint lies in wait. */
3113 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3115 /* First ensure that the stack and structure return address (if any)
3116 are properly aligned. The stack has to be at least 64-bit
3117 aligned even on 32-bit machines, because doubles must be 64-bit
3118 aligned. For n32 and n64, stack frames need to be 128-bit
3119 aligned, so we round to this widest known alignment. */
3121 sp = align_down (sp, 16);
3122 struct_addr = align_down (struct_addr, 16);
3124 /* Now make space on the stack for the args. */
3125 for (argnum = 0; argnum < nargs; argnum++)
3126 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3127 MIPS_STACK_ARGSIZE);
3128 sp -= align_up (len, 16);
3131 fprintf_unfiltered (gdb_stdlog,
3132 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3133 paddr_nz (sp), (long) align_up (len, 16));
3135 /* Initialize the integer and float register pointers. */
3137 float_argreg = FPA0_REGNUM;
3139 /* The struct_return pointer occupies the first parameter-passing reg. */
3143 fprintf_unfiltered (gdb_stdlog,
3144 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3145 argreg, paddr_nz (struct_addr));
3146 write_register (argreg++, struct_addr);
3149 /* Now load as many as possible of the first arguments into
3150 registers, and push the rest onto the stack. Loop thru args
3151 from first to last. */
3152 for (argnum = 0; argnum < nargs; argnum++)
3155 char valbuf[MAX_REGISTER_SIZE];
3156 struct value *arg = args[argnum];
3157 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3158 int len = TYPE_LENGTH (arg_type);
3159 enum type_code typecode = TYPE_CODE (arg_type);
3162 fprintf_unfiltered (gdb_stdlog,
3163 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3164 argnum + 1, len, (int) typecode);
3166 val = (char *) VALUE_CONTENTS (arg);
3168 if (fp_register_arg_p (typecode, arg_type)
3169 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3171 /* This is a floating point value that fits entirely
3172 in a single register. */
3173 /* On 32 bit ABI's the float_argreg is further adjusted
3174 above to ensure that it is even register aligned. */
3175 LONGEST regval = extract_unsigned_integer (val, len);
3177 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3178 float_argreg, phex (regval, len));
3179 write_register (float_argreg++, regval);
3182 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3183 argreg, phex (regval, len));
3184 write_register (argreg, regval);
3189 /* Copy the argument to general registers or the stack in
3190 register-sized pieces. Large arguments are split between
3191 registers and stack. */
3192 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3193 are treated specially: Irix cc passes them in registers
3194 where gcc sometimes puts them on the stack. For maximum
3195 compatibility, we will put them in both places. */
3196 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3197 (len % MIPS_SAVED_REGSIZE != 0));
3198 /* Note: Floating-point values that didn't fit into an FP
3199 register are only written to memory. */
3202 /* Rememer if the argument was written to the stack. */
3203 int stack_used_p = 0;
3204 int partial_len = len < MIPS_SAVED_REGSIZE ?
3205 len : MIPS_SAVED_REGSIZE;
3208 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3211 /* Write this portion of the argument to the stack. */
3212 if (argreg > MIPS_LAST_ARG_REGNUM
3214 || fp_register_arg_p (typecode, arg_type))
3216 /* Should shorter than int integer values be
3217 promoted to int before being stored? */
3218 int longword_offset = 0;
3221 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3223 if (MIPS_STACK_ARGSIZE == 8 &&
3224 (typecode == TYPE_CODE_INT ||
3225 typecode == TYPE_CODE_PTR ||
3226 typecode == TYPE_CODE_FLT) && len <= 4)
3227 longword_offset = MIPS_STACK_ARGSIZE - len;
3232 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3233 paddr_nz (stack_offset));
3234 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3235 paddr_nz (longword_offset));
3238 addr = sp + stack_offset + longword_offset;
3243 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3245 for (i = 0; i < partial_len; i++)
3247 fprintf_unfiltered (gdb_stdlog, "%02x",
3251 write_memory (addr, val, partial_len);
3254 /* Note!!! This is NOT an else clause. Odd sized
3255 structs may go thru BOTH paths. Floating point
3256 arguments will not. */
3257 /* Write this portion of the argument to a general
3258 purpose register. */
3259 if (argreg <= MIPS_LAST_ARG_REGNUM
3260 && !fp_register_arg_p (typecode, arg_type))
3262 LONGEST regval = extract_unsigned_integer (val, partial_len);
3264 /* A non-floating-point argument being passed in a
3265 general register. If a struct or union, and if
3266 the remaining length is smaller than the register
3267 size, we have to adjust the register value on
3270 It does not seem to be necessary to do the
3271 same for integral types.
3273 cagney/2001-07-23: gdb/179: Also, GCC, when
3274 outputting LE O32 with sizeof (struct) <
3275 MIPS_SAVED_REGSIZE, generates a left shift as
3276 part of storing the argument in a register a
3277 register (the left shift isn't generated when
3278 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3279 is quite possible that this is GCC contradicting
3280 the LE/O32 ABI, GDB has not been adjusted to
3281 accommodate this. Either someone needs to
3282 demonstrate that the LE/O32 ABI specifies such a
3283 left shift OR this new ABI gets identified as
3284 such and GDB gets tweaked accordingly. */
3286 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3287 && partial_len < MIPS_SAVED_REGSIZE
3288 && (typecode == TYPE_CODE_STRUCT ||
3289 typecode == TYPE_CODE_UNION))
3290 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3294 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3296 phex (regval, MIPS_SAVED_REGSIZE));
3297 write_register (argreg, regval);
3304 /* Compute the the offset into the stack at which we
3305 will copy the next parameter.
3307 In N32 (N64?), the stack_offset only needs to be
3308 adjusted when it has been used. */
3311 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3315 fprintf_unfiltered (gdb_stdlog, "\n");
3318 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3320 /* Return adjusted stack pointer. */
3324 /* O32 version of push_dummy_call. */
3327 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3328 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3329 struct value **args, CORE_ADDR sp, int struct_return,
3330 CORE_ADDR struct_addr)
3336 int stack_offset = 0;
3338 /* For shared libraries, "t9" needs to point at the function
3340 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3342 /* Set the return address register to point to the entry point of
3343 the program, where a breakpoint lies in wait. */
3344 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3346 /* First ensure that the stack and structure return address (if any)
3347 are properly aligned. The stack has to be at least 64-bit
3348 aligned even on 32-bit machines, because doubles must be 64-bit
3349 aligned. For n32 and n64, stack frames need to be 128-bit
3350 aligned, so we round to this widest known alignment. */
3352 sp = align_down (sp, 16);
3353 struct_addr = align_down (struct_addr, 16);
3355 /* Now make space on the stack for the args. */
3356 for (argnum = 0; argnum < nargs; argnum++)
3357 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3358 MIPS_STACK_ARGSIZE);
3359 sp -= align_up (len, 16);
3362 fprintf_unfiltered (gdb_stdlog,
3363 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3364 paddr_nz (sp), (long) align_up (len, 16));
3366 /* Initialize the integer and float register pointers. */
3368 float_argreg = FPA0_REGNUM;
3370 /* The struct_return pointer occupies the first parameter-passing reg. */
3374 fprintf_unfiltered (gdb_stdlog,
3375 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3376 argreg, paddr_nz (struct_addr));
3377 write_register (argreg++, struct_addr);
3378 stack_offset += MIPS_STACK_ARGSIZE;
3381 /* Now load as many as possible of the first arguments into
3382 registers, and push the rest onto the stack. Loop thru args
3383 from first to last. */
3384 for (argnum = 0; argnum < nargs; argnum++)
3387 char valbuf[MAX_REGISTER_SIZE];
3388 struct value *arg = args[argnum];
3389 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3390 int len = TYPE_LENGTH (arg_type);
3391 enum type_code typecode = TYPE_CODE (arg_type);
3394 fprintf_unfiltered (gdb_stdlog,
3395 "mips_o32_push_dummy_call: %d len=%d type=%d",
3396 argnum + 1, len, (int) typecode);
3398 val = (char *) VALUE_CONTENTS (arg);
3400 /* 32-bit ABIs always start floating point arguments in an
3401 even-numbered floating point register. Round the FP register
3402 up before the check to see if there are any FP registers
3403 left. O32/O64 targets also pass the FP in the integer
3404 registers so also round up normal registers. */
3405 if (!FP_REGISTER_DOUBLE
3406 && fp_register_arg_p (typecode, arg_type))
3408 if ((float_argreg & 1))
3412 /* Floating point arguments passed in registers have to be
3413 treated specially. On 32-bit architectures, doubles
3414 are passed in register pairs; the even register gets
3415 the low word, and the odd register gets the high word.
3416 On O32/O64, the first two floating point arguments are
3417 also copied to general registers, because MIPS16 functions
3418 don't use float registers for arguments. This duplication of
3419 arguments in general registers can't hurt non-MIPS16 functions
3420 because those registers are normally skipped. */
3422 if (fp_register_arg_p (typecode, arg_type)
3423 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3425 if (!FP_REGISTER_DOUBLE && len == 8)
3427 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3428 unsigned long regval;
3430 /* Write the low word of the double to the even register(s). */
3431 regval = extract_unsigned_integer (val + low_offset, 4);
3433 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3434 float_argreg, phex (regval, 4));
3435 write_register (float_argreg++, regval);
3437 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3438 argreg, phex (regval, 4));
3439 write_register (argreg++, regval);
3441 /* Write the high word of the double to the odd register(s). */
3442 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3444 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3445 float_argreg, phex (regval, 4));
3446 write_register (float_argreg++, regval);
3449 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3450 argreg, phex (regval, 4));
3451 write_register (argreg++, regval);
3455 /* This is a floating point value that fits entirely
3456 in a single register. */
3457 /* On 32 bit ABI's the float_argreg is further adjusted
3458 above to ensure that it is even register aligned. */
3459 LONGEST regval = extract_unsigned_integer (val, len);
3461 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3462 float_argreg, phex (regval, len));
3463 write_register (float_argreg++, regval);
3464 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3465 registers for each argument. The below is (my
3466 guess) to ensure that the corresponding integer
3467 register has reserved the same space. */
3469 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3470 argreg, phex (regval, len));
3471 write_register (argreg, regval);
3472 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3474 /* Reserve space for the FP register. */
3475 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3479 /* Copy the argument to general registers or the stack in
3480 register-sized pieces. Large arguments are split between
3481 registers and stack. */
3482 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3483 are treated specially: Irix cc passes them in registers
3484 where gcc sometimes puts them on the stack. For maximum
3485 compatibility, we will put them in both places. */
3486 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3487 (len % MIPS_SAVED_REGSIZE != 0));
3488 /* Structures should be aligned to eight bytes (even arg registers)
3489 on MIPS_ABI_O32, if their first member has double precision. */
3490 if (MIPS_SAVED_REGSIZE < 8
3491 && mips_type_needs_double_align (arg_type))
3496 /* Note: Floating-point values that didn't fit into an FP
3497 register are only written to memory. */
3500 /* Remember if the argument was written to the stack. */
3501 int stack_used_p = 0;
3503 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3506 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3509 /* Write this portion of the argument to the stack. */
3510 if (argreg > MIPS_LAST_ARG_REGNUM
3512 || fp_register_arg_p (typecode, arg_type))
3514 /* Should shorter than int integer values be
3515 promoted to int before being stored? */
3516 int longword_offset = 0;
3519 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3521 if (MIPS_STACK_ARGSIZE == 8 &&
3522 (typecode == TYPE_CODE_INT ||
3523 typecode == TYPE_CODE_PTR ||
3524 typecode == TYPE_CODE_FLT) && len <= 4)
3525 longword_offset = MIPS_STACK_ARGSIZE - len;
3530 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3531 paddr_nz (stack_offset));
3532 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3533 paddr_nz (longword_offset));
3536 addr = sp + stack_offset + longword_offset;
3541 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3543 for (i = 0; i < partial_len; i++)
3545 fprintf_unfiltered (gdb_stdlog, "%02x",
3549 write_memory (addr, val, partial_len);
3552 /* Note!!! This is NOT an else clause. Odd sized
3553 structs may go thru BOTH paths. Floating point
3554 arguments will not. */
3555 /* Write this portion of the argument to a general
3556 purpose register. */
3557 if (argreg <= MIPS_LAST_ARG_REGNUM
3558 && !fp_register_arg_p (typecode, arg_type))
3560 LONGEST regval = extract_signed_integer (val, partial_len);
3561 /* Value may need to be sign extended, because
3562 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3564 /* A non-floating-point argument being passed in a
3565 general register. If a struct or union, and if
3566 the remaining length is smaller than the register
3567 size, we have to adjust the register value on
3570 It does not seem to be necessary to do the
3571 same for integral types.
3573 Also don't do this adjustment on O64 binaries.
3575 cagney/2001-07-23: gdb/179: Also, GCC, when
3576 outputting LE O32 with sizeof (struct) <
3577 MIPS_SAVED_REGSIZE, generates a left shift as
3578 part of storing the argument in a register a
3579 register (the left shift isn't generated when
3580 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3581 is quite possible that this is GCC contradicting
3582 the LE/O32 ABI, GDB has not been adjusted to
3583 accommodate this. Either someone needs to
3584 demonstrate that the LE/O32 ABI specifies such a
3585 left shift OR this new ABI gets identified as
3586 such and GDB gets tweaked accordingly. */
3588 if (MIPS_SAVED_REGSIZE < 8
3589 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3590 && partial_len < MIPS_SAVED_REGSIZE
3591 && (typecode == TYPE_CODE_STRUCT ||
3592 typecode == TYPE_CODE_UNION))
3593 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3597 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3599 phex (regval, MIPS_SAVED_REGSIZE));
3600 write_register (argreg, regval);
3603 /* Prevent subsequent floating point arguments from
3604 being passed in floating point registers. */
3605 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3611 /* Compute the the offset into the stack at which we
3612 will copy the next parameter.
3614 In older ABIs, the caller reserved space for
3615 registers that contained arguments. This was loosely
3616 refered to as their "home". Consequently, space is
3617 always allocated. */
3619 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3623 fprintf_unfiltered (gdb_stdlog, "\n");
3626 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3628 /* Return adjusted stack pointer. */
3632 /* O64 version of push_dummy_call. */
3635 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3636 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3637 struct value **args, CORE_ADDR sp, int struct_return,
3638 CORE_ADDR struct_addr)
3644 int stack_offset = 0;
3646 /* For shared libraries, "t9" needs to point at the function
3648 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3650 /* Set the return address register to point to the entry point of
3651 the program, where a breakpoint lies in wait. */
3652 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3654 /* First ensure that the stack and structure return address (if any)
3655 are properly aligned. The stack has to be at least 64-bit
3656 aligned even on 32-bit machines, because doubles must be 64-bit
3657 aligned. For n32 and n64, stack frames need to be 128-bit
3658 aligned, so we round to this widest known alignment. */
3660 sp = align_down (sp, 16);
3661 struct_addr = align_down (struct_addr, 16);
3663 /* Now make space on the stack for the args. */
3664 for (argnum = 0; argnum < nargs; argnum++)
3665 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3666 MIPS_STACK_ARGSIZE);
3667 sp -= align_up (len, 16);
3670 fprintf_unfiltered (gdb_stdlog,
3671 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3672 paddr_nz (sp), (long) align_up (len, 16));
3674 /* Initialize the integer and float register pointers. */
3676 float_argreg = FPA0_REGNUM;
3678 /* The struct_return pointer occupies the first parameter-passing reg. */
3682 fprintf_unfiltered (gdb_stdlog,
3683 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3684 argreg, paddr_nz (struct_addr));
3685 write_register (argreg++, struct_addr);
3686 stack_offset += MIPS_STACK_ARGSIZE;
3689 /* Now load as many as possible of the first arguments into
3690 registers, and push the rest onto the stack. Loop thru args
3691 from first to last. */
3692 for (argnum = 0; argnum < nargs; argnum++)
3695 char valbuf[MAX_REGISTER_SIZE];
3696 struct value *arg = args[argnum];
3697 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3698 int len = TYPE_LENGTH (arg_type);
3699 enum type_code typecode = TYPE_CODE (arg_type);
3702 fprintf_unfiltered (gdb_stdlog,
3703 "mips_o64_push_dummy_call: %d len=%d type=%d",
3704 argnum + 1, len, (int) typecode);
3706 val = (char *) VALUE_CONTENTS (arg);
3708 /* 32-bit ABIs always start floating point arguments in an
3709 even-numbered floating point register. Round the FP register
3710 up before the check to see if there are any FP registers
3711 left. O32/O64 targets also pass the FP in the integer
3712 registers so also round up normal registers. */
3713 if (!FP_REGISTER_DOUBLE
3714 && fp_register_arg_p (typecode, arg_type))
3716 if ((float_argreg & 1))
3720 /* Floating point arguments passed in registers have to be
3721 treated specially. On 32-bit architectures, doubles
3722 are passed in register pairs; the even register gets
3723 the low word, and the odd register gets the high word.
3724 On O32/O64, the first two floating point arguments are
3725 also copied to general registers, because MIPS16 functions
3726 don't use float registers for arguments. This duplication of
3727 arguments in general registers can't hurt non-MIPS16 functions
3728 because those registers are normally skipped. */
3730 if (fp_register_arg_p (typecode, arg_type)
3731 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3733 if (!FP_REGISTER_DOUBLE && len == 8)
3735 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3736 unsigned long regval;
3738 /* Write the low word of the double to the even register(s). */
3739 regval = extract_unsigned_integer (val + low_offset, 4);
3741 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3742 float_argreg, phex (regval, 4));
3743 write_register (float_argreg++, regval);
3745 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3746 argreg, phex (regval, 4));
3747 write_register (argreg++, regval);
3749 /* Write the high word of the double to the odd register(s). */
3750 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3752 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3753 float_argreg, phex (regval, 4));
3754 write_register (float_argreg++, regval);
3757 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3758 argreg, phex (regval, 4));
3759 write_register (argreg++, regval);
3763 /* This is a floating point value that fits entirely
3764 in a single register. */
3765 /* On 32 bit ABI's the float_argreg is further adjusted
3766 above to ensure that it is even register aligned. */
3767 LONGEST regval = extract_unsigned_integer (val, len);
3769 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3770 float_argreg, phex (regval, len));
3771 write_register (float_argreg++, regval);
3772 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3773 registers for each argument. The below is (my
3774 guess) to ensure that the corresponding integer
3775 register has reserved the same space. */
3777 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3778 argreg, phex (regval, len));
3779 write_register (argreg, regval);
3780 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3782 /* Reserve space for the FP register. */
3783 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3787 /* Copy the argument to general registers or the stack in
3788 register-sized pieces. Large arguments are split between
3789 registers and stack. */
3790 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3791 are treated specially: Irix cc passes them in registers
3792 where gcc sometimes puts them on the stack. For maximum
3793 compatibility, we will put them in both places. */
3794 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3795 (len % MIPS_SAVED_REGSIZE != 0));
3796 /* Structures should be aligned to eight bytes (even arg registers)
3797 on MIPS_ABI_O32, if their first member has double precision. */
3798 if (MIPS_SAVED_REGSIZE < 8
3799 && mips_type_needs_double_align (arg_type))
3804 /* Note: Floating-point values that didn't fit into an FP
3805 register are only written to memory. */
3808 /* Remember if the argument was written to the stack. */
3809 int stack_used_p = 0;
3811 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3814 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3817 /* Write this portion of the argument to the stack. */
3818 if (argreg > MIPS_LAST_ARG_REGNUM
3820 || fp_register_arg_p (typecode, arg_type))
3822 /* Should shorter than int integer values be
3823 promoted to int before being stored? */
3824 int longword_offset = 0;
3827 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3829 if (MIPS_STACK_ARGSIZE == 8 &&
3830 (typecode == TYPE_CODE_INT ||
3831 typecode == TYPE_CODE_PTR ||
3832 typecode == TYPE_CODE_FLT) && len <= 4)
3833 longword_offset = MIPS_STACK_ARGSIZE - len;
3838 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3839 paddr_nz (stack_offset));
3840 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3841 paddr_nz (longword_offset));
3844 addr = sp + stack_offset + longword_offset;
3849 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3851 for (i = 0; i < partial_len; i++)
3853 fprintf_unfiltered (gdb_stdlog, "%02x",
3857 write_memory (addr, val, partial_len);
3860 /* Note!!! This is NOT an else clause. Odd sized
3861 structs may go thru BOTH paths. Floating point
3862 arguments will not. */
3863 /* Write this portion of the argument to a general
3864 purpose register. */
3865 if (argreg <= MIPS_LAST_ARG_REGNUM
3866 && !fp_register_arg_p (typecode, arg_type))
3868 LONGEST regval = extract_signed_integer (val, partial_len);
3869 /* Value may need to be sign extended, because
3870 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3872 /* A non-floating-point argument being passed in a
3873 general register. If a struct or union, and if
3874 the remaining length is smaller than the register
3875 size, we have to adjust the register value on
3878 It does not seem to be necessary to do the
3879 same for integral types.
3881 Also don't do this adjustment on O64 binaries.
3883 cagney/2001-07-23: gdb/179: Also, GCC, when
3884 outputting LE O32 with sizeof (struct) <
3885 MIPS_SAVED_REGSIZE, generates a left shift as
3886 part of storing the argument in a register a
3887 register (the left shift isn't generated when
3888 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3889 is quite possible that this is GCC contradicting
3890 the LE/O32 ABI, GDB has not been adjusted to
3891 accommodate this. Either someone needs to
3892 demonstrate that the LE/O32 ABI specifies such a
3893 left shift OR this new ABI gets identified as
3894 such and GDB gets tweaked accordingly. */
3896 if (MIPS_SAVED_REGSIZE < 8
3897 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3898 && partial_len < MIPS_SAVED_REGSIZE
3899 && (typecode == TYPE_CODE_STRUCT ||
3900 typecode == TYPE_CODE_UNION))
3901 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3905 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3907 phex (regval, MIPS_SAVED_REGSIZE));
3908 write_register (argreg, regval);
3911 /* Prevent subsequent floating point arguments from
3912 being passed in floating point registers. */
3913 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3919 /* Compute the the offset into the stack at which we
3920 will copy the next parameter.
3922 In older ABIs, the caller reserved space for
3923 registers that contained arguments. This was loosely
3924 refered to as their "home". Consequently, space is
3925 always allocated. */
3927 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3931 fprintf_unfiltered (gdb_stdlog, "\n");
3934 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3936 /* Return adjusted stack pointer. */
3941 mips_pop_frame (void)
3944 struct frame_info *frame = get_current_frame ();
3945 CORE_ADDR new_sp = get_frame_base (frame);
3946 mips_extra_func_info_t proc_desc;
3948 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3950 generic_pop_dummy_frame ();
3951 flush_cached_frames ();
3955 proc_desc = get_frame_extra_info (frame)->proc_desc;
3956 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3957 mips_find_saved_regs (frame);
3958 for (regnum = 0; regnum < NUM_REGS; regnum++)
3959 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3960 && deprecated_get_frame_saved_regs (frame)[regnum])
3962 /* Floating point registers must not be sign extended,
3963 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3965 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3966 write_register (regnum,
3967 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3968 MIPS_SAVED_REGSIZE));
3970 write_register (regnum,
3971 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3972 MIPS_SAVED_REGSIZE));
3975 write_register (SP_REGNUM, new_sp);
3976 flush_cached_frames ();
3978 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3980 struct linked_proc_info *pi_ptr, *prev_ptr;
3982 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3984 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3986 if (&pi_ptr->info == proc_desc)
3991 error ("Can't locate dummy extra frame info\n");
3993 if (prev_ptr != NULL)
3994 prev_ptr->next = pi_ptr->next;
3996 linked_proc_desc_table = pi_ptr->next;
4000 write_register (HI_REGNUM,
4001 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
4002 MIPS_SAVED_REGSIZE));
4003 write_register (LO_REGNUM,
4004 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
4005 MIPS_SAVED_REGSIZE));
4006 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
4007 write_register (FCRCS_REGNUM,
4008 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
4009 MIPS_SAVED_REGSIZE));
4013 /* Floating point register management.
4015 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4016 64bit operations, these early MIPS cpus treat fp register pairs
4017 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4018 registers and offer a compatibility mode that emulates the MIPS2 fp
4019 model. When operating in MIPS2 fp compat mode, later cpu's split
4020 double precision floats into two 32-bit chunks and store them in
4021 consecutive fp regs. To display 64-bit floats stored in this
4022 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4023 Throw in user-configurable endianness and you have a real mess.
4025 The way this works is:
4026 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4027 double-precision value will be split across two logical registers.
4028 The lower-numbered logical register will hold the low-order bits,
4029 regardless of the processor's endianness.
4030 - If we are on a 64-bit processor, and we are looking for a
4031 single-precision value, it will be in the low ordered bits
4032 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4033 save slot in memory.
4034 - If we are in 64-bit mode, everything is straightforward.
4036 Note that this code only deals with "live" registers at the top of the
4037 stack. We will attempt to deal with saved registers later, when
4038 the raw/cooked register interface is in place. (We need a general
4039 interface that can deal with dynamic saved register sizes -- fp
4040 regs could be 32 bits wide in one frame and 64 on the frame above
4043 static struct type *
4044 mips_float_register_type (void)
4046 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4047 return builtin_type_ieee_single_big;
4049 return builtin_type_ieee_single_little;
4052 static struct type *
4053 mips_double_register_type (void)
4055 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4056 return builtin_type_ieee_double_big;
4058 return builtin_type_ieee_double_little;
4061 /* Copy a 32-bit single-precision value from the current frame
4062 into rare_buffer. */
4065 mips_read_fp_register_single (struct frame_info *frame, int regno,
4068 int raw_size = DEPRECATED_REGISTER_RAW_SIZE (regno);
4069 char *raw_buffer = alloca (raw_size);
4071 if (!frame_register_read (frame, regno, raw_buffer))
4072 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4075 /* We have a 64-bit value for this register. Find the low-order
4079 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4084 memcpy (rare_buffer, raw_buffer + offset, 4);
4088 memcpy (rare_buffer, raw_buffer, 4);
4092 /* Copy a 64-bit double-precision value from the current frame into
4093 rare_buffer. This may include getting half of it from the next
4097 mips_read_fp_register_double (struct frame_info *frame, int regno,
4100 int raw_size = DEPRECATED_REGISTER_RAW_SIZE (regno);
4102 if (raw_size == 8 && !mips2_fp_compat ())
4104 /* We have a 64-bit value for this register, and we should use
4106 if (!frame_register_read (frame, regno, rare_buffer))
4107 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4111 if ((regno - FP0_REGNUM) & 1)
4112 internal_error (__FILE__, __LINE__,
4113 "mips_read_fp_register_double: bad access to "
4114 "odd-numbered FP register");
4116 /* mips_read_fp_register_single will find the correct 32 bits from
4118 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4120 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4121 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4125 mips_read_fp_register_single (frame, regno, rare_buffer);
4126 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4132 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4134 { /* do values for FP (float) regs */
4136 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4137 int inv1, inv2, namelen;
4139 raw_buffer = (char *) alloca (2 * DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM));
4141 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4142 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4145 if (DEPRECATED_REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4147 /* 4-byte registers: Print hex and floating. Also print even
4148 numbered registers as doubles. */
4149 mips_read_fp_register_single (frame, regnum, raw_buffer);
4150 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4152 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4154 fprintf_filtered (file, " flt: ");
4156 fprintf_filtered (file, " <invalid float> ");
4158 fprintf_filtered (file, "%-17.9g", flt1);
4160 if (regnum % 2 == 0)
4162 mips_read_fp_register_double (frame, regnum, raw_buffer);
4163 doub = unpack_double (mips_double_register_type (), raw_buffer,
4166 fprintf_filtered (file, " dbl: ");
4168 fprintf_filtered (file, "<invalid double>");
4170 fprintf_filtered (file, "%-24.17g", doub);
4175 /* Eight byte registers: print each one as hex, float and double. */
4176 mips_read_fp_register_single (frame, regnum, raw_buffer);
4177 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4179 mips_read_fp_register_double (frame, regnum, raw_buffer);
4180 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4183 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4185 fprintf_filtered (file, " flt: ");
4187 fprintf_filtered (file, "<invalid float>");
4189 fprintf_filtered (file, "%-17.9g", flt1);
4191 fprintf_filtered (file, " dbl: ");
4193 fprintf_filtered (file, "<invalid double>");
4195 fprintf_filtered (file, "%-24.17g", doub);
4200 mips_print_register (struct ui_file *file, struct frame_info *frame,
4201 int regnum, int all)
4203 struct gdbarch *gdbarch = get_frame_arch (frame);
4204 char raw_buffer[MAX_REGISTER_SIZE];
4207 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4209 mips_print_fp_register (file, frame, regnum);
4213 /* Get the data in raw format. */
4214 if (!frame_register_read (frame, regnum, raw_buffer))
4216 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4220 fputs_filtered (REGISTER_NAME (regnum), file);
4222 /* The problem with printing numeric register names (r26, etc.) is that
4223 the user can't use them on input. Probably the best solution is to
4224 fix it so that either the numeric or the funky (a2, etc.) names
4225 are accepted on input. */
4226 if (regnum < MIPS_NUMREGS)
4227 fprintf_filtered (file, "(r%d): ", regnum);
4229 fprintf_filtered (file, ": ");
4231 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4232 offset = DEPRECATED_REGISTER_RAW_SIZE (regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
4236 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
4240 /* Replacement for generic do_registers_info.
4241 Print regs in pretty columns. */
4244 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4247 fprintf_filtered (file, " ");
4248 mips_print_fp_register (file, frame, regnum);
4249 fprintf_filtered (file, "\n");
4254 /* Print a row's worth of GP (int) registers, with name labels above */
4257 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4260 struct gdbarch *gdbarch = get_frame_arch (frame);
4261 /* do values for GP (int) regs */
4262 char raw_buffer[MAX_REGISTER_SIZE];
4263 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4267 /* For GP registers, we print a separate row of names above the vals */
4268 fprintf_filtered (file, " ");
4269 for (col = 0, regnum = start_regnum;
4270 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4273 if (*REGISTER_NAME (regnum) == '\0')
4274 continue; /* unused register */
4275 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4276 break; /* end the row: reached FP register */
4277 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4278 REGISTER_NAME (regnum));
4281 /* print the R0 to R31 names */
4282 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4283 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4285 fprintf_filtered (file, "\n ");
4287 /* now print the values in hex, 4 or 8 to the row */
4288 for (col = 0, regnum = start_regnum;
4289 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4292 if (*REGISTER_NAME (regnum) == '\0')
4293 continue; /* unused register */
4294 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4295 break; /* end row: reached FP register */
4296 /* OK: get the data in raw format. */
4297 if (!frame_register_read (frame, regnum, raw_buffer))
4298 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4299 /* pad small registers */
4300 for (byte = 0; byte < (MIPS_REGSIZE - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4301 printf_filtered (" ");
4302 /* Now print the register value in hex, endian order. */
4303 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4304 for (byte = DEPRECATED_REGISTER_RAW_SIZE (regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
4305 byte < DEPRECATED_REGISTER_RAW_SIZE (regnum);
4307 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4309 for (byte = DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum) - 1;
4312 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4313 fprintf_filtered (file, " ");
4316 if (col > 0) /* ie. if we actually printed anything... */
4317 fprintf_filtered (file, "\n");
4322 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4325 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4326 struct frame_info *frame, int regnum, int all)
4328 if (regnum != -1) /* do one specified register */
4330 gdb_assert (regnum >= NUM_REGS);
4331 if (*(REGISTER_NAME (regnum)) == '\0')
4332 error ("Not a valid register for the current processor type");
4334 mips_print_register (file, frame, regnum, 0);
4335 fprintf_filtered (file, "\n");
4338 /* do all (or most) registers */
4341 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4343 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4345 if (all) /* true for "INFO ALL-REGISTERS" command */
4346 regnum = print_fp_register_row (file, frame, regnum);
4348 regnum += MIPS_NUMREGS; /* skip floating point regs */
4351 regnum = print_gp_register_row (file, frame, regnum);
4356 /* Is this a branch with a delay slot? */
4358 static int is_delayed (unsigned long);
4361 is_delayed (unsigned long insn)
4364 for (i = 0; i < NUMOPCODES; ++i)
4365 if (mips_opcodes[i].pinfo != INSN_MACRO
4366 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4368 return (i < NUMOPCODES
4369 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4370 | INSN_COND_BRANCH_DELAY
4371 | INSN_COND_BRANCH_LIKELY)));
4375 mips_step_skips_delay (CORE_ADDR pc)
4377 char buf[MIPS_INSTLEN];
4379 /* There is no branch delay slot on MIPS16. */
4380 if (pc_is_mips16 (pc))
4383 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4384 /* If error reading memory, guess that it is not a delayed branch. */
4386 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4390 /* Skip the PC past function prologue instructions (32-bit version).
4391 This is a helper function for mips_skip_prologue. */
4394 mips32_skip_prologue (CORE_ADDR pc)
4398 int seen_sp_adjust = 0;
4399 int load_immediate_bytes = 0;
4401 /* Skip the typical prologue instructions. These are the stack adjustment
4402 instruction and the instructions that save registers on the stack
4403 or in the gcc frame. */
4404 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4406 unsigned long high_word;
4408 inst = mips_fetch_instruction (pc);
4409 high_word = (inst >> 16) & 0xffff;
4411 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4412 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4414 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4415 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4417 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4418 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4419 && (inst & 0x001F0000)) /* reg != $zero */
4422 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4424 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4426 continue; /* reg != $zero */
4428 /* move $s8,$sp. With different versions of gas this will be either
4429 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4430 Accept any one of these. */
4431 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4434 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4436 else if (high_word == 0x3c1c) /* lui $gp,n */
4438 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4440 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4441 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4443 /* The following instructions load $at or $t0 with an immediate
4444 value in preparation for a stack adjustment via
4445 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4446 a local variable, so we accept them only before a stack adjustment
4447 instruction was seen. */
4448 else if (!seen_sp_adjust)
4450 if (high_word == 0x3c01 || /* lui $at,n */
4451 high_word == 0x3c08) /* lui $t0,n */
4453 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4456 else if (high_word == 0x3421 || /* ori $at,$at,n */
4457 high_word == 0x3508 || /* ori $t0,$t0,n */
4458 high_word == 0x3401 || /* ori $at,$zero,n */
4459 high_word == 0x3408) /* ori $t0,$zero,n */
4461 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4471 /* In a frameless function, we might have incorrectly
4472 skipped some load immediate instructions. Undo the skipping
4473 if the load immediate was not followed by a stack adjustment. */
4474 if (load_immediate_bytes && !seen_sp_adjust)
4475 pc -= load_immediate_bytes;
4479 /* Skip the PC past function prologue instructions (16-bit version).
4480 This is a helper function for mips_skip_prologue. */
4483 mips16_skip_prologue (CORE_ADDR pc)
4486 int extend_bytes = 0;
4487 int prev_extend_bytes;
4489 /* Table of instructions likely to be found in a function prologue. */
4492 unsigned short inst;
4493 unsigned short mask;
4500 , /* addiu $sp,offset */
4504 , /* daddiu $sp,offset */
4508 , /* sw reg,n($sp) */
4512 , /* sd reg,n($sp) */
4516 , /* sw $ra,n($sp) */
4520 , /* sd $ra,n($sp) */
4528 , /* sw $a0-$a3,n($s1) */
4532 , /* move reg,$a0-$a3 */
4536 , /* entry pseudo-op */
4540 , /* addiu $s1,$sp,n */
4543 } /* end of table marker */
4546 /* Skip the typical prologue instructions. These are the stack adjustment
4547 instruction and the instructions that save registers on the stack
4548 or in the gcc frame. */
4549 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4551 unsigned short inst;
4554 inst = mips_fetch_instruction (pc);
4556 /* Normally we ignore an extend instruction. However, if it is
4557 not followed by a valid prologue instruction, we must adjust
4558 the pc back over the extend so that it won't be considered
4559 part of the prologue. */
4560 if ((inst & 0xf800) == 0xf000) /* extend */
4562 extend_bytes = MIPS16_INSTLEN;
4565 prev_extend_bytes = extend_bytes;
4568 /* Check for other valid prologue instructions besides extend. */
4569 for (i = 0; table[i].mask != 0; i++)
4570 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4572 if (table[i].mask != 0) /* it was in table? */
4573 continue; /* ignore it */
4577 /* Return the current pc, adjusted backwards by 2 if
4578 the previous instruction was an extend. */
4579 return pc - prev_extend_bytes;
4585 /* To skip prologues, I use this predicate. Returns either PC itself
4586 if the code at PC does not look like a function prologue; otherwise
4587 returns an address that (if we're lucky) follows the prologue. If
4588 LENIENT, then we must skip everything which is involved in setting
4589 up the frame (it's OK to skip more, just so long as we don't skip
4590 anything which might clobber the registers which are being saved.
4591 We must skip more in the case where part of the prologue is in the
4592 delay slot of a non-prologue instruction). */
4595 mips_skip_prologue (CORE_ADDR pc)
4597 /* See if we can determine the end of the prologue via the symbol table.
4598 If so, then return either PC, or the PC after the prologue, whichever
4601 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4603 if (post_prologue_pc != 0)
4604 return max (pc, post_prologue_pc);
4606 /* Can't determine prologue from the symbol table, need to examine
4609 if (pc_is_mips16 (pc))
4610 return mips16_skip_prologue (pc);
4612 return mips32_skip_prologue (pc);
4615 /* Determine how a return value is stored within the MIPS register
4616 file, given the return type `valtype'. */
4618 struct return_value_word
4627 return_value_location (struct type *valtype,
4628 struct return_value_word *hi,
4629 struct return_value_word *lo)
4631 int len = TYPE_LENGTH (valtype);
4633 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4634 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4635 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4637 if (!FP_REGISTER_DOUBLE && len == 8)
4639 /* We need to break a 64bit float in two 32 bit halves and
4640 spread them across a floating-point register pair. */
4641 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4642 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4643 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4644 && DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4646 hi->reg_offset = lo->reg_offset;
4647 lo->reg = FP0_REGNUM + 0;
4648 hi->reg = FP0_REGNUM + 1;
4654 /* The floating point value fits in a single floating-point
4656 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4657 && DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4660 lo->reg = FP0_REGNUM;
4671 /* Locate a result possibly spread across two registers. */
4673 lo->reg = regnum + 0;
4674 hi->reg = regnum + 1;
4675 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4676 && len < MIPS_SAVED_REGSIZE)
4678 /* "un-left-justify" the value in the low register */
4679 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4684 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4685 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4686 && len < MIPS_SAVED_REGSIZE * 2
4687 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4688 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4690 /* "un-left-justify" the value spread across two registers. */
4691 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4692 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4694 hi->len = len - lo->len;
4698 /* Only perform a partial copy of the second register. */
4701 if (len > MIPS_SAVED_REGSIZE)
4703 lo->len = MIPS_SAVED_REGSIZE;
4704 hi->len = len - MIPS_SAVED_REGSIZE;
4712 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4713 && DEPRECATED_REGISTER_RAW_SIZE (regnum) == 8
4714 && MIPS_SAVED_REGSIZE == 4)
4716 /* Account for the fact that only the least-signficant part
4717 of the register is being used */
4718 lo->reg_offset += 4;
4719 hi->reg_offset += 4;
4722 hi->buf_offset = lo->len;
4726 /* Given a return value in `regbuf' with a type `valtype', extract and
4727 copy its value into `valbuf'. */
4730 mips_eabi_extract_return_value (struct type *valtype,
4734 struct return_value_word lo;
4735 struct return_value_word hi;
4736 return_value_location (valtype, &hi, &lo);
4738 memcpy (valbuf + lo.buf_offset,
4739 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
4743 memcpy (valbuf + hi.buf_offset,
4744 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
4749 mips_o64_extract_return_value (struct type *valtype,
4753 struct return_value_word lo;
4754 struct return_value_word hi;
4755 return_value_location (valtype, &hi, &lo);
4757 memcpy (valbuf + lo.buf_offset,
4758 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
4762 memcpy (valbuf + hi.buf_offset,
4763 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
4767 /* Given a return value in `valbuf' with a type `valtype', write it's
4768 value into the appropriate register. */
4771 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4773 char raw_buffer[MAX_REGISTER_SIZE];
4774 struct return_value_word lo;
4775 struct return_value_word hi;
4776 return_value_location (valtype, &hi, &lo);
4778 memset (raw_buffer, 0, sizeof (raw_buffer));
4779 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4780 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4781 DEPRECATED_REGISTER_RAW_SIZE (lo.reg));
4785 memset (raw_buffer, 0, sizeof (raw_buffer));
4786 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4787 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4788 DEPRECATED_REGISTER_RAW_SIZE (hi.reg));
4793 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4795 char raw_buffer[MAX_REGISTER_SIZE];
4796 struct return_value_word lo;
4797 struct return_value_word hi;
4798 return_value_location (valtype, &hi, &lo);
4800 memset (raw_buffer, 0, sizeof (raw_buffer));
4801 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4802 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4803 DEPRECATED_REGISTER_RAW_SIZE (lo.reg));
4807 memset (raw_buffer, 0, sizeof (raw_buffer));
4808 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4809 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4810 DEPRECATED_REGISTER_RAW_SIZE (hi.reg));
4814 /* O32 ABI stuff. */
4817 mips_o32_xfer_return_value (struct type *type,
4818 struct regcache *regcache,
4819 bfd_byte *in, const bfd_byte *out)
4821 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4822 if (TYPE_CODE (type) == TYPE_CODE_FLT
4823 && TYPE_LENGTH (type) == 4
4824 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4826 /* A single-precision floating-point value. It fits in the
4827 least significant part of FP0. */
4829 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4830 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4831 TARGET_BYTE_ORDER, in, out, 0);
4833 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4834 && TYPE_LENGTH (type) == 8
4835 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4837 /* A double-precision floating-point value. The most
4838 significant part goes in FP1, and the least significant in
4841 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4842 switch (TARGET_BYTE_ORDER)
4844 case BFD_ENDIAN_LITTLE:
4845 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4846 TARGET_BYTE_ORDER, in, out, 0);
4847 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4848 TARGET_BYTE_ORDER, in, out, 4);
4850 case BFD_ENDIAN_BIG:
4851 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4852 TARGET_BYTE_ORDER, in, out, 0);
4853 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4854 TARGET_BYTE_ORDER, in, out, 4);
4857 internal_error (__FILE__, __LINE__, "bad switch");
4861 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4862 && TYPE_NFIELDS (type) <= 2
4863 && TYPE_NFIELDS (type) >= 1
4864 && ((TYPE_NFIELDS (type) == 1
4865 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4867 || (TYPE_NFIELDS (type) == 2
4868 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4870 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4872 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4874 /* A struct that contains one or two floats. Each value is part
4875 in the least significant part of their floating point
4877 bfd_byte reg[MAX_REGISTER_SIZE];
4880 for (field = 0, regnum = FP0_REGNUM;
4881 field < TYPE_NFIELDS (type);
4882 field++, regnum += 2)
4884 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4887 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4888 mips_xfer_register (regcache, NUM_REGS + regnum,
4889 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4890 TARGET_BYTE_ORDER, in, out, offset);
4895 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4896 || TYPE_CODE (type) == TYPE_CODE_UNION)
4898 /* A structure or union. Extract the left justified value,
4899 regardless of the byte order. I.e. DO NOT USE
4903 for (offset = 0, regnum = V0_REGNUM;
4904 offset < TYPE_LENGTH (type);
4905 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
4907 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
4908 if (offset + xfer > TYPE_LENGTH (type))
4909 xfer = TYPE_LENGTH (type) - offset;
4911 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4912 offset, xfer, regnum);
4913 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4914 BFD_ENDIAN_UNKNOWN, in, out, offset);
4920 /* A scalar extract each part but least-significant-byte
4921 justified. o32 thinks registers are 4 byte, regardless of
4922 the ISA. mips_stack_argsize controls this. */
4925 for (offset = 0, regnum = V0_REGNUM;
4926 offset < TYPE_LENGTH (type);
4927 offset += mips_stack_argsize (), regnum++)
4929 int xfer = mips_stack_argsize ();
4931 if (offset + xfer > TYPE_LENGTH (type))
4932 xfer = TYPE_LENGTH (type) - offset;
4934 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4935 offset, xfer, regnum);
4936 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4937 TARGET_BYTE_ORDER, in, out, offset);
4943 mips_o32_extract_return_value (struct type *type,
4944 struct regcache *regcache,
4947 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4951 mips_o32_store_return_value (struct type *type, char *valbuf)
4953 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4956 /* N32/N44 ABI stuff. */
4959 mips_n32n64_xfer_return_value (struct type *type,
4960 struct regcache *regcache,
4961 bfd_byte *in, const bfd_byte *out)
4963 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4964 if (TYPE_CODE (type) == TYPE_CODE_FLT
4965 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4967 /* A floating-point value belongs in the least significant part
4970 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4971 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4972 TARGET_BYTE_ORDER, in, out, 0);
4974 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4975 && TYPE_NFIELDS (type) <= 2
4976 && TYPE_NFIELDS (type) >= 1
4977 && ((TYPE_NFIELDS (type) == 1
4978 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4980 || (TYPE_NFIELDS (type) == 2
4981 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4983 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4985 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4987 /* A struct that contains one or two floats. Each value is part
4988 in the least significant part of their floating point
4990 bfd_byte reg[MAX_REGISTER_SIZE];
4993 for (field = 0, regnum = FP0_REGNUM;
4994 field < TYPE_NFIELDS (type);
4995 field++, regnum += 2)
4997 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5000 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
5001 mips_xfer_register (regcache, NUM_REGS + regnum,
5002 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5003 TARGET_BYTE_ORDER, in, out, offset);
5006 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5007 || TYPE_CODE (type) == TYPE_CODE_UNION)
5009 /* A structure or union. Extract the left justified value,
5010 regardless of the byte order. I.e. DO NOT USE
5014 for (offset = 0, regnum = V0_REGNUM;
5015 offset < TYPE_LENGTH (type);
5016 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
5018 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
5019 if (offset + xfer > TYPE_LENGTH (type))
5020 xfer = TYPE_LENGTH (type) - offset;
5022 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5023 offset, xfer, regnum);
5024 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5025 BFD_ENDIAN_UNKNOWN, in, out, offset);
5030 /* A scalar extract each part but least-significant-byte
5034 for (offset = 0, regnum = V0_REGNUM;
5035 offset < TYPE_LENGTH (type);
5036 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
5038 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
5040 if (offset + xfer > TYPE_LENGTH (type))
5041 xfer = TYPE_LENGTH (type) - offset;
5043 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5044 offset, xfer, regnum);
5045 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5046 TARGET_BYTE_ORDER, in, out, offset);
5052 mips_n32n64_extract_return_value (struct type *type,
5053 struct regcache *regcache,
5056 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
5060 mips_n32n64_store_return_value (struct type *type, char *valbuf)
5062 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
5066 mips_extract_struct_value_address (struct regcache *regcache)
5068 /* FIXME: This will only work at random. The caller passes the
5069 struct_return address in V0, but it is not preserved. It may
5070 still be there, or this may be a random value. */
5073 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
5077 /* Exported procedure: Is PC in the signal trampoline code */
5080 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
5082 if (sigtramp_address == 0)
5084 return (pc >= sigtramp_address && pc < sigtramp_end);
5087 /* Root of all "set mips "/"show mips " commands. This will eventually be
5088 used for all MIPS-specific commands. */
5091 show_mips_command (char *args, int from_tty)
5093 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5097 set_mips_command (char *args, int from_tty)
5099 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5100 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5103 /* Commands to show/set the MIPS FPU type. */
5106 show_mipsfpu_command (char *args, int from_tty)
5109 switch (MIPS_FPU_TYPE)
5111 case MIPS_FPU_SINGLE:
5112 fpu = "single-precision";
5114 case MIPS_FPU_DOUBLE:
5115 fpu = "double-precision";
5118 fpu = "absent (none)";
5121 internal_error (__FILE__, __LINE__, "bad switch");
5123 if (mips_fpu_type_auto)
5124 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5127 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5133 set_mipsfpu_command (char *args, int from_tty)
5135 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5136 show_mipsfpu_command (args, from_tty);
5140 set_mipsfpu_single_command (char *args, int from_tty)
5142 mips_fpu_type = MIPS_FPU_SINGLE;
5143 mips_fpu_type_auto = 0;
5144 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5148 set_mipsfpu_double_command (char *args, int from_tty)
5150 mips_fpu_type = MIPS_FPU_DOUBLE;
5151 mips_fpu_type_auto = 0;
5152 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5156 set_mipsfpu_none_command (char *args, int from_tty)
5158 mips_fpu_type = MIPS_FPU_NONE;
5159 mips_fpu_type_auto = 0;
5160 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5164 set_mipsfpu_auto_command (char *args, int from_tty)
5166 mips_fpu_type_auto = 1;
5169 /* Command to set the processor type. */
5172 mips_set_processor_type_command (char *args, int from_tty)
5176 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5178 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5179 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5180 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5182 /* Restore the value. */
5183 tmp_mips_processor_type = xstrdup (mips_processor_type);
5188 if (!mips_set_processor_type (tmp_mips_processor_type))
5190 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5191 /* Restore its value. */
5192 tmp_mips_processor_type = xstrdup (mips_processor_type);
5197 mips_show_processor_type_command (char *args, int from_tty)
5201 /* Modify the actual processor type. */
5204 mips_set_processor_type (char *str)
5211 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5213 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5215 mips_processor_type = str;
5216 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5218 /* FIXME tweak fpu flag too */
5225 /* Attempt to identify the particular processor model by reading the
5229 mips_read_processor_type (void)
5233 prid = read_register (PRID_REGNUM);
5235 if ((prid & ~0xf) == 0x700)
5236 return savestring ("r3041", strlen ("r3041"));
5241 /* Just like reinit_frame_cache, but with the right arguments to be
5242 callable as an sfunc. */
5245 reinit_frame_cache_sfunc (char *args, int from_tty,
5246 struct cmd_list_element *c)
5248 reinit_frame_cache ();
5252 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5254 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5255 mips_extra_func_info_t proc_desc;
5257 /* Search for the function containing this address. Set the low bit
5258 of the address when searching, in case we were given an even address
5259 that is the start of a 16-bit function. If we didn't do this,
5260 the search would fail because the symbol table says the function
5261 starts at an odd address, i.e. 1 byte past the given address. */
5262 memaddr = ADDR_BITS_REMOVE (memaddr);
5263 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5265 /* Make an attempt to determine if this is a 16-bit function. If
5266 the procedure descriptor exists and the address therein is odd,
5267 it's definitely a 16-bit function. Otherwise, we have to just
5268 guess that if the address passed in is odd, it's 16-bits. */
5269 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5270 disassembler needs to be able to locally determine the ISA, and
5271 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5275 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5276 info->mach = bfd_mach_mips16;
5280 if (pc_is_mips16 (memaddr))
5281 info->mach = bfd_mach_mips16;
5284 /* Round down the instruction address to the appropriate boundary. */
5285 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5287 /* Set the disassembler options. */
5288 if (tdep->mips_abi == MIPS_ABI_N32
5289 || tdep->mips_abi == MIPS_ABI_N64)
5291 /* Set up the disassembler info, so that we get the right
5292 register names from libopcodes. */
5293 if (tdep->mips_abi == MIPS_ABI_N32)
5294 info->disassembler_options = "gpr-names=n32";
5296 info->disassembler_options = "gpr-names=64";
5297 info->flavour = bfd_target_elf_flavour;
5300 /* This string is not recognized explicitly by the disassembler,
5301 but it tells the disassembler to not try to guess the ABI from
5302 the bfd elf headers, such that, if the user overrides the ABI
5303 of a program linked as NewABI, the disassembly will follow the
5304 register naming conventions specified by the user. */
5305 info->disassembler_options = "gpr-names=32";
5307 /* Call the appropriate disassembler based on the target endian-ness. */
5308 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5309 return print_insn_big_mips (memaddr, info);
5311 return print_insn_little_mips (memaddr, info);
5314 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5315 counter value to determine whether a 16- or 32-bit breakpoint should be
5316 used. It returns a pointer to a string of bytes that encode a breakpoint
5317 instruction, stores the length of the string to *lenptr, and adjusts pc
5318 (if necessary) to point to the actual memory location where the
5319 breakpoint should be inserted. */
5321 static const unsigned char *
5322 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5324 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5326 if (pc_is_mips16 (*pcptr))
5328 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5329 *pcptr = unmake_mips16_addr (*pcptr);
5330 *lenptr = sizeof (mips16_big_breakpoint);
5331 return mips16_big_breakpoint;
5335 /* The IDT board uses an unusual breakpoint value, and
5336 sometimes gets confused when it sees the usual MIPS
5337 breakpoint instruction. */
5338 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5339 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5340 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5342 *lenptr = sizeof (big_breakpoint);
5344 if (strcmp (target_shortname, "mips") == 0)
5345 return idt_big_breakpoint;
5346 else if (strcmp (target_shortname, "ddb") == 0
5347 || strcmp (target_shortname, "pmon") == 0
5348 || strcmp (target_shortname, "lsi") == 0)
5349 return pmon_big_breakpoint;
5351 return big_breakpoint;
5356 if (pc_is_mips16 (*pcptr))
5358 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5359 *pcptr = unmake_mips16_addr (*pcptr);
5360 *lenptr = sizeof (mips16_little_breakpoint);
5361 return mips16_little_breakpoint;
5365 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5366 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5367 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5369 *lenptr = sizeof (little_breakpoint);
5371 if (strcmp (target_shortname, "mips") == 0)
5372 return idt_little_breakpoint;
5373 else if (strcmp (target_shortname, "ddb") == 0
5374 || strcmp (target_shortname, "pmon") == 0
5375 || strcmp (target_shortname, "lsi") == 0)
5376 return pmon_little_breakpoint;
5378 return little_breakpoint;
5383 /* If PC is in a mips16 call or return stub, return the address of the target
5384 PC, which is either the callee or the caller. There are several
5385 cases which must be handled:
5387 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5388 target PC is in $31 ($ra).
5389 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5390 and the target PC is in $2.
5391 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5392 before the jal instruction, this is effectively a call stub
5393 and the the target PC is in $2. Otherwise this is effectively
5394 a return stub and the target PC is in $18.
5396 See the source code for the stubs in gcc/config/mips/mips16.S for
5399 This function implements the SKIP_TRAMPOLINE_CODE macro.
5403 mips_skip_stub (CORE_ADDR pc)
5406 CORE_ADDR start_addr;
5408 /* Find the starting address and name of the function containing the PC. */
5409 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5412 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5413 target PC is in $31 ($ra). */
5414 if (strcmp (name, "__mips16_ret_sf") == 0
5415 || strcmp (name, "__mips16_ret_df") == 0)
5416 return read_signed_register (RA_REGNUM);
5418 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5420 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5421 and the target PC is in $2. */
5422 if (name[19] >= '0' && name[19] <= '9')
5423 return read_signed_register (2);
5425 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5426 before the jal instruction, this is effectively a call stub
5427 and the the target PC is in $2. Otherwise this is effectively
5428 a return stub and the target PC is in $18. */
5429 else if (name[19] == 's' || name[19] == 'd')
5431 if (pc == start_addr)
5433 /* Check if the target of the stub is a compiler-generated
5434 stub. Such a stub for a function bar might have a name
5435 like __fn_stub_bar, and might look like this:
5440 la $1,bar (becomes a lui/addiu pair)
5442 So scan down to the lui/addi and extract the target
5443 address from those two instructions. */
5445 CORE_ADDR target_pc = read_signed_register (2);
5449 /* See if the name of the target function is __fn_stub_*. */
5450 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5452 if (strncmp (name, "__fn_stub_", 10) != 0
5453 && strcmp (name, "etext") != 0
5454 && strcmp (name, "_etext") != 0)
5457 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5458 The limit on the search is arbitrarily set to 20
5459 instructions. FIXME. */
5460 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5462 inst = mips_fetch_instruction (target_pc);
5463 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5464 pc = (inst << 16) & 0xffff0000; /* high word */
5465 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5466 return pc | (inst & 0xffff); /* low word */
5469 /* Couldn't find the lui/addui pair, so return stub address. */
5473 /* This is the 'return' part of a call stub. The return
5474 address is in $r18. */
5475 return read_signed_register (18);
5478 return 0; /* not a stub */
5482 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5483 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5486 mips_in_call_stub (CORE_ADDR pc, char *name)
5488 CORE_ADDR start_addr;
5490 /* Find the starting address of the function containing the PC. If the
5491 caller didn't give us a name, look it up at the same time. */
5492 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5495 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5497 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5498 if (name[19] >= '0' && name[19] <= '9')
5500 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5501 before the jal instruction, this is effectively a call stub. */
5502 else if (name[19] == 's' || name[19] == 'd')
5503 return pc == start_addr;
5506 return 0; /* not a stub */
5510 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5511 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5514 mips_in_return_stub (CORE_ADDR pc, char *name)
5516 CORE_ADDR start_addr;
5518 /* Find the starting address of the function containing the PC. */
5519 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5522 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5523 if (strcmp (name, "__mips16_ret_sf") == 0
5524 || strcmp (name, "__mips16_ret_df") == 0)
5527 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5528 i.e. after the jal instruction, this is effectively a return stub. */
5529 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5530 && (name[19] == 's' || name[19] == 'd')
5531 && pc != start_addr)
5534 return 0; /* not a stub */
5538 /* Return non-zero if the PC is in a library helper function that should
5539 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5542 mips_ignore_helper (CORE_ADDR pc)
5546 /* Find the starting address and name of the function containing the PC. */
5547 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5550 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5551 that we want to ignore. */
5552 return (strcmp (name, "__mips16_ret_sf") == 0
5553 || strcmp (name, "__mips16_ret_df") == 0);
5557 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5558 the register stored on the stack (32) is different to its real raw
5559 size (64). The below ensures that registers are fetched from the
5560 stack using their ABI size and then stored into the RAW_BUFFER
5561 using their raw size.
5563 The alternative to adding this function would be to add an ABI
5564 macro - REGISTER_STACK_SIZE(). */
5567 mips_get_saved_register (char *raw_buffer,
5570 struct frame_info *frame,
5572 enum lval_type *lvalp)
5575 enum lval_type lvalx;
5579 /* Always a pseudo. */
5580 gdb_assert (regnum >= NUM_REGS);
5582 /* Make certain that all needed parameters are present. */
5587 if (optimizedp == NULL)
5588 optimizedp = &optimizedx;
5590 if ((regnum % NUM_REGS) == SP_REGNUM)
5591 /* The SP_REGNUM is special, its value is stored in saved_regs.
5592 In fact, it is so special that it can even only be fetched
5593 using a raw register number! Once this code as been converted
5594 to frame-unwind the problem goes away. */
5595 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5596 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5597 &realnumx, raw_buffer);
5599 /* Get it from the next frame. */
5600 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5601 regnum, optimizedp, lvalp, addrp,
5602 &realnumx, raw_buffer);
5605 /* Immediately after a function call, return the saved pc.
5606 Can't always go through the frames for this because on some machines
5607 the new frame is not set up until the new function executes
5608 some instructions. */
5611 mips_saved_pc_after_call (struct frame_info *frame)
5613 return read_signed_register (RA_REGNUM);
5617 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5618 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5621 mips_stab_reg_to_regnum (int num)
5624 if (num >= 0 && num < 32)
5626 else if (num >= 38 && num < 70)
5627 regnum = num + FP0_REGNUM - 38;
5633 /* This will hopefully (eventually) provoke a warning. Should
5634 we be calling complaint() here? */
5635 return NUM_REGS + NUM_PSEUDO_REGS;
5636 return NUM_REGS + regnum;
5640 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5641 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5644 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5647 if (num >= 0 && num < 32)
5649 else if (num >= 32 && num < 64)
5650 regnum = num + FP0_REGNUM - 32;
5656 /* This will hopefully (eventually) provoke a warning. Should we
5657 be calling complaint() here? */
5658 return NUM_REGS + NUM_PSEUDO_REGS;
5659 return NUM_REGS + regnum;
5663 mips_register_sim_regno (int regnum)
5665 /* Only makes sense to supply raw registers. */
5666 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5667 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5668 decide if it is valid. Should instead define a standard sim/gdb
5669 register numbering scheme. */
5670 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5671 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5674 return LEGACY_SIM_REGNO_IGNORE;
5678 /* Convert an integer into an address. By first converting the value
5679 into a pointer and then extracting it signed, the address is
5680 guarenteed to be correctly sign extended. */
5683 mips_integer_to_address (struct type *type, void *buf)
5685 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5686 LONGEST val = unpack_long (type, buf);
5687 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5688 return extract_signed_integer (tmp,
5689 TYPE_LENGTH (builtin_type_void_data_ptr));
5693 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5695 enum mips_abi *abip = (enum mips_abi *) obj;
5696 const char *name = bfd_get_section_name (abfd, sect);
5698 if (*abip != MIPS_ABI_UNKNOWN)
5701 if (strncmp (name, ".mdebug.", 8) != 0)
5704 if (strcmp (name, ".mdebug.abi32") == 0)
5705 *abip = MIPS_ABI_O32;
5706 else if (strcmp (name, ".mdebug.abiN32") == 0)
5707 *abip = MIPS_ABI_N32;
5708 else if (strcmp (name, ".mdebug.abi64") == 0)
5709 *abip = MIPS_ABI_N64;
5710 else if (strcmp (name, ".mdebug.abiO64") == 0)
5711 *abip = MIPS_ABI_O64;
5712 else if (strcmp (name, ".mdebug.eabi32") == 0)
5713 *abip = MIPS_ABI_EABI32;
5714 else if (strcmp (name, ".mdebug.eabi64") == 0)
5715 *abip = MIPS_ABI_EABI64;
5717 warning ("unsupported ABI %s.", name + 8);
5720 static enum mips_abi
5721 global_mips_abi (void)
5725 for (i = 0; mips_abi_strings[i] != NULL; i++)
5726 if (mips_abi_strings[i] == mips_abi_string)
5727 return (enum mips_abi) i;
5729 internal_error (__FILE__, __LINE__,
5730 "unknown ABI string");
5733 static struct gdbarch *
5734 mips_gdbarch_init (struct gdbarch_info info,
5735 struct gdbarch_list *arches)
5737 struct gdbarch *gdbarch;
5738 struct gdbarch_tdep *tdep;
5740 enum mips_abi mips_abi, found_abi, wanted_abi;
5747 /* First of all, extract the elf_flags, if available. */
5748 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5749 elf_flags = elf_elfheader (info.abfd)->e_flags;
5752 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5753 switch ((elf_flags & EF_MIPS_ABI))
5755 case E_MIPS_ABI_O32:
5756 mips_abi = MIPS_ABI_O32;
5758 case E_MIPS_ABI_O64:
5759 mips_abi = MIPS_ABI_O64;
5761 case E_MIPS_ABI_EABI32:
5762 mips_abi = MIPS_ABI_EABI32;
5764 case E_MIPS_ABI_EABI64:
5765 mips_abi = MIPS_ABI_EABI64;
5768 if ((elf_flags & EF_MIPS_ABI2))
5769 mips_abi = MIPS_ABI_N32;
5771 mips_abi = MIPS_ABI_UNKNOWN;
5775 /* GCC creates a pseudo-section whose name describes the ABI. */
5776 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5777 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5779 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5780 Use the ABI from the last architecture if there is one. */
5781 if (info.abfd == NULL && arches != NULL)
5782 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5784 /* Try the architecture for any hint of the correct ABI. */
5785 if (mips_abi == MIPS_ABI_UNKNOWN
5786 && info.bfd_arch_info != NULL
5787 && info.bfd_arch_info->arch == bfd_arch_mips)
5789 switch (info.bfd_arch_info->mach)
5791 case bfd_mach_mips3900:
5792 mips_abi = MIPS_ABI_EABI32;
5794 case bfd_mach_mips4100:
5795 case bfd_mach_mips5000:
5796 mips_abi = MIPS_ABI_EABI64;
5798 case bfd_mach_mips8000:
5799 case bfd_mach_mips10000:
5800 /* On Irix, ELF64 executables use the N64 ABI. The
5801 pseudo-sections which describe the ABI aren't present
5802 on IRIX. (Even for executables created by gcc.) */
5803 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5804 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5805 mips_abi = MIPS_ABI_N64;
5807 mips_abi = MIPS_ABI_N32;
5812 if (mips_abi == MIPS_ABI_UNKNOWN)
5813 mips_abi = MIPS_ABI_O32;
5815 /* Now that we have found what the ABI for this binary would be,
5816 check whether the user is overriding it. */
5817 found_abi = mips_abi;
5818 wanted_abi = global_mips_abi ();
5819 if (wanted_abi != MIPS_ABI_UNKNOWN)
5820 mips_abi = wanted_abi;
5824 fprintf_unfiltered (gdb_stdlog,
5825 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5827 fprintf_unfiltered (gdb_stdlog,
5828 "mips_gdbarch_init: mips_abi = %d\n",
5830 fprintf_unfiltered (gdb_stdlog,
5831 "mips_gdbarch_init: found_mips_abi = %d\n",
5835 /* try to find a pre-existing architecture */
5836 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5838 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5840 /* MIPS needs to be pedantic about which ABI the object is
5842 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5844 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5846 return arches->gdbarch;
5849 /* Need a new architecture. Fill in a target specific vector. */
5850 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5851 gdbarch = gdbarch_alloc (&info, tdep);
5852 tdep->elf_flags = elf_flags;
5854 /* Initially set everything according to the default ABI/ISA. */
5855 set_gdbarch_short_bit (gdbarch, 16);
5856 set_gdbarch_int_bit (gdbarch, 32);
5857 set_gdbarch_float_bit (gdbarch, 32);
5858 set_gdbarch_double_bit (gdbarch, 64);
5859 set_gdbarch_long_double_bit (gdbarch, 64);
5860 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
5861 set_gdbarch_deprecated_register_byte (gdbarch, mips_register_byte);
5862 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5863 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5864 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5865 tdep->found_abi = found_abi;
5866 tdep->mips_abi = mips_abi;
5868 set_gdbarch_elf_make_msymbol_special (gdbarch,
5869 mips_elf_make_msymbol_special);
5872 if (info.osabi == GDB_OSABI_IRIX)
5876 set_gdbarch_num_regs (gdbarch, num_regs);
5877 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5882 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5883 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5884 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5885 tdep->mips_default_saved_regsize = 4;
5886 tdep->mips_default_stack_argsize = 4;
5887 tdep->mips_fp_register_double = 0;
5888 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5889 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5890 tdep->gdb_target_is_mips64 = 0;
5891 tdep->default_mask_address_p = 0;
5892 set_gdbarch_long_bit (gdbarch, 32);
5893 set_gdbarch_ptr_bit (gdbarch, 32);
5894 set_gdbarch_long_long_bit (gdbarch, 64);
5895 set_gdbarch_deprecated_reg_struct_has_addr
5896 (gdbarch, mips_o32_reg_struct_has_addr);
5897 set_gdbarch_use_struct_convention (gdbarch,
5898 always_use_struct_convention);
5901 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5902 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5903 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5904 tdep->mips_default_saved_regsize = 8;
5905 tdep->mips_default_stack_argsize = 8;
5906 tdep->mips_fp_register_double = 1;
5907 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5908 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5909 tdep->gdb_target_is_mips64 = 1;
5910 tdep->default_mask_address_p = 0;
5911 set_gdbarch_long_bit (gdbarch, 32);
5912 set_gdbarch_ptr_bit (gdbarch, 32);
5913 set_gdbarch_long_long_bit (gdbarch, 64);
5914 set_gdbarch_deprecated_reg_struct_has_addr
5915 (gdbarch, mips_o32_reg_struct_has_addr);
5916 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5918 case MIPS_ABI_EABI32:
5919 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5920 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5921 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5922 tdep->mips_default_saved_regsize = 4;
5923 tdep->mips_default_stack_argsize = 4;
5924 tdep->mips_fp_register_double = 0;
5925 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5926 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5927 tdep->gdb_target_is_mips64 = 0;
5928 tdep->default_mask_address_p = 0;
5929 set_gdbarch_long_bit (gdbarch, 32);
5930 set_gdbarch_ptr_bit (gdbarch, 32);
5931 set_gdbarch_long_long_bit (gdbarch, 64);
5932 set_gdbarch_deprecated_reg_struct_has_addr
5933 (gdbarch, mips_eabi_reg_struct_has_addr);
5934 set_gdbarch_use_struct_convention (gdbarch,
5935 mips_eabi_use_struct_convention);
5937 case MIPS_ABI_EABI64:
5938 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5939 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5940 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5941 tdep->mips_default_saved_regsize = 8;
5942 tdep->mips_default_stack_argsize = 8;
5943 tdep->mips_fp_register_double = 1;
5944 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5945 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5946 tdep->gdb_target_is_mips64 = 1;
5947 tdep->default_mask_address_p = 0;
5948 set_gdbarch_long_bit (gdbarch, 64);
5949 set_gdbarch_ptr_bit (gdbarch, 64);
5950 set_gdbarch_long_long_bit (gdbarch, 64);
5951 set_gdbarch_deprecated_reg_struct_has_addr
5952 (gdbarch, mips_eabi_reg_struct_has_addr);
5953 set_gdbarch_use_struct_convention (gdbarch,
5954 mips_eabi_use_struct_convention);
5957 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5958 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5959 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5960 tdep->mips_default_saved_regsize = 8;
5961 tdep->mips_default_stack_argsize = 8;
5962 tdep->mips_fp_register_double = 1;
5963 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5964 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5965 tdep->gdb_target_is_mips64 = 1;
5966 tdep->default_mask_address_p = 0;
5967 set_gdbarch_long_bit (gdbarch, 32);
5968 set_gdbarch_ptr_bit (gdbarch, 32);
5969 set_gdbarch_long_long_bit (gdbarch, 64);
5970 set_gdbarch_use_struct_convention (gdbarch,
5971 mips_n32n64_use_struct_convention);
5972 set_gdbarch_deprecated_reg_struct_has_addr
5973 (gdbarch, mips_n32n64_reg_struct_has_addr);
5976 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5977 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5978 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5979 tdep->mips_default_saved_regsize = 8;
5980 tdep->mips_default_stack_argsize = 8;
5981 tdep->mips_fp_register_double = 1;
5982 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5983 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5984 tdep->gdb_target_is_mips64 = 1;
5985 tdep->default_mask_address_p = 0;
5986 set_gdbarch_long_bit (gdbarch, 64);
5987 set_gdbarch_ptr_bit (gdbarch, 64);
5988 set_gdbarch_long_long_bit (gdbarch, 64);
5989 set_gdbarch_use_struct_convention (gdbarch,
5990 mips_n32n64_use_struct_convention);
5991 set_gdbarch_deprecated_reg_struct_has_addr
5992 (gdbarch, mips_n32n64_reg_struct_has_addr);
5995 internal_error (__FILE__, __LINE__,
5996 "unknown ABI in switch");
5999 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
6000 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
6003 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
6004 flag in object files because to do so would make it impossible to
6005 link with libraries compiled without "-gp32". This is
6006 unnecessarily restrictive.
6008 We could solve this problem by adding "-gp32" multilibs to gcc,
6009 but to set this flag before gcc is built with such multilibs will
6010 break too many systems.''
6012 But even more unhelpfully, the default linker output target for
6013 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
6014 for 64-bit programs - you need to change the ABI to change this,
6015 and not all gcc targets support that currently. Therefore using
6016 this flag to detect 32-bit mode would do the wrong thing given
6017 the current gcc - it would make GDB treat these 64-bit programs
6018 as 32-bit programs by default. */
6020 /* enable/disable the MIPS FPU */
6021 if (!mips_fpu_type_auto)
6022 tdep->mips_fpu_type = mips_fpu_type;
6023 else if (info.bfd_arch_info != NULL
6024 && info.bfd_arch_info->arch == bfd_arch_mips)
6025 switch (info.bfd_arch_info->mach)
6027 case bfd_mach_mips3900:
6028 case bfd_mach_mips4100:
6029 case bfd_mach_mips4111:
6030 tdep->mips_fpu_type = MIPS_FPU_NONE;
6032 case bfd_mach_mips4650:
6033 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
6036 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6040 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6042 /* MIPS version of register names. NOTE: At present the MIPS
6043 register name management is part way between the old -
6044 #undef/#define MIPS_REGISTER_NAMES and the new REGISTER_NAME(nr).
6045 Further work on it is required. */
6046 set_gdbarch_register_name (gdbarch, mips_register_name);
6047 set_gdbarch_read_pc (gdbarch, mips_read_pc);
6048 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
6049 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
6050 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6052 /* Add/remove bits from an address. The MIPS needs be careful to
6053 ensure that all 32 bit addresses are sign extended to 64 bits. */
6054 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6056 /* There's a mess in stack frame creation. See comments in
6057 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6058 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
6060 /* Map debug register numbers onto internal register numbers. */
6061 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6062 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6063 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6064 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6065 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6067 /* Initialize a frame */
6068 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
6069 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
6071 /* MIPS version of CALL_DUMMY */
6073 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6074 replaced by a command, and all targets will default to on stack
6075 (regardless of the stack's execute status). */
6076 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6077 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
6078 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6079 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6080 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6081 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6082 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
6084 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
6085 set_gdbarch_frameless_function_invocation (gdbarch,
6086 generic_frameless_function_invocation_not);
6087 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6088 set_gdbarch_frame_args_skip (gdbarch, 0);
6090 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
6092 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6093 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6094 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6096 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6097 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6099 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6100 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6101 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6103 set_gdbarch_function_start_offset (gdbarch, 0);
6105 set_gdbarch_register_type (gdbarch, mips_register_type);
6107 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6108 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6110 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6112 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6113 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6114 need to all be folded into the target vector. Since they are
6115 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6116 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6118 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6120 /* Hook in OS ABI-specific overrides, if they have been registered. */
6121 gdbarch_init_osabi (info, gdbarch);
6123 set_gdbarch_extract_struct_value_address (gdbarch,
6124 mips_extract_struct_value_address);
6126 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6128 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6129 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6135 mips_abi_update (char *ignore_args, int from_tty,
6136 struct cmd_list_element *c)
6138 struct gdbarch_info info;
6140 /* Force the architecture to update, and (if it's a MIPS architecture)
6141 mips_gdbarch_init will take care of the rest. */
6142 gdbarch_info_init (&info);
6143 gdbarch_update_p (info);
6146 /* Print out which MIPS ABI is in use. */
6149 show_mips_abi (char *ignore_args, int from_tty)
6151 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6153 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6156 enum mips_abi global_abi = global_mips_abi ();
6157 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6158 const char *actual_abi_str = mips_abi_strings[actual_abi];
6160 if (global_abi == MIPS_ABI_UNKNOWN)
6161 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6163 else if (global_abi == actual_abi)
6165 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6169 /* Probably shouldn't happen... */
6171 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6173 mips_abi_strings[global_abi]);
6179 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6181 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6185 int ef_mips_32bitmode;
6186 /* determine the ISA */
6187 switch (tdep->elf_flags & EF_MIPS_ARCH)
6205 /* determine the size of a pointer */
6206 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: ef_mips_arch = %d\n",
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6219 mips_abi_strings[tdep->mips_abi]);
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6222 mips_mask_address_p (),
6223 tdep->default_mask_address_p);
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6227 FP_REGISTER_DOUBLE);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6230 MIPS_DEFAULT_FPU_TYPE,
6231 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6232 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6233 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MIPS_EABI = %d\n",
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6240 MIPS_LAST_FP_ARG_REGNUM,
6241 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6245 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6246 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6247 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6251 MIPS_DEFAULT_SAVED_REGSIZE);
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6254 FP_REGISTER_DOUBLE);
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6257 MIPS_DEFAULT_STACK_ARGSIZE);
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6260 MIPS_STACK_ARGSIZE);
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: A0_REGNUM = %d\n",
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6269 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6272 XSTRING (ATTACH_DETACH));
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6281 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6284 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6293 FIRST_EMBED_REGNUM);
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6299 GDB_TARGET_IS_MIPS64);
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: HI_REGNUM = %d\n",
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6305 XSTRING (IGNORE_HELPER_CALL (PC)));
6306 fprintf_unfiltered (file,
6307 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6308 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6311 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: LO_REGNUM = %d\n",
6318 #ifdef MACHINE_CPROC_FP_OFFSET
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6321 MACHINE_CPROC_FP_OFFSET);
6323 #ifdef MACHINE_CPROC_PC_OFFSET
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6326 MACHINE_CPROC_PC_OFFSET);
6328 #ifdef MACHINE_CPROC_SP_OFFSET
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6331 MACHINE_CPROC_SP_OFFSET);
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6338 fprintf_unfiltered (file,
6339 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6345 MIPS_LAST_ARG_REGNUM,
6346 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6354 MIPS_SAVED_REGSIZE);
6355 fprintf_unfiltered (file,
6356 "mips_dump_tdep: OP_LDFPR = used?\n");
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: OP_LDGPR = used?\n");
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: PRID_REGNUM = %d\n",
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6364 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: PROC_PC_REG = function?\n");
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: PS_REGNUM = %d\n",
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: RA_REGNUM = %d\n",
6396 fprintf_unfiltered (file,
6397 "mips_dump_tdep: SAVED_BYTES = %d\n",
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: SAVED_FP = %d\n",
6406 fprintf_unfiltered (file,
6407 "mips_dump_tdep: SAVED_PC = %d\n",
6410 fprintf_unfiltered (file,
6411 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6412 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6413 fprintf_unfiltered (file,
6414 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6415 fprintf_unfiltered (file,
6416 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6418 fprintf_unfiltered (file,
6419 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6420 SIGFRAME_FPREGSAVE_OFF);
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6424 fprintf_unfiltered (file,
6425 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6426 SIGFRAME_REGSAVE_OFF);
6427 fprintf_unfiltered (file,
6428 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6430 fprintf_unfiltered (file,
6431 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6432 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6433 fprintf_unfiltered (file,
6434 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6435 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6436 fprintf_unfiltered (file,
6437 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6438 SOFTWARE_SINGLE_STEP_P ());
6439 fprintf_unfiltered (file,
6440 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6441 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6442 #ifdef STACK_END_ADDR
6443 fprintf_unfiltered (file,
6444 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6447 fprintf_unfiltered (file,
6448 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6449 XSTRING (STEP_SKIPS_DELAY (PC)));
6450 fprintf_unfiltered (file,
6451 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6452 STEP_SKIPS_DELAY_P);
6453 fprintf_unfiltered (file,
6454 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6455 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6456 fprintf_unfiltered (file,
6457 "mips_dump_tdep: T9_REGNUM = %d\n",
6459 fprintf_unfiltered (file,
6460 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6461 fprintf_unfiltered (file,
6462 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6463 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6464 fprintf_unfiltered (file,
6465 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6466 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6468 fprintf_unfiltered (file,
6469 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6470 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6473 fprintf_unfiltered (file,
6474 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6477 #ifdef TRACE_FLAVOR_SIZE
6478 fprintf_unfiltered (file,
6479 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6483 fprintf_unfiltered (file,
6484 "mips_dump_tdep: TRACE_SET # %s\n",
6485 XSTRING (TRACE_SET (X,STATE)));
6487 #ifdef UNUSED_REGNUM
6488 fprintf_unfiltered (file,
6489 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6492 fprintf_unfiltered (file,
6493 "mips_dump_tdep: V0_REGNUM = %d\n",
6495 fprintf_unfiltered (file,
6496 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6497 (long) VM_MIN_ADDRESS);
6499 fprintf_unfiltered (file,
6500 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6503 fprintf_unfiltered (file,
6504 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6506 fprintf_unfiltered (file,
6507 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6511 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6514 _initialize_mips_tdep (void)
6516 static struct cmd_list_element *mipsfpulist = NULL;
6517 struct cmd_list_element *c;
6519 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6520 if (MIPS_ABI_LAST + 1
6521 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6522 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6524 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6526 /* Add root prefix command for all "set mips"/"show mips" commands */
6527 add_prefix_cmd ("mips", no_class, set_mips_command,
6528 "Various MIPS specific commands.",
6529 &setmipscmdlist, "set mips ", 0, &setlist);
6531 add_prefix_cmd ("mips", no_class, show_mips_command,
6532 "Various MIPS specific commands.",
6533 &showmipscmdlist, "show mips ", 0, &showlist);
6535 /* Allow the user to override the saved register size. */
6536 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6539 &mips_saved_regsize_string, "\
6540 Set size of general purpose registers saved on the stack.\n\
6541 This option can be set to one of:\n\
6542 32 - Force GDB to treat saved GP registers as 32-bit\n\
6543 64 - Force GDB to treat saved GP registers as 64-bit\n\
6544 auto - Allow GDB to use the target's default setting or autodetect the\n\
6545 saved GP register size from information contained in the executable.\n\
6550 /* Allow the user to override the argument stack size. */
6551 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6554 &mips_stack_argsize_string, "\
6555 Set the amount of stack space reserved for each argument.\n\
6556 This option can be set to one of:\n\
6557 32 - Force GDB to allocate 32-bit chunks per argument\n\
6558 64 - Force GDB to allocate 64-bit chunks per argument\n\
6559 auto - Allow GDB to determine the correct setting from the current\n\
6560 target and executable (default)",
6564 /* Allow the user to override the ABI. */
6565 c = add_set_enum_cmd
6566 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6567 "Set the ABI used by this program.\n"
6568 "This option can be set to one of:\n"
6569 " auto - the default ABI associated with the current binary\n"
6577 set_cmd_sfunc (c, mips_abi_update);
6578 add_cmd ("abi", class_obscure, show_mips_abi,
6579 "Show ABI in use by MIPS target", &showmipscmdlist);
6581 /* Let the user turn off floating point and set the fence post for
6582 heuristic_proc_start. */
6584 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6585 "Set use of MIPS floating-point coprocessor.",
6586 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6587 add_cmd ("single", class_support, set_mipsfpu_single_command,
6588 "Select single-precision MIPS floating-point coprocessor.",
6590 add_cmd ("double", class_support, set_mipsfpu_double_command,
6591 "Select double-precision MIPS floating-point coprocessor.",
6593 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6594 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6595 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6596 add_cmd ("none", class_support, set_mipsfpu_none_command,
6597 "Select no MIPS floating-point coprocessor.",
6599 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6600 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6601 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6602 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6603 "Select MIPS floating-point coprocessor automatically.",
6605 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6606 "Show current use of MIPS floating-point coprocessor target.",
6609 /* We really would like to have both "0" and "unlimited" work, but
6610 command.c doesn't deal with that. So make it a var_zinteger
6611 because the user can always use "999999" or some such for unlimited. */
6612 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6613 (char *) &heuristic_fence_post,
6615 Set the distance searched for the start of a function.\n\
6616 If you are debugging a stripped executable, GDB needs to search through the\n\
6617 program for the start of a function. This command sets the distance of the\n\
6618 search. The only need to set it is when debugging a stripped executable.",
6620 /* We need to throw away the frame cache when we set this, since it
6621 might change our ability to get backtraces. */
6622 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6623 add_show_from_set (c, &showlist);
6625 /* Allow the user to control whether the upper bits of 64-bit
6626 addresses should be zeroed. */
6627 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6628 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6629 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6630 allow GDB to determine the correct value.\n", "\
6631 Show zeroing of upper 32 bits of 64-bit addresses.",
6632 NULL, show_mask_address,
6633 &setmipscmdlist, &showmipscmdlist);
6635 /* Allow the user to control the size of 32 bit registers within the
6636 raw remote packet. */
6637 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6640 (char *)&mips64_transfers_32bit_regs_p, "\
6641 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6642 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6643 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6644 64 bits for others. Use \"off\" to disable compatibility mode",
6648 /* Debug this files internals. */
6649 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6650 &mips_debug, "Set mips debugging.\n\
6651 When non-zero, mips specific debugging is enabled.", &setdebuglist),