1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "opcode/m68k.h"
30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
32 static reloc_howto_type howto_table[] =
34 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
57 /* GNU extension to record C++ vtable hierarchy. */
58 HOWTO (R_68K_GNU_VTINHERIT, /* type */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
62 FALSE, /* pc_relative */
64 complain_overflow_dont, /* complain_on_overflow */
65 NULL, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
67 FALSE, /* partial_inplace */
71 /* GNU extension to record C++ vtable member usage. */
72 HOWTO (R_68K_GNU_VTENTRY, /* type */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
76 FALSE, /* pc_relative */
78 complain_overflow_dont, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
81 FALSE, /* partial_inplace */
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32, /* type */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
91 FALSE, /* pc_relative */
93 complain_overflow_bitfield, /* complain_on_overflow */
94 bfd_elf_generic_reloc, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE, /* partial_inplace */
98 0xffffffff, /* dst_mask */
99 FALSE), /* pcrel_offset */
101 HOWTO (R_68K_TLS_GD16, /* type */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
105 FALSE, /* pc_relative */
107 complain_overflow_signed, /* complain_on_overflow */
108 bfd_elf_generic_reloc, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE, /* partial_inplace */
112 0x0000ffff, /* dst_mask */
113 FALSE), /* pcrel_offset */
115 HOWTO (R_68K_TLS_GD8, /* type */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
119 FALSE, /* pc_relative */
121 complain_overflow_signed, /* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE, /* partial_inplace */
126 0x000000ff, /* dst_mask */
127 FALSE), /* pcrel_offset */
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32, /* type */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
134 FALSE, /* pc_relative */
136 complain_overflow_bitfield, /* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE, /* partial_inplace */
141 0xffffffff, /* dst_mask */
142 FALSE), /* pcrel_offset */
144 HOWTO (R_68K_TLS_LDM16, /* type */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
148 FALSE, /* pc_relative */
150 complain_overflow_signed, /* complain_on_overflow */
151 bfd_elf_generic_reloc, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE, /* partial_inplace */
155 0x0000ffff, /* dst_mask */
156 FALSE), /* pcrel_offset */
158 HOWTO (R_68K_TLS_LDM8, /* type */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
162 FALSE, /* pc_relative */
164 complain_overflow_signed, /* complain_on_overflow */
165 bfd_elf_generic_reloc, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE, /* partial_inplace */
169 0x000000ff, /* dst_mask */
170 FALSE), /* pcrel_offset */
172 HOWTO (R_68K_TLS_LDO32, /* type */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
176 FALSE, /* pc_relative */
178 complain_overflow_bitfield, /* complain_on_overflow */
179 bfd_elf_generic_reloc, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE, /* partial_inplace */
183 0xffffffff, /* dst_mask */
184 FALSE), /* pcrel_offset */
186 HOWTO (R_68K_TLS_LDO16, /* type */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
190 FALSE, /* pc_relative */
192 complain_overflow_signed, /* complain_on_overflow */
193 bfd_elf_generic_reloc, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE, /* partial_inplace */
197 0x0000ffff, /* dst_mask */
198 FALSE), /* pcrel_offset */
200 HOWTO (R_68K_TLS_LDO8, /* type */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
204 FALSE, /* pc_relative */
206 complain_overflow_signed, /* complain_on_overflow */
207 bfd_elf_generic_reloc, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE, /* partial_inplace */
211 0x000000ff, /* dst_mask */
212 FALSE), /* pcrel_offset */
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32, /* type */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
219 FALSE, /* pc_relative */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 bfd_elf_generic_reloc, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE, /* partial_inplace */
226 0xffffffff, /* dst_mask */
227 FALSE), /* pcrel_offset */
229 HOWTO (R_68K_TLS_IE16, /* type */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
233 FALSE, /* pc_relative */
235 complain_overflow_signed, /* complain_on_overflow */
236 bfd_elf_generic_reloc, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE, /* partial_inplace */
240 0x0000ffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
243 HOWTO (R_68K_TLS_IE8, /* type */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
247 FALSE, /* pc_relative */
249 complain_overflow_signed, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE, /* partial_inplace */
254 0x000000ff, /* dst_mask */
255 FALSE), /* pcrel_offset */
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32, /* type */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
262 FALSE, /* pc_relative */
264 complain_overflow_bitfield, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE, /* partial_inplace */
269 0xffffffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
272 HOWTO (R_68K_TLS_LE16, /* type */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
276 FALSE, /* pc_relative */
278 complain_overflow_signed, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE, /* partial_inplace */
283 0x0000ffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
286 HOWTO (R_68K_TLS_LE8, /* type */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
290 FALSE, /* pc_relative */
292 complain_overflow_signed, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE, /* partial_inplace */
297 0x000000ff, /* dst_mask */
298 FALSE), /* pcrel_offset */
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32, /* type */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
305 FALSE, /* pc_relative */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE, /* partial_inplace */
312 0xffffffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
315 HOWTO (R_68K_TLS_DTPREL32, /* type */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
319 FALSE, /* pc_relative */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE, /* partial_inplace */
326 0xffffffff, /* dst_mask */
327 FALSE), /* pcrel_offset */
329 HOWTO (R_68K_TLS_TPREL32, /* type */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
333 FALSE, /* pc_relative */
335 complain_overflow_dont, /* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE, /* partial_inplace */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
347 unsigned int indx = ELF32_R_TYPE (dst->r_info);
349 if (indx >= (unsigned int) R_68K_max)
351 /* xgettext:c-format */
352 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
354 bfd_set_error (bfd_error_bad_value);
357 cache_ptr->howto = &howto_table[indx];
361 #define elf_info_to_howto rtype_to_howto
365 bfd_reloc_code_real_type bfd_val;
370 { BFD_RELOC_NONE, R_68K_NONE },
371 { BFD_RELOC_32, R_68K_32 },
372 { BFD_RELOC_16, R_68K_16 },
373 { BFD_RELOC_8, R_68K_8 },
374 { BFD_RELOC_32_PCREL, R_68K_PC32 },
375 { BFD_RELOC_16_PCREL, R_68K_PC16 },
376 { BFD_RELOC_8_PCREL, R_68K_PC8 },
377 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
378 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
379 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
380 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
381 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
382 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
383 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
384 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
385 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
386 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
387 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
388 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
389 { BFD_RELOC_NONE, R_68K_COPY },
390 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
391 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
392 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
393 { BFD_RELOC_CTOR, R_68K_32 },
394 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
395 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
396 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
397 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
398 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
399 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
400 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
401 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
402 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
403 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
404 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
405 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
406 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
407 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
408 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
409 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
410 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
413 static reloc_howto_type *
414 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
415 bfd_reloc_code_real_type code)
418 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
420 if (reloc_map[i].bfd_val == code)
421 return &howto_table[reloc_map[i].elf_val];
426 static reloc_howto_type *
427 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
431 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
432 if (howto_table[i].name != NULL
433 && strcasecmp (howto_table[i].name, r_name) == 0)
434 return &howto_table[i];
439 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
440 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
441 #define ELF_ARCH bfd_arch_m68k
442 #define ELF_TARGET_ID M68K_ELF_DATA
444 /* Functions for the m68k ELF linker. */
446 /* The name of the dynamic interpreter. This is put in the .interp
449 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
451 /* Describes one of the various PLT styles. */
453 struct elf_m68k_plt_info
455 /* The size of each PLT entry. */
458 /* The template for the first PLT entry. */
459 const bfd_byte *plt0_entry;
461 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
462 The comments by each member indicate the value that the relocation
465 unsigned int got4; /* .got + 4 */
466 unsigned int got8; /* .got + 8 */
469 /* The template for a symbol's PLT entry. */
470 const bfd_byte *symbol_entry;
472 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
473 The comments by each member indicate the value that the relocation
476 unsigned int got; /* the symbol's .got.plt entry */
477 unsigned int plt; /* .plt */
480 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
481 The stub starts with "move.l #relocoffset,%d0". */
482 bfd_vma symbol_resolve_entry;
485 /* The size in bytes of an entry in the procedure linkage table. */
487 #define PLT_ENTRY_SIZE 20
489 /* The first entry in a procedure linkage table looks like this. See
490 the SVR4 ABI m68k supplement to see how this works. */
492 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
494 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
495 0, 0, 0, 2, /* + (.got + 4) - . */
496 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
497 0, 0, 0, 2, /* + (.got + 8) - . */
498 0, 0, 0, 0 /* pad out to 20 bytes. */
501 /* Subsequent entries in a procedure linkage table look like this. */
503 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
505 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
506 0, 0, 0, 2, /* + (.got.plt entry) - . */
507 0x2f, 0x3c, /* move.l #offset,-(%sp) */
508 0, 0, 0, 0, /* + reloc index */
509 0x60, 0xff, /* bra.l .plt */
510 0, 0, 0, 0 /* + .plt - . */
513 static const struct elf_m68k_plt_info elf_m68k_plt_info =
516 elf_m68k_plt0_entry, { 4, 12 },
517 elf_m68k_plt_entry, { 4, 16 }, 8
520 #define ISAB_PLT_ENTRY_SIZE 24
522 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
524 0x20, 0x3c, /* move.l #offset,%d0 */
525 0, 0, 0, 0, /* + (.got + 4) - . */
526 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
527 0x20, 0x3c, /* move.l #offset,%d0 */
528 0, 0, 0, 0, /* + (.got + 8) - . */
529 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
530 0x4e, 0xd0, /* jmp (%a0) */
534 /* Subsequent entries in a procedure linkage table look like this. */
536 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
538 0x20, 0x3c, /* move.l #offset,%d0 */
539 0, 0, 0, 0, /* + (.got.plt entry) - . */
540 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
541 0x4e, 0xd0, /* jmp (%a0) */
542 0x2f, 0x3c, /* move.l #offset,-(%sp) */
543 0, 0, 0, 0, /* + reloc index */
544 0x60, 0xff, /* bra.l .plt */
545 0, 0, 0, 0 /* + .plt - . */
548 static const struct elf_m68k_plt_info elf_isab_plt_info =
551 elf_isab_plt0_entry, { 2, 12 },
552 elf_isab_plt_entry, { 2, 20 }, 12
555 #define ISAC_PLT_ENTRY_SIZE 24
557 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
559 0x20, 0x3c, /* move.l #offset,%d0 */
560 0, 0, 0, 0, /* replaced with .got + 4 - . */
561 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
562 0x20, 0x3c, /* move.l #offset,%d0 */
563 0, 0, 0, 0, /* replaced with .got + 8 - . */
564 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
565 0x4e, 0xd0, /* jmp (%a0) */
569 /* Subsequent entries in a procedure linkage table look like this. */
571 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
573 0x20, 0x3c, /* move.l #offset,%d0 */
574 0, 0, 0, 0, /* replaced with (.got entry) - . */
575 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
576 0x4e, 0xd0, /* jmp (%a0) */
577 0x2f, 0x3c, /* move.l #offset,-(%sp) */
578 0, 0, 0, 0, /* replaced with offset into relocation table */
579 0x61, 0xff, /* bsr.l .plt */
580 0, 0, 0, 0 /* replaced with .plt - . */
583 static const struct elf_m68k_plt_info elf_isac_plt_info =
586 elf_isac_plt0_entry, { 2, 12},
587 elf_isac_plt_entry, { 2, 20 }, 12
590 #define CPU32_PLT_ENTRY_SIZE 24
591 /* Procedure linkage table entries for the cpu32 */
592 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
594 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
595 0, 0, 0, 2, /* + (.got + 4) - . */
596 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
597 0, 0, 0, 2, /* + (.got + 8) - . */
598 0x4e, 0xd1, /* jmp %a1@ */
599 0, 0, 0, 0, /* pad out to 24 bytes. */
603 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
605 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
606 0, 0, 0, 2, /* + (.got.plt entry) - . */
607 0x4e, 0xd1, /* jmp %a1@ */
608 0x2f, 0x3c, /* move.l #offset,-(%sp) */
609 0, 0, 0, 0, /* + reloc index */
610 0x60, 0xff, /* bra.l .plt */
611 0, 0, 0, 0, /* + .plt - . */
615 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
617 CPU32_PLT_ENTRY_SIZE,
618 elf_cpu32_plt0_entry, { 4, 12 },
619 elf_cpu32_plt_entry, { 4, 18 }, 10
622 /* The m68k linker needs to keep track of the number of relocs that it
623 decides to copy in check_relocs for each symbol. This is so that it
624 can discard PC relative relocs if it doesn't need them when linking
625 with -Bsymbolic. We store the information in a field extending the
626 regular ELF linker hash table. */
628 /* This structure keeps track of the number of PC relative relocs we have
629 copied for a given symbol. */
631 struct elf_m68k_pcrel_relocs_copied
634 struct elf_m68k_pcrel_relocs_copied *next;
635 /* A section in dynobj. */
637 /* Number of relocs copied in this section. */
641 /* Forward declaration. */
642 struct elf_m68k_got_entry;
644 /* m68k ELF linker hash entry. */
646 struct elf_m68k_link_hash_entry
648 struct elf_link_hash_entry root;
650 /* Number of PC relative relocs copied for this symbol. */
651 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
653 /* Key to got_entries. */
654 unsigned long got_entry_key;
656 /* List of GOT entries for this symbol. This list is build during
657 offset finalization and is used within elf_m68k_finish_dynamic_symbol
658 to traverse all GOT entries for a particular symbol.
660 ??? We could've used root.got.glist field instead, but having
661 a separate field is cleaner. */
662 struct elf_m68k_got_entry *glist;
665 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
667 /* Key part of GOT entry in hashtable. */
668 struct elf_m68k_got_entry_key
670 /* BFD in which this symbol was defined. NULL for global symbols. */
673 /* Symbol index. Either local symbol index or h->got_entry_key. */
674 unsigned long symndx;
676 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
677 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
679 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
680 matters. That is, we distinguish between, say, R_68K_GOT16O
681 and R_68K_GOT32O when allocating offsets, but they are considered to be
682 the same when searching got->entries. */
683 enum elf_m68k_reloc_type type;
686 /* Size of the GOT offset suitable for relocation. */
687 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
689 /* Entry of the GOT. */
690 struct elf_m68k_got_entry
692 /* GOT entries are put into a got->entries hashtable. This is the key. */
693 struct elf_m68k_got_entry_key key_;
695 /* GOT entry data. We need s1 before offset finalization and s2 after. */
700 /* Number of times this entry is referenced. */
706 /* Offset from the start of .got section. To calculate offset relative
707 to GOT pointer one should subtract got->offset from this value. */
710 /* Pointer to the next GOT entry for this global symbol.
711 Symbols have at most one entry in one GOT, but might
712 have entries in more than one GOT.
713 Root of this list is h->glist.
714 NULL for local symbols. */
715 struct elf_m68k_got_entry *next;
720 /* Return representative type for relocation R_TYPE.
721 This is used to avoid enumerating many relocations in comparisons,
724 static enum elf_m68k_reloc_type
725 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
729 /* In most cases R_68K_GOTx relocations require the very same
730 handling as R_68K_GOT32O relocation. In cases when we need
731 to distinguish between the two, we use explicitly compare against
744 return R_68K_TLS_GD32;
746 case R_68K_TLS_LDM32:
747 case R_68K_TLS_LDM16:
749 return R_68K_TLS_LDM32;
754 return R_68K_TLS_IE32;
762 /* Return size of the GOT entry offset for relocation R_TYPE. */
764 static enum elf_m68k_got_offset_size
765 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
769 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
770 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
774 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
778 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
788 /* Return number of GOT entries we need to allocate in GOT for
789 relocation R_TYPE. */
792 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
794 switch (elf_m68k_reloc_got_type (r_type))
801 case R_68K_TLS_LDM32:
810 /* Return TRUE if relocation R_TYPE is a TLS one. */
813 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
817 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
818 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
819 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
820 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
821 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
822 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
830 /* Data structure representing a single GOT. */
833 /* Hashtable of 'struct elf_m68k_got_entry's.
834 Starting size of this table is the maximum number of
835 R_68K_GOT8O entries. */
838 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
841 n_slots[R_8] is the count of R_8 slots in this GOT.
842 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
844 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
845 in this GOT. This is the total number of slots. */
846 bfd_vma n_slots[R_LAST];
848 /* Number of local (entry->key_.h == NULL) slots in this GOT.
849 This is only used to properly calculate size of .rela.got section;
850 see elf_m68k_partition_multi_got. */
851 bfd_vma local_n_slots;
853 /* Offset of this GOT relative to beginning of .got section. */
857 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
858 struct elf_m68k_bfd2got_entry
863 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
864 GOT structure. After partitioning several BFD's might [and often do]
865 share a single GOT. */
866 struct elf_m68k_got *got;
869 /* The main data structure holding all the pieces. */
870 struct elf_m68k_multi_got
872 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
873 here, then it doesn't need a GOT (this includes the case of a BFD
874 having an empty GOT).
876 ??? This hashtable can be replaced by an array indexed by bfd->id. */
879 /* Next symndx to assign a global symbol.
880 h->got_entry_key is initialized from this counter. */
881 unsigned long global_symndx;
884 /* m68k ELF linker hash table. */
886 struct elf_m68k_link_hash_table
888 struct elf_link_hash_table root;
890 /* Small local sym cache. */
891 struct sym_cache sym_cache;
893 /* The PLT format used by this link, or NULL if the format has not
895 const struct elf_m68k_plt_info *plt_info;
897 /* True, if GP is loaded within each function which uses it.
898 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
899 bfd_boolean local_gp_p;
901 /* Switch controlling use of negative offsets to double the size of GOTs. */
902 bfd_boolean use_neg_got_offsets_p;
904 /* Switch controlling generation of multiple GOTs. */
905 bfd_boolean allow_multigot_p;
907 /* Multi-GOT data structure. */
908 struct elf_m68k_multi_got multi_got_;
911 /* Get the m68k ELF linker hash table from a link_info structure. */
913 #define elf_m68k_hash_table(p) \
914 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
915 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
917 /* Shortcut to multi-GOT data. */
918 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
920 /* Create an entry in an m68k ELF linker hash table. */
922 static struct bfd_hash_entry *
923 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924 struct bfd_hash_table *table,
927 struct bfd_hash_entry *ret = entry;
929 /* Allocate the structure if it has not already been allocated by a
932 ret = bfd_hash_allocate (table,
933 sizeof (struct elf_m68k_link_hash_entry));
937 /* Call the allocation method of the superclass. */
938 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
941 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942 elf_m68k_hash_entry (ret)->got_entry_key = 0;
943 elf_m68k_hash_entry (ret)->glist = NULL;
949 /* Destroy an m68k ELF linker hash table. */
952 elf_m68k_link_hash_table_free (bfd *obfd)
954 struct elf_m68k_link_hash_table *htab;
956 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
958 if (htab->multi_got_.bfd2got != NULL)
960 htab_delete (htab->multi_got_.bfd2got);
961 htab->multi_got_.bfd2got = NULL;
963 _bfd_elf_link_hash_table_free (obfd);
966 /* Create an m68k ELF linker hash table. */
968 static struct bfd_link_hash_table *
969 elf_m68k_link_hash_table_create (bfd *abfd)
971 struct elf_m68k_link_hash_table *ret;
972 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
974 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
975 if (ret == (struct elf_m68k_link_hash_table *) NULL)
978 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979 elf_m68k_link_hash_newfunc,
980 sizeof (struct elf_m68k_link_hash_entry),
986 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
988 ret->multi_got_.global_symndx = 1;
990 return &ret->root.root;
993 /* Set the right machine number. */
996 elf32_m68k_object_p (bfd *abfd)
998 unsigned int mach = 0;
999 unsigned features = 0;
1000 flagword eflags = elf_elfheader (abfd)->e_flags;
1002 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1004 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1006 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1010 switch (eflags & EF_M68K_CF_ISA_MASK)
1012 case EF_M68K_CF_ISA_A_NODIV:
1013 features |= mcfisa_a;
1015 case EF_M68K_CF_ISA_A:
1016 features |= mcfisa_a|mcfhwdiv;
1018 case EF_M68K_CF_ISA_A_PLUS:
1019 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1021 case EF_M68K_CF_ISA_B_NOUSP:
1022 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1024 case EF_M68K_CF_ISA_B:
1025 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1027 case EF_M68K_CF_ISA_C:
1028 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1030 case EF_M68K_CF_ISA_C_NODIV:
1031 features |= mcfisa_a|mcfisa_c|mcfusp;
1034 switch (eflags & EF_M68K_CF_MAC_MASK)
1036 case EF_M68K_CF_MAC:
1039 case EF_M68K_CF_EMAC:
1040 features |= mcfemac;
1043 if (eflags & EF_M68K_CF_FLOAT)
1047 mach = bfd_m68k_features_to_mach (features);
1048 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1053 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054 field based on the machine number. */
1057 elf_m68k_final_write_processing (bfd *abfd)
1059 int mach = bfd_get_mach (abfd);
1060 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1064 unsigned int arch_mask;
1066 arch_mask = bfd_m68k_mach_to_features (mach);
1068 if (arch_mask & m68000)
1069 e_flags = EF_M68K_M68000;
1070 else if (arch_mask & cpu32)
1071 e_flags = EF_M68K_CPU32;
1072 else if (arch_mask & fido_a)
1073 e_flags = EF_M68K_FIDO;
1077 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1080 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1082 case mcfisa_a | mcfhwdiv:
1083 e_flags |= EF_M68K_CF_ISA_A;
1085 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1086 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1088 case mcfisa_a | mcfisa_b | mcfhwdiv:
1089 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1091 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1092 e_flags |= EF_M68K_CF_ISA_B;
1094 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1095 e_flags |= EF_M68K_CF_ISA_C;
1097 case mcfisa_a | mcfisa_c | mcfusp:
1098 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1101 if (arch_mask & mcfmac)
1102 e_flags |= EF_M68K_CF_MAC;
1103 else if (arch_mask & mcfemac)
1104 e_flags |= EF_M68K_CF_EMAC;
1105 if (arch_mask & cfloat)
1106 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1108 elf_elfheader (abfd)->e_flags = e_flags;
1110 return _bfd_elf_final_write_processing (abfd);
1113 /* Keep m68k-specific flags in the ELF header. */
1116 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1118 elf_elfheader (abfd)->e_flags = flags;
1119 elf_flags_init (abfd) = TRUE;
1123 /* Merge backend specific data from an object file to the output
1124 object file when linking. */
1126 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1128 bfd *obfd = info->output_bfd;
1133 const bfd_arch_info_type *arch_info;
1135 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1136 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1137 /* PR 24523: For non-ELF files do not try to merge any private
1138 data, but also do not prevent the link from succeeding. */
1141 /* Get the merged machine. This checks for incompatibility between
1142 Coldfire & non-Coldfire flags, incompability between different
1143 Coldfire ISAs, and incompability between different MAC types. */
1144 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1148 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1150 in_flags = elf_elfheader (ibfd)->e_flags;
1151 if (!elf_flags_init (obfd))
1153 elf_flags_init (obfd) = TRUE;
1154 out_flags = in_flags;
1158 out_flags = elf_elfheader (obfd)->e_flags;
1159 unsigned int variant_mask;
1161 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1163 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1165 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1168 variant_mask = EF_M68K_CF_ISA_MASK;
1170 in_isa = (in_flags & variant_mask);
1171 out_isa = (out_flags & variant_mask);
1172 if (in_isa > out_isa)
1173 out_flags ^= in_isa ^ out_isa;
1174 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1175 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1176 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1177 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1178 out_flags = EF_M68K_FIDO;
1180 out_flags |= in_flags ^ in_isa;
1182 elf_elfheader (obfd)->e_flags = out_flags;
1187 /* Display the flags field. */
1190 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1192 FILE *file = (FILE *) ptr;
1193 flagword eflags = elf_elfheader (abfd)->e_flags;
1195 BFD_ASSERT (abfd != NULL && ptr != NULL);
1197 /* Print normal ELF private data. */
1198 _bfd_elf_print_private_bfd_data (abfd, ptr);
1200 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1202 /* xgettext:c-format */
1203 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1205 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1206 fprintf (file, " [m68000]");
1207 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1208 fprintf (file, " [cpu32]");
1209 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1210 fprintf (file, " [fido]");
1213 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1214 fprintf (file, " [cfv4e]");
1216 if (eflags & EF_M68K_CF_ISA_MASK)
1218 char const *isa = _("unknown");
1219 char const *mac = _("unknown");
1220 char const *additional = "";
1222 switch (eflags & EF_M68K_CF_ISA_MASK)
1224 case EF_M68K_CF_ISA_A_NODIV:
1226 additional = " [nodiv]";
1228 case EF_M68K_CF_ISA_A:
1231 case EF_M68K_CF_ISA_A_PLUS:
1234 case EF_M68K_CF_ISA_B_NOUSP:
1236 additional = " [nousp]";
1238 case EF_M68K_CF_ISA_B:
1241 case EF_M68K_CF_ISA_C:
1244 case EF_M68K_CF_ISA_C_NODIV:
1246 additional = " [nodiv]";
1249 fprintf (file, " [isa %s]%s", isa, additional);
1251 if (eflags & EF_M68K_CF_FLOAT)
1252 fprintf (file, " [float]");
1254 switch (eflags & EF_M68K_CF_MAC_MASK)
1259 case EF_M68K_CF_MAC:
1262 case EF_M68K_CF_EMAC:
1265 case EF_M68K_CF_EMAC_B:
1270 fprintf (file, " [%s]", mac);
1279 /* Multi-GOT support implementation design:
1281 Multi-GOT starts in check_relocs hook. There we scan all
1282 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1283 for it. If a single BFD appears to require too many GOT slots with
1284 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1286 After check_relocs has been invoked for each input BFD, we have
1287 constructed a GOT for each input BFD.
1289 To minimize total number of GOTs required for a particular output BFD
1290 (as some environments support only 1 GOT per output object) we try
1291 to merge some of the GOTs to share an offset space. Ideally [and in most
1292 cases] we end up with a single GOT. In cases when there are too many
1293 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1294 several GOTs, assuming the environment can handle them.
1296 Partitioning is done in elf_m68k_partition_multi_got. We start with
1297 an empty GOT and traverse bfd2got hashtable putting got_entries from
1298 local GOTs to the new 'big' one. We do that by constructing an
1299 intermediate GOT holding all the entries the local GOT has and the big
1300 GOT lacks. Then we check if there is room in the big GOT to accomodate
1301 all the entries from diff. On success we add those entries to the big
1302 GOT; on failure we start the new 'big' GOT and retry the adding of
1303 entries from the local GOT. Note that this retry will always succeed as
1304 each local GOT doesn't overflow the limits. After partitioning we
1305 end up with each bfd assigned one of the big GOTs. GOT entries in the
1306 big GOTs are initialized with GOT offsets. Note that big GOTs are
1307 positioned consequently in program space and represent a single huge GOT
1308 to the outside world.
1310 After that we get to elf_m68k_relocate_section. There we
1311 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1312 relocations to refer to appropriate [assigned to current input_bfd]
1317 GOT entry type: We have several types of GOT entries.
1318 * R_8 type is used in entries for symbols that have at least one
1319 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1320 such entries in one GOT.
1321 * R_16 type is used in entries for symbols that have at least one
1322 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1323 We can have at most 0x4000 such entries in one GOT.
1324 * R_32 type is used in all other cases. We can have as many
1325 such entries in one GOT as we'd like.
1326 When counting relocations we have to include the count of the smaller
1327 ranged relocations in the counts of the larger ranged ones in order
1328 to correctly detect overflow.
1330 Sorting the GOT: In each GOT starting offsets are assigned to
1331 R_8 entries, which are followed by R_16 entries, and
1332 R_32 entries go at the end. See finalize_got_offsets for details.
1334 Negative GOT offsets: To double usable offset range of GOTs we use
1335 negative offsets. As we assign entries with GOT offsets relative to
1336 start of .got section, the offset values are positive. They become
1337 negative only in relocate_section where got->offset value is
1338 subtracted from them.
1340 3 special GOT entries: There are 3 special GOT entries used internally
1341 by loader. These entries happen to be placed to .got.plt section,
1342 so we don't do anything about them in multi-GOT support.
1344 Memory management: All data except for hashtables
1345 multi_got->bfd2got and got->entries are allocated on
1346 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1347 to most functions), so we don't need to care to free them. At the
1348 moment of allocation hashtables are being linked into main data
1349 structure (multi_got), all pieces of which are reachable from
1350 elf_m68k_multi_got (info). We deallocate them in
1351 elf_m68k_link_hash_table_free. */
1353 /* Initialize GOT. */
1356 elf_m68k_init_got (struct elf_m68k_got *got)
1358 got->entries = NULL;
1359 got->n_slots[R_8] = 0;
1360 got->n_slots[R_16] = 0;
1361 got->n_slots[R_32] = 0;
1362 got->local_n_slots = 0;
1363 got->offset = (bfd_vma) -1;
1369 elf_m68k_clear_got (struct elf_m68k_got *got)
1371 if (got->entries != NULL)
1373 htab_delete (got->entries);
1374 got->entries = NULL;
1378 /* Create and empty GOT structure. INFO is the context where memory
1379 should be allocated. */
1381 static struct elf_m68k_got *
1382 elf_m68k_create_empty_got (struct bfd_link_info *info)
1384 struct elf_m68k_got *got;
1386 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1390 elf_m68k_init_got (got);
1395 /* Initialize KEY. */
1398 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1399 struct elf_link_hash_entry *h,
1400 const bfd *abfd, unsigned long symndx,
1401 enum elf_m68k_reloc_type reloc_type)
1403 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1404 /* All TLS_LDM relocations share a single GOT entry. */
1410 /* Global symbols are identified with their got_entry_key. */
1413 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1414 BFD_ASSERT (key->symndx != 0);
1417 /* Local symbols are identified by BFD they appear in and symndx. */
1420 key->symndx = symndx;
1423 key->type = reloc_type;
1426 /* Calculate hash of got_entry.
1430 elf_m68k_got_entry_hash (const void *_entry)
1432 const struct elf_m68k_got_entry_key *key;
1434 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1437 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1438 + elf_m68k_reloc_got_type (key->type));
1441 /* Check if two got entries are equal. */
1444 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1446 const struct elf_m68k_got_entry_key *key1;
1447 const struct elf_m68k_got_entry_key *key2;
1449 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1450 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1452 return (key1->bfd == key2->bfd
1453 && key1->symndx == key2->symndx
1454 && (elf_m68k_reloc_got_type (key1->type)
1455 == elf_m68k_reloc_got_type (key2->type)));
1458 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1459 and one extra R_32 slots to simplify handling of 2-slot entries during
1460 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1462 /* Maximal number of R_8 slots in a single GOT. */
1463 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1464 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1468 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1469 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1470 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1474 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1475 the entry cannot be found.
1476 FIND_OR_CREATE - search for an existing entry, but create new if there's
1478 MUST_FIND - search for an existing entry and assert that it exist.
1479 MUST_CREATE - assert that there's no such entry and create new one. */
1480 enum elf_m68k_get_entry_howto
1488 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1489 INFO is context in which memory should be allocated (can be NULL if
1490 HOWTO is SEARCH or MUST_FIND). */
1492 static struct elf_m68k_got_entry *
1493 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1494 const struct elf_m68k_got_entry_key *key,
1495 enum elf_m68k_get_entry_howto howto,
1496 struct bfd_link_info *info)
1498 struct elf_m68k_got_entry entry_;
1499 struct elf_m68k_got_entry *entry;
1502 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1504 if (got->entries == NULL)
1505 /* This is the first entry in ABFD. Initialize hashtable. */
1507 if (howto == SEARCH)
1510 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1512 elf_m68k_got_entry_hash,
1513 elf_m68k_got_entry_eq, NULL);
1514 if (got->entries == NULL)
1516 bfd_set_error (bfd_error_no_memory);
1522 ptr = htab_find_slot (got->entries, &entry_,
1523 (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1527 if (howto == SEARCH)
1528 /* Entry not found. */
1531 if (howto == MUST_FIND)
1534 /* We're out of memory. */
1535 bfd_set_error (bfd_error_no_memory);
1540 /* We didn't find the entry and we're asked to create a new one. */
1542 if (howto == MUST_FIND)
1545 BFD_ASSERT (howto != SEARCH);
1547 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1551 /* Initialize new entry. */
1554 entry->u.s1.refcount = 0;
1556 /* Mark the entry as not initialized. */
1557 entry->key_.type = R_68K_max;
1562 /* We found the entry. */
1564 BFD_ASSERT (howto != MUST_CREATE);
1572 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1573 Return the value to which ENTRY's type should be set. */
1575 static enum elf_m68k_reloc_type
1576 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1577 enum elf_m68k_reloc_type was,
1578 enum elf_m68k_reloc_type new_reloc)
1580 enum elf_m68k_got_offset_size was_size;
1581 enum elf_m68k_got_offset_size new_size;
1584 if (was == R_68K_max)
1585 /* The type of the entry is not initialized yet. */
1587 /* Update all got->n_slots counters, including n_slots[R_32]. */
1594 /* !!! We, probably, should emit an error rather then fail on assert
1596 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1597 == elf_m68k_reloc_got_type (new_reloc));
1599 was_size = elf_m68k_reloc_got_offset_size (was);
1602 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1603 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1605 while (was_size > new_size)
1608 got->n_slots[was_size] += n_slots;
1611 if (new_reloc > was)
1612 /* Relocations are ordered from bigger got offset size to lesser,
1613 so choose the relocation type with lesser offset size. */
1619 /* Add new or update existing entry to GOT.
1620 H, ABFD, TYPE and SYMNDX is data for the entry.
1621 INFO is a context where memory should be allocated. */
1623 static struct elf_m68k_got_entry *
1624 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1625 struct elf_link_hash_entry *h,
1627 enum elf_m68k_reloc_type reloc_type,
1628 unsigned long symndx,
1629 struct bfd_link_info *info)
1631 struct elf_m68k_got_entry_key key_;
1632 struct elf_m68k_got_entry *entry;
1634 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1635 elf_m68k_hash_entry (h)->got_entry_key
1636 = elf_m68k_multi_got (info)->global_symndx++;
1638 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1640 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1644 /* Determine entry's type and update got->n_slots counters. */
1645 entry->key_.type = elf_m68k_update_got_entry_type (got,
1649 /* Update refcount. */
1650 ++entry->u.s1.refcount;
1652 if (entry->u.s1.refcount == 1)
1653 /* We see this entry for the first time. */
1655 if (entry->key_.bfd != NULL)
1656 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1659 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1661 if ((got->n_slots[R_8]
1662 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1663 || (got->n_slots[R_16]
1664 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1665 /* This BFD has too many relocation. */
1667 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1668 /* xgettext:c-format */
1669 _bfd_error_handler (_("%pB: GOT overflow: "
1670 "number of relocations with 8-bit "
1673 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1675 /* xgettext:c-format */
1676 _bfd_error_handler (_("%pB: GOT overflow: "
1677 "number of relocations with 8- or 16-bit "
1680 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1688 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1691 elf_m68k_bfd2got_entry_hash (const void *entry)
1693 const struct elf_m68k_bfd2got_entry *e;
1695 e = (const struct elf_m68k_bfd2got_entry *) entry;
1700 /* Check whether two hash entries have the same bfd. */
1703 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1705 const struct elf_m68k_bfd2got_entry *e1;
1706 const struct elf_m68k_bfd2got_entry *e2;
1708 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1709 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1711 return e1->bfd == e2->bfd;
1714 /* Destruct a bfd2got entry. */
1717 elf_m68k_bfd2got_entry_del (void *_entry)
1719 struct elf_m68k_bfd2got_entry *entry;
1721 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1723 BFD_ASSERT (entry->got != NULL);
1724 elf_m68k_clear_got (entry->got);
1727 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1728 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1729 memory should be allocated. */
1731 static struct elf_m68k_bfd2got_entry *
1732 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1734 enum elf_m68k_get_entry_howto howto,
1735 struct bfd_link_info *info)
1737 struct elf_m68k_bfd2got_entry entry_;
1739 struct elf_m68k_bfd2got_entry *entry;
1741 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1743 if (multi_got->bfd2got == NULL)
1744 /* This is the first GOT. Initialize bfd2got. */
1746 if (howto == SEARCH)
1749 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1750 elf_m68k_bfd2got_entry_eq,
1751 elf_m68k_bfd2got_entry_del);
1752 if (multi_got->bfd2got == NULL)
1754 bfd_set_error (bfd_error_no_memory);
1760 ptr = htab_find_slot (multi_got->bfd2got, &entry_,
1761 (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1765 if (howto == SEARCH)
1766 /* Entry not found. */
1769 if (howto == MUST_FIND)
1772 /* We're out of memory. */
1773 bfd_set_error (bfd_error_no_memory);
1778 /* Entry was not found. Create new one. */
1780 if (howto == MUST_FIND)
1783 BFD_ASSERT (howto != SEARCH);
1785 entry = ((struct elf_m68k_bfd2got_entry *)
1786 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1792 entry->got = elf_m68k_create_empty_got (info);
1793 if (entry->got == NULL)
1800 BFD_ASSERT (howto != MUST_CREATE);
1802 /* Return existing entry. */
1809 struct elf_m68k_can_merge_gots_arg
1811 /* A current_got that we constructing a DIFF against. */
1812 struct elf_m68k_got *big;
1814 /* GOT holding entries not present or that should be changed in
1816 struct elf_m68k_got *diff;
1818 /* Context where to allocate memory. */
1819 struct bfd_link_info *info;
1822 bfd_boolean error_p;
1825 /* Process a single entry from the small GOT to see if it should be added
1826 or updated in the big GOT. */
1829 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1831 const struct elf_m68k_got_entry *entry1;
1832 struct elf_m68k_can_merge_gots_arg *arg;
1833 const struct elf_m68k_got_entry *entry2;
1834 enum elf_m68k_reloc_type type;
1836 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1837 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1839 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1842 /* We found an existing entry. Check if we should update it. */
1844 type = elf_m68k_update_got_entry_type (arg->diff,
1848 if (type == entry2->key_.type)
1849 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1850 To skip creation of difference entry we use the type,
1851 which we won't see in GOT entries for sure. */
1855 /* We didn't find the entry. Add entry1 to DIFF. */
1857 BFD_ASSERT (entry1->key_.type != R_68K_max);
1859 type = elf_m68k_update_got_entry_type (arg->diff,
1860 R_68K_max, entry1->key_.type);
1862 if (entry1->key_.bfd != NULL)
1863 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1866 if (type != R_68K_max)
1867 /* Create an entry in DIFF. */
1869 struct elf_m68k_got_entry *entry;
1871 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1875 arg->error_p = TRUE;
1879 entry->key_.type = type;
1885 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1886 Construct DIFF GOT holding the entries which should be added or updated
1887 in BIG GOT to accumulate information from SMALL.
1888 INFO is the context where memory should be allocated. */
1891 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1892 const struct elf_m68k_got *small,
1893 struct bfd_link_info *info,
1894 struct elf_m68k_got *diff)
1896 struct elf_m68k_can_merge_gots_arg arg_;
1898 BFD_ASSERT (small->offset == (bfd_vma) -1);
1903 arg_.error_p = FALSE;
1904 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1911 /* Check for overflow. */
1912 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1913 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1914 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1915 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1921 struct elf_m68k_merge_gots_arg
1924 struct elf_m68k_got *big;
1926 /* Context where memory should be allocated. */
1927 struct bfd_link_info *info;
1930 bfd_boolean error_p;
1933 /* Process a single entry from DIFF got. Add or update corresponding
1934 entry in the BIG got. */
1937 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1939 const struct elf_m68k_got_entry *from;
1940 struct elf_m68k_merge_gots_arg *arg;
1941 struct elf_m68k_got_entry *to;
1943 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1944 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1946 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1950 arg->error_p = TRUE;
1954 BFD_ASSERT (to->u.s1.refcount == 0);
1955 /* All we need to merge is TYPE. */
1956 to->key_.type = from->key_.type;
1961 /* Merge data from DIFF to BIG. INFO is context where memory should be
1965 elf_m68k_merge_gots (struct elf_m68k_got *big,
1966 struct elf_m68k_got *diff,
1967 struct bfd_link_info *info)
1969 if (diff->entries != NULL)
1970 /* DIFF is not empty. Merge it into BIG GOT. */
1972 struct elf_m68k_merge_gots_arg arg_;
1974 /* Merge entries. */
1977 arg_.error_p = FALSE;
1978 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1982 /* Merge counters. */
1983 big->n_slots[R_8] += diff->n_slots[R_8];
1984 big->n_slots[R_16] += diff->n_slots[R_16];
1985 big->n_slots[R_32] += diff->n_slots[R_32];
1986 big->local_n_slots += diff->local_n_slots;
1989 /* DIFF is empty. */
1991 BFD_ASSERT (diff->n_slots[R_8] == 0);
1992 BFD_ASSERT (diff->n_slots[R_16] == 0);
1993 BFD_ASSERT (diff->n_slots[R_32] == 0);
1994 BFD_ASSERT (diff->local_n_slots == 0);
1997 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1998 || ((big->n_slots[R_8]
1999 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2000 && (big->n_slots[R_16]
2001 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2006 struct elf_m68k_finalize_got_offsets_arg
2008 /* Ranges of the offsets for GOT entries.
2009 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2010 R_x is R_8, R_16 and R_32. */
2014 /* Mapping from global symndx to global symbols.
2015 This is used to build lists of got entries for global symbols. */
2016 struct elf_m68k_link_hash_entry **symndx2h;
2018 bfd_vma n_ldm_entries;
2021 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2025 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2027 struct elf_m68k_got_entry *entry;
2028 struct elf_m68k_finalize_got_offsets_arg *arg;
2030 enum elf_m68k_got_offset_size got_offset_size;
2033 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2034 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2036 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2037 BFD_ASSERT (entry->u.s1.refcount == 0);
2039 /* Get GOT offset size for the entry . */
2040 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2042 /* Calculate entry size in bytes. */
2043 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2045 /* Check if we should switch to negative range of the offsets. */
2046 if (arg->offset1[got_offset_size] + entry_size
2047 > arg->offset2[got_offset_size])
2049 /* Verify that this is the only switch to negative range for
2050 got_offset_size. If this assertion fails, then we've miscalculated
2051 range for got_offset_size entries in
2052 elf_m68k_finalize_got_offsets. */
2053 BFD_ASSERT (arg->offset2[got_offset_size]
2054 != arg->offset2[-(int) got_offset_size - 1]);
2057 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2058 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2060 /* Verify that now we have enough room for the entry. */
2061 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2062 <= arg->offset2[got_offset_size]);
2065 /* Assign offset to entry. */
2066 entry->u.s2.offset = arg->offset1[got_offset_size];
2067 arg->offset1[got_offset_size] += entry_size;
2069 if (entry->key_.bfd == NULL)
2070 /* Hook up this entry into the list of got_entries of H. */
2072 struct elf_m68k_link_hash_entry *h;
2074 h = arg->symndx2h[entry->key_.symndx];
2077 entry->u.s2.next = h->glist;
2081 /* This should be the entry for TLS_LDM relocation then. */
2083 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2085 && entry->key_.symndx == 0);
2087 ++arg->n_ldm_entries;
2091 /* This entry is for local symbol. */
2092 entry->u.s2.next = NULL;
2097 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2098 should use negative offsets.
2099 Build list of GOT entries for global symbols along the way.
2100 SYMNDX2H is mapping from global symbol indices to actual
2102 Return offset at which next GOT should start. */
2105 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2106 bfd_boolean use_neg_got_offsets_p,
2107 struct elf_m68k_link_hash_entry **symndx2h,
2108 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2110 struct elf_m68k_finalize_got_offsets_arg arg_;
2111 bfd_vma offset1_[2 * R_LAST];
2112 bfd_vma offset2_[2 * R_LAST];
2114 bfd_vma start_offset;
2116 BFD_ASSERT (got->offset != (bfd_vma) -1);
2118 /* We set entry offsets relative to the .got section (and not the
2119 start of a particular GOT), so that we can use them in
2120 finish_dynamic_symbol without needing to know the GOT which they come
2123 /* Put offset1 in the middle of offset1_, same for offset2. */
2124 arg_.offset1 = offset1_ + R_LAST;
2125 arg_.offset2 = offset2_ + R_LAST;
2127 start_offset = got->offset;
2129 if (use_neg_got_offsets_p)
2130 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2131 i = -(int) R_32 - 1;
2133 /* Setup positives ranges for R_8, R_16 and R_32. */
2136 for (; i <= (int) R_32; ++i)
2141 /* Set beginning of the range of offsets I. */
2142 arg_.offset1[i] = start_offset;
2144 /* Calculate number of slots that require I offsets. */
2145 j = (i >= 0) ? i : -i - 1;
2146 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2147 n = got->n_slots[j] - n;
2149 if (use_neg_got_offsets_p && n != 0)
2152 /* We first fill the positive side of the range, so we might
2153 end up with one empty slot at that side when we can't fit
2154 whole 2-slot entry. Account for that at negative side of
2155 the interval with one additional entry. */
2158 /* When the number of slots is odd, make positive side of the
2159 range one entry bigger. */
2163 /* N is the number of slots that require I offsets.
2164 Calculate length of the range for I offsets. */
2167 /* Set end of the range. */
2168 arg_.offset2[i] = start_offset + n;
2170 start_offset = arg_.offset2[i];
2173 if (!use_neg_got_offsets_p)
2174 /* Make sure that if we try to switch to negative offsets in
2175 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2177 for (i = R_8; i <= R_32; ++i)
2178 arg_.offset2[-i - 1] = arg_.offset2[i];
2180 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2181 beginning of GOT depending on use_neg_got_offsets_p. */
2182 got->offset = arg_.offset1[R_8];
2184 arg_.symndx2h = symndx2h;
2185 arg_.n_ldm_entries = 0;
2187 /* Assign offsets. */
2188 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2190 /* Check offset ranges we have actually assigned. */
2191 for (i = (int) R_8; i <= (int) R_32; ++i)
2192 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2194 *final_offset = start_offset;
2195 *n_ldm_entries = arg_.n_ldm_entries;
2198 struct elf_m68k_partition_multi_got_arg
2200 /* The GOT we are adding entries to. Aka big got. */
2201 struct elf_m68k_got *current_got;
2203 /* Offset to assign the next CURRENT_GOT. */
2206 /* Context where memory should be allocated. */
2207 struct bfd_link_info *info;
2209 /* Total number of slots in the .got section.
2210 This is used to calculate size of the .got and .rela.got sections. */
2213 /* Difference in numbers of allocated slots in the .got section
2214 and necessary relocations in the .rela.got section.
2215 This is used to calculate size of the .rela.got section. */
2216 bfd_vma slots_relas_diff;
2219 bfd_boolean error_p;
2221 /* Mapping from global symndx to global symbols.
2222 This is used to build lists of got entries for global symbols. */
2223 struct elf_m68k_link_hash_entry **symndx2h;
2227 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2229 bfd_vma n_ldm_entries;
2231 elf_m68k_finalize_got_offsets (arg->current_got,
2232 (elf_m68k_hash_table (arg->info)
2233 ->use_neg_got_offsets_p),
2235 &arg->offset, &n_ldm_entries);
2237 arg->n_slots += arg->current_got->n_slots[R_32];
2239 if (!bfd_link_pic (arg->info))
2240 /* If we are generating a shared object, we need to
2241 output a R_68K_RELATIVE reloc so that the dynamic
2242 linker can adjust this GOT entry. Overwise we
2243 don't need space in .rela.got for local symbols. */
2244 arg->slots_relas_diff += arg->current_got->local_n_slots;
2246 /* @LDM relocations require a 2-slot GOT entry, but only
2247 one relocation. Account for that. */
2248 arg->slots_relas_diff += n_ldm_entries;
2250 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2254 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2255 or start a new CURRENT_GOT. */
2258 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2260 struct elf_m68k_bfd2got_entry *entry;
2261 struct elf_m68k_partition_multi_got_arg *arg;
2262 struct elf_m68k_got *got;
2263 struct elf_m68k_got diff_;
2264 struct elf_m68k_got *diff;
2266 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2267 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2270 BFD_ASSERT (got != NULL);
2271 BFD_ASSERT (got->offset == (bfd_vma) -1);
2275 if (arg->current_got != NULL)
2276 /* Construct diff. */
2279 elf_m68k_init_got (diff);
2281 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2283 if (diff->offset == 0)
2284 /* Offset set to 0 in the diff_ indicates an error. */
2286 arg->error_p = TRUE;
2290 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2292 elf_m68k_clear_got (diff);
2293 /* Schedule to finish up current_got and start new one. */
2297 Merge GOTs no matter what. If big GOT overflows,
2298 we'll fail in relocate_section due to truncated relocations.
2300 ??? May be fail earlier? E.g., in can_merge_gots. */
2304 /* Diff of got against empty current_got is got itself. */
2306 /* Create empty current_got to put subsequent GOTs to. */
2307 arg->current_got = elf_m68k_create_empty_got (arg->info);
2308 if (arg->current_got == NULL)
2310 arg->error_p = TRUE;
2314 arg->current_got->offset = arg->offset;
2321 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2323 arg->error_p = TRUE;
2327 /* Now we can free GOT. */
2328 elf_m68k_clear_got (got);
2330 entry->got = arg->current_got;
2334 /* Finish up current_got. */
2335 elf_m68k_partition_multi_got_2 (arg);
2337 /* Schedule to start a new current_got. */
2338 arg->current_got = NULL;
2341 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2343 BFD_ASSERT (arg->error_p);
2350 elf_m68k_clear_got (diff);
2352 return !arg->error_p;
2355 /* Helper function to build symndx2h mapping. */
2358 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2361 struct elf_m68k_link_hash_entry *h;
2363 h = elf_m68k_hash_entry (_h);
2365 if (h->got_entry_key != 0)
2366 /* H has at least one entry in the GOT. */
2368 struct elf_m68k_partition_multi_got_arg *arg;
2370 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2372 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2373 arg->symndx2h[h->got_entry_key] = h;
2379 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2380 lists of GOT entries for global symbols.
2381 Calculate sizes of .got and .rela.got sections. */
2384 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2386 struct elf_m68k_multi_got *multi_got;
2387 struct elf_m68k_partition_multi_got_arg arg_;
2389 multi_got = elf_m68k_multi_got (info);
2391 arg_.current_got = NULL;
2395 arg_.slots_relas_diff = 0;
2396 arg_.error_p = FALSE;
2398 if (multi_got->bfd2got != NULL)
2400 /* Initialize symndx2h mapping. */
2402 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2403 * sizeof (*arg_.symndx2h));
2404 if (arg_.symndx2h == NULL)
2407 elf_link_hash_traverse (elf_hash_table (info),
2408 elf_m68k_init_symndx2h_1, &arg_);
2412 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2416 free (arg_.symndx2h);
2417 arg_.symndx2h = NULL;
2422 /* Finish up last current_got. */
2423 elf_m68k_partition_multi_got_2 (&arg_);
2425 free (arg_.symndx2h);
2428 if (elf_hash_table (info)->dynobj != NULL)
2429 /* Set sizes of .got and .rela.got sections. */
2433 s = elf_hash_table (info)->sgot;
2435 s->size = arg_.offset;
2437 BFD_ASSERT (arg_.offset == 0);
2439 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2440 arg_.n_slots -= arg_.slots_relas_diff;
2442 s = elf_hash_table (info)->srelgot;
2444 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2446 BFD_ASSERT (arg_.n_slots == 0);
2449 BFD_ASSERT (multi_got->bfd2got == NULL);
2454 /* Copy any information related to dynamic linking from a pre-existing
2455 symbol to a newly created symbol. Also called to copy flags and
2456 other back-end info to a weakdef, in which case the symbol is not
2457 newly created and plt/got refcounts and dynamic indices should not
2461 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2462 struct elf_link_hash_entry *_dir,
2463 struct elf_link_hash_entry *_ind)
2465 struct elf_m68k_link_hash_entry *dir;
2466 struct elf_m68k_link_hash_entry *ind;
2468 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2470 if (_ind->root.type != bfd_link_hash_indirect)
2473 dir = elf_m68k_hash_entry (_dir);
2474 ind = elf_m68k_hash_entry (_ind);
2476 /* Any absolute non-dynamic relocations against an indirect or weak
2477 definition will be against the target symbol. */
2478 _dir->non_got_ref |= _ind->non_got_ref;
2480 /* We might have a direct symbol already having entries in the GOTs.
2481 Update its key only in case indirect symbol has GOT entries and
2482 assert that both indirect and direct symbols don't have GOT entries
2483 at the same time. */
2484 if (ind->got_entry_key != 0)
2486 BFD_ASSERT (dir->got_entry_key == 0);
2487 /* Assert that GOTs aren't partioned yet. */
2488 BFD_ASSERT (ind->glist == NULL);
2490 dir->got_entry_key = ind->got_entry_key;
2491 ind->got_entry_key = 0;
2495 /* Look through the relocs for a section during the first phase, and
2496 allocate space in the global offset table or procedure linkage
2500 elf_m68k_check_relocs (bfd *abfd,
2501 struct bfd_link_info *info,
2503 const Elf_Internal_Rela *relocs)
2506 Elf_Internal_Shdr *symtab_hdr;
2507 struct elf_link_hash_entry **sym_hashes;
2508 const Elf_Internal_Rela *rel;
2509 const Elf_Internal_Rela *rel_end;
2511 struct elf_m68k_got *got;
2513 if (bfd_link_relocatable (info))
2516 dynobj = elf_hash_table (info)->dynobj;
2517 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2518 sym_hashes = elf_sym_hashes (abfd);
2524 rel_end = relocs + sec->reloc_count;
2525 for (rel = relocs; rel < rel_end; rel++)
2527 unsigned long r_symndx;
2528 struct elf_link_hash_entry *h;
2530 r_symndx = ELF32_R_SYM (rel->r_info);
2532 if (r_symndx < symtab_hdr->sh_info)
2536 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2537 while (h->root.type == bfd_link_hash_indirect
2538 || h->root.type == bfd_link_hash_warning)
2539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2542 switch (ELF32_R_TYPE (rel->r_info))
2548 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2552 /* Relative GOT relocations. */
2558 /* TLS relocations. */
2560 case R_68K_TLS_GD16:
2561 case R_68K_TLS_GD32:
2562 case R_68K_TLS_LDM8:
2563 case R_68K_TLS_LDM16:
2564 case R_68K_TLS_LDM32:
2566 case R_68K_TLS_IE16:
2567 case R_68K_TLS_IE32:
2569 case R_68K_TLS_TPREL32:
2570 case R_68K_TLS_DTPREL32:
2572 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2573 && bfd_link_pic (info))
2574 /* Do the special chorus for libraries with static TLS. */
2575 info->flags |= DF_STATIC_TLS;
2577 /* This symbol requires a global offset table entry. */
2581 /* Create the .got section. */
2582 elf_hash_table (info)->dynobj = dynobj = abfd;
2583 if (!_bfd_elf_create_got_section (dynobj, info))
2589 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2592 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2593 abfd, FIND_OR_CREATE, info);
2594 if (bfd2got_entry == NULL)
2597 got = bfd2got_entry->got;
2598 BFD_ASSERT (got != NULL);
2602 struct elf_m68k_got_entry *got_entry;
2604 /* Add entry to got. */
2605 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2606 ELF32_R_TYPE (rel->r_info),
2608 if (got_entry == NULL)
2611 if (got_entry->u.s1.refcount == 1)
2613 /* Make sure this symbol is output as a dynamic symbol. */
2616 && !h->forced_local)
2618 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2629 /* This symbol requires a procedure linkage table entry. We
2630 actually build the entry in adjust_dynamic_symbol,
2631 because this might be a case of linking PIC code which is
2632 never referenced by a dynamic object, in which case we
2633 don't need to generate a procedure linkage table entry
2636 /* If this is a local symbol, we resolve it directly without
2637 creating a procedure linkage table entry. */
2648 /* This symbol requires a procedure linkage table entry. */
2652 /* It does not make sense to have this relocation for a
2653 local symbol. FIXME: does it? How to handle it if
2654 it does make sense? */
2655 bfd_set_error (bfd_error_bad_value);
2659 /* Make sure this symbol is output as a dynamic symbol. */
2660 if (h->dynindx == -1
2661 && !h->forced_local)
2663 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2674 /* If we are creating a shared library and this is not a local
2675 symbol, we need to copy the reloc into the shared library.
2676 However when linking with -Bsymbolic and this is a global
2677 symbol which is defined in an object we are including in the
2678 link (i.e., DEF_REGULAR is set), then we can resolve the
2679 reloc directly. At this point we have not seen all the input
2680 files, so it is possible that DEF_REGULAR is not set now but
2681 will be set later (it is never cleared). We account for that
2682 possibility below by storing information in the
2683 pcrel_relocs_copied field of the hash table entry. */
2684 if (!(bfd_link_pic (info)
2685 && (sec->flags & SEC_ALLOC) != 0
2687 && (!SYMBOLIC_BIND (info, h)
2688 || h->root.type == bfd_link_hash_defweak
2689 || !h->def_regular)))
2693 /* Make sure a plt entry is created for this symbol if
2694 it turns out to be a function defined by a dynamic
2704 /* We don't need to handle relocs into sections not going into
2705 the "real" output. */
2706 if ((sec->flags & SEC_ALLOC) == 0)
2711 /* Make sure a plt entry is created for this symbol if it
2712 turns out to be a function defined by a dynamic object. */
2715 if (bfd_link_executable (info))
2716 /* This symbol needs a non-GOT reference. */
2720 /* If we are creating a shared library, we need to copy the
2721 reloc into the shared library. */
2722 if (bfd_link_pic (info)
2724 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2726 /* When creating a shared object, we must copy these
2727 reloc types into the output file. We create a reloc
2728 section in dynobj and make room for this reloc. */
2731 sreloc = _bfd_elf_make_dynamic_reloc_section
2732 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2738 if (sec->flags & SEC_READONLY
2739 /* Don't set DF_TEXTREL yet for PC relative
2740 relocations, they might be discarded later. */
2741 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2742 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2743 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2744 info->flags |= DF_TEXTREL;
2746 sreloc->size += sizeof (Elf32_External_Rela);
2748 /* We count the number of PC relative relocations we have
2749 entered for this symbol, so that we can discard them
2750 again if, in the -Bsymbolic case, the symbol is later
2751 defined by a regular object, or, in the normal shared
2752 case, the symbol is forced to be local. Note that this
2753 function is only called if we are using an m68kelf linker
2754 hash table, which means that h is really a pointer to an
2755 elf_m68k_link_hash_entry. */
2756 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2757 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2758 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2760 struct elf_m68k_pcrel_relocs_copied *p;
2761 struct elf_m68k_pcrel_relocs_copied **head;
2765 struct elf_m68k_link_hash_entry *eh
2766 = elf_m68k_hash_entry (h);
2767 head = &eh->pcrel_relocs_copied;
2773 Elf_Internal_Sym *isym;
2775 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2780 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2784 vpp = &elf_section_data (s)->local_dynrel;
2785 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2788 for (p = *head; p != NULL; p = p->next)
2789 if (p->section == sreloc)
2794 p = ((struct elf_m68k_pcrel_relocs_copied *)
2795 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2800 p->section = sreloc;
2810 /* This relocation describes the C++ object vtable hierarchy.
2811 Reconstruct it for later use during GC. */
2812 case R_68K_GNU_VTINHERIT:
2813 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2817 /* This relocation describes which C++ vtable entries are actually
2818 used. Record for later use during GC. */
2819 case R_68K_GNU_VTENTRY:
2820 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2832 /* Return the section that should be marked against GC for a given
2836 elf_m68k_gc_mark_hook (asection *sec,
2837 struct bfd_link_info *info,
2838 Elf_Internal_Rela *rel,
2839 struct elf_link_hash_entry *h,
2840 Elf_Internal_Sym *sym)
2843 switch (ELF32_R_TYPE (rel->r_info))
2845 case R_68K_GNU_VTINHERIT:
2846 case R_68K_GNU_VTENTRY:
2850 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2853 /* Return the type of PLT associated with OUTPUT_BFD. */
2855 static const struct elf_m68k_plt_info *
2856 elf_m68k_get_plt_info (bfd *output_bfd)
2858 unsigned int features;
2860 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2861 if (features & cpu32)
2862 return &elf_cpu32_plt_info;
2863 if (features & mcfisa_b)
2864 return &elf_isab_plt_info;
2865 if (features & mcfisa_c)
2866 return &elf_isac_plt_info;
2867 return &elf_m68k_plt_info;
2870 /* This function is called after all the input files have been read,
2871 and the input sections have been assigned to output sections.
2872 It's a convenient place to determine the PLT style. */
2875 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2877 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2879 if (!elf_m68k_partition_multi_got (info))
2882 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2886 /* Adjust a symbol defined by a dynamic object and referenced by a
2887 regular object. The current definition is in some section of the
2888 dynamic object, but we're not including those sections. We have to
2889 change the definition to something the rest of the link can
2893 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2894 struct elf_link_hash_entry *h)
2896 struct elf_m68k_link_hash_table *htab;
2900 htab = elf_m68k_hash_table (info);
2901 dynobj = htab->root.dynobj;
2903 /* Make sure we know what is going on here. */
2904 BFD_ASSERT (dynobj != NULL
2909 && !h->def_regular)));
2911 /* If this is a function, put it in the procedure linkage table. We
2912 will fill in the contents of the procedure linkage table later,
2913 when we know the address of the .got section. */
2914 if (h->type == STT_FUNC
2917 if ((h->plt.refcount <= 0
2918 || SYMBOL_CALLS_LOCAL (info, h)
2919 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2920 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2921 && h->root.type == bfd_link_hash_undefweak))
2922 /* We must always create the plt entry if it was referenced
2923 by a PLTxxO relocation. In this case we already recorded
2924 it as a dynamic symbol. */
2925 && h->dynindx == -1)
2927 /* This case can occur if we saw a PLTxx reloc in an input
2928 file, but the symbol was never referred to by a dynamic
2929 object, or if all references were garbage collected. In
2930 such a case, we don't actually need to build a procedure
2931 linkage table, and we can just do a PCxx reloc instead. */
2932 h->plt.offset = (bfd_vma) -1;
2937 /* Make sure this symbol is output as a dynamic symbol. */
2938 if (h->dynindx == -1
2939 && !h->forced_local)
2941 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2945 s = htab->root.splt;
2946 BFD_ASSERT (s != NULL);
2948 /* If this is the first .plt entry, make room for the special
2951 s->size = htab->plt_info->size;
2953 /* If this symbol is not defined in a regular file, and we are
2954 not generating a shared library, then set the symbol to this
2955 location in the .plt. This is required to make function
2956 pointers compare as equal between the normal executable and
2957 the shared library. */
2958 if (!bfd_link_pic (info)
2961 h->root.u.def.section = s;
2962 h->root.u.def.value = s->size;
2965 h->plt.offset = s->size;
2967 /* Make room for this entry. */
2968 s->size += htab->plt_info->size;
2970 /* We also need to make an entry in the .got.plt section, which
2971 will be placed in the .got section by the linker script. */
2972 s = htab->root.sgotplt;
2973 BFD_ASSERT (s != NULL);
2976 /* We also need to make an entry in the .rela.plt section. */
2977 s = htab->root.srelplt;
2978 BFD_ASSERT (s != NULL);
2979 s->size += sizeof (Elf32_External_Rela);
2984 /* Reinitialize the plt offset now that it is not used as a reference
2986 h->plt.offset = (bfd_vma) -1;
2988 /* If this is a weak symbol, and there is a real definition, the
2989 processor independent code will have arranged for us to see the
2990 real definition first, and we can just use the same value. */
2991 if (h->is_weakalias)
2993 struct elf_link_hash_entry *def = weakdef (h);
2994 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2995 h->root.u.def.section = def->root.u.def.section;
2996 h->root.u.def.value = def->root.u.def.value;
3000 /* This is a reference to a symbol defined by a dynamic object which
3001 is not a function. */
3003 /* If we are creating a shared library, we must presume that the
3004 only references to the symbol are via the global offset table.
3005 For such cases we need not do anything here; the relocations will
3006 be handled correctly by relocate_section. */
3007 if (bfd_link_pic (info))
3010 /* If there are no references to this symbol that do not use the
3011 GOT, we don't need to generate a copy reloc. */
3012 if (!h->non_got_ref)
3015 /* We must allocate the symbol in our .dynbss section, which will
3016 become part of the .bss section of the executable. There will be
3017 an entry for this symbol in the .dynsym section. The dynamic
3018 object will contain position independent code, so all references
3019 from the dynamic object to this symbol will go through the global
3020 offset table. The dynamic linker will use the .dynsym entry to
3021 determine the address it must put in the global offset table, so
3022 both the dynamic object and the regular object will refer to the
3023 same memory location for the variable. */
3025 s = bfd_get_linker_section (dynobj, ".dynbss");
3026 BFD_ASSERT (s != NULL);
3028 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3029 copy the initial value out of the dynamic object and into the
3030 runtime process image. We need to remember the offset into the
3031 .rela.bss section we are going to use. */
3032 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3036 srel = bfd_get_linker_section (dynobj, ".rela.bss");
3037 BFD_ASSERT (srel != NULL);
3038 srel->size += sizeof (Elf32_External_Rela);
3042 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3045 /* Set the sizes of the dynamic sections. */
3048 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3049 struct bfd_link_info *info)
3056 dynobj = elf_hash_table (info)->dynobj;
3057 BFD_ASSERT (dynobj != NULL);
3059 if (elf_hash_table (info)->dynamic_sections_created)
3061 /* Set the contents of the .interp section to the interpreter. */
3062 if (bfd_link_executable (info) && !info->nointerp)
3064 s = bfd_get_linker_section (dynobj, ".interp");
3065 BFD_ASSERT (s != NULL);
3066 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3067 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3072 /* We may have created entries in the .rela.got section.
3073 However, if we are not creating the dynamic sections, we will
3074 not actually use these entries. Reset the size of .rela.got,
3075 which will cause it to get stripped from the output file
3077 s = elf_hash_table (info)->srelgot;
3082 /* If this is a -Bsymbolic shared link, then we need to discard all
3083 PC relative relocs against symbols defined in a regular object.
3084 For the normal shared case we discard the PC relative relocs
3085 against symbols that have become local due to visibility changes.
3086 We allocated space for them in the check_relocs routine, but we
3087 will not fill them in in the relocate_section routine. */
3088 if (bfd_link_pic (info))
3089 elf_link_hash_traverse (elf_hash_table (info),
3090 elf_m68k_discard_copies,
3093 /* The check_relocs and adjust_dynamic_symbol entry points have
3094 determined the sizes of the various dynamic sections. Allocate
3098 for (s = dynobj->sections; s != NULL; s = s->next)
3102 if ((s->flags & SEC_LINKER_CREATED) == 0)
3105 /* It's OK to base decisions on the section name, because none
3106 of the dynobj section names depend upon the input files. */
3107 name = bfd_get_section_name (dynobj, s);
3109 if (strcmp (name, ".plt") == 0)
3111 /* Remember whether there is a PLT. */
3114 else if (CONST_STRNEQ (name, ".rela"))
3120 /* We use the reloc_count field as a counter if we need
3121 to copy relocs into the output file. */
3125 else if (! CONST_STRNEQ (name, ".got")
3126 && strcmp (name, ".dynbss") != 0)
3128 /* It's not one of our sections, so don't allocate space. */
3134 /* If we don't need this section, strip it from the
3135 output file. This is mostly to handle .rela.bss and
3136 .rela.plt. We must create both sections in
3137 create_dynamic_sections, because they must be created
3138 before the linker maps input sections to output
3139 sections. The linker does that before
3140 adjust_dynamic_symbol is called, and it is that
3141 function which decides whether anything needs to go
3142 into these sections. */
3143 s->flags |= SEC_EXCLUDE;
3147 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3150 /* Allocate memory for the section contents. */
3151 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3152 Unused entries should be reclaimed before the section's contents
3153 are written out, but at the moment this does not happen. Thus in
3154 order to prevent writing out garbage, we initialise the section's
3155 contents to zero. */
3156 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3157 if (s->contents == NULL)
3161 if (elf_hash_table (info)->dynamic_sections_created)
3163 /* Add some entries to the .dynamic section. We fill in the
3164 values later, in elf_m68k_finish_dynamic_sections, but we
3165 must add the entries now so that we get the correct size for
3166 the .dynamic section. The DT_DEBUG entry is filled in by the
3167 dynamic linker and used by the debugger. */
3168 #define add_dynamic_entry(TAG, VAL) \
3169 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3171 if (bfd_link_executable (info))
3173 if (!add_dynamic_entry (DT_DEBUG, 0))
3179 if (!add_dynamic_entry (DT_PLTGOT, 0)
3180 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3181 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3182 || !add_dynamic_entry (DT_JMPREL, 0))
3188 if (!add_dynamic_entry (DT_RELA, 0)
3189 || !add_dynamic_entry (DT_RELASZ, 0)
3190 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3194 if ((info->flags & DF_TEXTREL) != 0)
3196 if (!add_dynamic_entry (DT_TEXTREL, 0))
3200 #undef add_dynamic_entry
3205 /* This function is called via elf_link_hash_traverse if we are
3206 creating a shared object. In the -Bsymbolic case it discards the
3207 space allocated to copy PC relative relocs against symbols which
3208 are defined in regular objects. For the normal shared case, it
3209 discards space for pc-relative relocs that have become local due to
3210 symbol visibility changes. We allocated space for them in the
3211 check_relocs routine, but we won't fill them in in the
3212 relocate_section routine.
3214 We also check whether any of the remaining relocations apply
3215 against a readonly section, and set the DF_TEXTREL flag in this
3219 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3222 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3223 struct elf_m68k_pcrel_relocs_copied *s;
3225 if (!SYMBOL_CALLS_LOCAL (info, h))
3227 if ((info->flags & DF_TEXTREL) == 0)
3229 /* Look for relocations against read-only sections. */
3230 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3233 if ((s->section->flags & SEC_READONLY) != 0)
3235 info->flags |= DF_TEXTREL;
3240 /* Make sure undefined weak symbols are output as a dynamic symbol
3243 && h->root.type == bfd_link_hash_undefweak
3244 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3246 && !h->forced_local)
3248 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3255 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3258 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3264 /* Install relocation RELA. */
3267 elf_m68k_install_rela (bfd *output_bfd,
3269 Elf_Internal_Rela *rela)
3273 loc = srela->contents;
3274 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3275 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3278 /* Find the base offsets for thread-local storage in this object,
3279 for GD/LD and IE/LE respectively. */
3281 #define DTP_OFFSET 0x8000
3282 #define TP_OFFSET 0x7000
3285 dtpoff_base (struct bfd_link_info *info)
3287 /* If tls_sec is NULL, we should have signalled an error already. */
3288 if (elf_hash_table (info)->tls_sec == NULL)
3290 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3294 tpoff_base (struct bfd_link_info *info)
3296 /* If tls_sec is NULL, we should have signalled an error already. */
3297 if (elf_hash_table (info)->tls_sec == NULL)
3299 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3302 /* Output necessary relocation to handle a symbol during static link.
3303 This function is called from elf_m68k_relocate_section. */
3306 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3308 enum elf_m68k_reloc_type r_type,
3310 bfd_vma got_entry_offset,
3313 switch (elf_m68k_reloc_got_type (r_type))
3316 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3319 case R_68K_TLS_GD32:
3320 /* We know the offset within the module,
3321 put it into the second GOT slot. */
3322 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3323 sgot->contents + got_entry_offset + 4);
3326 case R_68K_TLS_LDM32:
3327 /* Mark it as belonging to module 1, the executable. */
3328 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3331 case R_68K_TLS_IE32:
3332 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3333 sgot->contents + got_entry_offset);
3341 /* Output necessary relocation to handle a local symbol
3342 during dynamic link.
3343 This function is called either from elf_m68k_relocate_section
3344 or from elf_m68k_finish_dynamic_symbol. */
3347 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3349 enum elf_m68k_reloc_type r_type,
3351 bfd_vma got_entry_offset,
3355 Elf_Internal_Rela outrel;
3357 switch (elf_m68k_reloc_got_type (r_type))
3360 /* Emit RELATIVE relocation to initialize GOT slot
3362 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3363 outrel.r_addend = relocation;
3366 case R_68K_TLS_GD32:
3367 /* We know the offset within the module,
3368 put it into the second GOT slot. */
3369 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3370 sgot->contents + got_entry_offset + 4);
3373 case R_68K_TLS_LDM32:
3374 /* We don't know the module number,
3375 create a relocation for it. */
3376 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3377 outrel.r_addend = 0;
3380 case R_68K_TLS_IE32:
3381 /* Emit TPREL relocation to initialize GOT slot
3383 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3384 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3391 /* Offset of the GOT entry. */
3392 outrel.r_offset = (sgot->output_section->vma
3393 + sgot->output_offset
3394 + got_entry_offset);
3396 /* Install one of the above relocations. */
3397 elf_m68k_install_rela (output_bfd, srela, &outrel);
3399 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3402 /* Relocate an M68K ELF section. */
3405 elf_m68k_relocate_section (bfd *output_bfd,
3406 struct bfd_link_info *info,
3408 asection *input_section,
3410 Elf_Internal_Rela *relocs,
3411 Elf_Internal_Sym *local_syms,
3412 asection **local_sections)
3414 Elf_Internal_Shdr *symtab_hdr;
3415 struct elf_link_hash_entry **sym_hashes;
3420 struct elf_m68k_got *got;
3421 Elf_Internal_Rela *rel;
3422 Elf_Internal_Rela *relend;
3424 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3425 sym_hashes = elf_sym_hashes (input_bfd);
3435 relend = relocs + input_section->reloc_count;
3436 for (; rel < relend; rel++)
3439 reloc_howto_type *howto;
3440 unsigned long r_symndx;
3441 struct elf_link_hash_entry *h;
3442 Elf_Internal_Sym *sym;
3445 bfd_boolean unresolved_reloc;
3446 bfd_reloc_status_type r;
3447 bfd_boolean resolved_to_zero;
3449 r_type = ELF32_R_TYPE (rel->r_info);
3450 if (r_type < 0 || r_type >= (int) R_68K_max)
3452 bfd_set_error (bfd_error_bad_value);
3455 howto = howto_table + r_type;
3457 r_symndx = ELF32_R_SYM (rel->r_info);
3462 unresolved_reloc = FALSE;
3464 if (r_symndx < symtab_hdr->sh_info)
3466 sym = local_syms + r_symndx;
3467 sec = local_sections[r_symndx];
3468 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3472 bfd_boolean warned, ignored;
3474 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3475 r_symndx, symtab_hdr, sym_hashes,
3477 unresolved_reloc, warned, ignored);
3480 if (sec != NULL && discarded_section (sec))
3481 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3482 rel, 1, relend, howto, 0, contents);
3484 if (bfd_link_relocatable (info))
3487 resolved_to_zero = (h != NULL
3488 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3495 /* Relocation is to the address of the entry for this symbol
3496 in the global offset table. */
3498 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3500 if (elf_m68k_hash_table (info)->local_gp_p)
3502 bfd_vma sgot_output_offset;
3505 sgot = elf_hash_table (info)->sgot;
3508 sgot_output_offset = sgot->output_offset;
3510 /* In this case we have a reference to
3511 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3513 ??? Issue a warning? */
3514 sgot_output_offset = 0;
3518 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3521 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3522 input_bfd, SEARCH, NULL);
3524 if (bfd2got_entry != NULL)
3526 got = bfd2got_entry->got;
3527 BFD_ASSERT (got != NULL);
3529 got_offset = got->offset;
3532 /* In this case we have a reference to
3533 _GLOBAL_OFFSET_TABLE_, but no other references
3534 accessing any GOT entries.
3535 ??? Issue a warning? */
3539 got_offset = got->offset;
3541 /* Adjust GOT pointer to point to the GOT
3542 assigned to input_bfd. */
3543 rel->r_addend += sgot_output_offset + got_offset;
3546 BFD_ASSERT (got == NULL || got->offset == 0);
3555 case R_68K_TLS_LDM32:
3556 case R_68K_TLS_LDM16:
3557 case R_68K_TLS_LDM8:
3560 case R_68K_TLS_GD16:
3561 case R_68K_TLS_GD32:
3564 case R_68K_TLS_IE16:
3565 case R_68K_TLS_IE32:
3567 /* Relocation is the offset of the entry for this symbol in
3568 the global offset table. */
3571 struct elf_m68k_got_entry_key key_;
3575 sgot = elf_hash_table (info)->sgot;
3576 BFD_ASSERT (sgot != NULL);
3579 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3580 input_bfd, MUST_FIND,
3583 /* Get GOT offset for this symbol. */
3584 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3586 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3590 /* The offset must always be a multiple of 4. We use
3591 the least significant bit to record whether we have
3592 already generated the necessary reloc. */
3598 /* @TLSLDM relocations are bounded to the module, in
3599 which the symbol is defined -- not to the symbol
3601 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3605 dyn = elf_hash_table (info)->dynamic_sections_created;
3606 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3607 bfd_link_pic (info),
3609 || (bfd_link_pic (info)
3610 && SYMBOL_REFERENCES_LOCAL (info, h))
3611 || ((ELF_ST_VISIBILITY (h->other)
3612 || resolved_to_zero)
3613 && h->root.type == bfd_link_hash_undefweak))
3615 /* This is actually a static link, or it is a
3616 -Bsymbolic link and the symbol is defined
3617 locally, or the symbol was forced to be local
3618 because of a version file. We must initialize
3619 this entry in the global offset table. Since
3620 the offset must always be a multiple of 4, we
3621 use the least significant bit to record whether
3622 we have initialized it already.
3624 When doing a dynamic link, we create a .rela.got
3625 relocation entry to initialize the value. This
3626 is done in the finish_dynamic_symbol routine. */
3628 elf_m68k_init_got_entry_static (info,
3638 unresolved_reloc = FALSE;
3640 else if (bfd_link_pic (info)) /* && h == NULL */
3641 /* Process local symbol during dynamic link. */
3643 srela = elf_hash_table (info)->srelgot;
3644 BFD_ASSERT (srela != NULL);
3646 elf_m68k_init_got_entry_local_shared (info,
3656 else /* h == NULL && !bfd_link_pic (info) */
3658 elf_m68k_init_got_entry_static (info,
3669 /* We don't use elf_m68k_reloc_got_type in the condition below
3670 because this is the only place where difference between
3671 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3672 if (r_type == R_68K_GOT32O
3673 || r_type == R_68K_GOT16O
3674 || r_type == R_68K_GOT8O
3675 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3676 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3677 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3679 /* GOT pointer is adjusted to point to the start/middle
3680 of local GOT. Adjust the offset accordingly. */
3681 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3682 || off >= got->offset);
3684 if (elf_m68k_hash_table (info)->local_gp_p)
3685 relocation = off - got->offset;
3688 BFD_ASSERT (got->offset == 0);
3689 relocation = sgot->output_offset + off;
3692 /* This relocation does not use the addend. */
3696 relocation = (sgot->output_section->vma + sgot->output_offset
3701 case R_68K_TLS_LDO32:
3702 case R_68K_TLS_LDO16:
3703 case R_68K_TLS_LDO8:
3704 relocation -= dtpoff_base (info);
3707 case R_68K_TLS_LE32:
3708 case R_68K_TLS_LE16:
3710 if (bfd_link_dll (info))
3713 /* xgettext:c-format */
3714 (_("%pB(%pA+%#" PRIx64 "): "
3715 "%s relocation not permitted in shared object"),
3716 input_bfd, input_section, (uint64_t) rel->r_offset,
3722 relocation -= tpoff_base (info);
3729 /* Relocation is to the entry for this symbol in the
3730 procedure linkage table. */
3732 /* Resolve a PLTxx reloc against a local symbol directly,
3733 without using the procedure linkage table. */
3737 if (h->plt.offset == (bfd_vma) -1
3738 || !elf_hash_table (info)->dynamic_sections_created)
3740 /* We didn't make a PLT entry for this symbol. This
3741 happens when statically linking PIC code, or when
3742 using -Bsymbolic. */
3746 splt = elf_hash_table (info)->splt;
3747 BFD_ASSERT (splt != NULL);
3749 relocation = (splt->output_section->vma
3750 + splt->output_offset
3752 unresolved_reloc = FALSE;
3758 /* Relocation is the offset of the entry for this symbol in
3759 the procedure linkage table. */
3760 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3762 splt = elf_hash_table (info)->splt;
3763 BFD_ASSERT (splt != NULL);
3765 relocation = h->plt.offset;
3766 unresolved_reloc = FALSE;
3768 /* This relocation does not use the addend. */
3779 if (bfd_link_pic (info)
3780 && r_symndx != STN_UNDEF
3781 && (input_section->flags & SEC_ALLOC) != 0
3783 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3784 && !resolved_to_zero)
3785 || h->root.type != bfd_link_hash_undefweak)
3786 && ((r_type != R_68K_PC8
3787 && r_type != R_68K_PC16
3788 && r_type != R_68K_PC32)
3789 || !SYMBOL_CALLS_LOCAL (info, h)))
3791 Elf_Internal_Rela outrel;
3793 bfd_boolean skip, relocate;
3795 /* When generating a shared object, these relocations
3796 are copied into the output file to be resolved at run
3803 _bfd_elf_section_offset (output_bfd, info, input_section,
3805 if (outrel.r_offset == (bfd_vma) -1)
3807 else if (outrel.r_offset == (bfd_vma) -2)
3808 skip = TRUE, relocate = TRUE;
3809 outrel.r_offset += (input_section->output_section->vma
3810 + input_section->output_offset);
3813 memset (&outrel, 0, sizeof outrel);
3816 && (r_type == R_68K_PC8
3817 || r_type == R_68K_PC16
3818 || r_type == R_68K_PC32
3819 || !bfd_link_pic (info)
3820 || !SYMBOLIC_BIND (info, h)
3821 || !h->def_regular))
3823 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3824 outrel.r_addend = rel->r_addend;
3828 /* This symbol is local, or marked to become local. */
3829 outrel.r_addend = relocation + rel->r_addend;
3831 if (r_type == R_68K_32)
3834 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3840 if (bfd_is_abs_section (sec))
3842 else if (sec == NULL || sec->owner == NULL)
3844 bfd_set_error (bfd_error_bad_value);
3851 /* We are turning this relocation into one
3852 against a section symbol. It would be
3853 proper to subtract the symbol's value,
3854 osec->vma, from the emitted reloc addend,
3855 but ld.so expects buggy relocs. */
3856 osec = sec->output_section;
3857 indx = elf_section_data (osec)->dynindx;
3860 struct elf_link_hash_table *htab;
3861 htab = elf_hash_table (info);
3862 osec = htab->text_index_section;
3863 indx = elf_section_data (osec)->dynindx;
3865 BFD_ASSERT (indx != 0);
3868 outrel.r_info = ELF32_R_INFO (indx, r_type);
3872 sreloc = elf_section_data (input_section)->sreloc;
3876 loc = sreloc->contents;
3877 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3878 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3880 /* This reloc will be computed at runtime, so there's no
3881 need to do anything now, except for R_68K_32
3882 relocations that have been turned into
3890 case R_68K_GNU_VTINHERIT:
3891 case R_68K_GNU_VTENTRY:
3892 /* These are no-ops in the end. */
3899 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3900 because such sections are not SEC_ALLOC and thus ld.so will
3901 not process them. */
3902 if (unresolved_reloc
3903 && !((input_section->flags & SEC_DEBUGGING) != 0
3905 && _bfd_elf_section_offset (output_bfd, info, input_section,
3906 rel->r_offset) != (bfd_vma) -1)
3909 /* xgettext:c-format */
3910 (_("%pB(%pA+%#" PRIx64 "): "
3911 "unresolvable %s relocation against symbol `%s'"),
3914 (uint64_t) rel->r_offset,
3916 h->root.root.string);
3920 if (r_symndx != STN_UNDEF
3921 && r_type != R_68K_NONE
3923 || h->root.type == bfd_link_hash_defined
3924 || h->root.type == bfd_link_hash_defweak))
3928 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3930 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3935 name = h->root.root.string;
3938 name = (bfd_elf_string_from_elf_section
3939 (input_bfd, symtab_hdr->sh_link, sym->st_name));
3940 if (name == NULL || *name == '\0')
3941 name = bfd_section_name (input_bfd, sec);
3945 ((sym_type == STT_TLS
3946 /* xgettext:c-format */
3947 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3948 /* xgettext:c-format */
3949 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3952 (uint64_t) rel->r_offset,
3958 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3959 contents, rel->r_offset,
3960 relocation, rel->r_addend);
3962 if (r != bfd_reloc_ok)
3967 name = h->root.root.string;
3970 name = bfd_elf_string_from_elf_section (input_bfd,
3971 symtab_hdr->sh_link,
3976 name = bfd_section_name (input_bfd, sec);
3979 if (r == bfd_reloc_overflow)
3980 (*info->callbacks->reloc_overflow)
3981 (info, (h ? &h->root : NULL), name, howto->name,
3982 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3986 /* xgettext:c-format */
3987 (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
3988 input_bfd, input_section,
3989 (uint64_t) rel->r_offset, name, (int) r);
3998 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3999 into section SEC. */
4002 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4004 /* Make VALUE PC-relative. */
4005 value -= sec->output_section->vma + offset;
4007 /* Apply any in-place addend. */
4008 value += bfd_get_32 (sec->owner, sec->contents + offset);
4010 bfd_put_32 (sec->owner, value, sec->contents + offset);
4013 /* Finish up dynamic symbol handling. We set the contents of various
4014 dynamic sections here. */
4017 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4018 struct bfd_link_info *info,
4019 struct elf_link_hash_entry *h,
4020 Elf_Internal_Sym *sym)
4024 dynobj = elf_hash_table (info)->dynobj;
4026 if (h->plt.offset != (bfd_vma) -1)
4028 const struct elf_m68k_plt_info *plt_info;
4034 Elf_Internal_Rela rela;
4037 /* This symbol has an entry in the procedure linkage table. Set
4040 BFD_ASSERT (h->dynindx != -1);
4042 plt_info = elf_m68k_hash_table (info)->plt_info;
4043 splt = elf_hash_table (info)->splt;
4044 sgot = elf_hash_table (info)->sgotplt;
4045 srela = elf_hash_table (info)->srelplt;
4046 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4048 /* Get the index in the procedure linkage table which
4049 corresponds to this symbol. This is the index of this symbol
4050 in all the symbols for which we are making plt entries. The
4051 first entry in the procedure linkage table is reserved. */
4052 plt_index = (h->plt.offset / plt_info->size) - 1;
4054 /* Get the offset into the .got table of the entry that
4055 corresponds to this function. Each .got entry is 4 bytes.
4056 The first three are reserved. */
4057 got_offset = (plt_index + 3) * 4;
4059 memcpy (splt->contents + h->plt.offset,
4060 plt_info->symbol_entry,
4063 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4064 (sgot->output_section->vma
4065 + sgot->output_offset
4068 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4071 + plt_info->symbol_resolve_entry + 2);
4073 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4074 splt->output_section->vma);
4076 /* Fill in the entry in the global offset table. */
4077 bfd_put_32 (output_bfd,
4078 (splt->output_section->vma
4079 + splt->output_offset
4081 + plt_info->symbol_resolve_entry),
4082 sgot->contents + got_offset);
4084 /* Fill in the entry in the .rela.plt section. */
4085 rela.r_offset = (sgot->output_section->vma
4086 + sgot->output_offset
4088 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4090 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4091 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4093 if (!h->def_regular)
4095 /* Mark the symbol as undefined, rather than as defined in
4096 the .plt section. Leave the value alone. */
4097 sym->st_shndx = SHN_UNDEF;
4101 if (elf_m68k_hash_entry (h)->glist != NULL)
4105 struct elf_m68k_got_entry *got_entry;
4107 /* This symbol has an entry in the global offset table. Set it
4110 sgot = elf_hash_table (info)->sgot;
4111 srela = elf_hash_table (info)->srelgot;
4112 BFD_ASSERT (sgot != NULL && srela != NULL);
4114 got_entry = elf_m68k_hash_entry (h)->glist;
4116 while (got_entry != NULL)
4118 enum elf_m68k_reloc_type r_type;
4119 bfd_vma got_entry_offset;
4121 r_type = got_entry->key_.type;
4122 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4124 /* If this is a -Bsymbolic link, and the symbol is defined
4125 locally, we just want to emit a RELATIVE reloc. Likewise if
4126 the symbol was forced to be local because of a version file.
4127 The entry in the global offset table already have been
4128 initialized in the relocate_section function. */
4129 if (bfd_link_pic (info)
4130 && SYMBOL_REFERENCES_LOCAL (info, h))
4134 relocation = bfd_get_signed_32 (output_bfd,
4136 + got_entry_offset));
4139 switch (elf_m68k_reloc_got_type (r_type))
4142 case R_68K_TLS_LDM32:
4145 case R_68K_TLS_GD32:
4146 /* The value for this relocation is actually put in
4147 the second GOT slot. */
4148 relocation = bfd_get_signed_32 (output_bfd,
4150 + got_entry_offset + 4));
4151 relocation += dtpoff_base (info);
4154 case R_68K_TLS_IE32:
4155 relocation += tpoff_base (info);
4162 elf_m68k_init_got_entry_local_shared (info,
4172 Elf_Internal_Rela rela;
4174 /* Put zeros to GOT slots that will be initialized
4179 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4181 bfd_put_32 (output_bfd, (bfd_vma) 0,
4182 (sgot->contents + got_entry_offset
4187 rela.r_offset = (sgot->output_section->vma
4188 + sgot->output_offset
4189 + got_entry_offset);
4191 switch (elf_m68k_reloc_got_type (r_type))
4194 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4195 elf_m68k_install_rela (output_bfd, srela, &rela);
4198 case R_68K_TLS_GD32:
4199 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4200 elf_m68k_install_rela (output_bfd, srela, &rela);
4203 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4204 elf_m68k_install_rela (output_bfd, srela, &rela);
4207 case R_68K_TLS_IE32:
4208 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4209 elf_m68k_install_rela (output_bfd, srela, &rela);
4218 got_entry = got_entry->u.s2.next;
4225 Elf_Internal_Rela rela;
4228 /* This symbol needs a copy reloc. Set it up. */
4230 BFD_ASSERT (h->dynindx != -1
4231 && (h->root.type == bfd_link_hash_defined
4232 || h->root.type == bfd_link_hash_defweak));
4234 s = bfd_get_linker_section (dynobj, ".rela.bss");
4235 BFD_ASSERT (s != NULL);
4237 rela.r_offset = (h->root.u.def.value
4238 + h->root.u.def.section->output_section->vma
4239 + h->root.u.def.section->output_offset);
4240 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4242 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4243 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4249 /* Finish up the dynamic sections. */
4252 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4258 dynobj = elf_hash_table (info)->dynobj;
4260 sgot = elf_hash_table (info)->sgotplt;
4261 BFD_ASSERT (sgot != NULL);
4262 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4264 if (elf_hash_table (info)->dynamic_sections_created)
4267 Elf32_External_Dyn *dyncon, *dynconend;
4269 splt = elf_hash_table (info)->splt;
4270 BFD_ASSERT (splt != NULL && sdyn != NULL);
4272 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4273 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4274 for (; dyncon < dynconend; dyncon++)
4276 Elf_Internal_Dyn dyn;
4279 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4287 s = elf_hash_table (info)->sgotplt;
4290 s = elf_hash_table (info)->srelplt;
4292 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4293 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4297 s = elf_hash_table (info)->srelplt;
4298 dyn.d_un.d_val = s->size;
4299 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4304 /* Fill in the first entry in the procedure linkage table. */
4307 const struct elf_m68k_plt_info *plt_info;
4309 plt_info = elf_m68k_hash_table (info)->plt_info;
4310 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4312 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4313 (sgot->output_section->vma
4314 + sgot->output_offset
4317 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4318 (sgot->output_section->vma
4319 + sgot->output_offset
4322 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4327 /* Fill in the first three entries in the global offset table. */
4331 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4333 bfd_put_32 (output_bfd,
4334 sdyn->output_section->vma + sdyn->output_offset,
4336 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4337 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4340 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4345 /* Given a .data section and a .emreloc in-memory section, store
4346 relocation information into the .emreloc section which can be
4347 used at runtime to relocate the section. This is called by the
4348 linker when the --embedded-relocs switch is used. This is called
4349 after the add_symbols entry point has been called for all the
4350 objects, and before the final_link entry point is called. */
4353 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4354 asection *datasec, asection *relsec,
4357 Elf_Internal_Shdr *symtab_hdr;
4358 Elf_Internal_Sym *isymbuf = NULL;
4359 Elf_Internal_Rela *internal_relocs = NULL;
4360 Elf_Internal_Rela *irel, *irelend;
4364 BFD_ASSERT (! bfd_link_relocatable (info));
4368 if (datasec->reloc_count == 0)
4371 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4373 /* Get a copy of the native relocations. */
4374 internal_relocs = (_bfd_elf_link_read_relocs
4375 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4376 info->keep_memory));
4377 if (internal_relocs == NULL)
4380 amt = (bfd_size_type) datasec->reloc_count * 12;
4381 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4382 if (relsec->contents == NULL)
4385 p = relsec->contents;
4387 irelend = internal_relocs + datasec->reloc_count;
4388 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4390 asection *targetsec;
4392 /* We are going to write a four byte longword into the runtime
4393 reloc section. The longword will be the address in the data
4394 section which must be relocated. It is followed by the name
4395 of the target section NUL-padded or truncated to 8
4398 /* We can only relocate absolute longword relocs at run time. */
4399 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4401 *errmsg = _("unsupported relocation type");
4402 bfd_set_error (bfd_error_bad_value);
4406 /* Get the target section referred to by the reloc. */
4407 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4409 /* A local symbol. */
4410 Elf_Internal_Sym *isym;
4412 /* Read this BFD's local symbols if we haven't done so already. */
4413 if (isymbuf == NULL)
4415 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4416 if (isymbuf == NULL)
4417 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4418 symtab_hdr->sh_info, 0,
4420 if (isymbuf == NULL)
4424 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4425 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4430 struct elf_link_hash_entry *h;
4432 /* An external symbol. */
4433 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4434 h = elf_sym_hashes (abfd)[indx];
4435 BFD_ASSERT (h != NULL);
4436 if (h->root.type == bfd_link_hash_defined
4437 || h->root.type == bfd_link_hash_defweak)
4438 targetsec = h->root.u.def.section;
4443 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4444 memset (p + 4, 0, 8);
4445 if (targetsec != NULL)
4446 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4449 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4451 if (internal_relocs != NULL
4452 && elf_section_data (datasec)->relocs != internal_relocs)
4453 free (internal_relocs);
4457 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4459 if (internal_relocs != NULL
4460 && elf_section_data (datasec)->relocs != internal_relocs)
4461 free (internal_relocs);
4465 /* Set target options. */
4468 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4470 struct elf_m68k_link_hash_table *htab;
4471 bfd_boolean use_neg_got_offsets_p;
4472 bfd_boolean allow_multigot_p;
4473 bfd_boolean local_gp_p;
4475 switch (got_handling)
4480 use_neg_got_offsets_p = FALSE;
4481 allow_multigot_p = FALSE;
4485 /* --got=negative. */
4487 use_neg_got_offsets_p = TRUE;
4488 allow_multigot_p = FALSE;
4492 /* --got=multigot. */
4494 use_neg_got_offsets_p = TRUE;
4495 allow_multigot_p = TRUE;
4503 htab = elf_m68k_hash_table (info);
4506 htab->local_gp_p = local_gp_p;
4507 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4508 htab->allow_multigot_p = allow_multigot_p;
4512 static enum elf_reloc_type_class
4513 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4514 const asection *rel_sec ATTRIBUTE_UNUSED,
4515 const Elf_Internal_Rela *rela)
4517 switch ((int) ELF32_R_TYPE (rela->r_info))
4519 case R_68K_RELATIVE:
4520 return reloc_class_relative;
4521 case R_68K_JMP_SLOT:
4522 return reloc_class_plt;
4524 return reloc_class_copy;
4526 return reloc_class_normal;
4530 /* Return address for Ith PLT stub in section PLT, for relocation REL
4531 or (bfd_vma) -1 if it should not be included. */
4534 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4535 const arelent *rel ATTRIBUTE_UNUSED)
4537 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4540 /* Support for core dump NOTE sections. */
4543 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4548 switch (note->descsz)
4553 case 154: /* Linux/m68k */
4555 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4558 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4567 /* Make a ".reg/999" section. */
4568 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4569 size, note->descpos + offset);
4573 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4575 switch (note->descsz)
4580 case 124: /* Linux/m68k elf_prpsinfo. */
4581 elf_tdata (abfd)->core->pid
4582 = bfd_get_32 (abfd, note->descdata + 12);
4583 elf_tdata (abfd)->core->program
4584 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4585 elf_tdata (abfd)->core->command
4586 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4589 /* Note that for some reason, a spurious space is tacked
4590 onto the end of the args in some (at least one anyway)
4591 implementations, so strip it off if it exists. */
4593 char *command = elf_tdata (abfd)->core->command;
4594 int n = strlen (command);
4596 if (n > 0 && command[n - 1] == ' ')
4597 command[n - 1] = '\0';
4603 #define TARGET_BIG_SYM m68k_elf32_vec
4604 #define TARGET_BIG_NAME "elf32-m68k"
4605 #define ELF_MACHINE_CODE EM_68K
4606 #define ELF_MAXPAGESIZE 0x2000
4607 #define elf_backend_create_dynamic_sections \
4608 _bfd_elf_create_dynamic_sections
4609 #define bfd_elf32_bfd_link_hash_table_create \
4610 elf_m68k_link_hash_table_create
4611 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4613 #define elf_backend_check_relocs elf_m68k_check_relocs
4614 #define elf_backend_always_size_sections \
4615 elf_m68k_always_size_sections
4616 #define elf_backend_adjust_dynamic_symbol \
4617 elf_m68k_adjust_dynamic_symbol
4618 #define elf_backend_size_dynamic_sections \
4619 elf_m68k_size_dynamic_sections
4620 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4621 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4622 #define elf_backend_relocate_section elf_m68k_relocate_section
4623 #define elf_backend_finish_dynamic_symbol \
4624 elf_m68k_finish_dynamic_symbol
4625 #define elf_backend_finish_dynamic_sections \
4626 elf_m68k_finish_dynamic_sections
4627 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4628 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4629 #define bfd_elf32_bfd_merge_private_bfd_data \
4630 elf32_m68k_merge_private_bfd_data
4631 #define bfd_elf32_bfd_set_private_flags \
4632 elf32_m68k_set_private_flags
4633 #define bfd_elf32_bfd_print_private_bfd_data \
4634 elf32_m68k_print_private_bfd_data
4635 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4636 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4637 #define elf_backend_object_p elf32_m68k_object_p
4638 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4639 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4641 #define elf_backend_can_gc_sections 1
4642 #define elf_backend_can_refcount 1
4643 #define elf_backend_want_got_plt 1
4644 #define elf_backend_plt_readonly 1
4645 #define elf_backend_want_plt_sym 0
4646 #define elf_backend_got_header_size 12
4647 #define elf_backend_rela_normal 1
4648 #define elf_backend_dtrel_excludes_plt 1
4650 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
4652 #include "elf32-target.h"