]> Git Repo - binutils.git/blob - gdb/config/arm/tm-arm.h
2000-07-19 Elena Zannoni <[email protected]>
[binutils.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to target GDB to ARM targets.
2    Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3
4    This file is part of GDB.
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 2 of the License, or
9    (at your option) any later version.
10
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 59 Temple Place - Suite 330,
19    Boston, MA 02111-1307, USA.  */
20
21 #ifndef TM_ARM_H
22 #define TM_ARM_H
23
24 /* Forward declarations for prototypes.  */
25 struct type;
26 struct value;
27
28 /* Target byte order on ARM defaults to selectable, and defaults to
29    little endian.  */
30 #define TARGET_BYTE_ORDER_SELECTABLE_P  1
31 #define TARGET_BYTE_ORDER_DEFAULT       LITTLE_ENDIAN
32
33 /* IEEE format floating point.  */
34 #define IEEE_FLOAT (1)
35 #define TARGET_DOUBLE_FORMAT  (target_byte_order == BIG_ENDIAN \
36                                ? &floatformat_ieee_double_big    \
37                                : &floatformat_ieee_double_littlebyte_bigword)
38
39 /* When reading symbols, we need to zap the low bit of the address,
40    which may be set to 1 for Thumb functions.  */
41
42 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
43
44 /* Remove useless bits from addresses in a running program.  */
45
46 CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
47
48 #define ADDR_BITS_REMOVE(val)   (arm_addr_bits_remove (val))
49
50 /* Offset from address of function to start of its code.  Zero on most
51    machines.  */
52
53 #define FUNCTION_START_OFFSET   0
54
55 /* Advance PC across any function entry prologue instructions to reach
56    some "real" code.  */
57
58 extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
59
60 #define SKIP_PROLOGUE(pc)  (arm_skip_prologue (pc))
61
62 /* Immediately after a function call, return the saved pc.  Can't
63    always go through the frames for this because on some machines the
64    new frame is not set up until the new function executes some
65    instructions.  */
66
67 #define SAVED_PC_AFTER_CALL(frame)  arm_saved_pc_after_call (frame)
68 struct frame_info;
69 extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
70
71 /* The following define instruction sequences that will cause ARM
72    cpu's to take an undefined instruction trap.  These are used to
73    signal a breakpoint to GDB.
74    
75    The newer ARMv4T cpu's are capable of operating in ARM or Thumb
76    modes.  A different instruction is required for each mode.  The ARM
77    cpu's can also be big or little endian.  Thus four different
78    instructions are needed to support all cases.
79    
80    Note: ARMv4 defines several new instructions that will take the
81    undefined instruction trap.  ARM7TDMI is nominally ARMv4T, but does
82    not in fact add the new instructions.  The new undefined
83    instructions in ARMv4 are all instructions that had no defined
84    behaviour in earlier chips.  There is no guarantee that they will
85    raise an exception, but may be treated as NOP's.  In practice, it
86    may only safe to rely on instructions matching:
87    
88    3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
89    1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
90    C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
91    
92    Even this may only true if the condition predicate is true. The
93    following use a condition predicate of ALWAYS so it is always TRUE.
94    
95    There are other ways of forcing a breakpoint.  ARM Linux, RisciX,
96    and I suspect NetBSD will all use a software interrupt rather than
97    an undefined instruction to force a trap.  This can be handled by
98    redefining some or all of the following in a target dependent
99    fashion.  */
100
101 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
102 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
103 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
104 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
105
106 /* Stack grows downward.  */
107
108 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
109
110 /* !!!! if we're using RDP, then we're inserting breakpoints and
111    storing their handles instread of what was in memory.  It is nice
112    that this is the same size as a handle - otherwise remote-rdp will
113    have to change. */
114
115 /* BREAKPOINT_FROM_PC uses the program counter value to determine
116    whether a 16- or 32-bit breakpoint should be used.  It returns a
117    pointer to a string of bytes that encode a breakpoint instruction,
118    stores the length of the string to *lenptr, and adjusts the pc (if
119    necessary) to point to the actual memory location where the
120    breakpoint should be inserted.  */
121
122 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
123 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
124
125 /* Amount PC must be decremented by after a breakpoint.  This is often
126    the number of bytes in BREAKPOINT but not always.  */
127
128 #define DECR_PC_AFTER_BREAK 0
129
130 /* Code to execute to print interesting information about the floating
131    point processor (if any) or emulator.  No need to define if there
132    is nothing to do. */
133 extern void arm_float_info (void);
134
135 #define FLOAT_INFO      { arm_float_info (); }
136
137 /* Say how long (ordinary) registers are.  This is a piece of bogosity
138    used in push_word and a few other places; REGISTER_RAW_SIZE is the
139    real way to know how big a register is.  */
140
141 #define REGISTER_SIZE   4
142
143 /* Say how long FP registers are.  Used for documentation purposes and
144    code readability in this header.  IEEE extended doubles are 80
145    bits.  DWORD aligned they use 96 bits.  */
146 #define FP_REGISTER_RAW_SIZE    12
147
148 /* GCC doesn't support long doubles (extended IEEE values).  The FP
149    register virtual size is therefore 64 bits.  Used for documentation
150    purposes and code readability in this header.  */
151 #define FP_REGISTER_VIRTUAL_SIZE        8
152
153 /* Status registers are the same size as general purpose registers.
154    Used for documentation purposes and code readability in this
155    header.  */
156 #define STATUS_REGISTER_SIZE    REGISTER_SIZE
157
158 /* Number of machine registers.  The only define actually required 
159    is NUM_REGS.  The other definitions are used for documentation
160    purposes and code readability.  */
161 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
162    (and called PS for processor status) so the status bits can be cleared
163    from the PC (register 15).  For 32 bit ARM code, a copy of CPSR is placed
164    in PS.  */
165 #define NUM_FREGS       8       /* Number of floating point registers.  */
166 #define NUM_SREGS       2       /* Number of status registers.  */
167 #define NUM_GREGS       16      /* Number of general purpose registers.  */
168 #define NUM_REGS        (NUM_GREGS + NUM_FREGS + NUM_SREGS)
169
170 /* An array of names of registers. */
171 extern char **arm_register_names;
172
173 #define REGISTER_NAME(i) arm_register_names[i]
174
175 /* Register numbers of various important registers.  Note that some of
176    these values are "real" register numbers, and correspond to the
177    general registers of the machine, and some are "phony" register
178    numbers which are too large to be actual register numbers as far as
179    the user is concerned but do serve to get the desired values when
180    passed to read_register.  */
181
182 #define A1_REGNUM 0             /* first integer-like argument */
183 #define A4_REGNUM 3             /* last integer-like argument */
184 #define AP_REGNUM 11
185 #define FP_REGNUM 11            /* Contains address of executing stack frame */
186 #define SP_REGNUM 13            /* Contains address of top of stack */
187 #define LR_REGNUM 14            /* address to return to from a function call */
188 #define PC_REGNUM 15            /* Contains program counter */
189 #define F0_REGNUM 16            /* first floating point register */
190 #define F3_REGNUM 19            /* last floating point argument register */
191 #define F7_REGNUM 23            /* last floating point register */
192 #define FPS_REGNUM 24           /* floating point status register */
193 #define PS_REGNUM 25            /* Contains processor status */
194
195 #define THUMB_FP_REGNUM 7       /* R7 is frame register on Thumb */
196
197 #define ARM_NUM_ARG_REGS        4
198 #define ARM_LAST_ARG_REGNUM     A4_REGNUM
199 #define ARM_NUM_FP_ARG_REGS     4
200 #define ARM_LAST_FP_ARG_REGNUM  F3_REGNUM
201
202 /* Instruction condition field values.  */
203 #define INST_EQ         0x0
204 #define INST_NE         0x1
205 #define INST_CS         0x2
206 #define INST_CC         0x3
207 #define INST_MI         0x4
208 #define INST_PL         0x5
209 #define INST_VS         0x6
210 #define INST_VC         0x7
211 #define INST_HI         0x8
212 #define INST_LS         0x9
213 #define INST_GE         0xa
214 #define INST_LT         0xb
215 #define INST_GT         0xc
216 #define INST_LE         0xd
217 #define INST_AL         0xe
218 #define INST_NV         0xf
219
220 #define FLAG_N          0x80000000
221 #define FLAG_Z          0x40000000
222 #define FLAG_C          0x20000000
223 #define FLAG_V          0x10000000
224
225
226
227 /* Total amount of space needed to store our copies of the machine's
228    register state, the array `registers'.  */
229
230 #define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
231                         (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
232                         (NUM_SREGS * STATUS_REGISTER_SIZE))
233
234 /* Index within `registers' of the first byte of the space for
235    register N.  */
236
237 #define REGISTER_BYTE(N) \
238      ((N) < F0_REGNUM \
239       ? (N) * REGISTER_SIZE \
240       : ((N) < PS_REGNUM \
241          ? (NUM_GREGS * REGISTER_SIZE + \
242             ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
243          : (NUM_GREGS * REGISTER_SIZE + \
244             NUM_FREGS * FP_REGISTER_RAW_SIZE + \
245             ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
246
247 /* Number of bytes of storage in the actual machine representation for
248    register N.  All registers are 4 bytes, except fp0 - fp7, which are
249    12 bytes in length.  */
250 #define REGISTER_RAW_SIZE(N) \
251      ((N) < F0_REGNUM ? REGISTER_SIZE : \
252       (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
253
254 /* Number of bytes of storage in a program's representation
255    for register N.  */
256 #define REGISTER_VIRTUAL_SIZE(N) \
257         ((N) < F0_REGNUM ? REGISTER_SIZE : \
258          (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
259
260 /* Largest value REGISTER_RAW_SIZE can have.  */
261
262 #define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
263
264 /* Largest value REGISTER_VIRTUAL_SIZE can have.  */
265 #define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
266
267 /* Nonzero if register N requires conversion from raw format to
268    virtual format. */
269 extern int arm_register_convertible (unsigned int);
270 #define REGISTER_CONVERTIBLE(REGNUM) (arm_register_convertible (REGNUM))
271
272 /* Convert data from raw format for register REGNUM in buffer FROM to
273    virtual format with type TYPE in buffer TO. */
274
275 extern void arm_register_convert_to_virtual (unsigned int regnum,
276                                              struct type *type,
277                                              void *from, void *to);
278 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
279      arm_register_convert_to_virtual (REGNUM, TYPE, FROM, TO)
280
281 /* Convert data from virtual format with type TYPE in buffer FROM to
282    raw format for register REGNUM in buffer TO.  */
283
284 extern void arm_register_convert_to_raw (unsigned int regnum,
285                                          struct type *type,
286                                          void *from, void *to);
287 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
288      arm_register_convert_to_raw (REGNUM, TYPE, FROM, TO)
289
290 /* Return the GDB type object for the "standard" data type of data in
291    register N.  */
292
293 #define REGISTER_VIRTUAL_TYPE(N) \
294      (((unsigned)(N) - F0_REGNUM) < NUM_FREGS \
295       ? builtin_type_double : builtin_type_int)
296
297 /* The system C compiler uses a similar structure return convention to gcc */
298 extern use_struct_convention_fn arm_use_struct_convention;
299 #define USE_STRUCT_CONVENTION(gcc_p, type) \
300      arm_use_struct_convention (gcc_p, type)
301
302 /* Store the address of the place in which to copy the structure the
303    subroutine will return.  This is called from call_function. */
304
305 #define STORE_STRUCT_RETURN(ADDR, SP) \
306      write_register (A1_REGNUM, (ADDR))
307
308 /* Extract from an array REGBUF containing the (raw) register state a
309    function return value of type TYPE, and copy that, in virtual
310    format, into VALBUF.  */
311
312 extern void arm_extract_return_value (struct type *, char[], char *);
313 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
314      arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
315
316 /* Write into appropriate registers a function return value of type
317    TYPE, given in virtual format.  */
318
319 extern void convert_to_extended (void *dbl, void *ptr);
320 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
321   if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) {                              \
322     char _buf[MAX_REGISTER_RAW_SIZE];                                   \
323     convert_to_extended (VALBUF, _buf);                                         \
324     write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
325   } else                                                                \
326     write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
327
328 /* Extract from an array REGBUF containing the (raw) register state
329    the address in which a function should return its structure value,
330    as a CORE_ADDR (or an expression that can be used as one).  */
331
332 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
333   (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
334
335 /* Specify that for the native compiler variables for a particular
336    lexical context are listed after the beginning LBRAC instead of
337    before in the executables list of symbols.  */
338 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
339 \f
340
341 /* Define other aspects of the stack frame.  We keep the offsets of
342    all saved registers, 'cause we need 'em a lot!  We also keep the
343    current size of the stack frame, and the offset of the frame
344    pointer from the stack pointer (for frameless functions, and when
345    we're still in the prologue of a function with a frame) */
346
347 #define EXTRA_FRAME_INFO        \
348   struct frame_saved_regs fsr;  \
349   int framesize;                \
350   int frameoffset;              \
351   int framereg;
352
353 extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
354 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
355         arm_init_extra_frame_info ((fromleaf), (fi))
356
357 /* Return the frame address.  On ARM, it is R11; on Thumb it is R7.  */
358 CORE_ADDR arm_target_read_fp (void);
359 #define TARGET_READ_FP() arm_target_read_fp ()
360
361 /* Describe the pointer in each stack frame to the previous stack
362    frame (its caller).  */
363
364 /* FRAME_CHAIN takes a frame's nominal address and produces the
365    frame's chain-pointer.
366
367    However, if FRAME_CHAIN_VALID returns zero,
368    it means the given frame is the outermost one and has no caller.  */
369
370 #define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
371 extern CORE_ADDR arm_frame_chain (struct frame_info *);
372
373 extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
374 #define FRAME_CHAIN_VALID(chain, thisframe) \
375      arm_frame_chain_valid (chain, thisframe)
376
377 /* Define other aspects of the stack frame.  */
378
379 /* A macro that tells us whether the function invocation represented
380    by FI does not have a frame on the stack associated with it.  If it
381    does not, FRAMELESS is set to 1, else 0.
382
383    Sometimes we have functions that do a little setup (like saving the
384    vN registers with the stmdb instruction, but DO NOT set up a frame.
385    The symbol table will report this as a prologue.  However, it is
386    important not to try to parse these partial frames as frames, or we
387    will get really confused.
388
389    So I will demand 3 instructions between the start & end of the
390    prologue before I call it a real prologue, i.e. at least
391          mov ip, sp,
392          stmdb sp!, {}
393          sub sp, ip, #4. */
394
395 extern int arm_frameless_function_invocation (struct frame_info *fi);
396 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
397 (arm_frameless_function_invocation (FI))
398     
399 /* Saved Pc.  */
400
401 #define FRAME_SAVED_PC(FRAME)   arm_frame_saved_pc (FRAME)
402 extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
403
404 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
405
406 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
407
408 /* Return number of args passed to a frame.
409    Can return -1, meaning no way to tell.  */
410
411 #define FRAME_NUM_ARGS(fi) (-1)
412
413 /* Return number of bytes at start of arglist that are not really args. */
414
415 #define FRAME_ARGS_SKIP 0
416
417 /* Put here the code to store, into a struct frame_saved_regs, the
418    addresses of the saved registers of frame described by FRAME_INFO.
419    This includes special registers such as pc and fp saved in special
420    ways in the stack frame.  sp is even more special: the address we
421    return for it IS the sp for the next frame.  */
422
423 struct frame_saved_regs;
424 struct frame_info;
425 void arm_frame_find_saved_regs (struct frame_info * fi,
426                                 struct frame_saved_regs * fsr);
427
428 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
429         arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
430
431 /* Things needed for making the inferior call functions.  */
432
433 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
434      sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
435 extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
436                                      CORE_ADDR);
437
438 /* Push an empty stack frame, to record the current PC, etc.  */
439
440 void arm_push_dummy_frame (void);
441
442 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
443
444 /* Discard from the stack the innermost frame, restoring all registers.  */
445
446 void arm_pop_frame (void);
447
448 #define POP_FRAME arm_pop_frame ()
449
450 /* This sequence of words is the instructions
451
452    mov  lr,pc
453    mov  pc,r4
454    illegal
455
456    Note this is 12 bytes.  */
457
458 #define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
459 #define CALL_DUMMY_START_OFFSET  0      /* Start execution at beginning of dummy */
460
461 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
462 extern int arm_call_dummy_breakpoint_offset (void);
463
464 /* Insert the specified number of args and function address into a
465    call sequence of the above form stored at DUMMYNAME.  */
466
467 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
468    arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
469
470 void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
471                          int nargs, struct value ** args,
472                          struct type * type, int gcc_p);
473
474 CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
475
476 /* Macros for setting and testing a bit in a minimal symbol that marks
477    it as Thumb function.  The MSB of the minimal symbol's "info" field
478    is used for this purpose. This field is already being used to store
479    the symbol size, so the assumption is that the symbol size cannot
480    exceed 2^31.
481
482    COFF_MAKE_MSYMBOL_SPECIAL
483    ELF_MAKE_MSYMBOL_SPECIAL
484    
485    These macros test whether the COFF or ELF symbol corresponds to a
486    thumb function, and set a "special" bit in a minimal symbol to
487    indicate that it does.
488    
489    MSYMBOL_SET_SPECIAL  Actually sets the "special" bit.
490    MSYMBOL_IS_SPECIAL   Tests the "special" bit in a minimal symbol.
491    MSYMBOL_SIZE         Returns the size of the minimal symbol,
492                         i.e. the "info" field with the "special" bit
493                         masked out 
494    */
495
496 extern int coff_sym_is_thumb (int val);
497
498 #define MSYMBOL_SET_SPECIAL(msym) \
499         MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
500 #define MSYMBOL_IS_SPECIAL(msym) \
501   (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
502 #define MSYMBOL_SIZE(msym) \
503   ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
504
505 /* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
506 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
507         { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
508                 MSYMBOL_SET_SPECIAL(msym); }
509
510 #define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
511  { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
512
513 /* The first 0x20 bytes are the trap vectors.  */
514 #define LOWEST_PC       0x20
515
516 #endif /* TM_ARM_H */
This page took 0.052182 seconds and 4 git commands to generate.