1 /* Parameters for execution on a 68000 series machine.
2 Copyright 1986, 1987, 1989, 1990, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20 /* Generic 68000 stuff, to be included by other tm-*.h files. */
24 /* Define the bit, byte, and word ordering of the machine. */
25 #define TARGET_BYTE_ORDER BIG_ENDIAN
27 /* Offset from address of function to start of its code.
28 Zero on most machines. */
30 #define FUNCTION_START_OFFSET 0
32 /* Advance PC across any function entry prologue instructions
33 to reach some "real" code. */
35 #if !defined(SKIP_PROLOGUE)
36 #define SKIP_PROLOGUE(ip) {(ip) = m68k_skip_prologue(ip);}
37 extern CORE_ADDR m68k_skip_prologue PARAMS ((CORE_ADDR ip));
40 /* Immediately after a function call, return the saved pc.
41 Can't always go through the frames for this because on some machines
42 the new frame is not set up until the new function executes
49 extern CORE_ADDR m68k_saved_pc_after_call PARAMS ((struct frame_info *));
51 #define SAVED_PC_AFTER_CALL(frame) \
52 m68k_saved_pc_after_call(frame)
54 /* Stack grows downward. */
58 /* Sequence of bytes for breakpoint instruction.
59 This is a TRAP instruction. The last 4 bits (0xf below) is the
60 vector. Systems which don't use 0xf should define BPT_VECTOR
61 themselves before including this file. */
63 #if !defined (BPT_VECTOR)
64 #define BPT_VECTOR 0xf
67 #if !defined (BREAKPOINT)
68 #define BREAKPOINT {0x4e, (0x40 | BPT_VECTOR)}
71 /* We default to vector 1 for the "remote" target, but allow targets
73 #if !defined (REMOTE_BPT_VECTOR)
74 #define REMOTE_BPT_VECTOR 1
77 #if !defined (REMOTE_BREAKPOINT)
78 #define REMOTE_BREAKPOINT {0x4e, (0x40 | REMOTE_BPT_VECTOR)}
81 /* If your kernel resets the pc after the trap happens you may need to
82 define this before including this file. */
84 #if !defined (DECR_PC_AFTER_BREAK)
85 #define DECR_PC_AFTER_BREAK 2
88 /* Nonzero if instruction at PC is a return instruction. */
89 /* Allow any of the return instructions, including a trapv and a return
92 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 2) & ~0x3) == 0x4e74)
94 /* Say how long (ordinary) registers are. This is a piece of bogosity
95 used in push_word and a few other places; REGISTER_RAW_SIZE is the
96 real way to know how big a register is. */
98 #define REGISTER_SIZE 4
100 #define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
101 #define REGISTER_BYTES_NOFP (16*4 + 8)
107 #ifndef REGISTER_BYTES_OK
108 #define REGISTER_BYTES_OK(b) \
109 ((b) == REGISTER_BYTES_FP \
110 || (b) == REGISTER_BYTES_NOFP)
113 #ifndef REGISTER_BYTES
114 #define REGISTER_BYTES (16*4 + 8 + 8*12 + 3*4)
117 /* Index within `registers' of the first byte of the space for
120 #define REGISTER_BYTE(N) \
121 ((N) >= FPC_REGNUM ? (((N) - FPC_REGNUM) * 4) + 168 \
122 : (N) >= FP0_REGNUM ? (((N) - FP0_REGNUM) * 12) + 72 \
125 /* Number of bytes of storage in the actual machine representation
126 for register N. On the 68000, all regs are 4 bytes
127 except the floating point regs which are 12 bytes. */
128 /* Note that the unsigned cast here forces the result of the
129 subtraction to very high positive values if N < FP0_REGNUM */
131 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 12 : 4)
133 /* Number of bytes of storage in the program's representation
134 for register N. On the 68000, all regs are 4 bytes
135 except the floating point regs which are 8-byte doubles. */
137 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 8 : 4)
139 /* Largest value REGISTER_RAW_SIZE can have. */
141 #define MAX_REGISTER_RAW_SIZE 12
143 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
145 #define MAX_REGISTER_VIRTUAL_SIZE 8
147 /* Nonzero if register N requires conversion
148 from raw format to virtual format. */
150 #define REGISTER_CONVERTIBLE(N) (((unsigned)(N) - FP0_REGNUM) < 8)
152 #include "floatformat.h"
154 /* Convert data from raw format for register REGNUM in buffer FROM
155 to virtual format with type TYPE in buffer TO. */
157 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
160 floatformat_to_double (&floatformat_m68881_ext, (FROM), &val); \
161 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
164 /* Convert data from virtual format with type TYPE in buffer FROM
165 to raw format for register REGNUM in buffer TO. */
167 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
169 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
170 floatformat_from_double (&floatformat_m68881_ext, &val, (TO)); \
173 /* Return the GDB type object for the "standard" data type
174 of data in register N. */
175 /* Note, for registers which contain addresses return
176 pointer to void, not pointer to char, because we don't
177 want to attempt to print the string after printing the address. */
178 #define REGISTER_VIRTUAL_TYPE(N) \
179 (((unsigned)(N) - FP0_REGNUM) < 8 ? builtin_type_double : \
180 (N) == PC_REGNUM || (N) == FP_REGNUM || (N) == SP_REGNUM ? \
181 lookup_pointer_type (builtin_type_void) : builtin_type_int)
183 /* Initializer for an array of names of registers.
184 Entries beyond the first NUM_REGS are ignored. */
186 #define REGISTER_NAMES \
187 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
188 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp", \
190 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
191 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags" }
193 /* Register numbers of various important registers.
194 Note that some of these values are "real" register numbers,
195 and correspond to the general registers of the machine,
196 and some are "phony" register numbers which are too large
197 to be actual register numbers as far as the user is concerned
198 but do serve to get the desired values when passed to read_register. */
201 #define FP_REGNUM 14 /* Contains address of executing stack frame */
202 #define SP_REGNUM 15 /* Contains address of top of stack */
203 #define PS_REGNUM 16 /* Contains processor status */
204 #define PC_REGNUM 17 /* Contains program counter */
205 #define FP0_REGNUM 18 /* Floating point register 0 */
206 #define FPC_REGNUM 26 /* 68881 control register */
207 #define FPS_REGNUM 27 /* 68881 status register */
208 #define FPI_REGNUM 28 /* 68881 iaddr register */
210 /* Store the address of the place in which to copy the structure the
211 subroutine will return. This is called from call_function. */
213 #define STORE_STRUCT_RETURN(ADDR, SP) \
214 { write_register (A1_REGNUM, (ADDR)); }
216 /* Extract from an array REGBUF containing the (raw) register state
217 a function return value of type TYPE, and copy that, in virtual format,
218 into VALBUF. This is assuming that floating point values are returned
219 as doubles in d0/d1. */
221 #if !defined (EXTRACT_RETURN_VALUE)
222 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
225 (TYPE_LENGTH(TYPE) >= 4 ? 0 : 4 - TYPE_LENGTH(TYPE)), \
229 /* Write into appropriate registers a function return value
230 of type TYPE, given in virtual format. Assumes floats are passed
233 #if !defined (STORE_RETURN_VALUE)
234 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
235 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
238 /* Extract from an array REGBUF containing the (raw) register state
239 the address in which a function should return its structure value,
240 as a CORE_ADDR (or an expression that can be used as one). */
242 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(CORE_ADDR *)(REGBUF))
244 /* Describe the pointer in each stack frame to the previous stack frame
247 /* FRAME_CHAIN takes a frame's nominal address and produces the frame's
249 In the case of the 68000, the frame's nominal address
250 is the address of a 4-byte word containing the calling frame's address. */
252 /* If we are chaining from sigtramp, then manufacture a sigtramp frame
253 (which isn't really on the stack. I'm not sure this is right for anything
254 but BSD4.3 on an hp300. */
255 #define FRAME_CHAIN(thisframe) \
256 (thisframe->signal_handler_caller \
258 : (!inside_entry_file ((thisframe)->pc) \
259 ? read_memory_integer ((thisframe)->frame, 4) \
262 /* Define other aspects of the stack frame. */
264 /* A macro that tells us whether the function invocation represented
265 by FI does not have a frame on the stack associated with it. If it
266 does not, FRAMELESS is set to 1, else 0. */
267 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
269 if ((FI)->signal_handler_caller) \
272 (FRAMELESS) = frameless_look_for_prologue(FI); \
275 /* This was determined by experimentation on hp300 BSD 4.3. Perhaps
276 it corresponds to some offset in /usr/include/sys/user.h or
277 something like that. Using some system include file would
278 have the advantage of probably being more robust in the face
279 of OS upgrades, but the disadvantage of being wrong for
282 #define SIG_PC_FP_OFFSET 530
284 #define FRAME_SAVED_PC(FRAME) \
285 (((FRAME)->signal_handler_caller \
287 ? read_memory_integer ((FRAME)->next->frame + SIG_PC_FP_OFFSET, 4) \
288 : read_memory_integer (read_register (SP_REGNUM) \
289 + SIG_PC_FP_OFFSET - 8, 4) \
291 : read_memory_integer ((FRAME)->frame + 4, 4)) \
294 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
296 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
298 /* Set VAL to the number of args passed to frame described by FI.
299 Can set VAL to -1, meaning no way to tell. */
301 /* We can't tell how many args there are
302 now that the C compiler delays popping them. */
303 #if !defined (FRAME_NUM_ARGS)
304 #define FRAME_NUM_ARGS(val,fi) (val = -1)
307 /* Return number of bytes at start of arglist that are not really args. */
309 #define FRAME_ARGS_SKIP 8
311 /* Put here the code to store, into a struct frame_saved_regs,
312 the addresses of the saved registers of frame described by FRAME_INFO.
313 This includes special registers such as pc and fp saved in special
314 ways in the stack frame. sp is even more special:
315 the address we return for it IS the sp for the next frame. */
317 #if !defined (FRAME_FIND_SAVED_REGS)
318 #define FRAME_FIND_SAVED_REGS(fi,fsr) m68k_find_saved_regs ((fi), &(fsr))
319 #endif /* no FIND_FRAME_SAVED_REGS. */
322 /* Things needed for making the inferior call functions. */
324 /* The CALL_DUMMY macro is the sequence of instructions, as disassembled
327 These instructions exist only so that m68k_find_saved_regs can parse
328 them as a "prologue"; they are never executed.
330 fmovemx fp0-fp7,sp@- 0xf227 0xe0ff
331 moveml d0-a5,sp@- 0x48e7 0xfffc
333 movew ccr,sp@- 0x42e7
335 The arguments are pushed at this point by GDB; no code is needed in
336 the dummy for this. The CALL_DUMMY_START_OFFSET gives the position
337 of the following jsr instruction. That is where we start
340 jsr @#0x32323232 0x4eb9 0x3232 0x3232
341 addal #0x69696969,sp 0xdffc 0x6969 0x6969
342 trap #<your BPT_VECTOR number here> 0x4e4?
345 Note this is CALL_DUMMY_LENGTH bytes (28 for the above example).
347 The dummy frame always saves the floating-point registers, whether they
348 actually exist on this target or not. */
350 /* FIXME: Wrong to hardwire this as BPT_VECTOR when sometimes it
351 should be REMOTE_BPT_VECTOR. Best way to fix it would be to define
352 CALL_DUMMY_BREAKPOINT_OFFSET. */
354 #define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, (0x4e404e71 | (BPT_VECTOR << 16))}
355 #define CALL_DUMMY_LENGTH 28 /* Size of CALL_DUMMY */
356 #define CALL_DUMMY_START_OFFSET 12 /* Offset to jsr instruction*/
357 #define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + 12)
359 /* Insert the specified number of args and function address
360 into a call sequence of the above form stored at DUMMYNAME.
361 We use the BFD routines to store a big-endian value of known size. */
363 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
364 { bfd_putb32 (fun, (unsigned char *) dummyname + CALL_DUMMY_START_OFFSET + 2); \
365 bfd_putb32 (nargs*4, (unsigned char *) dummyname + CALL_DUMMY_START_OFFSET + 8); }
367 /* Push an empty stack frame, to record the current PC, etc. */
369 #define PUSH_DUMMY_FRAME { m68k_push_dummy_frame (); }
371 extern void m68k_push_dummy_frame PARAMS ((void));
373 extern void m68k_pop_frame PARAMS ((void));
375 /* Discard from the stack the innermost frame, restoring all registers. */
377 #define POP_FRAME { m68k_pop_frame (); }
379 /* Offset from SP to first arg on stack at first instruction of a function */
381 #define SP_ARG0 (1 * 4)