1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 89, 90, 91, 94, 98, 1999 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
35 #include "gdb_string.h"
39 #include "expression.h"
43 #include "parser-defs.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace
48 with "gdbarch.h" when appropriate. */
51 /* Symbols which architectures can redefine. */
53 /* Some systems have routines whose names start with `$'. Giving this
54 macro a non-zero value tells GDB's expression parser to check for
55 such routines when parsing tokens that begin with `$'.
57 On HP-UX, certain system routines (millicode) have names beginning
58 with `$' or `$$'. For example, `$$dyncall' is a millicode routine
59 that handles inter-space procedure calls on PA-RISC. */
60 #ifndef SYMBOLS_CAN_START_WITH_DOLLAR
61 #define SYMBOLS_CAN_START_WITH_DOLLAR (0)
66 /* Global variables declared in parser-defs.h (and commented there). */
67 struct expression *expout;
70 struct block *expression_context_block;
71 struct block *innermost_block;
73 union type_stack_elt *type_stack;
74 int type_stack_depth, type_stack_size;
80 static int expressiondebug = 0;
82 extern int hp_som_som_object_present;
84 static void free_funcalls (void *ignore);
86 static void prefixify_expression (struct expression *);
89 prefixify_subexp (struct expression *, struct expression *, int, int);
91 void _initialize_parse (void);
93 /* Data structure for saving values of arglist_len for function calls whose
94 arguments contain other function calls. */
102 static struct funcall *funcall_chain;
104 /* Assign machine-independent names to certain registers
105 (unless overridden by the REGISTER_NAMES table) */
107 unsigned num_std_regs = 0;
108 struct std_regs *std_regs;
110 /* The generic method for targets to specify how their registers are
111 named. The mapping can be derived from three sources:
112 REGISTER_NAME; std_regs; or a target specific alias hook. */
115 target_map_name_to_register (char *str, int len)
119 /* First try target specific aliases. We try these first because on some
120 systems standard names can be context dependent (eg. $pc on a
121 multiprocessor can be could be any of several PCs). */
122 #ifdef REGISTER_NAME_ALIAS_HOOK
123 i = REGISTER_NAME_ALIAS_HOOK (str, len);
128 /* Search architectural register name space. */
129 for (i = 0; i < NUM_REGS; i++)
130 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
131 && STREQN (str, REGISTER_NAME (i), len))
136 /* Try pseudo-registers, if any. */
137 for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
138 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
139 && STREQN (str, REGISTER_NAME (i), len))
144 /* Try standard aliases. */
145 for (i = 0; i < num_std_regs; i++)
146 if (std_regs[i].name && len == strlen (std_regs[i].name)
147 && STREQN (str, std_regs[i].name, len))
149 return std_regs[i].regnum;
155 /* Begin counting arguments for a function call,
156 saving the data about any containing call. */
161 register struct funcall *new;
163 new = (struct funcall *) xmalloc (sizeof (struct funcall));
164 new->next = funcall_chain;
165 new->arglist_len = arglist_len;
170 /* Return the number of arguments in a function call just terminated,
171 and restore the data for the containing function call. */
176 register int val = arglist_len;
177 register struct funcall *call = funcall_chain;
178 funcall_chain = call->next;
179 arglist_len = call->arglist_len;
184 /* Free everything in the funcall chain.
185 Used when there is an error inside parsing. */
188 free_funcalls (void *ignore)
190 register struct funcall *call, *next;
192 for (call = funcall_chain; call; call = next)
199 /* This page contains the functions for adding data to the struct expression
200 being constructed. */
202 /* Add one element to the end of the expression. */
204 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
205 a register through here */
208 write_exp_elt (union exp_element expelt)
210 if (expout_ptr >= expout_size)
213 expout = (struct expression *)
214 xrealloc ((char *) expout, sizeof (struct expression)
215 + EXP_ELEM_TO_BYTES (expout_size));
217 expout->elts[expout_ptr++] = expelt;
221 write_exp_elt_opcode (enum exp_opcode expelt)
223 union exp_element tmp;
231 write_exp_elt_sym (struct symbol *expelt)
233 union exp_element tmp;
241 write_exp_elt_block (struct block *b)
243 union exp_element tmp;
249 write_exp_elt_longcst (LONGEST expelt)
251 union exp_element tmp;
253 tmp.longconst = expelt;
259 write_exp_elt_dblcst (DOUBLEST expelt)
261 union exp_element tmp;
263 tmp.doubleconst = expelt;
269 write_exp_elt_type (struct type *expelt)
271 union exp_element tmp;
279 write_exp_elt_intern (struct internalvar *expelt)
281 union exp_element tmp;
283 tmp.internalvar = expelt;
288 /* Add a string constant to the end of the expression.
290 String constants are stored by first writing an expression element
291 that contains the length of the string, then stuffing the string
292 constant itself into however many expression elements are needed
293 to hold it, and then writing another expression element that contains
294 the length of the string. I.E. an expression element at each end of
295 the string records the string length, so you can skip over the
296 expression elements containing the actual string bytes from either
297 end of the string. Note that this also allows gdb to handle
298 strings with embedded null bytes, as is required for some languages.
300 Don't be fooled by the fact that the string is null byte terminated,
301 this is strictly for the convenience of debugging gdb itself. Gdb
302 Gdb does not depend up the string being null terminated, since the
303 actual length is recorded in expression elements at each end of the
304 string. The null byte is taken into consideration when computing how
305 many expression elements are required to hold the string constant, of
310 write_exp_string (struct stoken str)
312 register int len = str.length;
314 register char *strdata;
316 /* Compute the number of expression elements required to hold the string
317 (including a null byte terminator), along with one expression element
318 at each end to record the actual string length (not including the
319 null byte terminator). */
321 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
323 /* Ensure that we have enough available expression elements to store
326 if ((expout_ptr + lenelt) >= expout_size)
328 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
329 expout = (struct expression *)
330 xrealloc ((char *) expout, (sizeof (struct expression)
331 + EXP_ELEM_TO_BYTES (expout_size)));
334 /* Write the leading length expression element (which advances the current
335 expression element index), then write the string constant followed by a
336 terminating null byte, and then write the trailing length expression
339 write_exp_elt_longcst ((LONGEST) len);
340 strdata = (char *) &expout->elts[expout_ptr];
341 memcpy (strdata, str.ptr, len);
342 *(strdata + len) = '\0';
343 expout_ptr += lenelt - 2;
344 write_exp_elt_longcst ((LONGEST) len);
347 /* Add a bitstring constant to the end of the expression.
349 Bitstring constants are stored by first writing an expression element
350 that contains the length of the bitstring (in bits), then stuffing the
351 bitstring constant itself into however many expression elements are
352 needed to hold it, and then writing another expression element that
353 contains the length of the bitstring. I.E. an expression element at
354 each end of the bitstring records the bitstring length, so you can skip
355 over the expression elements containing the actual bitstring bytes from
356 either end of the bitstring. */
359 write_exp_bitstring (struct stoken str)
361 register int bits = str.length; /* length in bits */
362 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
364 register char *strdata;
366 /* Compute the number of expression elements required to hold the bitstring,
367 along with one expression element at each end to record the actual
368 bitstring length in bits. */
370 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
372 /* Ensure that we have enough available expression elements to store
375 if ((expout_ptr + lenelt) >= expout_size)
377 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
378 expout = (struct expression *)
379 xrealloc ((char *) expout, (sizeof (struct expression)
380 + EXP_ELEM_TO_BYTES (expout_size)));
383 /* Write the leading length expression element (which advances the current
384 expression element index), then write the bitstring constant, and then
385 write the trailing length expression element. */
387 write_exp_elt_longcst ((LONGEST) bits);
388 strdata = (char *) &expout->elts[expout_ptr];
389 memcpy (strdata, str.ptr, len);
390 expout_ptr += lenelt - 2;
391 write_exp_elt_longcst ((LONGEST) bits);
394 /* Add the appropriate elements for a minimal symbol to the end of
395 the expression. The rationale behind passing in text_symbol_type and
396 data_symbol_type was so that Modula-2 could pass in WORD for
397 data_symbol_type. Perhaps it still is useful to have those types vary
398 based on the language, but they no longer have names like "int", so
399 the initial rationale is gone. */
401 static struct type *msym_text_symbol_type;
402 static struct type *msym_data_symbol_type;
403 static struct type *msym_unknown_symbol_type;
406 write_exp_msymbol (struct minimal_symbol *msymbol,
407 struct type *text_symbol_type, struct type *data_symbol_type)
411 write_exp_elt_opcode (OP_LONG);
412 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
414 addr = SYMBOL_VALUE_ADDRESS (msymbol);
415 if (overlay_debugging)
416 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
417 write_exp_elt_longcst ((LONGEST) addr);
419 write_exp_elt_opcode (OP_LONG);
421 write_exp_elt_opcode (UNOP_MEMVAL);
422 switch (msymbol->type)
426 case mst_solib_trampoline:
427 write_exp_elt_type (msym_text_symbol_type);
434 write_exp_elt_type (msym_data_symbol_type);
438 write_exp_elt_type (msym_unknown_symbol_type);
441 write_exp_elt_opcode (UNOP_MEMVAL);
444 /* Recognize tokens that start with '$'. These include:
446 $regname A native register name or a "standard
449 $variable A convenience variable with a name chosen
452 $digits Value history with index <digits>, starting
453 from the first value which has index 1.
455 $$digits Value history with index <digits> relative
456 to the last value. I.E. $$0 is the last
457 value, $$1 is the one previous to that, $$2
458 is the one previous to $$1, etc.
460 $ | $0 | $$0 The last value in the value history.
462 $$ An abbreviation for the second to the last
463 value in the value history, I.E. $$1
468 write_dollar_variable (struct stoken str)
470 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
471 and $$digits (equivalent to $<-digits> if you could type that). */
475 /* Double dollar means negate the number and add -1 as well.
476 Thus $$ alone means -1. */
477 if (str.length >= 2 && str.ptr[1] == '$')
484 /* Just dollars (one or two) */
488 /* Is the rest of the token digits? */
489 for (; i < str.length; i++)
490 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
494 i = atoi (str.ptr + 1 + negate);
500 /* Handle tokens that refer to machine registers:
501 $ followed by a register name. */
502 i = target_map_name_to_register (str.ptr + 1, str.length - 1);
504 goto handle_register;
506 if (SYMBOLS_CAN_START_WITH_DOLLAR)
508 struct symbol *sym = NULL;
509 struct minimal_symbol *msym = NULL;
511 /* On HP-UX, certain system routines (millicode) have names beginning
512 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
513 calls on PA-RISC. Check for those, first. */
515 /* This code is not enabled on non HP-UX systems, since worst case
516 symbol table lookup performance is awful, to put it mildly. */
518 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
519 VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
522 write_exp_elt_opcode (OP_VAR_VALUE);
523 write_exp_elt_block (block_found); /* set by lookup_symbol */
524 write_exp_elt_sym (sym);
525 write_exp_elt_opcode (OP_VAR_VALUE);
528 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
531 write_exp_msymbol (msym,
532 lookup_function_type (builtin_type_int),
538 /* Any other names starting in $ are debugger internal variables. */
540 write_exp_elt_opcode (OP_INTERNALVAR);
541 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
542 write_exp_elt_opcode (OP_INTERNALVAR);
545 write_exp_elt_opcode (OP_LAST);
546 write_exp_elt_longcst ((LONGEST) i);
547 write_exp_elt_opcode (OP_LAST);
550 write_exp_elt_opcode (OP_REGISTER);
551 write_exp_elt_longcst (i);
552 write_exp_elt_opcode (OP_REGISTER);
557 /* Parse a string that is possibly a namespace / nested class
558 specification, i.e., something of the form A::B::C::x. Input
559 (NAME) is the entire string; LEN is the current valid length; the
560 output is a string, TOKEN, which points to the largest recognized
561 prefix which is a series of namespaces or classes. CLASS_PREFIX is
562 another output, which records whether a nested class spec was
563 recognized (= 1) or a fully qualified variable name was found (=
564 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
565 string recognized and consumed by this routine.
567 The return value is a pointer to the symbol for the base class or
568 variable if found, or NULL if not found. Callers must check this
569 first -- if NULL, the outputs may not be correct.
571 This function is used c-exp.y. This is used specifically to get
572 around HP aCC (and possibly other compilers), which insists on
573 generating names with embedded colons for namespace or nested class
576 (Argument LEN is currently unused. 1997-08-27)
578 Callers must free memory allocated for the output string TOKEN. */
580 static const char coloncolon[2] =
584 parse_nested_classes_for_hpacc (char *name, int len, char **token,
585 int *class_prefix, char **argptr)
587 /* Comment below comes from decode_line_1 which has very similar
588 code, which is called for "break" command parsing. */
590 /* We have what looks like a class or namespace
591 scope specification (A::B), possibly with many
592 levels of namespaces or classes (A::B::C::D).
594 Some versions of the HP ANSI C++ compiler (as also possibly
595 other compilers) generate class/function/member names with
596 embedded double-colons if they are inside namespaces. To
597 handle this, we loop a few times, considering larger and
598 larger prefixes of the string as though they were single
599 symbols. So, if the initially supplied string is
600 A::B::C::D::foo, we have to look up "A", then "A::B",
601 then "A::B::C", then "A::B::C::D", and finally
602 "A::B::C::D::foo" as single, monolithic symbols, because
603 A, B, C or D may be namespaces.
605 Note that namespaces can nest only inside other
606 namespaces, and not inside classes. So we need only
607 consider *prefixes* of the string; there is no need to look up
608 "B::C" separately as a symbol in the previous example. */
614 struct symbol *sym_class = NULL;
615 struct symbol *sym_var = NULL;
621 /* Check for HP-compiled executable -- in other cases
622 return NULL, and caller must default to standard GDB
625 if (!hp_som_som_object_present)
626 return (struct symbol *) NULL;
630 /* Skip over whitespace and possible global "::" */
631 while (*p && (*p == ' ' || *p == '\t'))
633 if (p[0] == ':' && p[1] == ':')
635 while (*p && (*p == ' ' || *p == '\t'))
640 /* Get to the end of the next namespace or class spec. */
641 /* If we're looking at some non-token, fail immediately */
643 if (!(isalpha (*p) || *p == '$' || *p == '_'))
644 return (struct symbol *) NULL;
646 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
651 /* If we have the start of a template specification,
652 scan right ahead to its end */
653 q = find_template_name_end (p);
660 /* Skip over "::" and whitespace for next time around */
661 while (*p && (*p == ' ' || *p == '\t'))
663 if (p[0] == ':' && p[1] == ':')
665 while (*p && (*p == ' ' || *p == '\t'))
668 /* Done with tokens? */
669 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
672 tmp = (char *) alloca (prefix_len + end - start + 3);
675 memcpy (tmp, prefix, prefix_len);
676 memcpy (tmp + prefix_len, coloncolon, 2);
677 memcpy (tmp + prefix_len + 2, start, end - start);
678 tmp[prefix_len + 2 + end - start] = '\000';
682 memcpy (tmp, start, end - start);
683 tmp[end - start] = '\000';
687 prefix_len = strlen (prefix);
689 /* See if the prefix we have now is something we know about */
693 /* More tokens to process, so this must be a class/namespace */
694 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
695 0, (struct symtab **) NULL);
699 /* No more tokens, so try as a variable first */
700 sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
701 0, (struct symtab **) NULL);
702 /* If failed, try as class/namespace */
704 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
705 0, (struct symtab **) NULL);
710 (t = check_typedef (SYMBOL_TYPE (sym_class)),
711 (TYPE_CODE (t) == TYPE_CODE_STRUCT
712 || TYPE_CODE (t) == TYPE_CODE_UNION))))
714 /* We found a valid token */
715 *token = (char *) xmalloc (prefix_len + 1);
716 memcpy (*token, prefix, prefix_len);
717 (*token)[prefix_len] = '\000';
721 /* No variable or class/namespace found, no more tokens */
723 return (struct symbol *) NULL;
726 /* Out of loop, so we must have found a valid token */
733 *argptr = done ? p : end;
735 return sym_var ? sym_var : sym_class; /* found */
739 find_template_name_end (char *p)
742 int just_seen_right = 0;
743 int just_seen_colon = 0;
744 int just_seen_space = 0;
746 if (!p || (*p != '<'))
757 /* In future, may want to allow these?? */
760 depth++; /* start nested template */
761 if (just_seen_colon || just_seen_right || just_seen_space)
762 return 0; /* but not after : or :: or > or space */
765 if (just_seen_colon || just_seen_right)
766 return 0; /* end a (nested?) template */
767 just_seen_right = 1; /* but not after : or :: */
768 if (--depth == 0) /* also disallow >>, insist on > > */
769 return ++p; /* if outermost ended, return */
772 if (just_seen_space || (just_seen_colon > 1))
773 return 0; /* nested class spec coming up */
774 just_seen_colon++; /* we allow :: but not :::: */
779 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
780 (*p >= 'A' && *p <= 'Z') ||
781 (*p >= '0' && *p <= '9') ||
782 (*p == '_') || (*p == ',') || /* commas for template args */
783 (*p == '&') || (*p == '*') || /* pointer and ref types */
784 (*p == '(') || (*p == ')') || /* function types */
785 (*p == '[') || (*p == ']'))) /* array types */
800 /* Return a null-terminated temporary copy of the name
801 of a string token. */
804 copy_name (struct stoken token)
806 memcpy (namecopy, token.ptr, token.length);
807 namecopy[token.length] = 0;
811 /* Reverse an expression from suffix form (in which it is constructed)
812 to prefix form (in which we can conveniently print or execute it). */
815 prefixify_expression (register struct expression *expr)
818 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
819 register struct expression *temp;
820 register int inpos = expr->nelts, outpos = 0;
822 temp = (struct expression *) alloca (len);
824 /* Copy the original expression into temp. */
825 memcpy (temp, expr, len);
827 prefixify_subexp (temp, expr, inpos, outpos);
830 /* Return the number of exp_elements in the subexpression of EXPR
831 whose last exp_element is at index ENDPOS - 1 in EXPR. */
834 length_of_subexp (register struct expression *expr, register int endpos)
836 register int oplen = 1;
837 register int args = 0;
841 error ("?error in length_of_subexp");
843 i = (int) expr->elts[endpos - 1].opcode;
849 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
850 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
873 case OP_F77_UNDETERMINED_ARGLIST:
875 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
903 case STRUCTOP_STRUCT:
911 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
912 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
916 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
917 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
918 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
923 args = longest_to_int (expr->elts[endpos - 2].longconst);
924 args -= longest_to_int (expr->elts[endpos - 3].longconst);
930 case TERNOP_SLICE_COUNT:
935 case MULTI_SUBSCRIPT:
937 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
940 case BINOP_ASSIGN_MODIFY:
951 args = 1 + (i < (int) BINOP_END);
956 oplen += length_of_subexp (expr, endpos - oplen);
963 /* Copy the subexpression ending just before index INEND in INEXPR
964 into OUTEXPR, starting at index OUTBEG.
965 In the process, convert it from suffix to prefix form. */
968 prefixify_subexp (register struct expression *inexpr,
969 struct expression *outexpr, register int inend, int outbeg)
971 register int oplen = 1;
972 register int args = 0;
975 enum exp_opcode opcode;
977 /* Compute how long the last operation is (in OPLEN),
978 and also how many preceding subexpressions serve as
979 arguments for it (in ARGS). */
981 opcode = inexpr->elts[inend - 1].opcode;
986 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
987 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
1000 case OP_INTERNALVAR:
1010 case OP_F77_UNDETERMINED_ARGLIST:
1012 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1038 case STRUCTOP_STRUCT:
1047 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1048 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1052 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1053 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1054 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
1059 args = longest_to_int (inexpr->elts[inend - 2].longconst);
1060 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
1066 case TERNOP_SLICE_COUNT:
1070 case BINOP_ASSIGN_MODIFY:
1076 case MULTI_SUBSCRIPT:
1078 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1087 args = 1 + ((int) opcode < (int) BINOP_END);
1090 /* Copy the final operator itself, from the end of the input
1091 to the beginning of the output. */
1093 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1094 EXP_ELEM_TO_BYTES (oplen));
1097 /* Find the lengths of the arg subexpressions. */
1098 arglens = (int *) alloca (args * sizeof (int));
1099 for (i = args - 1; i >= 0; i--)
1101 oplen = length_of_subexp (inexpr, inend);
1106 /* Now copy each subexpression, preserving the order of
1107 the subexpressions, but prefixifying each one.
1108 In this loop, inend starts at the beginning of
1109 the expression this level is working on
1110 and marches forward over the arguments.
1111 outbeg does similarly in the output. */
1112 for (i = 0; i < args; i++)
1116 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1121 /* This page contains the two entry points to this file. */
1123 /* Read an expression from the string *STRINGPTR points to,
1124 parse it, and return a pointer to a struct expression that we malloc.
1125 Use block BLOCK as the lexical context for variable names;
1126 if BLOCK is zero, use the block of the selected stack frame.
1127 Meanwhile, advance *STRINGPTR to point after the expression,
1128 at the first nonwhite character that is not part of the expression
1129 (possibly a null character).
1131 If COMMA is nonzero, stop if a comma is reached. */
1134 parse_exp_1 (char **stringptr, struct block *block, int comma)
1136 struct cleanup *old_chain;
1138 lexptr = *stringptr;
1141 type_stack_depth = 0;
1143 comma_terminates = comma;
1145 if (lexptr == 0 || *lexptr == 0)
1146 error_no_arg ("expression to compute");
1148 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1151 expression_context_block = block ? block : get_selected_block ();
1153 namecopy = (char *) alloca (strlen (lexptr) + 1);
1156 expout = (struct expression *)
1157 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1158 expout->language_defn = current_language;
1159 make_cleanup (free_current_contents, &expout);
1161 if (current_language->la_parser ())
1162 current_language->la_error (NULL);
1164 discard_cleanups (old_chain);
1166 /* Record the actual number of expression elements, and then
1167 reallocate the expression memory so that we free up any
1170 expout->nelts = expout_ptr;
1171 expout = (struct expression *)
1172 xrealloc ((char *) expout,
1173 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1175 /* Convert expression from postfix form as generated by yacc
1176 parser, to a prefix form. */
1178 if (expressiondebug)
1179 dump_prefix_expression (expout, gdb_stdlog,
1180 "before conversion to prefix form");
1182 prefixify_expression (expout);
1184 if (expressiondebug)
1185 dump_postfix_expression (expout, gdb_stdlog,
1186 "after conversion to prefix form");
1188 *stringptr = lexptr;
1192 /* Parse STRING as an expression, and complain if this fails
1193 to use up all of the contents of STRING. */
1196 parse_expression (char *string)
1198 register struct expression *exp;
1199 exp = parse_exp_1 (&string, 0, 0);
1201 error ("Junk after end of expression.");
1205 /* Stuff for maintaining a stack of types. Currently just used by C, but
1206 probably useful for any language which declares its types "backwards". */
1209 push_type (enum type_pieces tp)
1211 if (type_stack_depth == type_stack_size)
1213 type_stack_size *= 2;
1214 type_stack = (union type_stack_elt *)
1215 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1217 type_stack[type_stack_depth++].piece = tp;
1221 push_type_int (int n)
1223 if (type_stack_depth == type_stack_size)
1225 type_stack_size *= 2;
1226 type_stack = (union type_stack_elt *)
1227 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1229 type_stack[type_stack_depth++].int_val = n;
1235 if (type_stack_depth)
1236 return type_stack[--type_stack_depth].piece;
1243 if (type_stack_depth)
1244 return type_stack[--type_stack_depth].int_val;
1245 /* "Can't happen". */
1249 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1250 as modified by all the stuff on the stack. */
1252 follow_types (struct type *follow_type)
1256 struct type *range_type;
1259 switch (pop_type ())
1265 follow_type = lookup_pointer_type (follow_type);
1268 follow_type = lookup_reference_type (follow_type);
1271 array_size = pop_type_int ();
1272 /* FIXME-type-allocation: need a way to free this type when we are
1275 create_range_type ((struct type *) NULL,
1276 builtin_type_int, 0,
1277 array_size >= 0 ? array_size - 1 : 0);
1279 create_array_type ((struct type *) NULL,
1280 follow_type, range_type);
1282 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1283 = BOUND_CANNOT_BE_DETERMINED;
1286 /* FIXME-type-allocation: need a way to free this type when we are
1288 follow_type = lookup_function_type (follow_type);
1294 static void build_parse (void);
1300 msym_text_symbol_type =
1301 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1302 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1303 msym_data_symbol_type =
1304 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1305 "<data variable, no debug info>", NULL);
1306 msym_unknown_symbol_type =
1307 init_type (TYPE_CODE_INT, 1, 0,
1308 "<variable (not text or data), no debug info>",
1311 /* create the std_regs table */
1330 /* create an empty table */
1331 std_regs = xmalloc ((num_std_regs + 1) * sizeof *std_regs);
1337 std_regs[i].name = "pc";
1338 std_regs[i].regnum = PC_REGNUM;
1345 std_regs[i].name = "fp";
1346 std_regs[i].regnum = FP_REGNUM;
1353 std_regs[i].name = "sp";
1354 std_regs[i].regnum = SP_REGNUM;
1361 std_regs[i].name = "ps";
1362 std_regs[i].regnum = PS_REGNUM;
1366 memset (&std_regs[i], 0, sizeof (std_regs[i]));
1370 _initialize_parse (void)
1372 type_stack_size = 80;
1373 type_stack_depth = 0;
1374 type_stack = (union type_stack_elt *)
1375 xmalloc (type_stack_size * sizeof (*type_stack));
1379 /* FIXME - For the moment, handle types by swapping them in and out.
1380 Should be using the per-architecture data-pointer and a large
1382 register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
1383 register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
1384 register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
1386 register_gdbarch_swap (&num_std_regs, sizeof (std_regs), NULL);
1387 register_gdbarch_swap (&std_regs, sizeof (std_regs), NULL);
1388 register_gdbarch_swap (NULL, 0, build_parse);
1391 add_set_cmd ("expression", class_maintenance, var_zinteger,
1392 (char *) &expressiondebug,
1393 "Set expression debugging.\n\
1394 When non-zero, the internal representation of expressions will be printed.",