1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
26 #include "xcoffsolib.h"
28 #include <sys/param.h>
32 #include <sys/ioctl.h>
42 extern struct obstack frame_cache_obstack;
46 /* Nonzero if we just simulated a single step break. */
49 /* Breakpoint shadows for the single step instructions will be kept here. */
51 static struct sstep_breaks {
56 /* Static function prototypes */
59 find_toc_address PARAMS ((CORE_ADDR pc));
62 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
65 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
66 struct aix_framedata *fdatap));
69 * Calculate the destination of a branch/jump. Return -1 if not a branch.
72 branch_dest (opcode, instr, pc, safety)
84 absolute = (int) ((instr >> 1) & 1);
88 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
91 if (opcode != 18) /* br conditional */
92 immediate = ((instr & ~3) << 16) >> 16;
96 dest = pc + immediate;
100 ext_op = (instr>>1) & 0x3ff;
102 if (ext_op == 16) /* br conditional register */
103 dest = read_register (LR_REGNUM) & ~3;
105 else if (ext_op == 528) /* br cond to count reg */
106 dest = read_register (CTR_REGNUM) & ~3;
113 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
118 /* AIX does not support PT_STEP. Simulate it. */
124 #define INSNLEN(OPCODE) 4
126 static char breakp[] = BREAKPOINT;
127 int ii, insn, ret, loc;
128 int breaks[2], opcode;
133 ret = read_memory (loc, &insn, sizeof (int));
135 printf ("Error in single_step()!!\n");
137 breaks[0] = loc + INSNLEN(insn);
139 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
141 /* Don't put two breakpoints on the same address. */
142 if (breaks[1] == breaks[0])
145 stepBreaks[1].address = -1;
147 for (ii=0; ii < 2; ++ii) {
149 /* ignore invalid breakpoint. */
150 if ( breaks[ii] == -1)
153 read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
155 ret = write_memory (breaks[ii], breakp, sizeof(int));
156 stepBreaks[ii].address = breaks[ii];
162 /* remove step breakpoints. */
163 for (ii=0; ii < 2; ++ii)
164 if (stepBreaks[ii].address != -1)
166 (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
170 errno = 0; /* FIXME, don't ignore errors! */
174 /* return pc value after skipping a function prologue. */
180 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
182 if (target_read_memory (pc, (char *)&op, sizeof (op)))
183 return pc; /* Can't access it -- assume no prologue. */
184 SWAP_TARGET_AND_HOST (&op, sizeof (op));
186 /* Assume that subsequent fetches can fail with low probability. */
188 if (op == 0x7c0802a6) { /* mflr r0 */
190 op = read_memory_integer (pc, 4);
193 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
195 op = read_memory_integer (pc, 4);
198 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
200 op = read_memory_integer (pc, 4);
202 /* At this point, make sure this is not a trampoline function
203 (a function that simply calls another functions, and nothing else).
204 If the next is not a nop, this branch was part of the function
207 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
209 return pc - 4; /* don't skip over this branch */
212 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
213 pc += 4; /* store floating register double */
214 op = read_memory_integer (pc, 4);
217 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
219 op = read_memory_integer (pc, 4);
222 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
223 (tmp == 0x9421) || /* stu r1, NUM(r1) */
224 (tmp == 0x93e1)) /* st r31,NUM(r1) */
227 op = read_memory_integer (pc, 4);
230 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
231 pc += 4; /* l r30, ... */
232 op = read_memory_integer (pc, 4);
235 /* store parameters into stack */
237 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
238 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
239 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
240 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
242 pc += 4; /* store fpr double */
243 op = read_memory_integer (pc, 4);
246 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
247 pc += 4; /* this happens if r31 is used as */
248 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
251 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
252 pc += 4; /* st r4, NUM(r31), ... */
253 op = read_memory_integer (pc, 4);
258 /* I have problems with skipping over __main() that I need to address
259 * sometime. Previously, I used to use misc_function_vector which
260 * didn't work as well as I wanted to be. -MGO */
262 /* If the first thing after skipping a prolog is a branch to a function,
263 this might be a call to an initializer in main(), introduced by gcc2.
264 We'd like to skip over it as well. Fortunately, xlc does some extra
265 work before calling a function right after a prologue, thus we can
266 single out such gcc2 behaviour. */
269 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
270 op = read_memory_integer (pc+4, 4);
272 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
274 /* check and see if we are in main. If so, skip over this initializer
277 tmp = find_pc_misc_function (pc);
278 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
288 /*************************************************************************
289 Support for creating pushind a dummy frame into the stack, and popping
291 *************************************************************************/
293 /* The total size of dummy frame is 436, which is;
298 and 24 extra bytes for the callee's link area. The last 24 bytes
299 for the link area might not be necessary, since it will be taken
300 care of by push_arguments(). */
302 #define DUMMY_FRAME_SIZE 436
304 #define DUMMY_FRAME_ADDR_SIZE 10
306 /* Make sure you initialize these in somewhere, in case gdb gives up what it
307 was debugging and starts debugging something else. FIXMEibm */
309 static int dummy_frame_count = 0;
310 static int dummy_frame_size = 0;
311 static CORE_ADDR *dummy_frame_addr = 0;
313 extern int stop_stack_dummy;
315 /* push a dummy frame into stack, save all register. Currently we are saving
316 only gpr's and fpr's, which is not good enough! FIXMEmgo */
321 int sp, pc; /* stack pointer and link register */
324 target_fetch_registers (-1);
326 if (dummy_frame_count >= dummy_frame_size) {
327 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
328 if (dummy_frame_addr)
329 dummy_frame_addr = (CORE_ADDR*) xrealloc
330 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
332 dummy_frame_addr = (CORE_ADDR*)
333 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
336 sp = read_register(SP_REGNUM);
337 pc = read_register(PC_REGNUM);
339 dummy_frame_addr [dummy_frame_count++] = sp;
341 /* Be careful! If the stack pointer is not decremented first, then kernel
342 thinks he is free to use the space underneath it. And kernel actually
343 uses that area for IPC purposes when executing ptrace(2) calls. So
344 before writing register values into the new frame, decrement and update
345 %sp first in order to secure your frame. */
347 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
349 /* gdb relies on the state of current_frame. We'd better update it,
350 otherwise things like do_registers_info() wouldn't work properly! */
352 flush_cached_frames ();
353 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
355 /* save program counter in link register's space. */
356 write_memory (sp+8, &pc, 4);
358 /* save all floating point and general purpose registers here. */
361 for (ii = 0; ii < 32; ++ii)
362 write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
365 for (ii=1; ii <=32; ++ii)
366 write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
368 /* so far, 32*2 + 32 words = 384 bytes have been written.
369 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
371 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
372 write_memory (sp-384-(ii*4),
373 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
376 /* Save sp or so called back chain right here. */
377 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
378 sp -= DUMMY_FRAME_SIZE;
380 /* And finally, this is the back chain. */
381 write_memory (sp+8, &pc, 4);
385 /* Pop a dummy frame.
387 In rs6000 when we push a dummy frame, we save all of the registers. This
388 is usually done before user calls a function explicitly.
390 After a dummy frame is pushed, some instructions are copied into stack,
391 and stack pointer is decremented even more. Since we don't have a frame
392 pointer to get back to the parent frame of the dummy, we start having
393 trouble poping it. Therefore, we keep a dummy frame stack, keeping
394 addresses of dummy frames as such. When poping happens and when we
395 detect that was a dummy frame, we pop it back to its parent by using
396 dummy frame stack (`dummy_frame_addr' array).
398 FIXME: This whole concept is broken. You should be able to detect
399 a dummy stack frame *on the user's stack itself*. When you do,
400 then you know the format of that stack frame -- including its
401 saved SP register! There should *not* be a separate stack in the
409 sp = dummy_frame_addr [--dummy_frame_count];
411 /* restore all fpr's. */
412 for (ii = 1; ii <= 32; ++ii)
413 read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
415 /* restore all gpr's */
416 for (ii=1; ii <= 32; ++ii) {
417 read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
420 /* restore the rest of the registers. */
421 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
422 read_memory (sp-384-(ii*4),
423 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
425 read_memory (sp-(DUMMY_FRAME_SIZE-8),
426 ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
428 /* when a dummy frame was being pushed, we had to decrement %sp first, in
429 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
430 one we should restore. Change it with the one we need. */
432 *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
434 /* Now we can restore all registers. */
436 target_store_registers (-1);
438 flush_cached_frames ();
439 set_current_frame (create_new_frame (sp, pc));
443 /* pop the innermost frame, go back to the caller. */
448 int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
449 struct aix_framedata fdata;
450 FRAME fr = get_current_frame ();
456 if (stop_stack_dummy && dummy_frame_count) {
461 /* figure out previous %pc value. If the function is frameless, it is
462 still in the link register, otherwise walk the frames and retrieve the
463 saved %pc value in the previous frame. */
465 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
466 function_frame_info (addr, &fdata);
468 read_memory (sp, &prev_sp, 4);
470 lr = read_register (LR_REGNUM);
472 read_memory (prev_sp+8, &lr, 4);
474 /* reset %pc value. */
475 write_register (PC_REGNUM, lr);
477 /* reset register values if any was saved earlier. */
478 addr = prev_sp - fdata.offset;
480 if (fdata.saved_gpr != -1)
481 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
482 read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
486 if (fdata.saved_fpr != -1)
487 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
488 read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
492 write_register (SP_REGNUM, prev_sp);
493 target_store_registers (-1);
494 flush_cached_frames ();
495 set_current_frame (create_new_frame (prev_sp, lr));
499 /* fixup the call sequence of a dummy function, with the real function address.
500 its argumets will be passed by gdb. */
503 fix_call_dummy(dummyname, pc, fun, nargs, type)
507 int nargs; /* not used */
508 int type; /* not used */
510 #define TOC_ADDR_OFFSET 20
511 #define TARGET_ADDR_OFFSET 28
514 CORE_ADDR target_addr;
518 tocvalue = find_toc_address (target_addr);
520 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
521 ii = (ii & 0xffff0000) | (tocvalue >> 16);
522 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
524 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
525 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
526 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
528 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
529 ii = (ii & 0xffff0000) | (target_addr >> 16);
530 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
532 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
533 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
534 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
538 /* return information about a function frame.
539 in struct aix_frameinfo fdata:
540 - frameless is TRUE, if function does not have a frame.
541 - nosavedpc is TRUE, if function does not save %pc value in its frame.
542 - offset is the number of bytes used in the frame to save registers.
543 - saved_gpr is the number of the first saved gpr.
544 - saved_fpr is the number of the first saved fpr.
545 - alloca_reg is the number of the register used for alloca() handling.
549 function_frame_info (pc, fdata)
551 struct aix_framedata *fdata;
554 register unsigned int op;
557 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
558 fdata->frameless = 1;
560 op = read_memory_integer (pc, 4);
561 if (op == 0x7c0802a6) { /* mflr r0 */
563 op = read_memory_integer (pc, 4);
564 fdata->nosavedpc = 0;
565 fdata->frameless = 0;
567 else /* else, pc is not saved */
568 fdata->nosavedpc = 1;
570 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
572 op = read_memory_integer (pc, 4);
573 fdata->frameless = 0;
576 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
578 op = read_memory_integer (pc, 4);
579 /* At this point, make sure this is not a trampoline function
580 (a function that simply calls another functions, and nothing else).
581 If the next is not a nop, this branch was part of the function
584 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
586 return; /* prologue is over */
587 fdata->frameless = 0;
590 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
591 pc += 4; /* store floating register double */
592 op = read_memory_integer (pc, 4);
593 fdata->frameless = 0;
596 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
598 fdata->saved_gpr = (op >> 21) & 0x1f;
601 tmp2 = (~0 &~ 0xffff) | tmp2;
605 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
606 if ( fdata->saved_fpr > 0)
607 fdata->saved_fpr = 32 - fdata->saved_fpr;
609 fdata->saved_fpr = -1;
611 fdata->offset = tmp2;
613 op = read_memory_integer (pc, 4);
614 fdata->frameless = 0;
617 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
618 (tmp == 0x9421) || /* stu r1, NUM(r1) */
619 (tmp == 0x93e1)) /* st r31, NUM(r1) */
623 /* gcc takes a short cut and uses this instruction to save r31 only. */
627 /* fatal ("Unrecognized prolog."); */
628 printf ("Unrecognized prolog!\n");
630 fdata->saved_gpr = 31;
633 tmp2 = - ((~0 &~ 0xffff) | tmp2);
634 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
635 if ( fdata->saved_fpr > 0)
636 fdata->saved_fpr = 32 - fdata->saved_fpr;
638 fdata->saved_fpr = -1;
640 fdata->offset = tmp2;
643 op = read_memory_integer (pc, 4);
644 fdata->frameless = 0;
647 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
648 pc += 4; /* l r30, ... */
649 op = read_memory_integer (pc, 4);
650 fdata->frameless = 0;
653 /* store parameters into stack */
655 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
656 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
657 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
658 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
660 pc += 4; /* store fpr double */
661 op = read_memory_integer (pc, 4);
662 fdata->frameless = 0;
665 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
666 fdata->alloca_reg = 31;
667 fdata->frameless = 0;
672 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
673 eight words of the argument list (that might be less than eight parameters if
674 some parameters occupy more than one word) are passed in r3..r11 registers.
675 float and double parameters are passed in fpr's, in addition to that. Rest of
676 the parameters if any are passed in user stack. There might be cases in which
677 half of the parameter is copied into registers, the other half is pushed into
680 If the function is returning a structure, then the return address is passed
681 in r3, then the first 7 words of the parametes can be passed in registers,
685 push_arguments (nargs, args, sp, struct_return, struct_addr)
690 CORE_ADDR struct_addr;
693 int argno; /* current argument number */
694 int argbytes; /* current argument byte */
695 char tmp_buffer [50];
697 int f_argno = 0; /* current floating point argno */
699 CORE_ADDR saved_sp, pc;
701 if ( dummy_frame_count <= 0)
702 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
704 /* The first eight words of ther arguments are passed in registers. Copy
707 If the function is returning a `struct', then the first word (which
708 will be passed in r3) is used for struct return address. In that
709 case we should advance one word and start from r4 register to copy
712 ii = struct_return ? 1 : 0;
714 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
716 arg = value_arg_coerce (args[argno]);
717 len = TYPE_LENGTH (VALUE_TYPE (arg));
719 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
721 /* floating point arguments are passed in fpr's, as well as gpr's.
722 There are 13 fpr's reserved for passing parameters. At this point
723 there is no way we would run out of them. */
727 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
729 bcopy (VALUE_CONTENTS (arg),
730 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
736 /* Argument takes more than one register. */
737 while (argbytes < len) {
739 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
740 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
741 ®isters[REGISTER_BYTE(ii+3)],
742 (len - argbytes) > 4 ? 4 : len - argbytes);
746 goto ran_out_of_registers_for_arguments;
751 else { /* Argument can fit in one register. No problem. */
752 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
753 bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len);
758 ran_out_of_registers_for_arguments:
760 /* location for 8 parameters are always reserved. */
763 /* another six words for back chain, TOC register, link register, etc. */
766 /* if there are more arguments, allocate space for them in
767 the stack, then push them starting from the ninth one. */
769 if ((argno < nargs) || argbytes) {
774 space += ((len - argbytes + 3) & -4);
780 for (; jj < nargs; ++jj) {
781 val = value_arg_coerce (args[jj]);
782 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
785 /* add location required for the rest of the parameters */
786 space = (space + 7) & -8;
789 /* This is another instance we need to be concerned about securing our
790 stack space. If we write anything underneath %sp (r1), we might conflict
791 with the kernel who thinks he is free to use this area. So, update %sp
792 first before doing anything else. */
794 write_register (SP_REGNUM, sp);
796 /* if the last argument copied into the registers didn't fit there
797 completely, push the rest of it into stack. */
801 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
803 ii += ((len - argbytes + 3) & -4) / 4;
806 /* push the rest of the arguments into stack. */
807 for (; argno < nargs; ++argno) {
809 arg = value_arg_coerce (args[argno]);
810 len = TYPE_LENGTH (VALUE_TYPE (arg));
813 /* float types should be passed in fpr's, as well as in the stack. */
814 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
818 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
820 bcopy (VALUE_CONTENTS (arg),
821 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
825 write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
826 ii += ((len + 3) & -4) / 4;
830 /* Secure stack areas first, before doing anything else. */
831 write_register (SP_REGNUM, sp);
833 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
834 read_memory (saved_sp, tmp_buffer, 24);
835 write_memory (sp, tmp_buffer, 24);
837 write_memory (sp, &saved_sp, 4); /* set back chain properly */
839 target_store_registers (-1);
843 /* a given return value in `regbuf' with a type `valtype', extract and copy its
844 value into `valbuf' */
847 extract_return_value (valtype, regbuf, valbuf)
848 struct type *valtype;
849 char regbuf[REGISTER_BYTES];
853 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
856 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
857 We need to truncate the return value into float size (4 byte) if
860 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
861 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
862 TYPE_LENGTH (valtype));
864 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
866 bcopy (&ff, valbuf, sizeof(float));
870 /* return value is copied starting from r3. */
871 bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
875 /* keep structure return address in this variable.
876 FIXME: This is a horrid kludge which should not be allowed to continue
877 living. This only allows a single nested call to a structure-returning
880 CORE_ADDR rs6000_struct_return_address;
883 /* Throw away this debugging code. FIXMEmgo. */
889 for (ii=0; ii<40; ++ii) {
892 val = read_memory_integer (fram + ii * 4, 4);
893 printf ("0x%08x\t", val);
900 /* Indirect function calls use a piece of trampoline code to do context
901 switching, i.e. to set the new TOC table. Skip such code if we are on
902 its first instruction (as when we have single-stepped to here).
903 Result is desired PC to step until, or NULL if we are not in
907 skip_trampoline_code (pc)
910 register unsigned int ii, op;
912 static unsigned trampoline_code[] = {
913 0x800b0000, /* l r0,0x0(r11) */
914 0x90410014, /* st r2,0x14(r1) */
915 0x7c0903a6, /* mtctr r0 */
916 0x804b0004, /* l r2,0x4(r11) */
917 0x816b0008, /* l r11,0x8(r11) */
918 0x4e800420, /* bctr */
923 for (ii=0; trampoline_code[ii]; ++ii) {
924 op = read_memory_integer (pc + (ii*4), 4);
925 if (op != trampoline_code [ii])
928 ii = read_register (11); /* r11 holds destination addr */
929 pc = read_memory_integer (ii, 4); /* (r11) value */
934 /* Determines whether the function FI has a frame on the stack or not.
935 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
936 second argument of 0, and from the FRAME_SAVED_PC macro with a
937 second argument of 1. */
940 frameless_function_invocation (fi, pcsaved)
941 struct frame_info *fi;
944 CORE_ADDR func_start;
945 struct aix_framedata fdata;
947 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
949 /* If we failed to find the start of the function, it is a mistake
950 to inspect the instructions. */
955 function_frame_info (func_start, &fdata);
956 return pcsaved ? fdata.nosavedpc : fdata.frameless;
960 /* If saved registers of frame FI are not known yet, read and cache them.
961 &FDATAP contains aix_framedata; TDATAP can be NULL,
962 in which case the framedata are read. */
965 frame_get_cache_fsr (fi, fdatap)
966 struct frame_info *fi;
967 struct aix_framedata *fdatap;
970 CORE_ADDR frame_addr;
971 struct aix_framedata work_fdata;
976 if (fdatap == NULL) {
977 fdatap = &work_fdata;
978 function_frame_info (get_pc_function_start (fi->pc), fdatap);
981 fi->cache_fsr = (struct frame_saved_regs *)
982 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
983 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
985 if (fi->prev && fi->prev->frame)
986 frame_addr = fi->prev->frame;
988 frame_addr = read_memory_integer (fi->frame, 4);
990 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
991 All fpr's from saved_fpr to fp31 are saved right underneath caller
992 stack pointer, starting from fp31 first. */
994 if (fdatap->saved_fpr >= 0) {
995 for (ii=31; ii >= fdatap->saved_fpr; --ii)
996 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
997 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1000 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1001 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1002 starting from r31 first. */
1004 if (fdatap->saved_gpr >= 0)
1005 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1006 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1009 /* Return the address of a frame. This is the inital %sp value when the frame
1010 was first allocated. For functions calling alloca(), it might be saved in
1011 an alloca register. */
1014 frame_initial_stack_address (fi)
1015 struct frame_info *fi;
1018 struct aix_framedata fdata;
1019 struct frame_info *callee_fi;
1021 /* if the initial stack pointer (frame address) of this frame is known,
1025 return fi->initial_sp;
1027 /* find out if this function is using an alloca register.. */
1029 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1031 /* if saved registers of this frame are not known yet, read and cache them. */
1034 frame_get_cache_fsr (fi, &fdata);
1036 /* If no alloca register used, then fi->frame is the value of the %sp for
1037 this frame, and it is good enough. */
1039 if (fdata.alloca_reg < 0) {
1040 fi->initial_sp = fi->frame;
1041 return fi->initial_sp;
1044 /* This function has an alloca register. If this is the top-most frame
1045 (with the lowest address), the value in alloca register is good. */
1048 return fi->initial_sp = read_register (fdata.alloca_reg);
1050 /* Otherwise, this is a caller frame. Callee has usually already saved
1051 registers, but there are exceptions (such as when the callee
1052 has no parameters). Find the address in which caller's alloca
1053 register is saved. */
1055 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1057 if (!callee_fi->cache_fsr)
1058 frame_get_cache_fsr (callee_fi, NULL);
1060 /* this is the address in which alloca register is saved. */
1062 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1064 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1065 return fi->initial_sp;
1068 /* Go look into deeper levels of the frame chain to see if any one of
1069 the callees has saved alloca register. */
1072 /* If alloca register was not saved, by the callee (or any of its callees)
1073 then the value in the register is still good. */
1075 return fi->initial_sp = read_register (fdata.alloca_reg);
1078 /* xcoff_relocate_symtab - hook for symbol table relocation.
1079 also reads shared libraries.. */
1081 xcoff_relocate_symtab (pid)
1084 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1086 struct ld_info *ldi;
1089 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1091 /* According to my humble theory, AIX has some timing problems and
1092 when the user stack grows, kernel doesn't update stack info in time
1093 and ptrace calls step on user stack. That is why we sleep here a little,
1094 and give kernel to update its internals. */
1099 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1100 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1102 perror_with_name ("ptrace ldinfo");
1109 add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
1110 } while (ldi->ldinfo_next
1111 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1114 /* Now that we've jumbled things around, re-sort them. */
1115 sort_minimal_symbols ();
1118 /* relocate the exec and core sections as well. */
1122 /* Keep an array of load segment information and their TOC table addresses.
1123 This info will be useful when calling a shared library function by hand. */
1126 CORE_ADDR textorg, dataorg;
1127 unsigned long toc_offset;
1130 #define LOADINFOLEN 10
1132 /* FIXME Warning -- loadinfotextindex is used for a nefarious purpose by
1135 static struct loadinfo *loadinfo = NULL;
1136 static int loadinfolen = 0;
1137 static int loadinfotocindex = 0;
1138 int loadinfotextindex = 0;
1142 xcoff_init_loadinfo ()
1144 loadinfotocindex = 0;
1145 loadinfotextindex = 0;
1147 if (loadinfolen == 0) {
1148 loadinfo = (struct loadinfo *)
1149 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1150 loadinfolen = LOADINFOLEN;
1155 /* FIXME -- this is never called! */
1163 loadinfotocindex = 0;
1164 loadinfotextindex = 0;
1167 /* this is called from xcoffread.c */
1170 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1172 while (loadinfotocindex >= loadinfolen) {
1173 loadinfolen += LOADINFOLEN;
1174 loadinfo = (struct loadinfo *)
1175 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1177 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1182 add_text_to_loadinfo (textaddr, dataaddr)
1186 while (loadinfotextindex >= loadinfolen) {
1187 loadinfolen += LOADINFOLEN;
1188 loadinfo = (struct loadinfo *)
1189 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1191 loadinfo [loadinfotextindex].textorg = textaddr;
1192 loadinfo [loadinfotextindex].dataorg = dataaddr;
1193 ++loadinfotextindex;
1197 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1198 of a member of this array are correlated with the "toc_offset"
1199 element of the same member. But they are sequentially assigned in wildly
1200 different places, and probably there is no correlation. FIXME! */
1203 find_toc_address (pc)
1206 int ii, toc_entry, tocbase = 0;
1208 for (ii=0; ii < loadinfotextindex; ++ii)
1209 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1211 tocbase = loadinfo[ii].textorg;
1214 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;