1 /* Definitions to make GDB target for an ARM under RISCiX (4.3bsd).
2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
22 /* IEEE format floating point */
26 /* I provide my own xfer_core_file to cope with shared libraries */
28 #define XFER_CORE_FILE
30 /* Define this if the C compiler puts an underscore at the front
31 of external names before giving them to the linker. */
33 #define NAMES_HAVE_UNDERSCORE
35 /* Offset from address of function to start of its code.
36 Zero on most machines. */
38 #define FUNCTION_START_OFFSET 0
40 /* Advance PC across any function entry prologue instructions
41 to reach some "real" code. */
43 #define SKIP_PROLOGUE(pc) pc = skip_prologue(pc)
45 /* Immediately after a function call, return the saved pc.
46 Can't always go through the frames for this because on some machines
47 the new frame is not set up until the new function executes
50 #define SAVED_PC_AFTER_CALL(frame) (read_register (LR_REGNUM) & 0x03fffffc)
52 /* I don't know the real values for these. */
53 #define TARGET_UPAGES UPAGES
54 #define TARGET_NBPG NBPG
56 /* Address of end of stack space. */
58 #define STACK_END_ADDR (0x01000000 - (TARGET_UPAGES * TARGET_NBPG))
60 /* Stack grows downward. */
64 /* Sequence of bytes for breakpoint instruction. */
66 #define BREAKPOINT {0x00,0x00,0x18,0xef} /* BKPT_SWI from <sys/ptrace.h> */
68 /* Amount PC must be decremented by after a breakpoint.
69 This is often the number of bytes in BREAKPOINT
72 #define DECR_PC_AFTER_BREAK 0
74 /* Nonzero if instruction at PC is a return instruction. */
76 #define ABOUT_TO_RETURN(pc) \
77 ((read_memory_integer(pc, 4) & 0x0fffffff == 0x01b0f00e) || \
78 (read_memory_integer(pc, 4) & 0x0ffff800 == 0x09eba800))
80 /* Return 1 if P points to an invalid floating point value.
81 LEN is the length in bytes. */
83 #define INVALID_FLOAT(p, len) 0
85 /* code to execute to print interesting information about the
86 * floating point processor (if any)
87 * No need to define if there is nothing to do.
89 #define FLOAT_INFO { arm_float_info (); }
91 /* Say how long (ordinary) registers are. */
93 #define REGISTER_TYPE long
95 /* Number of machine registers */
97 /* Note: I make a fake copy of the pc in register 25 (calling it ps) so
98 that I can clear the status bits from pc (register 15) */
102 /* Initializer for an array of names of registers.
103 There should be NUM_REGS strings in this initializer. */
105 #define REGISTER_NAMES \
106 { "a1", "a2", "a3", "a4", \
107 "v1", "v2", "v3", "v4", "v5", "v6", \
108 "sl", "fp", "ip", "sp", "lr", "pc", \
109 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "fps", "ps" }
111 /* Register numbers of various important registers.
112 Note that some of these values are "real" register numbers,
113 and correspond to the general registers of the machine,
114 and some are "phony" register numbers which are too large
115 to be actual register numbers as far as the user is concerned
116 but do serve to get the desired values when passed to read_register. */
119 #define FP_REGNUM 11 /* Contains address of executing stack frame */
120 #define SP_REGNUM 13 /* Contains address of top of stack */
121 #define LR_REGNUM 14 /* address to return to from a function call */
122 #define PC_REGNUM 15 /* Contains program counter */
123 #define F0_REGNUM 16 /* first floating point register */
124 #define FPS_REGNUM 24 /* floating point status register */
125 #define PS_REGNUM 25 /* Contains processor status */
128 /* Total amount of space needed to store our copies of the machine's
129 register state, the array `registers'. */
130 #define REGISTER_BYTES (16*4 + 12*8 + 4 + 4)
132 /* Index within `registers' of the first byte of the space for
135 #define REGISTER_BYTE(N) (((N) < F0_REGNUM) ? (N)*4 : \
136 (((N) < PS_REGNUM) ? 16*4 + ((N) - 16)*12 : \
137 16*4 + 8*12 + ((N) - FPS_REGNUM) * 4))
139 /* Number of bytes of storage in the actual machine representation
140 for register N. On the vax, all regs are 4 bytes. */
142 #define REGISTER_RAW_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 12)
144 /* Number of bytes of storage in the program's representation
145 for register N. On the vax, all regs are 4 bytes. */
147 #define REGISTER_VIRTUAL_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 8)
149 /* Largest value REGISTER_RAW_SIZE can have. */
151 #define MAX_REGISTER_RAW_SIZE 12
153 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
155 #define MAX_REGISTER_VIRTUAL_SIZE 8
157 /* Nonzero if register N requires conversion
158 from raw format to virtual format. */
160 #define REGISTER_CONVERTIBLE(N) ((unsigned)(N) - F0_REGNUM < 8)
162 /* Convert data from raw format for register REGNUM
163 to virtual format for register REGNUM. */
165 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
166 if (REGISTER_CONVERTIBLE(REGNUM)) \
167 convert_from_extended((FROM), (TO)); \
169 bcopy ((FROM), (TO), 4);
171 /* Convert data from virtual format for register REGNUM
172 to raw format for register REGNUM. */
174 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
175 if (REGISTER_CONVERTIBLE(REGNUM)) \
176 convert_to_extended((FROM), (TO)); \
178 bcopy ((FROM), (TO), 4);
180 /* Return the GDB type object for the "standard" data type
181 of data in register N. */
183 #define REGISTER_VIRTUAL_TYPE(N) \
184 (((unsigned)(N) - F0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
186 /* The system C compiler uses a similar structure return convention to gcc */
188 #define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH (type) > 4)
190 /* Store the address of the place in which to copy the structure the
191 subroutine will return. This is called from call_function. */
193 #define STORE_STRUCT_RETURN(ADDR, SP) \
194 { write_register (0, (ADDR)); }
196 /* Extract from an array REGBUF containing the (raw) register state
197 a function return value of type TYPE, and copy that, in virtual format,
200 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
201 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
202 convert_from_extended(REGBUF + REGISTER_BYTE (F0_REGNUM), VALBUF); \
204 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
206 /* Write into appropriate registers a function return value
207 of type TYPE, given in virtual format. */
209 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
210 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
211 char _buf[MAX_REGISTER_RAW_SIZE]; \
212 convert_to_extended(VALBUF, _buf); \
213 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
215 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
217 /* Extract from an array REGBUF containing the (raw) register state
218 the address in which a function should return its structure value,
219 as a CORE_ADDR (or an expression that can be used as one). */
221 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
223 /* Specify that for the native compiler variables for a particular
224 lexical context are listed after the beginning LBRAC instead of
225 before in the executables list of symbols. */
226 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
229 /* Describe the pointer in each stack frame to the previous stack frame
232 /* FRAME_CHAIN takes a frame's nominal address
233 and produces the frame's chain-pointer.
235 However, if FRAME_CHAIN_VALID returns zero,
236 it means the given frame is the outermost one and has no caller. */
238 /* In the case of the ARM, the frame's nominal address is the FP value,
239 and 12 bytes before comes the saved previous FP value as a 4-byte word. */
241 #define FRAME_CHAIN(thisframe) \
242 ((thisframe)->pc >= first_object_file_end ? \
243 read_memory_integer ((thisframe)->frame - 12, 4) :\
246 #define FRAME_CHAIN_VALID(chain, thisframe) \
247 (chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end))
249 /* Define other aspects of the stack frame. */
251 /* A macro that tells us whether the function invocation represented
252 by FI does not have a frame on the stack associated with it. If it
253 does not, FRAMELESS is set to 1, else 0. */
254 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
256 CORE_ADDR func_start, after_prologue; \
257 func_start = (get_pc_function_start ((FI)->pc) + \
258 FUNCTION_START_OFFSET); \
259 after_prologue = func_start; \
260 SKIP_PROLOGUE (after_prologue); \
261 (FRAMELESS) = (after_prologue == func_start); \
266 #define FRAME_SAVED_PC(FRAME) \
267 (read_memory_integer ((FRAME)->frame - 4, 4) & 0x03fffffc)
269 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
271 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
273 /* Return number of args passed to a frame.
274 Can return -1, meaning no way to tell. */
276 #define FRAME_NUM_ARGS(numargs, fi) (numargs = -1)
278 /* Return number of bytes at start of arglist that are not really args. */
280 #define FRAME_ARGS_SKIP 0
282 /* Put here the code to store, into a struct frame_saved_regs,
283 the addresses of the saved registers of frame described by FRAME_INFO.
284 This includes special registers such as pc and fp saved in special
285 ways in the stack frame. sp is even more special:
286 the address we return for it IS the sp for the next frame. */
288 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
290 register int regnum; \
291 register int frame; \
292 register int next_addr; \
293 register int return_data_save; \
294 register int saved_register_mask; \
295 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
296 frame = (frame_info)->frame; \
297 return_data_save = read_memory_integer(frame, 4) & 0x03fffffc - 12; \
298 saved_register_mask = \
299 read_memory_integer(return_data_save, 4); \
300 next_addr = frame - 12; \
301 for (regnum = 4; regnum < 10; regnum++) \
302 if (saved_register_mask & (1<<regnum)) { \
304 (frame_saved_regs).regs[regnum] = next_addr; \
306 if (read_memory_integer(return_data_save + 4, 4) == 0xed6d7103) { \
308 (frame_saved_regs).regs[F0_REGNUM + 7] = next_addr; \
310 if (read_memory_integer(return_data_save + 8, 4) == 0xed6d6103) { \
312 (frame_saved_regs).regs[F0_REGNUM + 6] = next_addr; \
314 if (read_memory_integer(return_data_save + 12, 4) == 0xed6d5103) { \
316 (frame_saved_regs).regs[F0_REGNUM + 5] = next_addr; \
318 if (read_memory_integer(return_data_save + 16, 4) == 0xed6d4103) { \
320 (frame_saved_regs).regs[F0_REGNUM + 4] = next_addr; \
322 (frame_saved_regs).regs[SP_REGNUM] = next_addr; \
323 (frame_saved_regs).regs[PC_REGNUM] = frame - 4; \
324 (frame_saved_regs).regs[PS_REGNUM] = frame - 4; \
325 (frame_saved_regs).regs[FP_REGNUM] = frame - 12; \
328 /* Things needed for making the inferior call functions. */
330 /* Push an empty stack frame, to record the current PC, etc. */
332 #define PUSH_DUMMY_FRAME \
334 register CORE_ADDR sp = read_register (SP_REGNUM); \
335 register int regnum; \
336 /* opcode for ldmdb fp,{v1-v6,fp,ip,lr,pc}^ */ \
337 sp = push_word(sp, 0xe92dbf0); /* dummy return_data_save ins */ \
338 /* push a pointer to the dummy instruction minus 12 */ \
339 sp = push_word(sp, read_register (SP_REGNUM) - 16); \
340 sp = push_word(sp, read_register (PS_REGNUM)); \
341 sp = push_word(sp, read_register (SP_REGNUM)); \
342 sp = push_word(sp, read_register (FP_REGNUM)); \
343 for (regnum = 9; regnum >= 4; regnum --) \
344 sp = push_word(sp, read_register (regnum)); \
345 write_register (FP_REGNUM, read_register (SP_REGNUM) - 8); \
346 write_register (SP_REGNUM, sp); }
348 /* Discard from the stack the innermost frame, restoring all registers. */
352 register CORE_ADDR fp = read_register (FP_REGNUM); \
353 register unsigned long return_data_save = \
354 read_memory_integer ( (read_memory_integer (fp, 4) & \
355 0x03fffffc) - 12, 4); \
356 register int regnum; \
357 write_register (PS_REGNUM, read_memory_integer (fp - 4, 4)); \
358 write_register (PC_REGNUM, read_register (PS_REGNUM) & 0x03fffffc); \
359 write_register (SP_REGNUM, read_memory_integer (fp - 8, 4)); \
360 write_register (FP_REGNUM, read_memory_integer (fp - 12, 4)); \
362 for (regnum = 9; regnum >= 4; regnum--) \
363 if (return_data_save & (1<<regnum)) { \
365 write_register (regnum, read_memory_integer(fp, 4)); \
367 flush_cached_frames (); \
368 set_current_frame (create_new_frame (read_register (FP_REGNUM), \
372 /* This sequence of words is the instructions
379 Note this is 16 bytes. */
381 #define CALL_DUMMY {0xe8bd000f, 0xe1a0e00f, 0xeb000000, 0xef180000}
383 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
385 /* Insert the specified number of args and function address
386 into a call sequence of the above form stored at DUMMYNAME. */
388 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
390 register enum type_code code = TYPE_CODE (type); \
391 register nargs_in_registers, struct_return = 0; \
392 /* fix the load-arguments mask to move the first 4 or less arguments \
393 into a1-a4 but make sure the structure return address in a1 is \
394 not disturbed if the function is returning a structure */ \
395 if ((code == TYPE_CODE_STRUCT || \
396 code == TYPE_CODE_UNION || \
397 code == TYPE_CODE_ARRAY) && \
398 TYPE_LENGTH (type) > 4) { \
399 nargs_in_registers = min(nargs + 1, 4); \
402 nargs_in_registers = min(nargs, 4); \
403 *(char *) dummyname = (1 << nargs_in_registers) - 1 - struct_return; \
404 *(int *)((char *) dummyname + 8) = \
405 (((fun - (pc + 16)) / 4) & 0x00ffffff) | 0xeb000000; }