1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
32 #include "arch-utils.h"
36 #include "parser-defs.h"
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
44 #include "solib-svr4.h"
47 /* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
53 The following constants were determined by experimentation on AIX 3.2. */
54 #define SIG_FRAME_PC_OFFSET 96
55 #define SIG_FRAME_LR_OFFSET 108
56 #define SIG_FRAME_FP_OFFSET 284
58 /* To be used by skip_prologue. */
60 struct rs6000_framedata
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int saved_vr; /* smallest # of saved vr */
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
73 int vr_offset; /* offset of saved vrs from prev sp */
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
76 int vrsave_offset; /* offset of saved vrsave register */
79 /* Description of a single register. */
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
89 /* Return the current architecture's gdbarch_tdep structure. */
91 #define TDEP gdbarch_tdep (current_gdbarch)
93 /* Breakpoint shadows for the single step instructions will be kept here. */
95 static struct sstep_breaks
97 /* Address, or 0 if this is not in use. */
99 /* Shadow contents. */
104 /* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
108 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110 /* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
113 void (*rs6000_set_host_arch_hook) (int) = NULL;
115 /* Static function prototypes */
117 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
121 static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
125 /* Read a LEN-byte address from debugged memory address MEMADDR. */
128 read_memory_addr (CORE_ADDR memaddr, int len)
130 return read_memory_unsigned_integer (memaddr, len);
134 rs6000_skip_prologue (CORE_ADDR pc)
136 struct rs6000_framedata frame;
137 pc = skip_prologue (pc, 0, &frame);
142 /* Fill in fi->saved_regs */
144 struct frame_extra_info
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
151 CORE_ADDR initial_sp; /* initial stack pointer. */
155 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
157 fi->extra_info = (struct frame_extra_info *)
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
162 /* We're in get_prev_frame */
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
169 /* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
175 /* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
180 rs6000_frame_init_saved_regs (struct frame_info *fi)
182 frame_get_saved_regs (fi, NULL);
186 rs6000_frame_args_address (struct frame_info *fi)
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
191 return frame_initial_stack_address (fi);
194 /* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
200 rs6000_saved_pc_after_call (struct frame_info *fi)
202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
205 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
208 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
215 absolute = (int) ((instr >> 1) & 1);
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
224 dest = pc + immediate;
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
232 dest = pc + immediate;
236 ext_op = (instr >> 1) & 0x3ff;
238 if (ext_op == 16) /* br conditional register */
240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
248 struct frame_info *fi;
250 fi = get_current_frame ();
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
257 else if (ext_op == 528) /* br cond to count reg */
259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
278 /* Sequence of bytes for breakpoint instruction. */
280 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
283 static unsigned char *
284 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
290 return big_breakpoint;
292 return little_breakpoint;
296 /* AIX does not support PT_STEP. Simulate it. */
299 rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
302 #define INSNLEN(OPCODE) 4
304 static char le_breakp[] = LITTLE_BREAKPOINT;
305 static char be_breakp[] = BIG_BREAKPOINT;
306 char *breakp = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? be_breakp : le_breakp;
312 if (insert_breakpoints_p)
317 insn = read_memory_integer (loc, 4);
319 breaks[0] = loc + INSNLEN (insn);
321 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
323 /* Don't put two breakpoints on the same address. */
324 if (breaks[1] == breaks[0])
327 stepBreaks[1].address = 0;
329 for (ii = 0; ii < 2; ++ii)
332 /* ignore invalid breakpoint. */
333 if (breaks[ii] == -1)
336 read_memory (breaks[ii], stepBreaks[ii].data, 4);
338 write_memory (breaks[ii], breakp, 4);
339 stepBreaks[ii].address = breaks[ii];
346 /* remove step breakpoints. */
347 for (ii = 0; ii < 2; ++ii)
348 if (stepBreaks[ii].address != 0)
350 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
353 errno = 0; /* FIXME, don't ignore errors! */
354 /* What errors? {read,write}_memory call error(). */
358 /* return pc value after skipping a function prologue and also return
359 information about a function frame.
361 in struct rs6000_framedata fdata:
362 - frameless is TRUE, if function does not have a frame.
363 - nosavedpc is TRUE, if function does not save %pc value in its frame.
364 - offset is the initial size of this stack frame --- the amount by
365 which we decrement the sp to allocate the frame.
366 - saved_gpr is the number of the first saved gpr.
367 - saved_fpr is the number of the first saved fpr.
368 - saved_vr is the number of the first saved vr.
369 - alloca_reg is the number of the register used for alloca() handling.
371 - gpr_offset is the offset of the first saved gpr from the previous frame.
372 - fpr_offset is the offset of the first saved fpr from the previous frame.
373 - vr_offset is the offset of the first saved vr from the previous frame.
374 - lr_offset is the offset of the saved lr
375 - cr_offset is the offset of the saved cr
376 - vrsave_offset is the offset of the saved vrsave register
379 #define SIGNED_SHORT(x) \
380 ((sizeof (short) == 2) \
381 ? ((int)(short)(x)) \
382 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
384 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
386 /* Limit the number of skipped non-prologue instructions, as the examining
387 of the prologue is expensive. */
388 static int max_skip_non_prologue_insns = 10;
390 /* Given PC representing the starting address of a function, and
391 LIM_PC which is the (sloppy) limit to which to scan when looking
392 for a prologue, attempt to further refine this limit by using
393 the line data in the symbol table. If successful, a better guess
394 on where the prologue ends is returned, otherwise the previous
395 value of lim_pc is returned. */
397 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
399 struct symtab_and_line prologue_sal;
401 prologue_sal = find_pc_line (pc, 0);
402 if (prologue_sal.line != 0)
405 CORE_ADDR addr = prologue_sal.end;
407 /* Handle the case in which compiler's optimizer/scheduler
408 has moved instructions into the prologue. We scan ahead
409 in the function looking for address ranges whose corresponding
410 line number is less than or equal to the first one that we
411 found for the function. (It can be less than when the
412 scheduler puts a body instruction before the first prologue
414 for (i = 2 * max_skip_non_prologue_insns;
415 i > 0 && (lim_pc == 0 || addr < lim_pc);
418 struct symtab_and_line sal;
420 sal = find_pc_line (addr, 0);
423 if (sal.line <= prologue_sal.line
424 && sal.symtab == prologue_sal.symtab)
431 if (lim_pc == 0 || prologue_sal.end < lim_pc)
432 lim_pc = prologue_sal.end;
439 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
441 CORE_ADDR orig_pc = pc;
442 CORE_ADDR last_prologue_pc = pc;
443 CORE_ADDR li_found_pc = 0;
447 long vr_saved_offset = 0;
454 int minimal_toc_loaded = 0;
455 int prev_insn_was_prologue_insn = 1;
456 int num_skip_non_prologue_insns = 0;
458 /* Attempt to find the end of the prologue when no limit is specified.
459 Note that refine_prologue_limit() has been written so that it may
460 be used to "refine" the limits of non-zero PC values too, but this
461 is only safe if we 1) trust the line information provided by the
462 compiler and 2) iterate enough to actually find the end of the
465 It may become a good idea at some point (for both performance and
466 accuracy) to unconditionally call refine_prologue_limit(). But,
467 until we can make a clear determination that this is beneficial,
468 we'll play it safe and only use it to obtain a limit when none
469 has been specified. */
471 lim_pc = refine_prologue_limit (pc, lim_pc);
473 memset (fdata, 0, sizeof (struct rs6000_framedata));
474 fdata->saved_gpr = -1;
475 fdata->saved_fpr = -1;
476 fdata->saved_vr = -1;
477 fdata->alloca_reg = -1;
478 fdata->frameless = 1;
479 fdata->nosavedpc = 1;
483 /* Sometimes it isn't clear if an instruction is a prologue
484 instruction or not. When we encounter one of these ambiguous
485 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
486 Otherwise, we'll assume that it really is a prologue instruction. */
487 if (prev_insn_was_prologue_insn)
488 last_prologue_pc = pc;
490 /* Stop scanning if we've hit the limit. */
491 if (lim_pc != 0 && pc >= lim_pc)
494 prev_insn_was_prologue_insn = 1;
496 /* Fetch the instruction and convert it to an integer. */
497 if (target_read_memory (pc, buf, 4))
499 op = extract_signed_integer (buf, 4);
501 if ((op & 0xfc1fffff) == 0x7c0802a6)
503 lr_reg = (op & 0x03e00000) | 0x90010000;
507 else if ((op & 0xfc1fffff) == 0x7c000026)
509 cr_reg = (op & 0x03e00000) | 0x90010000;
513 else if ((op & 0xfc1f0000) == 0xd8010000)
514 { /* stfd Rx,NUM(r1) */
515 reg = GET_SRC_REG (op);
516 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
518 fdata->saved_fpr = reg;
519 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
524 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
525 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
526 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
527 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
530 reg = GET_SRC_REG (op);
531 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
533 fdata->saved_gpr = reg;
534 if ((op & 0xfc1f0003) == 0xf8010000)
536 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
541 else if ((op & 0xffff0000) == 0x60000000)
544 /* Allow nops in the prologue, but do not consider them to
545 be part of the prologue unless followed by other prologue
547 prev_insn_was_prologue_insn = 0;
551 else if ((op & 0xffff0000) == 0x3c000000)
552 { /* addis 0,0,NUM, used
554 fdata->offset = (op & 0x0000ffff) << 16;
555 fdata->frameless = 0;
559 else if ((op & 0xffff0000) == 0x60000000)
560 { /* ori 0,0,NUM, 2nd ha
561 lf of >= 32k frames */
562 fdata->offset |= (op & 0x0000ffff);
563 fdata->frameless = 0;
567 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
570 fdata->lr_offset = SIGNED_SHORT (op) + offset;
571 fdata->nosavedpc = 0;
576 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
579 fdata->cr_offset = SIGNED_SHORT (op) + offset;
584 else if (op == 0x48000005)
590 else if (op == 0x48000004)
595 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
596 in V.4 -mminimal-toc */
597 (op & 0xffff0000) == 0x3bde0000)
598 { /* addi 30,30,foo@l */
602 else if ((op & 0xfc000001) == 0x48000001)
606 fdata->frameless = 0;
607 /* Don't skip over the subroutine call if it is not within
608 the first three instructions of the prologue. */
609 if ((pc - orig_pc) > 8)
612 op = read_memory_integer (pc + 4, 4);
614 /* At this point, make sure this is not a trampoline
615 function (a function that simply calls another functions,
616 and nothing else). If the next is not a nop, this branch
617 was part of the function prologue. */
619 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
620 break; /* don't skip over
624 /* update stack pointer */
626 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
627 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
629 fdata->frameless = 0;
630 if ((op & 0xffff0003) == 0xf8210001)
632 fdata->offset = SIGNED_SHORT (op);
633 offset = fdata->offset;
637 else if (op == 0x7c21016e)
639 fdata->frameless = 0;
640 offset = fdata->offset;
643 /* Load up minimal toc pointer */
645 else if ((op >> 22) == 0x20f
646 && !minimal_toc_loaded)
647 { /* l r31,... or l r30,... */
648 minimal_toc_loaded = 1;
651 /* move parameters from argument registers to local variable
654 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
655 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
656 (((op >> 21) & 31) <= 10) &&
657 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
661 /* store parameters in stack */
663 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
664 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
665 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
669 /* store parameters in stack via frame pointer */
672 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
673 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
674 (op & 0xfc1f0000) == 0xfc1f0000))
675 { /* frsp, fp?,NUM(r1) */
678 /* Set up frame pointer */
680 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
683 fdata->frameless = 0;
685 fdata->alloca_reg = 31;
688 /* Another way to set up the frame pointer. */
690 else if ((op & 0xfc1fffff) == 0x38010000)
691 { /* addi rX, r1, 0x0 */
692 fdata->frameless = 0;
694 fdata->alloca_reg = (op & ~0x38010000) >> 21;
697 /* AltiVec related instructions. */
698 /* Store the vrsave register (spr 256) in another register for
699 later manipulation, or load a register into the vrsave
700 register. 2 instructions are used: mfvrsave and
701 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
702 and mtspr SPR256, Rn. */
703 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
704 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
705 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
707 vrsave_reg = GET_SRC_REG (op);
710 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
714 /* Store the register where vrsave was saved to onto the stack:
715 rS is the register where vrsave was stored in a previous
717 /* 100100 sssss 00001 dddddddd dddddddd */
718 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
720 if (vrsave_reg == GET_SRC_REG (op))
722 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
727 /* Compute the new value of vrsave, by modifying the register
728 where vrsave was saved to. */
729 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
730 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
734 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
735 in a pair of insns to save the vector registers on the
737 /* 001110 00000 00000 iiii iiii iiii iiii */
738 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
741 vr_saved_offset = SIGNED_SHORT (op);
743 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
744 /* 011111 sssss 11111 00000 00111001110 */
745 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
747 if (pc == (li_found_pc + 4))
749 vr_reg = GET_SRC_REG (op);
750 /* If this is the first vector reg to be saved, or if
751 it has a lower number than others previously seen,
752 reupdate the frame info. */
753 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
755 fdata->saved_vr = vr_reg;
756 fdata->vr_offset = vr_saved_offset + offset;
758 vr_saved_offset = -1;
763 /* End AltiVec related instructions. */
766 /* Not a recognized prologue instruction.
767 Handle optimizer code motions into the prologue by continuing
768 the search if we have no valid frame yet or if the return
769 address is not yet saved in the frame. */
770 if (fdata->frameless == 0
771 && (lr_reg == -1 || fdata->nosavedpc == 0))
774 if (op == 0x4e800020 /* blr */
775 || op == 0x4e800420) /* bctr */
776 /* Do not scan past epilogue in frameless functions or
779 if ((op & 0xf4000000) == 0x40000000) /* bxx */
780 /* Never skip branches. */
783 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
784 /* Do not scan too many insns, scanning insns is expensive with
788 /* Continue scanning. */
789 prev_insn_was_prologue_insn = 0;
795 /* I have problems with skipping over __main() that I need to address
796 * sometime. Previously, I used to use misc_function_vector which
797 * didn't work as well as I wanted to be. -MGO */
799 /* If the first thing after skipping a prolog is a branch to a function,
800 this might be a call to an initializer in main(), introduced by gcc2.
801 We'd like to skip over it as well. Fortunately, xlc does some extra
802 work before calling a function right after a prologue, thus we can
803 single out such gcc2 behaviour. */
806 if ((op & 0xfc000001) == 0x48000001)
807 { /* bl foo, an initializer function? */
808 op = read_memory_integer (pc + 4, 4);
810 if (op == 0x4def7b82)
811 { /* cror 0xf, 0xf, 0xf (nop) */
813 /* check and see if we are in main. If so, skip over this initializer
816 tmp = find_pc_misc_function (pc);
817 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
823 fdata->offset = -fdata->offset;
824 return last_prologue_pc;
828 /*************************************************************************
829 Support for creating pushing a dummy frame into the stack, and popping
831 *************************************************************************/
834 /* Pop the innermost frame, go back to the caller. */
837 rs6000_pop_frame (void)
839 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
840 struct rs6000_framedata fdata;
841 struct frame_info *frame = get_current_frame ();
845 sp = FRAME_FP (frame);
847 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
849 generic_pop_dummy_frame ();
850 flush_cached_frames ();
854 /* Make sure that all registers are valid. */
855 read_register_bytes (0, NULL, REGISTER_BYTES);
857 /* figure out previous %pc value. If the function is frameless, it is
858 still in the link register, otherwise walk the frames and retrieve the
859 saved %pc value in the previous frame. */
861 addr = get_pc_function_start (frame->pc);
862 (void) skip_prologue (addr, frame->pc, &fdata);
864 wordsize = TDEP->wordsize;
868 prev_sp = read_memory_addr (sp, wordsize);
869 if (fdata.lr_offset == 0)
870 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
872 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
874 /* reset %pc value. */
875 write_register (PC_REGNUM, lr);
877 /* reset register values if any was saved earlier. */
879 if (fdata.saved_gpr != -1)
881 addr = prev_sp + fdata.gpr_offset;
882 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
884 read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize);
889 if (fdata.saved_fpr != -1)
891 addr = prev_sp + fdata.fpr_offset;
892 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
894 read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
899 write_register (SP_REGNUM, prev_sp);
900 target_store_registers (-1);
901 flush_cached_frames ();
904 /* Fixup the call sequence of a dummy function, with the real function
905 address. Its arguments will be passed by gdb. */
908 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
909 int nargs, struct value **args, struct type *type,
913 CORE_ADDR target_addr;
915 if (rs6000_find_toc_address_hook != NULL)
917 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
918 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
923 /* Pass the arguments in either registers, or in the stack. In RS/6000,
924 the first eight words of the argument list (that might be less than
925 eight parameters if some parameters occupy more than one word) are
926 passed in r3..r10 registers. float and double parameters are
927 passed in fpr's, in addition to that. Rest of the parameters if any
928 are passed in user stack. There might be cases in which half of the
929 parameter is copied into registers, the other half is pushed into
932 Stack must be aligned on 64-bit boundaries when synthesizing
935 If the function is returning a structure, then the return address is passed
936 in r3, then the first 7 words of the parameters can be passed in registers,
940 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
941 int struct_return, CORE_ADDR struct_addr)
945 int argno; /* current argument number */
946 int argbytes; /* current argument byte */
948 int f_argno = 0; /* current floating point argno */
949 int wordsize = TDEP->wordsize;
951 struct value *arg = 0;
956 /* The first eight words of ther arguments are passed in registers. Copy
959 If the function is returning a `struct', then the first word (which
960 will be passed in r3) is used for struct return address. In that
961 case we should advance one word and start from r4 register to copy
964 ii = struct_return ? 1 : 0;
967 effectively indirect call... gcc does...
969 return_val example( float, int);
972 float in fp0, int in r3
973 offset of stack on overflow 8/16
974 for varargs, must go by type.
976 float in r3&r4, int in r5
977 offset of stack on overflow different
979 return in r3 or f0. If no float, must study how gcc emulates floats;
980 pay attention to arg promotion.
981 User may have to cast\args to handle promotion correctly
982 since gdb won't know if prototype supplied or not.
985 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
987 int reg_size = REGISTER_RAW_SIZE (ii + 3);
990 type = check_typedef (VALUE_TYPE (arg));
991 len = TYPE_LENGTH (type);
993 if (TYPE_CODE (type) == TYPE_CODE_FLT)
996 /* floating point arguments are passed in fpr's, as well as gpr's.
997 There are 13 fpr's reserved for passing parameters. At this point
998 there is no way we would run out of them. */
1002 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1004 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1005 VALUE_CONTENTS (arg),
1013 /* Argument takes more than one register. */
1014 while (argbytes < len)
1016 memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
1017 memcpy (®isters[REGISTER_BYTE (ii + 3)],
1018 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1019 (len - argbytes) > reg_size
1020 ? reg_size : len - argbytes);
1021 ++ii, argbytes += reg_size;
1024 goto ran_out_of_registers_for_arguments;
1030 { /* Argument can fit in one register. No problem. */
1031 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1032 memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
1033 memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj,
1034 VALUE_CONTENTS (arg), len);
1039 ran_out_of_registers_for_arguments:
1041 saved_sp = read_sp ();
1043 /* location for 8 parameters are always reserved. */
1046 /* another six words for back chain, TOC register, link register, etc. */
1049 /* stack pointer must be quadword aligned */
1052 /* if there are more arguments, allocate space for them in
1053 the stack, then push them starting from the ninth one. */
1055 if ((argno < nargs) || argbytes)
1061 space += ((len - argbytes + 3) & -4);
1067 for (; jj < nargs; ++jj)
1069 struct value *val = args[jj];
1070 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1073 /* add location required for the rest of the parameters */
1074 space = (space + 15) & -16;
1077 /* This is another instance we need to be concerned about securing our
1078 stack space. If we write anything underneath %sp (r1), we might conflict
1079 with the kernel who thinks he is free to use this area. So, update %sp
1080 first before doing anything else. */
1082 write_register (SP_REGNUM, sp);
1084 /* if the last argument copied into the registers didn't fit there
1085 completely, push the rest of it into stack. */
1089 write_memory (sp + 24 + (ii * 4),
1090 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1093 ii += ((len - argbytes + 3) & -4) / 4;
1096 /* push the rest of the arguments into stack. */
1097 for (; argno < nargs; ++argno)
1101 type = check_typedef (VALUE_TYPE (arg));
1102 len = TYPE_LENGTH (type);
1105 /* float types should be passed in fpr's, as well as in the stack. */
1106 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1111 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1113 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1114 VALUE_CONTENTS (arg),
1119 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1120 ii += ((len + 3) & -4) / 4;
1124 /* Secure stack areas first, before doing anything else. */
1125 write_register (SP_REGNUM, sp);
1127 /* set back chain properly */
1128 store_address (tmp_buffer, 4, saved_sp);
1129 write_memory (sp, tmp_buffer, 4);
1131 target_store_registers (-1);
1135 /* Function: ppc_push_return_address (pc, sp)
1136 Set up the return address for the inferior function call. */
1139 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1141 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1142 CALL_DUMMY_ADDRESS ());
1146 /* Extract a function return value of type TYPE from raw register array
1147 REGBUF, and copy that return value into VALBUF in virtual format. */
1150 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1154 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1159 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1160 We need to truncate the return value into float size (4 byte) if
1163 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1165 ®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
1166 TYPE_LENGTH (valtype));
1169 memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1171 memcpy (valbuf, &ff, sizeof (float));
1176 /* return value is copied starting from r3. */
1177 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1178 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1179 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1182 regbuf + REGISTER_BYTE (3) + offset,
1183 TYPE_LENGTH (valtype));
1187 /* Keep structure return address in this variable.
1188 FIXME: This is a horrid kludge which should not be allowed to continue
1189 living. This only allows a single nested call to a structure-returning
1192 static CORE_ADDR rs6000_struct_return_address;
1194 /* Return whether handle_inferior_event() should proceed through code
1195 starting at PC in function NAME when stepping.
1197 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1198 handle memory references that are too distant to fit in instructions
1199 generated by the compiler. For example, if 'foo' in the following
1204 is greater than 32767, the linker might replace the lwz with a branch to
1205 somewhere in @FIX1 that does the load in 2 instructions and then branches
1206 back to where execution should continue.
1208 GDB should silently step over @FIX code, just like AIX dbx does.
1209 Unfortunately, the linker uses the "b" instruction for the branches,
1210 meaning that the link register doesn't get set. Therefore, GDB's usual
1211 step_over_function() mechanism won't work.
1213 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1214 in handle_inferior_event() to skip past @FIX code. */
1217 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1219 return name && !strncmp (name, "@FIX", 4);
1222 /* Skip code that the user doesn't want to see when stepping:
1224 1. Indirect function calls use a piece of trampoline code to do context
1225 switching, i.e. to set the new TOC table. Skip such code if we are on
1226 its first instruction (as when we have single-stepped to here).
1228 2. Skip shared library trampoline code (which is different from
1229 indirect function call trampolines).
1231 3. Skip bigtoc fixup code.
1233 Result is desired PC to step until, or NULL if we are not in
1234 code that should be skipped. */
1237 rs6000_skip_trampoline_code (CORE_ADDR pc)
1239 register unsigned int ii, op;
1241 CORE_ADDR solib_target_pc;
1242 struct minimal_symbol *msymbol;
1244 static unsigned trampoline_code[] =
1246 0x800b0000, /* l r0,0x0(r11) */
1247 0x90410014, /* st r2,0x14(r1) */
1248 0x7c0903a6, /* mtctr r0 */
1249 0x804b0004, /* l r2,0x4(r11) */
1250 0x816b0008, /* l r11,0x8(r11) */
1251 0x4e800420, /* bctr */
1252 0x4e800020, /* br */
1256 /* Check for bigtoc fixup code. */
1257 msymbol = lookup_minimal_symbol_by_pc (pc);
1258 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1260 /* Double-check that the third instruction from PC is relative "b". */
1261 op = read_memory_integer (pc + 8, 4);
1262 if ((op & 0xfc000003) == 0x48000000)
1264 /* Extract bits 6-29 as a signed 24-bit relative word address and
1265 add it to the containing PC. */
1266 rel = ((int)(op << 6) >> 6);
1267 return pc + 8 + rel;
1271 /* If pc is in a shared library trampoline, return its target. */
1272 solib_target_pc = find_solib_trampoline_target (pc);
1273 if (solib_target_pc)
1274 return solib_target_pc;
1276 for (ii = 0; trampoline_code[ii]; ++ii)
1278 op = read_memory_integer (pc + (ii * 4), 4);
1279 if (op != trampoline_code[ii])
1282 ii = read_register (11); /* r11 holds destination addr */
1283 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1287 /* Determines whether the function FI has a frame on the stack or not. */
1290 rs6000_frameless_function_invocation (struct frame_info *fi)
1292 CORE_ADDR func_start;
1293 struct rs6000_framedata fdata;
1295 /* Don't even think about framelessness except on the innermost frame
1296 or if the function was interrupted by a signal. */
1297 if (fi->next != NULL && !fi->next->signal_handler_caller)
1300 func_start = get_pc_function_start (fi->pc);
1302 /* If we failed to find the start of the function, it is a mistake
1303 to inspect the instructions. */
1307 /* A frame with a zero PC is usually created by dereferencing a NULL
1308 function pointer, normally causing an immediate core dump of the
1309 inferior. Mark function as frameless, as the inferior has no chance
1310 of setting up a stack frame. */
1317 (void) skip_prologue (func_start, fi->pc, &fdata);
1318 return fdata.frameless;
1321 /* Return the PC saved in a frame */
1324 rs6000_frame_saved_pc (struct frame_info *fi)
1326 CORE_ADDR func_start;
1327 struct rs6000_framedata fdata;
1328 int wordsize = TDEP->wordsize;
1330 if (fi->signal_handler_caller)
1331 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1333 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1334 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1336 func_start = get_pc_function_start (fi->pc);
1338 /* If we failed to find the start of the function, it is a mistake
1339 to inspect the instructions. */
1343 (void) skip_prologue (func_start, fi->pc, &fdata);
1345 if (fdata.lr_offset == 0 && fi->next != NULL)
1347 if (fi->next->signal_handler_caller)
1348 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1351 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1355 if (fdata.lr_offset == 0)
1356 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1358 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1361 /* If saved registers of frame FI are not known yet, read and cache them.
1362 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1363 in which case the framedata are read. */
1366 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1368 CORE_ADDR frame_addr;
1369 struct rs6000_framedata work_fdata;
1370 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1371 int wordsize = tdep->wordsize;
1378 fdatap = &work_fdata;
1379 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1382 frame_saved_regs_zalloc (fi);
1384 /* If there were any saved registers, figure out parent's stack
1386 /* The following is true only if the frame doesn't have a call to
1389 if (fdatap->saved_fpr == 0
1390 && fdatap->saved_gpr == 0
1391 && fdatap->saved_vr == 0
1392 && fdatap->lr_offset == 0
1393 && fdatap->cr_offset == 0
1394 && fdatap->vr_offset == 0)
1396 else if (fi->prev && fi->prev->frame)
1397 frame_addr = fi->prev->frame;
1399 frame_addr = read_memory_addr (fi->frame, wordsize);
1401 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1402 All fpr's from saved_fpr to fp31 are saved. */
1404 if (fdatap->saved_fpr >= 0)
1407 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1408 for (i = fdatap->saved_fpr; i < 32; i++)
1410 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1415 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1416 All gpr's from saved_gpr to gpr31 are saved. */
1418 if (fdatap->saved_gpr >= 0)
1421 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1422 for (i = fdatap->saved_gpr; i < 32; i++)
1424 fi->saved_regs[i] = gpr_addr;
1425 gpr_addr += wordsize;
1429 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1430 All vr's from saved_vr to vr31 are saved. */
1431 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1433 if (fdatap->saved_vr >= 0)
1436 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1437 for (i = fdatap->saved_vr; i < 32; i++)
1439 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1440 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1445 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1447 if (fdatap->cr_offset != 0)
1448 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1450 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1452 if (fdatap->lr_offset != 0)
1453 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1455 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1457 if (fdatap->vrsave_offset != 0)
1458 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1461 /* Return the address of a frame. This is the inital %sp value when the frame
1462 was first allocated. For functions calling alloca(), it might be saved in
1463 an alloca register. */
1466 frame_initial_stack_address (struct frame_info *fi)
1469 struct rs6000_framedata fdata;
1470 struct frame_info *callee_fi;
1472 /* if the initial stack pointer (frame address) of this frame is known,
1475 if (fi->extra_info->initial_sp)
1476 return fi->extra_info->initial_sp;
1478 /* find out if this function is using an alloca register.. */
1480 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1482 /* if saved registers of this frame are not known yet, read and cache them. */
1484 if (!fi->saved_regs)
1485 frame_get_saved_regs (fi, &fdata);
1487 /* If no alloca register used, then fi->frame is the value of the %sp for
1488 this frame, and it is good enough. */
1490 if (fdata.alloca_reg < 0)
1492 fi->extra_info->initial_sp = fi->frame;
1493 return fi->extra_info->initial_sp;
1496 /* This function has an alloca register. If this is the top-most frame
1497 (with the lowest address), the value in alloca register is good. */
1500 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1502 /* Otherwise, this is a caller frame. Callee has usually already saved
1503 registers, but there are exceptions (such as when the callee
1504 has no parameters). Find the address in which caller's alloca
1505 register is saved. */
1507 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1510 if (!callee_fi->saved_regs)
1511 frame_get_saved_regs (callee_fi, NULL);
1513 /* this is the address in which alloca register is saved. */
1515 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1518 fi->extra_info->initial_sp =
1519 read_memory_addr (tmpaddr, TDEP->wordsize);
1520 return fi->extra_info->initial_sp;
1523 /* Go look into deeper levels of the frame chain to see if any one of
1524 the callees has saved alloca register. */
1527 /* If alloca register was not saved, by the callee (or any of its callees)
1528 then the value in the register is still good. */
1530 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1531 return fi->extra_info->initial_sp;
1534 /* Describe the pointer in each stack frame to the previous stack frame
1537 /* FRAME_CHAIN takes a frame's nominal address
1538 and produces the frame's chain-pointer. */
1540 /* In the case of the RS/6000, the frame's nominal address
1541 is the address of a 4-byte word containing the calling frame's address. */
1544 rs6000_frame_chain (struct frame_info *thisframe)
1546 CORE_ADDR fp, fpp, lr;
1547 int wordsize = TDEP->wordsize;
1549 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1550 return thisframe->frame; /* dummy frame same as caller's frame */
1552 if (inside_entry_file (thisframe->pc) ||
1553 thisframe->pc == entry_point_address ())
1556 if (thisframe->signal_handler_caller)
1557 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1559 else if (thisframe->next != NULL
1560 && thisframe->next->signal_handler_caller
1561 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1562 /* A frameless function interrupted by a signal did not change the
1564 fp = FRAME_FP (thisframe);
1566 fp = read_memory_addr ((thisframe)->frame, wordsize);
1568 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1569 if (lr == entry_point_address ())
1570 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1571 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1577 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1578 isn't available with that word size, return 0. */
1581 regsize (const struct reg *reg, int wordsize)
1583 return wordsize == 8 ? reg->sz64 : reg->sz32;
1586 /* Return the name of register number N, or null if no such register exists
1587 in the current architecture. */
1590 rs6000_register_name (int n)
1592 struct gdbarch_tdep *tdep = TDEP;
1593 const struct reg *reg = tdep->regs + n;
1595 if (!regsize (reg, tdep->wordsize))
1600 /* Index within `registers' of the first byte of the space for
1604 rs6000_register_byte (int n)
1606 return TDEP->regoff[n];
1609 /* Return the number of bytes of storage in the actual machine representation
1610 for register N if that register is available, else return 0. */
1613 rs6000_register_raw_size (int n)
1615 struct gdbarch_tdep *tdep = TDEP;
1616 const struct reg *reg = tdep->regs + n;
1617 return regsize (reg, tdep->wordsize);
1620 /* Return the GDB type object for the "standard" data type
1621 of data in register N. */
1623 static struct type *
1624 rs6000_register_virtual_type (int n)
1626 struct gdbarch_tdep *tdep = TDEP;
1627 const struct reg *reg = tdep->regs + n;
1630 return builtin_type_double;
1633 int size = regsize (reg, tdep->wordsize);
1637 return builtin_type_int64;
1640 return builtin_type_vec128;
1643 return builtin_type_int32;
1649 /* For the PowerPC, it appears that the debug info marks float parameters as
1650 floats regardless of whether the function is prototyped, but the actual
1651 values are always passed in as doubles. Tell gdb to always assume that
1652 floats are passed as doubles and then converted in the callee. */
1655 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1660 /* Return whether register N requires conversion when moving from raw format
1663 The register format for RS/6000 floating point registers is always
1664 double, we need a conversion if the memory format is float. */
1667 rs6000_register_convertible (int n)
1669 const struct reg *reg = TDEP->regs + n;
1673 /* Convert data from raw format for register N in buffer FROM
1674 to virtual format with type TYPE in buffer TO. */
1677 rs6000_register_convert_to_virtual (int n, struct type *type,
1678 char *from, char *to)
1680 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1682 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1683 store_floating (to, TYPE_LENGTH (type), val);
1686 memcpy (to, from, REGISTER_RAW_SIZE (n));
1689 /* Convert data from virtual format with type TYPE in buffer FROM
1690 to raw format for register N in buffer TO. */
1693 rs6000_register_convert_to_raw (struct type *type, int n,
1694 char *from, char *to)
1696 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1698 double val = extract_floating (from, TYPE_LENGTH (type));
1699 store_floating (to, REGISTER_RAW_SIZE (n), val);
1702 memcpy (to, from, REGISTER_RAW_SIZE (n));
1706 altivec_register_p (int regno)
1708 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1709 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1712 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1716 rs6000_do_altivec_registers (int regnum)
1719 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1720 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1721 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1723 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1725 /* If we want just one reg, check that this is the one we want. */
1726 if (regnum != -1 && i != regnum)
1729 /* If the register name is empty, it is undefined for this
1730 processor, so don't display anything. */
1731 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1734 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1735 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1737 /* Get the data in raw format. */
1738 if (read_relative_register_raw_bytes (i, raw_buffer))
1740 printf_filtered ("*value not available*\n");
1744 /* Convert raw data to virtual format if necessary. */
1745 if (REGISTER_CONVERTIBLE (i))
1746 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1747 raw_buffer, virtual_buffer);
1749 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1751 /* Print as integer in hex only. */
1752 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1753 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1754 printf_filtered ("\n");
1759 rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1761 int regnum, numregs;
1764 if (!target_has_registers)
1765 error ("The program has no registers now.");
1766 if (selected_frame == NULL)
1767 error ("No selected frame.");
1771 rs6000_do_altivec_registers (-1);
1775 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1778 if (addr_exp[0] == '$')
1781 while (*end != '\0' && *end != ' ' && *end != '\t')
1784 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1788 if (*addr_exp >= '0' && *addr_exp <= '9')
1789 regnum = atoi (addr_exp); /* Take a number */
1790 if (regnum >= numregs) /* Bad name, or bad number */
1791 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1794 rs6000_do_altivec_registers (regnum);
1797 while (*addr_exp == ' ' || *addr_exp == '\t')
1800 while (*addr_exp != '\0');
1804 rs6000_do_registers_info (int regnum, int fpregs)
1807 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1808 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1809 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1811 for (i = 0; i < numregs; i++)
1813 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1816 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1817 || (altivec_register_p (i) && !fpregs))
1826 /* If the register name is empty, it is undefined for this
1827 processor, so don't display anything. */
1828 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1831 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1832 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1834 /* Get the data in raw format. */
1835 if (read_relative_register_raw_bytes (i, raw_buffer))
1837 printf_filtered ("*value not available*\n");
1841 /* Convert raw data to virtual format if necessary. */
1842 if (REGISTER_CONVERTIBLE (i))
1843 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1844 raw_buffer, virtual_buffer);
1846 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1848 /* If virtual format is floating, print it that way, and in raw hex. */
1849 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1853 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1854 gdb_stdout, 0, 1, 0, Val_pretty_default);
1856 printf_filtered ("\t(raw 0x");
1857 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1859 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1860 : REGISTER_RAW_SIZE (i) - 1 - j;
1861 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1863 printf_filtered (")");
1867 /* Print as integer in hex and in decimal. */
1868 if (!altivec_register_p (i))
1870 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1871 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1872 printf_filtered ("\t");
1873 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1874 gdb_stdout, 0, 1, 0, Val_pretty_default);
1877 /* Print as integer in hex only. */
1878 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1879 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1881 printf_filtered ("\n");
1885 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1888 rs6000_stab_reg_to_regnum (int num)
1894 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1897 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1900 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1903 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1912 /* Store the address of the place in which to copy the structure the
1913 subroutine will return. This is called from call_function.
1915 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1916 In function return, callee is not responsible of returning this address
1917 back. Since gdb needs to find it, we will store in a designated variable
1918 `rs6000_struct_return_address'. */
1921 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1923 write_register (3, addr);
1924 rs6000_struct_return_address = addr;
1927 /* Write into appropriate registers a function return value
1928 of type TYPE, given in virtual format. */
1931 rs6000_store_return_value (struct type *type, char *valbuf)
1933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1935 /* Floating point values are returned starting from FPR1 and up.
1936 Say a double_double_double type could be returned in
1937 FPR1/FPR2/FPR3 triple. */
1939 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1940 TYPE_LENGTH (type));
1942 /* Everything else is returned in GPR3 and up. */
1943 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1944 valbuf, TYPE_LENGTH (type));
1947 /* Extract from an array REGBUF containing the (raw) register state
1948 the address in which a function should return its structure value,
1949 as a CORE_ADDR (or an expression that can be used as one). */
1952 rs6000_extract_struct_value_address (char *regbuf)
1954 return rs6000_struct_return_address;
1957 /* Return whether PC is in a dummy function call.
1959 FIXME: This just checks for the end of the stack, which is broken
1960 for things like stepping through gcc nested function stubs. */
1963 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1965 return sp < pc && pc < fp;
1968 /* Hook called when a new child process is started. */
1971 rs6000_create_inferior (int pid)
1973 if (rs6000_set_host_arch_hook)
1974 rs6000_set_host_arch_hook (pid);
1977 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1979 Usually a function pointer's representation is simply the address
1980 of the function. On the RS/6000 however, a function pointer is
1981 represented by a pointer to a TOC entry. This TOC entry contains
1982 three words, the first word is the address of the function, the
1983 second word is the TOC pointer (r2), and the third word is the
1984 static chain value. Throughout GDB it is currently assumed that a
1985 function pointer contains the address of the function, which is not
1986 easy to fix. In addition, the conversion of a function address to
1987 a function pointer would require allocation of a TOC entry in the
1988 inferior's memory space, with all its drawbacks. To be able to
1989 call C++ virtual methods in the inferior (which are called via
1990 function pointers), find_function_addr uses this function to get the
1991 function address from a function pointer. */
1993 /* Return real function address if ADDR (a function pointer) is in the data
1994 space and is therefore a special function pointer. */
1997 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1999 struct obj_section *s;
2001 s = find_pc_section (addr);
2002 if (s && s->the_bfd_section->flags & SEC_CODE)
2005 /* ADDR is in the data space, so it's a special function pointer. */
2006 return read_memory_addr (addr, TDEP->wordsize);
2010 /* Handling the various POWER/PowerPC variants. */
2013 /* The arrays here called registers_MUMBLE hold information about available
2016 For each family of PPC variants, I've tried to isolate out the
2017 common registers and put them up front, so that as long as you get
2018 the general family right, GDB will correctly identify the registers
2019 common to that family. The common register sets are:
2021 For the 60x family: hid0 hid1 iabr dabr pir
2023 For the 505 and 860 family: eie eid nri
2025 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2026 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2029 Most of these register groups aren't anything formal. I arrived at
2030 them by looking at the registers that occurred in more than one
2033 /* Convenience macros for populating register arrays. */
2035 /* Within another macro, convert S to a string. */
2039 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2040 and 64 bits on 64-bit systems. */
2041 #define R(name) { STR(name), 4, 8, 0 }
2043 /* Return a struct reg defining register NAME that's 32 bits on all
2045 #define R4(name) { STR(name), 4, 4, 0 }
2047 /* Return a struct reg defining register NAME that's 64 bits on all
2049 #define R8(name) { STR(name), 8, 8, 0 }
2051 /* Return a struct reg defining register NAME that's 128 bits on all
2053 #define R16(name) { STR(name), 16, 16, 0 }
2055 /* Return a struct reg defining floating-point register NAME. */
2056 #define F(name) { STR(name), 8, 8, 1 }
2058 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2059 systems and that doesn't exist on 64-bit systems. */
2060 #define R32(name) { STR(name), 4, 0, 0 }
2062 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2063 systems and that doesn't exist on 32-bit systems. */
2064 #define R64(name) { STR(name), 0, 8, 0 }
2066 /* Return a struct reg placeholder for a register that doesn't exist. */
2067 #define R0 { 0, 0, 0, 0 }
2069 /* UISA registers common across all architectures, including POWER. */
2071 #define COMMON_UISA_REGS \
2072 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2073 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2074 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2075 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2076 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2077 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2078 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2079 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2080 /* 64 */ R(pc), R(ps)
2082 /* UISA-level SPRs for PowerPC. */
2083 #define PPC_UISA_SPRS \
2084 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2086 /* Segment registers, for PowerPC. */
2087 #define PPC_SEGMENT_REGS \
2088 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2089 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2090 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2091 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2093 /* OEA SPRs for PowerPC. */
2094 #define PPC_OEA_SPRS \
2096 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2097 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2098 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2099 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2100 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2101 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2102 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2103 /* 116 */ R4(dec), R(dabr), R4(ear)
2105 /* AltiVec registers */
2106 #define PPC_ALTIVEC_REGS \
2107 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2108 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2109 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2110 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2111 /*151*/R4(vscr), R4(vrsave)
2113 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2114 user-level SPR's. */
2115 static const struct reg registers_power[] =
2118 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
2121 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2122 view of the PowerPC. */
2123 static const struct reg registers_powerpc[] =
2130 /* IBM PowerPC 403. */
2131 static const struct reg registers_403[] =
2137 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2138 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2139 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2140 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2141 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2142 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2145 /* IBM PowerPC 403GC. */
2146 static const struct reg registers_403GC[] =
2152 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2153 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2154 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2155 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2156 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2157 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2158 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2159 /* 147 */ R(tbhu), R(tblu)
2162 /* Motorola PowerPC 505. */
2163 static const struct reg registers_505[] =
2169 /* 119 */ R(eie), R(eid), R(nri)
2172 /* Motorola PowerPC 860 or 850. */
2173 static const struct reg registers_860[] =
2179 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2180 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2181 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2182 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2183 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2184 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2185 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2186 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2187 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2188 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2189 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2190 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2193 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2194 for reading and writing RTCU and RTCL. However, how one reads and writes a
2195 register is the stub's problem. */
2196 static const struct reg registers_601[] =
2202 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2203 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2206 /* Motorola PowerPC 602. */
2207 static const struct reg registers_602[] =
2213 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2214 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2215 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2218 /* Motorola/IBM PowerPC 603 or 603e. */
2219 static const struct reg registers_603[] =
2225 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2226 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2227 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2230 /* Motorola PowerPC 604 or 604e. */
2231 static const struct reg registers_604[] =
2237 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2238 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2239 /* 127 */ R(sia), R(sda)
2242 /* Motorola/IBM PowerPC 750 or 740. */
2243 static const struct reg registers_750[] =
2249 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2250 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2251 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2252 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2253 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2254 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2258 /* Motorola PowerPC 7400. */
2259 static const struct reg registers_7400[] =
2261 /* gpr0-gpr31, fpr0-fpr31 */
2263 /* ctr, xre, lr, cr */
2268 /* vr0-vr31, vrsave, vscr */
2270 /* FIXME? Add more registers? */
2273 /* Information about a particular processor variant. */
2277 /* Name of this variant. */
2280 /* English description of the variant. */
2283 /* bfd_arch_info.arch corresponding to variant. */
2284 enum bfd_architecture arch;
2286 /* bfd_arch_info.mach corresponding to variant. */
2289 /* Table of register names; registers[R] is the name of the register
2292 const struct reg *regs;
2295 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2298 /* Information in this table comes from the following web sites:
2299 IBM: http://www.chips.ibm.com:80/products/embedded/
2300 Motorola: http://www.mot.com/SPS/PowerPC/
2302 I'm sure I've got some of the variant descriptions not quite right.
2303 Please report any inaccuracies you find to GDB's maintainer.
2305 If you add entries to this table, please be sure to allow the new
2306 value as an argument to the --with-cpu flag, in configure.in. */
2308 static const struct variant variants[] =
2310 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2311 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2312 {"power", "POWER user-level", bfd_arch_rs6000,
2313 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2314 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2315 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2316 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2317 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2318 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2319 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2320 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2321 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2322 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2323 604, num_registers (registers_604), registers_604},
2324 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2325 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2326 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2327 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2328 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2329 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2330 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2331 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
2332 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2333 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
2335 /* FIXME: I haven't checked the register sets of the following. */
2336 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2337 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2338 {"a35", "PowerPC A35", bfd_arch_powerpc,
2339 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2340 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2341 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2342 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2343 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2344 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2345 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2350 #undef num_registers
2352 /* Return the variant corresponding to architecture ARCH and machine number
2353 MACH. If no such variant exists, return null. */
2355 static const struct variant *
2356 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2358 const struct variant *v;
2360 for (v = variants; v->name; v++)
2361 if (arch == v->arch && mach == v->mach)
2371 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2373 int *os_ident_ptr = obj;
2375 unsigned int sectsize;
2377 name = bfd_get_section_name (abfd, sect);
2378 sectsize = bfd_section_size (abfd, sect);
2379 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2381 unsigned int name_length, data_length, note_type;
2382 char *note = alloca (sectsize);
2384 bfd_get_section_contents (abfd, sect, note,
2385 (file_ptr) 0, (bfd_size_type) sectsize);
2387 name_length = bfd_h_get_32 (abfd, note);
2388 data_length = bfd_h_get_32 (abfd, note + 4);
2389 note_type = bfd_h_get_32 (abfd, note + 8);
2391 if (name_length == 4 && data_length == 16 && note_type == 1
2392 && strcmp (note + 12, "GNU") == 0)
2394 int os_number = bfd_h_get_32 (abfd, note + 16);
2396 /* The case numbers are from abi-tags in glibc */
2400 *os_ident_ptr = ELFOSABI_LINUX;
2403 *os_ident_ptr = ELFOSABI_HURD;
2406 *os_ident_ptr = ELFOSABI_SOLARIS;
2409 internal_error (__FILE__, __LINE__,
2410 "process_note_abi_sections: unknown OS number %d",
2418 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2419 executables. If it's not an ELF executable or if the OS/ABI couldn't
2420 be determined, simply return -1. */
2423 get_elfosabi (bfd *abfd)
2427 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2429 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2431 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2432 that we're on a SYSV system. However, GNU/Linux uses a note section
2433 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2434 have to check the note sections too. */
2437 bfd_map_over_sections (abfd,
2438 process_note_abi_tag_sections,
2448 /* Initialize the current architecture based on INFO. If possible, re-use an
2449 architecture from ARCHES, which is a list of architectures already created
2450 during this debugging session.
2452 Called e.g. at program startup, when reading a core file, and when reading
2455 static struct gdbarch *
2456 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2458 struct gdbarch *gdbarch;
2459 struct gdbarch_tdep *tdep;
2460 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2462 const struct variant *v;
2463 enum bfd_architecture arch;
2466 int osabi, sysv_abi;
2468 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2469 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2471 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2472 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2474 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2476 osabi = get_elfosabi (info.abfd);
2478 /* Check word size. If INFO is from a binary file, infer it from
2479 that, else choose a likely default. */
2480 if (from_xcoff_exec)
2482 if (xcoff_data (info.abfd)->xcoff64)
2487 else if (from_elf_exec)
2489 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2499 /* Find a candidate among extant architectures. */
2500 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2502 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2504 /* Word size in the various PowerPC bfd_arch_info structs isn't
2505 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2506 separate word size check. */
2507 tdep = gdbarch_tdep (arches->gdbarch);
2508 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2509 return arches->gdbarch;
2512 /* None found, create a new architecture from INFO, whose bfd_arch_info
2513 validity depends on the source:
2514 - executable useless
2515 - rs6000_host_arch() good
2517 - "set arch" trust blindly
2518 - GDB startup useless but harmless */
2520 if (!from_xcoff_exec)
2522 arch = info.bfd_arch_info->arch;
2523 mach = info.bfd_arch_info->mach;
2527 arch = bfd_arch_powerpc;
2529 bfd_default_set_arch_mach (&abfd, arch, mach);
2530 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2532 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2533 tdep->wordsize = wordsize;
2534 tdep->osabi = osabi;
2535 gdbarch = gdbarch_alloc (&info, tdep);
2536 power = arch == bfd_arch_rs6000;
2538 /* Choose variant. */
2539 v = find_variant_by_arch (arch, mach);
2543 tdep->regs = v->regs;
2545 tdep->ppc_gp0_regnum = 0;
2546 tdep->ppc_gplast_regnum = 31;
2547 tdep->ppc_toc_regnum = 2;
2548 tdep->ppc_ps_regnum = 65;
2549 tdep->ppc_cr_regnum = 66;
2550 tdep->ppc_lr_regnum = 67;
2551 tdep->ppc_ctr_regnum = 68;
2552 tdep->ppc_xer_regnum = 69;
2553 if (v->mach == bfd_mach_ppc_601)
2554 tdep->ppc_mq_regnum = 124;
2556 tdep->ppc_mq_regnum = 70;
2558 if (v->arch == bfd_arch_powerpc)
2562 tdep->ppc_vr0_regnum = 71;
2563 tdep->ppc_vrsave_regnum = 104;
2565 case bfd_mach_ppc_7400:
2566 tdep->ppc_vr0_regnum = 119;
2567 tdep->ppc_vrsave_regnum = 153;
2570 tdep->ppc_vr0_regnum = -1;
2571 tdep->ppc_vrsave_regnum = -1;
2575 /* Calculate byte offsets in raw register array. */
2576 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2577 for (i = off = 0; i < v->nregs; i++)
2579 tdep->regoff[i] = off;
2580 off += regsize (v->regs + i, wordsize);
2583 /* Select instruction printer. Note: tm_print_insn is still used by
2584 gdbtk (insight), so we set both tm_print_insn and the gdbarch
2586 tm_print_insn = arch == power ? print_insn_rs6000 :
2587 info.byte_order == BFD_ENDIAN_BIG ? print_insn_big_powerpc :
2588 print_insn_little_powerpc;
2589 set_gdbarch_print_insn (gdbarch, tm_print_insn);
2591 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2592 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2593 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2594 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2595 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2597 set_gdbarch_num_regs (gdbarch, v->nregs);
2598 set_gdbarch_sp_regnum (gdbarch, 1);
2599 set_gdbarch_fp_regnum (gdbarch, 1);
2600 set_gdbarch_pc_regnum (gdbarch, 64);
2601 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2602 set_gdbarch_register_size (gdbarch, wordsize);
2603 set_gdbarch_register_bytes (gdbarch, off);
2604 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2605 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2606 set_gdbarch_max_register_raw_size (gdbarch, 16);
2607 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2608 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2609 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2610 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
2612 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2613 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2614 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2615 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2616 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2617 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2618 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2619 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2620 set_gdbarch_char_signed (gdbarch, 0);
2622 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2623 set_gdbarch_call_dummy_length (gdbarch, 0);
2624 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2625 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2626 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2627 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2628 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2629 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2630 set_gdbarch_call_dummy_p (gdbarch, 1);
2631 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2632 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2633 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2634 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2635 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2636 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2637 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2638 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2640 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2641 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2642 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2643 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2645 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2648 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2650 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2652 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2653 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2654 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2655 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2657 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2658 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2659 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2660 set_gdbarch_function_start_offset (gdbarch, 0);
2661 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2663 /* Not sure on this. FIXMEmgo */
2664 set_gdbarch_frame_args_skip (gdbarch, 8);
2666 /* Until November 2001, gcc was not complying to the SYSV ABI for
2667 returning structures less than or equal to 8 bytes in size. It was
2668 returning everything in memory. When this was corrected, it wasn't
2669 fixed for native platforms. */
2672 if (osabi == ELFOSABI_LINUX
2673 || osabi == ELFOSABI_NETBSD
2674 || osabi == ELFOSABI_FREEBSD)
2675 set_gdbarch_use_struct_convention (gdbarch,
2676 generic_use_struct_convention);
2678 set_gdbarch_use_struct_convention (gdbarch,
2679 ppc_sysv_abi_use_struct_convention);
2683 set_gdbarch_use_struct_convention (gdbarch,
2684 generic_use_struct_convention);
2687 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2688 if (osabi == ELFOSABI_LINUX)
2690 set_gdbarch_frameless_function_invocation (gdbarch,
2691 ppc_linux_frameless_function_invocation);
2692 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2693 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2695 set_gdbarch_frame_init_saved_regs (gdbarch,
2696 ppc_linux_frame_init_saved_regs);
2697 set_gdbarch_init_extra_frame_info (gdbarch,
2698 ppc_linux_init_extra_frame_info);
2700 set_gdbarch_memory_remove_breakpoint (gdbarch,
2701 ppc_linux_memory_remove_breakpoint);
2702 set_solib_svr4_fetch_link_map_offsets
2703 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
2707 set_gdbarch_frameless_function_invocation (gdbarch,
2708 rs6000_frameless_function_invocation);
2709 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2710 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2712 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2713 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2715 /* Handle RS/6000 function pointers. */
2716 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2717 rs6000_convert_from_func_ptr_addr);
2719 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2720 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2721 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2723 /* We can't tell how many args there are
2724 now that the C compiler delays popping them. */
2725 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2730 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2733 rs6000_info_powerpc_command (char *args, int from_tty)
2735 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2738 /* Initialization code. */
2741 _initialize_rs6000_tdep (void)
2743 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2744 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2746 /* Add root prefix command for "info powerpc" commands */
2747 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2748 "Various POWERPC info specific commands.",
2749 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2751 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2752 "Display the contents of the AltiVec registers.",
2753 &info_powerpc_cmdlist);