1 /* Target-struct-independent code to start (run) and stop an inferior
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "gdb_string.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
32 #include "cli/cli-script.h"
34 #include "gdbthread.h"
46 #include "dictionary.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
52 #include "inline-frame.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
59 /* Prototypes for local functions */
61 static void signals_info (char *, int);
63 static void handle_command (char *, int);
65 static void sig_print_info (enum target_signal);
67 static void sig_print_header (void);
69 static void resume_cleanups (void *);
71 static int hook_stop_stub (void *);
73 static int restore_selected_frame (void *);
75 static int follow_fork (void);
77 static void set_schedlock_func (char *args, int from_tty,
78 struct cmd_list_element *c);
80 static int currently_stepping (struct thread_info *tp);
82 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 static void xdb_handle_command (char *args, int from_tty);
87 static int prepare_to_proceed (int);
89 static void print_exited_reason (int exitstatus);
91 static void print_signal_exited_reason (enum target_signal siggnal);
93 static void print_no_history_reason (void);
95 static void print_signal_received_reason (enum target_signal siggnal);
97 static void print_end_stepping_range_reason (void);
99 void _initialize_infrun (void);
101 void nullify_last_target_wait_ptid (void);
103 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
105 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109 /* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112 int step_stop_if_no_debug = 0;
114 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120 /* In asynchronous mode, but simulating synchronous execution. */
122 int sync_execution = 0;
124 /* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
128 static ptid_t previous_inferior_ptid;
130 /* Default behavior is to detach newly forked processes (legacy). */
133 int debug_displaced = 0;
135 show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141 int debug_infrun = 0;
143 show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150 /* Support for disabling address space randomization. */
152 int disable_randomization = 1;
155 show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
170 set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
180 /* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
206 in_solib_dynsym_resolve_code() can generally be implemented in a
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
219 /* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
227 #ifndef SOLIB_IN_DYNAMIC_LINKER
228 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231 /* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
235 static int non_stop_1 = 0;
237 int observer_mode = 0;
238 static int observer_mode_1 = 0;
241 set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
244 extern int pagination_enabled;
246 if (target_has_execution)
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
252 observer_mode = observer_mode_1;
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
280 show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286 /* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
293 update_observer_mode (void)
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
308 observer_mode = observer_mode_1 = newval;
311 /* Tables of how to react to signals; the user sets them. */
313 static unsigned char *signal_stop;
314 static unsigned char *signal_print;
315 static unsigned char *signal_program;
317 /* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320 static unsigned char *signal_pass;
322 #define SET_SIGS(nsigs,sigs,flags) \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
330 #define UNSET_SIGS(nsigs,sigs,flags) \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
338 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
339 this function is to avoid exporting `signal_program'. */
342 update_signals_program_target (void)
344 target_program_signals ((int) TARGET_SIGNAL_LAST, signal_program);
347 /* Value to pass to target_resume() to cause all threads to resume. */
349 #define RESUME_ALL minus_one_ptid
351 /* Command list pointer for the "stop" placeholder. */
353 static struct cmd_list_element *stop_command;
355 /* Function inferior was in as of last step command. */
357 static struct symbol *step_start_function;
359 /* Nonzero if we want to give control to the user when we're notified
360 of shared library events by the dynamic linker. */
361 int stop_on_solib_events;
363 show_stop_on_solib_events (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c, const char *value)
366 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
370 /* Nonzero means expecting a trace trap
371 and should stop the inferior and return silently when it happens. */
375 /* Save register contents here when executing a "finish" command or are
376 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
377 Thus this contains the return value from the called function (assuming
378 values are returned in a register). */
380 struct regcache *stop_registers;
382 /* Nonzero after stop if current stack frame should be printed. */
384 static int stop_print_frame;
386 /* This is a cached copy of the pid/waitstatus of the last event
387 returned by target_wait()/deprecated_target_wait_hook(). This
388 information is returned by get_last_target_status(). */
389 static ptid_t target_last_wait_ptid;
390 static struct target_waitstatus target_last_waitstatus;
392 static void context_switch (ptid_t ptid);
394 void init_thread_stepping_state (struct thread_info *tss);
396 void init_infwait_state (void);
398 static const char follow_fork_mode_child[] = "child";
399 static const char follow_fork_mode_parent[] = "parent";
401 static const char *const follow_fork_mode_kind_names[] = {
402 follow_fork_mode_child,
403 follow_fork_mode_parent,
407 static const char *follow_fork_mode_string = follow_fork_mode_parent;
409 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
410 struct cmd_list_element *c, const char *value)
412 fprintf_filtered (file,
413 _("Debugger response to a program "
414 "call of fork or vfork is \"%s\".\n"),
419 /* Tell the target to follow the fork we're stopped at. Returns true
420 if the inferior should be resumed; false, if the target for some
421 reason decided it's best not to resume. */
426 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
427 int should_resume = 1;
428 struct thread_info *tp;
430 /* Copy user stepping state to the new inferior thread. FIXME: the
431 followed fork child thread should have a copy of most of the
432 parent thread structure's run control related fields, not just these.
433 Initialized to avoid "may be used uninitialized" warnings from gcc. */
434 struct breakpoint *step_resume_breakpoint = NULL;
435 struct breakpoint *exception_resume_breakpoint = NULL;
436 CORE_ADDR step_range_start = 0;
437 CORE_ADDR step_range_end = 0;
438 struct frame_id step_frame_id = { 0 };
443 struct target_waitstatus wait_status;
445 /* Get the last target status returned by target_wait(). */
446 get_last_target_status (&wait_ptid, &wait_status);
448 /* If not stopped at a fork event, then there's nothing else to
450 if (wait_status.kind != TARGET_WAITKIND_FORKED
451 && wait_status.kind != TARGET_WAITKIND_VFORKED)
454 /* Check if we switched over from WAIT_PTID, since the event was
456 if (!ptid_equal (wait_ptid, minus_one_ptid)
457 && !ptid_equal (inferior_ptid, wait_ptid))
459 /* We did. Switch back to WAIT_PTID thread, to tell the
460 target to follow it (in either direction). We'll
461 afterwards refuse to resume, and inform the user what
463 switch_to_thread (wait_ptid);
468 tp = inferior_thread ();
470 /* If there were any forks/vforks that were caught and are now to be
471 followed, then do so now. */
472 switch (tp->pending_follow.kind)
474 case TARGET_WAITKIND_FORKED:
475 case TARGET_WAITKIND_VFORKED:
477 ptid_t parent, child;
479 /* If the user did a next/step, etc, over a fork call,
480 preserve the stepping state in the fork child. */
481 if (follow_child && should_resume)
483 step_resume_breakpoint = clone_momentary_breakpoint
484 (tp->control.step_resume_breakpoint);
485 step_range_start = tp->control.step_range_start;
486 step_range_end = tp->control.step_range_end;
487 step_frame_id = tp->control.step_frame_id;
488 exception_resume_breakpoint
489 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
491 /* For now, delete the parent's sr breakpoint, otherwise,
492 parent/child sr breakpoints are considered duplicates,
493 and the child version will not be installed. Remove
494 this when the breakpoints module becomes aware of
495 inferiors and address spaces. */
496 delete_step_resume_breakpoint (tp);
497 tp->control.step_range_start = 0;
498 tp->control.step_range_end = 0;
499 tp->control.step_frame_id = null_frame_id;
500 delete_exception_resume_breakpoint (tp);
503 parent = inferior_ptid;
504 child = tp->pending_follow.value.related_pid;
506 /* Tell the target to do whatever is necessary to follow
507 either parent or child. */
508 if (target_follow_fork (follow_child))
510 /* Target refused to follow, or there's some other reason
511 we shouldn't resume. */
516 /* This pending follow fork event is now handled, one way
517 or another. The previous selected thread may be gone
518 from the lists by now, but if it is still around, need
519 to clear the pending follow request. */
520 tp = find_thread_ptid (parent);
522 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
524 /* This makes sure we don't try to apply the "Switched
525 over from WAIT_PID" logic above. */
526 nullify_last_target_wait_ptid ();
528 /* If we followed the child, switch to it... */
531 switch_to_thread (child);
533 /* ... and preserve the stepping state, in case the
534 user was stepping over the fork call. */
537 tp = inferior_thread ();
538 tp->control.step_resume_breakpoint
539 = step_resume_breakpoint;
540 tp->control.step_range_start = step_range_start;
541 tp->control.step_range_end = step_range_end;
542 tp->control.step_frame_id = step_frame_id;
543 tp->control.exception_resume_breakpoint
544 = exception_resume_breakpoint;
548 /* If we get here, it was because we're trying to
549 resume from a fork catchpoint, but, the user
550 has switched threads away from the thread that
551 forked. In that case, the resume command
552 issued is most likely not applicable to the
553 child, so just warn, and refuse to resume. */
554 warning (_("Not resuming: switched threads "
555 "before following fork child.\n"));
558 /* Reset breakpoints in the child as appropriate. */
559 follow_inferior_reset_breakpoints ();
562 switch_to_thread (parent);
566 case TARGET_WAITKIND_SPURIOUS:
567 /* Nothing to follow. */
570 internal_error (__FILE__, __LINE__,
571 "Unexpected pending_follow.kind %d\n",
572 tp->pending_follow.kind);
576 return should_resume;
580 follow_inferior_reset_breakpoints (void)
582 struct thread_info *tp = inferior_thread ();
584 /* Was there a step_resume breakpoint? (There was if the user
585 did a "next" at the fork() call.) If so, explicitly reset its
588 step_resumes are a form of bp that are made to be per-thread.
589 Since we created the step_resume bp when the parent process
590 was being debugged, and now are switching to the child process,
591 from the breakpoint package's viewpoint, that's a switch of
592 "threads". We must update the bp's notion of which thread
593 it is for, or it'll be ignored when it triggers. */
595 if (tp->control.step_resume_breakpoint)
596 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
598 if (tp->control.exception_resume_breakpoint)
599 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
601 /* Reinsert all breakpoints in the child. The user may have set
602 breakpoints after catching the fork, in which case those
603 were never set in the child, but only in the parent. This makes
604 sure the inserted breakpoints match the breakpoint list. */
606 breakpoint_re_set ();
607 insert_breakpoints ();
610 /* The child has exited or execed: resume threads of the parent the
611 user wanted to be executing. */
614 proceed_after_vfork_done (struct thread_info *thread,
617 int pid = * (int *) arg;
619 if (ptid_get_pid (thread->ptid) == pid
620 && is_running (thread->ptid)
621 && !is_executing (thread->ptid)
622 && !thread->stop_requested
623 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
626 fprintf_unfiltered (gdb_stdlog,
627 "infrun: resuming vfork parent thread %s\n",
628 target_pid_to_str (thread->ptid));
630 switch_to_thread (thread->ptid);
631 clear_proceed_status ();
632 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
638 /* Called whenever we notice an exec or exit event, to handle
639 detaching or resuming a vfork parent. */
642 handle_vfork_child_exec_or_exit (int exec)
644 struct inferior *inf = current_inferior ();
646 if (inf->vfork_parent)
648 int resume_parent = -1;
650 /* This exec or exit marks the end of the shared memory region
651 between the parent and the child. If the user wanted to
652 detach from the parent, now is the time. */
654 if (inf->vfork_parent->pending_detach)
656 struct thread_info *tp;
657 struct cleanup *old_chain;
658 struct program_space *pspace;
659 struct address_space *aspace;
661 /* follow-fork child, detach-on-fork on. */
663 old_chain = make_cleanup_restore_current_thread ();
665 /* We're letting loose of the parent. */
666 tp = any_live_thread_of_process (inf->vfork_parent->pid);
667 switch_to_thread (tp->ptid);
669 /* We're about to detach from the parent, which implicitly
670 removes breakpoints from its address space. There's a
671 catch here: we want to reuse the spaces for the child,
672 but, parent/child are still sharing the pspace at this
673 point, although the exec in reality makes the kernel give
674 the child a fresh set of new pages. The problem here is
675 that the breakpoints module being unaware of this, would
676 likely chose the child process to write to the parent
677 address space. Swapping the child temporarily away from
678 the spaces has the desired effect. Yes, this is "sort
681 pspace = inf->pspace;
682 aspace = inf->aspace;
686 if (debug_infrun || info_verbose)
688 target_terminal_ours ();
691 fprintf_filtered (gdb_stdlog,
692 "Detaching vfork parent process "
693 "%d after child exec.\n",
694 inf->vfork_parent->pid);
696 fprintf_filtered (gdb_stdlog,
697 "Detaching vfork parent process "
698 "%d after child exit.\n",
699 inf->vfork_parent->pid);
702 target_detach (NULL, 0);
705 inf->pspace = pspace;
706 inf->aspace = aspace;
708 do_cleanups (old_chain);
712 /* We're staying attached to the parent, so, really give the
713 child a new address space. */
714 inf->pspace = add_program_space (maybe_new_address_space ());
715 inf->aspace = inf->pspace->aspace;
717 set_current_program_space (inf->pspace);
719 resume_parent = inf->vfork_parent->pid;
721 /* Break the bonds. */
722 inf->vfork_parent->vfork_child = NULL;
726 struct cleanup *old_chain;
727 struct program_space *pspace;
729 /* If this is a vfork child exiting, then the pspace and
730 aspaces were shared with the parent. Since we're
731 reporting the process exit, we'll be mourning all that is
732 found in the address space, and switching to null_ptid,
733 preparing to start a new inferior. But, since we don't
734 want to clobber the parent's address/program spaces, we
735 go ahead and create a new one for this exiting
738 /* Switch to null_ptid, so that clone_program_space doesn't want
739 to read the selected frame of a dead process. */
740 old_chain = save_inferior_ptid ();
741 inferior_ptid = null_ptid;
743 /* This inferior is dead, so avoid giving the breakpoints
744 module the option to write through to it (cloning a
745 program space resets breakpoints). */
748 pspace = add_program_space (maybe_new_address_space ());
749 set_current_program_space (pspace);
751 inf->symfile_flags = SYMFILE_NO_READ;
752 clone_program_space (pspace, inf->vfork_parent->pspace);
753 inf->pspace = pspace;
754 inf->aspace = pspace->aspace;
756 /* Put back inferior_ptid. We'll continue mourning this
758 do_cleanups (old_chain);
760 resume_parent = inf->vfork_parent->pid;
761 /* Break the bonds. */
762 inf->vfork_parent->vfork_child = NULL;
765 inf->vfork_parent = NULL;
767 gdb_assert (current_program_space == inf->pspace);
769 if (non_stop && resume_parent != -1)
771 /* If the user wanted the parent to be running, let it go
773 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
776 fprintf_unfiltered (gdb_stdlog,
777 "infrun: resuming vfork parent process %d\n",
780 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
782 do_cleanups (old_chain);
787 /* Enum strings for "set|show displaced-stepping". */
789 static const char follow_exec_mode_new[] = "new";
790 static const char follow_exec_mode_same[] = "same";
791 static const char *const follow_exec_mode_names[] =
793 follow_exec_mode_new,
794 follow_exec_mode_same,
798 static const char *follow_exec_mode_string = follow_exec_mode_same;
800 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
801 struct cmd_list_element *c, const char *value)
803 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
806 /* EXECD_PATHNAME is assumed to be non-NULL. */
809 follow_exec (ptid_t pid, char *execd_pathname)
811 struct thread_info *th = inferior_thread ();
812 struct inferior *inf = current_inferior ();
814 /* This is an exec event that we actually wish to pay attention to.
815 Refresh our symbol table to the newly exec'd program, remove any
818 If there are breakpoints, they aren't really inserted now,
819 since the exec() transformed our inferior into a fresh set
822 We want to preserve symbolic breakpoints on the list, since
823 we have hopes that they can be reset after the new a.out's
824 symbol table is read.
826 However, any "raw" breakpoints must be removed from the list
827 (e.g., the solib bp's), since their address is probably invalid
830 And, we DON'T want to call delete_breakpoints() here, since
831 that may write the bp's "shadow contents" (the instruction
832 value that was overwritten witha TRAP instruction). Since
833 we now have a new a.out, those shadow contents aren't valid. */
835 mark_breakpoints_out ();
837 update_breakpoints_after_exec ();
839 /* If there was one, it's gone now. We cannot truly step-to-next
840 statement through an exec(). */
841 th->control.step_resume_breakpoint = NULL;
842 th->control.exception_resume_breakpoint = NULL;
843 th->control.step_range_start = 0;
844 th->control.step_range_end = 0;
846 /* The target reports the exec event to the main thread, even if
847 some other thread does the exec, and even if the main thread was
848 already stopped --- if debugging in non-stop mode, it's possible
849 the user had the main thread held stopped in the previous image
850 --- release it now. This is the same behavior as step-over-exec
851 with scheduler-locking on in all-stop mode. */
852 th->stop_requested = 0;
854 /* What is this a.out's name? */
855 printf_unfiltered (_("%s is executing new program: %s\n"),
856 target_pid_to_str (inferior_ptid),
859 /* We've followed the inferior through an exec. Therefore, the
860 inferior has essentially been killed & reborn. */
862 gdb_flush (gdb_stdout);
864 breakpoint_init_inferior (inf_execd);
866 if (gdb_sysroot && *gdb_sysroot)
868 char *name = alloca (strlen (gdb_sysroot)
869 + strlen (execd_pathname)
872 strcpy (name, gdb_sysroot);
873 strcat (name, execd_pathname);
874 execd_pathname = name;
877 /* Reset the shared library package. This ensures that we get a
878 shlib event when the child reaches "_start", at which point the
879 dld will have had a chance to initialize the child. */
880 /* Also, loading a symbol file below may trigger symbol lookups, and
881 we don't want those to be satisfied by the libraries of the
882 previous incarnation of this process. */
883 no_shared_libraries (NULL, 0);
885 if (follow_exec_mode_string == follow_exec_mode_new)
887 struct program_space *pspace;
889 /* The user wants to keep the old inferior and program spaces
890 around. Create a new fresh one, and switch to it. */
892 inf = add_inferior (current_inferior ()->pid);
893 pspace = add_program_space (maybe_new_address_space ());
894 inf->pspace = pspace;
895 inf->aspace = pspace->aspace;
897 exit_inferior_num_silent (current_inferior ()->num);
899 set_current_inferior (inf);
900 set_current_program_space (pspace);
903 gdb_assert (current_program_space == inf->pspace);
905 /* That a.out is now the one to use. */
906 exec_file_attach (execd_pathname, 0);
908 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
909 (Position Independent Executable) main symbol file will get applied by
910 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
911 the breakpoints with the zero displacement. */
913 symbol_file_add (execd_pathname,
915 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
918 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
919 set_initial_language ();
921 #ifdef SOLIB_CREATE_INFERIOR_HOOK
922 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
924 solib_create_inferior_hook (0);
927 jit_inferior_created_hook ();
929 breakpoint_re_set ();
931 /* Reinsert all breakpoints. (Those which were symbolic have
932 been reset to the proper address in the new a.out, thanks
933 to symbol_file_command...). */
934 insert_breakpoints ();
936 /* The next resume of this inferior should bring it to the shlib
937 startup breakpoints. (If the user had also set bp's on
938 "main" from the old (parent) process, then they'll auto-
939 matically get reset there in the new process.). */
942 /* Non-zero if we just simulating a single-step. This is needed
943 because we cannot remove the breakpoints in the inferior process
944 until after the `wait' in `wait_for_inferior'. */
945 static int singlestep_breakpoints_inserted_p = 0;
947 /* The thread we inserted single-step breakpoints for. */
948 static ptid_t singlestep_ptid;
950 /* PC when we started this single-step. */
951 static CORE_ADDR singlestep_pc;
953 /* If another thread hit the singlestep breakpoint, we save the original
954 thread here so that we can resume single-stepping it later. */
955 static ptid_t saved_singlestep_ptid;
956 static int stepping_past_singlestep_breakpoint;
958 /* If not equal to null_ptid, this means that after stepping over breakpoint
959 is finished, we need to switch to deferred_step_ptid, and step it.
961 The use case is when one thread has hit a breakpoint, and then the user
962 has switched to another thread and issued 'step'. We need to step over
963 breakpoint in the thread which hit the breakpoint, but then continue
964 stepping the thread user has selected. */
965 static ptid_t deferred_step_ptid;
967 /* Displaced stepping. */
969 /* In non-stop debugging mode, we must take special care to manage
970 breakpoints properly; in particular, the traditional strategy for
971 stepping a thread past a breakpoint it has hit is unsuitable.
972 'Displaced stepping' is a tactic for stepping one thread past a
973 breakpoint it has hit while ensuring that other threads running
974 concurrently will hit the breakpoint as they should.
976 The traditional way to step a thread T off a breakpoint in a
977 multi-threaded program in all-stop mode is as follows:
979 a0) Initially, all threads are stopped, and breakpoints are not
981 a1) We single-step T, leaving breakpoints uninserted.
982 a2) We insert breakpoints, and resume all threads.
984 In non-stop debugging, however, this strategy is unsuitable: we
985 don't want to have to stop all threads in the system in order to
986 continue or step T past a breakpoint. Instead, we use displaced
989 n0) Initially, T is stopped, other threads are running, and
990 breakpoints are inserted.
991 n1) We copy the instruction "under" the breakpoint to a separate
992 location, outside the main code stream, making any adjustments
993 to the instruction, register, and memory state as directed by
995 n2) We single-step T over the instruction at its new location.
996 n3) We adjust the resulting register and memory state as directed
997 by T's architecture. This includes resetting T's PC to point
998 back into the main instruction stream.
1001 This approach depends on the following gdbarch methods:
1003 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1004 indicate where to copy the instruction, and how much space must
1005 be reserved there. We use these in step n1.
1007 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1008 address, and makes any necessary adjustments to the instruction,
1009 register contents, and memory. We use this in step n1.
1011 - gdbarch_displaced_step_fixup adjusts registers and memory after
1012 we have successfuly single-stepped the instruction, to yield the
1013 same effect the instruction would have had if we had executed it
1014 at its original address. We use this in step n3.
1016 - gdbarch_displaced_step_free_closure provides cleanup.
1018 The gdbarch_displaced_step_copy_insn and
1019 gdbarch_displaced_step_fixup functions must be written so that
1020 copying an instruction with gdbarch_displaced_step_copy_insn,
1021 single-stepping across the copied instruction, and then applying
1022 gdbarch_displaced_insn_fixup should have the same effects on the
1023 thread's memory and registers as stepping the instruction in place
1024 would have. Exactly which responsibilities fall to the copy and
1025 which fall to the fixup is up to the author of those functions.
1027 See the comments in gdbarch.sh for details.
1029 Note that displaced stepping and software single-step cannot
1030 currently be used in combination, although with some care I think
1031 they could be made to. Software single-step works by placing
1032 breakpoints on all possible subsequent instructions; if the
1033 displaced instruction is a PC-relative jump, those breakpoints
1034 could fall in very strange places --- on pages that aren't
1035 executable, or at addresses that are not proper instruction
1036 boundaries. (We do generally let other threads run while we wait
1037 to hit the software single-step breakpoint, and they might
1038 encounter such a corrupted instruction.) One way to work around
1039 this would be to have gdbarch_displaced_step_copy_insn fully
1040 simulate the effect of PC-relative instructions (and return NULL)
1041 on architectures that use software single-stepping.
1043 In non-stop mode, we can have independent and simultaneous step
1044 requests, so more than one thread may need to simultaneously step
1045 over a breakpoint. The current implementation assumes there is
1046 only one scratch space per process. In this case, we have to
1047 serialize access to the scratch space. If thread A wants to step
1048 over a breakpoint, but we are currently waiting for some other
1049 thread to complete a displaced step, we leave thread A stopped and
1050 place it in the displaced_step_request_queue. Whenever a displaced
1051 step finishes, we pick the next thread in the queue and start a new
1052 displaced step operation on it. See displaced_step_prepare and
1053 displaced_step_fixup for details. */
1055 struct displaced_step_request
1058 struct displaced_step_request *next;
1061 /* Per-inferior displaced stepping state. */
1062 struct displaced_step_inferior_state
1064 /* Pointer to next in linked list. */
1065 struct displaced_step_inferior_state *next;
1067 /* The process this displaced step state refers to. */
1070 /* A queue of pending displaced stepping requests. One entry per
1071 thread that needs to do a displaced step. */
1072 struct displaced_step_request *step_request_queue;
1074 /* If this is not null_ptid, this is the thread carrying out a
1075 displaced single-step in process PID. This thread's state will
1076 require fixing up once it has completed its step. */
1079 /* The architecture the thread had when we stepped it. */
1080 struct gdbarch *step_gdbarch;
1082 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1083 for post-step cleanup. */
1084 struct displaced_step_closure *step_closure;
1086 /* The address of the original instruction, and the copy we
1088 CORE_ADDR step_original, step_copy;
1090 /* Saved contents of copy area. */
1091 gdb_byte *step_saved_copy;
1094 /* The list of states of processes involved in displaced stepping
1096 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1098 /* Get the displaced stepping state of process PID. */
1100 static struct displaced_step_inferior_state *
1101 get_displaced_stepping_state (int pid)
1103 struct displaced_step_inferior_state *state;
1105 for (state = displaced_step_inferior_states;
1107 state = state->next)
1108 if (state->pid == pid)
1114 /* Add a new displaced stepping state for process PID to the displaced
1115 stepping state list, or return a pointer to an already existing
1116 entry, if it already exists. Never returns NULL. */
1118 static struct displaced_step_inferior_state *
1119 add_displaced_stepping_state (int pid)
1121 struct displaced_step_inferior_state *state;
1123 for (state = displaced_step_inferior_states;
1125 state = state->next)
1126 if (state->pid == pid)
1129 state = xcalloc (1, sizeof (*state));
1131 state->next = displaced_step_inferior_states;
1132 displaced_step_inferior_states = state;
1137 /* If inferior is in displaced stepping, and ADDR equals to starting address
1138 of copy area, return corresponding displaced_step_closure. Otherwise,
1141 struct displaced_step_closure*
1142 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1144 struct displaced_step_inferior_state *displaced
1145 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1147 /* If checking the mode of displaced instruction in copy area. */
1148 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1149 && (displaced->step_copy == addr))
1150 return displaced->step_closure;
1155 /* Remove the displaced stepping state of process PID. */
1158 remove_displaced_stepping_state (int pid)
1160 struct displaced_step_inferior_state *it, **prev_next_p;
1162 gdb_assert (pid != 0);
1164 it = displaced_step_inferior_states;
1165 prev_next_p = &displaced_step_inferior_states;
1170 *prev_next_p = it->next;
1175 prev_next_p = &it->next;
1181 infrun_inferior_exit (struct inferior *inf)
1183 remove_displaced_stepping_state (inf->pid);
1186 /* Enum strings for "set|show displaced-stepping". */
1188 static const char can_use_displaced_stepping_auto[] = "auto";
1189 static const char can_use_displaced_stepping_on[] = "on";
1190 static const char can_use_displaced_stepping_off[] = "off";
1191 static const char *const can_use_displaced_stepping_enum[] =
1193 can_use_displaced_stepping_auto,
1194 can_use_displaced_stepping_on,
1195 can_use_displaced_stepping_off,
1199 /* If ON, and the architecture supports it, GDB will use displaced
1200 stepping to step over breakpoints. If OFF, or if the architecture
1201 doesn't support it, GDB will instead use the traditional
1202 hold-and-step approach. If AUTO (which is the default), GDB will
1203 decide which technique to use to step over breakpoints depending on
1204 which of all-stop or non-stop mode is active --- displaced stepping
1205 in non-stop mode; hold-and-step in all-stop mode. */
1207 static const char *can_use_displaced_stepping =
1208 can_use_displaced_stepping_auto;
1211 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1212 struct cmd_list_element *c,
1215 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1216 fprintf_filtered (file,
1217 _("Debugger's willingness to use displaced stepping "
1218 "to step over breakpoints is %s (currently %s).\n"),
1219 value, non_stop ? "on" : "off");
1221 fprintf_filtered (file,
1222 _("Debugger's willingness to use displaced stepping "
1223 "to step over breakpoints is %s.\n"), value);
1226 /* Return non-zero if displaced stepping can/should be used to step
1227 over breakpoints. */
1230 use_displaced_stepping (struct gdbarch *gdbarch)
1232 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1234 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1235 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1236 && !RECORD_IS_USED);
1239 /* Clean out any stray displaced stepping state. */
1241 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1243 /* Indicate that there is no cleanup pending. */
1244 displaced->step_ptid = null_ptid;
1246 if (displaced->step_closure)
1248 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1249 displaced->step_closure);
1250 displaced->step_closure = NULL;
1255 displaced_step_clear_cleanup (void *arg)
1257 struct displaced_step_inferior_state *state = arg;
1259 displaced_step_clear (state);
1262 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1264 displaced_step_dump_bytes (struct ui_file *file,
1265 const gdb_byte *buf,
1270 for (i = 0; i < len; i++)
1271 fprintf_unfiltered (file, "%02x ", buf[i]);
1272 fputs_unfiltered ("\n", file);
1275 /* Prepare to single-step, using displaced stepping.
1277 Note that we cannot use displaced stepping when we have a signal to
1278 deliver. If we have a signal to deliver and an instruction to step
1279 over, then after the step, there will be no indication from the
1280 target whether the thread entered a signal handler or ignored the
1281 signal and stepped over the instruction successfully --- both cases
1282 result in a simple SIGTRAP. In the first case we mustn't do a
1283 fixup, and in the second case we must --- but we can't tell which.
1284 Comments in the code for 'random signals' in handle_inferior_event
1285 explain how we handle this case instead.
1287 Returns 1 if preparing was successful -- this thread is going to be
1288 stepped now; or 0 if displaced stepping this thread got queued. */
1290 displaced_step_prepare (ptid_t ptid)
1292 struct cleanup *old_cleanups, *ignore_cleanups;
1293 struct regcache *regcache = get_thread_regcache (ptid);
1294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1295 CORE_ADDR original, copy;
1297 struct displaced_step_closure *closure;
1298 struct displaced_step_inferior_state *displaced;
1301 /* We should never reach this function if the architecture does not
1302 support displaced stepping. */
1303 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1305 /* We have to displaced step one thread at a time, as we only have
1306 access to a single scratch space per inferior. */
1308 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1310 if (!ptid_equal (displaced->step_ptid, null_ptid))
1312 /* Already waiting for a displaced step to finish. Defer this
1313 request and place in queue. */
1314 struct displaced_step_request *req, *new_req;
1316 if (debug_displaced)
1317 fprintf_unfiltered (gdb_stdlog,
1318 "displaced: defering step of %s\n",
1319 target_pid_to_str (ptid));
1321 new_req = xmalloc (sizeof (*new_req));
1322 new_req->ptid = ptid;
1323 new_req->next = NULL;
1325 if (displaced->step_request_queue)
1327 for (req = displaced->step_request_queue;
1331 req->next = new_req;
1334 displaced->step_request_queue = new_req;
1340 if (debug_displaced)
1341 fprintf_unfiltered (gdb_stdlog,
1342 "displaced: stepping %s now\n",
1343 target_pid_to_str (ptid));
1346 displaced_step_clear (displaced);
1348 old_cleanups = save_inferior_ptid ();
1349 inferior_ptid = ptid;
1351 original = regcache_read_pc (regcache);
1353 copy = gdbarch_displaced_step_location (gdbarch);
1354 len = gdbarch_max_insn_length (gdbarch);
1356 /* Save the original contents of the copy area. */
1357 displaced->step_saved_copy = xmalloc (len);
1358 ignore_cleanups = make_cleanup (free_current_contents,
1359 &displaced->step_saved_copy);
1360 status = target_read_memory (copy, displaced->step_saved_copy, len);
1362 throw_error (MEMORY_ERROR,
1363 _("Error accessing memory address %s (%s) for "
1364 "displaced-stepping scratch space."),
1365 paddress (gdbarch, copy), safe_strerror (status));
1366 if (debug_displaced)
1368 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1369 paddress (gdbarch, copy));
1370 displaced_step_dump_bytes (gdb_stdlog,
1371 displaced->step_saved_copy,
1375 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1376 original, copy, regcache);
1378 /* We don't support the fully-simulated case at present. */
1379 gdb_assert (closure);
1381 /* Save the information we need to fix things up if the step
1383 displaced->step_ptid = ptid;
1384 displaced->step_gdbarch = gdbarch;
1385 displaced->step_closure = closure;
1386 displaced->step_original = original;
1387 displaced->step_copy = copy;
1389 make_cleanup (displaced_step_clear_cleanup, displaced);
1391 /* Resume execution at the copy. */
1392 regcache_write_pc (regcache, copy);
1394 discard_cleanups (ignore_cleanups);
1396 do_cleanups (old_cleanups);
1398 if (debug_displaced)
1399 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1400 paddress (gdbarch, copy));
1406 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1407 const gdb_byte *myaddr, int len)
1409 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1411 inferior_ptid = ptid;
1412 write_memory (memaddr, myaddr, len);
1413 do_cleanups (ptid_cleanup);
1416 /* Restore the contents of the copy area for thread PTID. */
1419 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1422 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1424 write_memory_ptid (ptid, displaced->step_copy,
1425 displaced->step_saved_copy, len);
1426 if (debug_displaced)
1427 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1428 target_pid_to_str (ptid),
1429 paddress (displaced->step_gdbarch,
1430 displaced->step_copy));
1434 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1436 struct cleanup *old_cleanups;
1437 struct displaced_step_inferior_state *displaced
1438 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1440 /* Was any thread of this process doing a displaced step? */
1441 if (displaced == NULL)
1444 /* Was this event for the pid we displaced? */
1445 if (ptid_equal (displaced->step_ptid, null_ptid)
1446 || ! ptid_equal (displaced->step_ptid, event_ptid))
1449 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1451 displaced_step_restore (displaced, displaced->step_ptid);
1453 /* Did the instruction complete successfully? */
1454 if (signal == TARGET_SIGNAL_TRAP)
1456 /* Fix up the resulting state. */
1457 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1458 displaced->step_closure,
1459 displaced->step_original,
1460 displaced->step_copy,
1461 get_thread_regcache (displaced->step_ptid));
1465 /* Since the instruction didn't complete, all we can do is
1467 struct regcache *regcache = get_thread_regcache (event_ptid);
1468 CORE_ADDR pc = regcache_read_pc (regcache);
1470 pc = displaced->step_original + (pc - displaced->step_copy);
1471 regcache_write_pc (regcache, pc);
1474 do_cleanups (old_cleanups);
1476 displaced->step_ptid = null_ptid;
1478 /* Are there any pending displaced stepping requests? If so, run
1479 one now. Leave the state object around, since we're likely to
1480 need it again soon. */
1481 while (displaced->step_request_queue)
1483 struct displaced_step_request *head;
1485 struct regcache *regcache;
1486 struct gdbarch *gdbarch;
1487 CORE_ADDR actual_pc;
1488 struct address_space *aspace;
1490 head = displaced->step_request_queue;
1492 displaced->step_request_queue = head->next;
1495 context_switch (ptid);
1497 regcache = get_thread_regcache (ptid);
1498 actual_pc = regcache_read_pc (regcache);
1499 aspace = get_regcache_aspace (regcache);
1501 if (breakpoint_here_p (aspace, actual_pc))
1503 if (debug_displaced)
1504 fprintf_unfiltered (gdb_stdlog,
1505 "displaced: stepping queued %s now\n",
1506 target_pid_to_str (ptid));
1508 displaced_step_prepare (ptid);
1510 gdbarch = get_regcache_arch (regcache);
1512 if (debug_displaced)
1514 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1517 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1518 paddress (gdbarch, actual_pc));
1519 read_memory (actual_pc, buf, sizeof (buf));
1520 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1523 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1524 displaced->step_closure))
1525 target_resume (ptid, 1, TARGET_SIGNAL_0);
1527 target_resume (ptid, 0, TARGET_SIGNAL_0);
1529 /* Done, we're stepping a thread. */
1535 struct thread_info *tp = inferior_thread ();
1537 /* The breakpoint we were sitting under has since been
1539 tp->control.trap_expected = 0;
1541 /* Go back to what we were trying to do. */
1542 step = currently_stepping (tp);
1544 if (debug_displaced)
1545 fprintf_unfiltered (gdb_stdlog,
1546 "breakpoint is gone %s: step(%d)\n",
1547 target_pid_to_str (tp->ptid), step);
1549 target_resume (ptid, step, TARGET_SIGNAL_0);
1550 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1552 /* This request was discarded. See if there's any other
1553 thread waiting for its turn. */
1558 /* Update global variables holding ptids to hold NEW_PTID if they were
1559 holding OLD_PTID. */
1561 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1563 struct displaced_step_request *it;
1564 struct displaced_step_inferior_state *displaced;
1566 if (ptid_equal (inferior_ptid, old_ptid))
1567 inferior_ptid = new_ptid;
1569 if (ptid_equal (singlestep_ptid, old_ptid))
1570 singlestep_ptid = new_ptid;
1572 if (ptid_equal (deferred_step_ptid, old_ptid))
1573 deferred_step_ptid = new_ptid;
1575 for (displaced = displaced_step_inferior_states;
1577 displaced = displaced->next)
1579 if (ptid_equal (displaced->step_ptid, old_ptid))
1580 displaced->step_ptid = new_ptid;
1582 for (it = displaced->step_request_queue; it; it = it->next)
1583 if (ptid_equal (it->ptid, old_ptid))
1584 it->ptid = new_ptid;
1591 /* Things to clean up if we QUIT out of resume (). */
1593 resume_cleanups (void *ignore)
1598 static const char schedlock_off[] = "off";
1599 static const char schedlock_on[] = "on";
1600 static const char schedlock_step[] = "step";
1601 static const char *const scheduler_enums[] = {
1607 static const char *scheduler_mode = schedlock_off;
1609 show_scheduler_mode (struct ui_file *file, int from_tty,
1610 struct cmd_list_element *c, const char *value)
1612 fprintf_filtered (file,
1613 _("Mode for locking scheduler "
1614 "during execution is \"%s\".\n"),
1619 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1621 if (!target_can_lock_scheduler)
1623 scheduler_mode = schedlock_off;
1624 error (_("Target '%s' cannot support this command."), target_shortname);
1628 /* True if execution commands resume all threads of all processes by
1629 default; otherwise, resume only threads of the current inferior
1631 int sched_multi = 0;
1633 /* Try to setup for software single stepping over the specified location.
1634 Return 1 if target_resume() should use hardware single step.
1636 GDBARCH the current gdbarch.
1637 PC the location to step over. */
1640 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1644 if (execution_direction == EXEC_FORWARD
1645 && gdbarch_software_single_step_p (gdbarch)
1646 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1649 /* Do not pull these breakpoints until after a `wait' in
1650 `wait_for_inferior'. */
1651 singlestep_breakpoints_inserted_p = 1;
1652 singlestep_ptid = inferior_ptid;
1658 /* Return a ptid representing the set of threads that we will proceed,
1659 in the perspective of the user/frontend. We may actually resume
1660 fewer threads at first, e.g., if a thread is stopped at a
1661 breakpoint that needs stepping-off, but that should not be visible
1662 to the user/frontend, and neither should the frontend/user be
1663 allowed to proceed any of the threads that happen to be stopped for
1664 internal run control handling, if a previous command wanted them
1668 user_visible_resume_ptid (int step)
1670 /* By default, resume all threads of all processes. */
1671 ptid_t resume_ptid = RESUME_ALL;
1673 /* Maybe resume only all threads of the current process. */
1674 if (!sched_multi && target_supports_multi_process ())
1676 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1679 /* Maybe resume a single thread after all. */
1682 /* With non-stop mode on, threads are always handled
1684 resume_ptid = inferior_ptid;
1686 else if ((scheduler_mode == schedlock_on)
1687 || (scheduler_mode == schedlock_step
1688 && (step || singlestep_breakpoints_inserted_p)))
1690 /* User-settable 'scheduler' mode requires solo thread resume. */
1691 resume_ptid = inferior_ptid;
1697 /* Resume the inferior, but allow a QUIT. This is useful if the user
1698 wants to interrupt some lengthy single-stepping operation
1699 (for child processes, the SIGINT goes to the inferior, and so
1700 we get a SIGINT random_signal, but for remote debugging and perhaps
1701 other targets, that's not true).
1703 STEP nonzero if we should step (zero to continue instead).
1704 SIG is the signal to give the inferior (zero for none). */
1706 resume (int step, enum target_signal sig)
1708 int should_resume = 1;
1709 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1710 struct regcache *regcache = get_current_regcache ();
1711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1712 struct thread_info *tp = inferior_thread ();
1713 CORE_ADDR pc = regcache_read_pc (regcache);
1714 struct address_space *aspace = get_regcache_aspace (regcache);
1718 if (current_inferior ()->waiting_for_vfork_done)
1720 /* Don't try to single-step a vfork parent that is waiting for
1721 the child to get out of the shared memory region (by exec'ing
1722 or exiting). This is particularly important on software
1723 single-step archs, as the child process would trip on the
1724 software single step breakpoint inserted for the parent
1725 process. Since the parent will not actually execute any
1726 instruction until the child is out of the shared region (such
1727 are vfork's semantics), it is safe to simply continue it.
1728 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1729 the parent, and tell it to `keep_going', which automatically
1730 re-sets it stepping. */
1732 fprintf_unfiltered (gdb_stdlog,
1733 "infrun: resume : clear step\n");
1738 fprintf_unfiltered (gdb_stdlog,
1739 "infrun: resume (step=%d, signal=%d), "
1740 "trap_expected=%d, current thread [%s] at %s\n",
1741 step, sig, tp->control.trap_expected,
1742 target_pid_to_str (inferior_ptid),
1743 paddress (gdbarch, pc));
1745 /* Normally, by the time we reach `resume', the breakpoints are either
1746 removed or inserted, as appropriate. The exception is if we're sitting
1747 at a permanent breakpoint; we need to step over it, but permanent
1748 breakpoints can't be removed. So we have to test for it here. */
1749 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1751 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1752 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1755 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1756 how to step past a permanent breakpoint on this architecture. Try using\n\
1757 a command like `return' or `jump' to continue execution."));
1760 /* If enabled, step over breakpoints by executing a copy of the
1761 instruction at a different address.
1763 We can't use displaced stepping when we have a signal to deliver;
1764 the comments for displaced_step_prepare explain why. The
1765 comments in the handle_inferior event for dealing with 'random
1766 signals' explain what we do instead.
1768 We can't use displaced stepping when we are waiting for vfork_done
1769 event, displaced stepping breaks the vfork child similarly as single
1770 step software breakpoint. */
1771 if (use_displaced_stepping (gdbarch)
1772 && (tp->control.trap_expected
1773 || (step && gdbarch_software_single_step_p (gdbarch)))
1774 && sig == TARGET_SIGNAL_0
1775 && !current_inferior ()->waiting_for_vfork_done)
1777 struct displaced_step_inferior_state *displaced;
1779 if (!displaced_step_prepare (inferior_ptid))
1781 /* Got placed in displaced stepping queue. Will be resumed
1782 later when all the currently queued displaced stepping
1783 requests finish. The thread is not executing at this point,
1784 and the call to set_executing will be made later. But we
1785 need to call set_running here, since from frontend point of view,
1786 the thread is running. */
1787 set_running (inferior_ptid, 1);
1788 discard_cleanups (old_cleanups);
1792 /* Update pc to reflect the new address from which we will execute
1793 instructions due to displaced stepping. */
1794 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1796 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1797 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1798 displaced->step_closure);
1801 /* Do we need to do it the hard way, w/temp breakpoints? */
1803 step = maybe_software_singlestep (gdbarch, pc);
1805 /* Currently, our software single-step implementation leads to different
1806 results than hardware single-stepping in one situation: when stepping
1807 into delivering a signal which has an associated signal handler,
1808 hardware single-step will stop at the first instruction of the handler,
1809 while software single-step will simply skip execution of the handler.
1811 For now, this difference in behavior is accepted since there is no
1812 easy way to actually implement single-stepping into a signal handler
1813 without kernel support.
1815 However, there is one scenario where this difference leads to follow-on
1816 problems: if we're stepping off a breakpoint by removing all breakpoints
1817 and then single-stepping. In this case, the software single-step
1818 behavior means that even if there is a *breakpoint* in the signal
1819 handler, GDB still would not stop.
1821 Fortunately, we can at least fix this particular issue. We detect
1822 here the case where we are about to deliver a signal while software
1823 single-stepping with breakpoints removed. In this situation, we
1824 revert the decisions to remove all breakpoints and insert single-
1825 step breakpoints, and instead we install a step-resume breakpoint
1826 at the current address, deliver the signal without stepping, and
1827 once we arrive back at the step-resume breakpoint, actually step
1828 over the breakpoint we originally wanted to step over. */
1829 if (singlestep_breakpoints_inserted_p
1830 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1832 /* If we have nested signals or a pending signal is delivered
1833 immediately after a handler returns, might might already have
1834 a step-resume breakpoint set on the earlier handler. We cannot
1835 set another step-resume breakpoint; just continue on until the
1836 original breakpoint is hit. */
1837 if (tp->control.step_resume_breakpoint == NULL)
1839 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1840 tp->step_after_step_resume_breakpoint = 1;
1843 remove_single_step_breakpoints ();
1844 singlestep_breakpoints_inserted_p = 0;
1846 insert_breakpoints ();
1847 tp->control.trap_expected = 0;
1854 /* If STEP is set, it's a request to use hardware stepping
1855 facilities. But in that case, we should never
1856 use singlestep breakpoint. */
1857 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1859 /* Decide the set of threads to ask the target to resume. Start
1860 by assuming everything will be resumed, than narrow the set
1861 by applying increasingly restricting conditions. */
1862 resume_ptid = user_visible_resume_ptid (step);
1864 /* Maybe resume a single thread after all. */
1865 if (singlestep_breakpoints_inserted_p
1866 && stepping_past_singlestep_breakpoint)
1868 /* The situation here is as follows. In thread T1 we wanted to
1869 single-step. Lacking hardware single-stepping we've
1870 set breakpoint at the PC of the next instruction -- call it
1871 P. After resuming, we've hit that breakpoint in thread T2.
1872 Now we've removed original breakpoint, inserted breakpoint
1873 at P+1, and try to step to advance T2 past breakpoint.
1874 We need to step only T2, as if T1 is allowed to freely run,
1875 it can run past P, and if other threads are allowed to run,
1876 they can hit breakpoint at P+1, and nested hits of single-step
1877 breakpoints is not something we'd want -- that's complicated
1878 to support, and has no value. */
1879 resume_ptid = inferior_ptid;
1881 else if ((step || singlestep_breakpoints_inserted_p)
1882 && tp->control.trap_expected)
1884 /* We're allowing a thread to run past a breakpoint it has
1885 hit, by single-stepping the thread with the breakpoint
1886 removed. In which case, we need to single-step only this
1887 thread, and keep others stopped, as they can miss this
1888 breakpoint if allowed to run.
1890 The current code actually removes all breakpoints when
1891 doing this, not just the one being stepped over, so if we
1892 let other threads run, we can actually miss any
1893 breakpoint, not just the one at PC. */
1894 resume_ptid = inferior_ptid;
1897 if (gdbarch_cannot_step_breakpoint (gdbarch))
1899 /* Most targets can step a breakpoint instruction, thus
1900 executing it normally. But if this one cannot, just
1901 continue and we will hit it anyway. */
1902 if (step && breakpoint_inserted_here_p (aspace, pc))
1907 && use_displaced_stepping (gdbarch)
1908 && tp->control.trap_expected)
1910 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1911 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1912 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1915 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1916 paddress (resume_gdbarch, actual_pc));
1917 read_memory (actual_pc, buf, sizeof (buf));
1918 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1921 /* Install inferior's terminal modes. */
1922 target_terminal_inferior ();
1924 /* Avoid confusing the next resume, if the next stop/resume
1925 happens to apply to another thread. */
1926 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1928 /* Advise target which signals may be handled silently. If we have
1929 removed breakpoints because we are stepping over one (which can
1930 happen only if we are not using displaced stepping), we need to
1931 receive all signals to avoid accidentally skipping a breakpoint
1932 during execution of a signal handler. */
1933 if ((step || singlestep_breakpoints_inserted_p)
1934 && tp->control.trap_expected
1935 && !use_displaced_stepping (gdbarch))
1936 target_pass_signals (0, NULL);
1938 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1940 target_resume (resume_ptid, step, sig);
1943 discard_cleanups (old_cleanups);
1948 /* Clear out all variables saying what to do when inferior is continued.
1949 First do this, then set the ones you want, then call `proceed'. */
1952 clear_proceed_status_thread (struct thread_info *tp)
1955 fprintf_unfiltered (gdb_stdlog,
1956 "infrun: clear_proceed_status_thread (%s)\n",
1957 target_pid_to_str (tp->ptid));
1959 tp->control.trap_expected = 0;
1960 tp->control.step_range_start = 0;
1961 tp->control.step_range_end = 0;
1962 tp->control.step_frame_id = null_frame_id;
1963 tp->control.step_stack_frame_id = null_frame_id;
1964 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1965 tp->stop_requested = 0;
1967 tp->control.stop_step = 0;
1969 tp->control.proceed_to_finish = 0;
1971 /* Discard any remaining commands or status from previous stop. */
1972 bpstat_clear (&tp->control.stop_bpstat);
1976 clear_proceed_status_callback (struct thread_info *tp, void *data)
1978 if (is_exited (tp->ptid))
1981 clear_proceed_status_thread (tp);
1986 clear_proceed_status (void)
1990 /* In all-stop mode, delete the per-thread status of all
1991 threads, even if inferior_ptid is null_ptid, there may be
1992 threads on the list. E.g., we may be launching a new
1993 process, while selecting the executable. */
1994 iterate_over_threads (clear_proceed_status_callback, NULL);
1997 if (!ptid_equal (inferior_ptid, null_ptid))
1999 struct inferior *inferior;
2003 /* If in non-stop mode, only delete the per-thread status of
2004 the current thread. */
2005 clear_proceed_status_thread (inferior_thread ());
2008 inferior = current_inferior ();
2009 inferior->control.stop_soon = NO_STOP_QUIETLY;
2012 stop_after_trap = 0;
2014 observer_notify_about_to_proceed ();
2018 regcache_xfree (stop_registers);
2019 stop_registers = NULL;
2023 /* Check the current thread against the thread that reported the most recent
2024 event. If a step-over is required return TRUE and set the current thread
2025 to the old thread. Otherwise return FALSE.
2027 This should be suitable for any targets that support threads. */
2030 prepare_to_proceed (int step)
2033 struct target_waitstatus wait_status;
2034 int schedlock_enabled;
2036 /* With non-stop mode on, threads are always handled individually. */
2037 gdb_assert (! non_stop);
2039 /* Get the last target status returned by target_wait(). */
2040 get_last_target_status (&wait_ptid, &wait_status);
2042 /* Make sure we were stopped at a breakpoint. */
2043 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2044 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2045 && wait_status.value.sig != TARGET_SIGNAL_ILL
2046 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2047 && wait_status.value.sig != TARGET_SIGNAL_EMT))
2052 schedlock_enabled = (scheduler_mode == schedlock_on
2053 || (scheduler_mode == schedlock_step
2056 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2057 if (schedlock_enabled)
2060 /* Don't switch over if we're about to resume some other process
2061 other than WAIT_PTID's, and schedule-multiple is off. */
2063 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2066 /* Switched over from WAIT_PID. */
2067 if (!ptid_equal (wait_ptid, minus_one_ptid)
2068 && !ptid_equal (inferior_ptid, wait_ptid))
2070 struct regcache *regcache = get_thread_regcache (wait_ptid);
2072 if (breakpoint_here_p (get_regcache_aspace (regcache),
2073 regcache_read_pc (regcache)))
2075 /* If stepping, remember current thread to switch back to. */
2077 deferred_step_ptid = inferior_ptid;
2079 /* Switch back to WAIT_PID thread. */
2080 switch_to_thread (wait_ptid);
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: prepare_to_proceed (step=%d), "
2085 "switched to [%s]\n",
2086 step, target_pid_to_str (inferior_ptid));
2088 /* We return 1 to indicate that there is a breakpoint here,
2089 so we need to step over it before continuing to avoid
2090 hitting it straight away. */
2098 /* Basic routine for continuing the program in various fashions.
2100 ADDR is the address to resume at, or -1 for resume where stopped.
2101 SIGGNAL is the signal to give it, or 0 for none,
2102 or -1 for act according to how it stopped.
2103 STEP is nonzero if should trap after one instruction.
2104 -1 means return after that and print nothing.
2105 You should probably set various step_... variables
2106 before calling here, if you are stepping.
2108 You should call clear_proceed_status before calling proceed. */
2111 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2113 struct regcache *regcache;
2114 struct gdbarch *gdbarch;
2115 struct thread_info *tp;
2117 struct address_space *aspace;
2120 /* If we're stopped at a fork/vfork, follow the branch set by the
2121 "set follow-fork-mode" command; otherwise, we'll just proceed
2122 resuming the current thread. */
2123 if (!follow_fork ())
2125 /* The target for some reason decided not to resume. */
2127 if (target_can_async_p ())
2128 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2132 /* We'll update this if & when we switch to a new thread. */
2133 previous_inferior_ptid = inferior_ptid;
2135 regcache = get_current_regcache ();
2136 gdbarch = get_regcache_arch (regcache);
2137 aspace = get_regcache_aspace (regcache);
2138 pc = regcache_read_pc (regcache);
2141 step_start_function = find_pc_function (pc);
2143 stop_after_trap = 1;
2145 if (addr == (CORE_ADDR) -1)
2147 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2148 && execution_direction != EXEC_REVERSE)
2149 /* There is a breakpoint at the address we will resume at,
2150 step one instruction before inserting breakpoints so that
2151 we do not stop right away (and report a second hit at this
2154 Note, we don't do this in reverse, because we won't
2155 actually be executing the breakpoint insn anyway.
2156 We'll be (un-)executing the previous instruction. */
2159 else if (gdbarch_single_step_through_delay_p (gdbarch)
2160 && gdbarch_single_step_through_delay (gdbarch,
2161 get_current_frame ()))
2162 /* We stepped onto an instruction that needs to be stepped
2163 again before re-inserting the breakpoint, do so. */
2168 regcache_write_pc (regcache, addr);
2172 fprintf_unfiltered (gdb_stdlog,
2173 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2174 paddress (gdbarch, addr), siggnal, step);
2177 /* In non-stop, each thread is handled individually. The context
2178 must already be set to the right thread here. */
2182 /* In a multi-threaded task we may select another thread and
2183 then continue or step.
2185 But if the old thread was stopped at a breakpoint, it will
2186 immediately cause another breakpoint stop without any
2187 execution (i.e. it will report a breakpoint hit incorrectly).
2188 So we must step over it first.
2190 prepare_to_proceed checks the current thread against the
2191 thread that reported the most recent event. If a step-over
2192 is required it returns TRUE and sets the current thread to
2194 if (prepare_to_proceed (step))
2198 /* prepare_to_proceed may change the current thread. */
2199 tp = inferior_thread ();
2203 tp->control.trap_expected = 1;
2204 /* If displaced stepping is enabled, we can step over the
2205 breakpoint without hitting it, so leave all breakpoints
2206 inserted. Otherwise we need to disable all breakpoints, step
2207 one instruction, and then re-add them when that step is
2209 if (!use_displaced_stepping (gdbarch))
2210 remove_breakpoints ();
2213 /* We can insert breakpoints if we're not trying to step over one,
2214 or if we are stepping over one but we're using displaced stepping
2216 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2217 insert_breakpoints ();
2221 /* Pass the last stop signal to the thread we're resuming,
2222 irrespective of whether the current thread is the thread that
2223 got the last event or not. This was historically GDB's
2224 behaviour before keeping a stop_signal per thread. */
2226 struct thread_info *last_thread;
2228 struct target_waitstatus last_status;
2230 get_last_target_status (&last_ptid, &last_status);
2231 if (!ptid_equal (inferior_ptid, last_ptid)
2232 && !ptid_equal (last_ptid, null_ptid)
2233 && !ptid_equal (last_ptid, minus_one_ptid))
2235 last_thread = find_thread_ptid (last_ptid);
2238 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2239 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2244 if (siggnal != TARGET_SIGNAL_DEFAULT)
2245 tp->suspend.stop_signal = siggnal;
2246 /* If this signal should not be seen by program,
2247 give it zero. Used for debugging signals. */
2248 else if (!signal_program[tp->suspend.stop_signal])
2249 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2251 annotate_starting ();
2253 /* Make sure that output from GDB appears before output from the
2255 gdb_flush (gdb_stdout);
2257 /* Refresh prev_pc value just prior to resuming. This used to be
2258 done in stop_stepping, however, setting prev_pc there did not handle
2259 scenarios such as inferior function calls or returning from
2260 a function via the return command. In those cases, the prev_pc
2261 value was not set properly for subsequent commands. The prev_pc value
2262 is used to initialize the starting line number in the ecs. With an
2263 invalid value, the gdb next command ends up stopping at the position
2264 represented by the next line table entry past our start position.
2265 On platforms that generate one line table entry per line, this
2266 is not a problem. However, on the ia64, the compiler generates
2267 extraneous line table entries that do not increase the line number.
2268 When we issue the gdb next command on the ia64 after an inferior call
2269 or a return command, we often end up a few instructions forward, still
2270 within the original line we started.
2272 An attempt was made to refresh the prev_pc at the same time the
2273 execution_control_state is initialized (for instance, just before
2274 waiting for an inferior event). But this approach did not work
2275 because of platforms that use ptrace, where the pc register cannot
2276 be read unless the inferior is stopped. At that point, we are not
2277 guaranteed the inferior is stopped and so the regcache_read_pc() call
2278 can fail. Setting the prev_pc value here ensures the value is updated
2279 correctly when the inferior is stopped. */
2280 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2282 /* Fill in with reasonable starting values. */
2283 init_thread_stepping_state (tp);
2285 /* Reset to normal state. */
2286 init_infwait_state ();
2288 /* Resume inferior. */
2289 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2291 /* Wait for it to stop (if not standalone)
2292 and in any case decode why it stopped, and act accordingly. */
2293 /* Do this only if we are not using the event loop, or if the target
2294 does not support asynchronous execution. */
2295 if (!target_can_async_p ())
2297 wait_for_inferior ();
2303 /* Start remote-debugging of a machine over a serial link. */
2306 start_remote (int from_tty)
2308 struct inferior *inferior;
2310 inferior = current_inferior ();
2311 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2313 /* Always go on waiting for the target, regardless of the mode. */
2314 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2315 indicate to wait_for_inferior that a target should timeout if
2316 nothing is returned (instead of just blocking). Because of this,
2317 targets expecting an immediate response need to, internally, set
2318 things up so that the target_wait() is forced to eventually
2320 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2321 differentiate to its caller what the state of the target is after
2322 the initial open has been performed. Here we're assuming that
2323 the target has stopped. It should be possible to eventually have
2324 target_open() return to the caller an indication that the target
2325 is currently running and GDB state should be set to the same as
2326 for an async run. */
2327 wait_for_inferior ();
2329 /* Now that the inferior has stopped, do any bookkeeping like
2330 loading shared libraries. We want to do this before normal_stop,
2331 so that the displayed frame is up to date. */
2332 post_create_inferior (¤t_target, from_tty);
2337 /* Initialize static vars when a new inferior begins. */
2340 init_wait_for_inferior (void)
2342 /* These are meaningless until the first time through wait_for_inferior. */
2344 breakpoint_init_inferior (inf_starting);
2346 clear_proceed_status ();
2348 stepping_past_singlestep_breakpoint = 0;
2349 deferred_step_ptid = null_ptid;
2351 target_last_wait_ptid = minus_one_ptid;
2353 previous_inferior_ptid = inferior_ptid;
2354 init_infwait_state ();
2356 /* Discard any skipped inlined frames. */
2357 clear_inline_frame_state (minus_one_ptid);
2361 /* This enum encodes possible reasons for doing a target_wait, so that
2362 wfi can call target_wait in one place. (Ultimately the call will be
2363 moved out of the infinite loop entirely.) */
2367 infwait_normal_state,
2368 infwait_thread_hop_state,
2369 infwait_step_watch_state,
2370 infwait_nonstep_watch_state
2373 /* The PTID we'll do a target_wait on.*/
2376 /* Current inferior wait state. */
2377 enum infwait_states infwait_state;
2379 /* Data to be passed around while handling an event. This data is
2380 discarded between events. */
2381 struct execution_control_state
2384 /* The thread that got the event, if this was a thread event; NULL
2386 struct thread_info *event_thread;
2388 struct target_waitstatus ws;
2390 int stop_func_filled_in;
2391 CORE_ADDR stop_func_start;
2392 CORE_ADDR stop_func_end;
2393 const char *stop_func_name;
2394 int new_thread_event;
2398 static void handle_inferior_event (struct execution_control_state *ecs);
2400 static void handle_step_into_function (struct gdbarch *gdbarch,
2401 struct execution_control_state *ecs);
2402 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2403 struct execution_control_state *ecs);
2404 static void check_exception_resume (struct execution_control_state *,
2405 struct frame_info *, struct symbol *);
2407 static void stop_stepping (struct execution_control_state *ecs);
2408 static void prepare_to_wait (struct execution_control_state *ecs);
2409 static void keep_going (struct execution_control_state *ecs);
2411 /* Callback for iterate over threads. If the thread is stopped, but
2412 the user/frontend doesn't know about that yet, go through
2413 normal_stop, as if the thread had just stopped now. ARG points at
2414 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2415 ptid_is_pid(PTID) is true, applies to all threads of the process
2416 pointed at by PTID. Otherwise, apply only to the thread pointed by
2420 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2422 ptid_t ptid = * (ptid_t *) arg;
2424 if ((ptid_equal (info->ptid, ptid)
2425 || ptid_equal (minus_one_ptid, ptid)
2426 || (ptid_is_pid (ptid)
2427 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2428 && is_running (info->ptid)
2429 && !is_executing (info->ptid))
2431 struct cleanup *old_chain;
2432 struct execution_control_state ecss;
2433 struct execution_control_state *ecs = &ecss;
2435 memset (ecs, 0, sizeof (*ecs));
2437 old_chain = make_cleanup_restore_current_thread ();
2439 switch_to_thread (info->ptid);
2441 /* Go through handle_inferior_event/normal_stop, so we always
2442 have consistent output as if the stop event had been
2444 ecs->ptid = info->ptid;
2445 ecs->event_thread = find_thread_ptid (info->ptid);
2446 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2447 ecs->ws.value.sig = TARGET_SIGNAL_0;
2449 handle_inferior_event (ecs);
2451 if (!ecs->wait_some_more)
2453 struct thread_info *tp;
2457 /* Finish off the continuations. */
2458 tp = inferior_thread ();
2459 do_all_intermediate_continuations_thread (tp, 1);
2460 do_all_continuations_thread (tp, 1);
2463 do_cleanups (old_chain);
2469 /* This function is attached as a "thread_stop_requested" observer.
2470 Cleanup local state that assumed the PTID was to be resumed, and
2471 report the stop to the frontend. */
2474 infrun_thread_stop_requested (ptid_t ptid)
2476 struct displaced_step_inferior_state *displaced;
2478 /* PTID was requested to stop. Remove it from the displaced
2479 stepping queue, so we don't try to resume it automatically. */
2481 for (displaced = displaced_step_inferior_states;
2483 displaced = displaced->next)
2485 struct displaced_step_request *it, **prev_next_p;
2487 it = displaced->step_request_queue;
2488 prev_next_p = &displaced->step_request_queue;
2491 if (ptid_match (it->ptid, ptid))
2493 *prev_next_p = it->next;
2499 prev_next_p = &it->next;
2506 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2510 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2512 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2513 nullify_last_target_wait_ptid ();
2516 /* Callback for iterate_over_threads. */
2519 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2521 if (is_exited (info->ptid))
2524 delete_step_resume_breakpoint (info);
2525 delete_exception_resume_breakpoint (info);
2529 /* In all-stop, delete the step resume breakpoint of any thread that
2530 had one. In non-stop, delete the step resume breakpoint of the
2531 thread that just stopped. */
2534 delete_step_thread_step_resume_breakpoint (void)
2536 if (!target_has_execution
2537 || ptid_equal (inferior_ptid, null_ptid))
2538 /* If the inferior has exited, we have already deleted the step
2539 resume breakpoints out of GDB's lists. */
2544 /* If in non-stop mode, only delete the step-resume or
2545 longjmp-resume breakpoint of the thread that just stopped
2547 struct thread_info *tp = inferior_thread ();
2549 delete_step_resume_breakpoint (tp);
2550 delete_exception_resume_breakpoint (tp);
2553 /* In all-stop mode, delete all step-resume and longjmp-resume
2554 breakpoints of any thread that had them. */
2555 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2558 /* A cleanup wrapper. */
2561 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2563 delete_step_thread_step_resume_breakpoint ();
2566 /* Pretty print the results of target_wait, for debugging purposes. */
2569 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2570 const struct target_waitstatus *ws)
2572 char *status_string = target_waitstatus_to_string (ws);
2573 struct ui_file *tmp_stream = mem_fileopen ();
2576 /* The text is split over several lines because it was getting too long.
2577 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2578 output as a unit; we want only one timestamp printed if debug_timestamp
2581 fprintf_unfiltered (tmp_stream,
2582 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2583 if (PIDGET (waiton_ptid) != -1)
2584 fprintf_unfiltered (tmp_stream,
2585 " [%s]", target_pid_to_str (waiton_ptid));
2586 fprintf_unfiltered (tmp_stream, ", status) =\n");
2587 fprintf_unfiltered (tmp_stream,
2588 "infrun: %d [%s],\n",
2589 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2590 fprintf_unfiltered (tmp_stream,
2594 text = ui_file_xstrdup (tmp_stream, NULL);
2596 /* This uses %s in part to handle %'s in the text, but also to avoid
2597 a gcc error: the format attribute requires a string literal. */
2598 fprintf_unfiltered (gdb_stdlog, "%s", text);
2600 xfree (status_string);
2602 ui_file_delete (tmp_stream);
2605 /* Prepare and stabilize the inferior for detaching it. E.g.,
2606 detaching while a thread is displaced stepping is a recipe for
2607 crashing it, as nothing would readjust the PC out of the scratch
2611 prepare_for_detach (void)
2613 struct inferior *inf = current_inferior ();
2614 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2615 struct cleanup *old_chain_1;
2616 struct displaced_step_inferior_state *displaced;
2618 displaced = get_displaced_stepping_state (inf->pid);
2620 /* Is any thread of this process displaced stepping? If not,
2621 there's nothing else to do. */
2622 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2626 fprintf_unfiltered (gdb_stdlog,
2627 "displaced-stepping in-process while detaching");
2629 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2632 while (!ptid_equal (displaced->step_ptid, null_ptid))
2634 struct cleanup *old_chain_2;
2635 struct execution_control_state ecss;
2636 struct execution_control_state *ecs;
2639 memset (ecs, 0, sizeof (*ecs));
2641 overlay_cache_invalid = 1;
2643 if (deprecated_target_wait_hook)
2644 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2646 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2649 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2651 /* If an error happens while handling the event, propagate GDB's
2652 knowledge of the executing state to the frontend/user running
2654 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2657 /* In non-stop mode, each thread is handled individually.
2658 Switch early, so the global state is set correctly for this
2661 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2662 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2663 context_switch (ecs->ptid);
2665 /* Now figure out what to do with the result of the result. */
2666 handle_inferior_event (ecs);
2668 /* No error, don't finish the state yet. */
2669 discard_cleanups (old_chain_2);
2671 /* Breakpoints and watchpoints are not installed on the target
2672 at this point, and signals are passed directly to the
2673 inferior, so this must mean the process is gone. */
2674 if (!ecs->wait_some_more)
2676 discard_cleanups (old_chain_1);
2677 error (_("Program exited while detaching"));
2681 discard_cleanups (old_chain_1);
2684 /* Wait for control to return from inferior to debugger.
2686 If inferior gets a signal, we may decide to start it up again
2687 instead of returning. That is why there is a loop in this function.
2688 When this function actually returns it means the inferior
2689 should be left stopped and GDB should read more commands. */
2692 wait_for_inferior (void)
2694 struct cleanup *old_cleanups;
2695 struct execution_control_state ecss;
2696 struct execution_control_state *ecs;
2700 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2703 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2706 memset (ecs, 0, sizeof (*ecs));
2710 struct cleanup *old_chain;
2712 overlay_cache_invalid = 1;
2714 if (deprecated_target_wait_hook)
2715 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2717 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2720 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2722 /* If an error happens while handling the event, propagate GDB's
2723 knowledge of the executing state to the frontend/user running
2725 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2727 /* Now figure out what to do with the result of the result. */
2728 handle_inferior_event (ecs);
2730 /* No error, don't finish the state yet. */
2731 discard_cleanups (old_chain);
2733 if (!ecs->wait_some_more)
2737 do_cleanups (old_cleanups);
2740 /* Asynchronous version of wait_for_inferior. It is called by the
2741 event loop whenever a change of state is detected on the file
2742 descriptor corresponding to the target. It can be called more than
2743 once to complete a single execution command. In such cases we need
2744 to keep the state in a global variable ECSS. If it is the last time
2745 that this function is called for a single execution command, then
2746 report to the user that the inferior has stopped, and do the
2747 necessary cleanups. */
2750 fetch_inferior_event (void *client_data)
2752 struct execution_control_state ecss;
2753 struct execution_control_state *ecs = &ecss;
2754 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2755 struct cleanup *ts_old_chain;
2756 int was_sync = sync_execution;
2759 memset (ecs, 0, sizeof (*ecs));
2761 /* We're handling a live event, so make sure we're doing live
2762 debugging. If we're looking at traceframes while the target is
2763 running, we're going to need to get back to that mode after
2764 handling the event. */
2767 make_cleanup_restore_current_traceframe ();
2768 set_current_traceframe (-1);
2772 /* In non-stop mode, the user/frontend should not notice a thread
2773 switch due to internal events. Make sure we reverse to the
2774 user selected thread and frame after handling the event and
2775 running any breakpoint commands. */
2776 make_cleanup_restore_current_thread ();
2778 overlay_cache_invalid = 1;
2780 make_cleanup_restore_integer (&execution_direction);
2781 execution_direction = target_execution_direction ();
2783 if (deprecated_target_wait_hook)
2785 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2787 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2790 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2793 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2794 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2797 /* In non-stop mode, each thread is handled individually. Switch
2798 early, so the global state is set correctly for this
2800 context_switch (ecs->ptid);
2802 /* If an error happens while handling the event, propagate GDB's
2803 knowledge of the executing state to the frontend/user running
2806 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2808 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2810 /* Get executed before make_cleanup_restore_current_thread above to apply
2811 still for the thread which has thrown the exception. */
2812 make_bpstat_clear_actions_cleanup ();
2814 /* Now figure out what to do with the result of the result. */
2815 handle_inferior_event (ecs);
2817 if (!ecs->wait_some_more)
2819 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2821 delete_step_thread_step_resume_breakpoint ();
2823 /* We may not find an inferior if this was a process exit. */
2824 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2827 if (target_has_execution
2828 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2829 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2830 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2831 && ecs->event_thread->step_multi
2832 && ecs->event_thread->control.stop_step)
2833 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2836 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2841 /* No error, don't finish the thread states yet. */
2842 discard_cleanups (ts_old_chain);
2844 /* Revert thread and frame. */
2845 do_cleanups (old_chain);
2847 /* If the inferior was in sync execution mode, and now isn't,
2848 restore the prompt (a synchronous execution command has finished,
2849 and we're ready for input). */
2850 if (interpreter_async && was_sync && !sync_execution)
2851 display_gdb_prompt (0);
2855 && exec_done_display_p
2856 && (ptid_equal (inferior_ptid, null_ptid)
2857 || !is_running (inferior_ptid)))
2858 printf_unfiltered (_("completed.\n"));
2861 /* Record the frame and location we're currently stepping through. */
2863 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2865 struct thread_info *tp = inferior_thread ();
2867 tp->control.step_frame_id = get_frame_id (frame);
2868 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2870 tp->current_symtab = sal.symtab;
2871 tp->current_line = sal.line;
2874 /* Clear context switchable stepping state. */
2877 init_thread_stepping_state (struct thread_info *tss)
2879 tss->stepping_over_breakpoint = 0;
2880 tss->step_after_step_resume_breakpoint = 0;
2883 /* Return the cached copy of the last pid/waitstatus returned by
2884 target_wait()/deprecated_target_wait_hook(). The data is actually
2885 cached by handle_inferior_event(), which gets called immediately
2886 after target_wait()/deprecated_target_wait_hook(). */
2889 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2891 *ptidp = target_last_wait_ptid;
2892 *status = target_last_waitstatus;
2896 nullify_last_target_wait_ptid (void)
2898 target_last_wait_ptid = minus_one_ptid;
2901 /* Switch thread contexts. */
2904 context_switch (ptid_t ptid)
2906 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2908 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2909 target_pid_to_str (inferior_ptid));
2910 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2911 target_pid_to_str (ptid));
2914 switch_to_thread (ptid);
2918 adjust_pc_after_break (struct execution_control_state *ecs)
2920 struct regcache *regcache;
2921 struct gdbarch *gdbarch;
2922 struct address_space *aspace;
2923 CORE_ADDR breakpoint_pc;
2925 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2926 we aren't, just return.
2928 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2929 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2930 implemented by software breakpoints should be handled through the normal
2933 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2934 different signals (SIGILL or SIGEMT for instance), but it is less
2935 clear where the PC is pointing afterwards. It may not match
2936 gdbarch_decr_pc_after_break. I don't know any specific target that
2937 generates these signals at breakpoints (the code has been in GDB since at
2938 least 1992) so I can not guess how to handle them here.
2940 In earlier versions of GDB, a target with
2941 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2942 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2943 target with both of these set in GDB history, and it seems unlikely to be
2944 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2946 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2949 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2952 /* In reverse execution, when a breakpoint is hit, the instruction
2953 under it has already been de-executed. The reported PC always
2954 points at the breakpoint address, so adjusting it further would
2955 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2958 B1 0x08000000 : INSN1
2959 B2 0x08000001 : INSN2
2961 PC -> 0x08000003 : INSN4
2963 Say you're stopped at 0x08000003 as above. Reverse continuing
2964 from that point should hit B2 as below. Reading the PC when the
2965 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2966 been de-executed already.
2968 B1 0x08000000 : INSN1
2969 B2 PC -> 0x08000001 : INSN2
2973 We can't apply the same logic as for forward execution, because
2974 we would wrongly adjust the PC to 0x08000000, since there's a
2975 breakpoint at PC - 1. We'd then report a hit on B1, although
2976 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2978 if (execution_direction == EXEC_REVERSE)
2981 /* If this target does not decrement the PC after breakpoints, then
2982 we have nothing to do. */
2983 regcache = get_thread_regcache (ecs->ptid);
2984 gdbarch = get_regcache_arch (regcache);
2985 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2988 aspace = get_regcache_aspace (regcache);
2990 /* Find the location where (if we've hit a breakpoint) the
2991 breakpoint would be. */
2992 breakpoint_pc = regcache_read_pc (regcache)
2993 - gdbarch_decr_pc_after_break (gdbarch);
2995 /* Check whether there actually is a software breakpoint inserted at
2998 If in non-stop mode, a race condition is possible where we've
2999 removed a breakpoint, but stop events for that breakpoint were
3000 already queued and arrive later. To suppress those spurious
3001 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3002 and retire them after a number of stop events are reported. */
3003 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3004 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3006 struct cleanup *old_cleanups = NULL;
3009 old_cleanups = record_gdb_operation_disable_set ();
3011 /* When using hardware single-step, a SIGTRAP is reported for both
3012 a completed single-step and a software breakpoint. Need to
3013 differentiate between the two, as the latter needs adjusting
3014 but the former does not.
3016 The SIGTRAP can be due to a completed hardware single-step only if
3017 - we didn't insert software single-step breakpoints
3018 - the thread to be examined is still the current thread
3019 - this thread is currently being stepped
3021 If any of these events did not occur, we must have stopped due
3022 to hitting a software breakpoint, and have to back up to the
3025 As a special case, we could have hardware single-stepped a
3026 software breakpoint. In this case (prev_pc == breakpoint_pc),
3027 we also need to back up to the breakpoint address. */
3029 if (singlestep_breakpoints_inserted_p
3030 || !ptid_equal (ecs->ptid, inferior_ptid)
3031 || !currently_stepping (ecs->event_thread)
3032 || ecs->event_thread->prev_pc == breakpoint_pc)
3033 regcache_write_pc (regcache, breakpoint_pc);
3036 do_cleanups (old_cleanups);
3041 init_infwait_state (void)
3043 waiton_ptid = pid_to_ptid (-1);
3044 infwait_state = infwait_normal_state;
3048 error_is_running (void)
3050 error (_("Cannot execute this command while "
3051 "the selected thread is running."));
3055 ensure_not_running (void)
3057 if (is_running (inferior_ptid))
3058 error_is_running ();
3062 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3064 for (frame = get_prev_frame (frame);
3066 frame = get_prev_frame (frame))
3068 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3070 if (get_frame_type (frame) != INLINE_FRAME)
3077 /* Auxiliary function that handles syscall entry/return events.
3078 It returns 1 if the inferior should keep going (and GDB
3079 should ignore the event), or 0 if the event deserves to be
3083 handle_syscall_event (struct execution_control_state *ecs)
3085 struct regcache *regcache;
3086 struct gdbarch *gdbarch;
3089 if (!ptid_equal (ecs->ptid, inferior_ptid))
3090 context_switch (ecs->ptid);
3092 regcache = get_thread_regcache (ecs->ptid);
3093 gdbarch = get_regcache_arch (regcache);
3094 syscall_number = ecs->ws.value.syscall_number;
3095 stop_pc = regcache_read_pc (regcache);
3097 if (catch_syscall_enabled () > 0
3098 && catching_syscall_number (syscall_number) > 0)
3101 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3104 ecs->event_thread->control.stop_bpstat
3105 = bpstat_stop_status (get_regcache_aspace (regcache),
3106 stop_pc, ecs->ptid, &ecs->ws);
3108 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3110 if (!ecs->random_signal)
3112 /* Catchpoint hit. */
3113 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3118 /* If no catchpoint triggered for this, then keep going. */
3119 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3124 /* Clear the supplied execution_control_state's stop_func_* fields. */
3127 clear_stop_func (struct execution_control_state *ecs)
3129 ecs->stop_func_filled_in = 0;
3130 ecs->stop_func_start = 0;
3131 ecs->stop_func_end = 0;
3132 ecs->stop_func_name = NULL;
3135 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3138 fill_in_stop_func (struct gdbarch *gdbarch,
3139 struct execution_control_state *ecs)
3141 if (!ecs->stop_func_filled_in)
3143 /* Don't care about return value; stop_func_start and stop_func_name
3144 will both be 0 if it doesn't work. */
3145 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3146 &ecs->stop_func_start, &ecs->stop_func_end);
3147 ecs->stop_func_start
3148 += gdbarch_deprecated_function_start_offset (gdbarch);
3150 ecs->stop_func_filled_in = 1;
3154 /* Given an execution control state that has been freshly filled in
3155 by an event from the inferior, figure out what it means and take
3156 appropriate action. */
3159 handle_inferior_event (struct execution_control_state *ecs)
3161 struct frame_info *frame;
3162 struct gdbarch *gdbarch;
3163 int stopped_by_watchpoint;
3164 int stepped_after_stopped_by_watchpoint = 0;
3165 struct symtab_and_line stop_pc_sal;
3166 enum stop_kind stop_soon;
3168 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3170 /* We had an event in the inferior, but we are not interested in
3171 handling it at this level. The lower layers have already
3172 done what needs to be done, if anything.
3174 One of the possible circumstances for this is when the
3175 inferior produces output for the console. The inferior has
3176 not stopped, and we are ignoring the event. Another possible
3177 circumstance is any event which the lower level knows will be
3178 reported multiple times without an intervening resume. */
3180 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3181 prepare_to_wait (ecs);
3185 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3186 && target_can_async_p () && !sync_execution)
3188 /* There were no unwaited-for children left in the target, but,
3189 we're not synchronously waiting for events either. Just
3190 ignore. Otherwise, if we were running a synchronous
3191 execution command, we need to cancel it and give the user
3192 back the terminal. */
3194 fprintf_unfiltered (gdb_stdlog,
3195 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3196 prepare_to_wait (ecs);
3200 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3201 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3202 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3204 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3207 stop_soon = inf->control.stop_soon;
3210 stop_soon = NO_STOP_QUIETLY;
3212 /* Cache the last pid/waitstatus. */
3213 target_last_wait_ptid = ecs->ptid;
3214 target_last_waitstatus = ecs->ws;
3216 /* Always clear state belonging to the previous time we stopped. */
3217 stop_stack_dummy = STOP_NONE;
3219 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3221 /* No unwaited-for children left. IOW, all resumed children
3224 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3226 stop_print_frame = 0;
3227 stop_stepping (ecs);
3231 /* If it's a new process, add it to the thread database. */
3233 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3234 && !ptid_equal (ecs->ptid, minus_one_ptid)
3235 && !in_thread_list (ecs->ptid));
3237 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3238 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3239 add_thread (ecs->ptid);
3241 ecs->event_thread = find_thread_ptid (ecs->ptid);
3243 /* Dependent on valid ECS->EVENT_THREAD. */
3244 adjust_pc_after_break (ecs);
3246 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3247 reinit_frame_cache ();
3249 breakpoint_retire_moribund ();
3251 /* First, distinguish signals caused by the debugger from signals
3252 that have to do with the program's own actions. Note that
3253 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3254 on the operating system version. Here we detect when a SIGILL or
3255 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3256 something similar for SIGSEGV, since a SIGSEGV will be generated
3257 when we're trying to execute a breakpoint instruction on a
3258 non-executable stack. This happens for call dummy breakpoints
3259 for architectures like SPARC that place call dummies on the
3261 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3262 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3263 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3264 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3266 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3268 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3269 regcache_read_pc (regcache)))
3272 fprintf_unfiltered (gdb_stdlog,
3273 "infrun: Treating signal as SIGTRAP\n");
3274 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3278 /* Mark the non-executing threads accordingly. In all-stop, all
3279 threads of all processes are stopped when we get any event
3280 reported. In non-stop mode, only the event thread stops. If
3281 we're handling a process exit in non-stop mode, there's nothing
3282 to do, as threads of the dead process are gone, and threads of
3283 any other process were left running. */
3285 set_executing (minus_one_ptid, 0);
3286 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3287 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3288 set_executing (ecs->ptid, 0);
3290 switch (infwait_state)
3292 case infwait_thread_hop_state:
3294 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3297 case infwait_normal_state:
3299 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3302 case infwait_step_watch_state:
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: infwait_step_watch_state\n");
3307 stepped_after_stopped_by_watchpoint = 1;
3310 case infwait_nonstep_watch_state:
3312 fprintf_unfiltered (gdb_stdlog,
3313 "infrun: infwait_nonstep_watch_state\n");
3314 insert_breakpoints ();
3316 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3317 handle things like signals arriving and other things happening
3318 in combination correctly? */
3319 stepped_after_stopped_by_watchpoint = 1;
3323 internal_error (__FILE__, __LINE__, _("bad switch"));
3326 infwait_state = infwait_normal_state;
3327 waiton_ptid = pid_to_ptid (-1);
3329 switch (ecs->ws.kind)
3331 case TARGET_WAITKIND_LOADED:
3333 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3334 /* Ignore gracefully during startup of the inferior, as it might
3335 be the shell which has just loaded some objects, otherwise
3336 add the symbols for the newly loaded objects. Also ignore at
3337 the beginning of an attach or remote session; we will query
3338 the full list of libraries once the connection is
3340 if (stop_soon == NO_STOP_QUIETLY)
3342 struct regcache *regcache;
3344 if (!ptid_equal (ecs->ptid, inferior_ptid))
3345 context_switch (ecs->ptid);
3346 regcache = get_thread_regcache (ecs->ptid);
3348 handle_solib_event ();
3350 ecs->event_thread->control.stop_bpstat
3351 = bpstat_stop_status (get_regcache_aspace (regcache),
3352 stop_pc, ecs->ptid, &ecs->ws);
3354 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3356 if (!ecs->random_signal)
3358 /* A catchpoint triggered. */
3359 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3360 goto process_event_stop_test;
3363 /* If requested, stop when the dynamic linker notifies
3364 gdb of events. This allows the user to get control
3365 and place breakpoints in initializer routines for
3366 dynamically loaded objects (among other things). */
3367 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3368 if (stop_on_solib_events)
3370 /* Make sure we print "Stopped due to solib-event" in
3372 stop_print_frame = 1;
3374 stop_stepping (ecs);
3379 /* If we are skipping through a shell, or through shared library
3380 loading that we aren't interested in, resume the program. If
3381 we're running the program normally, also resume. But stop if
3382 we're attaching or setting up a remote connection. */
3383 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3385 /* Loading of shared libraries might have changed breakpoint
3386 addresses. Make sure new breakpoints are inserted. */
3387 if (stop_soon == NO_STOP_QUIETLY
3388 && !breakpoints_always_inserted_mode ())
3389 insert_breakpoints ();
3390 resume (0, TARGET_SIGNAL_0);
3391 prepare_to_wait (ecs);
3397 case TARGET_WAITKIND_SPURIOUS:
3399 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3400 resume (0, TARGET_SIGNAL_0);
3401 prepare_to_wait (ecs);
3404 case TARGET_WAITKIND_EXITED:
3406 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3407 inferior_ptid = ecs->ptid;
3408 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3409 set_current_program_space (current_inferior ()->pspace);
3410 handle_vfork_child_exec_or_exit (0);
3411 target_terminal_ours (); /* Must do this before mourn anyway. */
3412 print_exited_reason (ecs->ws.value.integer);
3414 /* Record the exit code in the convenience variable $_exitcode, so
3415 that the user can inspect this again later. */
3416 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3417 (LONGEST) ecs->ws.value.integer);
3419 /* Also record this in the inferior itself. */
3420 current_inferior ()->has_exit_code = 1;
3421 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3423 gdb_flush (gdb_stdout);
3424 target_mourn_inferior ();
3425 singlestep_breakpoints_inserted_p = 0;
3426 cancel_single_step_breakpoints ();
3427 stop_print_frame = 0;
3428 stop_stepping (ecs);
3431 case TARGET_WAITKIND_SIGNALLED:
3433 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3434 inferior_ptid = ecs->ptid;
3435 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3436 set_current_program_space (current_inferior ()->pspace);
3437 handle_vfork_child_exec_or_exit (0);
3438 stop_print_frame = 0;
3439 target_terminal_ours (); /* Must do this before mourn anyway. */
3441 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3442 reach here unless the inferior is dead. However, for years
3443 target_kill() was called here, which hints that fatal signals aren't
3444 really fatal on some systems. If that's true, then some changes
3446 target_mourn_inferior ();
3448 print_signal_exited_reason (ecs->ws.value.sig);
3449 singlestep_breakpoints_inserted_p = 0;
3450 cancel_single_step_breakpoints ();
3451 stop_stepping (ecs);
3454 /* The following are the only cases in which we keep going;
3455 the above cases end in a continue or goto. */
3456 case TARGET_WAITKIND_FORKED:
3457 case TARGET_WAITKIND_VFORKED:
3459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3461 /* Check whether the inferior is displaced stepping. */
3463 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3465 struct displaced_step_inferior_state *displaced
3466 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3468 /* If checking displaced stepping is supported, and thread
3469 ecs->ptid is displaced stepping. */
3470 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3472 struct inferior *parent_inf
3473 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3474 struct regcache *child_regcache;
3475 CORE_ADDR parent_pc;
3477 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3478 indicating that the displaced stepping of syscall instruction
3479 has been done. Perform cleanup for parent process here. Note
3480 that this operation also cleans up the child process for vfork,
3481 because their pages are shared. */
3482 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3484 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3486 /* Restore scratch pad for child process. */
3487 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3490 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3491 the child's PC is also within the scratchpad. Set the child's PC
3492 to the parent's PC value, which has already been fixed up.
3493 FIXME: we use the parent's aspace here, although we're touching
3494 the child, because the child hasn't been added to the inferior
3495 list yet at this point. */
3498 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3500 parent_inf->aspace);
3501 /* Read PC value of parent process. */
3502 parent_pc = regcache_read_pc (regcache);
3504 if (debug_displaced)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "displaced: write child pc from %s to %s\n",
3508 regcache_read_pc (child_regcache)),
3509 paddress (gdbarch, parent_pc));
3511 regcache_write_pc (child_regcache, parent_pc);
3515 if (!ptid_equal (ecs->ptid, inferior_ptid))
3517 context_switch (ecs->ptid);
3518 reinit_frame_cache ();
3521 /* Immediately detach breakpoints from the child before there's
3522 any chance of letting the user delete breakpoints from the
3523 breakpoint lists. If we don't do this early, it's easy to
3524 leave left over traps in the child, vis: "break foo; catch
3525 fork; c; <fork>; del; c; <child calls foo>". We only follow
3526 the fork on the last `continue', and by that time the
3527 breakpoint at "foo" is long gone from the breakpoint table.
3528 If we vforked, then we don't need to unpatch here, since both
3529 parent and child are sharing the same memory pages; we'll
3530 need to unpatch at follow/detach time instead to be certain
3531 that new breakpoints added between catchpoint hit time and
3532 vfork follow are detached. */
3533 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3535 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3537 /* This won't actually modify the breakpoint list, but will
3538 physically remove the breakpoints from the child. */
3539 detach_breakpoints (child_pid);
3542 if (singlestep_breakpoints_inserted_p)
3544 /* Pull the single step breakpoints out of the target. */
3545 remove_single_step_breakpoints ();
3546 singlestep_breakpoints_inserted_p = 0;
3549 /* In case the event is caught by a catchpoint, remember that
3550 the event is to be followed at the next resume of the thread,
3551 and not immediately. */
3552 ecs->event_thread->pending_follow = ecs->ws;
3554 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3556 ecs->event_thread->control.stop_bpstat
3557 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3558 stop_pc, ecs->ptid, &ecs->ws);
3560 /* Note that we're interested in knowing the bpstat actually
3561 causes a stop, not just if it may explain the signal.
3562 Software watchpoints, for example, always appear in the
3565 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3567 /* If no catchpoint triggered for this, then keep going. */
3568 if (ecs->random_signal)
3574 = (follow_fork_mode_string == follow_fork_mode_child);
3576 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3578 should_resume = follow_fork ();
3581 child = ecs->ws.value.related_pid;
3583 /* In non-stop mode, also resume the other branch. */
3584 if (non_stop && !detach_fork)
3587 switch_to_thread (parent);
3589 switch_to_thread (child);
3591 ecs->event_thread = inferior_thread ();
3592 ecs->ptid = inferior_ptid;
3597 switch_to_thread (child);
3599 switch_to_thread (parent);
3601 ecs->event_thread = inferior_thread ();
3602 ecs->ptid = inferior_ptid;
3607 stop_stepping (ecs);
3610 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3611 goto process_event_stop_test;
3613 case TARGET_WAITKIND_VFORK_DONE:
3614 /* Done with the shared memory region. Re-insert breakpoints in
3615 the parent, and keep going. */
3618 fprintf_unfiltered (gdb_stdlog,
3619 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3621 if (!ptid_equal (ecs->ptid, inferior_ptid))
3622 context_switch (ecs->ptid);
3624 current_inferior ()->waiting_for_vfork_done = 0;
3625 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3626 /* This also takes care of reinserting breakpoints in the
3627 previously locked inferior. */
3631 case TARGET_WAITKIND_EXECD:
3633 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3635 if (!ptid_equal (ecs->ptid, inferior_ptid))
3637 context_switch (ecs->ptid);
3638 reinit_frame_cache ();
3641 singlestep_breakpoints_inserted_p = 0;
3642 cancel_single_step_breakpoints ();
3644 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3646 /* Do whatever is necessary to the parent branch of the vfork. */
3647 handle_vfork_child_exec_or_exit (1);
3649 /* This causes the eventpoints and symbol table to be reset.
3650 Must do this now, before trying to determine whether to
3652 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3654 ecs->event_thread->control.stop_bpstat
3655 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3656 stop_pc, ecs->ptid, &ecs->ws);
3658 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3660 /* Note that this may be referenced from inside
3661 bpstat_stop_status above, through inferior_has_execd. */
3662 xfree (ecs->ws.value.execd_pathname);
3663 ecs->ws.value.execd_pathname = NULL;
3665 /* If no catchpoint triggered for this, then keep going. */
3666 if (ecs->random_signal)
3668 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3672 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3673 goto process_event_stop_test;
3675 /* Be careful not to try to gather much state about a thread
3676 that's in a syscall. It's frequently a losing proposition. */
3677 case TARGET_WAITKIND_SYSCALL_ENTRY:
3679 fprintf_unfiltered (gdb_stdlog,
3680 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3681 /* Getting the current syscall number. */
3682 if (handle_syscall_event (ecs) != 0)
3684 goto process_event_stop_test;
3686 /* Before examining the threads further, step this thread to
3687 get it entirely out of the syscall. (We get notice of the
3688 event when the thread is just on the verge of exiting a
3689 syscall. Stepping one instruction seems to get it back
3691 case TARGET_WAITKIND_SYSCALL_RETURN:
3693 fprintf_unfiltered (gdb_stdlog,
3694 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3695 if (handle_syscall_event (ecs) != 0)
3697 goto process_event_stop_test;
3699 case TARGET_WAITKIND_STOPPED:
3701 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3702 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3705 case TARGET_WAITKIND_NO_HISTORY:
3707 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3708 /* Reverse execution: target ran out of history info. */
3709 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3710 print_no_history_reason ();
3711 stop_stepping (ecs);
3715 if (ecs->new_thread_event)
3718 /* Non-stop assumes that the target handles adding new threads
3719 to the thread list. */
3720 internal_error (__FILE__, __LINE__,
3721 "targets should add new threads to the thread "
3722 "list themselves in non-stop mode.");
3724 /* We may want to consider not doing a resume here in order to
3725 give the user a chance to play with the new thread. It might
3726 be good to make that a user-settable option. */
3728 /* At this point, all threads are stopped (happens automatically
3729 in either the OS or the native code). Therefore we need to
3730 continue all threads in order to make progress. */
3732 if (!ptid_equal (ecs->ptid, inferior_ptid))
3733 context_switch (ecs->ptid);
3734 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3735 prepare_to_wait (ecs);
3739 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3741 /* Do we need to clean up the state of a thread that has
3742 completed a displaced single-step? (Doing so usually affects
3743 the PC, so do it here, before we set stop_pc.) */
3744 displaced_step_fixup (ecs->ptid,
3745 ecs->event_thread->suspend.stop_signal);
3747 /* If we either finished a single-step or hit a breakpoint, but
3748 the user wanted this thread to be stopped, pretend we got a
3749 SIG0 (generic unsignaled stop). */
3751 if (ecs->event_thread->stop_requested
3752 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3753 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3756 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3760 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3761 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3762 struct cleanup *old_chain = save_inferior_ptid ();
3764 inferior_ptid = ecs->ptid;
3766 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3767 paddress (gdbarch, stop_pc));
3768 if (target_stopped_by_watchpoint ())
3772 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3774 if (target_stopped_data_address (¤t_target, &addr))
3775 fprintf_unfiltered (gdb_stdlog,
3776 "infrun: stopped data address = %s\n",
3777 paddress (gdbarch, addr));
3779 fprintf_unfiltered (gdb_stdlog,
3780 "infrun: (no data address available)\n");
3783 do_cleanups (old_chain);
3786 if (stepping_past_singlestep_breakpoint)
3788 gdb_assert (singlestep_breakpoints_inserted_p);
3789 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3790 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3792 stepping_past_singlestep_breakpoint = 0;
3794 /* We've either finished single-stepping past the single-step
3795 breakpoint, or stopped for some other reason. It would be nice if
3796 we could tell, but we can't reliably. */
3797 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3800 fprintf_unfiltered (gdb_stdlog,
3801 "infrun: stepping_past_"
3802 "singlestep_breakpoint\n");
3803 /* Pull the single step breakpoints out of the target. */
3804 remove_single_step_breakpoints ();
3805 singlestep_breakpoints_inserted_p = 0;
3807 ecs->random_signal = 0;
3808 ecs->event_thread->control.trap_expected = 0;
3810 context_switch (saved_singlestep_ptid);
3811 if (deprecated_context_hook)
3812 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3814 resume (1, TARGET_SIGNAL_0);
3815 prepare_to_wait (ecs);
3820 if (!ptid_equal (deferred_step_ptid, null_ptid))
3822 /* In non-stop mode, there's never a deferred_step_ptid set. */
3823 gdb_assert (!non_stop);
3825 /* If we stopped for some other reason than single-stepping, ignore
3826 the fact that we were supposed to switch back. */
3827 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3830 fprintf_unfiltered (gdb_stdlog,
3831 "infrun: handling deferred step\n");
3833 /* Pull the single step breakpoints out of the target. */
3834 if (singlestep_breakpoints_inserted_p)
3836 remove_single_step_breakpoints ();
3837 singlestep_breakpoints_inserted_p = 0;
3840 ecs->event_thread->control.trap_expected = 0;
3842 /* Note: We do not call context_switch at this point, as the
3843 context is already set up for stepping the original thread. */
3844 switch_to_thread (deferred_step_ptid);
3845 deferred_step_ptid = null_ptid;
3846 /* Suppress spurious "Switching to ..." message. */
3847 previous_inferior_ptid = inferior_ptid;
3849 resume (1, TARGET_SIGNAL_0);
3850 prepare_to_wait (ecs);
3854 deferred_step_ptid = null_ptid;
3857 /* See if a thread hit a thread-specific breakpoint that was meant for
3858 another thread. If so, then step that thread past the breakpoint,
3861 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3863 int thread_hop_needed = 0;
3864 struct address_space *aspace =
3865 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3867 /* Check if a regular breakpoint has been hit before checking
3868 for a potential single step breakpoint. Otherwise, GDB will
3869 not see this breakpoint hit when stepping onto breakpoints. */
3870 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3872 ecs->random_signal = 0;
3873 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3874 thread_hop_needed = 1;
3876 else if (singlestep_breakpoints_inserted_p)
3878 /* We have not context switched yet, so this should be true
3879 no matter which thread hit the singlestep breakpoint. */
3880 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3882 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3884 target_pid_to_str (ecs->ptid));
3886 ecs->random_signal = 0;
3887 /* The call to in_thread_list is necessary because PTIDs sometimes
3888 change when we go from single-threaded to multi-threaded. If
3889 the singlestep_ptid is still in the list, assume that it is
3890 really different from ecs->ptid. */
3891 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3892 && in_thread_list (singlestep_ptid))
3894 /* If the PC of the thread we were trying to single-step
3895 has changed, discard this event (which we were going
3896 to ignore anyway), and pretend we saw that thread
3897 trap. This prevents us continuously moving the
3898 single-step breakpoint forward, one instruction at a
3899 time. If the PC has changed, then the thread we were
3900 trying to single-step has trapped or been signalled,
3901 but the event has not been reported to GDB yet.
3903 There might be some cases where this loses signal
3904 information, if a signal has arrived at exactly the
3905 same time that the PC changed, but this is the best
3906 we can do with the information available. Perhaps we
3907 should arrange to report all events for all threads
3908 when they stop, or to re-poll the remote looking for
3909 this particular thread (i.e. temporarily enable
3912 CORE_ADDR new_singlestep_pc
3913 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3915 if (new_singlestep_pc != singlestep_pc)
3917 enum target_signal stop_signal;
3920 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3921 " but expected thread advanced also\n");
3923 /* The current context still belongs to
3924 singlestep_ptid. Don't swap here, since that's
3925 the context we want to use. Just fudge our
3926 state and continue. */
3927 stop_signal = ecs->event_thread->suspend.stop_signal;
3928 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3929 ecs->ptid = singlestep_ptid;
3930 ecs->event_thread = find_thread_ptid (ecs->ptid);
3931 ecs->event_thread->suspend.stop_signal = stop_signal;
3932 stop_pc = new_singlestep_pc;
3937 fprintf_unfiltered (gdb_stdlog,
3938 "infrun: unexpected thread\n");
3940 thread_hop_needed = 1;
3941 stepping_past_singlestep_breakpoint = 1;
3942 saved_singlestep_ptid = singlestep_ptid;
3947 if (thread_hop_needed)
3949 struct regcache *thread_regcache;
3950 int remove_status = 0;
3953 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3955 /* Switch context before touching inferior memory, the
3956 previous thread may have exited. */
3957 if (!ptid_equal (inferior_ptid, ecs->ptid))
3958 context_switch (ecs->ptid);
3960 /* Saw a breakpoint, but it was hit by the wrong thread.
3963 if (singlestep_breakpoints_inserted_p)
3965 /* Pull the single step breakpoints out of the target. */
3966 remove_single_step_breakpoints ();
3967 singlestep_breakpoints_inserted_p = 0;
3970 /* If the arch can displace step, don't remove the
3972 thread_regcache = get_thread_regcache (ecs->ptid);
3973 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3974 remove_status = remove_breakpoints ();
3976 /* Did we fail to remove breakpoints? If so, try
3977 to set the PC past the bp. (There's at least
3978 one situation in which we can fail to remove
3979 the bp's: On HP-UX's that use ttrace, we can't
3980 change the address space of a vforking child
3981 process until the child exits (well, okay, not
3982 then either :-) or execs. */
3983 if (remove_status != 0)
3984 error (_("Cannot step over breakpoint hit in wrong thread"));
3989 /* Only need to require the next event from this
3990 thread in all-stop mode. */
3991 waiton_ptid = ecs->ptid;
3992 infwait_state = infwait_thread_hop_state;
3995 ecs->event_thread->stepping_over_breakpoint = 1;
4000 else if (singlestep_breakpoints_inserted_p)
4002 ecs->random_signal = 0;
4006 ecs->random_signal = 1;
4008 /* See if something interesting happened to the non-current thread. If
4009 so, then switch to that thread. */
4010 if (!ptid_equal (ecs->ptid, inferior_ptid))
4013 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4015 context_switch (ecs->ptid);
4017 if (deprecated_context_hook)
4018 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4021 /* At this point, get hold of the now-current thread's frame. */
4022 frame = get_current_frame ();
4023 gdbarch = get_frame_arch (frame);
4025 if (singlestep_breakpoints_inserted_p)
4027 /* Pull the single step breakpoints out of the target. */
4028 remove_single_step_breakpoints ();
4029 singlestep_breakpoints_inserted_p = 0;
4032 if (stepped_after_stopped_by_watchpoint)
4033 stopped_by_watchpoint = 0;
4035 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4037 /* If necessary, step over this watchpoint. We'll be back to display
4039 if (stopped_by_watchpoint
4040 && (target_have_steppable_watchpoint
4041 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4043 /* At this point, we are stopped at an instruction which has
4044 attempted to write to a piece of memory under control of
4045 a watchpoint. The instruction hasn't actually executed
4046 yet. If we were to evaluate the watchpoint expression
4047 now, we would get the old value, and therefore no change
4048 would seem to have occurred.
4050 In order to make watchpoints work `right', we really need
4051 to complete the memory write, and then evaluate the
4052 watchpoint expression. We do this by single-stepping the
4055 It may not be necessary to disable the watchpoint to stop over
4056 it. For example, the PA can (with some kernel cooperation)
4057 single step over a watchpoint without disabling the watchpoint.
4059 It is far more common to need to disable a watchpoint to step
4060 the inferior over it. If we have non-steppable watchpoints,
4061 we must disable the current watchpoint; it's simplest to
4062 disable all watchpoints and breakpoints. */
4065 if (!target_have_steppable_watchpoint)
4067 remove_breakpoints ();
4068 /* See comment in resume why we need to stop bypassing signals
4069 while breakpoints have been removed. */
4070 target_pass_signals (0, NULL);
4073 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4074 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
4075 waiton_ptid = ecs->ptid;
4076 if (target_have_steppable_watchpoint)
4077 infwait_state = infwait_step_watch_state;
4079 infwait_state = infwait_nonstep_watch_state;
4080 prepare_to_wait (ecs);
4084 clear_stop_func (ecs);
4085 ecs->event_thread->stepping_over_breakpoint = 0;
4086 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4087 ecs->event_thread->control.stop_step = 0;
4088 stop_print_frame = 1;
4089 ecs->random_signal = 0;
4090 stopped_by_random_signal = 0;
4092 /* Hide inlined functions starting here, unless we just performed stepi or
4093 nexti. After stepi and nexti, always show the innermost frame (not any
4094 inline function call sites). */
4095 if (ecs->event_thread->control.step_range_end != 1)
4097 struct address_space *aspace =
4098 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4100 /* skip_inline_frames is expensive, so we avoid it if we can
4101 determine that the address is one where functions cannot have
4102 been inlined. This improves performance with inferiors that
4103 load a lot of shared libraries, because the solib event
4104 breakpoint is defined as the address of a function (i.e. not
4105 inline). Note that we have to check the previous PC as well
4106 as the current one to catch cases when we have just
4107 single-stepped off a breakpoint prior to reinstating it.
4108 Note that we're assuming that the code we single-step to is
4109 not inline, but that's not definitive: there's nothing
4110 preventing the event breakpoint function from containing
4111 inlined code, and the single-step ending up there. If the
4112 user had set a breakpoint on that inlined code, the missing
4113 skip_inline_frames call would break things. Fortunately
4114 that's an extremely unlikely scenario. */
4115 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4116 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4117 && ecs->event_thread->control.trap_expected
4118 && pc_at_non_inline_function (aspace,
4119 ecs->event_thread->prev_pc,
4121 skip_inline_frames (ecs->ptid);
4124 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4125 && ecs->event_thread->control.trap_expected
4126 && gdbarch_single_step_through_delay_p (gdbarch)
4127 && currently_stepping (ecs->event_thread))
4129 /* We're trying to step off a breakpoint. Turns out that we're
4130 also on an instruction that needs to be stepped multiple
4131 times before it's been fully executing. E.g., architectures
4132 with a delay slot. It needs to be stepped twice, once for
4133 the instruction and once for the delay slot. */
4134 int step_through_delay
4135 = gdbarch_single_step_through_delay (gdbarch, frame);
4137 if (debug_infrun && step_through_delay)
4138 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4139 if (ecs->event_thread->control.step_range_end == 0
4140 && step_through_delay)
4142 /* The user issued a continue when stopped at a breakpoint.
4143 Set up for another trap and get out of here. */
4144 ecs->event_thread->stepping_over_breakpoint = 1;
4148 else if (step_through_delay)
4150 /* The user issued a step when stopped at a breakpoint.
4151 Maybe we should stop, maybe we should not - the delay
4152 slot *might* correspond to a line of source. In any
4153 case, don't decide that here, just set
4154 ecs->stepping_over_breakpoint, making sure we
4155 single-step again before breakpoints are re-inserted. */
4156 ecs->event_thread->stepping_over_breakpoint = 1;
4160 /* Look at the cause of the stop, and decide what to do.
4161 The alternatives are:
4162 1) stop_stepping and return; to really stop and return to the debugger,
4163 2) keep_going and return to start up again
4164 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4165 3) set ecs->random_signal to 1, and the decision between 1 and 2
4166 will be made according to the signal handling tables. */
4168 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4169 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4170 || stop_soon == STOP_QUIETLY_REMOTE)
4172 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4176 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4177 stop_print_frame = 0;
4178 stop_stepping (ecs);
4182 /* This is originated from start_remote(), start_inferior() and
4183 shared libraries hook functions. */
4184 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4187 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4188 stop_stepping (ecs);
4192 /* This originates from attach_command(). We need to overwrite
4193 the stop_signal here, because some kernels don't ignore a
4194 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4195 See more comments in inferior.h. On the other hand, if we
4196 get a non-SIGSTOP, report it to the user - assume the backend
4197 will handle the SIGSTOP if it should show up later.
4199 Also consider that the attach is complete when we see a
4200 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4201 target extended-remote report it instead of a SIGSTOP
4202 (e.g. gdbserver). We already rely on SIGTRAP being our
4203 signal, so this is no exception.
4205 Also consider that the attach is complete when we see a
4206 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4207 the target to stop all threads of the inferior, in case the
4208 low level attach operation doesn't stop them implicitly. If
4209 they weren't stopped implicitly, then the stub will report a
4210 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4211 other than GDB's request. */
4212 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4213 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4214 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4215 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4217 stop_stepping (ecs);
4218 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4222 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4223 handles this event. */
4224 ecs->event_thread->control.stop_bpstat
4225 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4226 stop_pc, ecs->ptid, &ecs->ws);
4228 /* Following in case break condition called a
4230 stop_print_frame = 1;
4232 /* This is where we handle "moribund" watchpoints. Unlike
4233 software breakpoints traps, hardware watchpoint traps are
4234 always distinguishable from random traps. If no high-level
4235 watchpoint is associated with the reported stop data address
4236 anymore, then the bpstat does not explain the signal ---
4237 simply make sure to ignore it if `stopped_by_watchpoint' is
4241 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4242 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4243 && stopped_by_watchpoint)
4244 fprintf_unfiltered (gdb_stdlog,
4245 "infrun: no user watchpoint explains "
4246 "watchpoint SIGTRAP, ignoring\n");
4248 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4249 at one stage in the past included checks for an inferior
4250 function call's call dummy's return breakpoint. The original
4251 comment, that went with the test, read:
4253 ``End of a stack dummy. Some systems (e.g. Sony news) give
4254 another signal besides SIGTRAP, so check here as well as
4257 If someone ever tries to get call dummys on a
4258 non-executable stack to work (where the target would stop
4259 with something like a SIGSEGV), then those tests might need
4260 to be re-instated. Given, however, that the tests were only
4261 enabled when momentary breakpoints were not being used, I
4262 suspect that it won't be the case.
4264 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4265 be necessary for call dummies on a non-executable stack on
4268 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4270 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4271 || stopped_by_watchpoint
4272 || ecs->event_thread->control.trap_expected
4273 || (ecs->event_thread->control.step_range_end
4274 && (ecs->event_thread->control.step_resume_breakpoint
4278 ecs->random_signal = !bpstat_explains_signal
4279 (ecs->event_thread->control.stop_bpstat);
4280 if (!ecs->random_signal)
4281 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4285 /* When we reach this point, we've pretty much decided
4286 that the reason for stopping must've been a random
4287 (unexpected) signal. */
4290 ecs->random_signal = 1;
4292 process_event_stop_test:
4294 /* Re-fetch current thread's frame in case we did a
4295 "goto process_event_stop_test" above. */
4296 frame = get_current_frame ();
4297 gdbarch = get_frame_arch (frame);
4299 /* For the program's own signals, act according to
4300 the signal handling tables. */
4302 if (ecs->random_signal)
4304 /* Signal not for debugging purposes. */
4306 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4309 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4310 ecs->event_thread->suspend.stop_signal);
4312 stopped_by_random_signal = 1;
4314 if (signal_print[ecs->event_thread->suspend.stop_signal])
4317 target_terminal_ours_for_output ();
4318 print_signal_received_reason
4319 (ecs->event_thread->suspend.stop_signal);
4321 /* Always stop on signals if we're either just gaining control
4322 of the program, or the user explicitly requested this thread
4323 to remain stopped. */
4324 if (stop_soon != NO_STOP_QUIETLY
4325 || ecs->event_thread->stop_requested
4327 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4329 stop_stepping (ecs);
4332 /* If not going to stop, give terminal back
4333 if we took it away. */
4335 target_terminal_inferior ();
4337 /* Clear the signal if it should not be passed. */
4338 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4339 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4341 if (ecs->event_thread->prev_pc == stop_pc
4342 && ecs->event_thread->control.trap_expected
4343 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4345 /* We were just starting a new sequence, attempting to
4346 single-step off of a breakpoint and expecting a SIGTRAP.
4347 Instead this signal arrives. This signal will take us out
4348 of the stepping range so GDB needs to remember to, when
4349 the signal handler returns, resume stepping off that
4351 /* To simplify things, "continue" is forced to use the same
4352 code paths as single-step - set a breakpoint at the
4353 signal return address and then, once hit, step off that
4356 fprintf_unfiltered (gdb_stdlog,
4357 "infrun: signal arrived while stepping over "
4360 insert_hp_step_resume_breakpoint_at_frame (frame);
4361 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4362 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4363 ecs->event_thread->control.trap_expected = 0;
4368 if (ecs->event_thread->control.step_range_end != 0
4369 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4370 && (ecs->event_thread->control.step_range_start <= stop_pc
4371 && stop_pc < ecs->event_thread->control.step_range_end)
4372 && frame_id_eq (get_stack_frame_id (frame),
4373 ecs->event_thread->control.step_stack_frame_id)
4374 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4376 /* The inferior is about to take a signal that will take it
4377 out of the single step range. Set a breakpoint at the
4378 current PC (which is presumably where the signal handler
4379 will eventually return) and then allow the inferior to
4382 Note that this is only needed for a signal delivered
4383 while in the single-step range. Nested signals aren't a
4384 problem as they eventually all return. */
4386 fprintf_unfiltered (gdb_stdlog,
4387 "infrun: signal may take us out of "
4388 "single-step range\n");
4390 insert_hp_step_resume_breakpoint_at_frame (frame);
4391 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4392 ecs->event_thread->control.trap_expected = 0;
4397 /* Note: step_resume_breakpoint may be non-NULL. This occures
4398 when either there's a nested signal, or when there's a
4399 pending signal enabled just as the signal handler returns
4400 (leaving the inferior at the step-resume-breakpoint without
4401 actually executing it). Either way continue until the
4402 breakpoint is really hit. */
4407 /* Handle cases caused by hitting a breakpoint. */
4409 CORE_ADDR jmp_buf_pc;
4410 struct bpstat_what what;
4412 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4414 if (what.call_dummy)
4416 stop_stack_dummy = what.call_dummy;
4419 /* If we hit an internal event that triggers symbol changes, the
4420 current frame will be invalidated within bpstat_what (e.g., if
4421 we hit an internal solib event). Re-fetch it. */
4422 frame = get_current_frame ();
4423 gdbarch = get_frame_arch (frame);
4425 switch (what.main_action)
4427 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4428 /* If we hit the breakpoint at longjmp while stepping, we
4429 install a momentary breakpoint at the target of the
4433 fprintf_unfiltered (gdb_stdlog,
4434 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4436 ecs->event_thread->stepping_over_breakpoint = 1;
4438 if (what.is_longjmp)
4440 if (!gdbarch_get_longjmp_target_p (gdbarch)
4441 || !gdbarch_get_longjmp_target (gdbarch,
4442 frame, &jmp_buf_pc))
4445 fprintf_unfiltered (gdb_stdlog,
4446 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4447 "(!gdbarch_get_longjmp_target)\n");
4452 /* We're going to replace the current step-resume breakpoint
4453 with a longjmp-resume breakpoint. */
4454 delete_step_resume_breakpoint (ecs->event_thread);
4456 /* Insert a breakpoint at resume address. */
4457 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4461 struct symbol *func = get_frame_function (frame);
4464 check_exception_resume (ecs, frame, func);
4469 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4471 fprintf_unfiltered (gdb_stdlog,
4472 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4474 if (what.is_longjmp)
4476 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4478 delete_step_resume_breakpoint (ecs->event_thread);
4482 /* There are several cases to consider.
4484 1. The initiating frame no longer exists. In this case
4485 we must stop, because the exception has gone too far.
4487 2. The initiating frame exists, and is the same as the
4488 current frame. We stop, because the exception has been
4491 3. The initiating frame exists and is different from
4492 the current frame. This means the exception has been
4493 caught beneath the initiating frame, so keep going. */
4494 struct frame_info *init_frame
4495 = frame_find_by_id (ecs->event_thread->initiating_frame);
4497 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4499 delete_exception_resume_breakpoint (ecs->event_thread);
4503 struct frame_id current_id
4504 = get_frame_id (get_current_frame ());
4505 if (frame_id_eq (current_id,
4506 ecs->event_thread->initiating_frame))
4508 /* Case 2. Fall through. */
4518 /* For Cases 1 and 2, remove the step-resume breakpoint,
4520 delete_step_resume_breakpoint (ecs->event_thread);
4523 ecs->event_thread->control.stop_step = 1;
4524 print_end_stepping_range_reason ();
4525 stop_stepping (ecs);
4528 case BPSTAT_WHAT_SINGLE:
4530 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4531 ecs->event_thread->stepping_over_breakpoint = 1;
4532 /* Still need to check other stuff, at least the case
4533 where we are stepping and step out of the right range. */
4536 case BPSTAT_WHAT_STEP_RESUME:
4538 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4540 delete_step_resume_breakpoint (ecs->event_thread);
4541 if (ecs->event_thread->control.proceed_to_finish
4542 && execution_direction == EXEC_REVERSE)
4544 struct thread_info *tp = ecs->event_thread;
4546 /* We are finishing a function in reverse, and just hit
4547 the step-resume breakpoint at the start address of the
4548 function, and we're almost there -- just need to back
4549 up by one more single-step, which should take us back
4550 to the function call. */
4551 tp->control.step_range_start = tp->control.step_range_end = 1;
4555 fill_in_stop_func (gdbarch, ecs);
4556 if (stop_pc == ecs->stop_func_start
4557 && execution_direction == EXEC_REVERSE)
4559 /* We are stepping over a function call in reverse, and
4560 just hit the step-resume breakpoint at the start
4561 address of the function. Go back to single-stepping,
4562 which should take us back to the function call. */
4563 ecs->event_thread->stepping_over_breakpoint = 1;
4569 case BPSTAT_WHAT_STOP_NOISY:
4571 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4572 stop_print_frame = 1;
4574 /* We are about to nuke the step_resume_breakpointt via the
4575 cleanup chain, so no need to worry about it here. */
4577 stop_stepping (ecs);
4580 case BPSTAT_WHAT_STOP_SILENT:
4582 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4583 stop_print_frame = 0;
4585 /* We are about to nuke the step_resume_breakpoin via the
4586 cleanup chain, so no need to worry about it here. */
4588 stop_stepping (ecs);
4591 case BPSTAT_WHAT_HP_STEP_RESUME:
4593 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4595 delete_step_resume_breakpoint (ecs->event_thread);
4596 if (ecs->event_thread->step_after_step_resume_breakpoint)
4598 /* Back when the step-resume breakpoint was inserted, we
4599 were trying to single-step off a breakpoint. Go back
4601 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4602 ecs->event_thread->stepping_over_breakpoint = 1;
4608 case BPSTAT_WHAT_KEEP_CHECKING:
4613 /* We come here if we hit a breakpoint but should not
4614 stop for it. Possibly we also were stepping
4615 and should stop for that. So fall through and
4616 test for stepping. But, if not stepping,
4619 /* In all-stop mode, if we're currently stepping but have stopped in
4620 some other thread, we need to switch back to the stepped thread. */
4623 struct thread_info *tp;
4625 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4629 /* However, if the current thread is blocked on some internal
4630 breakpoint, and we simply need to step over that breakpoint
4631 to get it going again, do that first. */
4632 if ((ecs->event_thread->control.trap_expected
4633 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4634 || ecs->event_thread->stepping_over_breakpoint)
4640 /* If the stepping thread exited, then don't try to switch
4641 back and resume it, which could fail in several different
4642 ways depending on the target. Instead, just keep going.
4644 We can find a stepping dead thread in the thread list in
4647 - The target supports thread exit events, and when the
4648 target tries to delete the thread from the thread list,
4649 inferior_ptid pointed at the exiting thread. In such
4650 case, calling delete_thread does not really remove the
4651 thread from the list; instead, the thread is left listed,
4652 with 'exited' state.
4654 - The target's debug interface does not support thread
4655 exit events, and so we have no idea whatsoever if the
4656 previously stepping thread is still alive. For that
4657 reason, we need to synchronously query the target
4659 if (is_exited (tp->ptid)
4660 || !target_thread_alive (tp->ptid))
4663 fprintf_unfiltered (gdb_stdlog,
4664 "infrun: not switching back to "
4665 "stepped thread, it has vanished\n");
4667 delete_thread (tp->ptid);
4672 /* Otherwise, we no longer expect a trap in the current thread.
4673 Clear the trap_expected flag before switching back -- this is
4674 what keep_going would do as well, if we called it. */
4675 ecs->event_thread->control.trap_expected = 0;
4678 fprintf_unfiltered (gdb_stdlog,
4679 "infrun: switching back to stepped thread\n");
4681 ecs->event_thread = tp;
4682 ecs->ptid = tp->ptid;
4683 context_switch (ecs->ptid);
4689 if (ecs->event_thread->control.step_resume_breakpoint)
4692 fprintf_unfiltered (gdb_stdlog,
4693 "infrun: step-resume breakpoint is inserted\n");
4695 /* Having a step-resume breakpoint overrides anything
4696 else having to do with stepping commands until
4697 that breakpoint is reached. */
4702 if (ecs->event_thread->control.step_range_end == 0)
4705 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4706 /* Likewise if we aren't even stepping. */
4711 /* Re-fetch current thread's frame in case the code above caused
4712 the frame cache to be re-initialized, making our FRAME variable
4713 a dangling pointer. */
4714 frame = get_current_frame ();
4715 gdbarch = get_frame_arch (frame);
4716 fill_in_stop_func (gdbarch, ecs);
4718 /* If stepping through a line, keep going if still within it.
4720 Note that step_range_end is the address of the first instruction
4721 beyond the step range, and NOT the address of the last instruction
4724 Note also that during reverse execution, we may be stepping
4725 through a function epilogue and therefore must detect when
4726 the current-frame changes in the middle of a line. */
4728 if (stop_pc >= ecs->event_thread->control.step_range_start
4729 && stop_pc < ecs->event_thread->control.step_range_end
4730 && (execution_direction != EXEC_REVERSE
4731 || frame_id_eq (get_frame_id (frame),
4732 ecs->event_thread->control.step_frame_id)))
4736 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4737 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4738 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4740 /* When stepping backward, stop at beginning of line range
4741 (unless it's the function entry point, in which case
4742 keep going back to the call point). */
4743 if (stop_pc == ecs->event_thread->control.step_range_start
4744 && stop_pc != ecs->stop_func_start
4745 && execution_direction == EXEC_REVERSE)
4747 ecs->event_thread->control.stop_step = 1;
4748 print_end_stepping_range_reason ();
4749 stop_stepping (ecs);
4757 /* We stepped out of the stepping range. */
4759 /* If we are stepping at the source level and entered the runtime
4760 loader dynamic symbol resolution code...
4762 EXEC_FORWARD: we keep on single stepping until we exit the run
4763 time loader code and reach the callee's address.
4765 EXEC_REVERSE: we've already executed the callee (backward), and
4766 the runtime loader code is handled just like any other
4767 undebuggable function call. Now we need only keep stepping
4768 backward through the trampoline code, and that's handled further
4769 down, so there is nothing for us to do here. */
4771 if (execution_direction != EXEC_REVERSE
4772 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4773 && in_solib_dynsym_resolve_code (stop_pc))
4775 CORE_ADDR pc_after_resolver =
4776 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: stepped into dynsym resolve code\n");
4782 if (pc_after_resolver)
4784 /* Set up a step-resume breakpoint at the address
4785 indicated by SKIP_SOLIB_RESOLVER. */
4786 struct symtab_and_line sr_sal;
4789 sr_sal.pc = pc_after_resolver;
4790 sr_sal.pspace = get_frame_program_space (frame);
4792 insert_step_resume_breakpoint_at_sal (gdbarch,
4793 sr_sal, null_frame_id);
4800 if (ecs->event_thread->control.step_range_end != 1
4801 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4802 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4803 && get_frame_type (frame) == SIGTRAMP_FRAME)
4806 fprintf_unfiltered (gdb_stdlog,
4807 "infrun: stepped into signal trampoline\n");
4808 /* The inferior, while doing a "step" or "next", has ended up in
4809 a signal trampoline (either by a signal being delivered or by
4810 the signal handler returning). Just single-step until the
4811 inferior leaves the trampoline (either by calling the handler
4817 /* Check for subroutine calls. The check for the current frame
4818 equalling the step ID is not necessary - the check of the
4819 previous frame's ID is sufficient - but it is a common case and
4820 cheaper than checking the previous frame's ID.
4822 NOTE: frame_id_eq will never report two invalid frame IDs as
4823 being equal, so to get into this block, both the current and
4824 previous frame must have valid frame IDs. */
4825 /* The outer_frame_id check is a heuristic to detect stepping
4826 through startup code. If we step over an instruction which
4827 sets the stack pointer from an invalid value to a valid value,
4828 we may detect that as a subroutine call from the mythical
4829 "outermost" function. This could be fixed by marking
4830 outermost frames as !stack_p,code_p,special_p. Then the
4831 initial outermost frame, before sp was valid, would
4832 have code_addr == &_start. See the comment in frame_id_eq
4834 if (!frame_id_eq (get_stack_frame_id (frame),
4835 ecs->event_thread->control.step_stack_frame_id)
4836 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4837 ecs->event_thread->control.step_stack_frame_id)
4838 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4840 || step_start_function != find_pc_function (stop_pc))))
4842 CORE_ADDR real_stop_pc;
4845 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4847 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4848 || ((ecs->event_thread->control.step_range_end == 1)
4849 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4850 ecs->stop_func_start)))
4852 /* I presume that step_over_calls is only 0 when we're
4853 supposed to be stepping at the assembly language level
4854 ("stepi"). Just stop. */
4855 /* Also, maybe we just did a "nexti" inside a prolog, so we
4856 thought it was a subroutine call but it was not. Stop as
4858 /* And this works the same backward as frontward. MVS */
4859 ecs->event_thread->control.stop_step = 1;
4860 print_end_stepping_range_reason ();
4861 stop_stepping (ecs);
4865 /* Reverse stepping through solib trampolines. */
4867 if (execution_direction == EXEC_REVERSE
4868 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4869 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4870 || (ecs->stop_func_start == 0
4871 && in_solib_dynsym_resolve_code (stop_pc))))
4873 /* Any solib trampoline code can be handled in reverse
4874 by simply continuing to single-step. We have already
4875 executed the solib function (backwards), and a few
4876 steps will take us back through the trampoline to the
4882 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4884 /* We're doing a "next".
4886 Normal (forward) execution: set a breakpoint at the
4887 callee's return address (the address at which the caller
4890 Reverse (backward) execution. set the step-resume
4891 breakpoint at the start of the function that we just
4892 stepped into (backwards), and continue to there. When we
4893 get there, we'll need to single-step back to the caller. */
4895 if (execution_direction == EXEC_REVERSE)
4897 struct symtab_and_line sr_sal;
4899 /* Normal function call return (static or dynamic). */
4901 sr_sal.pc = ecs->stop_func_start;
4902 sr_sal.pspace = get_frame_program_space (frame);
4903 insert_step_resume_breakpoint_at_sal (gdbarch,
4904 sr_sal, null_frame_id);
4907 insert_step_resume_breakpoint_at_caller (frame);
4913 /* If we are in a function call trampoline (a stub between the
4914 calling routine and the real function), locate the real
4915 function. That's what tells us (a) whether we want to step
4916 into it at all, and (b) what prologue we want to run to the
4917 end of, if we do step into it. */
4918 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4919 if (real_stop_pc == 0)
4920 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4921 if (real_stop_pc != 0)
4922 ecs->stop_func_start = real_stop_pc;
4924 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4926 struct symtab_and_line sr_sal;
4929 sr_sal.pc = ecs->stop_func_start;
4930 sr_sal.pspace = get_frame_program_space (frame);
4932 insert_step_resume_breakpoint_at_sal (gdbarch,
4933 sr_sal, null_frame_id);
4938 /* If we have line number information for the function we are
4939 thinking of stepping into and the function isn't on the skip
4942 If there are several symtabs at that PC (e.g. with include
4943 files), just want to know whether *any* of them have line
4944 numbers. find_pc_line handles this. */
4946 struct symtab_and_line tmp_sal;
4948 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4949 if (tmp_sal.line != 0
4950 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4952 if (execution_direction == EXEC_REVERSE)
4953 handle_step_into_function_backward (gdbarch, ecs);
4955 handle_step_into_function (gdbarch, ecs);
4960 /* If we have no line number and the step-stop-if-no-debug is
4961 set, we stop the step so that the user has a chance to switch
4962 in assembly mode. */
4963 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4964 && step_stop_if_no_debug)
4966 ecs->event_thread->control.stop_step = 1;
4967 print_end_stepping_range_reason ();
4968 stop_stepping (ecs);
4972 if (execution_direction == EXEC_REVERSE)
4974 /* Set a breakpoint at callee's start address.
4975 From there we can step once and be back in the caller. */
4976 struct symtab_and_line sr_sal;
4979 sr_sal.pc = ecs->stop_func_start;
4980 sr_sal.pspace = get_frame_program_space (frame);
4981 insert_step_resume_breakpoint_at_sal (gdbarch,
4982 sr_sal, null_frame_id);
4985 /* Set a breakpoint at callee's return address (the address
4986 at which the caller will resume). */
4987 insert_step_resume_breakpoint_at_caller (frame);
4993 /* Reverse stepping through solib trampolines. */
4995 if (execution_direction == EXEC_REVERSE
4996 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4998 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4999 || (ecs->stop_func_start == 0
5000 && in_solib_dynsym_resolve_code (stop_pc)))
5002 /* Any solib trampoline code can be handled in reverse
5003 by simply continuing to single-step. We have already
5004 executed the solib function (backwards), and a few
5005 steps will take us back through the trampoline to the
5010 else if (in_solib_dynsym_resolve_code (stop_pc))
5012 /* Stepped backward into the solib dynsym resolver.
5013 Set a breakpoint at its start and continue, then
5014 one more step will take us out. */
5015 struct symtab_and_line sr_sal;
5018 sr_sal.pc = ecs->stop_func_start;
5019 sr_sal.pspace = get_frame_program_space (frame);
5020 insert_step_resume_breakpoint_at_sal (gdbarch,
5021 sr_sal, null_frame_id);
5027 /* If we're in the return path from a shared library trampoline,
5028 we want to proceed through the trampoline when stepping. */
5029 if (gdbarch_in_solib_return_trampoline (gdbarch,
5030 stop_pc, ecs->stop_func_name)
5031 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5033 /* Determine where this trampoline returns. */
5034 CORE_ADDR real_stop_pc;
5036 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5039 fprintf_unfiltered (gdb_stdlog,
5040 "infrun: stepped into solib return tramp\n");
5042 /* Only proceed through if we know where it's going. */
5045 /* And put the step-breakpoint there and go until there. */
5046 struct symtab_and_line sr_sal;
5048 init_sal (&sr_sal); /* initialize to zeroes */
5049 sr_sal.pc = real_stop_pc;
5050 sr_sal.section = find_pc_overlay (sr_sal.pc);
5051 sr_sal.pspace = get_frame_program_space (frame);
5053 /* Do not specify what the fp should be when we stop since
5054 on some machines the prologue is where the new fp value
5056 insert_step_resume_breakpoint_at_sal (gdbarch,
5057 sr_sal, null_frame_id);
5059 /* Restart without fiddling with the step ranges or
5066 stop_pc_sal = find_pc_line (stop_pc, 0);
5068 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5069 the trampoline processing logic, however, there are some trampolines
5070 that have no names, so we should do trampoline handling first. */
5071 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5072 && ecs->stop_func_name == NULL
5073 && stop_pc_sal.line == 0)
5076 fprintf_unfiltered (gdb_stdlog,
5077 "infrun: stepped into undebuggable function\n");
5079 /* The inferior just stepped into, or returned to, an
5080 undebuggable function (where there is no debugging information
5081 and no line number corresponding to the address where the
5082 inferior stopped). Since we want to skip this kind of code,
5083 we keep going until the inferior returns from this
5084 function - unless the user has asked us not to (via
5085 set step-mode) or we no longer know how to get back
5086 to the call site. */
5087 if (step_stop_if_no_debug
5088 || !frame_id_p (frame_unwind_caller_id (frame)))
5090 /* If we have no line number and the step-stop-if-no-debug
5091 is set, we stop the step so that the user has a chance to
5092 switch in assembly mode. */
5093 ecs->event_thread->control.stop_step = 1;
5094 print_end_stepping_range_reason ();
5095 stop_stepping (ecs);
5100 /* Set a breakpoint at callee's return address (the address
5101 at which the caller will resume). */
5102 insert_step_resume_breakpoint_at_caller (frame);
5108 if (ecs->event_thread->control.step_range_end == 1)
5110 /* It is stepi or nexti. We always want to stop stepping after
5113 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5114 ecs->event_thread->control.stop_step = 1;
5115 print_end_stepping_range_reason ();
5116 stop_stepping (ecs);
5120 if (stop_pc_sal.line == 0)
5122 /* We have no line number information. That means to stop
5123 stepping (does this always happen right after one instruction,
5124 when we do "s" in a function with no line numbers,
5125 or can this happen as a result of a return or longjmp?). */
5127 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5128 ecs->event_thread->control.stop_step = 1;
5129 print_end_stepping_range_reason ();
5130 stop_stepping (ecs);
5134 /* Look for "calls" to inlined functions, part one. If the inline
5135 frame machinery detected some skipped call sites, we have entered
5136 a new inline function. */
5138 if (frame_id_eq (get_frame_id (get_current_frame ()),
5139 ecs->event_thread->control.step_frame_id)
5140 && inline_skipped_frames (ecs->ptid))
5142 struct symtab_and_line call_sal;
5145 fprintf_unfiltered (gdb_stdlog,
5146 "infrun: stepped into inlined function\n");
5148 find_frame_sal (get_current_frame (), &call_sal);
5150 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5152 /* For "step", we're going to stop. But if the call site
5153 for this inlined function is on the same source line as
5154 we were previously stepping, go down into the function
5155 first. Otherwise stop at the call site. */
5157 if (call_sal.line == ecs->event_thread->current_line
5158 && call_sal.symtab == ecs->event_thread->current_symtab)
5159 step_into_inline_frame (ecs->ptid);
5161 ecs->event_thread->control.stop_step = 1;
5162 print_end_stepping_range_reason ();
5163 stop_stepping (ecs);
5168 /* For "next", we should stop at the call site if it is on a
5169 different source line. Otherwise continue through the
5170 inlined function. */
5171 if (call_sal.line == ecs->event_thread->current_line
5172 && call_sal.symtab == ecs->event_thread->current_symtab)
5176 ecs->event_thread->control.stop_step = 1;
5177 print_end_stepping_range_reason ();
5178 stop_stepping (ecs);
5184 /* Look for "calls" to inlined functions, part two. If we are still
5185 in the same real function we were stepping through, but we have
5186 to go further up to find the exact frame ID, we are stepping
5187 through a more inlined call beyond its call site. */
5189 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5190 && !frame_id_eq (get_frame_id (get_current_frame ()),
5191 ecs->event_thread->control.step_frame_id)
5192 && stepped_in_from (get_current_frame (),
5193 ecs->event_thread->control.step_frame_id))
5196 fprintf_unfiltered (gdb_stdlog,
5197 "infrun: stepping through inlined function\n");
5199 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5203 ecs->event_thread->control.stop_step = 1;
5204 print_end_stepping_range_reason ();
5205 stop_stepping (ecs);
5210 if ((stop_pc == stop_pc_sal.pc)
5211 && (ecs->event_thread->current_line != stop_pc_sal.line
5212 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5214 /* We are at the start of a different line. So stop. Note that
5215 we don't stop if we step into the middle of a different line.
5216 That is said to make things like for (;;) statements work
5219 fprintf_unfiltered (gdb_stdlog,
5220 "infrun: stepped to a different line\n");
5221 ecs->event_thread->control.stop_step = 1;
5222 print_end_stepping_range_reason ();
5223 stop_stepping (ecs);
5227 /* We aren't done stepping.
5229 Optimize by setting the stepping range to the line.
5230 (We might not be in the original line, but if we entered a
5231 new line in mid-statement, we continue stepping. This makes
5232 things like for(;;) statements work better.) */
5234 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5235 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5236 set_step_info (frame, stop_pc_sal);
5239 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5243 /* Is thread TP in the middle of single-stepping? */
5246 currently_stepping (struct thread_info *tp)
5248 return ((tp->control.step_range_end
5249 && tp->control.step_resume_breakpoint == NULL)
5250 || tp->control.trap_expected
5251 || bpstat_should_step ());
5254 /* Returns true if any thread *but* the one passed in "data" is in the
5255 middle of stepping or of handling a "next". */
5258 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5263 return (tp->control.step_range_end
5264 || tp->control.trap_expected);
5267 /* Inferior has stepped into a subroutine call with source code that
5268 we should not step over. Do step to the first line of code in
5272 handle_step_into_function (struct gdbarch *gdbarch,
5273 struct execution_control_state *ecs)
5276 struct symtab_and_line stop_func_sal, sr_sal;
5278 fill_in_stop_func (gdbarch, ecs);
5280 s = find_pc_symtab (stop_pc);
5281 if (s && s->language != language_asm)
5282 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5283 ecs->stop_func_start);
5285 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5286 /* Use the step_resume_break to step until the end of the prologue,
5287 even if that involves jumps (as it seems to on the vax under
5289 /* If the prologue ends in the middle of a source line, continue to
5290 the end of that source line (if it is still within the function).
5291 Otherwise, just go to end of prologue. */
5292 if (stop_func_sal.end
5293 && stop_func_sal.pc != ecs->stop_func_start
5294 && stop_func_sal.end < ecs->stop_func_end)
5295 ecs->stop_func_start = stop_func_sal.end;
5297 /* Architectures which require breakpoint adjustment might not be able
5298 to place a breakpoint at the computed address. If so, the test
5299 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5300 ecs->stop_func_start to an address at which a breakpoint may be
5301 legitimately placed.
5303 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5304 made, GDB will enter an infinite loop when stepping through
5305 optimized code consisting of VLIW instructions which contain
5306 subinstructions corresponding to different source lines. On
5307 FR-V, it's not permitted to place a breakpoint on any but the
5308 first subinstruction of a VLIW instruction. When a breakpoint is
5309 set, GDB will adjust the breakpoint address to the beginning of
5310 the VLIW instruction. Thus, we need to make the corresponding
5311 adjustment here when computing the stop address. */
5313 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5315 ecs->stop_func_start
5316 = gdbarch_adjust_breakpoint_address (gdbarch,
5317 ecs->stop_func_start);
5320 if (ecs->stop_func_start == stop_pc)
5322 /* We are already there: stop now. */
5323 ecs->event_thread->control.stop_step = 1;
5324 print_end_stepping_range_reason ();
5325 stop_stepping (ecs);
5330 /* Put the step-breakpoint there and go until there. */
5331 init_sal (&sr_sal); /* initialize to zeroes */
5332 sr_sal.pc = ecs->stop_func_start;
5333 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5334 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5336 /* Do not specify what the fp should be when we stop since on
5337 some machines the prologue is where the new fp value is
5339 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5341 /* And make sure stepping stops right away then. */
5342 ecs->event_thread->control.step_range_end
5343 = ecs->event_thread->control.step_range_start;
5348 /* Inferior has stepped backward into a subroutine call with source
5349 code that we should not step over. Do step to the beginning of the
5350 last line of code in it. */
5353 handle_step_into_function_backward (struct gdbarch *gdbarch,
5354 struct execution_control_state *ecs)
5357 struct symtab_and_line stop_func_sal;
5359 fill_in_stop_func (gdbarch, ecs);
5361 s = find_pc_symtab (stop_pc);
5362 if (s && s->language != language_asm)
5363 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5364 ecs->stop_func_start);
5366 stop_func_sal = find_pc_line (stop_pc, 0);
5368 /* OK, we're just going to keep stepping here. */
5369 if (stop_func_sal.pc == stop_pc)
5371 /* We're there already. Just stop stepping now. */
5372 ecs->event_thread->control.stop_step = 1;
5373 print_end_stepping_range_reason ();
5374 stop_stepping (ecs);
5378 /* Else just reset the step range and keep going.
5379 No step-resume breakpoint, they don't work for
5380 epilogues, which can have multiple entry paths. */
5381 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5382 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5388 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5389 This is used to both functions and to skip over code. */
5392 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5393 struct symtab_and_line sr_sal,
5394 struct frame_id sr_id,
5395 enum bptype sr_type)
5397 /* There should never be more than one step-resume or longjmp-resume
5398 breakpoint per thread, so we should never be setting a new
5399 step_resume_breakpoint when one is already active. */
5400 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5401 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5404 fprintf_unfiltered (gdb_stdlog,
5405 "infrun: inserting step-resume breakpoint at %s\n",
5406 paddress (gdbarch, sr_sal.pc));
5408 inferior_thread ()->control.step_resume_breakpoint
5409 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5413 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5414 struct symtab_and_line sr_sal,
5415 struct frame_id sr_id)
5417 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5422 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5423 This is used to skip a potential signal handler.
5425 This is called with the interrupted function's frame. The signal
5426 handler, when it returns, will resume the interrupted function at
5430 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5432 struct symtab_and_line sr_sal;
5433 struct gdbarch *gdbarch;
5435 gdb_assert (return_frame != NULL);
5436 init_sal (&sr_sal); /* initialize to zeros */
5438 gdbarch = get_frame_arch (return_frame);
5439 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5440 sr_sal.section = find_pc_overlay (sr_sal.pc);
5441 sr_sal.pspace = get_frame_program_space (return_frame);
5443 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5444 get_stack_frame_id (return_frame),
5448 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5449 is used to skip a function after stepping into it (for "next" or if
5450 the called function has no debugging information).
5452 The current function has almost always been reached by single
5453 stepping a call or return instruction. NEXT_FRAME belongs to the
5454 current function, and the breakpoint will be set at the caller's
5457 This is a separate function rather than reusing
5458 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5459 get_prev_frame, which may stop prematurely (see the implementation
5460 of frame_unwind_caller_id for an example). */
5463 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5465 struct symtab_and_line sr_sal;
5466 struct gdbarch *gdbarch;
5468 /* We shouldn't have gotten here if we don't know where the call site
5470 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5472 init_sal (&sr_sal); /* initialize to zeros */
5474 gdbarch = frame_unwind_caller_arch (next_frame);
5475 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5476 frame_unwind_caller_pc (next_frame));
5477 sr_sal.section = find_pc_overlay (sr_sal.pc);
5478 sr_sal.pspace = frame_unwind_program_space (next_frame);
5480 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5481 frame_unwind_caller_id (next_frame));
5484 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5485 new breakpoint at the target of a jmp_buf. The handling of
5486 longjmp-resume uses the same mechanisms used for handling
5487 "step-resume" breakpoints. */
5490 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5492 /* There should never be more than one step-resume or longjmp-resume
5493 breakpoint per thread, so we should never be setting a new
5494 longjmp_resume_breakpoint when one is already active. */
5495 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5498 fprintf_unfiltered (gdb_stdlog,
5499 "infrun: inserting longjmp-resume breakpoint at %s\n",
5500 paddress (gdbarch, pc));
5502 inferior_thread ()->control.step_resume_breakpoint =
5503 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5506 /* Insert an exception resume breakpoint. TP is the thread throwing
5507 the exception. The block B is the block of the unwinder debug hook
5508 function. FRAME is the frame corresponding to the call to this
5509 function. SYM is the symbol of the function argument holding the
5510 target PC of the exception. */
5513 insert_exception_resume_breakpoint (struct thread_info *tp,
5515 struct frame_info *frame,
5518 volatile struct gdb_exception e;
5520 /* We want to ignore errors here. */
5521 TRY_CATCH (e, RETURN_MASK_ERROR)
5523 struct symbol *vsym;
5524 struct value *value;
5526 struct breakpoint *bp;
5528 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5529 value = read_var_value (vsym, frame);
5530 /* If the value was optimized out, revert to the old behavior. */
5531 if (! value_optimized_out (value))
5533 handler = value_as_address (value);
5536 fprintf_unfiltered (gdb_stdlog,
5537 "infrun: exception resume at %lx\n",
5538 (unsigned long) handler);
5540 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5541 handler, bp_exception_resume);
5543 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5546 bp->thread = tp->num;
5547 inferior_thread ()->control.exception_resume_breakpoint = bp;
5552 /* This is called when an exception has been intercepted. Check to
5553 see whether the exception's destination is of interest, and if so,
5554 set an exception resume breakpoint there. */
5557 check_exception_resume (struct execution_control_state *ecs,
5558 struct frame_info *frame, struct symbol *func)
5560 volatile struct gdb_exception e;
5562 TRY_CATCH (e, RETURN_MASK_ERROR)
5565 struct dict_iterator iter;
5569 /* The exception breakpoint is a thread-specific breakpoint on
5570 the unwinder's debug hook, declared as:
5572 void _Unwind_DebugHook (void *cfa, void *handler);
5574 The CFA argument indicates the frame to which control is
5575 about to be transferred. HANDLER is the destination PC.
5577 We ignore the CFA and set a temporary breakpoint at HANDLER.
5578 This is not extremely efficient but it avoids issues in gdb
5579 with computing the DWARF CFA, and it also works even in weird
5580 cases such as throwing an exception from inside a signal
5583 b = SYMBOL_BLOCK_VALUE (func);
5584 ALL_BLOCK_SYMBOLS (b, iter, sym)
5586 if (!SYMBOL_IS_ARGUMENT (sym))
5593 insert_exception_resume_breakpoint (ecs->event_thread,
5602 stop_stepping (struct execution_control_state *ecs)
5605 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5607 /* Let callers know we don't want to wait for the inferior anymore. */
5608 ecs->wait_some_more = 0;
5611 /* This function handles various cases where we need to continue
5612 waiting for the inferior. */
5613 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5616 keep_going (struct execution_control_state *ecs)
5618 /* Make sure normal_stop is called if we get a QUIT handled before
5620 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5622 /* Save the pc before execution, to compare with pc after stop. */
5623 ecs->event_thread->prev_pc
5624 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5626 /* If we did not do break;, it means we should keep running the
5627 inferior and not return to debugger. */
5629 if (ecs->event_thread->control.trap_expected
5630 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5632 /* We took a signal (which we are supposed to pass through to
5633 the inferior, else we'd not get here) and we haven't yet
5634 gotten our trap. Simply continue. */
5636 discard_cleanups (old_cleanups);
5637 resume (currently_stepping (ecs->event_thread),
5638 ecs->event_thread->suspend.stop_signal);
5642 /* Either the trap was not expected, but we are continuing
5643 anyway (the user asked that this signal be passed to the
5646 The signal was SIGTRAP, e.g. it was our signal, but we
5647 decided we should resume from it.
5649 We're going to run this baby now!
5651 Note that insert_breakpoints won't try to re-insert
5652 already inserted breakpoints. Therefore, we don't
5653 care if breakpoints were already inserted, or not. */
5655 if (ecs->event_thread->stepping_over_breakpoint)
5657 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5659 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5660 /* Since we can't do a displaced step, we have to remove
5661 the breakpoint while we step it. To keep things
5662 simple, we remove them all. */
5663 remove_breakpoints ();
5667 volatile struct gdb_exception e;
5669 /* Stop stepping when inserting breakpoints
5671 TRY_CATCH (e, RETURN_MASK_ERROR)
5673 insert_breakpoints ();
5677 exception_print (gdb_stderr, e);
5678 stop_stepping (ecs);
5683 ecs->event_thread->control.trap_expected
5684 = ecs->event_thread->stepping_over_breakpoint;
5686 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5687 specifies that such a signal should be delivered to the
5690 Typically, this would occure when a user is debugging a
5691 target monitor on a simulator: the target monitor sets a
5692 breakpoint; the simulator encounters this break-point and
5693 halts the simulation handing control to GDB; GDB, noteing
5694 that the break-point isn't valid, returns control back to the
5695 simulator; the simulator then delivers the hardware
5696 equivalent of a SIGNAL_TRAP to the program being debugged. */
5698 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5699 && !signal_program[ecs->event_thread->suspend.stop_signal])
5700 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5702 discard_cleanups (old_cleanups);
5703 resume (currently_stepping (ecs->event_thread),
5704 ecs->event_thread->suspend.stop_signal);
5707 prepare_to_wait (ecs);
5710 /* This function normally comes after a resume, before
5711 handle_inferior_event exits. It takes care of any last bits of
5712 housekeeping, and sets the all-important wait_some_more flag. */
5715 prepare_to_wait (struct execution_control_state *ecs)
5718 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5720 /* This is the old end of the while loop. Let everybody know we
5721 want to wait for the inferior some more and get called again
5723 ecs->wait_some_more = 1;
5726 /* Several print_*_reason functions to print why the inferior has stopped.
5727 We always print something when the inferior exits, or receives a signal.
5728 The rest of the cases are dealt with later on in normal_stop and
5729 print_it_typical. Ideally there should be a call to one of these
5730 print_*_reason functions functions from handle_inferior_event each time
5731 stop_stepping is called. */
5733 /* Print why the inferior has stopped.
5734 We are done with a step/next/si/ni command, print why the inferior has
5735 stopped. For now print nothing. Print a message only if not in the middle
5736 of doing a "step n" operation for n > 1. */
5739 print_end_stepping_range_reason (void)
5741 if ((!inferior_thread ()->step_multi
5742 || !inferior_thread ()->control.stop_step)
5743 && ui_out_is_mi_like_p (current_uiout))
5744 ui_out_field_string (current_uiout, "reason",
5745 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5748 /* The inferior was terminated by a signal, print why it stopped. */
5751 print_signal_exited_reason (enum target_signal siggnal)
5753 struct ui_out *uiout = current_uiout;
5755 annotate_signalled ();
5756 if (ui_out_is_mi_like_p (uiout))
5758 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5759 ui_out_text (uiout, "\nProgram terminated with signal ");
5760 annotate_signal_name ();
5761 ui_out_field_string (uiout, "signal-name",
5762 target_signal_to_name (siggnal));
5763 annotate_signal_name_end ();
5764 ui_out_text (uiout, ", ");
5765 annotate_signal_string ();
5766 ui_out_field_string (uiout, "signal-meaning",
5767 target_signal_to_string (siggnal));
5768 annotate_signal_string_end ();
5769 ui_out_text (uiout, ".\n");
5770 ui_out_text (uiout, "The program no longer exists.\n");
5773 /* The inferior program is finished, print why it stopped. */
5776 print_exited_reason (int exitstatus)
5778 struct inferior *inf = current_inferior ();
5779 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5780 struct ui_out *uiout = current_uiout;
5782 annotate_exited (exitstatus);
5785 if (ui_out_is_mi_like_p (uiout))
5786 ui_out_field_string (uiout, "reason",
5787 async_reason_lookup (EXEC_ASYNC_EXITED));
5788 ui_out_text (uiout, "[Inferior ");
5789 ui_out_text (uiout, plongest (inf->num));
5790 ui_out_text (uiout, " (");
5791 ui_out_text (uiout, pidstr);
5792 ui_out_text (uiout, ") exited with code ");
5793 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5794 ui_out_text (uiout, "]\n");
5798 if (ui_out_is_mi_like_p (uiout))
5800 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5801 ui_out_text (uiout, "[Inferior ");
5802 ui_out_text (uiout, plongest (inf->num));
5803 ui_out_text (uiout, " (");
5804 ui_out_text (uiout, pidstr);
5805 ui_out_text (uiout, ") exited normally]\n");
5807 /* Support the --return-child-result option. */
5808 return_child_result_value = exitstatus;
5811 /* Signal received, print why the inferior has stopped. The signal table
5812 tells us to print about it. */
5815 print_signal_received_reason (enum target_signal siggnal)
5817 struct ui_out *uiout = current_uiout;
5821 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5823 struct thread_info *t = inferior_thread ();
5825 ui_out_text (uiout, "\n[");
5826 ui_out_field_string (uiout, "thread-name",
5827 target_pid_to_str (t->ptid));
5828 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5829 ui_out_text (uiout, " stopped");
5833 ui_out_text (uiout, "\nProgram received signal ");
5834 annotate_signal_name ();
5835 if (ui_out_is_mi_like_p (uiout))
5837 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5838 ui_out_field_string (uiout, "signal-name",
5839 target_signal_to_name (siggnal));
5840 annotate_signal_name_end ();
5841 ui_out_text (uiout, ", ");
5842 annotate_signal_string ();
5843 ui_out_field_string (uiout, "signal-meaning",
5844 target_signal_to_string (siggnal));
5845 annotate_signal_string_end ();
5847 ui_out_text (uiout, ".\n");
5850 /* Reverse execution: target ran out of history info, print why the inferior
5854 print_no_history_reason (void)
5856 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5859 /* Here to return control to GDB when the inferior stops for real.
5860 Print appropriate messages, remove breakpoints, give terminal our modes.
5862 STOP_PRINT_FRAME nonzero means print the executing frame
5863 (pc, function, args, file, line number and line text).
5864 BREAKPOINTS_FAILED nonzero means stop was due to error
5865 attempting to insert breakpoints. */
5870 struct target_waitstatus last;
5872 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5874 get_last_target_status (&last_ptid, &last);
5876 /* If an exception is thrown from this point on, make sure to
5877 propagate GDB's knowledge of the executing state to the
5878 frontend/user running state. A QUIT is an easy exception to see
5879 here, so do this before any filtered output. */
5881 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5882 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5883 && last.kind != TARGET_WAITKIND_EXITED
5884 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5885 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5887 /* In non-stop mode, we don't want GDB to switch threads behind the
5888 user's back, to avoid races where the user is typing a command to
5889 apply to thread x, but GDB switches to thread y before the user
5890 finishes entering the command. */
5892 /* As with the notification of thread events, we want to delay
5893 notifying the user that we've switched thread context until
5894 the inferior actually stops.
5896 There's no point in saying anything if the inferior has exited.
5897 Note that SIGNALLED here means "exited with a signal", not
5898 "received a signal". */
5900 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5901 && target_has_execution
5902 && last.kind != TARGET_WAITKIND_SIGNALLED
5903 && last.kind != TARGET_WAITKIND_EXITED
5904 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5906 target_terminal_ours_for_output ();
5907 printf_filtered (_("[Switching to %s]\n"),
5908 target_pid_to_str (inferior_ptid));
5909 annotate_thread_changed ();
5910 previous_inferior_ptid = inferior_ptid;
5913 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5915 gdb_assert (sync_execution || !target_can_async_p ());
5917 target_terminal_ours_for_output ();
5918 printf_filtered (_("No unwaited-for children left.\n"));
5921 if (!breakpoints_always_inserted_mode () && target_has_execution)
5923 if (remove_breakpoints ())
5925 target_terminal_ours_for_output ();
5926 printf_filtered (_("Cannot remove breakpoints because "
5927 "program is no longer writable.\nFurther "
5928 "execution is probably impossible.\n"));
5932 /* If an auto-display called a function and that got a signal,
5933 delete that auto-display to avoid an infinite recursion. */
5935 if (stopped_by_random_signal)
5936 disable_current_display ();
5938 /* Don't print a message if in the middle of doing a "step n"
5939 operation for n > 1 */
5940 if (target_has_execution
5941 && last.kind != TARGET_WAITKIND_SIGNALLED
5942 && last.kind != TARGET_WAITKIND_EXITED
5943 && inferior_thread ()->step_multi
5944 && inferior_thread ()->control.stop_step)
5947 target_terminal_ours ();
5948 async_enable_stdin ();
5950 /* Set the current source location. This will also happen if we
5951 display the frame below, but the current SAL will be incorrect
5952 during a user hook-stop function. */
5953 if (has_stack_frames () && !stop_stack_dummy)
5954 set_current_sal_from_frame (get_current_frame (), 1);
5956 /* Let the user/frontend see the threads as stopped. */
5957 do_cleanups (old_chain);
5959 /* Look up the hook_stop and run it (CLI internally handles problem
5960 of stop_command's pre-hook not existing). */
5962 catch_errors (hook_stop_stub, stop_command,
5963 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5965 if (!has_stack_frames ())
5968 if (last.kind == TARGET_WAITKIND_SIGNALLED
5969 || last.kind == TARGET_WAITKIND_EXITED)
5972 /* Select innermost stack frame - i.e., current frame is frame 0,
5973 and current location is based on that.
5974 Don't do this on return from a stack dummy routine,
5975 or if the program has exited. */
5977 if (!stop_stack_dummy)
5979 select_frame (get_current_frame ());
5981 /* Print current location without a level number, if
5982 we have changed functions or hit a breakpoint.
5983 Print source line if we have one.
5984 bpstat_print() contains the logic deciding in detail
5985 what to print, based on the event(s) that just occurred. */
5987 /* If --batch-silent is enabled then there's no need to print the current
5988 source location, and to try risks causing an error message about
5989 missing source files. */
5990 if (stop_print_frame && !batch_silent)
5994 int do_frame_printing = 1;
5995 struct thread_info *tp = inferior_thread ();
5997 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6001 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6002 (or should) carry around the function and does (or
6003 should) use that when doing a frame comparison. */
6004 if (tp->control.stop_step
6005 && frame_id_eq (tp->control.step_frame_id,
6006 get_frame_id (get_current_frame ()))
6007 && step_start_function == find_pc_function (stop_pc))
6008 source_flag = SRC_LINE; /* Finished step, just
6009 print source line. */
6011 source_flag = SRC_AND_LOC; /* Print location and
6014 case PRINT_SRC_AND_LOC:
6015 source_flag = SRC_AND_LOC; /* Print location and
6018 case PRINT_SRC_ONLY:
6019 source_flag = SRC_LINE;
6022 source_flag = SRC_LINE; /* something bogus */
6023 do_frame_printing = 0;
6026 internal_error (__FILE__, __LINE__, _("Unknown value."));
6029 /* The behavior of this routine with respect to the source
6031 SRC_LINE: Print only source line
6032 LOCATION: Print only location
6033 SRC_AND_LOC: Print location and source line. */
6034 if (do_frame_printing)
6035 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6037 /* Display the auto-display expressions. */
6042 /* Save the function value return registers, if we care.
6043 We might be about to restore their previous contents. */
6044 if (inferior_thread ()->control.proceed_to_finish
6045 && execution_direction != EXEC_REVERSE)
6047 /* This should not be necessary. */
6049 regcache_xfree (stop_registers);
6051 /* NB: The copy goes through to the target picking up the value of
6052 all the registers. */
6053 stop_registers = regcache_dup (get_current_regcache ());
6056 if (stop_stack_dummy == STOP_STACK_DUMMY)
6058 /* Pop the empty frame that contains the stack dummy.
6059 This also restores inferior state prior to the call
6060 (struct infcall_suspend_state). */
6061 struct frame_info *frame = get_current_frame ();
6063 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6065 /* frame_pop() calls reinit_frame_cache as the last thing it
6066 does which means there's currently no selected frame. We
6067 don't need to re-establish a selected frame if the dummy call
6068 returns normally, that will be done by
6069 restore_infcall_control_state. However, we do have to handle
6070 the case where the dummy call is returning after being
6071 stopped (e.g. the dummy call previously hit a breakpoint).
6072 We can't know which case we have so just always re-establish
6073 a selected frame here. */
6074 select_frame (get_current_frame ());
6078 annotate_stopped ();
6080 /* Suppress the stop observer if we're in the middle of:
6082 - a step n (n > 1), as there still more steps to be done.
6084 - a "finish" command, as the observer will be called in
6085 finish_command_continuation, so it can include the inferior
6086 function's return value.
6088 - calling an inferior function, as we pretend we inferior didn't
6089 run at all. The return value of the call is handled by the
6090 expression evaluator, through call_function_by_hand. */
6092 if (!target_has_execution
6093 || last.kind == TARGET_WAITKIND_SIGNALLED
6094 || last.kind == TARGET_WAITKIND_EXITED
6095 || last.kind == TARGET_WAITKIND_NO_RESUMED
6096 || (!(inferior_thread ()->step_multi
6097 && inferior_thread ()->control.stop_step)
6098 && !(inferior_thread ()->control.stop_bpstat
6099 && inferior_thread ()->control.proceed_to_finish)
6100 && !inferior_thread ()->control.in_infcall))
6102 if (!ptid_equal (inferior_ptid, null_ptid))
6103 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6106 observer_notify_normal_stop (NULL, stop_print_frame);
6109 if (target_has_execution)
6111 if (last.kind != TARGET_WAITKIND_SIGNALLED
6112 && last.kind != TARGET_WAITKIND_EXITED)
6113 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6114 Delete any breakpoint that is to be deleted at the next stop. */
6115 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6118 /* Try to get rid of automatically added inferiors that are no
6119 longer needed. Keeping those around slows down things linearly.
6120 Note that this never removes the current inferior. */
6125 hook_stop_stub (void *cmd)
6127 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6132 signal_stop_state (int signo)
6134 return signal_stop[signo];
6138 signal_print_state (int signo)
6140 return signal_print[signo];
6144 signal_pass_state (int signo)
6146 return signal_program[signo];
6150 signal_cache_update (int signo)
6154 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6155 signal_cache_update (signo);
6160 signal_pass[signo] = (signal_stop[signo] == 0
6161 && signal_print[signo] == 0
6162 && signal_program[signo] == 1);
6166 signal_stop_update (int signo, int state)
6168 int ret = signal_stop[signo];
6170 signal_stop[signo] = state;
6171 signal_cache_update (signo);
6176 signal_print_update (int signo, int state)
6178 int ret = signal_print[signo];
6180 signal_print[signo] = state;
6181 signal_cache_update (signo);
6186 signal_pass_update (int signo, int state)
6188 int ret = signal_program[signo];
6190 signal_program[signo] = state;
6191 signal_cache_update (signo);
6196 sig_print_header (void)
6198 printf_filtered (_("Signal Stop\tPrint\tPass "
6199 "to program\tDescription\n"));
6203 sig_print_info (enum target_signal oursig)
6205 const char *name = target_signal_to_name (oursig);
6206 int name_padding = 13 - strlen (name);
6208 if (name_padding <= 0)
6211 printf_filtered ("%s", name);
6212 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6213 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6214 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6215 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6216 printf_filtered ("%s\n", target_signal_to_string (oursig));
6219 /* Specify how various signals in the inferior should be handled. */
6222 handle_command (char *args, int from_tty)
6225 int digits, wordlen;
6226 int sigfirst, signum, siglast;
6227 enum target_signal oursig;
6230 unsigned char *sigs;
6231 struct cleanup *old_chain;
6235 error_no_arg (_("signal to handle"));
6238 /* Allocate and zero an array of flags for which signals to handle. */
6240 nsigs = (int) TARGET_SIGNAL_LAST;
6241 sigs = (unsigned char *) alloca (nsigs);
6242 memset (sigs, 0, nsigs);
6244 /* Break the command line up into args. */
6246 argv = gdb_buildargv (args);
6247 old_chain = make_cleanup_freeargv (argv);
6249 /* Walk through the args, looking for signal oursigs, signal names, and
6250 actions. Signal numbers and signal names may be interspersed with
6251 actions, with the actions being performed for all signals cumulatively
6252 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6254 while (*argv != NULL)
6256 wordlen = strlen (*argv);
6257 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6261 sigfirst = siglast = -1;
6263 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6265 /* Apply action to all signals except those used by the
6266 debugger. Silently skip those. */
6269 siglast = nsigs - 1;
6271 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6273 SET_SIGS (nsigs, sigs, signal_stop);
6274 SET_SIGS (nsigs, sigs, signal_print);
6276 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6278 UNSET_SIGS (nsigs, sigs, signal_program);
6280 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6282 SET_SIGS (nsigs, sigs, signal_print);
6284 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6286 SET_SIGS (nsigs, sigs, signal_program);
6288 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6290 UNSET_SIGS (nsigs, sigs, signal_stop);
6292 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6294 SET_SIGS (nsigs, sigs, signal_program);
6296 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6298 UNSET_SIGS (nsigs, sigs, signal_print);
6299 UNSET_SIGS (nsigs, sigs, signal_stop);
6301 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6303 UNSET_SIGS (nsigs, sigs, signal_program);
6305 else if (digits > 0)
6307 /* It is numeric. The numeric signal refers to our own
6308 internal signal numbering from target.h, not to host/target
6309 signal number. This is a feature; users really should be
6310 using symbolic names anyway, and the common ones like
6311 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6313 sigfirst = siglast = (int)
6314 target_signal_from_command (atoi (*argv));
6315 if ((*argv)[digits] == '-')
6318 target_signal_from_command (atoi ((*argv) + digits + 1));
6320 if (sigfirst > siglast)
6322 /* Bet he didn't figure we'd think of this case... */
6330 oursig = target_signal_from_name (*argv);
6331 if (oursig != TARGET_SIGNAL_UNKNOWN)
6333 sigfirst = siglast = (int) oursig;
6337 /* Not a number and not a recognized flag word => complain. */
6338 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6342 /* If any signal numbers or symbol names were found, set flags for
6343 which signals to apply actions to. */
6345 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6347 switch ((enum target_signal) signum)
6349 case TARGET_SIGNAL_TRAP:
6350 case TARGET_SIGNAL_INT:
6351 if (!allsigs && !sigs[signum])
6353 if (query (_("%s is used by the debugger.\n\
6354 Are you sure you want to change it? "),
6355 target_signal_to_name ((enum target_signal) signum)))
6361 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6362 gdb_flush (gdb_stdout);
6366 case TARGET_SIGNAL_0:
6367 case TARGET_SIGNAL_DEFAULT:
6368 case TARGET_SIGNAL_UNKNOWN:
6369 /* Make sure that "all" doesn't print these. */
6380 for (signum = 0; signum < nsigs; signum++)
6383 signal_cache_update (-1);
6384 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6385 target_program_signals ((int) TARGET_SIGNAL_LAST, signal_program);
6389 /* Show the results. */
6390 sig_print_header ();
6391 for (; signum < nsigs; signum++)
6393 sig_print_info (signum);
6399 do_cleanups (old_chain);
6403 xdb_handle_command (char *args, int from_tty)
6406 struct cleanup *old_chain;
6409 error_no_arg (_("xdb command"));
6411 /* Break the command line up into args. */
6413 argv = gdb_buildargv (args);
6414 old_chain = make_cleanup_freeargv (argv);
6415 if (argv[1] != (char *) NULL)
6420 bufLen = strlen (argv[0]) + 20;
6421 argBuf = (char *) xmalloc (bufLen);
6425 enum target_signal oursig;
6427 oursig = target_signal_from_name (argv[0]);
6428 memset (argBuf, 0, bufLen);
6429 if (strcmp (argv[1], "Q") == 0)
6430 sprintf (argBuf, "%s %s", argv[0], "noprint");
6433 if (strcmp (argv[1], "s") == 0)
6435 if (!signal_stop[oursig])
6436 sprintf (argBuf, "%s %s", argv[0], "stop");
6438 sprintf (argBuf, "%s %s", argv[0], "nostop");
6440 else if (strcmp (argv[1], "i") == 0)
6442 if (!signal_program[oursig])
6443 sprintf (argBuf, "%s %s", argv[0], "pass");
6445 sprintf (argBuf, "%s %s", argv[0], "nopass");
6447 else if (strcmp (argv[1], "r") == 0)
6449 if (!signal_print[oursig])
6450 sprintf (argBuf, "%s %s", argv[0], "print");
6452 sprintf (argBuf, "%s %s", argv[0], "noprint");
6458 handle_command (argBuf, from_tty);
6460 printf_filtered (_("Invalid signal handling flag.\n"));
6465 do_cleanups (old_chain);
6469 target_signal_from_command (int num)
6471 if (num >= 1 && num <= 15)
6472 return (enum target_signal) num;
6473 error (_("Only signals 1-15 are valid as numeric signals.\n\
6474 Use \"info signals\" for a list of symbolic signals."));
6477 /* Print current contents of the tables set by the handle command.
6478 It is possible we should just be printing signals actually used
6479 by the current target (but for things to work right when switching
6480 targets, all signals should be in the signal tables). */
6483 signals_info (char *signum_exp, int from_tty)
6485 enum target_signal oursig;
6487 sig_print_header ();
6491 /* First see if this is a symbol name. */
6492 oursig = target_signal_from_name (signum_exp);
6493 if (oursig == TARGET_SIGNAL_UNKNOWN)
6495 /* No, try numeric. */
6497 target_signal_from_command (parse_and_eval_long (signum_exp));
6499 sig_print_info (oursig);
6503 printf_filtered ("\n");
6504 /* These ugly casts brought to you by the native VAX compiler. */
6505 for (oursig = TARGET_SIGNAL_FIRST;
6506 (int) oursig < (int) TARGET_SIGNAL_LAST;
6507 oursig = (enum target_signal) ((int) oursig + 1))
6511 if (oursig != TARGET_SIGNAL_UNKNOWN
6512 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6513 sig_print_info (oursig);
6516 printf_filtered (_("\nUse the \"handle\" command "
6517 "to change these tables.\n"));
6520 /* Check if it makes sense to read $_siginfo from the current thread
6521 at this point. If not, throw an error. */
6524 validate_siginfo_access (void)
6526 /* No current inferior, no siginfo. */
6527 if (ptid_equal (inferior_ptid, null_ptid))
6528 error (_("No thread selected."));
6530 /* Don't try to read from a dead thread. */
6531 if (is_exited (inferior_ptid))
6532 error (_("The current thread has terminated"));
6534 /* ... or from a spinning thread. */
6535 if (is_running (inferior_ptid))
6536 error (_("Selected thread is running."));
6539 /* The $_siginfo convenience variable is a bit special. We don't know
6540 for sure the type of the value until we actually have a chance to
6541 fetch the data. The type can change depending on gdbarch, so it is
6542 also dependent on which thread you have selected.
6544 1. making $_siginfo be an internalvar that creates a new value on
6547 2. making the value of $_siginfo be an lval_computed value. */
6549 /* This function implements the lval_computed support for reading a
6553 siginfo_value_read (struct value *v)
6555 LONGEST transferred;
6557 validate_siginfo_access ();
6560 target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO,
6562 value_contents_all_raw (v),
6564 TYPE_LENGTH (value_type (v)));
6566 if (transferred != TYPE_LENGTH (value_type (v)))
6567 error (_("Unable to read siginfo"));
6570 /* This function implements the lval_computed support for writing a
6574 siginfo_value_write (struct value *v, struct value *fromval)
6576 LONGEST transferred;
6578 validate_siginfo_access ();
6580 transferred = target_write (¤t_target,
6581 TARGET_OBJECT_SIGNAL_INFO,
6583 value_contents_all_raw (fromval),
6585 TYPE_LENGTH (value_type (fromval)));
6587 if (transferred != TYPE_LENGTH (value_type (fromval)))
6588 error (_("Unable to write siginfo"));
6591 static const struct lval_funcs siginfo_value_funcs =
6597 /* Return a new value with the correct type for the siginfo object of
6598 the current thread using architecture GDBARCH. Return a void value
6599 if there's no object available. */
6601 static struct value *
6602 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6604 if (target_has_stack
6605 && !ptid_equal (inferior_ptid, null_ptid)
6606 && gdbarch_get_siginfo_type_p (gdbarch))
6608 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6610 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6613 return allocate_value (builtin_type (gdbarch)->builtin_void);
6617 /* infcall_suspend_state contains state about the program itself like its
6618 registers and any signal it received when it last stopped.
6619 This state must be restored regardless of how the inferior function call
6620 ends (either successfully, or after it hits a breakpoint or signal)
6621 if the program is to properly continue where it left off. */
6623 struct infcall_suspend_state
6625 struct thread_suspend_state thread_suspend;
6626 struct inferior_suspend_state inferior_suspend;
6630 struct regcache *registers;
6632 /* Format of SIGINFO_DATA or NULL if it is not present. */
6633 struct gdbarch *siginfo_gdbarch;
6635 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6636 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6637 content would be invalid. */
6638 gdb_byte *siginfo_data;
6641 struct infcall_suspend_state *
6642 save_infcall_suspend_state (void)
6644 struct infcall_suspend_state *inf_state;
6645 struct thread_info *tp = inferior_thread ();
6646 struct inferior *inf = current_inferior ();
6647 struct regcache *regcache = get_current_regcache ();
6648 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6649 gdb_byte *siginfo_data = NULL;
6651 if (gdbarch_get_siginfo_type_p (gdbarch))
6653 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6654 size_t len = TYPE_LENGTH (type);
6655 struct cleanup *back_to;
6657 siginfo_data = xmalloc (len);
6658 back_to = make_cleanup (xfree, siginfo_data);
6660 if (target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6661 siginfo_data, 0, len) == len)
6662 discard_cleanups (back_to);
6665 /* Errors ignored. */
6666 do_cleanups (back_to);
6667 siginfo_data = NULL;
6671 inf_state = XZALLOC (struct infcall_suspend_state);
6675 inf_state->siginfo_gdbarch = gdbarch;
6676 inf_state->siginfo_data = siginfo_data;
6679 inf_state->thread_suspend = tp->suspend;
6680 inf_state->inferior_suspend = inf->suspend;
6682 /* run_inferior_call will not use the signal due to its `proceed' call with
6683 TARGET_SIGNAL_0 anyway. */
6684 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6686 inf_state->stop_pc = stop_pc;
6688 inf_state->registers = regcache_dup (regcache);
6693 /* Restore inferior session state to INF_STATE. */
6696 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6698 struct thread_info *tp = inferior_thread ();
6699 struct inferior *inf = current_inferior ();
6700 struct regcache *regcache = get_current_regcache ();
6701 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6703 tp->suspend = inf_state->thread_suspend;
6704 inf->suspend = inf_state->inferior_suspend;
6706 stop_pc = inf_state->stop_pc;
6708 if (inf_state->siginfo_gdbarch == gdbarch)
6710 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6711 size_t len = TYPE_LENGTH (type);
6713 /* Errors ignored. */
6714 target_write (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6715 inf_state->siginfo_data, 0, len);
6718 /* The inferior can be gone if the user types "print exit(0)"
6719 (and perhaps other times). */
6720 if (target_has_execution)
6721 /* NB: The register write goes through to the target. */
6722 regcache_cpy (regcache, inf_state->registers);
6724 discard_infcall_suspend_state (inf_state);
6728 do_restore_infcall_suspend_state_cleanup (void *state)
6730 restore_infcall_suspend_state (state);
6734 make_cleanup_restore_infcall_suspend_state
6735 (struct infcall_suspend_state *inf_state)
6737 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6741 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6743 regcache_xfree (inf_state->registers);
6744 xfree (inf_state->siginfo_data);
6749 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6751 return inf_state->registers;
6754 /* infcall_control_state contains state regarding gdb's control of the
6755 inferior itself like stepping control. It also contains session state like
6756 the user's currently selected frame. */
6758 struct infcall_control_state
6760 struct thread_control_state thread_control;
6761 struct inferior_control_state inferior_control;
6764 enum stop_stack_kind stop_stack_dummy;
6765 int stopped_by_random_signal;
6766 int stop_after_trap;
6768 /* ID if the selected frame when the inferior function call was made. */
6769 struct frame_id selected_frame_id;
6772 /* Save all of the information associated with the inferior<==>gdb
6775 struct infcall_control_state *
6776 save_infcall_control_state (void)
6778 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6779 struct thread_info *tp = inferior_thread ();
6780 struct inferior *inf = current_inferior ();
6782 inf_status->thread_control = tp->control;
6783 inf_status->inferior_control = inf->control;
6785 tp->control.step_resume_breakpoint = NULL;
6786 tp->control.exception_resume_breakpoint = NULL;
6788 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6789 chain. If caller's caller is walking the chain, they'll be happier if we
6790 hand them back the original chain when restore_infcall_control_state is
6792 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6795 inf_status->stop_stack_dummy = stop_stack_dummy;
6796 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6797 inf_status->stop_after_trap = stop_after_trap;
6799 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6805 restore_selected_frame (void *args)
6807 struct frame_id *fid = (struct frame_id *) args;
6808 struct frame_info *frame;
6810 frame = frame_find_by_id (*fid);
6812 /* If inf_status->selected_frame_id is NULL, there was no previously
6816 warning (_("Unable to restore previously selected frame."));
6820 select_frame (frame);
6825 /* Restore inferior session state to INF_STATUS. */
6828 restore_infcall_control_state (struct infcall_control_state *inf_status)
6830 struct thread_info *tp = inferior_thread ();
6831 struct inferior *inf = current_inferior ();
6833 if (tp->control.step_resume_breakpoint)
6834 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6836 if (tp->control.exception_resume_breakpoint)
6837 tp->control.exception_resume_breakpoint->disposition
6838 = disp_del_at_next_stop;
6840 /* Handle the bpstat_copy of the chain. */
6841 bpstat_clear (&tp->control.stop_bpstat);
6843 tp->control = inf_status->thread_control;
6844 inf->control = inf_status->inferior_control;
6847 stop_stack_dummy = inf_status->stop_stack_dummy;
6848 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6849 stop_after_trap = inf_status->stop_after_trap;
6851 if (target_has_stack)
6853 /* The point of catch_errors is that if the stack is clobbered,
6854 walking the stack might encounter a garbage pointer and
6855 error() trying to dereference it. */
6857 (restore_selected_frame, &inf_status->selected_frame_id,
6858 "Unable to restore previously selected frame:\n",
6859 RETURN_MASK_ERROR) == 0)
6860 /* Error in restoring the selected frame. Select the innermost
6862 select_frame (get_current_frame ());
6869 do_restore_infcall_control_state_cleanup (void *sts)
6871 restore_infcall_control_state (sts);
6875 make_cleanup_restore_infcall_control_state
6876 (struct infcall_control_state *inf_status)
6878 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6882 discard_infcall_control_state (struct infcall_control_state *inf_status)
6884 if (inf_status->thread_control.step_resume_breakpoint)
6885 inf_status->thread_control.step_resume_breakpoint->disposition
6886 = disp_del_at_next_stop;
6888 if (inf_status->thread_control.exception_resume_breakpoint)
6889 inf_status->thread_control.exception_resume_breakpoint->disposition
6890 = disp_del_at_next_stop;
6892 /* See save_infcall_control_state for info on stop_bpstat. */
6893 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6899 ptid_match (ptid_t ptid, ptid_t filter)
6901 if (ptid_equal (filter, minus_one_ptid))
6903 if (ptid_is_pid (filter)
6904 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6906 else if (ptid_equal (ptid, filter))
6912 /* restore_inferior_ptid() will be used by the cleanup machinery
6913 to restore the inferior_ptid value saved in a call to
6914 save_inferior_ptid(). */
6917 restore_inferior_ptid (void *arg)
6919 ptid_t *saved_ptid_ptr = arg;
6921 inferior_ptid = *saved_ptid_ptr;
6925 /* Save the value of inferior_ptid so that it may be restored by a
6926 later call to do_cleanups(). Returns the struct cleanup pointer
6927 needed for later doing the cleanup. */
6930 save_inferior_ptid (void)
6932 ptid_t *saved_ptid_ptr;
6934 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6935 *saved_ptid_ptr = inferior_ptid;
6936 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6940 /* User interface for reverse debugging:
6941 Set exec-direction / show exec-direction commands
6942 (returns error unless target implements to_set_exec_direction method). */
6944 int execution_direction = EXEC_FORWARD;
6945 static const char exec_forward[] = "forward";
6946 static const char exec_reverse[] = "reverse";
6947 static const char *exec_direction = exec_forward;
6948 static const char *const exec_direction_names[] = {
6955 set_exec_direction_func (char *args, int from_tty,
6956 struct cmd_list_element *cmd)
6958 if (target_can_execute_reverse)
6960 if (!strcmp (exec_direction, exec_forward))
6961 execution_direction = EXEC_FORWARD;
6962 else if (!strcmp (exec_direction, exec_reverse))
6963 execution_direction = EXEC_REVERSE;
6967 exec_direction = exec_forward;
6968 error (_("Target does not support this operation."));
6973 show_exec_direction_func (struct ui_file *out, int from_tty,
6974 struct cmd_list_element *cmd, const char *value)
6976 switch (execution_direction) {
6978 fprintf_filtered (out, _("Forward.\n"));
6981 fprintf_filtered (out, _("Reverse.\n"));
6984 internal_error (__FILE__, __LINE__,
6985 _("bogus execution_direction value: %d"),
6986 (int) execution_direction);
6990 /* User interface for non-stop mode. */
6995 set_non_stop (char *args, int from_tty,
6996 struct cmd_list_element *c)
6998 if (target_has_execution)
7000 non_stop_1 = non_stop;
7001 error (_("Cannot change this setting while the inferior is running."));
7004 non_stop = non_stop_1;
7008 show_non_stop (struct ui_file *file, int from_tty,
7009 struct cmd_list_element *c, const char *value)
7011 fprintf_filtered (file,
7012 _("Controlling the inferior in non-stop mode is %s.\n"),
7017 show_schedule_multiple (struct ui_file *file, int from_tty,
7018 struct cmd_list_element *c, const char *value)
7020 fprintf_filtered (file, _("Resuming the execution of threads "
7021 "of all processes is %s.\n"), value);
7025 _initialize_infrun (void)
7030 add_info ("signals", signals_info, _("\
7031 What debugger does when program gets various signals.\n\
7032 Specify a signal as argument to print info on that signal only."));
7033 add_info_alias ("handle", "signals", 0);
7035 add_com ("handle", class_run, handle_command, _("\
7036 Specify how to handle a signal.\n\
7037 Args are signals and actions to apply to those signals.\n\
7038 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7039 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7040 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7041 The special arg \"all\" is recognized to mean all signals except those\n\
7042 used by the debugger, typically SIGTRAP and SIGINT.\n\
7043 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7044 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7045 Stop means reenter debugger if this signal happens (implies print).\n\
7046 Print means print a message if this signal happens.\n\
7047 Pass means let program see this signal; otherwise program doesn't know.\n\
7048 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7049 Pass and Stop may be combined."));
7052 add_com ("lz", class_info, signals_info, _("\
7053 What debugger does when program gets various signals.\n\
7054 Specify a signal as argument to print info on that signal only."));
7055 add_com ("z", class_run, xdb_handle_command, _("\
7056 Specify how to handle a signal.\n\
7057 Args are signals and actions to apply to those signals.\n\
7058 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7059 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7060 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7061 The special arg \"all\" is recognized to mean all signals except those\n\
7062 used by the debugger, typically SIGTRAP and SIGINT.\n\
7063 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7064 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7065 nopass), \"Q\" (noprint)\n\
7066 Stop means reenter debugger if this signal happens (implies print).\n\
7067 Print means print a message if this signal happens.\n\
7068 Pass means let program see this signal; otherwise program doesn't know.\n\
7069 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7070 Pass and Stop may be combined."));
7074 stop_command = add_cmd ("stop", class_obscure,
7075 not_just_help_class_command, _("\
7076 There is no `stop' command, but you can set a hook on `stop'.\n\
7077 This allows you to set a list of commands to be run each time execution\n\
7078 of the program stops."), &cmdlist);
7080 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7081 Set inferior debugging."), _("\
7082 Show inferior debugging."), _("\
7083 When non-zero, inferior specific debugging is enabled."),
7086 &setdebuglist, &showdebuglist);
7088 add_setshow_boolean_cmd ("displaced", class_maintenance,
7089 &debug_displaced, _("\
7090 Set displaced stepping debugging."), _("\
7091 Show displaced stepping debugging."), _("\
7092 When non-zero, displaced stepping specific debugging is enabled."),
7094 show_debug_displaced,
7095 &setdebuglist, &showdebuglist);
7097 add_setshow_boolean_cmd ("non-stop", no_class,
7099 Set whether gdb controls the inferior in non-stop mode."), _("\
7100 Show whether gdb controls the inferior in non-stop mode."), _("\
7101 When debugging a multi-threaded program and this setting is\n\
7102 off (the default, also called all-stop mode), when one thread stops\n\
7103 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7104 all other threads in the program while you interact with the thread of\n\
7105 interest. When you continue or step a thread, you can allow the other\n\
7106 threads to run, or have them remain stopped, but while you inspect any\n\
7107 thread's state, all threads stop.\n\
7109 In non-stop mode, when one thread stops, other threads can continue\n\
7110 to run freely. You'll be able to step each thread independently,\n\
7111 leave it stopped or free to run as needed."),
7117 numsigs = (int) TARGET_SIGNAL_LAST;
7118 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7119 signal_print = (unsigned char *)
7120 xmalloc (sizeof (signal_print[0]) * numsigs);
7121 signal_program = (unsigned char *)
7122 xmalloc (sizeof (signal_program[0]) * numsigs);
7123 signal_pass = (unsigned char *)
7124 xmalloc (sizeof (signal_program[0]) * numsigs);
7125 for (i = 0; i < numsigs; i++)
7128 signal_print[i] = 1;
7129 signal_program[i] = 1;
7132 /* Signals caused by debugger's own actions
7133 should not be given to the program afterwards. */
7134 signal_program[TARGET_SIGNAL_TRAP] = 0;
7135 signal_program[TARGET_SIGNAL_INT] = 0;
7137 /* Signals that are not errors should not normally enter the debugger. */
7138 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7139 signal_print[TARGET_SIGNAL_ALRM] = 0;
7140 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7141 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7142 signal_stop[TARGET_SIGNAL_PROF] = 0;
7143 signal_print[TARGET_SIGNAL_PROF] = 0;
7144 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7145 signal_print[TARGET_SIGNAL_CHLD] = 0;
7146 signal_stop[TARGET_SIGNAL_IO] = 0;
7147 signal_print[TARGET_SIGNAL_IO] = 0;
7148 signal_stop[TARGET_SIGNAL_POLL] = 0;
7149 signal_print[TARGET_SIGNAL_POLL] = 0;
7150 signal_stop[TARGET_SIGNAL_URG] = 0;
7151 signal_print[TARGET_SIGNAL_URG] = 0;
7152 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7153 signal_print[TARGET_SIGNAL_WINCH] = 0;
7154 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7155 signal_print[TARGET_SIGNAL_PRIO] = 0;
7157 /* These signals are used internally by user-level thread
7158 implementations. (See signal(5) on Solaris.) Like the above
7159 signals, a healthy program receives and handles them as part of
7160 its normal operation. */
7161 signal_stop[TARGET_SIGNAL_LWP] = 0;
7162 signal_print[TARGET_SIGNAL_LWP] = 0;
7163 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7164 signal_print[TARGET_SIGNAL_WAITING] = 0;
7165 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7166 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7168 /* Update cached state. */
7169 signal_cache_update (-1);
7171 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7172 &stop_on_solib_events, _("\
7173 Set stopping for shared library events."), _("\
7174 Show stopping for shared library events."), _("\
7175 If nonzero, gdb will give control to the user when the dynamic linker\n\
7176 notifies gdb of shared library events. The most common event of interest\n\
7177 to the user would be loading/unloading of a new library."),
7179 show_stop_on_solib_events,
7180 &setlist, &showlist);
7182 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7183 follow_fork_mode_kind_names,
7184 &follow_fork_mode_string, _("\
7185 Set debugger response to a program call of fork or vfork."), _("\
7186 Show debugger response to a program call of fork or vfork."), _("\
7187 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7188 parent - the original process is debugged after a fork\n\
7189 child - the new process is debugged after a fork\n\
7190 The unfollowed process will continue to run.\n\
7191 By default, the debugger will follow the parent process."),
7193 show_follow_fork_mode_string,
7194 &setlist, &showlist);
7196 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7197 follow_exec_mode_names,
7198 &follow_exec_mode_string, _("\
7199 Set debugger response to a program call of exec."), _("\
7200 Show debugger response to a program call of exec."), _("\
7201 An exec call replaces the program image of a process.\n\
7203 follow-exec-mode can be:\n\
7205 new - the debugger creates a new inferior and rebinds the process\n\
7206 to this new inferior. The program the process was running before\n\
7207 the exec call can be restarted afterwards by restarting the original\n\
7210 same - the debugger keeps the process bound to the same inferior.\n\
7211 The new executable image replaces the previous executable loaded in\n\
7212 the inferior. Restarting the inferior after the exec call restarts\n\
7213 the executable the process was running after the exec call.\n\
7215 By default, the debugger will use the same inferior."),
7217 show_follow_exec_mode_string,
7218 &setlist, &showlist);
7220 add_setshow_enum_cmd ("scheduler-locking", class_run,
7221 scheduler_enums, &scheduler_mode, _("\
7222 Set mode for locking scheduler during execution."), _("\
7223 Show mode for locking scheduler during execution."), _("\
7224 off == no locking (threads may preempt at any time)\n\
7225 on == full locking (no thread except the current thread may run)\n\
7226 step == scheduler locked during every single-step operation.\n\
7227 In this mode, no other thread may run during a step command.\n\
7228 Other threads may run while stepping over a function call ('next')."),
7229 set_schedlock_func, /* traps on target vector */
7230 show_scheduler_mode,
7231 &setlist, &showlist);
7233 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7234 Set mode for resuming threads of all processes."), _("\
7235 Show mode for resuming threads of all processes."), _("\
7236 When on, execution commands (such as 'continue' or 'next') resume all\n\
7237 threads of all processes. When off (which is the default), execution\n\
7238 commands only resume the threads of the current process. The set of\n\
7239 threads that are resumed is further refined by the scheduler-locking\n\
7240 mode (see help set scheduler-locking)."),
7242 show_schedule_multiple,
7243 &setlist, &showlist);
7245 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7246 Set mode of the step operation."), _("\
7247 Show mode of the step operation."), _("\
7248 When set, doing a step over a function without debug line information\n\
7249 will stop at the first instruction of that function. Otherwise, the\n\
7250 function is skipped and the step command stops at a different source line."),
7252 show_step_stop_if_no_debug,
7253 &setlist, &showlist);
7255 add_setshow_enum_cmd ("displaced-stepping", class_run,
7256 can_use_displaced_stepping_enum,
7257 &can_use_displaced_stepping, _("\
7258 Set debugger's willingness to use displaced stepping."), _("\
7259 Show debugger's willingness to use displaced stepping."), _("\
7260 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7261 supported by the target architecture. If off, gdb will not use displaced\n\
7262 stepping to step over breakpoints, even if such is supported by the target\n\
7263 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7264 if the target architecture supports it and non-stop mode is active, but will not\n\
7265 use it in all-stop mode (see help set non-stop)."),
7267 show_can_use_displaced_stepping,
7268 &setlist, &showlist);
7270 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7271 &exec_direction, _("Set direction of execution.\n\
7272 Options are 'forward' or 'reverse'."),
7273 _("Show direction of execution (forward/reverse)."),
7274 _("Tells gdb whether to execute forward or backward."),
7275 set_exec_direction_func, show_exec_direction_func,
7276 &setlist, &showlist);
7278 /* Set/show detach-on-fork: user-settable mode. */
7280 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7281 Set whether gdb will detach the child of a fork."), _("\
7282 Show whether gdb will detach the child of a fork."), _("\
7283 Tells gdb whether to detach the child of a fork."),
7284 NULL, NULL, &setlist, &showlist);
7286 /* Set/show disable address space randomization mode. */
7288 add_setshow_boolean_cmd ("disable-randomization", class_support,
7289 &disable_randomization, _("\
7290 Set disabling of debuggee's virtual address space randomization."), _("\
7291 Show disabling of debuggee's virtual address space randomization."), _("\
7292 When this mode is on (which is the default), randomization of the virtual\n\
7293 address space is disabled. Standalone programs run with the randomization\n\
7294 enabled by default on some platforms."),
7295 &set_disable_randomization,
7296 &show_disable_randomization,
7297 &setlist, &showlist);
7299 /* ptid initializations */
7300 inferior_ptid = null_ptid;
7301 target_last_wait_ptid = minus_one_ptid;
7303 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7304 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7305 observer_attach_thread_exit (infrun_thread_thread_exit);
7306 observer_attach_inferior_exit (infrun_inferior_exit);
7308 /* Explicitly create without lookup, since that tries to create a
7309 value with a void typed value, and when we get here, gdbarch
7310 isn't initialized yet. At this point, we're quite sure there
7311 isn't another convenience variable of the same name. */
7312 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7314 add_setshow_boolean_cmd ("observer", no_class,
7315 &observer_mode_1, _("\
7316 Set whether gdb controls the inferior in observer mode."), _("\
7317 Show whether gdb controls the inferior in observer mode."), _("\
7318 In observer mode, GDB can get data from the inferior, but not\n\
7319 affect its execution. Registers and memory may not be changed,\n\
7320 breakpoints may not be set, and the program cannot be interrupted\n\