1 /* Evaluate expressions for GDB.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "expression.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
32 #include "objc-lang.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
38 #include "user-regs.h"
40 #include "gdb_obstack.h"
42 #include "typeprint.h"
45 /* This is defined in valops.c */
46 extern int overload_resolution;
48 /* Prototypes for local functions. */
50 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
53 static struct value *evaluate_subexp_for_address (struct expression *,
56 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
60 static struct value *evaluate_struct_tuple (struct value *,
61 struct expression *, int *,
64 static LONGEST init_array_element (struct value *, struct value *,
65 struct expression *, int *, enum noside,
69 evaluate_subexp (struct type *expect_type, struct expression *exp,
70 int *pos, enum noside noside)
72 struct cleanup *cleanups;
74 int cleanup_temps = 0;
76 if (*pos == 0 && target_has_execution
77 && exp->language_defn->la_language == language_cplus
78 && !thread_stack_temporaries_enabled_p (inferior_ptid))
80 cleanups = enable_thread_stack_temporaries (inferior_ptid);
84 retval = (*exp->language_defn->la_exp_desc->evaluate_exp)
85 (expect_type, exp, pos, noside);
89 if (value_in_thread_stack_temporaries (retval, inferior_ptid))
90 retval = value_non_lval (retval);
91 do_cleanups (cleanups);
97 /* Parse the string EXP as a C expression, evaluate it,
98 and return the result as a number. */
101 parse_and_eval_address (const char *exp)
103 expression_up expr = parse_expression (exp);
105 return value_as_address (evaluate_expression (expr.get ()));
108 /* Like parse_and_eval_address, but treats the value of the expression
109 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
111 parse_and_eval_long (const char *exp)
113 expression_up expr = parse_expression (exp);
115 return value_as_long (evaluate_expression (expr.get ()));
119 parse_and_eval (const char *exp)
121 expression_up expr = parse_expression (exp);
123 return evaluate_expression (expr.get ());
126 /* Parse up to a comma (or to a closeparen)
127 in the string EXPP as an expression, evaluate it, and return the value.
128 EXPP is advanced to point to the comma. */
131 parse_to_comma_and_eval (const char **expp)
133 expression_up expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
135 return evaluate_expression (expr.get ());
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
141 See expression.h for info on the format of an expression. */
144 evaluate_expression (struct expression *exp)
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
155 evaluate_type (struct expression *exp)
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
166 evaluate_subexpression_type (struct expression *exp, int subexp)
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
176 If PRESERVE_ERRORS is true, then exceptions are passed through.
177 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
178 occurs while evaluating the expression, *RESULTP will be set to
179 NULL. *RESULTP may be a lazy value, if the result could not be
180 read from memory. It is used to determine whether a value is
181 user-specified (we should watch the whole value) or intermediate
182 (we should watch only the bit used to locate the final value).
184 If the final value, or any intermediate value, could not be read
185 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
186 set to any referenced values. *VALP will never be a lazy value.
187 This is the value which we store in struct breakpoint.
189 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
190 value chain. The caller must free the values individually. If
191 VAL_CHAIN is NULL, all generated values will be left on the value
195 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
196 struct value **resultp, struct value **val_chain,
199 struct value *mark, *new_mark, *result;
207 /* Evaluate the expression. */
208 mark = value_mark ();
213 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
215 CATCH (ex, RETURN_MASK_ALL)
217 /* Ignore memory errors if we want watchpoints pointing at
218 inaccessible memory to still be created; otherwise, throw the
219 error to some higher catcher. */
223 if (!preserve_errors)
226 throw_exception (ex);
232 new_mark = value_mark ();
233 if (mark == new_mark)
238 /* Make sure it's not lazy, so that after the target stops again we
239 have a non-lazy previous value to compare with. */
242 if (!value_lazy (result))
249 value_fetch_lazy (result);
252 CATCH (except, RETURN_MASK_ERROR)
261 /* Return the chain of intermediate values. We use this to
262 decide which addresses to watch. */
263 *val_chain = new_mark;
264 value_release_to_mark (mark);
268 /* Extract a field operation from an expression. If the subexpression
269 of EXP starting at *SUBEXP is not a structure dereference
270 operation, return NULL. Otherwise, return the name of the
271 dereferenced field, and advance *SUBEXP to point to the
272 subexpression of the left-hand-side of the dereference. This is
273 used when completing field names. */
276 extract_field_op (struct expression *exp, int *subexp)
281 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
282 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
284 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
285 result = &exp->elts[*subexp + 2].string;
286 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
290 /* This function evaluates brace-initializers (in C/C++) for
293 static struct value *
294 evaluate_struct_tuple (struct value *struct_val,
295 struct expression *exp,
296 int *pos, enum noside noside, int nargs)
298 struct type *struct_type = check_typedef (value_type (struct_val));
299 struct type *field_type;
304 struct value *val = NULL;
309 /* Skip static fields. */
310 while (fieldno < TYPE_NFIELDS (struct_type)
311 && field_is_static (&TYPE_FIELD (struct_type,
314 if (fieldno >= TYPE_NFIELDS (struct_type))
315 error (_("too many initializers"));
316 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
317 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
318 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
319 error (_("don't know which variant you want to set"));
321 /* Here, struct_type is the type of the inner struct,
322 while substruct_type is the type of the inner struct.
323 These are the same for normal structures, but a variant struct
324 contains anonymous union fields that contain substruct fields.
325 The value fieldno is the index of the top-level (normal or
326 anonymous union) field in struct_field, while the value
327 subfieldno is the index of the actual real (named inner) field
328 in substruct_type. */
330 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
332 val = evaluate_subexp (field_type, exp, pos, noside);
334 /* Now actually set the field in struct_val. */
336 /* Assign val to field fieldno. */
337 if (value_type (val) != field_type)
338 val = value_cast (field_type, val);
340 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
341 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
342 addr = value_contents_writeable (struct_val) + bitpos / 8;
344 modify_field (struct_type, addr,
345 value_as_long (val), bitpos % 8, bitsize);
347 memcpy (addr, value_contents (val),
348 TYPE_LENGTH (value_type (val)));
354 /* Recursive helper function for setting elements of array tuples.
355 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
356 element value is ELEMENT; EXP, POS and NOSIDE are as usual.
357 Evaluates index expresions and sets the specified element(s) of
358 ARRAY to ELEMENT. Returns last index value. */
361 init_array_element (struct value *array, struct value *element,
362 struct expression *exp, int *pos,
363 enum noside noside, LONGEST low_bound, LONGEST high_bound)
366 int element_size = TYPE_LENGTH (value_type (element));
368 if (exp->elts[*pos].opcode == BINOP_COMMA)
371 init_array_element (array, element, exp, pos, noside,
372 low_bound, high_bound);
373 return init_array_element (array, element,
374 exp, pos, noside, low_bound, high_bound);
378 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
379 if (index < low_bound || index > high_bound)
380 error (_("tuple index out of range"));
381 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
382 value_contents (element), element_size);
387 static struct value *
388 value_f90_subarray (struct value *array,
389 struct expression *exp, int *pos, enum noside noside)
392 LONGEST low_bound, high_bound;
393 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
394 enum range_type range_type
395 = (enum range_type) longest_to_int (exp->elts[pc].longconst);
399 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
400 low_bound = TYPE_LOW_BOUND (range);
402 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
404 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
405 high_bound = TYPE_HIGH_BOUND (range);
407 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
409 return value_slice (array, low_bound, high_bound - low_bound + 1);
413 /* Promote value ARG1 as appropriate before performing a unary operation
415 If the result is not appropriate for any particular language then it
416 needs to patch this function. */
419 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
424 *arg1 = coerce_ref (*arg1);
425 type1 = check_typedef (value_type (*arg1));
427 if (is_integral_type (type1))
429 switch (language->la_language)
432 /* Perform integral promotion for ANSI C/C++.
433 If not appropropriate for any particular language
434 it needs to modify this function. */
436 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
438 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
439 *arg1 = value_cast (builtin_int, *arg1);
446 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
447 operation on those two operands.
448 If the result is not appropriate for any particular language then it
449 needs to patch this function. */
452 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
453 struct value **arg1, struct value **arg2)
455 struct type *promoted_type = NULL;
459 *arg1 = coerce_ref (*arg1);
460 *arg2 = coerce_ref (*arg2);
462 type1 = check_typedef (value_type (*arg1));
463 type2 = check_typedef (value_type (*arg2));
465 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
466 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
467 && !is_integral_type (type1))
468 || (TYPE_CODE (type2) != TYPE_CODE_FLT
469 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
470 && !is_integral_type (type2)))
473 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
474 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
476 /* No promotion required. */
478 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
479 || TYPE_CODE (type2) == TYPE_CODE_FLT)
481 switch (language->la_language)
487 case language_opencl:
488 /* No promotion required. */
492 /* For other languages the result type is unchanged from gdb
493 version 6.7 for backward compatibility.
494 If either arg was long double, make sure that value is also long
495 double. Otherwise use double. */
496 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
497 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
498 promoted_type = builtin_type (gdbarch)->builtin_long_double;
500 promoted_type = builtin_type (gdbarch)->builtin_double;
504 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
505 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
507 /* No promotion required. */
510 /* Integral operations here. */
511 /* FIXME: Also mixed integral/booleans, with result an integer. */
513 const struct builtin_type *builtin = builtin_type (gdbarch);
514 unsigned int promoted_len1 = TYPE_LENGTH (type1);
515 unsigned int promoted_len2 = TYPE_LENGTH (type2);
516 int is_unsigned1 = TYPE_UNSIGNED (type1);
517 int is_unsigned2 = TYPE_UNSIGNED (type2);
518 unsigned int result_len;
519 int unsigned_operation;
521 /* Determine type length and signedness after promotion for
523 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
526 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
528 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
531 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
534 if (promoted_len1 > promoted_len2)
536 unsigned_operation = is_unsigned1;
537 result_len = promoted_len1;
539 else if (promoted_len2 > promoted_len1)
541 unsigned_operation = is_unsigned2;
542 result_len = promoted_len2;
546 unsigned_operation = is_unsigned1 || is_unsigned2;
547 result_len = promoted_len1;
550 switch (language->la_language)
556 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
558 promoted_type = (unsigned_operation
559 ? builtin->builtin_unsigned_int
560 : builtin->builtin_int);
562 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
564 promoted_type = (unsigned_operation
565 ? builtin->builtin_unsigned_long
566 : builtin->builtin_long);
570 promoted_type = (unsigned_operation
571 ? builtin->builtin_unsigned_long_long
572 : builtin->builtin_long_long);
575 case language_opencl:
576 if (result_len <= TYPE_LENGTH (lookup_signed_typename
577 (language, gdbarch, "int")))
581 ? lookup_unsigned_typename (language, gdbarch, "int")
582 : lookup_signed_typename (language, gdbarch, "int"));
584 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
585 (language, gdbarch, "long")))
589 ? lookup_unsigned_typename (language, gdbarch, "long")
590 : lookup_signed_typename (language, gdbarch,"long"));
594 /* For other languages the result type is unchanged from gdb
595 version 6.7 for backward compatibility.
596 If either arg was long long, make sure that value is also long
597 long. Otherwise use long. */
598 if (unsigned_operation)
600 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
601 promoted_type = builtin->builtin_unsigned_long_long;
603 promoted_type = builtin->builtin_unsigned_long;
607 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
608 promoted_type = builtin->builtin_long_long;
610 promoted_type = builtin->builtin_long;
618 /* Promote both operands to common type. */
619 *arg1 = value_cast (promoted_type, *arg1);
620 *arg2 = value_cast (promoted_type, *arg2);
625 ptrmath_type_p (const struct language_defn *lang, struct type *type)
627 type = check_typedef (type);
628 if (TYPE_IS_REFERENCE (type))
629 type = TYPE_TARGET_TYPE (type);
631 switch (TYPE_CODE (type))
637 case TYPE_CODE_ARRAY:
638 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
645 /* Represents a fake method with the given parameter types. This is
646 used by the parser to construct a temporary "expected" type for
647 method overload resolution. FLAGS is used as instance flags of the
648 new type, in order to be able to make the new type represent a
649 const/volatile overload. */
654 fake_method (type_instance_flags flags,
655 int num_types, struct type **param_types);
658 /* The constructed type. */
659 struct type *type () { return &m_type; }
662 struct type m_type {};
663 main_type m_main_type {};
666 fake_method::fake_method (type_instance_flags flags,
667 int num_types, struct type **param_types)
669 struct type *type = &m_type;
671 TYPE_MAIN_TYPE (type) = &m_main_type;
672 TYPE_LENGTH (type) = 1;
673 TYPE_CODE (type) = TYPE_CODE_METHOD;
674 TYPE_CHAIN (type) = type;
675 TYPE_INSTANCE_FLAGS (type) = flags;
678 if (param_types[num_types - 1] == NULL)
681 TYPE_VARARGS (type) = 1;
683 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
687 /* Caller should have ensured this. */
688 gdb_assert (num_types == 0);
689 TYPE_PROTOTYPED (type) = 1;
693 TYPE_NFIELDS (type) = num_types;
694 TYPE_FIELDS (type) = (struct field *)
695 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
697 while (num_types-- > 0)
698 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
701 fake_method::~fake_method ()
703 xfree (TYPE_FIELDS (&m_type));
706 /* Helper for evaluating an OP_VAR_VALUE. */
709 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
711 /* JYG: We used to just return value_zero of the symbol type if
712 we're asked to avoid side effects. Otherwise we return
713 value_of_variable (...). However I'm not sure if
714 value_of_variable () has any side effect. We need a full value
715 object returned here for whatis_exp () to call evaluate_type ()
716 and then pass the full value to value_rtti_target_type () if we
717 are dealing with a pointer or reference to a base class and print
720 struct value *ret = NULL;
724 ret = value_of_variable (var, blk);
727 CATCH (except, RETURN_MASK_ERROR)
729 if (noside != EVAL_AVOID_SIDE_EFFECTS)
730 throw_exception (except);
732 ret = value_zero (SYMBOL_TYPE (var), not_lval);
739 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
742 evaluate_var_msym_value (enum noside noside,
743 struct objfile *objfile, minimal_symbol *msymbol)
745 if (noside == EVAL_AVOID_SIDE_EFFECTS)
747 type *the_type = find_minsym_type_and_address (msymbol, objfile, NULL);
748 return value_zero (the_type, not_lval);
753 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
754 return value_at_lazy (the_type, address);
758 /* Helper for returning a value when handling EVAL_SKIP. */
761 eval_skip_value (expression *exp)
763 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
766 /* Evaluate a function call. The function to be called is in
767 ARGVEC[0] and the arguments passed to the function are in
768 ARGVEC[1..NARGS]. FUNCTION_NAME is the name of the function, if
769 known. DEFAULT_RETURN_TYPE is used as the function's return type
770 if the return type is unknown. */
773 eval_call (expression *exp, enum noside noside,
774 int nargs, value **argvec,
775 const char *function_name,
776 type *default_return_type)
778 if (argvec[0] == NULL)
779 error (_("Cannot evaluate function -- may be inlined"));
780 if (noside == EVAL_AVOID_SIDE_EFFECTS)
782 /* If the return type doesn't look like a function type,
783 call an error. This can happen if somebody tries to turn
784 a variable into a function call. */
786 type *ftype = value_type (argvec[0]);
788 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
790 /* We don't know anything about what the internal
791 function might return, but we have to return
793 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
796 else if (TYPE_CODE (ftype) == TYPE_CODE_XMETHOD)
799 = result_type_of_xmethod (argvec[0], nargs, argvec + 1);
801 if (return_type == NULL)
802 error (_("Xmethod is missing return type."));
803 return value_zero (return_type, not_lval);
805 else if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
806 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
808 type *return_type = TYPE_TARGET_TYPE (ftype);
810 if (return_type == NULL)
811 return_type = default_return_type;
813 if (return_type == NULL)
814 error_call_unknown_return_type (function_name);
816 return allocate_value (return_type);
819 error (_("Expression of type other than "
820 "\"Function returning ...\" used as function"));
822 switch (TYPE_CODE (value_type (argvec[0])))
824 case TYPE_CODE_INTERNAL_FUNCTION:
825 return call_internal_function (exp->gdbarch, exp->language_defn,
826 argvec[0], nargs, argvec + 1);
827 case TYPE_CODE_XMETHOD:
828 return call_xmethod (argvec[0], nargs, argvec + 1);
830 return call_function_by_hand (argvec[0], default_return_type,
835 /* Helper for evaluating an OP_FUNCALL. */
838 evaluate_funcall (type *expect_type, expression *exp, int *pos,
846 symbol *function = NULL;
847 char *function_name = NULL;
848 const char *var_func_name = NULL;
853 exp_opcode op = exp->elts[*pos].opcode;
854 int nargs = longest_to_int (exp->elts[pc].longconst);
855 /* Allocate arg vector, including space for the function to be
856 called in argvec[0], a potential `this', and a terminating
858 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
859 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
861 /* First, evaluate the structure into arg2. */
864 if (op == STRUCTOP_MEMBER)
866 arg2 = evaluate_subexp_for_address (exp, pos, noside);
870 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
873 /* If the function is a virtual function, then the aggregate
874 value (providing the structure) plays its part by providing
875 the vtable. Otherwise, it is just along for the ride: call
876 the function directly. */
878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
880 type *a1_type = check_typedef (value_type (arg1));
881 if (noside == EVAL_SKIP)
882 tem = 1; /* Set it to the right arg index so that all
883 arguments can also be skipped. */
884 else if (TYPE_CODE (a1_type) == TYPE_CODE_METHODPTR)
886 if (noside == EVAL_AVOID_SIDE_EFFECTS)
887 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
889 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
891 /* Now, say which argument to start evaluating from. */
896 else if (TYPE_CODE (a1_type) == TYPE_CODE_MEMBERPTR)
898 struct type *type_ptr
899 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
900 struct type *target_type_ptr
901 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
903 /* Now, convert these values to an address. */
904 arg2 = value_cast (type_ptr, arg2);
906 long mem_offset = value_as_long (arg1);
908 arg1 = value_from_pointer (target_type_ptr,
909 value_as_long (arg2) + mem_offset);
910 arg1 = value_ind (arg1);
914 error (_("Non-pointer-to-member value used in pointer-to-member "
917 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
919 /* Hair for method invocations. */
923 /* First, evaluate the structure into arg2. */
925 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
926 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
928 if (op == STRUCTOP_STRUCT)
930 /* If v is a variable in a register, and the user types
931 v.method (), this will produce an error, because v has no
934 A possible way around this would be to allocate a copy of
935 the variable on the stack, copy in the contents, call the
936 function, and copy out the contents. I.e. convert this
937 from call by reference to call by copy-return (or
938 whatever it's called). However, this does not work
939 because it is not the same: the method being called could
940 stash a copy of the address, and then future uses through
941 that address (after the method returns) would be expected
942 to use the variable itself, not some copy of it. */
943 arg2 = evaluate_subexp_for_address (exp, pos, noside);
947 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
949 /* Check to see if the operator '->' has been overloaded.
950 If the operator has been overloaded replace arg2 with the
951 value returned by the custom operator and continue
953 while (unop_user_defined_p (op, arg2))
955 struct value *value = NULL;
958 value = value_x_unop (arg2, op, noside);
961 CATCH (except, RETURN_MASK_ERROR)
963 if (except.error == NOT_FOUND_ERROR)
966 throw_exception (except);
973 /* Now, say which argument to start evaluating from. */
976 else if (op == OP_SCOPE
977 && overload_resolution
978 && (exp->language_defn->la_language == language_cplus))
980 /* Unpack it locally so we can properly handle overload
986 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
987 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
988 struct type *type = exp->elts[pc2 + 1].type;
989 name = &exp->elts[pc2 + 3].string;
992 function_name = NULL;
993 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
995 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
997 get_selected_block (0),
999 if (function == NULL)
1000 error (_("No symbol \"%s\" in namespace \"%s\"."),
1001 name, TYPE_TAG_NAME (type));
1004 /* arg2 is left as NULL on purpose. */
1008 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1009 || TYPE_CODE (type) == TYPE_CODE_UNION);
1010 function_name = name;
1012 /* We need a properly typed value for method lookup. For
1013 static methods arg2 is otherwise unused. */
1014 arg2 = value_zero (type, lval_memory);
1019 else if (op == OP_ADL_FUNC)
1021 /* Save the function position and move pos so that the arguments
1022 can be evaluated. */
1028 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1029 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1033 /* Non-method function call. */
1037 /* If this is a C++ function wait until overload resolution. */
1038 if (op == OP_VAR_VALUE
1039 && overload_resolution
1040 && (exp->language_defn->la_language == language_cplus))
1042 (*pos) += 4; /* Skip the evaluation of the symbol. */
1047 if (op == OP_VAR_MSYM_VALUE)
1049 symbol *sym = exp->elts[*pos + 2].symbol;
1050 var_func_name = SYMBOL_PRINT_NAME (sym);
1052 else if (op == OP_VAR_VALUE)
1054 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
1055 var_func_name = MSYMBOL_PRINT_NAME (msym);
1058 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1059 type *type = value_type (argvec[0]);
1060 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1061 type = TYPE_TARGET_TYPE (type);
1062 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1064 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1066 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1074 /* Evaluate arguments (if not already done, e.g., namespace::func()
1075 and overload-resolution is off). */
1076 for (; tem <= nargs; tem++)
1078 /* Ensure that array expressions are coerced into pointer
1080 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1083 /* Signal end of arglist. */
1086 if (noside == EVAL_SKIP)
1087 return eval_skip_value (exp);
1089 if (op == OP_ADL_FUNC)
1091 struct symbol *symp;
1094 int string_pc = save_pos1 + 3;
1096 /* Extract the function name. */
1097 name_len = longest_to_int (exp->elts[string_pc].longconst);
1098 func_name = (char *) alloca (name_len + 1);
1099 strcpy (func_name, &exp->elts[string_pc + 1].string);
1101 find_overload_match (&argvec[1], nargs, func_name,
1102 NON_METHOD, /* not method */
1103 NULL, NULL, /* pass NULL symbol since
1104 symbol is unknown */
1105 NULL, &symp, NULL, 0, noside);
1107 /* Now fix the expression being evaluated. */
1108 exp->elts[save_pos1 + 2].symbol = symp;
1109 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1112 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1113 || (op == OP_SCOPE && function_name != NULL))
1115 int static_memfuncp;
1118 /* Method invocation: stuff "this" as first parameter. If the
1119 method turns out to be static we undo this below. */
1124 /* Name of method from expression. */
1125 tstr = &exp->elts[pc2 + 2].string;
1128 tstr = function_name;
1130 if (overload_resolution && (exp->language_defn->la_language
1133 /* Language is C++, do some overload resolution before
1135 struct value *valp = NULL;
1137 (void) find_overload_match (&argvec[1], nargs, tstr,
1138 METHOD, /* method */
1139 &arg2, /* the object */
1141 &static_memfuncp, 0, noside);
1143 if (op == OP_SCOPE && !static_memfuncp)
1145 /* For the time being, we don't handle this. */
1146 error (_("Call to overloaded function %s requires "
1150 argvec[1] = arg2; /* the ``this'' pointer */
1151 argvec[0] = valp; /* Use the method found after overload
1155 /* Non-C++ case -- or no overload resolution. */
1157 struct value *temp = arg2;
1159 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1161 op == STRUCTOP_STRUCT
1162 ? "structure" : "structure pointer");
1163 /* value_struct_elt updates temp with the correct value of
1164 the ``this'' pointer if necessary, so modify argvec[1] to
1165 reflect any ``this'' changes. */
1167 = value_from_longest (lookup_pointer_type(value_type (temp)),
1168 value_address (temp)
1169 + value_embedded_offset (temp));
1170 argvec[1] = arg2; /* the ``this'' pointer */
1173 /* Take out `this' if needed. */
1174 if (static_memfuncp)
1176 argvec[1] = argvec[0];
1181 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1183 /* Pointer to member. argvec[1] is already set up. */
1186 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1188 /* Non-member function being called. */
1189 /* fn: This can only be done for C++ functions. A C-style
1190 function in a C++ program, for instance, does not have the
1191 fields that are expected here. */
1193 if (overload_resolution && (exp->language_defn->la_language
1196 /* Language is C++, do some overload resolution before
1198 struct symbol *symp;
1201 /* If a scope has been specified disable ADL. */
1205 if (op == OP_VAR_VALUE)
1206 function = exp->elts[save_pos1+2].symbol;
1208 (void) find_overload_match (&argvec[1], nargs,
1209 NULL, /* no need for name */
1210 NON_METHOD, /* not method */
1211 NULL, function, /* the function */
1212 NULL, &symp, NULL, no_adl, noside);
1214 if (op == OP_VAR_VALUE)
1216 /* Now fix the expression being evaluated. */
1217 exp->elts[save_pos1+2].symbol = symp;
1218 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1222 argvec[0] = value_of_variable (symp, get_selected_block (0));
1226 /* Not C++, or no overload resolution allowed. */
1227 /* Nothing to be done; argvec already correctly set up. */
1232 /* It is probably a C-style function. */
1233 /* Nothing to be done; argvec already correctly set up. */
1236 return eval_call (exp, noside, nargs, argvec, var_func_name, expect_type);
1240 evaluate_subexp_standard (struct type *expect_type,
1241 struct expression *exp, int *pos,
1245 int tem, tem2, tem3;
1247 struct value *arg1 = NULL;
1248 struct value *arg2 = NULL;
1252 struct value **argvec;
1256 struct type **arg_types;
1259 op = exp->elts[pc].opcode;
1264 tem = longest_to_int (exp->elts[pc + 2].longconst);
1265 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1266 if (noside == EVAL_SKIP)
1267 return eval_skip_value (exp);
1268 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
1269 &exp->elts[pc + 3].string,
1270 expect_type, 0, noside);
1272 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
1277 return value_from_longest (exp->elts[pc + 1].type,
1278 exp->elts[pc + 2].longconst);
1282 return value_from_double (exp->elts[pc + 1].type,
1283 exp->elts[pc + 2].doubleconst);
1287 return value_from_decfloat (exp->elts[pc + 1].type,
1288 exp->elts[pc + 2].decfloatconst);
1293 if (noside == EVAL_SKIP)
1294 return eval_skip_value (exp);
1297 symbol *var = exp->elts[pc + 2].symbol;
1298 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_ERROR)
1299 error_unknown_type (SYMBOL_PRINT_NAME (var));
1301 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1304 case OP_VAR_MSYM_VALUE:
1308 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1309 value *val = evaluate_var_msym_value (noside,
1310 exp->elts[pc + 1].objfile,
1313 type = value_type (val);
1314 if (TYPE_CODE (type) == TYPE_CODE_ERROR
1315 && (noside != EVAL_AVOID_SIDE_EFFECTS || pc != 0))
1316 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol));
1320 case OP_VAR_ENTRY_VALUE:
1322 if (noside == EVAL_SKIP)
1323 return eval_skip_value (exp);
1326 struct symbol *sym = exp->elts[pc + 1].symbol;
1327 struct frame_info *frame;
1329 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1330 return value_zero (SYMBOL_TYPE (sym), not_lval);
1332 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1333 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1334 error (_("Symbol \"%s\" does not have any specific entry value"),
1335 SYMBOL_PRINT_NAME (sym));
1337 frame = get_selected_frame (NULL);
1338 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1341 case OP_FUNC_STATIC_VAR:
1342 tem = longest_to_int (exp->elts[pc + 1].longconst);
1343 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1344 if (noside == EVAL_SKIP)
1345 return eval_skip_value (exp);
1348 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1349 CORE_ADDR addr = value_address (func);
1351 const block *blk = block_for_pc (addr);
1352 const char *var = &exp->elts[pc + 2].string;
1354 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1356 if (sym.symbol == NULL)
1357 error (_("No symbol \"%s\" in specified context."), var);
1359 return evaluate_var_value (noside, sym.block, sym.symbol);
1365 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1369 const char *name = &exp->elts[pc + 2].string;
1373 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1374 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1375 name, strlen (name));
1377 error (_("Register $%s not available."), name);
1379 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1380 a value with the appropriate register type. Unfortunately,
1381 we don't have easy access to the type of user registers.
1382 So for these registers, we fetch the register value regardless
1383 of the evaluation mode. */
1384 if (noside == EVAL_AVOID_SIDE_EFFECTS
1385 && regno < gdbarch_num_regs (exp->gdbarch)
1386 + gdbarch_num_pseudo_regs (exp->gdbarch))
1387 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1389 val = value_of_register (regno, get_selected_frame (NULL));
1391 error (_("Value of register %s not available."), name);
1397 type = language_bool_type (exp->language_defn, exp->gdbarch);
1398 return value_from_longest (type, exp->elts[pc + 1].longconst);
1400 case OP_INTERNALVAR:
1402 return value_of_internalvar (exp->gdbarch,
1403 exp->elts[pc + 1].internalvar);
1406 tem = longest_to_int (exp->elts[pc + 1].longconst);
1407 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1408 if (noside == EVAL_SKIP)
1409 return eval_skip_value (exp);
1410 type = language_string_char_type (exp->language_defn, exp->gdbarch);
1411 return value_string (&exp->elts[pc + 2].string, tem, type);
1413 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1414 NSString constant. */
1415 tem = longest_to_int (exp->elts[pc + 1].longconst);
1416 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1417 if (noside == EVAL_SKIP)
1418 return eval_skip_value (exp);
1419 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1423 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1424 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1425 nargs = tem3 - tem2 + 1;
1426 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
1428 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1429 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
1431 struct value *rec = allocate_value (expect_type);
1433 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1434 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1437 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1438 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
1440 struct type *range_type = TYPE_INDEX_TYPE (type);
1441 struct type *element_type = TYPE_TARGET_TYPE (type);
1442 struct value *array = allocate_value (expect_type);
1443 int element_size = TYPE_LENGTH (check_typedef (element_type));
1444 LONGEST low_bound, high_bound, index;
1446 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1449 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1452 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1453 for (tem = nargs; --nargs >= 0;)
1455 struct value *element;
1458 element = evaluate_subexp (element_type, exp, pos, noside);
1459 if (value_type (element) != element_type)
1460 element = value_cast (element_type, element);
1463 int continue_pc = *pos;
1466 index = init_array_element (array, element, exp, pos, noside,
1467 low_bound, high_bound);
1472 if (index > high_bound)
1473 /* To avoid memory corruption. */
1474 error (_("Too many array elements"));
1475 memcpy (value_contents_raw (array)
1476 + (index - low_bound) * element_size,
1477 value_contents (element),
1485 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1486 && TYPE_CODE (type) == TYPE_CODE_SET)
1488 struct value *set = allocate_value (expect_type);
1489 gdb_byte *valaddr = value_contents_raw (set);
1490 struct type *element_type = TYPE_INDEX_TYPE (type);
1491 struct type *check_type = element_type;
1492 LONGEST low_bound, high_bound;
1494 /* Get targettype of elementtype. */
1495 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1496 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1497 check_type = TYPE_TARGET_TYPE (check_type);
1499 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1500 error (_("(power)set type with unknown size"));
1501 memset (valaddr, '\0', TYPE_LENGTH (type));
1502 for (tem = 0; tem < nargs; tem++)
1504 LONGEST range_low, range_high;
1505 struct type *range_low_type, *range_high_type;
1506 struct value *elem_val;
1508 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1509 range_low_type = range_high_type = value_type (elem_val);
1510 range_low = range_high = value_as_long (elem_val);
1512 /* Check types of elements to avoid mixture of elements from
1513 different types. Also check if type of element is "compatible"
1514 with element type of powerset. */
1515 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1516 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1517 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1518 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1519 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1520 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1521 && (range_low_type != range_high_type)))
1522 /* different element modes. */
1523 error (_("POWERSET tuple elements of different mode"));
1524 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1525 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1526 && range_low_type != check_type))
1527 error (_("incompatible POWERSET tuple elements"));
1528 if (range_low > range_high)
1530 warning (_("empty POWERSET tuple range"));
1533 if (range_low < low_bound || range_high > high_bound)
1534 error (_("POWERSET tuple element out of range"));
1535 range_low -= low_bound;
1536 range_high -= low_bound;
1537 for (; range_low <= range_high; range_low++)
1539 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1541 if (gdbarch_bits_big_endian (exp->gdbarch))
1542 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1543 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1550 argvec = XALLOCAVEC (struct value *, nargs);
1551 for (tem = 0; tem < nargs; tem++)
1553 /* Ensure that array expressions are coerced into pointer
1555 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1557 if (noside == EVAL_SKIP)
1558 return eval_skip_value (exp);
1559 return value_array (tem2, tem3, argvec);
1563 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1565 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1567 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1569 if (noside == EVAL_SKIP)
1570 return eval_skip_value (exp);
1571 return value_slice (array, lowbound, upper - lowbound + 1);
1575 /* Skip third and second args to evaluate the first one. */
1576 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1577 if (value_logical_not (arg1))
1579 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1580 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1584 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1585 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1589 case OP_OBJC_SELECTOR:
1590 { /* Objective C @selector operator. */
1591 char *sel = &exp->elts[pc + 2].string;
1592 int len = longest_to_int (exp->elts[pc + 1].longconst);
1593 struct type *selector_type;
1595 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1596 if (noside == EVAL_SKIP)
1597 return eval_skip_value (exp);
1600 sel[len] = 0; /* Make sure it's terminated. */
1602 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1603 return value_from_longest (selector_type,
1604 lookup_child_selector (exp->gdbarch, sel));
1607 case OP_OBJC_MSGCALL:
1608 { /* Objective C message (method) call. */
1610 CORE_ADDR responds_selector = 0;
1611 CORE_ADDR method_selector = 0;
1613 CORE_ADDR selector = 0;
1615 int struct_return = 0;
1616 enum noside sub_no_side = EVAL_NORMAL;
1618 struct value *msg_send = NULL;
1619 struct value *msg_send_stret = NULL;
1620 int gnu_runtime = 0;
1622 struct value *target = NULL;
1623 struct value *method = NULL;
1624 struct value *called_method = NULL;
1626 struct type *selector_type = NULL;
1627 struct type *long_type;
1629 struct value *ret = NULL;
1632 selector = exp->elts[pc + 1].longconst;
1633 nargs = exp->elts[pc + 2].longconst;
1634 argvec = XALLOCAVEC (struct value *, nargs + 5);
1638 long_type = builtin_type (exp->gdbarch)->builtin_long;
1639 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1641 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1642 sub_no_side = EVAL_NORMAL;
1644 sub_no_side = noside;
1646 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1648 if (value_as_long (target) == 0)
1649 return value_from_longest (long_type, 0);
1651 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1654 /* Find the method dispatch (Apple runtime) or method lookup
1655 (GNU runtime) function for Objective-C. These will be used
1656 to lookup the symbol information for the method. If we
1657 can't find any symbol information, then we'll use these to
1658 call the method, otherwise we can call the method
1659 directly. The msg_send_stret function is used in the special
1660 case of a method that returns a structure (Apple runtime
1664 struct type *type = selector_type;
1666 type = lookup_function_type (type);
1667 type = lookup_pointer_type (type);
1668 type = lookup_function_type (type);
1669 type = lookup_pointer_type (type);
1671 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1673 = find_function_in_inferior ("objc_msg_lookup", NULL);
1675 msg_send = value_from_pointer (type, value_as_address (msg_send));
1676 msg_send_stret = value_from_pointer (type,
1677 value_as_address (msg_send_stret));
1681 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1682 /* Special dispatcher for methods returning structs. */
1684 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1687 /* Verify the target object responds to this method. The
1688 standard top-level 'Object' class uses a different name for
1689 the verification method than the non-standard, but more
1690 often used, 'NSObject' class. Make sure we check for both. */
1693 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1694 if (responds_selector == 0)
1696 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1698 if (responds_selector == 0)
1699 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1702 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1703 if (method_selector == 0)
1705 = lookup_child_selector (exp->gdbarch, "methodFor:");
1707 if (method_selector == 0)
1708 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1710 /* Call the verification method, to make sure that the target
1711 class implements the desired method. */
1713 argvec[0] = msg_send;
1715 argvec[2] = value_from_longest (long_type, responds_selector);
1716 argvec[3] = value_from_longest (long_type, selector);
1719 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1722 /* Function objc_msg_lookup returns a pointer. */
1724 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1726 if (value_as_long (ret) == 0)
1727 error (_("Target does not respond to this message selector."));
1729 /* Call "methodForSelector:" method, to get the address of a
1730 function method that implements this selector for this
1731 class. If we can find a symbol at that address, then we
1732 know the return type, parameter types etc. (that's a good
1735 argvec[0] = msg_send;
1737 argvec[2] = value_from_longest (long_type, method_selector);
1738 argvec[3] = value_from_longest (long_type, selector);
1741 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1745 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1748 /* ret should now be the selector. */
1750 addr = value_as_long (ret);
1753 struct symbol *sym = NULL;
1755 /* The address might point to a function descriptor;
1756 resolve it to the actual code address instead. */
1757 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1760 /* Is it a high_level symbol? */
1761 sym = find_pc_function (addr);
1763 method = value_of_variable (sym, 0);
1766 /* If we found a method with symbol information, check to see
1767 if it returns a struct. Otherwise assume it doesn't. */
1772 struct type *val_type;
1774 funaddr = find_function_addr (method, &val_type);
1776 block_for_pc (funaddr);
1778 val_type = check_typedef (val_type);
1780 if ((val_type == NULL)
1781 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1783 if (expect_type != NULL)
1784 val_type = expect_type;
1787 struct_return = using_struct_return (exp->gdbarch, method,
1790 else if (expect_type != NULL)
1792 struct_return = using_struct_return (exp->gdbarch, NULL,
1793 check_typedef (expect_type));
1796 /* Found a function symbol. Now we will substitute its
1797 value in place of the message dispatcher (obj_msgSend),
1798 so that we call the method directly instead of thru
1799 the dispatcher. The main reason for doing this is that
1800 we can now evaluate the return value and parameter values
1801 according to their known data types, in case we need to
1802 do things like promotion, dereferencing, special handling
1803 of structs and doubles, etc.
1805 We want to use the type signature of 'method', but still
1806 jump to objc_msgSend() or objc_msgSend_stret() to better
1807 mimic the behavior of the runtime. */
1811 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1812 error (_("method address has symbol information "
1813 "with non-function type; skipping"));
1815 /* Create a function pointer of the appropriate type, and
1816 replace its value with the value of msg_send or
1817 msg_send_stret. We must use a pointer here, as
1818 msg_send and msg_send_stret are of pointer type, and
1819 the representation may be different on systems that use
1820 function descriptors. */
1823 = value_from_pointer (lookup_pointer_type (value_type (method)),
1824 value_as_address (msg_send_stret));
1827 = value_from_pointer (lookup_pointer_type (value_type (method)),
1828 value_as_address (msg_send));
1833 called_method = msg_send_stret;
1835 called_method = msg_send;
1838 if (noside == EVAL_SKIP)
1839 return eval_skip_value (exp);
1841 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1843 /* If the return type doesn't look like a function type,
1844 call an error. This can happen if somebody tries to
1845 turn a variable into a function call. This is here
1846 because people often want to call, eg, strcmp, which
1847 gdb doesn't know is a function. If gdb isn't asked for
1848 it's opinion (ie. through "whatis"), it won't offer
1851 struct type *type = value_type (called_method);
1853 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1854 type = TYPE_TARGET_TYPE (type);
1855 type = TYPE_TARGET_TYPE (type);
1859 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1860 return allocate_value (expect_type);
1862 return allocate_value (type);
1865 error (_("Expression of type other than "
1866 "\"method returning ...\" used as a method"));
1869 /* Now depending on whether we found a symbol for the method,
1870 we will either call the runtime dispatcher or the method
1873 argvec[0] = called_method;
1875 argvec[2] = value_from_longest (long_type, selector);
1876 /* User-supplied arguments. */
1877 for (tem = 0; tem < nargs; tem++)
1878 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1879 argvec[tem + 3] = 0;
1881 if (gnu_runtime && (method != NULL))
1883 /* Function objc_msg_lookup returns a pointer. */
1884 deprecated_set_value_type (argvec[0],
1885 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1887 = call_function_by_hand (argvec[0], NULL, nargs + 2, argvec + 1);
1890 ret = call_function_by_hand (argvec[0], NULL, nargs + 2, argvec + 1);
1896 return evaluate_funcall (expect_type, exp, pos, noside);
1898 case OP_F77_UNDETERMINED_ARGLIST:
1900 /* Remember that in F77, functions, substring ops and
1901 array subscript operations cannot be disambiguated
1902 at parse time. We have made all array subscript operations,
1903 substring operations as well as function calls come here
1904 and we now have to discover what the heck this thing actually was.
1905 If it is a function, we process just as if we got an OP_FUNCALL. */
1907 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1910 /* First determine the type code we are dealing with. */
1911 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1912 type = check_typedef (value_type (arg1));
1913 code = TYPE_CODE (type);
1915 if (code == TYPE_CODE_PTR)
1917 /* Fortran always passes variable to subroutines as pointer.
1918 So we need to look into its target type to see if it is
1919 array, string or function. If it is, we need to switch
1920 to the target value the original one points to. */
1921 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1923 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1924 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1925 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1927 arg1 = value_ind (arg1);
1928 type = check_typedef (value_type (arg1));
1929 code = TYPE_CODE (type);
1935 case TYPE_CODE_ARRAY:
1936 if (exp->elts[*pos].opcode == OP_RANGE)
1937 return value_f90_subarray (arg1, exp, pos, noside);
1939 goto multi_f77_subscript;
1941 case TYPE_CODE_STRING:
1942 if (exp->elts[*pos].opcode == OP_RANGE)
1943 return value_f90_subarray (arg1, exp, pos, noside);
1946 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1947 return value_subscript (arg1, value_as_long (arg2));
1951 case TYPE_CODE_FUNC:
1952 /* It's a function call. */
1953 /* Allocate arg vector, including space for the function to be
1954 called in argvec[0] and a terminating NULL. */
1955 argvec = (struct value **)
1956 alloca (sizeof (struct value *) * (nargs + 2));
1959 for (; tem <= nargs; tem++)
1960 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1961 argvec[tem] = 0; /* signal end of arglist */
1962 if (noside == EVAL_SKIP)
1963 return eval_skip_value (exp);
1964 return eval_call (exp, noside, nargs, argvec, NULL, expect_type);
1967 error (_("Cannot perform substring on this type"));
1971 /* We have a complex number, There should be 2 floating
1972 point numbers that compose it. */
1974 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1975 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1977 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1979 case STRUCTOP_STRUCT:
1980 tem = longest_to_int (exp->elts[pc + 1].longconst);
1981 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1983 if (noside == EVAL_SKIP)
1984 return eval_skip_value (exp);
1985 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1988 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1992 tem = longest_to_int (exp->elts[pc + 1].longconst);
1993 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1994 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1995 if (noside == EVAL_SKIP)
1996 return eval_skip_value (exp);
1998 /* Check to see if operator '->' has been overloaded. If so replace
1999 arg1 with the value returned by evaluating operator->(). */
2000 while (unop_user_defined_p (op, arg1))
2002 struct value *value = NULL;
2005 value = value_x_unop (arg1, op, noside);
2008 CATCH (except, RETURN_MASK_ERROR)
2010 if (except.error == NOT_FOUND_ERROR)
2013 throw_exception (except);
2020 /* JYG: if print object is on we need to replace the base type
2021 with rtti type in order to continue on with successful
2022 lookup of member / method only available in the rtti type. */
2024 struct type *type = value_type (arg1);
2025 struct type *real_type;
2026 int full, using_enc;
2028 struct value_print_options opts;
2030 get_user_print_options (&opts);
2031 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2032 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT))
2034 real_type = value_rtti_indirect_type (arg1, &full, &top,
2037 arg1 = value_cast (real_type, arg1);
2041 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
2042 NULL, "structure pointer");
2043 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2044 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
2047 case STRUCTOP_MEMBER:
2049 if (op == STRUCTOP_MEMBER)
2050 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2054 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2056 if (noside == EVAL_SKIP)
2057 return eval_skip_value (exp);
2059 type = check_typedef (value_type (arg2));
2060 switch (TYPE_CODE (type))
2062 case TYPE_CODE_METHODPTR:
2063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2064 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2067 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2068 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2069 return value_ind (arg2);
2072 case TYPE_CODE_MEMBERPTR:
2073 /* Now, convert these values to an address. */
2074 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
2077 mem_offset = value_as_long (arg2);
2079 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2080 value_as_long (arg1) + mem_offset);
2081 return value_ind (arg3);
2084 error (_("non-pointer-to-member value used "
2085 "in pointer-to-member construct"));
2090 type_instance_flags flags
2091 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2092 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2093 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2094 for (ix = 0; ix < nargs; ++ix)
2095 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2097 fake_method expect_type (flags, nargs, arg_types);
2098 *(pos) += 4 + nargs;
2099 return evaluate_subexp_standard (expect_type.type (), exp, pos, noside);
2103 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2104 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2105 if (noside == EVAL_SKIP)
2106 return eval_skip_value (exp);
2107 if (binop_user_defined_p (op, arg1, arg2))
2108 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2110 return value_concat (arg1, arg2);
2113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2114 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2116 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2118 if (binop_user_defined_p (op, arg1, arg2))
2119 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2121 return value_assign (arg1, arg2);
2123 case BINOP_ASSIGN_MODIFY:
2125 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2126 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2127 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2129 op = exp->elts[pc + 1].opcode;
2130 if (binop_user_defined_p (op, arg1, arg2))
2131 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2132 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2134 && is_integral_type (value_type (arg2)))
2135 arg2 = value_ptradd (arg1, value_as_long (arg2));
2136 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2138 && is_integral_type (value_type (arg2)))
2139 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2142 struct value *tmp = arg1;
2144 /* For shift and integer exponentiation operations,
2145 only promote the first argument. */
2146 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2147 && is_integral_type (value_type (arg2)))
2148 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2150 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2152 arg2 = value_binop (tmp, arg2, op);
2154 return value_assign (arg1, arg2);
2157 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2158 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2159 if (noside == EVAL_SKIP)
2160 return eval_skip_value (exp);
2161 if (binop_user_defined_p (op, arg1, arg2))
2162 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2163 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2164 && is_integral_type (value_type (arg2)))
2165 return value_ptradd (arg1, value_as_long (arg2));
2166 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2167 && is_integral_type (value_type (arg1)))
2168 return value_ptradd (arg2, value_as_long (arg1));
2171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2172 return value_binop (arg1, arg2, BINOP_ADD);
2176 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2177 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2178 if (noside == EVAL_SKIP)
2179 return eval_skip_value (exp);
2180 if (binop_user_defined_p (op, arg1, arg2))
2181 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2182 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2183 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2185 /* FIXME -- should be ptrdiff_t */
2186 type = builtin_type (exp->gdbarch)->builtin_long;
2187 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2189 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2190 && is_integral_type (value_type (arg2)))
2191 return value_ptradd (arg1, - value_as_long (arg2));
2194 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2195 return value_binop (arg1, arg2, BINOP_SUB);
2206 case BINOP_BITWISE_AND:
2207 case BINOP_BITWISE_IOR:
2208 case BINOP_BITWISE_XOR:
2209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2210 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2211 if (noside == EVAL_SKIP)
2212 return eval_skip_value (exp);
2213 if (binop_user_defined_p (op, arg1, arg2))
2214 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2217 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2218 fudge arg2 to avoid division-by-zero, the caller is
2219 (theoretically) only looking for the type of the result. */
2220 if (noside == EVAL_AVOID_SIDE_EFFECTS
2221 /* ??? Do we really want to test for BINOP_MOD here?
2222 The implementation of value_binop gives it a well-defined
2225 || op == BINOP_INTDIV
2228 && value_logical_not (arg2))
2230 struct value *v_one, *retval;
2232 v_one = value_one (value_type (arg2));
2233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2234 retval = value_binop (arg1, v_one, op);
2239 /* For shift and integer exponentiation operations,
2240 only promote the first argument. */
2241 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2242 && is_integral_type (value_type (arg2)))
2243 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2245 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2247 return value_binop (arg1, arg2, op);
2251 case BINOP_SUBSCRIPT:
2252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2253 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2254 if (noside == EVAL_SKIP)
2255 return eval_skip_value (exp);
2256 if (binop_user_defined_p (op, arg1, arg2))
2257 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2260 /* If the user attempts to subscript something that is not an
2261 array or pointer type (like a plain int variable for example),
2262 then report this as an error. */
2264 arg1 = coerce_ref (arg1);
2265 type = check_typedef (value_type (arg1));
2266 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2267 && TYPE_CODE (type) != TYPE_CODE_PTR)
2269 if (TYPE_NAME (type))
2270 error (_("cannot subscript something of type `%s'"),
2273 error (_("cannot subscript requested type"));
2276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2277 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2279 return value_subscript (arg1, value_as_long (arg2));
2281 case MULTI_SUBSCRIPT:
2283 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2284 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2287 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2288 /* FIXME: EVAL_SKIP handling may not be correct. */
2289 if (noside == EVAL_SKIP)
2293 return eval_skip_value (exp);
2295 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2298 /* If the user attempts to subscript something that has no target
2299 type (like a plain int variable for example), then report this
2302 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2305 arg1 = value_zero (type, VALUE_LVAL (arg1));
2311 error (_("cannot subscript something of type `%s'"),
2312 TYPE_NAME (value_type (arg1)));
2316 if (binop_user_defined_p (op, arg1, arg2))
2318 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2322 arg1 = coerce_ref (arg1);
2323 type = check_typedef (value_type (arg1));
2325 switch (TYPE_CODE (type))
2328 case TYPE_CODE_ARRAY:
2329 case TYPE_CODE_STRING:
2330 arg1 = value_subscript (arg1, value_as_long (arg2));
2334 if (TYPE_NAME (type))
2335 error (_("cannot subscript something of type `%s'"),
2338 error (_("cannot subscript requested type"));
2344 multi_f77_subscript:
2346 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2347 int ndimensions = 1, i;
2348 struct value *array = arg1;
2350 if (nargs > MAX_FORTRAN_DIMS)
2351 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2353 ndimensions = calc_f77_array_dims (type);
2355 if (nargs != ndimensions)
2356 error (_("Wrong number of subscripts"));
2358 gdb_assert (nargs > 0);
2360 /* Now that we know we have a legal array subscript expression
2361 let us actually find out where this element exists in the array. */
2363 /* Take array indices left to right. */
2364 for (i = 0; i < nargs; i++)
2366 /* Evaluate each subscript; it must be a legal integer in F77. */
2367 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2369 /* Fill in the subscript array. */
2371 subscript_array[i] = value_as_long (arg2);
2374 /* Internal type of array is arranged right to left. */
2375 for (i = nargs; i > 0; i--)
2377 struct type *array_type = check_typedef (value_type (array));
2378 LONGEST index = subscript_array[i - 1];
2380 array = value_subscripted_rvalue (array, index,
2381 f77_get_lowerbound (array_type));
2387 case BINOP_LOGICAL_AND:
2388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2389 if (noside == EVAL_SKIP)
2391 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2392 return eval_skip_value (exp);
2396 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2399 if (binop_user_defined_p (op, arg1, arg2))
2401 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2402 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2406 tem = value_logical_not (arg1);
2407 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2408 (tem ? EVAL_SKIP : noside));
2409 type = language_bool_type (exp->language_defn, exp->gdbarch);
2410 return value_from_longest (type,
2411 (LONGEST) (!tem && !value_logical_not (arg2)));
2414 case BINOP_LOGICAL_OR:
2415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2416 if (noside == EVAL_SKIP)
2418 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2419 return eval_skip_value (exp);
2423 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2426 if (binop_user_defined_p (op, arg1, arg2))
2428 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2429 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2433 tem = value_logical_not (arg1);
2434 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2435 (!tem ? EVAL_SKIP : noside));
2436 type = language_bool_type (exp->language_defn, exp->gdbarch);
2437 return value_from_longest (type,
2438 (LONGEST) (!tem || !value_logical_not (arg2)));
2442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2443 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2444 if (noside == EVAL_SKIP)
2445 return eval_skip_value (exp);
2446 if (binop_user_defined_p (op, arg1, arg2))
2448 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2452 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2453 tem = value_equal (arg1, arg2);
2454 type = language_bool_type (exp->language_defn, exp->gdbarch);
2455 return value_from_longest (type, (LONGEST) tem);
2458 case BINOP_NOTEQUAL:
2459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2460 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2461 if (noside == EVAL_SKIP)
2462 return eval_skip_value (exp);
2463 if (binop_user_defined_p (op, arg1, arg2))
2465 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2469 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2470 tem = value_equal (arg1, arg2);
2471 type = language_bool_type (exp->language_defn, exp->gdbarch);
2472 return value_from_longest (type, (LONGEST) ! tem);
2476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2477 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2478 if (noside == EVAL_SKIP)
2479 return eval_skip_value (exp);
2480 if (binop_user_defined_p (op, arg1, arg2))
2482 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2487 tem = value_less (arg1, arg2);
2488 type = language_bool_type (exp->language_defn, exp->gdbarch);
2489 return value_from_longest (type, (LONGEST) tem);
2493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2494 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2495 if (noside == EVAL_SKIP)
2496 return eval_skip_value (exp);
2497 if (binop_user_defined_p (op, arg1, arg2))
2499 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2503 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2504 tem = value_less (arg2, arg1);
2505 type = language_bool_type (exp->language_defn, exp->gdbarch);
2506 return value_from_longest (type, (LONGEST) tem);
2510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2511 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2512 if (noside == EVAL_SKIP)
2513 return eval_skip_value (exp);
2514 if (binop_user_defined_p (op, arg1, arg2))
2516 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2520 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2521 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2522 type = language_bool_type (exp->language_defn, exp->gdbarch);
2523 return value_from_longest (type, (LONGEST) tem);
2527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2528 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2529 if (noside == EVAL_SKIP)
2530 return eval_skip_value (exp);
2531 if (binop_user_defined_p (op, arg1, arg2))
2533 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2537 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2538 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2539 type = language_bool_type (exp->language_defn, exp->gdbarch);
2540 return value_from_longest (type, (LONGEST) tem);
2544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2545 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2546 if (noside == EVAL_SKIP)
2547 return eval_skip_value (exp);
2548 type = check_typedef (value_type (arg2));
2549 if (TYPE_CODE (type) != TYPE_CODE_INT
2550 && TYPE_CODE (type) != TYPE_CODE_ENUM)
2551 error (_("Non-integral right operand for \"@\" operator."));
2552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2554 return allocate_repeat_value (value_type (arg1),
2555 longest_to_int (value_as_long (arg2)));
2558 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2561 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2562 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2566 if (noside == EVAL_SKIP)
2567 return eval_skip_value (exp);
2568 if (unop_user_defined_p (op, arg1))
2569 return value_x_unop (arg1, op, noside);
2572 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2573 return value_pos (arg1);
2577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2578 if (noside == EVAL_SKIP)
2579 return eval_skip_value (exp);
2580 if (unop_user_defined_p (op, arg1))
2581 return value_x_unop (arg1, op, noside);
2584 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2585 return value_neg (arg1);
2588 case UNOP_COMPLEMENT:
2589 /* C++: check for and handle destructor names. */
2591 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2592 if (noside == EVAL_SKIP)
2593 return eval_skip_value (exp);
2594 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2595 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2598 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2599 return value_complement (arg1);
2602 case UNOP_LOGICAL_NOT:
2603 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2604 if (noside == EVAL_SKIP)
2605 return eval_skip_value (exp);
2606 if (unop_user_defined_p (op, arg1))
2607 return value_x_unop (arg1, op, noside);
2610 type = language_bool_type (exp->language_defn, exp->gdbarch);
2611 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2615 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2616 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2617 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2618 type = check_typedef (value_type (arg1));
2619 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2620 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2621 error (_("Attempt to dereference pointer "
2622 "to member without an object"));
2623 if (noside == EVAL_SKIP)
2624 return eval_skip_value (exp);
2625 if (unop_user_defined_p (op, arg1))
2626 return value_x_unop (arg1, op, noside);
2627 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2629 type = check_typedef (value_type (arg1));
2630 if (TYPE_CODE (type) == TYPE_CODE_PTR
2631 || TYPE_IS_REFERENCE (type)
2632 /* In C you can dereference an array to get the 1st elt. */
2633 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2635 return value_zero (TYPE_TARGET_TYPE (type),
2637 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2638 /* GDB allows dereferencing an int. */
2639 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2642 error (_("Attempt to take contents of a non-pointer value."));
2645 /* Allow * on an integer so we can cast it to whatever we want.
2646 This returns an int, which seems like the most C-like thing to
2647 do. "long long" variables are rare enough that
2648 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2649 if (TYPE_CODE (type) == TYPE_CODE_INT)
2650 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2651 (CORE_ADDR) value_as_address (arg1));
2652 return value_ind (arg1);
2655 /* C++: check for and handle pointer to members. */
2657 if (noside == EVAL_SKIP)
2659 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2660 return eval_skip_value (exp);
2664 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2671 if (noside == EVAL_SKIP)
2673 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2674 return eval_skip_value (exp);
2676 return evaluate_subexp_for_sizeof (exp, pos, noside);
2680 type = exp->elts[pc + 1].type;
2681 return evaluate_subexp_for_cast (exp, pos, noside, type);
2683 case UNOP_CAST_TYPE:
2684 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2685 type = value_type (arg1);
2686 return evaluate_subexp_for_cast (exp, pos, noside, type);
2688 case UNOP_DYNAMIC_CAST:
2689 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2690 type = value_type (arg1);
2691 arg1 = evaluate_subexp (type, exp, pos, noside);
2692 if (noside == EVAL_SKIP)
2693 return eval_skip_value (exp);
2694 return value_dynamic_cast (type, arg1);
2696 case UNOP_REINTERPRET_CAST:
2697 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2698 type = value_type (arg1);
2699 arg1 = evaluate_subexp (type, exp, pos, noside);
2700 if (noside == EVAL_SKIP)
2701 return eval_skip_value (exp);
2702 return value_reinterpret_cast (type, arg1);
2706 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2707 if (noside == EVAL_SKIP)
2708 return eval_skip_value (exp);
2709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2710 return value_zero (exp->elts[pc + 1].type, lval_memory);
2712 return value_at_lazy (exp->elts[pc + 1].type,
2713 value_as_address (arg1));
2715 case UNOP_MEMVAL_TYPE:
2716 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2717 type = value_type (arg1);
2718 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2719 if (noside == EVAL_SKIP)
2720 return eval_skip_value (exp);
2721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2722 return value_zero (type, lval_memory);
2724 return value_at_lazy (type, value_as_address (arg1));
2726 case UNOP_PREINCREMENT:
2727 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2728 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2730 else if (unop_user_defined_p (op, arg1))
2732 return value_x_unop (arg1, op, noside);
2736 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2737 arg2 = value_ptradd (arg1, 1);
2740 struct value *tmp = arg1;
2742 arg2 = value_one (value_type (arg1));
2743 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2744 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2747 return value_assign (arg1, arg2);
2750 case UNOP_PREDECREMENT:
2751 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2752 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2754 else if (unop_user_defined_p (op, arg1))
2756 return value_x_unop (arg1, op, noside);
2760 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2761 arg2 = value_ptradd (arg1, -1);
2764 struct value *tmp = arg1;
2766 arg2 = value_one (value_type (arg1));
2767 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2768 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2771 return value_assign (arg1, arg2);
2774 case UNOP_POSTINCREMENT:
2775 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2776 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2778 else if (unop_user_defined_p (op, arg1))
2780 return value_x_unop (arg1, op, noside);
2784 arg3 = value_non_lval (arg1);
2786 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2787 arg2 = value_ptradd (arg1, 1);
2790 struct value *tmp = arg1;
2792 arg2 = value_one (value_type (arg1));
2793 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2794 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2797 value_assign (arg1, arg2);
2801 case UNOP_POSTDECREMENT:
2802 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2803 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2805 else if (unop_user_defined_p (op, arg1))
2807 return value_x_unop (arg1, op, noside);
2811 arg3 = value_non_lval (arg1);
2813 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2814 arg2 = value_ptradd (arg1, -1);
2817 struct value *tmp = arg1;
2819 arg2 = value_one (value_type (arg1));
2820 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2821 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2824 value_assign (arg1, arg2);
2830 return value_of_this (exp->language_defn);
2833 /* The value is not supposed to be used. This is here to make it
2834 easier to accommodate expressions that contain types. */
2836 if (noside == EVAL_SKIP)
2837 return eval_skip_value (exp);
2838 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2839 return allocate_value (exp->elts[pc + 1].type);
2841 error (_("Attempt to use a type name as an expression"));
2845 if (noside == EVAL_SKIP)
2847 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2848 return eval_skip_value (exp);
2850 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2852 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2853 struct value *result;
2855 result = evaluate_subexp (NULL_TYPE, exp, pos,
2856 EVAL_AVOID_SIDE_EFFECTS);
2858 /* 'decltype' has special semantics for lvalues. */
2859 if (op == OP_DECLTYPE
2860 && (sub_op == BINOP_SUBSCRIPT
2861 || sub_op == STRUCTOP_MEMBER
2862 || sub_op == STRUCTOP_MPTR
2863 || sub_op == UNOP_IND
2864 || sub_op == STRUCTOP_STRUCT
2865 || sub_op == STRUCTOP_PTR
2866 || sub_op == OP_SCOPE))
2868 struct type *type = value_type (result);
2870 if (!TYPE_IS_REFERENCE (type))
2872 type = lookup_lvalue_reference_type (type);
2873 result = allocate_value (type);
2880 error (_("Attempt to use a type as an expression"));
2884 struct value *result;
2885 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2887 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2888 result = evaluate_subexp (NULL_TYPE, exp, pos,
2889 EVAL_AVOID_SIDE_EFFECTS);
2891 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2893 if (noside != EVAL_NORMAL)
2894 return allocate_value (cplus_typeid_type (exp->gdbarch));
2896 return cplus_typeid (result);
2900 /* Removing this case and compiling with gcc -Wall reveals that
2901 a lot of cases are hitting this case. Some of these should
2902 probably be removed from expression.h; others are legitimate
2903 expressions which are (apparently) not fully implemented.
2905 If there are any cases landing here which mean a user error,
2906 then they should be separate cases, with more descriptive
2909 error (_("GDB does not (yet) know how to "
2910 "evaluate that kind of expression"));
2913 gdb_assert_not_reached ("missed return?");
2916 /* Evaluate a subexpression of EXP, at index *POS,
2917 and return the address of that subexpression.
2918 Advance *POS over the subexpression.
2919 If the subexpression isn't an lvalue, get an error.
2920 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2921 then only the type of the result need be correct. */
2923 static struct value *
2924 evaluate_subexp_for_address (struct expression *exp, int *pos,
2934 op = exp->elts[pc].opcode;
2940 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2942 /* We can't optimize out "&*" if there's a user-defined operator*. */
2943 if (unop_user_defined_p (op, x))
2945 x = value_x_unop (x, op, noside);
2946 goto default_case_after_eval;
2949 return coerce_array (x);
2953 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2954 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2956 case UNOP_MEMVAL_TYPE:
2961 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2962 type = value_type (x);
2963 return value_cast (lookup_pointer_type (type),
2964 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2968 var = exp->elts[pc + 2].symbol;
2970 /* C++: The "address" of a reference should yield the address
2971 * of the object pointed to. Let value_addr() deal with it. */
2972 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
2976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2979 lookup_pointer_type (SYMBOL_TYPE (var));
2980 enum address_class sym_class = SYMBOL_CLASS (var);
2982 if (sym_class == LOC_CONST
2983 || sym_class == LOC_CONST_BYTES
2984 || sym_class == LOC_REGISTER)
2985 error (_("Attempt to take address of register or constant."));
2988 value_zero (type, not_lval);
2991 return address_of_variable (var, exp->elts[pc + 1].block);
2993 case OP_VAR_MSYM_VALUE:
2997 value *val = evaluate_var_msym_value (noside,
2998 exp->elts[pc + 1].objfile,
2999 exp->elts[pc + 2].msymbol);
3000 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3002 struct type *type = lookup_pointer_type (value_type (val));
3003 return value_zero (type, not_lval);
3006 return value_addr (val);
3010 tem = longest_to_int (exp->elts[pc + 2].longconst);
3011 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3012 x = value_aggregate_elt (exp->elts[pc + 1].type,
3013 &exp->elts[pc + 3].string,
3016 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3021 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3022 default_case_after_eval:
3023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3025 struct type *type = check_typedef (value_type (x));
3027 if (TYPE_IS_REFERENCE (type))
3028 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3030 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3031 return value_zero (lookup_pointer_type (value_type (x)),
3034 error (_("Attempt to take address of "
3035 "value not located in memory."));
3037 return value_addr (x);
3041 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3042 When used in contexts where arrays will be coerced anyway, this is
3043 equivalent to `evaluate_subexp' but much faster because it avoids
3044 actually fetching array contents (perhaps obsolete now that we have
3047 Note that we currently only do the coercion for C expressions, where
3048 arrays are zero based and the coercion is correct. For other languages,
3049 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3050 to decide if coercion is appropriate. */
3053 evaluate_subexp_with_coercion (struct expression *exp,
3054 int *pos, enum noside noside)
3063 op = exp->elts[pc].opcode;
3068 var = exp->elts[pc + 2].symbol;
3069 type = check_typedef (SYMBOL_TYPE (var));
3070 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3071 && !TYPE_VECTOR (type)
3072 && CAST_IS_CONVERSION (exp->language_defn))
3075 val = address_of_variable (var, exp->elts[pc + 1].block);
3076 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3082 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3086 /* Evaluate a subexpression of EXP, at index *POS,
3087 and return a value for the size of that subexpression.
3088 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3089 we allow side-effects on the operand if its type is a variable
3092 static struct value *
3093 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3096 /* FIXME: This should be size_t. */
3097 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3104 op = exp->elts[pc].opcode;
3108 /* This case is handled specially
3109 so that we avoid creating a value for the result type.
3110 If the result type is very big, it's desirable not to
3111 create a value unnecessarily. */
3114 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3115 type = check_typedef (value_type (val));
3116 if (TYPE_CODE (type) != TYPE_CODE_PTR
3117 && !TYPE_IS_REFERENCE (type)
3118 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3119 error (_("Attempt to take contents of a non-pointer value."));
3120 type = TYPE_TARGET_TYPE (type);
3121 if (is_dynamic_type (type))
3122 type = value_type (value_ind (val));
3123 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3127 type = exp->elts[pc + 1].type;
3130 case UNOP_MEMVAL_TYPE:
3132 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3133 type = value_type (val);
3137 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3138 if (is_dynamic_type (type))
3140 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3141 type = value_type (val);
3147 case OP_VAR_MSYM_VALUE:
3151 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3152 value *val = evaluate_var_msym_value (noside,
3153 exp->elts[pc + 1].objfile,
3156 type = value_type (val);
3157 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
3158 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol));
3160 return value_from_longest (size_type, TYPE_LENGTH (type));
3164 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3165 type of the subscript is a variable length array type. In this case we
3166 must re-evaluate the right hand side of the subcription to allow
3168 case BINOP_SUBSCRIPT:
3169 if (noside == EVAL_NORMAL)
3171 int pc = (*pos) + 1;
3173 val = evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
3174 type = check_typedef (value_type (val));
3175 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3177 type = check_typedef (TYPE_TARGET_TYPE (type));
3178 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3180 type = TYPE_INDEX_TYPE (type);
3181 /* Only re-evaluate the right hand side if the resulting type
3182 is a variable length type. */
3183 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3185 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3186 return value_from_longest
3187 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3196 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3197 type = value_type (val);
3201 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3202 "When applied to a reference or a reference type, the result is
3203 the size of the referenced type." */
3204 type = check_typedef (type);
3205 if (exp->language_defn->la_language == language_cplus
3206 && (TYPE_IS_REFERENCE (type)))
3207 type = check_typedef (TYPE_TARGET_TYPE (type));
3208 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3211 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3212 for that subexpression cast to TO_TYPE. Advance *POS over the
3216 evaluate_subexp_for_cast (expression *exp, int *pos,
3218 struct type *to_type)
3222 /* Don't let symbols be evaluated with evaluate_subexp because that
3223 throws an "unknown type" error for no-debug data symbols.
3224 Instead, we want the cast to reinterpret the symbol. */
3225 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3226 || exp->elts[pc].opcode == OP_VAR_VALUE)
3231 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3234 return value_zero (to_type, not_lval);
3236 val = evaluate_var_msym_value (noside,
3237 exp->elts[pc + 1].objfile,
3238 exp->elts[pc + 2].msymbol);
3241 val = evaluate_var_value (noside,
3242 exp->elts[pc + 1].block,
3243 exp->elts[pc + 2].symbol);
3245 if (noside == EVAL_SKIP)
3246 return eval_skip_value (exp);
3248 val = value_cast (to_type, val);
3250 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3251 if (VALUE_LVAL (val) == lval_memory)
3253 if (value_lazy (val))
3254 value_fetch_lazy (val);
3255 VALUE_LVAL (val) = not_lval;
3260 value *val = evaluate_subexp (to_type, exp, pos, noside);
3261 if (noside == EVAL_SKIP)
3262 return eval_skip_value (exp);
3263 return value_cast (to_type, val);
3266 /* Parse a type expression in the string [P..P+LENGTH). */
3269 parse_and_eval_type (char *p, int length)
3271 char *tmp = (char *) alloca (length + 4);
3274 memcpy (tmp + 1, p, length);
3275 tmp[length + 1] = ')';
3276 tmp[length + 2] = '0';
3277 tmp[length + 3] = '\0';
3278 expression_up expr = parse_expression (tmp);
3279 if (expr->elts[0].opcode != UNOP_CAST)
3280 error (_("Internal error in eval_type."));
3281 return expr->elts[1].type;
3285 calc_f77_array_dims (struct type *array_type)
3288 struct type *tmp_type;
3290 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3291 error (_("Can't get dimensions for a non-array type"));
3293 tmp_type = array_type;
3295 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3297 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)