1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 #include "bfd_stdint.h"
30 #include "elf/x86-64.h"
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
35 /* The relocation "howto" table. Order of fields:
36 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
37 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
38 static reloc_howto_type x86_64_elf_howto_table[] =
40 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
41 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
43 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
44 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
46 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
49 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
52 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
53 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
55 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
58 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
61 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
64 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
65 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
67 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
70 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
71 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
73 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
74 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
76 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
78 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
80 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
82 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
83 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
84 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
87 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
90 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
93 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
96 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
97 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
99 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
102 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
105 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
106 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
108 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
111 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
112 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
113 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
114 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
116 FALSE, 0xffffffff, 0xffffffff, TRUE),
117 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
120 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
123 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
125 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
126 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
127 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
129 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
130 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
134 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
135 complain_overflow_bitfield, bfd_elf_generic_reloc,
136 "R_X86_64_GOTPC32_TLSDESC",
137 FALSE, 0xffffffff, 0xffffffff, TRUE),
138 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
139 complain_overflow_dont, bfd_elf_generic_reloc,
140 "R_X86_64_TLSDESC_CALL",
142 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
143 complain_overflow_bitfield, bfd_elf_generic_reloc,
145 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
147 /* We have a gap in the reloc numbers here.
148 R_X86_64_standard counts the number up to this point, and
149 R_X86_64_vt_offset is the value to subtract from a reloc type of
150 R_X86_64_GNU_VT* to form an index into this table. */
151 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
152 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
154 /* GNU extension to record C++ vtable hierarchy. */
155 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
156 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
158 /* GNU extension to record C++ vtable member usage. */
159 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
160 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
164 /* Map BFD relocs to the x86_64 elf relocs. */
167 bfd_reloc_code_real_type bfd_reloc_val;
168 unsigned char elf_reloc_val;
171 static const struct elf_reloc_map x86_64_reloc_map[] =
173 { BFD_RELOC_NONE, R_X86_64_NONE, },
174 { BFD_RELOC_64, R_X86_64_64, },
175 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
176 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
177 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
178 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
179 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
180 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
181 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
182 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
183 { BFD_RELOC_32, R_X86_64_32, },
184 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
185 { BFD_RELOC_16, R_X86_64_16, },
186 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
187 { BFD_RELOC_8, R_X86_64_8, },
188 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
189 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
190 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
191 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
192 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
193 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
194 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
195 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
196 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
197 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
198 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
199 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
200 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
201 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
202 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
203 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
204 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
205 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
206 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
207 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
208 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
209 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
212 static reloc_howto_type *
213 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
217 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
218 || r_type >= (unsigned int) R_X86_64_max)
220 if (r_type >= (unsigned int) R_X86_64_standard)
222 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
224 r_type = R_X86_64_NONE;
229 i = r_type - (unsigned int) R_X86_64_vt_offset;
230 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
231 return &x86_64_elf_howto_table[i];
234 /* Given a BFD reloc type, return a HOWTO structure. */
235 static reloc_howto_type *
236 elf64_x86_64_reloc_type_lookup (bfd *abfd,
237 bfd_reloc_code_real_type code)
241 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
244 if (x86_64_reloc_map[i].bfd_reloc_val == code)
245 return elf64_x86_64_rtype_to_howto (abfd,
246 x86_64_reloc_map[i].elf_reloc_val);
251 static reloc_howto_type *
252 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
258 i < (sizeof (x86_64_elf_howto_table)
259 / sizeof (x86_64_elf_howto_table[0]));
261 if (x86_64_elf_howto_table[i].name != NULL
262 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
263 return &x86_64_elf_howto_table[i];
268 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
271 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
272 Elf_Internal_Rela *dst)
276 r_type = ELF64_R_TYPE (dst->r_info);
277 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
278 BFD_ASSERT (r_type == cache_ptr->howto->type);
281 /* Support for core dump NOTE sections. */
283 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
288 switch (note->descsz)
293 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
295 elf_tdata (abfd)->core_signal
296 = bfd_get_16 (abfd, note->descdata + 12);
299 elf_tdata (abfd)->core_pid
300 = bfd_get_32 (abfd, note->descdata + 32);
309 /* Make a ".reg/999" section. */
310 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
311 size, note->descpos + offset);
315 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
317 switch (note->descsz)
322 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
323 elf_tdata (abfd)->core_program
324 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
325 elf_tdata (abfd)->core_command
326 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
329 /* Note that for some reason, a spurious space is tacked
330 onto the end of the args in some (at least one anyway)
331 implementations, so strip it off if it exists. */
334 char *command = elf_tdata (abfd)->core_command;
335 int n = strlen (command);
337 if (0 < n && command[n - 1] == ' ')
338 command[n - 1] = '\0';
344 /* Functions for the x86-64 ELF linker. */
346 /* The name of the dynamic interpreter. This is put in the .interp
349 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
351 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
352 copying dynamic variables from a shared lib into an app's dynbss
353 section, and instead use a dynamic relocation to point into the
355 #define ELIMINATE_COPY_RELOCS 1
357 /* The size in bytes of an entry in the global offset table. */
359 #define GOT_ENTRY_SIZE 8
361 /* The size in bytes of an entry in the procedure linkage table. */
363 #define PLT_ENTRY_SIZE 16
365 /* The first entry in a procedure linkage table looks like this. See the
366 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
368 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
370 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
371 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
372 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
375 /* Subsequent entries in a procedure linkage table look like this. */
377 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
379 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
380 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
381 0x68, /* pushq immediate */
382 0, 0, 0, 0, /* replaced with index into relocation table. */
383 0xe9, /* jmp relative */
384 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
387 /* The x86-64 linker needs to keep track of the number of relocs that
388 it decides to copy as dynamic relocs in check_relocs for each symbol.
389 This is so that it can later discard them if they are found to be
390 unnecessary. We store the information in a field extending the
391 regular ELF linker hash table. */
393 struct elf64_x86_64_dyn_relocs
396 struct elf64_x86_64_dyn_relocs *next;
398 /* The input section of the reloc. */
401 /* Total number of relocs copied for the input section. */
404 /* Number of pc-relative relocs copied for the input section. */
405 bfd_size_type pc_count;
408 /* x86-64 ELF linker hash entry. */
410 struct elf64_x86_64_link_hash_entry
412 struct elf_link_hash_entry elf;
414 /* Track dynamic relocs copied for this symbol. */
415 struct elf64_x86_64_dyn_relocs *dyn_relocs;
417 #define GOT_UNKNOWN 0
421 #define GOT_TLS_GDESC 4
422 #define GOT_TLS_GD_BOTH_P(type) \
423 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
424 #define GOT_TLS_GD_P(type) \
425 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
426 #define GOT_TLS_GDESC_P(type) \
427 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GD_ANY_P(type) \
429 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
430 unsigned char tls_type;
432 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
433 starting at the end of the jump table. */
437 #define elf64_x86_64_hash_entry(ent) \
438 ((struct elf64_x86_64_link_hash_entry *)(ent))
440 struct elf64_x86_64_obj_tdata
442 struct elf_obj_tdata root;
444 /* tls_type for each local got entry. */
445 char *local_got_tls_type;
447 /* GOTPLT entries for TLS descriptors. */
448 bfd_vma *local_tlsdesc_gotent;
451 #define elf64_x86_64_tdata(abfd) \
452 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
454 #define elf64_x86_64_local_got_tls_type(abfd) \
455 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
457 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
458 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
460 #define is_x86_64_elf(bfd) \
461 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
462 && elf_tdata (bfd) != NULL \
463 && elf_object_id (bfd) == X86_64_ELF_TDATA)
466 elf64_x86_64_mkobject (bfd *abfd)
468 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
472 /* x86-64 ELF linker hash table. */
474 struct elf64_x86_64_link_hash_table
476 struct elf_link_hash_table elf;
478 /* Short-cuts to get to dynamic linker sections. */
487 /* The offset into splt of the PLT entry for the TLS descriptor
488 resolver. Special values are 0, if not necessary (or not found
489 to be necessary yet), and -1 if needed but not determined
492 /* The offset into sgot of the GOT entry used by the PLT entry
497 bfd_signed_vma refcount;
501 /* The amount of space used by the jump slots in the GOT. */
502 bfd_vma sgotplt_jump_table_size;
504 /* Small local sym to section mapping cache. */
505 struct sym_sec_cache sym_sec;
507 /* _TLS_MODULE_BASE_ symbol. */
508 struct bfd_link_hash_entry *tls_module_base;
511 /* Get the x86-64 ELF linker hash table from a link_info structure. */
513 #define elf64_x86_64_hash_table(p) \
514 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
516 #define elf64_x86_64_compute_jump_table_size(htab) \
517 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
519 /* Create an entry in an x86-64 ELF linker hash table. */
521 static struct bfd_hash_entry *
522 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
525 /* Allocate the structure if it has not already been allocated by a
529 entry = bfd_hash_allocate (table,
530 sizeof (struct elf64_x86_64_link_hash_entry));
535 /* Call the allocation method of the superclass. */
536 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
539 struct elf64_x86_64_link_hash_entry *eh;
541 eh = (struct elf64_x86_64_link_hash_entry *) entry;
542 eh->dyn_relocs = NULL;
543 eh->tls_type = GOT_UNKNOWN;
544 eh->tlsdesc_got = (bfd_vma) -1;
550 /* Create an X86-64 ELF linker hash table. */
552 static struct bfd_link_hash_table *
553 elf64_x86_64_link_hash_table_create (bfd *abfd)
555 struct elf64_x86_64_link_hash_table *ret;
556 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
558 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
562 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
563 sizeof (struct elf64_x86_64_link_hash_entry)))
576 ret->sym_sec.abfd = NULL;
577 ret->tlsdesc_plt = 0;
578 ret->tlsdesc_got = 0;
579 ret->tls_ld_got.refcount = 0;
580 ret->sgotplt_jump_table_size = 0;
581 ret->tls_module_base = NULL;
583 return &ret->elf.root;
586 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
587 shortcuts to them in our hash table. */
590 create_got_section (bfd *dynobj, struct bfd_link_info *info)
592 struct elf64_x86_64_link_hash_table *htab;
594 if (! _bfd_elf_create_got_section (dynobj, info))
597 htab = elf64_x86_64_hash_table (info);
598 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
599 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
600 if (!htab->sgot || !htab->sgotplt)
603 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
604 (SEC_ALLOC | SEC_LOAD
609 if (htab->srelgot == NULL
610 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
615 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
616 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
620 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
622 struct elf64_x86_64_link_hash_table *htab;
624 htab = elf64_x86_64_hash_table (info);
625 if (!htab->sgot && !create_got_section (dynobj, info))
628 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
631 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
632 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
633 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
635 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
637 if (!htab->splt || !htab->srelplt || !htab->sdynbss
638 || (!info->shared && !htab->srelbss))
644 /* Copy the extra info we tack onto an elf_link_hash_entry. */
647 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
648 struct elf_link_hash_entry *dir,
649 struct elf_link_hash_entry *ind)
651 struct elf64_x86_64_link_hash_entry *edir, *eind;
653 edir = (struct elf64_x86_64_link_hash_entry *) dir;
654 eind = (struct elf64_x86_64_link_hash_entry *) ind;
656 if (eind->dyn_relocs != NULL)
658 if (edir->dyn_relocs != NULL)
660 struct elf64_x86_64_dyn_relocs **pp;
661 struct elf64_x86_64_dyn_relocs *p;
663 /* Add reloc counts against the indirect sym to the direct sym
664 list. Merge any entries against the same section. */
665 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
667 struct elf64_x86_64_dyn_relocs *q;
669 for (q = edir->dyn_relocs; q != NULL; q = q->next)
670 if (q->sec == p->sec)
672 q->pc_count += p->pc_count;
673 q->count += p->count;
680 *pp = edir->dyn_relocs;
683 edir->dyn_relocs = eind->dyn_relocs;
684 eind->dyn_relocs = NULL;
687 if (ind->root.type == bfd_link_hash_indirect
688 && dir->got.refcount <= 0)
690 edir->tls_type = eind->tls_type;
691 eind->tls_type = GOT_UNKNOWN;
694 if (ELIMINATE_COPY_RELOCS
695 && ind->root.type != bfd_link_hash_indirect
696 && dir->dynamic_adjusted)
698 /* If called to transfer flags for a weakdef during processing
699 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
700 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
701 dir->ref_dynamic |= ind->ref_dynamic;
702 dir->ref_regular |= ind->ref_regular;
703 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
704 dir->needs_plt |= ind->needs_plt;
705 dir->pointer_equality_needed |= ind->pointer_equality_needed;
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712 elf64_x86_64_elf_object_p (bfd *abfd)
714 /* Set the right machine number for an x86-64 elf64 file. */
715 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
733 /* Return TRUE if the TLS access code sequence support transition
737 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
739 Elf_Internal_Shdr *symtab_hdr,
740 struct elf_link_hash_entry **sym_hashes,
742 const Elf_Internal_Rela *rel,
743 const Elf_Internal_Rela *relend)
746 unsigned long r_symndx;
747 struct elf_link_hash_entry *h;
750 /* Get the section contents. */
751 if (contents == NULL)
753 if (elf_section_data (sec)->this_hdr.contents != NULL)
754 contents = elf_section_data (sec)->this_hdr.contents;
757 /* FIXME: How to better handle error condition? */
758 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
761 /* Cache the section contents for elf_link_input_bfd. */
762 elf_section_data (sec)->this_hdr.contents = contents;
766 offset = rel->r_offset;
771 if ((rel + 1) >= relend)
774 if (r_type == R_X86_64_TLSGD)
776 /* Check transition from GD access model. Only
777 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
778 .word 0x6666; rex64; call __tls_get_addr
779 can transit to different access model. */
781 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
782 call = { { 0x66, 0x66, 0x48, 0xe8 } };
784 || (offset + 12) > sec->size
785 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
786 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
791 /* Check transition from LD access model. Only
792 leaq foo@tlsld(%rip), %rdi;
794 can transit to different access model. */
796 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
799 if (offset < 3 || (offset + 9) > sec->size)
802 op.i = bfd_get_32 (abfd, contents + offset - 3);
803 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
808 r_symndx = ELF64_R_SYM (rel[1].r_info);
809 if (r_symndx < symtab_hdr->sh_info)
812 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
813 /* Use strncmp to check __tls_get_addr since __tls_get_addr
816 && h->root.root.string != NULL
817 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
818 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
819 && (strncmp (h->root.root.string,
820 "__tls_get_addr", 14) == 0));
822 case R_X86_64_GOTTPOFF:
823 /* Check transition from IE access model:
824 movq foo@gottpoff(%rip), %reg
825 addq foo@gottpoff(%rip), %reg
828 if (offset < 3 || (offset + 4) > sec->size)
831 val = bfd_get_8 (abfd, contents + offset - 3);
832 if (val != 0x48 && val != 0x4c)
835 val = bfd_get_8 (abfd, contents + offset - 2);
836 if (val != 0x8b && val != 0x03)
839 val = bfd_get_8 (abfd, contents + offset - 1);
840 return (val & 0xc7) == 5;
842 case R_X86_64_GOTPC32_TLSDESC:
843 /* Check transition from GDesc access model:
844 leaq x@tlsdesc(%rip), %rax
846 Make sure it's a leaq adding rip to a 32-bit offset
847 into any register, although it's probably almost always
850 if (offset < 3 || (offset + 4) > sec->size)
853 val = bfd_get_8 (abfd, contents + offset - 3);
854 if ((val & 0xfb) != 0x48)
857 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
860 val = bfd_get_8 (abfd, contents + offset - 1);
861 return (val & 0xc7) == 0x05;
863 case R_X86_64_TLSDESC_CALL:
864 /* Check transition from GDesc access model:
865 call *x@tlsdesc(%rax)
867 if (offset + 2 <= sec->size)
869 /* Make sure that it's a call *x@tlsdesc(%rax). */
870 static x86_64_opcode16 call = { { 0xff, 0x10 } };
871 return bfd_get_16 (abfd, contents + offset) == call.i;
881 /* Return TRUE if the TLS access transition is OK or no transition
882 will be performed. Update R_TYPE if there is a transition. */
885 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
886 asection *sec, bfd_byte *contents,
887 Elf_Internal_Shdr *symtab_hdr,
888 struct elf_link_hash_entry **sym_hashes,
889 unsigned int *r_type, int tls_type,
890 const Elf_Internal_Rela *rel,
891 const Elf_Internal_Rela *relend,
892 struct elf_link_hash_entry *h)
894 unsigned int from_type = *r_type;
895 unsigned int to_type = from_type;
896 bfd_boolean check = TRUE;
901 case R_X86_64_GOTPC32_TLSDESC:
902 case R_X86_64_TLSDESC_CALL:
903 case R_X86_64_GOTTPOFF:
907 to_type = R_X86_64_TPOFF32;
909 to_type = R_X86_64_GOTTPOFF;
912 /* When we are called from elf64_x86_64_relocate_section,
913 CONTENTS isn't NULL and there may be additional transitions
914 based on TLS_TYPE. */
915 if (contents != NULL)
917 unsigned int new_to_type = to_type;
922 && tls_type == GOT_TLS_IE)
923 new_to_type = R_X86_64_TPOFF32;
925 if (to_type == R_X86_64_TLSGD
926 || to_type == R_X86_64_GOTPC32_TLSDESC
927 || to_type == R_X86_64_TLSDESC_CALL)
929 if (tls_type == GOT_TLS_IE)
930 new_to_type = R_X86_64_GOTTPOFF;
933 /* We checked the transition before when we were called from
934 elf64_x86_64_check_relocs. We only want to check the new
935 transition which hasn't been checked before. */
936 check = new_to_type != to_type && from_type == to_type;
937 to_type = new_to_type;
944 to_type = R_X86_64_TPOFF32;
951 /* Return TRUE if there is no transition. */
952 if (from_type == to_type)
955 /* Check if the transition can be performed. */
957 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
958 symtab_hdr, sym_hashes,
959 from_type, rel, relend))
961 reloc_howto_type *from, *to;
963 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
964 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
966 (*_bfd_error_handler)
967 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
968 "in section `%A' failed"),
969 abfd, sec, from->name, to->name,
970 h ? h->root.root.string : "a local symbol",
971 (unsigned long) rel->r_offset);
972 bfd_set_error (bfd_error_bad_value);
980 /* Look through the relocs for a section during the first phase, and
981 calculate needed space in the global offset table, procedure
982 linkage table, and dynamic reloc sections. */
985 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
987 const Elf_Internal_Rela *relocs)
989 struct elf64_x86_64_link_hash_table *htab;
990 Elf_Internal_Shdr *symtab_hdr;
991 struct elf_link_hash_entry **sym_hashes;
992 const Elf_Internal_Rela *rel;
993 const Elf_Internal_Rela *rel_end;
996 if (info->relocatable)
999 BFD_ASSERT (is_x86_64_elf (abfd));
1001 htab = elf64_x86_64_hash_table (info);
1002 symtab_hdr = &elf_symtab_hdr (abfd);
1003 sym_hashes = elf_sym_hashes (abfd);
1007 rel_end = relocs + sec->reloc_count;
1008 for (rel = relocs; rel < rel_end; rel++)
1010 unsigned int r_type;
1011 unsigned long r_symndx;
1012 struct elf_link_hash_entry *h;
1014 r_symndx = ELF64_R_SYM (rel->r_info);
1015 r_type = ELF64_R_TYPE (rel->r_info);
1017 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1019 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1024 if (r_symndx < symtab_hdr->sh_info)
1028 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1029 while (h->root.type == bfd_link_hash_indirect
1030 || h->root.type == bfd_link_hash_warning)
1031 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1034 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1035 symtab_hdr, sym_hashes,
1036 &r_type, GOT_UNKNOWN,
1042 case R_X86_64_TLSLD:
1043 htab->tls_ld_got.refcount += 1;
1046 case R_X86_64_TPOFF32:
1049 (*_bfd_error_handler)
1050 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1052 x86_64_elf_howto_table[r_type].name,
1053 (h) ? h->root.root.string : "a local symbol");
1054 bfd_set_error (bfd_error_bad_value);
1059 case R_X86_64_GOTTPOFF:
1061 info->flags |= DF_STATIC_TLS;
1064 case R_X86_64_GOT32:
1065 case R_X86_64_GOTPCREL:
1066 case R_X86_64_TLSGD:
1067 case R_X86_64_GOT64:
1068 case R_X86_64_GOTPCREL64:
1069 case R_X86_64_GOTPLT64:
1070 case R_X86_64_GOTPC32_TLSDESC:
1071 case R_X86_64_TLSDESC_CALL:
1072 /* This symbol requires a global offset table entry. */
1074 int tls_type, old_tls_type;
1078 default: tls_type = GOT_NORMAL; break;
1079 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1080 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1081 case R_X86_64_GOTPC32_TLSDESC:
1082 case R_X86_64_TLSDESC_CALL:
1083 tls_type = GOT_TLS_GDESC; break;
1088 if (r_type == R_X86_64_GOTPLT64)
1090 /* This relocation indicates that we also need
1091 a PLT entry, as this is a function. We don't need
1092 a PLT entry for local symbols. */
1094 h->plt.refcount += 1;
1096 h->got.refcount += 1;
1097 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1101 bfd_signed_vma *local_got_refcounts;
1103 /* This is a global offset table entry for a local symbol. */
1104 local_got_refcounts = elf_local_got_refcounts (abfd);
1105 if (local_got_refcounts == NULL)
1109 size = symtab_hdr->sh_info;
1110 size *= sizeof (bfd_signed_vma)
1111 + sizeof (bfd_vma) + sizeof (char);
1112 local_got_refcounts = ((bfd_signed_vma *)
1113 bfd_zalloc (abfd, size));
1114 if (local_got_refcounts == NULL)
1116 elf_local_got_refcounts (abfd) = local_got_refcounts;
1117 elf64_x86_64_local_tlsdesc_gotent (abfd)
1118 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1119 elf64_x86_64_local_got_tls_type (abfd)
1120 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1122 local_got_refcounts[r_symndx] += 1;
1124 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1127 /* If a TLS symbol is accessed using IE at least once,
1128 there is no point to use dynamic model for it. */
1129 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1130 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1131 || tls_type != GOT_TLS_IE))
1133 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1134 tls_type = old_tls_type;
1135 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1136 && GOT_TLS_GD_ANY_P (tls_type))
1137 tls_type |= old_tls_type;
1140 (*_bfd_error_handler)
1141 (_("%B: '%s' accessed both as normal and thread local symbol"),
1142 abfd, h ? h->root.root.string : "<local>");
1147 if (old_tls_type != tls_type)
1150 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1152 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1157 case R_X86_64_GOTOFF64:
1158 case R_X86_64_GOTPC32:
1159 case R_X86_64_GOTPC64:
1161 if (htab->sgot == NULL)
1163 if (htab->elf.dynobj == NULL)
1164 htab->elf.dynobj = abfd;
1165 if (!create_got_section (htab->elf.dynobj, info))
1170 case R_X86_64_PLT32:
1171 /* This symbol requires a procedure linkage table entry. We
1172 actually build the entry in adjust_dynamic_symbol,
1173 because this might be a case of linking PIC code which is
1174 never referenced by a dynamic object, in which case we
1175 don't need to generate a procedure linkage table entry
1178 /* If this is a local symbol, we resolve it directly without
1179 creating a procedure linkage table entry. */
1184 h->plt.refcount += 1;
1187 case R_X86_64_PLTOFF64:
1188 /* This tries to form the 'address' of a function relative
1189 to GOT. For global symbols we need a PLT entry. */
1193 h->plt.refcount += 1;
1201 /* Let's help debug shared library creation. These relocs
1202 cannot be used in shared libs. Don't error out for
1203 sections we don't care about, such as debug sections or
1204 non-constant sections. */
1206 && (sec->flags & SEC_ALLOC) != 0
1207 && (sec->flags & SEC_READONLY) != 0)
1209 (*_bfd_error_handler)
1210 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1212 x86_64_elf_howto_table[r_type].name,
1213 (h) ? h->root.root.string : "a local symbol");
1214 bfd_set_error (bfd_error_bad_value);
1224 if (h != NULL && !info->shared)
1226 /* If this reloc is in a read-only section, we might
1227 need a copy reloc. We can't check reliably at this
1228 stage whether the section is read-only, as input
1229 sections have not yet been mapped to output sections.
1230 Tentatively set the flag for now, and correct in
1231 adjust_dynamic_symbol. */
1234 /* We may need a .plt entry if the function this reloc
1235 refers to is in a shared lib. */
1236 h->plt.refcount += 1;
1237 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1238 h->pointer_equality_needed = 1;
1241 /* If we are creating a shared library, and this is a reloc
1242 against a global symbol, or a non PC relative reloc
1243 against a local symbol, then we need to copy the reloc
1244 into the shared library. However, if we are linking with
1245 -Bsymbolic, we do not need to copy a reloc against a
1246 global symbol which is defined in an object we are
1247 including in the link (i.e., DEF_REGULAR is set). At
1248 this point we have not seen all the input files, so it is
1249 possible that DEF_REGULAR is not set now but will be set
1250 later (it is never cleared). In case of a weak definition,
1251 DEF_REGULAR may be cleared later by a strong definition in
1252 a shared library. We account for that possibility below by
1253 storing information in the relocs_copied field of the hash
1254 table entry. A similar situation occurs when creating
1255 shared libraries and symbol visibility changes render the
1258 If on the other hand, we are creating an executable, we
1259 may need to keep relocations for symbols satisfied by a
1260 dynamic library if we manage to avoid copy relocs for the
1264 && (sec->flags & SEC_ALLOC) != 0
1265 && (((r_type != R_X86_64_PC8)
1266 && (r_type != R_X86_64_PC16)
1267 && (r_type != R_X86_64_PC32)
1268 && (r_type != R_X86_64_PC64))
1270 && (! SYMBOLIC_BIND (info, h)
1271 || h->root.type == bfd_link_hash_defweak
1272 || !h->def_regular))))
1273 || (ELIMINATE_COPY_RELOCS
1275 && (sec->flags & SEC_ALLOC) != 0
1277 && (h->root.type == bfd_link_hash_defweak
1278 || !h->def_regular)))
1280 struct elf64_x86_64_dyn_relocs *p;
1281 struct elf64_x86_64_dyn_relocs **head;
1283 /* We must copy these reloc types into the output file.
1284 Create a reloc section in dynobj and make room for
1288 if (htab->elf.dynobj == NULL)
1289 htab->elf.dynobj = abfd;
1291 sreloc = _bfd_elf_make_dynamic_reloc_section
1292 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1298 /* If this is a global symbol, we count the number of
1299 relocations we need for this symbol. */
1302 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1307 /* Track dynamic relocs needed for local syms too.
1308 We really need local syms available to do this
1312 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1317 /* Beware of type punned pointers vs strict aliasing
1319 vpp = &(elf_section_data (s)->local_dynrel);
1320 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1324 if (p == NULL || p->sec != sec)
1326 bfd_size_type amt = sizeof *p;
1327 p = ((struct elf64_x86_64_dyn_relocs *)
1328 bfd_alloc (htab->elf.dynobj, amt));
1339 if (r_type == R_X86_64_PC8
1340 || r_type == R_X86_64_PC16
1341 || r_type == R_X86_64_PC32
1342 || r_type == R_X86_64_PC64)
1347 /* This relocation describes the C++ object vtable hierarchy.
1348 Reconstruct it for later use during GC. */
1349 case R_X86_64_GNU_VTINHERIT:
1350 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1354 /* This relocation describes which C++ vtable entries are actually
1355 used. Record for later use during GC. */
1356 case R_X86_64_GNU_VTENTRY:
1357 BFD_ASSERT (h != NULL);
1359 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1371 /* Return the section that should be marked against GC for a given
1375 elf64_x86_64_gc_mark_hook (asection *sec,
1376 struct bfd_link_info *info,
1377 Elf_Internal_Rela *rel,
1378 struct elf_link_hash_entry *h,
1379 Elf_Internal_Sym *sym)
1382 switch (ELF64_R_TYPE (rel->r_info))
1384 case R_X86_64_GNU_VTINHERIT:
1385 case R_X86_64_GNU_VTENTRY:
1389 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1392 /* Update the got entry reference counts for the section being removed. */
1395 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1397 const Elf_Internal_Rela *relocs)
1399 Elf_Internal_Shdr *symtab_hdr;
1400 struct elf_link_hash_entry **sym_hashes;
1401 bfd_signed_vma *local_got_refcounts;
1402 const Elf_Internal_Rela *rel, *relend;
1404 if (info->relocatable)
1407 elf_section_data (sec)->local_dynrel = NULL;
1409 symtab_hdr = &elf_symtab_hdr (abfd);
1410 sym_hashes = elf_sym_hashes (abfd);
1411 local_got_refcounts = elf_local_got_refcounts (abfd);
1413 relend = relocs + sec->reloc_count;
1414 for (rel = relocs; rel < relend; rel++)
1416 unsigned long r_symndx;
1417 unsigned int r_type;
1418 struct elf_link_hash_entry *h = NULL;
1420 r_symndx = ELF64_R_SYM (rel->r_info);
1421 if (r_symndx >= symtab_hdr->sh_info)
1423 struct elf64_x86_64_link_hash_entry *eh;
1424 struct elf64_x86_64_dyn_relocs **pp;
1425 struct elf64_x86_64_dyn_relocs *p;
1427 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1428 while (h->root.type == bfd_link_hash_indirect
1429 || h->root.type == bfd_link_hash_warning)
1430 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1431 eh = (struct elf64_x86_64_link_hash_entry *) h;
1433 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1436 /* Everything must go for SEC. */
1442 r_type = ELF64_R_TYPE (rel->r_info);
1443 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1444 symtab_hdr, sym_hashes,
1445 &r_type, GOT_UNKNOWN,
1451 case R_X86_64_TLSLD:
1452 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1453 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1456 case R_X86_64_TLSGD:
1457 case R_X86_64_GOTPC32_TLSDESC:
1458 case R_X86_64_TLSDESC_CALL:
1459 case R_X86_64_GOTTPOFF:
1460 case R_X86_64_GOT32:
1461 case R_X86_64_GOTPCREL:
1462 case R_X86_64_GOT64:
1463 case R_X86_64_GOTPCREL64:
1464 case R_X86_64_GOTPLT64:
1467 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1468 h->plt.refcount -= 1;
1469 if (h->got.refcount > 0)
1470 h->got.refcount -= 1;
1472 else if (local_got_refcounts != NULL)
1474 if (local_got_refcounts[r_symndx] > 0)
1475 local_got_refcounts[r_symndx] -= 1;
1492 case R_X86_64_PLT32:
1493 case R_X86_64_PLTOFF64:
1496 if (h->plt.refcount > 0)
1497 h->plt.refcount -= 1;
1509 /* Adjust a symbol defined by a dynamic object and referenced by a
1510 regular object. The current definition is in some section of the
1511 dynamic object, but we're not including those sections. We have to
1512 change the definition to something the rest of the link can
1516 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1517 struct elf_link_hash_entry *h)
1519 struct elf64_x86_64_link_hash_table *htab;
1522 /* If this is a function, put it in the procedure linkage table. We
1523 will fill in the contents of the procedure linkage table later,
1524 when we know the address of the .got section. */
1525 if (h->type == STT_FUNC
1528 if (h->plt.refcount <= 0
1529 || SYMBOL_CALLS_LOCAL (info, h)
1530 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1531 && h->root.type == bfd_link_hash_undefweak))
1533 /* This case can occur if we saw a PLT32 reloc in an input
1534 file, but the symbol was never referred to by a dynamic
1535 object, or if all references were garbage collected. In
1536 such a case, we don't actually need to build a procedure
1537 linkage table, and we can just do a PC32 reloc instead. */
1538 h->plt.offset = (bfd_vma) -1;
1545 /* It's possible that we incorrectly decided a .plt reloc was
1546 needed for an R_X86_64_PC32 reloc to a non-function sym in
1547 check_relocs. We can't decide accurately between function and
1548 non-function syms in check-relocs; Objects loaded later in
1549 the link may change h->type. So fix it now. */
1550 h->plt.offset = (bfd_vma) -1;
1552 /* If this is a weak symbol, and there is a real definition, the
1553 processor independent code will have arranged for us to see the
1554 real definition first, and we can just use the same value. */
1555 if (h->u.weakdef != NULL)
1557 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1558 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1559 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1560 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1561 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1562 h->non_got_ref = h->u.weakdef->non_got_ref;
1566 /* This is a reference to a symbol defined by a dynamic object which
1567 is not a function. */
1569 /* If we are creating a shared library, we must presume that the
1570 only references to the symbol are via the global offset table.
1571 For such cases we need not do anything here; the relocations will
1572 be handled correctly by relocate_section. */
1576 /* If there are no references to this symbol that do not use the
1577 GOT, we don't need to generate a copy reloc. */
1578 if (!h->non_got_ref)
1581 /* If -z nocopyreloc was given, we won't generate them either. */
1582 if (info->nocopyreloc)
1588 if (ELIMINATE_COPY_RELOCS)
1590 struct elf64_x86_64_link_hash_entry * eh;
1591 struct elf64_x86_64_dyn_relocs *p;
1593 eh = (struct elf64_x86_64_link_hash_entry *) h;
1594 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1596 s = p->sec->output_section;
1597 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1601 /* If we didn't find any dynamic relocs in read-only sections, then
1602 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1612 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1613 h->root.root.string);
1617 /* We must allocate the symbol in our .dynbss section, which will
1618 become part of the .bss section of the executable. There will be
1619 an entry for this symbol in the .dynsym section. The dynamic
1620 object will contain position independent code, so all references
1621 from the dynamic object to this symbol will go through the global
1622 offset table. The dynamic linker will use the .dynsym entry to
1623 determine the address it must put in the global offset table, so
1624 both the dynamic object and the regular object will refer to the
1625 same memory location for the variable. */
1627 htab = elf64_x86_64_hash_table (info);
1629 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1630 to copy the initial value out of the dynamic object and into the
1631 runtime process image. */
1632 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1634 htab->srelbss->size += sizeof (Elf64_External_Rela);
1640 return _bfd_elf_adjust_dynamic_copy (h, s);
1643 /* Allocate space in .plt, .got and associated reloc sections for
1647 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1649 struct bfd_link_info *info;
1650 struct elf64_x86_64_link_hash_table *htab;
1651 struct elf64_x86_64_link_hash_entry *eh;
1652 struct elf64_x86_64_dyn_relocs *p;
1654 if (h->root.type == bfd_link_hash_indirect)
1657 if (h->root.type == bfd_link_hash_warning)
1658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1660 info = (struct bfd_link_info *) inf;
1661 htab = elf64_x86_64_hash_table (info);
1663 if (htab->elf.dynamic_sections_created
1664 && h->plt.refcount > 0)
1666 /* Make sure this symbol is output as a dynamic symbol.
1667 Undefined weak syms won't yet be marked as dynamic. */
1668 if (h->dynindx == -1
1669 && !h->forced_local)
1671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1676 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1678 asection *s = htab->splt;
1680 /* If this is the first .plt entry, make room for the special
1683 s->size += PLT_ENTRY_SIZE;
1685 h->plt.offset = s->size;
1687 /* If this symbol is not defined in a regular file, and we are
1688 not generating a shared library, then set the symbol to this
1689 location in the .plt. This is required to make function
1690 pointers compare as equal between the normal executable and
1691 the shared library. */
1695 h->root.u.def.section = s;
1696 h->root.u.def.value = h->plt.offset;
1699 /* Make room for this entry. */
1700 s->size += PLT_ENTRY_SIZE;
1702 /* We also need to make an entry in the .got.plt section, which
1703 will be placed in the .got section by the linker script. */
1704 htab->sgotplt->size += GOT_ENTRY_SIZE;
1706 /* We also need to make an entry in the .rela.plt section. */
1707 htab->srelplt->size += sizeof (Elf64_External_Rela);
1708 htab->srelplt->reloc_count++;
1712 h->plt.offset = (bfd_vma) -1;
1718 h->plt.offset = (bfd_vma) -1;
1722 eh = (struct elf64_x86_64_link_hash_entry *) h;
1723 eh->tlsdesc_got = (bfd_vma) -1;
1725 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1726 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1727 if (h->got.refcount > 0
1730 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1731 h->got.offset = (bfd_vma) -1;
1732 else if (h->got.refcount > 0)
1736 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1738 /* Make sure this symbol is output as a dynamic symbol.
1739 Undefined weak syms won't yet be marked as dynamic. */
1740 if (h->dynindx == -1
1741 && !h->forced_local)
1743 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1747 if (GOT_TLS_GDESC_P (tls_type))
1749 eh->tlsdesc_got = htab->sgotplt->size
1750 - elf64_x86_64_compute_jump_table_size (htab);
1751 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1752 h->got.offset = (bfd_vma) -2;
1754 if (! GOT_TLS_GDESC_P (tls_type)
1755 || GOT_TLS_GD_P (tls_type))
1758 h->got.offset = s->size;
1759 s->size += GOT_ENTRY_SIZE;
1760 if (GOT_TLS_GD_P (tls_type))
1761 s->size += GOT_ENTRY_SIZE;
1763 dyn = htab->elf.dynamic_sections_created;
1764 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1766 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1767 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1768 || tls_type == GOT_TLS_IE)
1769 htab->srelgot->size += sizeof (Elf64_External_Rela);
1770 else if (GOT_TLS_GD_P (tls_type))
1771 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1772 else if (! GOT_TLS_GDESC_P (tls_type)
1773 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1774 || h->root.type != bfd_link_hash_undefweak)
1776 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1777 htab->srelgot->size += sizeof (Elf64_External_Rela);
1778 if (GOT_TLS_GDESC_P (tls_type))
1780 htab->srelplt->size += sizeof (Elf64_External_Rela);
1781 htab->tlsdesc_plt = (bfd_vma) -1;
1785 h->got.offset = (bfd_vma) -1;
1787 if (eh->dyn_relocs == NULL)
1790 /* In the shared -Bsymbolic case, discard space allocated for
1791 dynamic pc-relative relocs against symbols which turn out to be
1792 defined in regular objects. For the normal shared case, discard
1793 space for pc-relative relocs that have become local due to symbol
1794 visibility changes. */
1798 /* Relocs that use pc_count are those that appear on a call
1799 insn, or certain REL relocs that can generated via assembly.
1800 We want calls to protected symbols to resolve directly to the
1801 function rather than going via the plt. If people want
1802 function pointer comparisons to work as expected then they
1803 should avoid writing weird assembly. */
1804 if (SYMBOL_CALLS_LOCAL (info, h))
1806 struct elf64_x86_64_dyn_relocs **pp;
1808 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1810 p->count -= p->pc_count;
1819 /* Also discard relocs on undefined weak syms with non-default
1821 if (eh->dyn_relocs != NULL
1822 && h->root.type == bfd_link_hash_undefweak)
1824 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1825 eh->dyn_relocs = NULL;
1827 /* Make sure undefined weak symbols are output as a dynamic
1829 else if (h->dynindx == -1
1830 && !h->forced_local)
1832 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1837 else if (ELIMINATE_COPY_RELOCS)
1839 /* For the non-shared case, discard space for relocs against
1840 symbols which turn out to need copy relocs or are not
1846 || (htab->elf.dynamic_sections_created
1847 && (h->root.type == bfd_link_hash_undefweak
1848 || h->root.type == bfd_link_hash_undefined))))
1850 /* Make sure this symbol is output as a dynamic symbol.
1851 Undefined weak syms won't yet be marked as dynamic. */
1852 if (h->dynindx == -1
1853 && !h->forced_local)
1855 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1859 /* If that succeeded, we know we'll be keeping all the
1861 if (h->dynindx != -1)
1865 eh->dyn_relocs = NULL;
1870 /* Finally, allocate space. */
1871 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1875 sreloc = elf_section_data (p->sec)->sreloc;
1877 BFD_ASSERT (sreloc != NULL);
1879 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1885 /* Find any dynamic relocs that apply to read-only sections. */
1888 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1890 struct elf64_x86_64_link_hash_entry *eh;
1891 struct elf64_x86_64_dyn_relocs *p;
1893 if (h->root.type == bfd_link_hash_warning)
1894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1896 eh = (struct elf64_x86_64_link_hash_entry *) h;
1897 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1899 asection *s = p->sec->output_section;
1901 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1903 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1905 info->flags |= DF_TEXTREL;
1907 /* Not an error, just cut short the traversal. */
1914 /* Set the sizes of the dynamic sections. */
1917 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1918 struct bfd_link_info *info)
1920 struct elf64_x86_64_link_hash_table *htab;
1926 htab = elf64_x86_64_hash_table (info);
1927 dynobj = htab->elf.dynobj;
1931 if (htab->elf.dynamic_sections_created)
1933 /* Set the contents of the .interp section to the interpreter. */
1934 if (info->executable)
1936 s = bfd_get_section_by_name (dynobj, ".interp");
1939 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1940 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1944 /* Set up .got offsets for local syms, and space for local dynamic
1946 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1948 bfd_signed_vma *local_got;
1949 bfd_signed_vma *end_local_got;
1950 char *local_tls_type;
1951 bfd_vma *local_tlsdesc_gotent;
1952 bfd_size_type locsymcount;
1953 Elf_Internal_Shdr *symtab_hdr;
1956 if (! is_x86_64_elf (ibfd))
1959 for (s = ibfd->sections; s != NULL; s = s->next)
1961 struct elf64_x86_64_dyn_relocs *p;
1963 for (p = (struct elf64_x86_64_dyn_relocs *)
1964 (elf_section_data (s)->local_dynrel);
1968 if (!bfd_is_abs_section (p->sec)
1969 && bfd_is_abs_section (p->sec->output_section))
1971 /* Input section has been discarded, either because
1972 it is a copy of a linkonce section or due to
1973 linker script /DISCARD/, so we'll be discarding
1976 else if (p->count != 0)
1978 srel = elf_section_data (p->sec)->sreloc;
1979 srel->size += p->count * sizeof (Elf64_External_Rela);
1980 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1981 info->flags |= DF_TEXTREL;
1986 local_got = elf_local_got_refcounts (ibfd);
1990 symtab_hdr = &elf_symtab_hdr (ibfd);
1991 locsymcount = symtab_hdr->sh_info;
1992 end_local_got = local_got + locsymcount;
1993 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1994 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
1996 srel = htab->srelgot;
1997 for (; local_got < end_local_got;
1998 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2000 *local_tlsdesc_gotent = (bfd_vma) -1;
2003 if (GOT_TLS_GDESC_P (*local_tls_type))
2005 *local_tlsdesc_gotent = htab->sgotplt->size
2006 - elf64_x86_64_compute_jump_table_size (htab);
2007 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2008 *local_got = (bfd_vma) -2;
2010 if (! GOT_TLS_GDESC_P (*local_tls_type)
2011 || GOT_TLS_GD_P (*local_tls_type))
2013 *local_got = s->size;
2014 s->size += GOT_ENTRY_SIZE;
2015 if (GOT_TLS_GD_P (*local_tls_type))
2016 s->size += GOT_ENTRY_SIZE;
2019 || GOT_TLS_GD_ANY_P (*local_tls_type)
2020 || *local_tls_type == GOT_TLS_IE)
2022 if (GOT_TLS_GDESC_P (*local_tls_type))
2024 htab->srelplt->size += sizeof (Elf64_External_Rela);
2025 htab->tlsdesc_plt = (bfd_vma) -1;
2027 if (! GOT_TLS_GDESC_P (*local_tls_type)
2028 || GOT_TLS_GD_P (*local_tls_type))
2029 srel->size += sizeof (Elf64_External_Rela);
2033 *local_got = (bfd_vma) -1;
2037 if (htab->tls_ld_got.refcount > 0)
2039 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2041 htab->tls_ld_got.offset = htab->sgot->size;
2042 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
2043 htab->srelgot->size += sizeof (Elf64_External_Rela);
2046 htab->tls_ld_got.offset = -1;
2048 /* Allocate global sym .plt and .got entries, and space for global
2049 sym dynamic relocs. */
2050 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2052 /* For every jump slot reserved in the sgotplt, reloc_count is
2053 incremented. However, when we reserve space for TLS descriptors,
2054 it's not incremented, so in order to compute the space reserved
2055 for them, it suffices to multiply the reloc count by the jump
2058 htab->sgotplt_jump_table_size
2059 = elf64_x86_64_compute_jump_table_size (htab);
2061 if (htab->tlsdesc_plt)
2063 /* If we're not using lazy TLS relocations, don't generate the
2064 PLT and GOT entries they require. */
2065 if ((info->flags & DF_BIND_NOW))
2066 htab->tlsdesc_plt = 0;
2069 htab->tlsdesc_got = htab->sgot->size;
2070 htab->sgot->size += GOT_ENTRY_SIZE;
2071 /* Reserve room for the initial entry.
2072 FIXME: we could probably do away with it in this case. */
2073 if (htab->splt->size == 0)
2074 htab->splt->size += PLT_ENTRY_SIZE;
2075 htab->tlsdesc_plt = htab->splt->size;
2076 htab->splt->size += PLT_ENTRY_SIZE;
2080 /* We now have determined the sizes of the various dynamic sections.
2081 Allocate memory for them. */
2083 for (s = dynobj->sections; s != NULL; s = s->next)
2085 if ((s->flags & SEC_LINKER_CREATED) == 0)
2090 || s == htab->sgotplt
2091 || s == htab->sdynbss)
2093 /* Strip this section if we don't need it; see the
2096 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2098 if (s->size != 0 && s != htab->srelplt)
2101 /* We use the reloc_count field as a counter if we need
2102 to copy relocs into the output file. */
2103 if (s != htab->srelplt)
2108 /* It's not one of our sections, so don't allocate space. */
2114 /* If we don't need this section, strip it from the
2115 output file. This is mostly to handle .rela.bss and
2116 .rela.plt. We must create both sections in
2117 create_dynamic_sections, because they must be created
2118 before the linker maps input sections to output
2119 sections. The linker does that before
2120 adjust_dynamic_symbol is called, and it is that
2121 function which decides whether anything needs to go
2122 into these sections. */
2124 s->flags |= SEC_EXCLUDE;
2128 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2131 /* Allocate memory for the section contents. We use bfd_zalloc
2132 here in case unused entries are not reclaimed before the
2133 section's contents are written out. This should not happen,
2134 but this way if it does, we get a R_X86_64_NONE reloc instead
2136 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2137 if (s->contents == NULL)
2141 if (htab->elf.dynamic_sections_created)
2143 /* Add some entries to the .dynamic section. We fill in the
2144 values later, in elf64_x86_64_finish_dynamic_sections, but we
2145 must add the entries now so that we get the correct size for
2146 the .dynamic section. The DT_DEBUG entry is filled in by the
2147 dynamic linker and used by the debugger. */
2148 #define add_dynamic_entry(TAG, VAL) \
2149 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2151 if (info->executable)
2153 if (!add_dynamic_entry (DT_DEBUG, 0))
2157 if (htab->splt->size != 0)
2159 if (!add_dynamic_entry (DT_PLTGOT, 0)
2160 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2161 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2162 || !add_dynamic_entry (DT_JMPREL, 0))
2165 if (htab->tlsdesc_plt
2166 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2167 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2173 if (!add_dynamic_entry (DT_RELA, 0)
2174 || !add_dynamic_entry (DT_RELASZ, 0)
2175 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2178 /* If any dynamic relocs apply to a read-only section,
2179 then we need a DT_TEXTREL entry. */
2180 if ((info->flags & DF_TEXTREL) == 0)
2181 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2183 if ((info->flags & DF_TEXTREL) != 0)
2185 if (!add_dynamic_entry (DT_TEXTREL, 0))
2190 #undef add_dynamic_entry
2196 elf64_x86_64_always_size_sections (bfd *output_bfd,
2197 struct bfd_link_info *info)
2199 asection *tls_sec = elf_hash_table (info)->tls_sec;
2203 struct elf_link_hash_entry *tlsbase;
2205 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2206 "_TLS_MODULE_BASE_",
2207 FALSE, FALSE, FALSE);
2209 if (tlsbase && tlsbase->type == STT_TLS)
2211 struct bfd_link_hash_entry *bh = NULL;
2212 const struct elf_backend_data *bed
2213 = get_elf_backend_data (output_bfd);
2215 if (!(_bfd_generic_link_add_one_symbol
2216 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2217 tls_sec, 0, NULL, FALSE,
2218 bed->collect, &bh)))
2221 elf64_x86_64_hash_table (info)->tls_module_base = bh;
2223 tlsbase = (struct elf_link_hash_entry *)bh;
2224 tlsbase->def_regular = 1;
2225 tlsbase->other = STV_HIDDEN;
2226 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2233 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2234 executables. Rather than setting it to the beginning of the TLS
2235 section, we have to set it to the end. This function may be called
2236 multiple times, it is idempotent. */
2239 set_tls_module_base (struct bfd_link_info *info)
2241 struct bfd_link_hash_entry *base;
2243 if (!info->executable)
2246 base = elf64_x86_64_hash_table (info)->tls_module_base;
2251 base->u.def.value = elf_hash_table (info)->tls_size;
2254 /* Return the base VMA address which should be subtracted from real addresses
2255 when resolving @dtpoff relocation.
2256 This is PT_TLS segment p_vaddr. */
2259 dtpoff_base (struct bfd_link_info *info)
2261 /* If tls_sec is NULL, we should have signalled an error already. */
2262 if (elf_hash_table (info)->tls_sec == NULL)
2264 return elf_hash_table (info)->tls_sec->vma;
2267 /* Return the relocation value for @tpoff relocation
2268 if STT_TLS virtual address is ADDRESS. */
2271 tpoff (struct bfd_link_info *info, bfd_vma address)
2273 struct elf_link_hash_table *htab = elf_hash_table (info);
2275 /* If tls_segment is NULL, we should have signalled an error already. */
2276 if (htab->tls_sec == NULL)
2278 return address - htab->tls_size - htab->tls_sec->vma;
2281 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2285 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2287 /* Opcode Instruction
2290 0x0f 0x8x conditional jump */
2292 && (contents [offset - 1] == 0xe8
2293 || contents [offset - 1] == 0xe9))
2295 && contents [offset - 2] == 0x0f
2296 && (contents [offset - 1] & 0xf0) == 0x80));
2299 /* Relocate an x86_64 ELF section. */
2302 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2303 bfd *input_bfd, asection *input_section,
2304 bfd_byte *contents, Elf_Internal_Rela *relocs,
2305 Elf_Internal_Sym *local_syms,
2306 asection **local_sections)
2308 struct elf64_x86_64_link_hash_table *htab;
2309 Elf_Internal_Shdr *symtab_hdr;
2310 struct elf_link_hash_entry **sym_hashes;
2311 bfd_vma *local_got_offsets;
2312 bfd_vma *local_tlsdesc_gotents;
2313 Elf_Internal_Rela *rel;
2314 Elf_Internal_Rela *relend;
2316 BFD_ASSERT (is_x86_64_elf (input_bfd));
2318 htab = elf64_x86_64_hash_table (info);
2319 symtab_hdr = &elf_symtab_hdr (input_bfd);
2320 sym_hashes = elf_sym_hashes (input_bfd);
2321 local_got_offsets = elf_local_got_offsets (input_bfd);
2322 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2324 set_tls_module_base (info);
2327 relend = relocs + input_section->reloc_count;
2328 for (; rel < relend; rel++)
2330 unsigned int r_type;
2331 reloc_howto_type *howto;
2332 unsigned long r_symndx;
2333 struct elf_link_hash_entry *h;
2334 Elf_Internal_Sym *sym;
2336 bfd_vma off, offplt;
2338 bfd_boolean unresolved_reloc;
2339 bfd_reloc_status_type r;
2342 r_type = ELF64_R_TYPE (rel->r_info);
2343 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2344 || r_type == (int) R_X86_64_GNU_VTENTRY)
2347 if (r_type >= R_X86_64_max)
2349 bfd_set_error (bfd_error_bad_value);
2353 howto = x86_64_elf_howto_table + r_type;
2354 r_symndx = ELF64_R_SYM (rel->r_info);
2358 unresolved_reloc = FALSE;
2359 if (r_symndx < symtab_hdr->sh_info)
2361 sym = local_syms + r_symndx;
2362 sec = local_sections[r_symndx];
2364 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2370 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2371 r_symndx, symtab_hdr, sym_hashes,
2373 unresolved_reloc, warned);
2376 if (sec != NULL && elf_discarded_section (sec))
2378 /* For relocs against symbols from removed linkonce sections,
2379 or sections discarded by a linker script, we just want the
2380 section contents zeroed. Avoid any special processing. */
2381 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2387 if (info->relocatable)
2390 /* When generating a shared object, the relocations handled here are
2391 copied into the output file to be resolved at run time. */
2395 case R_X86_64_GOT32:
2396 case R_X86_64_GOT64:
2397 /* Relocation is to the entry for this symbol in the global
2399 case R_X86_64_GOTPCREL:
2400 case R_X86_64_GOTPCREL64:
2401 /* Use global offset table entry as symbol value. */
2402 case R_X86_64_GOTPLT64:
2403 /* This is the same as GOT64 for relocation purposes, but
2404 indicates the existence of a PLT entry. The difficulty is,
2405 that we must calculate the GOT slot offset from the PLT
2406 offset, if this symbol got a PLT entry (it was global).
2407 Additionally if it's computed from the PLT entry, then that
2408 GOT offset is relative to .got.plt, not to .got. */
2409 base_got = htab->sgot;
2411 if (htab->sgot == NULL)
2418 off = h->got.offset;
2420 && h->plt.offset != (bfd_vma)-1
2421 && off == (bfd_vma)-1)
2423 /* We can't use h->got.offset here to save
2424 state, or even just remember the offset, as
2425 finish_dynamic_symbol would use that as offset into
2427 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2428 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2429 base_got = htab->sgotplt;
2432 dyn = htab->elf.dynamic_sections_created;
2434 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2436 && SYMBOL_REFERENCES_LOCAL (info, h))
2437 || (ELF_ST_VISIBILITY (h->other)
2438 && h->root.type == bfd_link_hash_undefweak))
2440 /* This is actually a static link, or it is a -Bsymbolic
2441 link and the symbol is defined locally, or the symbol
2442 was forced to be local because of a version file. We
2443 must initialize this entry in the global offset table.
2444 Since the offset must always be a multiple of 8, we
2445 use the least significant bit to record whether we
2446 have initialized it already.
2448 When doing a dynamic link, we create a .rela.got
2449 relocation entry to initialize the value. This is
2450 done in the finish_dynamic_symbol routine. */
2455 bfd_put_64 (output_bfd, relocation,
2456 base_got->contents + off);
2457 /* Note that this is harmless for the GOTPLT64 case,
2458 as -1 | 1 still is -1. */
2463 unresolved_reloc = FALSE;
2467 if (local_got_offsets == NULL)
2470 off = local_got_offsets[r_symndx];
2472 /* The offset must always be a multiple of 8. We use
2473 the least significant bit to record whether we have
2474 already generated the necessary reloc. */
2479 bfd_put_64 (output_bfd, relocation,
2480 base_got->contents + off);
2485 Elf_Internal_Rela outrel;
2488 /* We need to generate a R_X86_64_RELATIVE reloc
2489 for the dynamic linker. */
2494 outrel.r_offset = (base_got->output_section->vma
2495 + base_got->output_offset
2497 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2498 outrel.r_addend = relocation;
2500 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2501 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2504 local_got_offsets[r_symndx] |= 1;
2508 if (off >= (bfd_vma) -2)
2511 relocation = base_got->output_section->vma
2512 + base_got->output_offset + off;
2513 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2514 relocation -= htab->sgotplt->output_section->vma
2515 - htab->sgotplt->output_offset;
2519 case R_X86_64_GOTOFF64:
2520 /* Relocation is relative to the start of the global offset
2523 /* Check to make sure it isn't a protected function symbol
2524 for shared library since it may not be local when used
2525 as function address. */
2529 && h->type == STT_FUNC
2530 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2532 (*_bfd_error_handler)
2533 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2534 input_bfd, h->root.root.string);
2535 bfd_set_error (bfd_error_bad_value);
2539 /* Note that sgot is not involved in this
2540 calculation. We always want the start of .got.plt. If we
2541 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2542 permitted by the ABI, we might have to change this
2544 relocation -= htab->sgotplt->output_section->vma
2545 + htab->sgotplt->output_offset;
2548 case R_X86_64_GOTPC32:
2549 case R_X86_64_GOTPC64:
2550 /* Use global offset table as symbol value. */
2551 relocation = htab->sgotplt->output_section->vma
2552 + htab->sgotplt->output_offset;
2553 unresolved_reloc = FALSE;
2556 case R_X86_64_PLTOFF64:
2557 /* Relocation is PLT entry relative to GOT. For local
2558 symbols it's the symbol itself relative to GOT. */
2560 /* See PLT32 handling. */
2561 && h->plt.offset != (bfd_vma) -1
2562 && htab->splt != NULL)
2564 relocation = (htab->splt->output_section->vma
2565 + htab->splt->output_offset
2567 unresolved_reloc = FALSE;
2570 relocation -= htab->sgotplt->output_section->vma
2571 + htab->sgotplt->output_offset;
2574 case R_X86_64_PLT32:
2575 /* Relocation is to the entry for this symbol in the
2576 procedure linkage table. */
2578 /* Resolve a PLT32 reloc against a local symbol directly,
2579 without using the procedure linkage table. */
2583 if (h->plt.offset == (bfd_vma) -1
2584 || htab->splt == NULL)
2586 /* We didn't make a PLT entry for this symbol. This
2587 happens when statically linking PIC code, or when
2588 using -Bsymbolic. */
2592 relocation = (htab->splt->output_section->vma
2593 + htab->splt->output_offset
2595 unresolved_reloc = FALSE;
2602 && (input_section->flags & SEC_ALLOC) != 0
2603 && (input_section->flags & SEC_READONLY) != 0
2606 bfd_boolean fail = FALSE;
2608 = (r_type == R_X86_64_PC32
2609 && is_32bit_relative_branch (contents, rel->r_offset));
2611 if (SYMBOL_REFERENCES_LOCAL (info, h))
2613 /* Symbol is referenced locally. Make sure it is
2614 defined locally or for a branch. */
2615 fail = !h->def_regular && !branch;
2619 /* Symbol isn't referenced locally. We only allow
2620 branch to symbol with non-default visibility. */
2622 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
2629 const char *pic = "";
2631 switch (ELF_ST_VISIBILITY (h->other))
2634 v = _("hidden symbol");
2637 v = _("internal symbol");
2640 v = _("protected symbol");
2644 pic = _("; recompile with -fPIC");
2649 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
2651 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
2653 (*_bfd_error_handler) (fmt, input_bfd,
2654 x86_64_elf_howto_table[r_type].name,
2655 v, h->root.root.string, pic);
2656 bfd_set_error (bfd_error_bad_value);
2667 /* FIXME: The ABI says the linker should make sure the value is
2668 the same when it's zeroextended to 64 bit. */
2670 if ((input_section->flags & SEC_ALLOC) == 0)
2675 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2676 || h->root.type != bfd_link_hash_undefweak)
2677 && ((r_type != R_X86_64_PC8
2678 && r_type != R_X86_64_PC16
2679 && r_type != R_X86_64_PC32
2680 && r_type != R_X86_64_PC64)
2681 || !SYMBOL_CALLS_LOCAL (info, h)))
2682 || (ELIMINATE_COPY_RELOCS
2689 || h->root.type == bfd_link_hash_undefweak
2690 || h->root.type == bfd_link_hash_undefined)))
2692 Elf_Internal_Rela outrel;
2694 bfd_boolean skip, relocate;
2697 /* When generating a shared object, these relocations
2698 are copied into the output file to be resolved at run
2704 _bfd_elf_section_offset (output_bfd, info, input_section,
2706 if (outrel.r_offset == (bfd_vma) -1)
2708 else if (outrel.r_offset == (bfd_vma) -2)
2709 skip = TRUE, relocate = TRUE;
2711 outrel.r_offset += (input_section->output_section->vma
2712 + input_section->output_offset);
2715 memset (&outrel, 0, sizeof outrel);
2717 /* h->dynindx may be -1 if this symbol was marked to
2721 && (r_type == R_X86_64_PC8
2722 || r_type == R_X86_64_PC16
2723 || r_type == R_X86_64_PC32
2724 || r_type == R_X86_64_PC64
2726 || !SYMBOLIC_BIND (info, h)
2727 || !h->def_regular))
2729 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2730 outrel.r_addend = rel->r_addend;
2734 /* This symbol is local, or marked to become local. */
2735 if (r_type == R_X86_64_64)
2738 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2739 outrel.r_addend = relocation + rel->r_addend;
2745 if (bfd_is_abs_section (sec))
2747 else if (sec == NULL || sec->owner == NULL)
2749 bfd_set_error (bfd_error_bad_value);
2756 /* We are turning this relocation into one
2757 against a section symbol. It would be
2758 proper to subtract the symbol's value,
2759 osec->vma, from the emitted reloc addend,
2760 but ld.so expects buggy relocs. */
2761 osec = sec->output_section;
2762 sindx = elf_section_data (osec)->dynindx;
2765 asection *oi = htab->elf.text_index_section;
2766 sindx = elf_section_data (oi)->dynindx;
2768 BFD_ASSERT (sindx != 0);
2771 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2772 outrel.r_addend = relocation + rel->r_addend;
2776 sreloc = elf_section_data (input_section)->sreloc;
2778 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
2780 loc = sreloc->contents;
2781 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2782 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2784 /* If this reloc is against an external symbol, we do
2785 not want to fiddle with the addend. Otherwise, we
2786 need to include the symbol value so that it becomes
2787 an addend for the dynamic reloc. */
2794 case R_X86_64_TLSGD:
2795 case R_X86_64_GOTPC32_TLSDESC:
2796 case R_X86_64_TLSDESC_CALL:
2797 case R_X86_64_GOTTPOFF:
2798 tls_type = GOT_UNKNOWN;
2799 if (h == NULL && local_got_offsets)
2800 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2802 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2804 if (! elf64_x86_64_tls_transition (info, input_bfd,
2805 input_section, contents,
2806 symtab_hdr, sym_hashes,
2807 &r_type, tls_type, rel,
2811 if (r_type == R_X86_64_TPOFF32)
2813 bfd_vma roff = rel->r_offset;
2815 BFD_ASSERT (! unresolved_reloc);
2817 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2819 /* GD->LE transition.
2820 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2821 .word 0x6666; rex64; call __tls_get_addr
2824 leaq foo@tpoff(%rax), %rax */
2825 memcpy (contents + roff - 4,
2826 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2828 bfd_put_32 (output_bfd, tpoff (info, relocation),
2829 contents + roff + 8);
2830 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2834 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2836 /* GDesc -> LE transition.
2837 It's originally something like:
2838 leaq x@tlsdesc(%rip), %rax
2844 unsigned int val, type, type2;
2846 type = bfd_get_8 (input_bfd, contents + roff - 3);
2847 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2848 val = bfd_get_8 (input_bfd, contents + roff - 1);
2849 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2850 contents + roff - 3);
2851 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2852 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2853 contents + roff - 1);
2854 bfd_put_32 (output_bfd, tpoff (info, relocation),
2858 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2860 /* GDesc -> LE transition.
2865 bfd_put_8 (output_bfd, 0x66, contents + roff);
2866 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2869 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
2871 /* IE->LE transition:
2872 Originally it can be one of:
2873 movq foo@gottpoff(%rip), %reg
2874 addq foo@gottpoff(%rip), %reg
2877 leaq foo(%reg), %reg
2880 unsigned int val, type, reg;
2882 val = bfd_get_8 (input_bfd, contents + roff - 3);
2883 type = bfd_get_8 (input_bfd, contents + roff - 2);
2884 reg = bfd_get_8 (input_bfd, contents + roff - 1);
2890 bfd_put_8 (output_bfd, 0x49,
2891 contents + roff - 3);
2892 bfd_put_8 (output_bfd, 0xc7,
2893 contents + roff - 2);
2894 bfd_put_8 (output_bfd, 0xc0 | reg,
2895 contents + roff - 1);
2899 /* addq -> addq - addressing with %rsp/%r12 is
2902 bfd_put_8 (output_bfd, 0x49,
2903 contents + roff - 3);
2904 bfd_put_8 (output_bfd, 0x81,
2905 contents + roff - 2);
2906 bfd_put_8 (output_bfd, 0xc0 | reg,
2907 contents + roff - 1);
2913 bfd_put_8 (output_bfd, 0x4d,
2914 contents + roff - 3);
2915 bfd_put_8 (output_bfd, 0x8d,
2916 contents + roff - 2);
2917 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2918 contents + roff - 1);
2920 bfd_put_32 (output_bfd, tpoff (info, relocation),
2928 if (htab->sgot == NULL)
2933 off = h->got.offset;
2934 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2938 if (local_got_offsets == NULL)
2941 off = local_got_offsets[r_symndx];
2942 offplt = local_tlsdesc_gotents[r_symndx];
2949 Elf_Internal_Rela outrel;
2954 if (htab->srelgot == NULL)
2957 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2959 if (GOT_TLS_GDESC_P (tls_type))
2961 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2962 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2963 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2964 outrel.r_offset = (htab->sgotplt->output_section->vma
2965 + htab->sgotplt->output_offset
2967 + htab->sgotplt_jump_table_size);
2968 sreloc = htab->srelplt;
2969 loc = sreloc->contents;
2970 loc += sreloc->reloc_count++
2971 * sizeof (Elf64_External_Rela);
2972 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2973 <= sreloc->contents + sreloc->size);
2975 outrel.r_addend = relocation - dtpoff_base (info);
2977 outrel.r_addend = 0;
2978 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2981 sreloc = htab->srelgot;
2983 outrel.r_offset = (htab->sgot->output_section->vma
2984 + htab->sgot->output_offset + off);
2986 if (GOT_TLS_GD_P (tls_type))
2987 dr_type = R_X86_64_DTPMOD64;
2988 else if (GOT_TLS_GDESC_P (tls_type))
2991 dr_type = R_X86_64_TPOFF64;
2993 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2994 outrel.r_addend = 0;
2995 if ((dr_type == R_X86_64_TPOFF64
2996 || dr_type == R_X86_64_TLSDESC) && indx == 0)
2997 outrel.r_addend = relocation - dtpoff_base (info);
2998 outrel.r_info = ELF64_R_INFO (indx, dr_type);
3000 loc = sreloc->contents;
3001 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3002 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3003 <= sreloc->contents + sreloc->size);
3004 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3006 if (GOT_TLS_GD_P (tls_type))
3010 BFD_ASSERT (! unresolved_reloc);
3011 bfd_put_64 (output_bfd,
3012 relocation - dtpoff_base (info),
3013 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3017 bfd_put_64 (output_bfd, 0,
3018 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3019 outrel.r_info = ELF64_R_INFO (indx,
3021 outrel.r_offset += GOT_ENTRY_SIZE;
3022 sreloc->reloc_count++;
3023 loc += sizeof (Elf64_External_Rela);
3024 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3025 <= sreloc->contents + sreloc->size);
3026 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3034 local_got_offsets[r_symndx] |= 1;
3037 if (off >= (bfd_vma) -2
3038 && ! GOT_TLS_GDESC_P (tls_type))
3040 if (r_type == ELF64_R_TYPE (rel->r_info))
3042 if (r_type == R_X86_64_GOTPC32_TLSDESC
3043 || r_type == R_X86_64_TLSDESC_CALL)
3044 relocation = htab->sgotplt->output_section->vma
3045 + htab->sgotplt->output_offset
3046 + offplt + htab->sgotplt_jump_table_size;
3048 relocation = htab->sgot->output_section->vma
3049 + htab->sgot->output_offset + off;
3050 unresolved_reloc = FALSE;
3054 bfd_vma roff = rel->r_offset;
3056 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3058 /* GD->IE transition.
3059 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3060 .word 0x6666; rex64; call __tls_get_addr@plt
3063 addq foo@gottpoff(%rip), %rax */
3064 memcpy (contents + roff - 4,
3065 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3068 relocation = (htab->sgot->output_section->vma
3069 + htab->sgot->output_offset + off
3071 - input_section->output_section->vma
3072 - input_section->output_offset
3074 bfd_put_32 (output_bfd, relocation,
3075 contents + roff + 8);
3076 /* Skip R_X86_64_PLT32. */
3080 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3082 /* GDesc -> IE transition.
3083 It's originally something like:
3084 leaq x@tlsdesc(%rip), %rax
3087 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3090 unsigned int val, type, type2;
3092 type = bfd_get_8 (input_bfd, contents + roff - 3);
3093 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3094 val = bfd_get_8 (input_bfd, contents + roff - 1);
3096 /* Now modify the instruction as appropriate. To
3097 turn a leaq into a movq in the form we use it, it
3098 suffices to change the second byte from 0x8d to
3100 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3102 bfd_put_32 (output_bfd,
3103 htab->sgot->output_section->vma
3104 + htab->sgot->output_offset + off
3106 - input_section->output_section->vma
3107 - input_section->output_offset
3112 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3114 /* GDesc -> IE transition.
3121 unsigned int val, type;
3123 type = bfd_get_8 (input_bfd, contents + roff);
3124 val = bfd_get_8 (input_bfd, contents + roff + 1);
3125 bfd_put_8 (output_bfd, 0x66, contents + roff);
3126 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3134 case R_X86_64_TLSLD:
3135 if (! elf64_x86_64_tls_transition (info, input_bfd,
3136 input_section, contents,
3137 symtab_hdr, sym_hashes,
3138 &r_type, GOT_UNKNOWN,
3142 if (r_type != R_X86_64_TLSLD)
3144 /* LD->LE transition:
3145 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3147 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3149 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3150 memcpy (contents + rel->r_offset - 3,
3151 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3152 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3157 if (htab->sgot == NULL)
3160 off = htab->tls_ld_got.offset;
3165 Elf_Internal_Rela outrel;
3168 if (htab->srelgot == NULL)
3171 outrel.r_offset = (htab->sgot->output_section->vma
3172 + htab->sgot->output_offset + off);
3174 bfd_put_64 (output_bfd, 0,
3175 htab->sgot->contents + off);
3176 bfd_put_64 (output_bfd, 0,
3177 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3178 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3179 outrel.r_addend = 0;
3180 loc = htab->srelgot->contents;
3181 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3182 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3183 htab->tls_ld_got.offset |= 1;
3185 relocation = htab->sgot->output_section->vma
3186 + htab->sgot->output_offset + off;
3187 unresolved_reloc = FALSE;
3190 case R_X86_64_DTPOFF32:
3191 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3192 relocation -= dtpoff_base (info);
3194 relocation = tpoff (info, relocation);
3197 case R_X86_64_TPOFF32:
3198 BFD_ASSERT (! info->shared);
3199 relocation = tpoff (info, relocation);
3206 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3207 because such sections are not SEC_ALLOC and thus ld.so will
3208 not process them. */
3209 if (unresolved_reloc
3210 && !((input_section->flags & SEC_DEBUGGING) != 0
3212 (*_bfd_error_handler)
3213 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3216 (long) rel->r_offset,
3218 h->root.root.string);
3220 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3221 contents, rel->r_offset,
3222 relocation, rel->r_addend);
3224 if (r != bfd_reloc_ok)
3229 name = h->root.root.string;
3232 name = bfd_elf_string_from_elf_section (input_bfd,
3233 symtab_hdr->sh_link,
3238 name = bfd_section_name (input_bfd, sec);
3241 if (r == bfd_reloc_overflow)
3243 if (! ((*info->callbacks->reloc_overflow)
3244 (info, (h ? &h->root : NULL), name, howto->name,
3245 (bfd_vma) 0, input_bfd, input_section,
3251 (*_bfd_error_handler)
3252 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3253 input_bfd, input_section,
3254 (long) rel->r_offset, name, (int) r);
3263 /* Finish up dynamic symbol handling. We set the contents of various
3264 dynamic sections here. */
3267 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3268 struct bfd_link_info *info,
3269 struct elf_link_hash_entry *h,
3270 Elf_Internal_Sym *sym)
3272 struct elf64_x86_64_link_hash_table *htab;
3274 htab = elf64_x86_64_hash_table (info);
3276 if (h->plt.offset != (bfd_vma) -1)
3280 Elf_Internal_Rela rela;
3283 /* This symbol has an entry in the procedure linkage table. Set
3285 if (h->dynindx == -1
3286 || htab->splt == NULL
3287 || htab->sgotplt == NULL
3288 || htab->srelplt == NULL)
3291 /* Get the index in the procedure linkage table which
3292 corresponds to this symbol. This is the index of this symbol
3293 in all the symbols for which we are making plt entries. The
3294 first entry in the procedure linkage table is reserved. */
3295 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3297 /* Get the offset into the .got table of the entry that
3298 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3299 bytes. The first three are reserved for the dynamic linker. */
3300 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3302 /* Fill in the entry in the procedure linkage table. */
3303 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3306 /* Insert the relocation positions of the plt section. The magic
3307 numbers at the end of the statements are the positions of the
3308 relocations in the plt section. */
3309 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3310 instruction uses 6 bytes, subtract this value. */
3311 bfd_put_32 (output_bfd,
3312 (htab->sgotplt->output_section->vma
3313 + htab->sgotplt->output_offset
3315 - htab->splt->output_section->vma
3316 - htab->splt->output_offset
3319 htab->splt->contents + h->plt.offset + 2);
3320 /* Put relocation index. */
3321 bfd_put_32 (output_bfd, plt_index,
3322 htab->splt->contents + h->plt.offset + 7);
3323 /* Put offset for jmp .PLT0. */
3324 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3325 htab->splt->contents + h->plt.offset + 12);
3327 /* Fill in the entry in the global offset table, initially this
3328 points to the pushq instruction in the PLT which is at offset 6. */
3329 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3330 + htab->splt->output_offset
3331 + h->plt.offset + 6),
3332 htab->sgotplt->contents + got_offset);
3334 /* Fill in the entry in the .rela.plt section. */
3335 rela.r_offset = (htab->sgotplt->output_section->vma
3336 + htab->sgotplt->output_offset
3338 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3340 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3341 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3343 if (!h->def_regular)
3345 /* Mark the symbol as undefined, rather than as defined in
3346 the .plt section. Leave the value if there were any
3347 relocations where pointer equality matters (this is a clue
3348 for the dynamic linker, to make function pointer
3349 comparisons work between an application and shared
3350 library), otherwise set it to zero. If a function is only
3351 called from a binary, there is no need to slow down
3352 shared libraries because of that. */
3353 sym->st_shndx = SHN_UNDEF;
3354 if (!h->pointer_equality_needed)
3359 if (h->got.offset != (bfd_vma) -1
3360 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3361 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3363 Elf_Internal_Rela rela;
3366 /* This symbol has an entry in the global offset table. Set it
3368 if (htab->sgot == NULL || htab->srelgot == NULL)
3371 rela.r_offset = (htab->sgot->output_section->vma
3372 + htab->sgot->output_offset
3373 + (h->got.offset &~ (bfd_vma) 1));
3375 /* If this is a static link, or it is a -Bsymbolic link and the
3376 symbol is defined locally or was forced to be local because
3377 of a version file, we just want to emit a RELATIVE reloc.
3378 The entry in the global offset table will already have been
3379 initialized in the relocate_section function. */
3381 && SYMBOL_REFERENCES_LOCAL (info, h))
3383 if (!h->def_regular)
3385 BFD_ASSERT((h->got.offset & 1) != 0);
3386 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3387 rela.r_addend = (h->root.u.def.value
3388 + h->root.u.def.section->output_section->vma
3389 + h->root.u.def.section->output_offset);
3393 BFD_ASSERT((h->got.offset & 1) == 0);
3394 bfd_put_64 (output_bfd, (bfd_vma) 0,
3395 htab->sgot->contents + h->got.offset);
3396 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3400 loc = htab->srelgot->contents;
3401 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3402 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3407 Elf_Internal_Rela rela;
3410 /* This symbol needs a copy reloc. Set it up. */
3412 if (h->dynindx == -1
3413 || (h->root.type != bfd_link_hash_defined
3414 && h->root.type != bfd_link_hash_defweak)
3415 || htab->srelbss == NULL)
3418 rela.r_offset = (h->root.u.def.value
3419 + h->root.u.def.section->output_section->vma
3420 + h->root.u.def.section->output_offset);
3421 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3423 loc = htab->srelbss->contents;
3424 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3425 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3428 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3429 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3430 || h == htab->elf.hgot)
3431 sym->st_shndx = SHN_ABS;
3436 /* Used to decide how to sort relocs in an optimal manner for the
3437 dynamic linker, before writing them out. */
3439 static enum elf_reloc_type_class
3440 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3442 switch ((int) ELF64_R_TYPE (rela->r_info))
3444 case R_X86_64_RELATIVE:
3445 return reloc_class_relative;
3446 case R_X86_64_JUMP_SLOT:
3447 return reloc_class_plt;
3449 return reloc_class_copy;
3451 return reloc_class_normal;
3455 /* Finish up the dynamic sections. */
3458 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3460 struct elf64_x86_64_link_hash_table *htab;
3464 htab = elf64_x86_64_hash_table (info);
3465 dynobj = htab->elf.dynobj;
3466 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3468 if (htab->elf.dynamic_sections_created)
3470 Elf64_External_Dyn *dyncon, *dynconend;
3472 if (sdyn == NULL || htab->sgot == NULL)
3475 dyncon = (Elf64_External_Dyn *) sdyn->contents;
3476 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3477 for (; dyncon < dynconend; dyncon++)
3479 Elf_Internal_Dyn dyn;
3482 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3491 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3495 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3499 s = htab->srelplt->output_section;
3500 dyn.d_un.d_val = s->size;
3504 /* The procedure linkage table relocs (DT_JMPREL) should
3505 not be included in the overall relocs (DT_RELA).
3506 Therefore, we override the DT_RELASZ entry here to
3507 make it not include the JMPREL relocs. Since the
3508 linker script arranges for .rela.plt to follow all
3509 other relocation sections, we don't have to worry
3510 about changing the DT_RELA entry. */
3511 if (htab->srelplt != NULL)
3513 s = htab->srelplt->output_section;
3514 dyn.d_un.d_val -= s->size;
3518 case DT_TLSDESC_PLT:
3520 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3521 + htab->tlsdesc_plt;
3524 case DT_TLSDESC_GOT:
3526 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3527 + htab->tlsdesc_got;
3531 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3534 /* Fill in the special first entry in the procedure linkage table. */
3535 if (htab->splt && htab->splt->size > 0)
3537 /* Fill in the first entry in the procedure linkage table. */
3538 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3540 /* Add offset for pushq GOT+8(%rip), since the instruction
3541 uses 6 bytes subtract this value. */
3542 bfd_put_32 (output_bfd,
3543 (htab->sgotplt->output_section->vma
3544 + htab->sgotplt->output_offset
3546 - htab->splt->output_section->vma
3547 - htab->splt->output_offset
3549 htab->splt->contents + 2);
3550 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3551 the end of the instruction. */
3552 bfd_put_32 (output_bfd,
3553 (htab->sgotplt->output_section->vma
3554 + htab->sgotplt->output_offset
3556 - htab->splt->output_section->vma
3557 - htab->splt->output_offset
3559 htab->splt->contents + 8);
3561 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3564 if (htab->tlsdesc_plt)
3566 bfd_put_64 (output_bfd, (bfd_vma) 0,
3567 htab->sgot->contents + htab->tlsdesc_got);
3569 memcpy (htab->splt->contents + htab->tlsdesc_plt,
3570 elf64_x86_64_plt0_entry,
3573 /* Add offset for pushq GOT+8(%rip), since the
3574 instruction uses 6 bytes subtract this value. */
3575 bfd_put_32 (output_bfd,
3576 (htab->sgotplt->output_section->vma
3577 + htab->sgotplt->output_offset
3579 - htab->splt->output_section->vma
3580 - htab->splt->output_offset
3583 htab->splt->contents + htab->tlsdesc_plt + 2);
3584 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3585 htab->tlsdesc_got. The 12 is the offset to the end of
3587 bfd_put_32 (output_bfd,
3588 (htab->sgot->output_section->vma
3589 + htab->sgot->output_offset
3591 - htab->splt->output_section->vma
3592 - htab->splt->output_offset
3595 htab->splt->contents + htab->tlsdesc_plt + 8);
3602 /* Fill in the first three entries in the global offset table. */
3603 if (htab->sgotplt->size > 0)
3605 /* Set the first entry in the global offset table to the address of
3606 the dynamic section. */
3608 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3610 bfd_put_64 (output_bfd,
3611 sdyn->output_section->vma + sdyn->output_offset,
3612 htab->sgotplt->contents);
3613 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3614 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3615 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3618 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3622 if (htab->sgot && htab->sgot->size > 0)
3623 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3629 /* Return address for Ith PLT stub in section PLT, for relocation REL
3630 or (bfd_vma) -1 if it should not be included. */
3633 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3634 const arelent *rel ATTRIBUTE_UNUSED)
3636 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3639 /* Handle an x86-64 specific section when reading an object file. This
3640 is called when elfcode.h finds a section with an unknown type. */
3643 elf64_x86_64_section_from_shdr (bfd *abfd,
3644 Elf_Internal_Shdr *hdr,
3648 if (hdr->sh_type != SHT_X86_64_UNWIND)
3651 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3657 /* Hook called by the linker routine which adds symbols from an object
3658 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3662 elf64_x86_64_add_symbol_hook (bfd *abfd,
3663 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3664 Elf_Internal_Sym *sym,
3665 const char **namep ATTRIBUTE_UNUSED,
3666 flagword *flagsp ATTRIBUTE_UNUSED,
3667 asection **secp, bfd_vma *valp)
3671 switch (sym->st_shndx)
3673 case SHN_X86_64_LCOMMON:
3674 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3677 lcomm = bfd_make_section_with_flags (abfd,
3681 | SEC_LINKER_CREATED));
3684 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3687 *valp = sym->st_size;
3694 /* Given a BFD section, try to locate the corresponding ELF section
3698 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3699 asection *sec, int *index)
3701 if (sec == &_bfd_elf_large_com_section)
3703 *index = SHN_X86_64_LCOMMON;
3709 /* Process a symbol. */
3712 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3715 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3717 switch (elfsym->internal_elf_sym.st_shndx)
3719 case SHN_X86_64_LCOMMON:
3720 asym->section = &_bfd_elf_large_com_section;
3721 asym->value = elfsym->internal_elf_sym.st_size;
3722 /* Common symbol doesn't set BSF_GLOBAL. */
3723 asym->flags &= ~BSF_GLOBAL;
3729 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3731 return (sym->st_shndx == SHN_COMMON
3732 || sym->st_shndx == SHN_X86_64_LCOMMON);
3736 elf64_x86_64_common_section_index (asection *sec)
3738 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3741 return SHN_X86_64_LCOMMON;
3745 elf64_x86_64_common_section (asection *sec)
3747 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3748 return bfd_com_section_ptr;
3750 return &_bfd_elf_large_com_section;
3754 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3755 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3756 struct elf_link_hash_entry *h,
3757 Elf_Internal_Sym *sym,
3759 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3760 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3761 bfd_boolean *skip ATTRIBUTE_UNUSED,
3762 bfd_boolean *override ATTRIBUTE_UNUSED,
3763 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3764 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3765 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3766 bfd_boolean *newdyn,
3767 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3768 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3769 bfd *abfd ATTRIBUTE_UNUSED,
3771 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3772 bfd_boolean *olddyn,
3773 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3774 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3778 /* A normal common symbol and a large common symbol result in a
3779 normal common symbol. We turn the large common symbol into a
3782 && h->root.type == bfd_link_hash_common
3784 && bfd_is_com_section (*sec)
3787 if (sym->st_shndx == SHN_COMMON
3788 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3790 h->root.u.c.p->section
3791 = bfd_make_section_old_way (oldbfd, "COMMON");
3792 h->root.u.c.p->section->flags = SEC_ALLOC;
3794 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3795 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3796 *psec = *sec = bfd_com_section_ptr;
3803 elf64_x86_64_additional_program_headers (bfd *abfd,
3804 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3809 /* Check to see if we need a large readonly segment. */
3810 s = bfd_get_section_by_name (abfd, ".lrodata");
3811 if (s && (s->flags & SEC_LOAD))
3814 /* Check to see if we need a large data segment. Since .lbss sections
3815 is placed right after the .bss section, there should be no need for
3816 a large data segment just because of .lbss. */
3817 s = bfd_get_section_by_name (abfd, ".ldata");
3818 if (s && (s->flags & SEC_LOAD))
3824 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3827 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
3829 if (h->plt.offset != (bfd_vma) -1
3831 && !h->pointer_equality_needed)
3834 return _bfd_elf_hash_symbol (h);
3837 static const struct bfd_elf_special_section
3838 elf64_x86_64_special_sections[]=
3840 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3841 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3842 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3843 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3844 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3845 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3846 { NULL, 0, 0, 0, 0 }
3849 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3850 #define TARGET_LITTLE_NAME "elf64-x86-64"
3851 #define ELF_ARCH bfd_arch_i386
3852 #define ELF_MACHINE_CODE EM_X86_64
3853 #define ELF_MAXPAGESIZE 0x200000
3854 #define ELF_MINPAGESIZE 0x1000
3855 #define ELF_COMMONPAGESIZE 0x1000
3857 #define elf_backend_can_gc_sections 1
3858 #define elf_backend_can_refcount 1
3859 #define elf_backend_want_got_plt 1
3860 #define elf_backend_plt_readonly 1
3861 #define elf_backend_want_plt_sym 0
3862 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3863 #define elf_backend_rela_normal 1
3865 #define elf_info_to_howto elf64_x86_64_info_to_howto
3867 #define bfd_elf64_bfd_link_hash_table_create \
3868 elf64_x86_64_link_hash_table_create
3869 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3870 #define bfd_elf64_bfd_reloc_name_lookup \
3871 elf64_x86_64_reloc_name_lookup
3873 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3874 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
3875 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3876 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3877 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3878 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3879 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3880 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3881 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3882 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3883 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3884 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3885 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3886 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3887 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3888 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3889 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3890 #define elf_backend_object_p elf64_x86_64_elf_object_p
3891 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3893 #define elf_backend_section_from_shdr \
3894 elf64_x86_64_section_from_shdr
3896 #define elf_backend_section_from_bfd_section \
3897 elf64_x86_64_elf_section_from_bfd_section
3898 #define elf_backend_add_symbol_hook \
3899 elf64_x86_64_add_symbol_hook
3900 #define elf_backend_symbol_processing \
3901 elf64_x86_64_symbol_processing
3902 #define elf_backend_common_section_index \
3903 elf64_x86_64_common_section_index
3904 #define elf_backend_common_section \
3905 elf64_x86_64_common_section
3906 #define elf_backend_common_definition \
3907 elf64_x86_64_common_definition
3908 #define elf_backend_merge_symbol \
3909 elf64_x86_64_merge_symbol
3910 #define elf_backend_special_sections \
3911 elf64_x86_64_special_sections
3912 #define elf_backend_additional_program_headers \
3913 elf64_x86_64_additional_program_headers
3914 #define elf_backend_hash_symbol \
3915 elf64_x86_64_hash_symbol
3917 #include "elf64-target.h"
3919 /* FreeBSD support. */
3921 #undef TARGET_LITTLE_SYM
3922 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3923 #undef TARGET_LITTLE_NAME
3924 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3927 #define ELF_OSABI ELFOSABI_FREEBSD
3929 #undef elf_backend_post_process_headers
3930 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3933 #define elf64_bed elf64_x86_64_fbsd_bed
3935 #include "elf64-target.h"