1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
48 #include "gdb_obstack.h"
50 #include "dictionary.h"
52 #include <sys/types.h>
54 #include "gdb_string.h"
58 #include "cp-support.h"
60 #include "gdb_assert.h"
63 #include "macroscope.h"
67 /* Prototypes for local functions */
69 static void rbreak_command (char *, int);
71 static void types_info (char *, int);
73 static void functions_info (char *, int);
75 static void variables_info (char *, int);
77 static void sources_info (char *, int);
79 static void output_source_filename (const char *, int *);
81 static int find_line_common (struct linetable *, int, int *, int);
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 int *is_a_field_of_this);
90 struct symbol *lookup_symbol_aux_local (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
96 struct symbol *lookup_symbol_aux_symtabs (int block_index,
98 const domain_enum domain);
101 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
104 const domain_enum domain);
106 static void print_msymbol_info (struct minimal_symbol *);
108 void _initialize_symtab (void);
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
131 static const char *multiple_symbols_mode = multiple_symbols_all;
133 /* Read-only accessor to AUTO_SELECT_MODE. */
136 multiple_symbols_select_mode (void)
138 return multiple_symbols_mode;
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
145 const struct block *block_found;
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). SEARCH_LEN is the length of
150 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
151 Returns true if they match, false otherwise. */
154 compare_filenames_for_search (const char *filename, const char *search_name,
157 int len = strlen (filename);
159 if (len < search_len)
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator. */
169 return (len == search_len
170 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
171 || (HAS_DRIVE_SPEC (filename)
172 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
175 /* Check for a symtab of a specific name by searching some symtabs.
176 This is a helper function for callbacks of iterate_over_symtabs.
178 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
179 are identical to the `map_symtabs_matching_filename' method of
180 quick_symbol_functions.
182 FIRST and AFTER_LAST indicate the range of symtabs to search.
183 AFTER_LAST is one past the last symtab to search; NULL means to
184 search until the end of the list. */
187 iterate_over_some_symtabs (const char *name,
188 const char *full_path,
189 const char *real_path,
190 int (*callback) (struct symtab *symtab,
193 struct symtab *first,
194 struct symtab *after_last)
196 struct symtab *s = NULL;
197 const char* base_name = lbasename (name);
198 int name_len = strlen (name);
199 int is_abs = IS_ABSOLUTE_PATH (name);
201 for (s = first; s != NULL && s != after_last; s = s->next)
203 /* Exact match is always ok. */
204 if (FILENAME_CMP (name, s->filename) == 0)
206 if (callback (s, data))
210 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
212 if (callback (s, data))
216 /* Before we invoke realpath, which can get expensive when many
217 files are involved, do a quick comparison of the basenames. */
218 if (! basenames_may_differ
219 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
222 /* If the user gave us an absolute path, try to find the file in
223 this symtab and use its absolute path. */
225 if (full_path != NULL)
227 const char *fp = symtab_to_fullname (s);
229 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
231 if (callback (s, data))
235 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
238 if (callback (s, data))
243 if (real_path != NULL)
245 char *fullname = symtab_to_fullname (s);
247 if (fullname != NULL)
249 char *rp = gdb_realpath (fullname);
251 make_cleanup (xfree, rp);
252 if (FILENAME_CMP (real_path, rp) == 0)
254 if (callback (s, data))
258 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
260 if (callback (s, data))
270 /* Check for a symtab of a specific name; first in symtabs, then in
271 psymtabs. *If* there is no '/' in the name, a match after a '/'
272 in the symtab filename will also work.
274 Calls CALLBACK with each symtab that is found and with the supplied
275 DATA. If CALLBACK returns true, the search stops. */
278 iterate_over_symtabs (const char *name,
279 int (*callback) (struct symtab *symtab,
283 struct symtab *s = NULL;
284 struct objfile *objfile;
285 char *real_path = NULL;
286 char *full_path = NULL;
287 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
289 /* Here we are interested in canonicalizing an absolute path, not
290 absolutizing a relative path. */
291 if (IS_ABSOLUTE_PATH (name))
293 full_path = xfullpath (name);
294 make_cleanup (xfree, full_path);
295 real_path = gdb_realpath (name);
296 make_cleanup (xfree, real_path);
299 ALL_OBJFILES (objfile)
301 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
302 objfile->symtabs, NULL))
304 do_cleanups (cleanups);
309 /* Same search rules as above apply here, but now we look thru the
312 ALL_OBJFILES (objfile)
315 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
322 do_cleanups (cleanups);
327 do_cleanups (cleanups);
330 /* The callback function used by lookup_symtab. */
333 lookup_symtab_callback (struct symtab *symtab, void *data)
335 struct symtab **result_ptr = data;
337 *result_ptr = symtab;
341 /* A wrapper for iterate_over_symtabs that returns the first matching
345 lookup_symtab (const char *name)
347 struct symtab *result = NULL;
349 iterate_over_symtabs (name, lookup_symtab_callback, &result);
354 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
355 full method name, which consist of the class name (from T), the unadorned
356 method name from METHOD_ID, and the signature for the specific overload,
357 specified by SIGNATURE_ID. Note that this function is g++ specific. */
360 gdb_mangle_name (struct type *type, int method_id, int signature_id)
362 int mangled_name_len;
364 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
365 struct fn_field *method = &f[signature_id];
366 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
367 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
368 const char *newname = type_name_no_tag (type);
370 /* Does the form of physname indicate that it is the full mangled name
371 of a constructor (not just the args)? */
372 int is_full_physname_constructor;
375 int is_destructor = is_destructor_name (physname);
376 /* Need a new type prefix. */
377 char *const_prefix = method->is_const ? "C" : "";
378 char *volatile_prefix = method->is_volatile ? "V" : "";
380 int len = (newname == NULL ? 0 : strlen (newname));
382 /* Nothing to do if physname already contains a fully mangled v3 abi name
383 or an operator name. */
384 if ((physname[0] == '_' && physname[1] == 'Z')
385 || is_operator_name (field_name))
386 return xstrdup (physname);
388 is_full_physname_constructor = is_constructor_name (physname);
390 is_constructor = is_full_physname_constructor
391 || (newname && strcmp (field_name, newname) == 0);
394 is_destructor = (strncmp (physname, "__dt", 4) == 0);
396 if (is_destructor || is_full_physname_constructor)
398 mangled_name = (char *) xmalloc (strlen (physname) + 1);
399 strcpy (mangled_name, physname);
405 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
407 else if (physname[0] == 't' || physname[0] == 'Q')
409 /* The physname for template and qualified methods already includes
411 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
417 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
419 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
420 + strlen (buf) + len + strlen (physname) + 1);
422 mangled_name = (char *) xmalloc (mangled_name_len);
424 mangled_name[0] = '\0';
426 strcpy (mangled_name, field_name);
428 strcat (mangled_name, buf);
429 /* If the class doesn't have a name, i.e. newname NULL, then we just
430 mangle it using 0 for the length of the class. Thus it gets mangled
431 as something starting with `::' rather than `classname::'. */
433 strcat (mangled_name, newname);
435 strcat (mangled_name, physname);
436 return (mangled_name);
439 /* Initialize the cplus_specific structure. 'cplus_specific' should
440 only be allocated for use with cplus symbols. */
443 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
444 struct objfile *objfile)
446 /* A language_specific structure should not have been previously
448 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
449 gdb_assert (objfile != NULL);
451 gsymbol->language_specific.cplus_specific =
452 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
455 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
456 correctly allocated. For C++ symbols a cplus_specific struct is
457 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
458 OBJFILE can be NULL. */
461 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
463 struct objfile *objfile)
465 if (gsymbol->language == language_cplus)
467 if (gsymbol->language_specific.cplus_specific == NULL)
468 symbol_init_cplus_specific (gsymbol, objfile);
470 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 gsymbol->language_specific.mangled_lang.demangled_name = name;
476 /* Return the demangled name of GSYMBOL. */
479 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
481 if (gsymbol->language == language_cplus)
483 if (gsymbol->language_specific.cplus_specific != NULL)
484 return gsymbol->language_specific.cplus_specific->demangled_name;
489 return gsymbol->language_specific.mangled_lang.demangled_name;
493 /* Initialize the language dependent portion of a symbol
494 depending upon the language for the symbol. */
497 symbol_set_language (struct general_symbol_info *gsymbol,
498 enum language language)
500 gsymbol->language = language;
501 if (gsymbol->language == language_d
502 || gsymbol->language == language_go
503 || gsymbol->language == language_java
504 || gsymbol->language == language_objc
505 || gsymbol->language == language_fortran)
507 symbol_set_demangled_name (gsymbol, NULL, NULL);
509 else if (gsymbol->language == language_cplus)
510 gsymbol->language_specific.cplus_specific = NULL;
513 memset (&gsymbol->language_specific, 0,
514 sizeof (gsymbol->language_specific));
518 /* Functions to initialize a symbol's mangled name. */
520 /* Objects of this type are stored in the demangled name hash table. */
521 struct demangled_name_entry
527 /* Hash function for the demangled name hash. */
530 hash_demangled_name_entry (const void *data)
532 const struct demangled_name_entry *e = data;
534 return htab_hash_string (e->mangled);
537 /* Equality function for the demangled name hash. */
540 eq_demangled_name_entry (const void *a, const void *b)
542 const struct demangled_name_entry *da = a;
543 const struct demangled_name_entry *db = b;
545 return strcmp (da->mangled, db->mangled) == 0;
548 /* Create the hash table used for demangled names. Each hash entry is
549 a pair of strings; one for the mangled name and one for the demangled
550 name. The entry is hashed via just the mangled name. */
553 create_demangled_names_hash (struct objfile *objfile)
555 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
556 The hash table code will round this up to the next prime number.
557 Choosing a much larger table size wastes memory, and saves only about
558 1% in symbol reading. */
560 objfile->demangled_names_hash = htab_create_alloc
561 (256, hash_demangled_name_entry, eq_demangled_name_entry,
562 NULL, xcalloc, xfree);
565 /* Try to determine the demangled name for a symbol, based on the
566 language of that symbol. If the language is set to language_auto,
567 it will attempt to find any demangling algorithm that works and
568 then set the language appropriately. The returned name is allocated
569 by the demangler and should be xfree'd. */
572 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 char *demangled = NULL;
577 if (gsymbol->language == language_unknown)
578 gsymbol->language = language_auto;
580 if (gsymbol->language == language_objc
581 || gsymbol->language == language_auto)
584 objc_demangle (mangled, 0);
585 if (demangled != NULL)
587 gsymbol->language = language_objc;
591 if (gsymbol->language == language_cplus
592 || gsymbol->language == language_auto)
595 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
596 if (demangled != NULL)
598 gsymbol->language = language_cplus;
602 if (gsymbol->language == language_java)
605 cplus_demangle (mangled,
606 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
607 if (demangled != NULL)
609 gsymbol->language = language_java;
613 if (gsymbol->language == language_d
614 || gsymbol->language == language_auto)
616 demangled = d_demangle(mangled, 0);
617 if (demangled != NULL)
619 gsymbol->language = language_d;
623 /* FIXME(dje): Continually adding languages here is clumsy.
624 Better to just call la_demangle if !auto, and if auto then call
625 a utility routine that tries successive languages in turn and reports
626 which one it finds. I realize the la_demangle options may be different
627 for different languages but there's already a FIXME for that. */
628 if (gsymbol->language == language_go
629 || gsymbol->language == language_auto)
631 demangled = go_demangle (mangled, 0);
632 if (demangled != NULL)
634 gsymbol->language = language_go;
639 /* We could support `gsymbol->language == language_fortran' here to provide
640 module namespaces also for inferiors with only minimal symbol table (ELF
641 symbols). Just the mangling standard is not standardized across compilers
642 and there is no DW_AT_producer available for inferiors with only the ELF
643 symbols to check the mangling kind. */
647 /* Set both the mangled and demangled (if any) names for GSYMBOL based
648 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
649 objfile's obstack; but if COPY_NAME is 0 and if NAME is
650 NUL-terminated, then this function assumes that NAME is already
651 correctly saved (either permanently or with a lifetime tied to the
652 objfile), and it will not be copied.
654 The hash table corresponding to OBJFILE is used, and the memory
655 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
656 so the pointer can be discarded after calling this function. */
658 /* We have to be careful when dealing with Java names: when we run
659 into a Java minimal symbol, we don't know it's a Java symbol, so it
660 gets demangled as a C++ name. This is unfortunate, but there's not
661 much we can do about it: but when demangling partial symbols and
662 regular symbols, we'd better not reuse the wrong demangled name.
663 (See PR gdb/1039.) We solve this by putting a distinctive prefix
664 on Java names when storing them in the hash table. */
666 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
667 don't mind the Java prefix so much: different languages have
668 different demangling requirements, so it's only natural that we
669 need to keep language data around in our demangling cache. But
670 it's not good that the minimal symbol has the wrong demangled name.
671 Unfortunately, I can't think of any easy solution to that
674 #define JAVA_PREFIX "##JAVA$$"
675 #define JAVA_PREFIX_LEN 8
678 symbol_set_names (struct general_symbol_info *gsymbol,
679 const char *linkage_name, int len, int copy_name,
680 struct objfile *objfile)
682 struct demangled_name_entry **slot;
683 /* A 0-terminated copy of the linkage name. */
684 const char *linkage_name_copy;
685 /* A copy of the linkage name that might have a special Java prefix
686 added to it, for use when looking names up in the hash table. */
687 const char *lookup_name;
688 /* The length of lookup_name. */
690 struct demangled_name_entry entry;
692 if (gsymbol->language == language_ada)
694 /* In Ada, we do the symbol lookups using the mangled name, so
695 we can save some space by not storing the demangled name.
697 As a side note, we have also observed some overlap between
698 the C++ mangling and Ada mangling, similarly to what has
699 been observed with Java. Because we don't store the demangled
700 name with the symbol, we don't need to use the same trick
703 gsymbol->name = linkage_name;
706 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
708 memcpy (name, linkage_name, len);
710 gsymbol->name = name;
712 symbol_set_demangled_name (gsymbol, NULL, NULL);
717 if (objfile->demangled_names_hash == NULL)
718 create_demangled_names_hash (objfile);
720 /* The stabs reader generally provides names that are not
721 NUL-terminated; most of the other readers don't do this, so we
722 can just use the given copy, unless we're in the Java case. */
723 if (gsymbol->language == language_java)
727 lookup_len = len + JAVA_PREFIX_LEN;
728 alloc_name = alloca (lookup_len + 1);
729 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
730 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
731 alloc_name[lookup_len] = '\0';
733 lookup_name = alloc_name;
734 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
736 else if (linkage_name[len] != '\0')
741 alloc_name = alloca (lookup_len + 1);
742 memcpy (alloc_name, linkage_name, len);
743 alloc_name[lookup_len] = '\0';
745 lookup_name = alloc_name;
746 linkage_name_copy = alloc_name;
751 lookup_name = linkage_name;
752 linkage_name_copy = linkage_name;
755 entry.mangled = (char *) lookup_name;
756 slot = ((struct demangled_name_entry **)
757 htab_find_slot (objfile->demangled_names_hash,
760 /* If this name is not in the hash table, add it. */
762 /* A C version of the symbol may have already snuck into the table.
763 This happens to, e.g., main.init (__go_init_main). Cope. */
764 || (gsymbol->language == language_go
765 && (*slot)->demangled[0] == '\0'))
767 char *demangled_name = symbol_find_demangled_name (gsymbol,
769 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
771 /* Suppose we have demangled_name==NULL, copy_name==0, and
772 lookup_name==linkage_name. In this case, we already have the
773 mangled name saved, and we don't have a demangled name. So,
774 you might think we could save a little space by not recording
775 this in the hash table at all.
777 It turns out that it is actually important to still save such
778 an entry in the hash table, because storing this name gives
779 us better bcache hit rates for partial symbols. */
780 if (!copy_name && lookup_name == linkage_name)
782 *slot = obstack_alloc (&objfile->objfile_obstack,
783 offsetof (struct demangled_name_entry,
785 + demangled_len + 1);
786 (*slot)->mangled = (char *) lookup_name;
790 /* If we must copy the mangled name, put it directly after
791 the demangled name so we can have a single
793 *slot = obstack_alloc (&objfile->objfile_obstack,
794 offsetof (struct demangled_name_entry,
796 + lookup_len + demangled_len + 2);
797 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
798 strcpy ((*slot)->mangled, lookup_name);
801 if (demangled_name != NULL)
803 strcpy ((*slot)->demangled, demangled_name);
804 xfree (demangled_name);
807 (*slot)->demangled[0] = '\0';
810 gsymbol->name = (*slot)->mangled + lookup_len - len;
811 if ((*slot)->demangled[0] != '\0')
812 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
814 symbol_set_demangled_name (gsymbol, NULL, objfile);
817 /* Return the source code name of a symbol. In languages where
818 demangling is necessary, this is the demangled name. */
821 symbol_natural_name (const struct general_symbol_info *gsymbol)
823 switch (gsymbol->language)
830 case language_fortran:
831 if (symbol_get_demangled_name (gsymbol) != NULL)
832 return symbol_get_demangled_name (gsymbol);
835 if (symbol_get_demangled_name (gsymbol) != NULL)
836 return symbol_get_demangled_name (gsymbol);
838 return ada_decode_symbol (gsymbol);
843 return gsymbol->name;
846 /* Return the demangled name for a symbol based on the language for
847 that symbol. If no demangled name exists, return NULL. */
850 symbol_demangled_name (const struct general_symbol_info *gsymbol)
852 const char *dem_name = NULL;
854 switch (gsymbol->language)
861 case language_fortran:
862 dem_name = symbol_get_demangled_name (gsymbol);
865 dem_name = symbol_get_demangled_name (gsymbol);
866 if (dem_name == NULL)
867 dem_name = ada_decode_symbol (gsymbol);
875 /* Return the search name of a symbol---generally the demangled or
876 linkage name of the symbol, depending on how it will be searched for.
877 If there is no distinct demangled name, then returns the same value
878 (same pointer) as SYMBOL_LINKAGE_NAME. */
881 symbol_search_name (const struct general_symbol_info *gsymbol)
883 if (gsymbol->language == language_ada)
884 return gsymbol->name;
886 return symbol_natural_name (gsymbol);
889 /* Initialize the structure fields to zero values. */
892 init_sal (struct symtab_and_line *sal)
900 sal->explicit_pc = 0;
901 sal->explicit_line = 0;
906 /* Return 1 if the two sections are the same, or if they could
907 plausibly be copies of each other, one in an original object
908 file and another in a separated debug file. */
911 matching_obj_sections (struct obj_section *obj_first,
912 struct obj_section *obj_second)
914 asection *first = obj_first? obj_first->the_bfd_section : NULL;
915 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 /* If they're the same section, then they match. */
922 /* If either is NULL, give up. */
923 if (first == NULL || second == NULL)
926 /* This doesn't apply to absolute symbols. */
927 if (first->owner == NULL || second->owner == NULL)
930 /* If they're in the same object file, they must be different sections. */
931 if (first->owner == second->owner)
934 /* Check whether the two sections are potentially corresponding. They must
935 have the same size, address, and name. We can't compare section indexes,
936 which would be more reliable, because some sections may have been
938 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 /* In-memory addresses may start at a different offset, relativize them. */
942 if (bfd_get_section_vma (first->owner, first)
943 - bfd_get_start_address (first->owner)
944 != bfd_get_section_vma (second->owner, second)
945 - bfd_get_start_address (second->owner))
948 if (bfd_get_section_name (first->owner, first) == NULL
949 || bfd_get_section_name (second->owner, second) == NULL
950 || strcmp (bfd_get_section_name (first->owner, first),
951 bfd_get_section_name (second->owner, second)) != 0)
954 /* Otherwise check that they are in corresponding objfiles. */
957 if (obj->obfd == first->owner)
959 gdb_assert (obj != NULL);
961 if (obj->separate_debug_objfile != NULL
962 && obj->separate_debug_objfile->obfd == second->owner)
964 if (obj->separate_debug_objfile_backlink != NULL
965 && obj->separate_debug_objfile_backlink->obfd == second->owner)
972 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
974 struct objfile *objfile;
975 struct minimal_symbol *msymbol;
977 /* If we know that this is not a text address, return failure. This is
978 necessary because we loop based on texthigh and textlow, which do
979 not include the data ranges. */
980 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
982 && (MSYMBOL_TYPE (msymbol) == mst_data
983 || MSYMBOL_TYPE (msymbol) == mst_bss
984 || MSYMBOL_TYPE (msymbol) == mst_abs
985 || MSYMBOL_TYPE (msymbol) == mst_file_data
986 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 ALL_OBJFILES (objfile)
991 struct symtab *result = NULL;
994 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1003 /* Debug symbols usually don't have section information. We need to dig that
1004 out of the minimal symbols and stash that in the debug symbol. */
1007 fixup_section (struct general_symbol_info *ginfo,
1008 CORE_ADDR addr, struct objfile *objfile)
1010 struct minimal_symbol *msym;
1012 /* First, check whether a minimal symbol with the same name exists
1013 and points to the same address. The address check is required
1014 e.g. on PowerPC64, where the minimal symbol for a function will
1015 point to the function descriptor, while the debug symbol will
1016 point to the actual function code. */
1017 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1021 ginfo->section = SYMBOL_SECTION (msym);
1025 /* Static, function-local variables do appear in the linker
1026 (minimal) symbols, but are frequently given names that won't
1027 be found via lookup_minimal_symbol(). E.g., it has been
1028 observed in frv-uclinux (ELF) executables that a static,
1029 function-local variable named "foo" might appear in the
1030 linker symbols as "foo.6" or "foo.3". Thus, there is no
1031 point in attempting to extend the lookup-by-name mechanism to
1032 handle this case due to the fact that there can be multiple
1035 So, instead, search the section table when lookup by name has
1036 failed. The ``addr'' and ``endaddr'' fields may have already
1037 been relocated. If so, the relocation offset (i.e. the
1038 ANOFFSET value) needs to be subtracted from these values when
1039 performing the comparison. We unconditionally subtract it,
1040 because, when no relocation has been performed, the ANOFFSET
1041 value will simply be zero.
1043 The address of the symbol whose section we're fixing up HAS
1044 NOT BEEN adjusted (relocated) yet. It can't have been since
1045 the section isn't yet known and knowing the section is
1046 necessary in order to add the correct relocation value. In
1047 other words, we wouldn't even be in this function (attempting
1048 to compute the section) if it were already known.
1050 Note that it is possible to search the minimal symbols
1051 (subtracting the relocation value if necessary) to find the
1052 matching minimal symbol, but this is overkill and much less
1053 efficient. It is not necessary to find the matching minimal
1054 symbol, only its section.
1056 Note that this technique (of doing a section table search)
1057 can fail when unrelocated section addresses overlap. For
1058 this reason, we still attempt a lookup by name prior to doing
1059 a search of the section table. */
1061 struct obj_section *s;
1063 ALL_OBJFILE_OSECTIONS (objfile, s)
1065 int idx = s->the_bfd_section->index;
1066 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1068 if (obj_section_addr (s) - offset <= addr
1069 && addr < obj_section_endaddr (s) - offset)
1071 ginfo->obj_section = s;
1072 ginfo->section = idx;
1080 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1087 if (SYMBOL_OBJ_SECTION (sym))
1090 /* We either have an OBJFILE, or we can get at it from the sym's
1091 symtab. Anything else is a bug. */
1092 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1094 if (objfile == NULL)
1095 objfile = SYMBOL_SYMTAB (sym)->objfile;
1097 /* We should have an objfile by now. */
1098 gdb_assert (objfile);
1100 switch (SYMBOL_CLASS (sym))
1104 addr = SYMBOL_VALUE_ADDRESS (sym);
1107 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1111 /* Nothing else will be listed in the minsyms -- no use looking
1116 fixup_section (&sym->ginfo, addr, objfile);
1121 /* Compute the demangled form of NAME as used by the various symbol
1122 lookup functions. The result is stored in *RESULT_NAME. Returns a
1123 cleanup which can be used to clean up the result.
1125 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1126 Normally, Ada symbol lookups are performed using the encoded name
1127 rather than the demangled name, and so it might seem to make sense
1128 for this function to return an encoded version of NAME.
1129 Unfortunately, we cannot do this, because this function is used in
1130 circumstances where it is not appropriate to try to encode NAME.
1131 For instance, when displaying the frame info, we demangle the name
1132 of each parameter, and then perform a symbol lookup inside our
1133 function using that demangled name. In Ada, certain functions
1134 have internally-generated parameters whose name contain uppercase
1135 characters. Encoding those name would result in those uppercase
1136 characters to become lowercase, and thus cause the symbol lookup
1140 demangle_for_lookup (const char *name, enum language lang,
1141 const char **result_name)
1143 char *demangled_name = NULL;
1144 const char *modified_name = NULL;
1145 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1147 modified_name = name;
1149 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1150 lookup, so we can always binary search. */
1151 if (lang == language_cplus)
1153 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1156 modified_name = demangled_name;
1157 make_cleanup (xfree, demangled_name);
1161 /* If we were given a non-mangled name, canonicalize it
1162 according to the language (so far only for C++). */
1163 demangled_name = cp_canonicalize_string (name);
1166 modified_name = demangled_name;
1167 make_cleanup (xfree, demangled_name);
1171 else if (lang == language_java)
1173 demangled_name = cplus_demangle (name,
1174 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1177 modified_name = demangled_name;
1178 make_cleanup (xfree, demangled_name);
1181 else if (lang == language_d)
1183 demangled_name = d_demangle (name, 0);
1186 modified_name = demangled_name;
1187 make_cleanup (xfree, demangled_name);
1190 else if (lang == language_go)
1192 demangled_name = go_demangle (name, 0);
1195 modified_name = demangled_name;
1196 make_cleanup (xfree, demangled_name);
1200 *result_name = modified_name;
1204 /* Find the definition for a specified symbol name NAME
1205 in domain DOMAIN, visible from lexical block BLOCK.
1206 Returns the struct symbol pointer, or zero if no symbol is found.
1207 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1208 NAME is a field of the current implied argument `this'. If so set
1209 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1210 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1211 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1213 /* This function (or rather its subordinates) have a bunch of loops and
1214 it would seem to be attractive to put in some QUIT's (though I'm not really
1215 sure whether it can run long enough to be really important). But there
1216 are a few calls for which it would appear to be bad news to quit
1217 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1218 that there is C++ code below which can error(), but that probably
1219 doesn't affect these calls since they are looking for a known
1220 variable and thus can probably assume it will never hit the C++
1224 lookup_symbol_in_language (const char *name, const struct block *block,
1225 const domain_enum domain, enum language lang,
1226 int *is_a_field_of_this)
1228 const char *modified_name;
1229 struct symbol *returnval;
1230 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1232 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1233 is_a_field_of_this);
1234 do_cleanups (cleanup);
1239 /* Behave like lookup_symbol_in_language, but performed with the
1240 current language. */
1243 lookup_symbol (const char *name, const struct block *block,
1244 domain_enum domain, int *is_a_field_of_this)
1246 return lookup_symbol_in_language (name, block, domain,
1247 current_language->la_language,
1248 is_a_field_of_this);
1251 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1252 found, or NULL if not found. */
1255 lookup_language_this (const struct language_defn *lang,
1256 const struct block *block)
1258 if (lang->la_name_of_this == NULL || block == NULL)
1265 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1268 block_found = block;
1271 if (BLOCK_FUNCTION (block))
1273 block = BLOCK_SUPERBLOCK (block);
1279 /* Behave like lookup_symbol except that NAME is the natural name
1280 (e.g., demangled name) of the symbol that we're looking for. */
1282 static struct symbol *
1283 lookup_symbol_aux (const char *name, const struct block *block,
1284 const domain_enum domain, enum language language,
1285 int *is_a_field_of_this)
1288 const struct language_defn *langdef;
1290 /* Make sure we do something sensible with is_a_field_of_this, since
1291 the callers that set this parameter to some non-null value will
1292 certainly use it later and expect it to be either 0 or 1.
1293 If we don't set it, the contents of is_a_field_of_this are
1295 if (is_a_field_of_this != NULL)
1296 *is_a_field_of_this = 0;
1298 /* Search specified block and its superiors. Don't search
1299 STATIC_BLOCK or GLOBAL_BLOCK. */
1301 sym = lookup_symbol_aux_local (name, block, domain, language);
1305 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1306 check to see if NAME is a field of `this'. */
1308 langdef = language_def (language);
1310 if (is_a_field_of_this != NULL)
1312 struct symbol *sym = lookup_language_this (langdef, block);
1316 struct type *t = sym->type;
1318 /* I'm not really sure that type of this can ever
1319 be typedefed; just be safe. */
1321 if (TYPE_CODE (t) == TYPE_CODE_PTR
1322 || TYPE_CODE (t) == TYPE_CODE_REF)
1323 t = TYPE_TARGET_TYPE (t);
1325 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1326 && TYPE_CODE (t) != TYPE_CODE_UNION)
1327 error (_("Internal error: `%s' is not an aggregate"),
1328 langdef->la_name_of_this);
1330 if (check_field (t, name))
1332 *is_a_field_of_this = 1;
1338 /* Now do whatever is appropriate for LANGUAGE to look
1339 up static and global variables. */
1341 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1345 /* Now search all static file-level symbols. Not strictly correct,
1346 but more useful than an error. */
1348 return lookup_static_symbol_aux (name, domain);
1351 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1352 first, then check the psymtabs. If a psymtab indicates the existence of the
1353 desired name as a file-level static, then do psymtab-to-symtab conversion on
1354 the fly and return the found symbol. */
1357 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1359 struct objfile *objfile;
1362 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1366 ALL_OBJFILES (objfile)
1368 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1376 /* Check to see if the symbol is defined in BLOCK or its superiors.
1377 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1379 static struct symbol *
1380 lookup_symbol_aux_local (const char *name, const struct block *block,
1381 const domain_enum domain,
1382 enum language language)
1385 const struct block *static_block = block_static_block (block);
1386 const char *scope = block_scope (block);
1388 /* Check if either no block is specified or it's a global block. */
1390 if (static_block == NULL)
1393 while (block != static_block)
1395 sym = lookup_symbol_aux_block (name, block, domain);
1399 if (language == language_cplus || language == language_fortran)
1401 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1407 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1409 block = BLOCK_SUPERBLOCK (block);
1412 /* We've reached the edge of the function without finding a result. */
1417 /* Look up OBJFILE to BLOCK. */
1420 lookup_objfile_from_block (const struct block *block)
1422 struct objfile *obj;
1428 block = block_global_block (block);
1429 /* Go through SYMTABS. */
1430 ALL_SYMTABS (obj, s)
1431 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1433 if (obj->separate_debug_objfile_backlink)
1434 obj = obj->separate_debug_objfile_backlink;
1442 /* Look up a symbol in a block; if found, fixup the symbol, and set
1443 block_found appropriately. */
1446 lookup_symbol_aux_block (const char *name, const struct block *block,
1447 const domain_enum domain)
1451 sym = lookup_block_symbol (block, name, domain);
1454 block_found = block;
1455 return fixup_symbol_section (sym, NULL);
1461 /* Check all global symbols in OBJFILE in symtabs and
1465 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1467 const domain_enum domain)
1469 const struct objfile *objfile;
1471 struct blockvector *bv;
1472 const struct block *block;
1475 for (objfile = main_objfile;
1477 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1479 /* Go through symtabs. */
1480 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1482 bv = BLOCKVECTOR (s);
1483 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1484 sym = lookup_block_symbol (block, name, domain);
1487 block_found = block;
1488 return fixup_symbol_section (sym, (struct objfile *)objfile);
1492 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1501 /* Check to see if the symbol is defined in one of the OBJFILE's
1502 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1503 depending on whether or not we want to search global symbols or
1506 static struct symbol *
1507 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1508 const char *name, const domain_enum domain)
1510 struct symbol *sym = NULL;
1511 struct blockvector *bv;
1512 const struct block *block;
1516 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1519 ALL_OBJFILE_SYMTABS (objfile, s)
1522 bv = BLOCKVECTOR (s);
1523 block = BLOCKVECTOR_BLOCK (bv, block_index);
1524 sym = lookup_block_symbol (block, name, domain);
1527 block_found = block;
1528 return fixup_symbol_section (sym, objfile);
1535 /* Same as lookup_symbol_aux_objfile, except that it searches all
1536 objfiles. Return the first match found. */
1538 static struct symbol *
1539 lookup_symbol_aux_symtabs (int block_index, const char *name,
1540 const domain_enum domain)
1543 struct objfile *objfile;
1545 ALL_OBJFILES (objfile)
1547 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1555 /* A helper function for lookup_symbol_aux that interfaces with the
1556 "quick" symbol table functions. */
1558 static struct symbol *
1559 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1560 const char *name, const domain_enum domain)
1562 struct symtab *symtab;
1563 struct blockvector *bv;
1564 const struct block *block;
1569 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1573 bv = BLOCKVECTOR (symtab);
1574 block = BLOCKVECTOR_BLOCK (bv, kind);
1575 sym = lookup_block_symbol (block, name, domain);
1578 /* This shouldn't be necessary, but as a last resort try
1579 looking in the statics even though the psymtab claimed
1580 the symbol was global, or vice-versa. It's possible
1581 that the psymtab gets it wrong in some cases. */
1583 /* FIXME: carlton/2002-09-30: Should we really do that?
1584 If that happens, isn't it likely to be a GDB error, in
1585 which case we should fix the GDB error rather than
1586 silently dealing with it here? So I'd vote for
1587 removing the check for the symbol in the other
1589 block = BLOCKVECTOR_BLOCK (bv,
1590 kind == GLOBAL_BLOCK ?
1591 STATIC_BLOCK : GLOBAL_BLOCK);
1592 sym = lookup_block_symbol (block, name, domain);
1595 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1596 %s may be an inlined function, or may be a template function\n\
1597 (if a template, try specifying an instantiation: %s<type>)."),
1598 kind == GLOBAL_BLOCK ? "global" : "static",
1599 name, symtab->filename, name, name);
1601 return fixup_symbol_section (sym, objfile);
1604 /* A default version of lookup_symbol_nonlocal for use by languages
1605 that can't think of anything better to do. This implements the C
1609 basic_lookup_symbol_nonlocal (const char *name,
1610 const struct block *block,
1611 const domain_enum domain)
1615 /* NOTE: carlton/2003-05-19: The comments below were written when
1616 this (or what turned into this) was part of lookup_symbol_aux;
1617 I'm much less worried about these questions now, since these
1618 decisions have turned out well, but I leave these comments here
1621 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1622 not it would be appropriate to search the current global block
1623 here as well. (That's what this code used to do before the
1624 is_a_field_of_this check was moved up.) On the one hand, it's
1625 redundant with the lookup_symbol_aux_symtabs search that happens
1626 next. On the other hand, if decode_line_1 is passed an argument
1627 like filename:var, then the user presumably wants 'var' to be
1628 searched for in filename. On the third hand, there shouldn't be
1629 multiple global variables all of which are named 'var', and it's
1630 not like decode_line_1 has ever restricted its search to only
1631 global variables in a single filename. All in all, only
1632 searching the static block here seems best: it's correct and it's
1635 /* NOTE: carlton/2002-12-05: There's also a possible performance
1636 issue here: if you usually search for global symbols in the
1637 current file, then it would be slightly better to search the
1638 current global block before searching all the symtabs. But there
1639 are other factors that have a much greater effect on performance
1640 than that one, so I don't think we should worry about that for
1643 sym = lookup_symbol_static (name, block, domain);
1647 return lookup_symbol_global (name, block, domain);
1650 /* Lookup a symbol in the static block associated to BLOCK, if there
1651 is one; do nothing if BLOCK is NULL or a global block. */
1654 lookup_symbol_static (const char *name,
1655 const struct block *block,
1656 const domain_enum domain)
1658 const struct block *static_block = block_static_block (block);
1660 if (static_block != NULL)
1661 return lookup_symbol_aux_block (name, static_block, domain);
1666 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1668 struct global_sym_lookup_data
1670 /* The name of the symbol we are searching for. */
1673 /* The domain to use for our search. */
1676 /* The field where the callback should store the symbol if found.
1677 It should be initialized to NULL before the search is started. */
1678 struct symbol *result;
1681 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1682 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1683 OBJFILE. The arguments for the search are passed via CB_DATA,
1684 which in reality is a pointer to struct global_sym_lookup_data. */
1687 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1690 struct global_sym_lookup_data *data =
1691 (struct global_sym_lookup_data *) cb_data;
1693 gdb_assert (data->result == NULL);
1695 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1696 data->name, data->domain);
1697 if (data->result == NULL)
1698 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1699 data->name, data->domain);
1701 /* If we found a match, tell the iterator to stop. Otherwise,
1703 return (data->result != NULL);
1706 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1710 lookup_symbol_global (const char *name,
1711 const struct block *block,
1712 const domain_enum domain)
1714 struct symbol *sym = NULL;
1715 struct objfile *objfile = NULL;
1716 struct global_sym_lookup_data lookup_data;
1718 /* Call library-specific lookup procedure. */
1719 objfile = lookup_objfile_from_block (block);
1720 if (objfile != NULL)
1721 sym = solib_global_lookup (objfile, name, domain);
1725 memset (&lookup_data, 0, sizeof (lookup_data));
1726 lookup_data.name = name;
1727 lookup_data.domain = domain;
1728 gdbarch_iterate_over_objfiles_in_search_order
1729 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch,
1730 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1732 return lookup_data.result;
1736 symbol_matches_domain (enum language symbol_language,
1737 domain_enum symbol_domain,
1740 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1741 A Java class declaration also defines a typedef for the class.
1742 Similarly, any Ada type declaration implicitly defines a typedef. */
1743 if (symbol_language == language_cplus
1744 || symbol_language == language_d
1745 || symbol_language == language_java
1746 || symbol_language == language_ada)
1748 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1749 && symbol_domain == STRUCT_DOMAIN)
1752 /* For all other languages, strict match is required. */
1753 return (symbol_domain == domain);
1756 /* Look up a type named NAME in the struct_domain. The type returned
1757 must not be opaque -- i.e., must have at least one field
1761 lookup_transparent_type (const char *name)
1763 return current_language->la_lookup_transparent_type (name);
1766 /* A helper for basic_lookup_transparent_type that interfaces with the
1767 "quick" symbol table functions. */
1769 static struct type *
1770 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1773 struct symtab *symtab;
1774 struct blockvector *bv;
1775 struct block *block;
1780 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1784 bv = BLOCKVECTOR (symtab);
1785 block = BLOCKVECTOR_BLOCK (bv, kind);
1786 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1789 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1791 /* This shouldn't be necessary, but as a last resort
1792 * try looking in the 'other kind' even though the psymtab
1793 * claimed the symbol was one thing. It's possible that
1794 * the psymtab gets it wrong in some cases.
1796 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1797 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1799 /* FIXME; error is wrong in one case. */
1801 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1802 %s may be an inlined function, or may be a template function\n\
1803 (if a template, try specifying an instantiation: %s<type>)."),
1804 name, symtab->filename, name, name);
1806 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1807 return SYMBOL_TYPE (sym);
1812 /* The standard implementation of lookup_transparent_type. This code
1813 was modeled on lookup_symbol -- the parts not relevant to looking
1814 up types were just left out. In particular it's assumed here that
1815 types are available in struct_domain and only at file-static or
1819 basic_lookup_transparent_type (const char *name)
1822 struct symtab *s = NULL;
1823 struct blockvector *bv;
1824 struct objfile *objfile;
1825 struct block *block;
1828 /* Now search all the global symbols. Do the symtab's first, then
1829 check the psymtab's. If a psymtab indicates the existence
1830 of the desired name as a global, then do psymtab-to-symtab
1831 conversion on the fly and return the found symbol. */
1833 ALL_OBJFILES (objfile)
1836 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1838 name, STRUCT_DOMAIN);
1840 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1842 bv = BLOCKVECTOR (s);
1843 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1844 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1845 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1847 return SYMBOL_TYPE (sym);
1852 ALL_OBJFILES (objfile)
1854 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1859 /* Now search the static file-level symbols.
1860 Not strictly correct, but more useful than an error.
1861 Do the symtab's first, then
1862 check the psymtab's. If a psymtab indicates the existence
1863 of the desired name as a file-level static, then do psymtab-to-symtab
1864 conversion on the fly and return the found symbol. */
1866 ALL_OBJFILES (objfile)
1869 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1870 name, STRUCT_DOMAIN);
1872 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1874 bv = BLOCKVECTOR (s);
1875 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1876 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1877 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1879 return SYMBOL_TYPE (sym);
1884 ALL_OBJFILES (objfile)
1886 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1891 return (struct type *) 0;
1894 /* Find the name of the file containing main(). */
1895 /* FIXME: What about languages without main() or specially linked
1896 executables that have no main() ? */
1899 find_main_filename (void)
1901 struct objfile *objfile;
1902 char *name = main_name ();
1904 ALL_OBJFILES (objfile)
1910 result = objfile->sf->qf->find_symbol_file (objfile, name);
1917 /* Search BLOCK for symbol NAME in DOMAIN.
1919 Note that if NAME is the demangled form of a C++ symbol, we will fail
1920 to find a match during the binary search of the non-encoded names, but
1921 for now we don't worry about the slight inefficiency of looking for
1922 a match we'll never find, since it will go pretty quick. Once the
1923 binary search terminates, we drop through and do a straight linear
1924 search on the symbols. Each symbol which is marked as being a ObjC/C++
1925 symbol (language_cplus or language_objc set) has both the encoded and
1926 non-encoded names tested for a match. */
1929 lookup_block_symbol (const struct block *block, const char *name,
1930 const domain_enum domain)
1932 struct block_iterator iter;
1935 if (!BLOCK_FUNCTION (block))
1937 for (sym = block_iter_name_first (block, name, &iter);
1939 sym = block_iter_name_next (name, &iter))
1941 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1942 SYMBOL_DOMAIN (sym), domain))
1949 /* Note that parameter symbols do not always show up last in the
1950 list; this loop makes sure to take anything else other than
1951 parameter symbols first; it only uses parameter symbols as a
1952 last resort. Note that this only takes up extra computation
1955 struct symbol *sym_found = NULL;
1957 for (sym = block_iter_name_first (block, name, &iter);
1959 sym = block_iter_name_next (name, &iter))
1961 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1962 SYMBOL_DOMAIN (sym), domain))
1965 if (!SYMBOL_IS_ARGUMENT (sym))
1971 return (sym_found); /* Will be NULL if not found. */
1975 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1978 For each symbol that matches, CALLBACK is called. The symbol and
1979 DATA are passed to the callback.
1981 If CALLBACK returns zero, the iteration ends. Otherwise, the
1982 search continues. This function iterates upward through blocks.
1983 When the outermost block has been finished, the function
1987 iterate_over_symbols (const struct block *block, const char *name,
1988 const domain_enum domain,
1989 symbol_found_callback_ftype *callback,
1994 struct block_iterator iter;
1997 for (sym = block_iter_name_first (block, name, &iter);
1999 sym = block_iter_name_next (name, &iter))
2001 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2002 SYMBOL_DOMAIN (sym), domain))
2004 if (!callback (sym, data))
2009 block = BLOCK_SUPERBLOCK (block);
2013 /* Find the symtab associated with PC and SECTION. Look through the
2014 psymtabs and read in another symtab if necessary. */
2017 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2020 struct blockvector *bv;
2021 struct symtab *s = NULL;
2022 struct symtab *best_s = NULL;
2023 struct objfile *objfile;
2024 struct program_space *pspace;
2025 CORE_ADDR distance = 0;
2026 struct minimal_symbol *msymbol;
2028 pspace = current_program_space;
2030 /* If we know that this is not a text address, return failure. This is
2031 necessary because we loop based on the block's high and low code
2032 addresses, which do not include the data ranges, and because
2033 we call find_pc_sect_psymtab which has a similar restriction based
2034 on the partial_symtab's texthigh and textlow. */
2035 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2037 && (MSYMBOL_TYPE (msymbol) == mst_data
2038 || MSYMBOL_TYPE (msymbol) == mst_bss
2039 || MSYMBOL_TYPE (msymbol) == mst_abs
2040 || MSYMBOL_TYPE (msymbol) == mst_file_data
2041 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2044 /* Search all symtabs for the one whose file contains our address, and which
2045 is the smallest of all the ones containing the address. This is designed
2046 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2047 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2048 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2050 This happens for native ecoff format, where code from included files
2051 gets its own symtab. The symtab for the included file should have
2052 been read in already via the dependency mechanism.
2053 It might be swifter to create several symtabs with the same name
2054 like xcoff does (I'm not sure).
2056 It also happens for objfiles that have their functions reordered.
2057 For these, the symtab we are looking for is not necessarily read in. */
2059 ALL_PRIMARY_SYMTABS (objfile, s)
2061 bv = BLOCKVECTOR (s);
2062 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2064 if (BLOCK_START (b) <= pc
2065 && BLOCK_END (b) > pc
2067 || BLOCK_END (b) - BLOCK_START (b) < distance))
2069 /* For an objfile that has its functions reordered,
2070 find_pc_psymtab will find the proper partial symbol table
2071 and we simply return its corresponding symtab. */
2072 /* In order to better support objfiles that contain both
2073 stabs and coff debugging info, we continue on if a psymtab
2075 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2077 struct symtab *result;
2080 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2089 struct block_iterator iter;
2090 struct symbol *sym = NULL;
2092 ALL_BLOCK_SYMBOLS (b, iter, sym)
2094 fixup_symbol_section (sym, objfile);
2095 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2099 continue; /* No symbol in this symtab matches
2102 distance = BLOCK_END (b) - BLOCK_START (b);
2110 ALL_OBJFILES (objfile)
2112 struct symtab *result;
2116 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2127 /* Find the symtab associated with PC. Look through the psymtabs and read
2128 in another symtab if necessary. Backward compatibility, no section. */
2131 find_pc_symtab (CORE_ADDR pc)
2133 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2137 /* Find the source file and line number for a given PC value and SECTION.
2138 Return a structure containing a symtab pointer, a line number,
2139 and a pc range for the entire source line.
2140 The value's .pc field is NOT the specified pc.
2141 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2142 use the line that ends there. Otherwise, in that case, the line
2143 that begins there is used. */
2145 /* The big complication here is that a line may start in one file, and end just
2146 before the start of another file. This usually occurs when you #include
2147 code in the middle of a subroutine. To properly find the end of a line's PC
2148 range, we must search all symtabs associated with this compilation unit, and
2149 find the one whose first PC is closer than that of the next line in this
2152 /* If it's worth the effort, we could be using a binary search. */
2154 struct symtab_and_line
2155 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2158 struct linetable *l;
2161 struct linetable_entry *item;
2162 struct symtab_and_line val;
2163 struct blockvector *bv;
2164 struct minimal_symbol *msymbol;
2165 struct minimal_symbol *mfunsym;
2166 struct objfile *objfile;
2168 /* Info on best line seen so far, and where it starts, and its file. */
2170 struct linetable_entry *best = NULL;
2171 CORE_ADDR best_end = 0;
2172 struct symtab *best_symtab = 0;
2174 /* Store here the first line number
2175 of a file which contains the line at the smallest pc after PC.
2176 If we don't find a line whose range contains PC,
2177 we will use a line one less than this,
2178 with a range from the start of that file to the first line's pc. */
2179 struct linetable_entry *alt = NULL;
2180 struct symtab *alt_symtab = 0;
2182 /* Info on best line seen in this file. */
2184 struct linetable_entry *prev;
2186 /* If this pc is not from the current frame,
2187 it is the address of the end of a call instruction.
2188 Quite likely that is the start of the following statement.
2189 But what we want is the statement containing the instruction.
2190 Fudge the pc to make sure we get that. */
2192 init_sal (&val); /* initialize to zeroes */
2194 val.pspace = current_program_space;
2196 /* It's tempting to assume that, if we can't find debugging info for
2197 any function enclosing PC, that we shouldn't search for line
2198 number info, either. However, GAS can emit line number info for
2199 assembly files --- very helpful when debugging hand-written
2200 assembly code. In such a case, we'd have no debug info for the
2201 function, but we would have line info. */
2206 /* elz: added this because this function returned the wrong
2207 information if the pc belongs to a stub (import/export)
2208 to call a shlib function. This stub would be anywhere between
2209 two functions in the target, and the line info was erroneously
2210 taken to be the one of the line before the pc. */
2212 /* RT: Further explanation:
2214 * We have stubs (trampolines) inserted between procedures.
2216 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2217 * exists in the main image.
2219 * In the minimal symbol table, we have a bunch of symbols
2220 * sorted by start address. The stubs are marked as "trampoline",
2221 * the others appear as text. E.g.:
2223 * Minimal symbol table for main image
2224 * main: code for main (text symbol)
2225 * shr1: stub (trampoline symbol)
2226 * foo: code for foo (text symbol)
2228 * Minimal symbol table for "shr1" image:
2230 * shr1: code for shr1 (text symbol)
2233 * So the code below is trying to detect if we are in the stub
2234 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2235 * and if found, do the symbolization from the real-code address
2236 * rather than the stub address.
2238 * Assumptions being made about the minimal symbol table:
2239 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2240 * if we're really in the trampoline.s If we're beyond it (say
2241 * we're in "foo" in the above example), it'll have a closer
2242 * symbol (the "foo" text symbol for example) and will not
2243 * return the trampoline.
2244 * 2. lookup_minimal_symbol_text() will find a real text symbol
2245 * corresponding to the trampoline, and whose address will
2246 * be different than the trampoline address. I put in a sanity
2247 * check for the address being the same, to avoid an
2248 * infinite recursion.
2250 msymbol = lookup_minimal_symbol_by_pc (pc);
2251 if (msymbol != NULL)
2252 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2254 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2256 if (mfunsym == NULL)
2257 /* I eliminated this warning since it is coming out
2258 * in the following situation:
2259 * gdb shmain // test program with shared libraries
2260 * (gdb) break shr1 // function in shared lib
2261 * Warning: In stub for ...
2262 * In the above situation, the shared lib is not loaded yet,
2263 * so of course we can't find the real func/line info,
2264 * but the "break" still works, and the warning is annoying.
2265 * So I commented out the warning. RT */
2266 /* warning ("In stub for %s; unable to find real function/line info",
2267 SYMBOL_LINKAGE_NAME (msymbol)); */
2270 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2271 == SYMBOL_VALUE_ADDRESS (msymbol))
2272 /* Avoid infinite recursion */
2273 /* See above comment about why warning is commented out. */
2274 /* warning ("In stub for %s; unable to find real function/line info",
2275 SYMBOL_LINKAGE_NAME (msymbol)); */
2279 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2283 s = find_pc_sect_symtab (pc, section);
2286 /* If no symbol information, return previous pc. */
2293 bv = BLOCKVECTOR (s);
2294 objfile = s->objfile;
2296 /* Look at all the symtabs that share this blockvector.
2297 They all have the same apriori range, that we found was right;
2298 but they have different line tables. */
2300 ALL_OBJFILE_SYMTABS (objfile, s)
2302 if (BLOCKVECTOR (s) != bv)
2305 /* Find the best line in this symtab. */
2312 /* I think len can be zero if the symtab lacks line numbers
2313 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2314 I'm not sure which, and maybe it depends on the symbol
2320 item = l->item; /* Get first line info. */
2322 /* Is this file's first line closer than the first lines of other files?
2323 If so, record this file, and its first line, as best alternate. */
2324 if (item->pc > pc && (!alt || item->pc < alt->pc))
2330 for (i = 0; i < len; i++, item++)
2332 /* Leave prev pointing to the linetable entry for the last line
2333 that started at or before PC. */
2340 /* At this point, prev points at the line whose start addr is <= pc, and
2341 item points at the next line. If we ran off the end of the linetable
2342 (pc >= start of the last line), then prev == item. If pc < start of
2343 the first line, prev will not be set. */
2345 /* Is this file's best line closer than the best in the other files?
2346 If so, record this file, and its best line, as best so far. Don't
2347 save prev if it represents the end of a function (i.e. line number
2348 0) instead of a real line. */
2350 if (prev && prev->line && (!best || prev->pc > best->pc))
2355 /* Discard BEST_END if it's before the PC of the current BEST. */
2356 if (best_end <= best->pc)
2360 /* If another line (denoted by ITEM) is in the linetable and its
2361 PC is after BEST's PC, but before the current BEST_END, then
2362 use ITEM's PC as the new best_end. */
2363 if (best && i < len && item->pc > best->pc
2364 && (best_end == 0 || best_end > item->pc))
2365 best_end = item->pc;
2370 /* If we didn't find any line number info, just return zeros.
2371 We used to return alt->line - 1 here, but that could be
2372 anywhere; if we don't have line number info for this PC,
2373 don't make some up. */
2376 else if (best->line == 0)
2378 /* If our best fit is in a range of PC's for which no line
2379 number info is available (line number is zero) then we didn't
2380 find any valid line information. */
2385 val.symtab = best_symtab;
2386 val.line = best->line;
2388 if (best_end && (!alt || best_end < alt->pc))
2393 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2395 val.section = section;
2399 /* Backward compatibility (no section). */
2401 struct symtab_and_line
2402 find_pc_line (CORE_ADDR pc, int notcurrent)
2404 struct obj_section *section;
2406 section = find_pc_overlay (pc);
2407 if (pc_in_unmapped_range (pc, section))
2408 pc = overlay_mapped_address (pc, section);
2409 return find_pc_sect_line (pc, section, notcurrent);
2412 /* Find line number LINE in any symtab whose name is the same as
2415 If found, return the symtab that contains the linetable in which it was
2416 found, set *INDEX to the index in the linetable of the best entry
2417 found, and set *EXACT_MATCH nonzero if the value returned is an
2420 If not found, return NULL. */
2423 find_line_symtab (struct symtab *symtab, int line,
2424 int *index, int *exact_match)
2426 int exact = 0; /* Initialized here to avoid a compiler warning. */
2428 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2432 struct linetable *best_linetable;
2433 struct symtab *best_symtab;
2435 /* First try looking it up in the given symtab. */
2436 best_linetable = LINETABLE (symtab);
2437 best_symtab = symtab;
2438 best_index = find_line_common (best_linetable, line, &exact, 0);
2439 if (best_index < 0 || !exact)
2441 /* Didn't find an exact match. So we better keep looking for
2442 another symtab with the same name. In the case of xcoff,
2443 multiple csects for one source file (produced by IBM's FORTRAN
2444 compiler) produce multiple symtabs (this is unavoidable
2445 assuming csects can be at arbitrary places in memory and that
2446 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2448 /* BEST is the smallest linenumber > LINE so far seen,
2449 or 0 if none has been seen so far.
2450 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2453 struct objfile *objfile;
2456 if (best_index >= 0)
2457 best = best_linetable->item[best_index].line;
2461 ALL_OBJFILES (objfile)
2464 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2468 /* Get symbol full file name if possible. */
2469 symtab_to_fullname (symtab);
2471 ALL_SYMTABS (objfile, s)
2473 struct linetable *l;
2476 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2478 if (symtab->fullname != NULL
2479 && symtab_to_fullname (s) != NULL
2480 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2483 ind = find_line_common (l, line, &exact, 0);
2493 if (best == 0 || l->item[ind].line < best)
2495 best = l->item[ind].line;
2508 *index = best_index;
2510 *exact_match = exact;
2515 /* Given SYMTAB, returns all the PCs function in the symtab that
2516 exactly match LINE. Returns NULL if there are no exact matches,
2517 but updates BEST_ITEM in this case. */
2520 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2521 struct linetable_entry **best_item)
2524 struct symbol *previous_function = NULL;
2525 VEC (CORE_ADDR) *result = NULL;
2527 /* First, collect all the PCs that are at this line. */
2533 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2539 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2541 if (*best_item == NULL || item->line < (*best_item)->line)
2547 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2555 /* Set the PC value for a given source file and line number and return true.
2556 Returns zero for invalid line number (and sets the PC to 0).
2557 The source file is specified with a struct symtab. */
2560 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2562 struct linetable *l;
2569 symtab = find_line_symtab (symtab, line, &ind, NULL);
2572 l = LINETABLE (symtab);
2573 *pc = l->item[ind].pc;
2580 /* Find the range of pc values in a line.
2581 Store the starting pc of the line into *STARTPTR
2582 and the ending pc (start of next line) into *ENDPTR.
2583 Returns 1 to indicate success.
2584 Returns 0 if could not find the specified line. */
2587 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2590 CORE_ADDR startaddr;
2591 struct symtab_and_line found_sal;
2594 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2597 /* This whole function is based on address. For example, if line 10 has
2598 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2599 "info line *0x123" should say the line goes from 0x100 to 0x200
2600 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2601 This also insures that we never give a range like "starts at 0x134
2602 and ends at 0x12c". */
2604 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2605 if (found_sal.line != sal.line)
2607 /* The specified line (sal) has zero bytes. */
2608 *startptr = found_sal.pc;
2609 *endptr = found_sal.pc;
2613 *startptr = found_sal.pc;
2614 *endptr = found_sal.end;
2619 /* Given a line table and a line number, return the index into the line
2620 table for the pc of the nearest line whose number is >= the specified one.
2621 Return -1 if none is found. The value is >= 0 if it is an index.
2622 START is the index at which to start searching the line table.
2624 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2627 find_line_common (struct linetable *l, int lineno,
2628 int *exact_match, int start)
2633 /* BEST is the smallest linenumber > LINENO so far seen,
2634 or 0 if none has been seen so far.
2635 BEST_INDEX identifies the item for it. */
2637 int best_index = -1;
2648 for (i = start; i < len; i++)
2650 struct linetable_entry *item = &(l->item[i]);
2652 if (item->line == lineno)
2654 /* Return the first (lowest address) entry which matches. */
2659 if (item->line > lineno && (best == 0 || item->line < best))
2666 /* If we got here, we didn't get an exact match. */
2671 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2673 struct symtab_and_line sal;
2675 sal = find_pc_line (pc, 0);
2678 return sal.symtab != 0;
2681 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2682 address for that function that has an entry in SYMTAB's line info
2683 table. If such an entry cannot be found, return FUNC_ADDR
2687 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2689 CORE_ADDR func_start, func_end;
2690 struct linetable *l;
2693 /* Give up if this symbol has no lineinfo table. */
2694 l = LINETABLE (symtab);
2698 /* Get the range for the function's PC values, or give up if we
2699 cannot, for some reason. */
2700 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2703 /* Linetable entries are ordered by PC values, see the commentary in
2704 symtab.h where `struct linetable' is defined. Thus, the first
2705 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2706 address we are looking for. */
2707 for (i = 0; i < l->nitems; i++)
2709 struct linetable_entry *item = &(l->item[i]);
2711 /* Don't use line numbers of zero, they mark special entries in
2712 the table. See the commentary on symtab.h before the
2713 definition of struct linetable. */
2714 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2721 /* Given a function symbol SYM, find the symtab and line for the start
2723 If the argument FUNFIRSTLINE is nonzero, we want the first line
2724 of real code inside the function. */
2726 struct symtab_and_line
2727 find_function_start_sal (struct symbol *sym, int funfirstline)
2729 struct symtab_and_line sal;
2731 fixup_symbol_section (sym, NULL);
2732 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2733 SYMBOL_OBJ_SECTION (sym), 0);
2735 /* We always should have a line for the function start address.
2736 If we don't, something is odd. Create a plain SAL refering
2737 just the PC and hope that skip_prologue_sal (if requested)
2738 can find a line number for after the prologue. */
2739 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2742 sal.pspace = current_program_space;
2743 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2744 sal.section = SYMBOL_OBJ_SECTION (sym);
2748 skip_prologue_sal (&sal);
2753 /* Adjust SAL to the first instruction past the function prologue.
2754 If the PC was explicitly specified, the SAL is not changed.
2755 If the line number was explicitly specified, at most the SAL's PC
2756 is updated. If SAL is already past the prologue, then do nothing. */
2759 skip_prologue_sal (struct symtab_and_line *sal)
2762 struct symtab_and_line start_sal;
2763 struct cleanup *old_chain;
2764 CORE_ADDR pc, saved_pc;
2765 struct obj_section *section;
2767 struct objfile *objfile;
2768 struct gdbarch *gdbarch;
2769 struct block *b, *function_block;
2770 int force_skip, skip;
2772 /* Do not change the SAL is PC was specified explicitly. */
2773 if (sal->explicit_pc)
2776 old_chain = save_current_space_and_thread ();
2777 switch_to_program_space_and_thread (sal->pspace);
2779 sym = find_pc_sect_function (sal->pc, sal->section);
2782 fixup_symbol_section (sym, NULL);
2784 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2785 section = SYMBOL_OBJ_SECTION (sym);
2786 name = SYMBOL_LINKAGE_NAME (sym);
2787 objfile = SYMBOL_SYMTAB (sym)->objfile;
2791 struct minimal_symbol *msymbol
2792 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2794 if (msymbol == NULL)
2796 do_cleanups (old_chain);
2800 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2801 section = SYMBOL_OBJ_SECTION (msymbol);
2802 name = SYMBOL_LINKAGE_NAME (msymbol);
2803 objfile = msymbol_objfile (msymbol);
2806 gdbarch = get_objfile_arch (objfile);
2808 /* Process the prologue in two passes. In the first pass try to skip the
2809 prologue (SKIP is true) and verify there is a real need for it (indicated
2810 by FORCE_SKIP). If no such reason was found run a second pass where the
2811 prologue is not skipped (SKIP is false). */
2816 /* Be conservative - allow direct PC (without skipping prologue) only if we
2817 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2818 have to be set by the caller so we use SYM instead. */
2819 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2827 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2828 so that gdbarch_skip_prologue has something unique to work on. */
2829 if (section_is_overlay (section) && !section_is_mapped (section))
2830 pc = overlay_unmapped_address (pc, section);
2832 /* Skip "first line" of function (which is actually its prologue). */
2833 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2835 pc = gdbarch_skip_prologue (gdbarch, pc);
2837 /* For overlays, map pc back into its mapped VMA range. */
2838 pc = overlay_mapped_address (pc, section);
2840 /* Calculate line number. */
2841 start_sal = find_pc_sect_line (pc, section, 0);
2843 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2844 line is still part of the same function. */
2845 if (skip && start_sal.pc != pc
2846 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2847 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2848 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2849 == lookup_minimal_symbol_by_pc_section (pc, section))))
2851 /* First pc of next line */
2853 /* Recalculate the line number (might not be N+1). */
2854 start_sal = find_pc_sect_line (pc, section, 0);
2857 /* On targets with executable formats that don't have a concept of
2858 constructors (ELF with .init has, PE doesn't), gcc emits a call
2859 to `__main' in `main' between the prologue and before user
2861 if (gdbarch_skip_main_prologue_p (gdbarch)
2862 && name && strcmp_iw (name, "main") == 0)
2864 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2865 /* Recalculate the line number (might not be N+1). */
2866 start_sal = find_pc_sect_line (pc, section, 0);
2870 while (!force_skip && skip--);
2872 /* If we still don't have a valid source line, try to find the first
2873 PC in the lineinfo table that belongs to the same function. This
2874 happens with COFF debug info, which does not seem to have an
2875 entry in lineinfo table for the code after the prologue which has
2876 no direct relation to source. For example, this was found to be
2877 the case with the DJGPP target using "gcc -gcoff" when the
2878 compiler inserted code after the prologue to make sure the stack
2880 if (!force_skip && sym && start_sal.symtab == NULL)
2882 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2883 /* Recalculate the line number. */
2884 start_sal = find_pc_sect_line (pc, section, 0);
2887 do_cleanups (old_chain);
2889 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2890 forward SAL to the end of the prologue. */
2895 sal->section = section;
2897 /* Unless the explicit_line flag was set, update the SAL line
2898 and symtab to correspond to the modified PC location. */
2899 if (sal->explicit_line)
2902 sal->symtab = start_sal.symtab;
2903 sal->line = start_sal.line;
2904 sal->end = start_sal.end;
2906 /* Check if we are now inside an inlined function. If we can,
2907 use the call site of the function instead. */
2908 b = block_for_pc_sect (sal->pc, sal->section);
2909 function_block = NULL;
2912 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2914 else if (BLOCK_FUNCTION (b) != NULL)
2916 b = BLOCK_SUPERBLOCK (b);
2918 if (function_block != NULL
2919 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2921 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2922 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2926 /* If P is of the form "operator[ \t]+..." where `...' is
2927 some legitimate operator text, return a pointer to the
2928 beginning of the substring of the operator text.
2929 Otherwise, return "". */
2932 operator_chars (char *p, char **end)
2935 if (strncmp (p, "operator", 8))
2939 /* Don't get faked out by `operator' being part of a longer
2941 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2944 /* Allow some whitespace between `operator' and the operator symbol. */
2945 while (*p == ' ' || *p == '\t')
2948 /* Recognize 'operator TYPENAME'. */
2950 if (isalpha (*p) || *p == '_' || *p == '$')
2954 while (isalnum (*q) || *q == '_' || *q == '$')
2963 case '\\': /* regexp quoting */
2966 if (p[2] == '=') /* 'operator\*=' */
2968 else /* 'operator\*' */
2972 else if (p[1] == '[')
2975 error (_("mismatched quoting on brackets, "
2976 "try 'operator\\[\\]'"));
2977 else if (p[2] == '\\' && p[3] == ']')
2979 *end = p + 4; /* 'operator\[\]' */
2983 error (_("nothing is allowed between '[' and ']'"));
2987 /* Gratuitous qoute: skip it and move on. */
3009 if (p[0] == '-' && p[1] == '>')
3011 /* Struct pointer member operator 'operator->'. */
3014 *end = p + 3; /* 'operator->*' */
3017 else if (p[2] == '\\')
3019 *end = p + 4; /* Hopefully 'operator->\*' */
3024 *end = p + 2; /* 'operator->' */
3028 if (p[1] == '=' || p[1] == p[0])
3039 error (_("`operator ()' must be specified "
3040 "without whitespace in `()'"));
3045 error (_("`operator ?:' must be specified "
3046 "without whitespace in `?:'"));
3051 error (_("`operator []' must be specified "
3052 "without whitespace in `[]'"));
3056 error (_("`operator %s' not supported"), p);
3065 /* If FILE is not already in the table of files, return zero;
3066 otherwise return non-zero. Optionally add FILE to the table if ADD
3067 is non-zero. If *FIRST is non-zero, forget the old table
3071 filename_seen (const char *file, int add, int *first)
3073 /* Table of files seen so far. */
3074 static const char **tab = NULL;
3075 /* Allocated size of tab in elements.
3076 Start with one 256-byte block (when using GNU malloc.c).
3077 24 is the malloc overhead when range checking is in effect. */
3078 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3079 /* Current size of tab in elements. */
3080 static int tab_cur_size;
3086 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3090 /* Is FILE in tab? */
3091 for (p = tab; p < tab + tab_cur_size; p++)
3092 if (filename_cmp (*p, file) == 0)
3095 /* No; maybe add it to tab. */
3098 if (tab_cur_size == tab_alloc_size)
3100 tab_alloc_size *= 2;
3101 tab = (const char **) xrealloc ((char *) tab,
3102 tab_alloc_size * sizeof (*tab));
3104 tab[tab_cur_size++] = file;
3110 /* Slave routine for sources_info. Force line breaks at ,'s.
3111 NAME is the name to print and *FIRST is nonzero if this is the first
3112 name printed. Set *FIRST to zero. */
3115 output_source_filename (const char *name, int *first)
3117 /* Since a single source file can result in several partial symbol
3118 tables, we need to avoid printing it more than once. Note: if
3119 some of the psymtabs are read in and some are not, it gets
3120 printed both under "Source files for which symbols have been
3121 read" and "Source files for which symbols will be read in on
3122 demand". I consider this a reasonable way to deal with the
3123 situation. I'm not sure whether this can also happen for
3124 symtabs; it doesn't hurt to check. */
3126 /* Was NAME already seen? */
3127 if (filename_seen (name, 1, first))
3129 /* Yes; don't print it again. */
3132 /* No; print it and reset *FIRST. */
3139 printf_filtered (", ");
3143 fputs_filtered (name, gdb_stdout);
3146 /* A callback for map_partial_symbol_filenames. */
3149 output_partial_symbol_filename (const char *filename, const char *fullname,
3152 output_source_filename (fullname ? fullname : filename, data);
3156 sources_info (char *ignore, int from_tty)
3159 struct objfile *objfile;
3162 if (!have_full_symbols () && !have_partial_symbols ())
3164 error (_("No symbol table is loaded. Use the \"file\" command."));
3167 printf_filtered ("Source files for which symbols have been read in:\n\n");
3170 ALL_SYMTABS (objfile, s)
3172 const char *fullname = symtab_to_fullname (s);
3174 output_source_filename (fullname ? fullname : s->filename, &first);
3176 printf_filtered ("\n\n");
3178 printf_filtered ("Source files for which symbols "
3179 "will be read in on demand:\n\n");
3182 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3183 1 /*need_fullname*/);
3184 printf_filtered ("\n");
3188 file_matches (const char *file, char *files[], int nfiles)
3192 if (file != NULL && nfiles != 0)
3194 for (i = 0; i < nfiles; i++)
3196 if (filename_cmp (files[i], lbasename (file)) == 0)
3200 else if (nfiles == 0)
3205 /* Free any memory associated with a search. */
3208 free_search_symbols (struct symbol_search *symbols)
3210 struct symbol_search *p;
3211 struct symbol_search *next;
3213 for (p = symbols; p != NULL; p = next)
3221 do_free_search_symbols_cleanup (void *symbols)
3223 free_search_symbols (symbols);
3227 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3229 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3232 /* Helper function for sort_search_symbols and qsort. Can only
3233 sort symbols, not minimal symbols. */
3236 compare_search_syms (const void *sa, const void *sb)
3238 struct symbol_search **sym_a = (struct symbol_search **) sa;
3239 struct symbol_search **sym_b = (struct symbol_search **) sb;
3241 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3242 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3245 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3246 prevtail where it is, but update its next pointer to point to
3247 the first of the sorted symbols. */
3249 static struct symbol_search *
3250 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3252 struct symbol_search **symbols, *symp, *old_next;
3255 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3257 symp = prevtail->next;
3258 for (i = 0; i < nfound; i++)
3263 /* Generally NULL. */
3266 qsort (symbols, nfound, sizeof (struct symbol_search *),
3267 compare_search_syms);
3270 for (i = 0; i < nfound; i++)
3272 symp->next = symbols[i];
3275 symp->next = old_next;
3281 /* An object of this type is passed as the user_data to the
3282 expand_symtabs_matching method. */
3283 struct search_symbols_data
3288 /* It is true if PREG contains valid data, false otherwise. */
3289 unsigned preg_p : 1;
3293 /* A callback for expand_symtabs_matching. */
3296 search_symbols_file_matches (const char *filename, void *user_data)
3298 struct search_symbols_data *data = user_data;
3300 return file_matches (filename, data->files, data->nfiles);
3303 /* A callback for expand_symtabs_matching. */
3306 search_symbols_name_matches (const char *symname, void *user_data)
3308 struct search_symbols_data *data = user_data;
3310 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3313 /* Search the symbol table for matches to the regular expression REGEXP,
3314 returning the results in *MATCHES.
3316 Only symbols of KIND are searched:
3317 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3318 and constants (enums)
3319 FUNCTIONS_DOMAIN - search all functions
3320 TYPES_DOMAIN - search all type names
3321 ALL_DOMAIN - an internal error for this function
3323 free_search_symbols should be called when *MATCHES is no longer needed.
3325 The results are sorted locally; each symtab's global and static blocks are
3326 separately alphabetized. */
3329 search_symbols (char *regexp, enum search_domain kind,
3330 int nfiles, char *files[],
3331 struct symbol_search **matches)
3334 struct blockvector *bv;
3337 struct block_iterator iter;
3339 struct objfile *objfile;
3340 struct minimal_symbol *msymbol;
3342 static const enum minimal_symbol_type types[]
3343 = {mst_data, mst_text, mst_abs};
3344 static const enum minimal_symbol_type types2[]
3345 = {mst_bss, mst_file_text, mst_abs};
3346 static const enum minimal_symbol_type types3[]
3347 = {mst_file_data, mst_solib_trampoline, mst_abs};
3348 static const enum minimal_symbol_type types4[]
3349 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3350 enum minimal_symbol_type ourtype;
3351 enum minimal_symbol_type ourtype2;
3352 enum minimal_symbol_type ourtype3;
3353 enum minimal_symbol_type ourtype4;
3354 struct symbol_search *sr;
3355 struct symbol_search *psr;
3356 struct symbol_search *tail;
3357 struct search_symbols_data datum;
3359 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3360 CLEANUP_CHAIN is freed only in the case of an error. */
3361 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3362 struct cleanup *retval_chain;
3364 gdb_assert (kind <= TYPES_DOMAIN);
3366 ourtype = types[kind];
3367 ourtype2 = types2[kind];
3368 ourtype3 = types3[kind];
3369 ourtype4 = types4[kind];
3371 sr = *matches = NULL;
3377 /* Make sure spacing is right for C++ operators.
3378 This is just a courtesy to make the matching less sensitive
3379 to how many spaces the user leaves between 'operator'
3380 and <TYPENAME> or <OPERATOR>. */
3382 char *opname = operator_chars (regexp, &opend);
3387 int fix = -1; /* -1 means ok; otherwise number of
3390 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3392 /* There should 1 space between 'operator' and 'TYPENAME'. */
3393 if (opname[-1] != ' ' || opname[-2] == ' ')
3398 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3399 if (opname[-1] == ' ')
3402 /* If wrong number of spaces, fix it. */
3405 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3407 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3412 errcode = regcomp (&datum.preg, regexp,
3413 REG_NOSUB | (case_sensitivity == case_sensitive_off
3417 char *err = get_regcomp_error (errcode, &datum.preg);
3419 make_cleanup (xfree, err);
3420 error (_("Invalid regexp (%s): %s"), err, regexp);
3423 make_regfree_cleanup (&datum.preg);
3426 /* Search through the partial symtabs *first* for all symbols
3427 matching the regexp. That way we don't have to reproduce all of
3428 the machinery below. */
3430 datum.nfiles = nfiles;
3431 datum.files = files;
3432 ALL_OBJFILES (objfile)
3435 objfile->sf->qf->expand_symtabs_matching (objfile,
3438 : search_symbols_file_matches),
3439 search_symbols_name_matches,
3444 retval_chain = old_chain;
3446 /* Here, we search through the minimal symbol tables for functions
3447 and variables that match, and force their symbols to be read.
3448 This is in particular necessary for demangled variable names,
3449 which are no longer put into the partial symbol tables.
3450 The symbol will then be found during the scan of symtabs below.
3452 For functions, find_pc_symtab should succeed if we have debug info
3453 for the function, for variables we have to call lookup_symbol
3454 to determine if the variable has debug info.
3455 If the lookup fails, set found_misc so that we will rescan to print
3456 any matching symbols without debug info. */
3458 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3460 ALL_MSYMBOLS (objfile, msymbol)
3464 if (MSYMBOL_TYPE (msymbol) == ourtype
3465 || MSYMBOL_TYPE (msymbol) == ourtype2
3466 || MSYMBOL_TYPE (msymbol) == ourtype3
3467 || MSYMBOL_TYPE (msymbol) == ourtype4)
3470 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3473 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3475 /* FIXME: carlton/2003-02-04: Given that the
3476 semantics of lookup_symbol keeps on changing
3477 slightly, it would be a nice idea if we had a
3478 function lookup_symbol_minsym that found the
3479 symbol associated to a given minimal symbol (if
3481 if (kind == FUNCTIONS_DOMAIN
3482 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3483 (struct block *) NULL,
3493 ALL_PRIMARY_SYMTABS (objfile, s)
3495 bv = BLOCKVECTOR (s);
3496 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3498 struct symbol_search *prevtail = tail;
3501 b = BLOCKVECTOR_BLOCK (bv, i);
3502 ALL_BLOCK_SYMBOLS (b, iter, sym)
3504 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3508 if (file_matches (real_symtab->filename, files, nfiles)
3510 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3512 && ((kind == VARIABLES_DOMAIN
3513 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3514 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3515 && SYMBOL_CLASS (sym) != LOC_BLOCK
3516 /* LOC_CONST can be used for more than just enums,
3517 e.g., c++ static const members.
3518 We only want to skip enums here. */
3519 && !(SYMBOL_CLASS (sym) == LOC_CONST
3520 && TYPE_CODE (SYMBOL_TYPE (sym))
3522 || (kind == FUNCTIONS_DOMAIN
3523 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3524 || (kind == TYPES_DOMAIN
3525 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3528 psr = (struct symbol_search *)
3529 xmalloc (sizeof (struct symbol_search));
3531 psr->symtab = real_symtab;
3533 psr->msymbol = NULL;
3545 if (prevtail == NULL)
3547 struct symbol_search dummy;
3550 tail = sort_search_symbols (&dummy, nfound);
3553 make_cleanup_free_search_symbols (sr);
3556 tail = sort_search_symbols (prevtail, nfound);
3561 /* If there are no eyes, avoid all contact. I mean, if there are
3562 no debug symbols, then print directly from the msymbol_vector. */
3564 if (found_misc || kind != FUNCTIONS_DOMAIN)
3566 ALL_MSYMBOLS (objfile, msymbol)
3570 if (MSYMBOL_TYPE (msymbol) == ourtype
3571 || MSYMBOL_TYPE (msymbol) == ourtype2
3572 || MSYMBOL_TYPE (msymbol) == ourtype3
3573 || MSYMBOL_TYPE (msymbol) == ourtype4)
3576 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3579 /* Functions: Look up by address. */
3580 if (kind != FUNCTIONS_DOMAIN ||
3581 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3583 /* Variables/Absolutes: Look up by name. */
3584 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3585 (struct block *) NULL, VAR_DOMAIN, 0)
3589 psr = (struct symbol_search *)
3590 xmalloc (sizeof (struct symbol_search));
3592 psr->msymbol = msymbol;
3599 make_cleanup_free_search_symbols (sr);
3611 discard_cleanups (retval_chain);
3612 do_cleanups (old_chain);
3616 /* Helper function for symtab_symbol_info, this function uses
3617 the data returned from search_symbols() to print information
3618 regarding the match to gdb_stdout. */
3621 print_symbol_info (enum search_domain kind,
3622 struct symtab *s, struct symbol *sym,
3623 int block, char *last)
3625 if (last == NULL || filename_cmp (last, s->filename) != 0)
3627 fputs_filtered ("\nFile ", gdb_stdout);
3628 fputs_filtered (s->filename, gdb_stdout);
3629 fputs_filtered (":\n", gdb_stdout);
3632 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3633 printf_filtered ("static ");
3635 /* Typedef that is not a C++ class. */
3636 if (kind == TYPES_DOMAIN
3637 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3638 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3639 /* variable, func, or typedef-that-is-c++-class. */
3640 else if (kind < TYPES_DOMAIN
3641 || (kind == TYPES_DOMAIN
3642 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3644 type_print (SYMBOL_TYPE (sym),
3645 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3646 ? "" : SYMBOL_PRINT_NAME (sym)),
3649 printf_filtered (";\n");
3653 /* This help function for symtab_symbol_info() prints information
3654 for non-debugging symbols to gdb_stdout. */
3657 print_msymbol_info (struct minimal_symbol *msymbol)
3659 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3662 if (gdbarch_addr_bit (gdbarch) <= 32)
3663 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3664 & (CORE_ADDR) 0xffffffff,
3667 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3669 printf_filtered ("%s %s\n",
3670 tmp, SYMBOL_PRINT_NAME (msymbol));
3673 /* This is the guts of the commands "info functions", "info types", and
3674 "info variables". It calls search_symbols to find all matches and then
3675 print_[m]symbol_info to print out some useful information about the
3679 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3681 static const char * const classnames[] =
3682 {"variable", "function", "type"};
3683 struct symbol_search *symbols;
3684 struct symbol_search *p;
3685 struct cleanup *old_chain;
3686 char *last_filename = NULL;
3689 gdb_assert (kind <= TYPES_DOMAIN);
3691 /* Must make sure that if we're interrupted, symbols gets freed. */
3692 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3693 old_chain = make_cleanup_free_search_symbols (symbols);
3695 printf_filtered (regexp
3696 ? "All %ss matching regular expression \"%s\":\n"
3697 : "All defined %ss:\n",
3698 classnames[kind], regexp);
3700 for (p = symbols; p != NULL; p = p->next)
3704 if (p->msymbol != NULL)
3708 printf_filtered ("\nNon-debugging symbols:\n");
3711 print_msymbol_info (p->msymbol);
3715 print_symbol_info (kind,
3720 last_filename = p->symtab->filename;
3724 do_cleanups (old_chain);
3728 variables_info (char *regexp, int from_tty)
3730 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3734 functions_info (char *regexp, int from_tty)
3736 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3741 types_info (char *regexp, int from_tty)
3743 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3746 /* Breakpoint all functions matching regular expression. */
3749 rbreak_command_wrapper (char *regexp, int from_tty)
3751 rbreak_command (regexp, from_tty);
3754 /* A cleanup function that calls end_rbreak_breakpoints. */
3757 do_end_rbreak_breakpoints (void *ignore)
3759 end_rbreak_breakpoints ();
3763 rbreak_command (char *regexp, int from_tty)
3765 struct symbol_search *ss;
3766 struct symbol_search *p;
3767 struct cleanup *old_chain;
3768 char *string = NULL;
3770 char **files = NULL, *file_name;
3775 char *colon = strchr (regexp, ':');
3777 if (colon && *(colon + 1) != ':')
3781 colon_index = colon - regexp;
3782 file_name = alloca (colon_index + 1);
3783 memcpy (file_name, regexp, colon_index);
3784 file_name[colon_index--] = 0;
3785 while (isspace (file_name[colon_index]))
3786 file_name[colon_index--] = 0;
3790 while (isspace (*regexp)) regexp++;
3794 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3795 old_chain = make_cleanup_free_search_symbols (ss);
3796 make_cleanup (free_current_contents, &string);
3798 start_rbreak_breakpoints ();
3799 make_cleanup (do_end_rbreak_breakpoints, NULL);
3800 for (p = ss; p != NULL; p = p->next)
3802 if (p->msymbol == NULL)
3804 int newlen = (strlen (p->symtab->filename)
3805 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3810 string = xrealloc (string, newlen);
3813 strcpy (string, p->symtab->filename);
3814 strcat (string, ":'");
3815 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3816 strcat (string, "'");
3817 break_command (string, from_tty);
3818 print_symbol_info (FUNCTIONS_DOMAIN,
3822 p->symtab->filename);
3826 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3830 string = xrealloc (string, newlen);
3833 strcpy (string, "'");
3834 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3835 strcat (string, "'");
3837 break_command (string, from_tty);
3838 printf_filtered ("<function, no debug info> %s;\n",
3839 SYMBOL_PRINT_NAME (p->msymbol));
3843 do_cleanups (old_chain);
3847 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3849 Either sym_text[sym_text_len] != '(' and then we search for any
3850 symbol starting with SYM_TEXT text.
3852 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3853 be terminated at that point. Partial symbol tables do not have parameters
3857 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3859 int (*ncmp) (const char *, const char *, size_t);
3861 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3863 if (ncmp (name, sym_text, sym_text_len) != 0)
3866 if (sym_text[sym_text_len] == '(')
3868 /* User searches for `name(someth...'. Require NAME to be terminated.
3869 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3870 present but accept even parameters presence. In this case this
3871 function is in fact strcmp_iw but whitespace skipping is not supported
3872 for tab completion. */
3874 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3881 /* Free any memory associated with a completion list. */
3884 free_completion_list (char ***list_ptr)
3887 char **list = *list_ptr;
3889 while (list[i] != NULL)
3897 /* Callback for make_cleanup. */
3900 do_free_completion_list (void *list)
3902 free_completion_list (list);
3905 /* Helper routine for make_symbol_completion_list. */
3907 static int return_val_size;
3908 static int return_val_index;
3909 static char **return_val;
3911 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3912 completion_list_add_name \
3913 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3915 /* Test to see if the symbol specified by SYMNAME (which is already
3916 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3917 characters. If so, add it to the current completion list. */
3920 completion_list_add_name (const char *symname,
3921 const char *sym_text, int sym_text_len,
3922 const char *text, const char *word)
3926 /* Clip symbols that cannot match. */
3927 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3930 /* We have a match for a completion, so add SYMNAME to the current list
3931 of matches. Note that the name is moved to freshly malloc'd space. */
3936 if (word == sym_text)
3938 new = xmalloc (strlen (symname) + 5);
3939 strcpy (new, symname);
3941 else if (word > sym_text)
3943 /* Return some portion of symname. */
3944 new = xmalloc (strlen (symname) + 5);
3945 strcpy (new, symname + (word - sym_text));
3949 /* Return some of SYM_TEXT plus symname. */
3950 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3951 strncpy (new, word, sym_text - word);
3952 new[sym_text - word] = '\0';
3953 strcat (new, symname);
3956 if (return_val_index + 3 > return_val_size)
3958 newsize = (return_val_size *= 2) * sizeof (char *);
3959 return_val = (char **) xrealloc ((char *) return_val, newsize);
3961 return_val[return_val_index++] = new;
3962 return_val[return_val_index] = NULL;
3966 /* ObjC: In case we are completing on a selector, look as the msymbol
3967 again and feed all the selectors into the mill. */
3970 completion_list_objc_symbol (struct minimal_symbol *msymbol,
3971 const char *sym_text, int sym_text_len,
3972 const char *text, const char *word)
3974 static char *tmp = NULL;
3975 static unsigned int tmplen = 0;
3977 const char *method, *category, *selector;
3980 method = SYMBOL_NATURAL_NAME (msymbol);
3982 /* Is it a method? */
3983 if ((method[0] != '-') && (method[0] != '+'))
3986 if (sym_text[0] == '[')
3987 /* Complete on shortened method method. */
3988 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3990 while ((strlen (method) + 1) >= tmplen)
3996 tmp = xrealloc (tmp, tmplen);
3998 selector = strchr (method, ' ');
3999 if (selector != NULL)
4002 category = strchr (method, '(');
4004 if ((category != NULL) && (selector != NULL))
4006 memcpy (tmp, method, (category - method));
4007 tmp[category - method] = ' ';
4008 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4009 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4010 if (sym_text[0] == '[')
4011 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4014 if (selector != NULL)
4016 /* Complete on selector only. */
4017 strcpy (tmp, selector);
4018 tmp2 = strchr (tmp, ']');
4022 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4026 /* Break the non-quoted text based on the characters which are in
4027 symbols. FIXME: This should probably be language-specific. */
4030 language_search_unquoted_string (char *text, char *p)
4032 for (; p > text; --p)
4034 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4038 if ((current_language->la_language == language_objc))
4040 if (p[-1] == ':') /* Might be part of a method name. */
4042 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4043 p -= 2; /* Beginning of a method name. */
4044 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4045 { /* Might be part of a method name. */
4048 /* Seeing a ' ' or a '(' is not conclusive evidence
4049 that we are in the middle of a method name. However,
4050 finding "-[" or "+[" should be pretty un-ambiguous.
4051 Unfortunately we have to find it now to decide. */
4054 if (isalnum (t[-1]) || t[-1] == '_' ||
4055 t[-1] == ' ' || t[-1] == ':' ||
4056 t[-1] == '(' || t[-1] == ')')
4061 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4062 p = t - 2; /* Method name detected. */
4063 /* Else we leave with p unchanged. */
4073 completion_list_add_fields (struct symbol *sym, char *sym_text,
4074 int sym_text_len, char *text, char *word)
4076 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4078 struct type *t = SYMBOL_TYPE (sym);
4079 enum type_code c = TYPE_CODE (t);
4082 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4083 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4084 if (TYPE_FIELD_NAME (t, j))
4085 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4086 sym_text, sym_text_len, text, word);
4090 /* Type of the user_data argument passed to add_macro_name or
4091 expand_partial_symbol_name. The contents are simply whatever is
4092 needed by completion_list_add_name. */
4093 struct add_name_data
4101 /* A callback used with macro_for_each and macro_for_each_in_scope.
4102 This adds a macro's name to the current completion list. */
4105 add_macro_name (const char *name, const struct macro_definition *ignore,
4106 struct macro_source_file *ignore2, int ignore3,
4109 struct add_name_data *datum = (struct add_name_data *) user_data;
4111 completion_list_add_name ((char *) name,
4112 datum->sym_text, datum->sym_text_len,
4113 datum->text, datum->word);
4116 /* A callback for expand_partial_symbol_names. */
4119 expand_partial_symbol_name (const char *name, void *user_data)
4121 struct add_name_data *datum = (struct add_name_data *) user_data;
4123 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4127 default_make_symbol_completion_list_break_on (char *text, char *word,
4128 const char *break_on)
4130 /* Problem: All of the symbols have to be copied because readline
4131 frees them. I'm not going to worry about this; hopefully there
4132 won't be that many. */
4136 struct minimal_symbol *msymbol;
4137 struct objfile *objfile;
4139 const struct block *surrounding_static_block, *surrounding_global_block;
4140 struct block_iterator iter;
4141 /* The symbol we are completing on. Points in same buffer as text. */
4143 /* Length of sym_text. */
4145 struct add_name_data datum;
4146 struct cleanup *back_to;
4148 /* Now look for the symbol we are supposed to complete on. */
4152 char *quote_pos = NULL;
4154 /* First see if this is a quoted string. */
4156 for (p = text; *p != '\0'; ++p)
4158 if (quote_found != '\0')
4160 if (*p == quote_found)
4161 /* Found close quote. */
4163 else if (*p == '\\' && p[1] == quote_found)
4164 /* A backslash followed by the quote character
4165 doesn't end the string. */
4168 else if (*p == '\'' || *p == '"')
4174 if (quote_found == '\'')
4175 /* A string within single quotes can be a symbol, so complete on it. */
4176 sym_text = quote_pos + 1;
4177 else if (quote_found == '"')
4178 /* A double-quoted string is never a symbol, nor does it make sense
4179 to complete it any other way. */
4181 return_val = (char **) xmalloc (sizeof (char *));
4182 return_val[0] = NULL;
4187 /* It is not a quoted string. Break it based on the characters
4188 which are in symbols. */
4191 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4192 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4201 sym_text_len = strlen (sym_text);
4203 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4205 if (current_language->la_language == language_cplus
4206 || current_language->la_language == language_java
4207 || current_language->la_language == language_fortran)
4209 /* These languages may have parameters entered by user but they are never
4210 present in the partial symbol tables. */
4212 const char *cs = memchr (sym_text, '(', sym_text_len);
4215 sym_text_len = cs - sym_text;
4217 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4219 return_val_size = 100;
4220 return_val_index = 0;
4221 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4222 return_val[0] = NULL;
4223 back_to = make_cleanup (do_free_completion_list, &return_val);
4225 datum.sym_text = sym_text;
4226 datum.sym_text_len = sym_text_len;
4230 /* Look through the partial symtabs for all symbols which begin
4231 by matching SYM_TEXT. Expand all CUs that you find to the list.
4232 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4233 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4235 /* At this point scan through the misc symbol vectors and add each
4236 symbol you find to the list. Eventually we want to ignore
4237 anything that isn't a text symbol (everything else will be
4238 handled by the psymtab code above). */
4240 ALL_MSYMBOLS (objfile, msymbol)
4243 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4245 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4248 /* Search upwards from currently selected frame (so that we can
4249 complete on local vars). Also catch fields of types defined in
4250 this places which match our text string. Only complete on types
4251 visible from current context. */
4253 b = get_selected_block (0);
4254 surrounding_static_block = block_static_block (b);
4255 surrounding_global_block = block_global_block (b);
4256 if (surrounding_static_block != NULL)
4257 while (b != surrounding_static_block)
4261 ALL_BLOCK_SYMBOLS (b, iter, sym)
4263 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4265 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4269 /* Stop when we encounter an enclosing function. Do not stop for
4270 non-inlined functions - the locals of the enclosing function
4271 are in scope for a nested function. */
4272 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4274 b = BLOCK_SUPERBLOCK (b);
4277 /* Add fields from the file's types; symbols will be added below. */
4279 if (surrounding_static_block != NULL)
4280 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4281 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4283 if (surrounding_global_block != NULL)
4284 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4285 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4287 /* Go through the symtabs and check the externs and statics for
4288 symbols which match. */
4290 ALL_PRIMARY_SYMTABS (objfile, s)
4293 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4294 ALL_BLOCK_SYMBOLS (b, iter, sym)
4296 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4300 ALL_PRIMARY_SYMTABS (objfile, s)
4303 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4304 ALL_BLOCK_SYMBOLS (b, iter, sym)
4306 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4310 if (current_language->la_macro_expansion == macro_expansion_c)
4312 struct macro_scope *scope;
4314 /* Add any macros visible in the default scope. Note that this
4315 may yield the occasional wrong result, because an expression
4316 might be evaluated in a scope other than the default. For
4317 example, if the user types "break file:line if <TAB>", the
4318 resulting expression will be evaluated at "file:line" -- but
4319 at there does not seem to be a way to detect this at
4321 scope = default_macro_scope ();
4324 macro_for_each_in_scope (scope->file, scope->line,
4325 add_macro_name, &datum);
4329 /* User-defined macros are always visible. */
4330 macro_for_each (macro_user_macros, add_macro_name, &datum);
4333 discard_cleanups (back_to);
4334 return (return_val);
4338 default_make_symbol_completion_list (char *text, char *word)
4340 return default_make_symbol_completion_list_break_on (text, word, "");
4343 /* Return a NULL terminated array of all symbols (regardless of class)
4344 which begin by matching TEXT. If the answer is no symbols, then
4345 the return value is an array which contains only a NULL pointer. */
4348 make_symbol_completion_list (char *text, char *word)
4350 return current_language->la_make_symbol_completion_list (text, word);
4353 /* Like make_symbol_completion_list, but suitable for use as a
4354 completion function. */
4357 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4358 char *text, char *word)
4360 return make_symbol_completion_list (text, word);
4363 /* Like make_symbol_completion_list, but returns a list of symbols
4364 defined in a source file FILE. */
4367 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4372 struct block_iterator iter;
4373 /* The symbol we are completing on. Points in same buffer as text. */
4375 /* Length of sym_text. */
4378 /* Now look for the symbol we are supposed to complete on.
4379 FIXME: This should be language-specific. */
4383 char *quote_pos = NULL;
4385 /* First see if this is a quoted string. */
4387 for (p = text; *p != '\0'; ++p)
4389 if (quote_found != '\0')
4391 if (*p == quote_found)
4392 /* Found close quote. */
4394 else if (*p == '\\' && p[1] == quote_found)
4395 /* A backslash followed by the quote character
4396 doesn't end the string. */
4399 else if (*p == '\'' || *p == '"')
4405 if (quote_found == '\'')
4406 /* A string within single quotes can be a symbol, so complete on it. */
4407 sym_text = quote_pos + 1;
4408 else if (quote_found == '"')
4409 /* A double-quoted string is never a symbol, nor does it make sense
4410 to complete it any other way. */
4412 return_val = (char **) xmalloc (sizeof (char *));
4413 return_val[0] = NULL;
4418 /* Not a quoted string. */
4419 sym_text = language_search_unquoted_string (text, p);
4423 sym_text_len = strlen (sym_text);
4425 return_val_size = 10;
4426 return_val_index = 0;
4427 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4428 return_val[0] = NULL;
4430 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4432 s = lookup_symtab (srcfile);
4435 /* Maybe they typed the file with leading directories, while the
4436 symbol tables record only its basename. */
4437 const char *tail = lbasename (srcfile);
4440 s = lookup_symtab (tail);
4443 /* If we have no symtab for that file, return an empty list. */
4445 return (return_val);
4447 /* Go through this symtab and check the externs and statics for
4448 symbols which match. */
4450 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4451 ALL_BLOCK_SYMBOLS (b, iter, sym)
4453 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4456 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4457 ALL_BLOCK_SYMBOLS (b, iter, sym)
4459 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4462 return (return_val);
4465 /* A helper function for make_source_files_completion_list. It adds
4466 another file name to a list of possible completions, growing the
4467 list as necessary. */
4470 add_filename_to_list (const char *fname, char *text, char *word,
4471 char ***list, int *list_used, int *list_alloced)
4474 size_t fnlen = strlen (fname);
4476 if (*list_used + 1 >= *list_alloced)
4479 *list = (char **) xrealloc ((char *) *list,
4480 *list_alloced * sizeof (char *));
4485 /* Return exactly fname. */
4486 new = xmalloc (fnlen + 5);
4487 strcpy (new, fname);
4489 else if (word > text)
4491 /* Return some portion of fname. */
4492 new = xmalloc (fnlen + 5);
4493 strcpy (new, fname + (word - text));
4497 /* Return some of TEXT plus fname. */
4498 new = xmalloc (fnlen + (text - word) + 5);
4499 strncpy (new, word, text - word);
4500 new[text - word] = '\0';
4501 strcat (new, fname);
4503 (*list)[*list_used] = new;
4504 (*list)[++*list_used] = NULL;
4508 not_interesting_fname (const char *fname)
4510 static const char *illegal_aliens[] = {
4511 "_globals_", /* inserted by coff_symtab_read */
4516 for (i = 0; illegal_aliens[i]; i++)
4518 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4524 /* An object of this type is passed as the user_data argument to
4525 map_partial_symbol_filenames. */
4526 struct add_partial_filename_data
4537 /* A callback for map_partial_symbol_filenames. */
4540 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4543 struct add_partial_filename_data *data = user_data;
4545 if (not_interesting_fname (filename))
4547 if (!filename_seen (filename, 1, data->first)
4548 && filename_ncmp (filename, data->text, data->text_len) == 0)
4550 /* This file matches for a completion; add it to the
4551 current list of matches. */
4552 add_filename_to_list (filename, data->text, data->word,
4553 data->list, data->list_used, data->list_alloced);
4557 const char *base_name = lbasename (filename);
4559 if (base_name != filename
4560 && !filename_seen (base_name, 1, data->first)
4561 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4562 add_filename_to_list (base_name, data->text, data->word,
4563 data->list, data->list_used, data->list_alloced);
4567 /* Return a NULL terminated array of all source files whose names
4568 begin with matching TEXT. The file names are looked up in the
4569 symbol tables of this program. If the answer is no matchess, then
4570 the return value is an array which contains only a NULL pointer. */
4573 make_source_files_completion_list (char *text, char *word)
4576 struct objfile *objfile;
4578 int list_alloced = 1;
4580 size_t text_len = strlen (text);
4581 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4582 const char *base_name;
4583 struct add_partial_filename_data datum;
4584 struct cleanup *back_to;
4588 if (!have_full_symbols () && !have_partial_symbols ())
4591 back_to = make_cleanup (do_free_completion_list, &list);
4593 ALL_SYMTABS (objfile, s)
4595 if (not_interesting_fname (s->filename))
4597 if (!filename_seen (s->filename, 1, &first)
4598 && filename_ncmp (s->filename, text, text_len) == 0)
4600 /* This file matches for a completion; add it to the current
4602 add_filename_to_list (s->filename, text, word,
4603 &list, &list_used, &list_alloced);
4607 /* NOTE: We allow the user to type a base name when the
4608 debug info records leading directories, but not the other
4609 way around. This is what subroutines of breakpoint
4610 command do when they parse file names. */
4611 base_name = lbasename (s->filename);
4612 if (base_name != s->filename
4613 && !filename_seen (base_name, 1, &first)
4614 && filename_ncmp (base_name, text, text_len) == 0)
4615 add_filename_to_list (base_name, text, word,
4616 &list, &list_used, &list_alloced);
4620 datum.first = &first;
4623 datum.text_len = text_len;
4625 datum.list_used = &list_used;
4626 datum.list_alloced = &list_alloced;
4627 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4628 0 /*need_fullname*/);
4629 discard_cleanups (back_to);
4634 /* Determine if PC is in the prologue of a function. The prologue is the area
4635 between the first instruction of a function, and the first executable line.
4636 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4638 If non-zero, func_start is where we think the prologue starts, possibly
4639 by previous examination of symbol table information. */
4642 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4644 struct symtab_and_line sal;
4645 CORE_ADDR func_addr, func_end;
4647 /* We have several sources of information we can consult to figure
4649 - Compilers usually emit line number info that marks the prologue
4650 as its own "source line". So the ending address of that "line"
4651 is the end of the prologue. If available, this is the most
4653 - The minimal symbols and partial symbols, which can usually tell
4654 us the starting and ending addresses of a function.
4655 - If we know the function's start address, we can call the
4656 architecture-defined gdbarch_skip_prologue function to analyze the
4657 instruction stream and guess where the prologue ends.
4658 - Our `func_start' argument; if non-zero, this is the caller's
4659 best guess as to the function's entry point. At the time of
4660 this writing, handle_inferior_event doesn't get this right, so
4661 it should be our last resort. */
4663 /* Consult the partial symbol table, to find which function
4665 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4667 CORE_ADDR prologue_end;
4669 /* We don't even have minsym information, so fall back to using
4670 func_start, if given. */
4672 return 1; /* We *might* be in a prologue. */
4674 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4676 return func_start <= pc && pc < prologue_end;
4679 /* If we have line number information for the function, that's
4680 usually pretty reliable. */
4681 sal = find_pc_line (func_addr, 0);
4683 /* Now sal describes the source line at the function's entry point,
4684 which (by convention) is the prologue. The end of that "line",
4685 sal.end, is the end of the prologue.
4687 Note that, for functions whose source code is all on a single
4688 line, the line number information doesn't always end up this way.
4689 So we must verify that our purported end-of-prologue address is
4690 *within* the function, not at its start or end. */
4692 || sal.end <= func_addr
4693 || func_end <= sal.end)
4695 /* We don't have any good line number info, so use the minsym
4696 information, together with the architecture-specific prologue
4698 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4700 return func_addr <= pc && pc < prologue_end;
4703 /* We have line number info, and it looks good. */
4704 return func_addr <= pc && pc < sal.end;
4707 /* Given PC at the function's start address, attempt to find the
4708 prologue end using SAL information. Return zero if the skip fails.
4710 A non-optimized prologue traditionally has one SAL for the function
4711 and a second for the function body. A single line function has
4712 them both pointing at the same line.
4714 An optimized prologue is similar but the prologue may contain
4715 instructions (SALs) from the instruction body. Need to skip those
4716 while not getting into the function body.
4718 The functions end point and an increasing SAL line are used as
4719 indicators of the prologue's endpoint.
4721 This code is based on the function refine_prologue_limit
4725 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4727 struct symtab_and_line prologue_sal;
4732 /* Get an initial range for the function. */
4733 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4734 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4736 prologue_sal = find_pc_line (start_pc, 0);
4737 if (prologue_sal.line != 0)
4739 /* For languages other than assembly, treat two consecutive line
4740 entries at the same address as a zero-instruction prologue.
4741 The GNU assembler emits separate line notes for each instruction
4742 in a multi-instruction macro, but compilers generally will not
4744 if (prologue_sal.symtab->language != language_asm)
4746 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4749 /* Skip any earlier lines, and any end-of-sequence marker
4750 from a previous function. */
4751 while (linetable->item[idx].pc != prologue_sal.pc
4752 || linetable->item[idx].line == 0)
4755 if (idx+1 < linetable->nitems
4756 && linetable->item[idx+1].line != 0
4757 && linetable->item[idx+1].pc == start_pc)
4761 /* If there is only one sal that covers the entire function,
4762 then it is probably a single line function, like
4764 if (prologue_sal.end >= end_pc)
4767 while (prologue_sal.end < end_pc)
4769 struct symtab_and_line sal;
4771 sal = find_pc_line (prologue_sal.end, 0);
4774 /* Assume that a consecutive SAL for the same (or larger)
4775 line mark the prologue -> body transition. */
4776 if (sal.line >= prologue_sal.line)
4779 /* The line number is smaller. Check that it's from the
4780 same function, not something inlined. If it's inlined,
4781 then there is no point comparing the line numbers. */
4782 bl = block_for_pc (prologue_sal.end);
4785 if (block_inlined_p (bl))
4787 if (BLOCK_FUNCTION (bl))
4792 bl = BLOCK_SUPERBLOCK (bl);
4797 /* The case in which compiler's optimizer/scheduler has
4798 moved instructions into the prologue. We look ahead in
4799 the function looking for address ranges whose
4800 corresponding line number is less the first one that we
4801 found for the function. This is more conservative then
4802 refine_prologue_limit which scans a large number of SALs
4803 looking for any in the prologue. */
4808 if (prologue_sal.end < end_pc)
4809 /* Return the end of this line, or zero if we could not find a
4811 return prologue_sal.end;
4813 /* Don't return END_PC, which is past the end of the function. */
4814 return prologue_sal.pc;
4817 struct symtabs_and_lines
4818 decode_line_spec (char *string, int flags)
4820 struct symtabs_and_lines sals;
4821 struct symtab_and_line cursal;
4824 error (_("Empty line specification."));
4826 /* We use whatever is set as the current source line. We do not try
4827 and get a default or it will recursively call us! */
4828 cursal = get_current_source_symtab_and_line ();
4830 sals = decode_line_1 (&string, flags,
4831 cursal.symtab, cursal.line);
4834 error (_("Junk at end of line specification: %s"), string);
4839 static char *name_of_main;
4840 enum language language_of_main = language_unknown;
4843 set_main_name (const char *name)
4845 if (name_of_main != NULL)
4847 xfree (name_of_main);
4848 name_of_main = NULL;
4849 language_of_main = language_unknown;
4853 name_of_main = xstrdup (name);
4854 language_of_main = language_unknown;
4858 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4862 find_main_name (void)
4864 const char *new_main_name;
4866 /* Try to see if the main procedure is in Ada. */
4867 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4868 be to add a new method in the language vector, and call this
4869 method for each language until one of them returns a non-empty
4870 name. This would allow us to remove this hard-coded call to
4871 an Ada function. It is not clear that this is a better approach
4872 at this point, because all methods need to be written in a way
4873 such that false positives never be returned. For instance, it is
4874 important that a method does not return a wrong name for the main
4875 procedure if the main procedure is actually written in a different
4876 language. It is easy to guaranty this with Ada, since we use a
4877 special symbol generated only when the main in Ada to find the name
4878 of the main procedure. It is difficult however to see how this can
4879 be guarantied for languages such as C, for instance. This suggests
4880 that order of call for these methods becomes important, which means
4881 a more complicated approach. */
4882 new_main_name = ada_main_name ();
4883 if (new_main_name != NULL)
4885 set_main_name (new_main_name);
4889 new_main_name = go_main_name ();
4890 if (new_main_name != NULL)
4892 set_main_name (new_main_name);
4896 new_main_name = pascal_main_name ();
4897 if (new_main_name != NULL)
4899 set_main_name (new_main_name);
4903 /* The languages above didn't identify the name of the main procedure.
4904 Fallback to "main". */
4905 set_main_name ("main");
4911 if (name_of_main == NULL)
4914 return name_of_main;
4917 /* Handle ``executable_changed'' events for the symtab module. */
4920 symtab_observer_executable_changed (void)
4922 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4923 set_main_name (NULL);
4926 /* Return 1 if the supplied producer string matches the ARM RealView
4927 compiler (armcc). */
4930 producer_is_realview (const char *producer)
4932 static const char *const arm_idents[] = {
4933 "ARM C Compiler, ADS",
4934 "Thumb C Compiler, ADS",
4935 "ARM C++ Compiler, ADS",
4936 "Thumb C++ Compiler, ADS",
4937 "ARM/Thumb C/C++ Compiler, RVCT",
4938 "ARM C/C++ Compiler, RVCT"
4942 if (producer == NULL)
4945 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4946 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4953 _initialize_symtab (void)
4955 add_info ("variables", variables_info, _("\
4956 All global and static variable names, or those matching REGEXP."));
4958 add_com ("whereis", class_info, variables_info, _("\
4959 All global and static variable names, or those matching REGEXP."));
4961 add_info ("functions", functions_info,
4962 _("All function names, or those matching REGEXP."));
4964 /* FIXME: This command has at least the following problems:
4965 1. It prints builtin types (in a very strange and confusing fashion).
4966 2. It doesn't print right, e.g. with
4967 typedef struct foo *FOO
4968 type_print prints "FOO" when we want to make it (in this situation)
4969 print "struct foo *".
4970 I also think "ptype" or "whatis" is more likely to be useful (but if
4971 there is much disagreement "info types" can be fixed). */
4972 add_info ("types", types_info,
4973 _("All type names, or those matching REGEXP."));
4975 add_info ("sources", sources_info,
4976 _("Source files in the program."));
4978 add_com ("rbreak", class_breakpoint, rbreak_command,
4979 _("Set a breakpoint for all functions matching REGEXP."));
4983 add_com ("lf", class_info, sources_info,
4984 _("Source files in the program"));
4985 add_com ("lg", class_info, variables_info, _("\
4986 All global and static variable names, or those matching REGEXP."));
4989 add_setshow_enum_cmd ("multiple-symbols", no_class,
4990 multiple_symbols_modes, &multiple_symbols_mode,
4992 Set the debugger behavior when more than one symbol are possible matches\n\
4993 in an expression."), _("\
4994 Show how the debugger handles ambiguities in expressions."), _("\
4995 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4996 NULL, NULL, &setlist, &showlist);
4998 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4999 &basenames_may_differ, _("\
5000 Set whether a source file may have multiple base names."), _("\
5001 Show whether a source file may have multiple base names."), _("\
5002 (A \"base name\" is the name of a file with the directory part removed.\n\
5003 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5004 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5005 before comparing them. Canonicalization is an expensive operation,\n\
5006 but it allows the same file be known by more than one base name.\n\
5007 If not set (the default), all source files are assumed to have just\n\
5008 one base name, and gdb will do file name comparisons more efficiently."),
5010 &setlist, &showlist);
5012 observer_attach_executable_changed (symtab_observer_executable_changed);