1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 #include "gdb_string.h"
35 /* Default to coercing float to double in function calls only when there is
36 no prototype. Otherwise on targets where the debug information is incorrect
37 for either the prototype or non-prototype case, we can force it by defining
38 COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
40 #ifndef COERCE_FLOAT_TO_DOUBLE
41 #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
44 /* Local functions. */
46 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
48 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
50 #ifndef PUSH_ARGUMENTS
51 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
54 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
57 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
59 int, int *, struct type *));
61 static int check_field_in PARAMS ((struct type *, const char *));
63 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
65 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
67 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *));
69 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
71 /* Flag for whether we want to abandon failed expression evals by default. */
74 static int auto_abandon = 0;
78 /* Find the address of function name NAME in the inferior. */
81 find_function_in_inferior (name)
84 register struct symbol *sym;
85 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
88 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
90 error ("\"%s\" exists in this program but is not a function.",
93 return value_of_variable (sym, NULL);
97 struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
102 type = lookup_pointer_type (builtin_type_char);
103 type = lookup_function_type (type);
104 type = lookup_pointer_type (type);
105 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
106 return value_from_longest (type, maddr);
110 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
115 /* Allocate NBYTES of space in the inferior using the inferior's malloc
116 and return a value that is a pointer to the allocated space. */
119 value_allocate_space_in_inferior (len)
123 register value_ptr val = find_function_in_inferior ("malloc");
125 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
126 val = call_function_by_hand (val, 1, &blocklen);
127 if (value_logical_not (val))
129 error ("No memory available to program.");
135 allocate_space_in_inferior (len)
138 return value_as_long (value_allocate_space_in_inferior (len));
141 /* Cast value ARG2 to type TYPE and return as a value.
142 More general than a C cast: accepts any two types of the same length,
143 and if ARG2 is an lvalue it can be cast into anything at all. */
144 /* In C++, casts may change pointer or object representations. */
147 value_cast (type, arg2)
149 register value_ptr arg2;
151 register enum type_code code1;
152 register enum type_code code2;
156 if (VALUE_TYPE (arg2) == type)
159 CHECK_TYPEDEF (type);
160 code1 = TYPE_CODE (type);
162 type2 = check_typedef (VALUE_TYPE (arg2));
164 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
165 is treated like a cast to (TYPE [N])OBJECT,
166 where N is sizeof(OBJECT)/sizeof(TYPE). */
167 if (code1 == TYPE_CODE_ARRAY)
169 struct type *element_type = TYPE_TARGET_TYPE (type);
170 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
171 if (element_length > 0
172 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
174 struct type *range_type = TYPE_INDEX_TYPE (type);
175 int val_length = TYPE_LENGTH (type2);
176 LONGEST low_bound, high_bound, new_length;
177 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
178 low_bound = 0, high_bound = 0;
179 new_length = val_length / element_length;
180 if (val_length % element_length != 0)
181 warning("array element type size does not divide object size in cast");
182 /* FIXME-type-allocation: need a way to free this type when we are
184 range_type = create_range_type ((struct type *) NULL,
185 TYPE_TARGET_TYPE (range_type),
187 new_length + low_bound - 1);
188 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
189 element_type, range_type);
194 if (current_language->c_style_arrays
195 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
196 arg2 = value_coerce_array (arg2);
198 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
199 arg2 = value_coerce_function (arg2);
201 type2 = check_typedef (VALUE_TYPE (arg2));
202 COERCE_VARYING_ARRAY (arg2, type2);
203 code2 = TYPE_CODE (type2);
205 if (code1 == TYPE_CODE_COMPLEX)
206 return cast_into_complex (type, arg2);
207 if (code1 == TYPE_CODE_BOOL || code1 == TYPE_CODE_CHAR)
208 code1 = TYPE_CODE_INT;
209 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
210 code2 = TYPE_CODE_INT;
212 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
213 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
215 if ( code1 == TYPE_CODE_STRUCT
216 && code2 == TYPE_CODE_STRUCT
217 && TYPE_NAME (type) != 0)
219 /* Look in the type of the source to see if it contains the
220 type of the target as a superclass. If so, we'll need to
221 offset the object in addition to changing its type. */
222 value_ptr v = search_struct_field (type_name_no_tag (type),
226 VALUE_TYPE (v) = type;
230 if (code1 == TYPE_CODE_FLT && scalar)
231 return value_from_double (type, value_as_double (arg2));
232 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
233 || code1 == TYPE_CODE_RANGE)
234 && (scalar || code2 == TYPE_CODE_PTR))
235 return value_from_longest (type, value_as_long (arg2));
236 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
238 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
240 /* Look in the type of the source to see if it contains the
241 type of the target as a superclass. If so, we'll need to
242 offset the pointer rather than just change its type. */
243 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
244 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
245 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
246 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
247 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
249 value_ptr v = search_struct_field (type_name_no_tag (t1),
250 value_ind (arg2), 0, t2, 1);
254 VALUE_TYPE (v) = type;
258 /* No superclass found, just fall through to change ptr type. */
260 VALUE_TYPE (arg2) = type;
263 else if (chill_varying_type (type))
265 struct type *range1, *range2, *eltype1, *eltype2;
268 LONGEST low_bound, high_bound;
269 char *valaddr, *valaddr_data;
270 if (code2 == TYPE_CODE_BITSTRING)
271 error ("not implemented: converting bitstring to varying type");
272 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
273 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
274 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
275 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
276 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
277 error ("Invalid conversion to varying type");
278 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
279 range2 = TYPE_FIELD_TYPE (type2, 0);
280 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
283 count1 = high_bound - low_bound + 1;
284 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
285 count1 = -1, count2 = 0; /* To force error before */
287 count2 = high_bound - low_bound + 1;
289 error ("target varying type is too small");
290 val = allocate_value (type);
291 valaddr = VALUE_CONTENTS_RAW (val);
292 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
293 /* Set val's __var_length field to count2. */
294 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
296 /* Set the __var_data field to count2 elements copied from arg2. */
297 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
298 count2 * TYPE_LENGTH (eltype2));
299 /* Zero the rest of the __var_data field of val. */
300 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
301 (count1 - count2) * TYPE_LENGTH (eltype2));
304 else if (VALUE_LVAL (arg2) == lval_memory)
306 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
308 else if (code1 == TYPE_CODE_VOID)
310 return value_zero (builtin_type_void, not_lval);
314 error ("Invalid cast.");
319 /* Create a value of type TYPE that is zero, and return it. */
322 value_zero (type, lv)
326 register value_ptr val = allocate_value (type);
328 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
329 VALUE_LVAL (val) = lv;
334 /* Return a value with type TYPE located at ADDR.
336 Call value_at only if the data needs to be fetched immediately;
337 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
338 value_at_lazy instead. value_at_lazy simply records the address of
339 the data and sets the lazy-evaluation-required flag. The lazy flag
340 is tested in the VALUE_CONTENTS macro, which is used if and when
341 the contents are actually required. */
344 value_at (type, addr)
348 register value_ptr val;
350 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
351 error ("Attempt to dereference a generic pointer.");
353 val = allocate_value (type);
355 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
357 VALUE_LVAL (val) = lval_memory;
358 VALUE_ADDRESS (val) = addr;
363 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
366 value_at_lazy (type, addr)
370 register value_ptr val;
372 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
373 error ("Attempt to dereference a generic pointer.");
375 val = allocate_value (type);
377 VALUE_LVAL (val) = lval_memory;
378 VALUE_ADDRESS (val) = addr;
379 VALUE_LAZY (val) = 1;
384 /* Called only from the VALUE_CONTENTS macro, if the current data for
385 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
386 data from the user's process, and clears the lazy flag to indicate
387 that the data in the buffer is valid.
389 If the value is zero-length, we avoid calling read_memory, which would
390 abort. We mark the value as fetched anyway -- all 0 bytes of it.
392 This function returns a value because it is used in the VALUE_CONTENTS
393 macro as part of an expression, where a void would not work. The
397 value_fetch_lazy (val)
398 register value_ptr val;
400 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
401 int length = TYPE_LENGTH (VALUE_TYPE (val));
404 read_memory (addr, VALUE_CONTENTS_RAW (val), length);
405 VALUE_LAZY (val) = 0;
410 /* Store the contents of FROMVAL into the location of TOVAL.
411 Return a new value with the location of TOVAL and contents of FROMVAL. */
414 value_assign (toval, fromval)
415 register value_ptr toval, fromval;
417 register struct type *type;
418 register value_ptr val;
419 char raw_buffer[MAX_REGISTER_RAW_SIZE];
422 if (!toval->modifiable)
423 error ("Left operand of assignment is not a modifiable lvalue.");
427 type = VALUE_TYPE (toval);
428 if (VALUE_LVAL (toval) != lval_internalvar)
429 fromval = value_cast (type, fromval);
431 COERCE_ARRAY (fromval);
432 CHECK_TYPEDEF (type);
434 /* If TOVAL is a special machine register requiring conversion
435 of program values to a special raw format,
436 convert FROMVAL's contents now, with result in `raw_buffer',
437 and set USE_BUFFER to the number of bytes to write. */
439 #ifdef REGISTER_CONVERTIBLE
440 if (VALUE_REGNO (toval) >= 0
441 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
443 int regno = VALUE_REGNO (toval);
444 if (REGISTER_CONVERTIBLE (regno))
446 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
447 REGISTER_CONVERT_TO_RAW (fromtype, regno,
448 VALUE_CONTENTS (fromval), raw_buffer);
449 use_buffer = REGISTER_RAW_SIZE (regno);
454 switch (VALUE_LVAL (toval))
456 case lval_internalvar:
457 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
458 return value_copy (VALUE_INTERNALVAR (toval)->value);
460 case lval_internalvar_component:
461 set_internalvar_component (VALUE_INTERNALVAR (toval),
462 VALUE_OFFSET (toval),
463 VALUE_BITPOS (toval),
464 VALUE_BITSIZE (toval),
469 if (VALUE_BITSIZE (toval))
471 char buffer[sizeof (LONGEST)];
472 /* We assume that the argument to read_memory is in units of
473 host chars. FIXME: Is that correct? */
474 int len = (VALUE_BITPOS (toval)
475 + VALUE_BITSIZE (toval)
479 if (len > (int) sizeof (LONGEST))
480 error ("Can't handle bitfields which don't fit in a %d bit word.",
481 sizeof (LONGEST) * HOST_CHAR_BIT);
483 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
485 modify_field (buffer, value_as_long (fromval),
486 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
487 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
491 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
492 raw_buffer, use_buffer);
494 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
495 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
499 if (VALUE_BITSIZE (toval))
501 char buffer[sizeof (LONGEST)];
502 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
504 if (len > (int) sizeof (LONGEST))
505 error ("Can't handle bitfields in registers larger than %d bits.",
506 sizeof (LONGEST) * HOST_CHAR_BIT);
508 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
509 > len * HOST_CHAR_BIT)
510 /* Getting this right would involve being very careful about
513 Can't handle bitfield which doesn't fit in a single register.");
515 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
517 modify_field (buffer, value_as_long (fromval),
518 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
519 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
523 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
524 raw_buffer, use_buffer);
527 /* Do any conversion necessary when storing this type to more
528 than one register. */
529 #ifdef REGISTER_CONVERT_FROM_TYPE
530 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
531 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
532 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
533 raw_buffer, TYPE_LENGTH (type));
535 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
536 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
539 /* Assigning to the stack pointer, frame pointer, and other
540 (architecture and calling convention specific) registers may
541 cause the frame cache to be out of date. We just do this
542 on all assignments to registers for simplicity; I doubt the slowdown
544 reinit_frame_cache ();
547 case lval_reg_frame_relative:
549 /* value is stored in a series of registers in the frame
550 specified by the structure. Copy that value out, modify
551 it, and copy it back in. */
552 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
553 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
554 int byte_offset = VALUE_OFFSET (toval) % reg_size;
555 int reg_offset = VALUE_OFFSET (toval) / reg_size;
558 /* Make the buffer large enough in all cases. */
559 char *buffer = (char *) alloca (amount_to_copy
561 + MAX_REGISTER_RAW_SIZE);
564 struct frame_info *frame;
566 /* Figure out which frame this is in currently. */
567 for (frame = get_current_frame ();
568 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
569 frame = get_prev_frame (frame))
573 error ("Value being assigned to is no longer active.");
575 amount_to_copy += (reg_size - amount_to_copy % reg_size);
578 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
580 amount_copied < amount_to_copy;
581 amount_copied += reg_size, regno++)
583 get_saved_register (buffer + amount_copied,
584 (int *)NULL, (CORE_ADDR *)NULL,
585 frame, regno, (enum lval_type *)NULL);
588 /* Modify what needs to be modified. */
589 if (VALUE_BITSIZE (toval))
590 modify_field (buffer + byte_offset,
591 value_as_long (fromval),
592 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
594 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
596 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
600 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
602 amount_copied < amount_to_copy;
603 amount_copied += reg_size, regno++)
609 /* Just find out where to put it. */
610 get_saved_register ((char *)NULL,
611 &optim, &addr, frame, regno, &lval);
614 error ("Attempt to assign to a value that was optimized out.");
615 if (lval == lval_memory)
616 write_memory (addr, buffer + amount_copied, reg_size);
617 else if (lval == lval_register)
618 write_register_bytes (addr, buffer + amount_copied, reg_size);
620 error ("Attempt to assign to an unmodifiable value.");
627 error ("Left operand of assignment is not an lvalue.");
630 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
631 If the field is signed, and is negative, then sign extend. */
632 if ((VALUE_BITSIZE (toval) > 0)
633 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
635 LONGEST fieldval = value_as_long (fromval);
636 LONGEST valmask = (((unsigned LONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
639 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
640 fieldval |= ~valmask;
642 fromval = value_from_longest (type, fieldval);
645 val = value_copy (toval);
646 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
648 VALUE_TYPE (val) = type;
653 /* Extend a value VAL to COUNT repetitions of its type. */
656 value_repeat (arg1, count)
660 register value_ptr val;
662 if (VALUE_LVAL (arg1) != lval_memory)
663 error ("Only values in memory can be extended with '@'.");
665 error ("Invalid number %d of repetitions.", count);
667 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
669 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
670 VALUE_CONTENTS_RAW (val),
671 TYPE_LENGTH (VALUE_TYPE (val)));
672 VALUE_LVAL (val) = lval_memory;
673 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
679 value_of_variable (var, b)
684 struct frame_info *frame;
687 /* Use selected frame. */
691 frame = block_innermost_frame (b);
692 if (frame == NULL && symbol_read_needs_frame (var))
694 if (BLOCK_FUNCTION (b) != NULL
695 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
696 error ("No frame is currently executing in block %s.",
697 SYMBOL_NAME (BLOCK_FUNCTION (b)));
699 error ("No frame is currently executing in specified block");
702 val = read_var_value (var, frame);
704 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
708 /* Given a value which is an array, return a value which is a pointer to its
709 first element, regardless of whether or not the array has a nonzero lower
712 FIXME: A previous comment here indicated that this routine should be
713 substracting the array's lower bound. It's not clear to me that this
714 is correct. Given an array subscripting operation, it would certainly
715 work to do the adjustment here, essentially computing:
717 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
719 However I believe a more appropriate and logical place to account for
720 the lower bound is to do so in value_subscript, essentially computing:
722 (&array[0] + ((index - lowerbound) * sizeof array[0]))
724 As further evidence consider what would happen with operations other
725 than array subscripting, where the caller would get back a value that
726 had an address somewhere before the actual first element of the array,
727 and the information about the lower bound would be lost because of
728 the coercion to pointer type.
732 value_coerce_array (arg1)
735 register struct type *type = check_typedef (VALUE_TYPE (arg1));
737 if (VALUE_LVAL (arg1) != lval_memory)
738 error ("Attempt to take address of value not located in memory.");
740 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
741 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
744 /* Given a value which is a function, return a value which is a pointer
748 value_coerce_function (arg1)
752 if (VALUE_LVAL (arg1) != lval_memory)
753 error ("Attempt to take address of value not located in memory.");
755 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
756 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
759 /* Return a pointer value for the object for which ARG1 is the contents. */
765 struct type *type = check_typedef (VALUE_TYPE (arg1));
766 if (TYPE_CODE (type) == TYPE_CODE_REF)
768 /* Copy the value, but change the type from (T&) to (T*).
769 We keep the same location information, which is efficient,
770 and allows &(&X) to get the location containing the reference. */
771 value_ptr arg2 = value_copy (arg1);
772 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
775 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
776 return value_coerce_function (arg1);
778 if (VALUE_LVAL (arg1) != lval_memory)
779 error ("Attempt to take address of value not located in memory.");
781 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
782 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
785 /* Given a value of a pointer type, apply the C unary * operator to it. */
793 type1 = check_typedef (VALUE_TYPE (arg1));
795 if (TYPE_CODE (type1) == TYPE_CODE_MEMBER)
796 error ("not implemented: member types in value_ind");
798 /* Allow * on an integer so we can cast it to whatever we want.
799 This returns an int, which seems like the most C-like thing
800 to do. "long long" variables are rare enough that
801 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
802 if (TYPE_CODE (type1) == TYPE_CODE_INT)
803 return value_at (builtin_type_int,
804 (CORE_ADDR) value_as_long (arg1));
805 else if (TYPE_CODE (type1) == TYPE_CODE_PTR)
806 return value_at_lazy (TYPE_TARGET_TYPE (type1), value_as_pointer (arg1));
807 error ("Attempt to take contents of a non-pointer value.");
808 return 0; /* For lint -- never reached */
811 /* Pushing small parts of stack frames. */
813 /* Push one word (the size of object that a register holds). */
818 unsigned LONGEST word;
820 register int len = REGISTER_SIZE;
821 char buffer[MAX_REGISTER_RAW_SIZE];
823 store_unsigned_integer (buffer, len, word);
826 write_memory (sp, buffer, len);
827 #else /* stack grows upward */
828 write_memory (sp, buffer, len);
830 #endif /* stack grows upward */
835 /* Push LEN bytes with data at BUFFER. */
838 push_bytes (sp, buffer, len)
845 write_memory (sp, buffer, len);
846 #else /* stack grows upward */
847 write_memory (sp, buffer, len);
849 #endif /* stack grows upward */
854 /* Push onto the stack the specified value VALUE. */
856 #ifndef PUSH_ARGUMENTS
860 register CORE_ADDR sp;
863 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
867 write_memory (sp, VALUE_CONTENTS (arg), len);
868 #else /* stack grows upward */
869 write_memory (sp, VALUE_CONTENTS (arg), len);
871 #endif /* stack grows upward */
876 #endif /* !PUSH_ARGUMENTS */
878 /* Perform the standard coercions that are specified
879 for arguments to be passed to C functions.
881 If PARAM_TYPE is non-NULL, it is the expected parameter type. */
884 value_arg_coerce (arg, param_type)
886 struct type *param_type;
888 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
889 register struct type *type
890 = param_type ? check_typedef (param_type) : arg_type;
892 switch (TYPE_CODE (type))
895 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
897 arg = value_addr (arg);
898 VALUE_TYPE (arg) = param_type;
906 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
907 type = builtin_type_int;
910 /* coerce float to double, unless the function prototype specifies float */
911 if (COERCE_FLOAT_TO_DOUBLE)
913 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
914 type = builtin_type_double;
915 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
916 type = builtin_type_long_double;
920 type = lookup_pointer_type (type);
922 case TYPE_CODE_ARRAY:
923 if (current_language->c_style_arrays)
924 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
926 case TYPE_CODE_UNDEF:
928 case TYPE_CODE_STRUCT:
929 case TYPE_CODE_UNION:
932 case TYPE_CODE_RANGE:
933 case TYPE_CODE_STRING:
934 case TYPE_CODE_BITSTRING:
935 case TYPE_CODE_ERROR:
936 case TYPE_CODE_MEMBER:
937 case TYPE_CODE_METHOD:
938 case TYPE_CODE_COMPLEX:
943 return value_cast (type, arg);
946 /* Determine a function's address and its return type from its value.
947 Calls error() if the function is not valid for calling. */
950 find_function_addr (function, retval_type)
952 struct type **retval_type;
954 register struct type *ftype = check_typedef (VALUE_TYPE (function));
955 register enum type_code code = TYPE_CODE (ftype);
956 struct type *value_type;
959 /* If it's a member function, just look at the function
962 /* Determine address to call. */
963 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
965 funaddr = VALUE_ADDRESS (function);
966 value_type = TYPE_TARGET_TYPE (ftype);
968 else if (code == TYPE_CODE_PTR)
970 funaddr = value_as_pointer (function);
971 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
972 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
973 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
975 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
976 /* FIXME: This is a workaround for the unusual function
977 pointer representation on the RS/6000, see comment
978 in config/rs6000/tm-rs6000.h */
979 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
981 value_type = TYPE_TARGET_TYPE (ftype);
984 value_type = builtin_type_int;
986 else if (code == TYPE_CODE_INT)
988 /* Handle the case of functions lacking debugging info.
989 Their values are characters since their addresses are char */
990 if (TYPE_LENGTH (ftype) == 1)
991 funaddr = value_as_pointer (value_addr (function));
993 /* Handle integer used as address of a function. */
994 funaddr = (CORE_ADDR) value_as_long (function);
996 value_type = builtin_type_int;
999 error ("Invalid data type for function to be called.");
1001 *retval_type = value_type;
1005 #if defined (CALL_DUMMY)
1006 /* All this stuff with a dummy frame may seem unnecessarily complicated
1007 (why not just save registers in GDB?). The purpose of pushing a dummy
1008 frame which looks just like a real frame is so that if you call a
1009 function and then hit a breakpoint (get a signal, etc), "backtrace"
1010 will look right. Whether the backtrace needs to actually show the
1011 stack at the time the inferior function was called is debatable, but
1012 it certainly needs to not display garbage. So if you are contemplating
1013 making dummy frames be different from normal frames, consider that. */
1015 /* Perform a function call in the inferior.
1016 ARGS is a vector of values of arguments (NARGS of them).
1017 FUNCTION is a value, the function to be called.
1018 Returns a value representing what the function returned.
1019 May fail to return, if a breakpoint or signal is hit
1020 during the execution of the function.
1022 ARGS is modified to contain coerced values. */
1025 call_function_by_hand (function, nargs, args)
1030 register CORE_ADDR sp;
1033 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1034 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1035 and remove any extra bytes which might exist because unsigned LONGEST is
1036 bigger than REGISTER_SIZE. */
1037 static unsigned LONGEST dummy[] = CALL_DUMMY;
1038 char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)];
1040 struct type *value_type;
1041 unsigned char struct_return;
1042 CORE_ADDR struct_addr = 0;
1043 struct inferior_status inf_status;
1044 struct cleanup *old_chain;
1048 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1050 if (!target_has_execution)
1053 save_inferior_status (&inf_status, 1);
1054 old_chain = make_cleanup (restore_inferior_status, &inf_status);
1056 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1057 (and POP_FRAME for restoring them). (At least on most machines)
1058 they are saved on the stack in the inferior. */
1061 old_sp = sp = read_sp ();
1063 #if 1 INNER_THAN 2 /* Stack grows down */
1064 sp -= sizeof dummy1;
1066 #else /* Stack grows up */
1068 sp += sizeof dummy1;
1071 funaddr = find_function_addr (function, &value_type);
1072 CHECK_TYPEDEF (value_type);
1075 struct block *b = block_for_pc (funaddr);
1076 /* If compiled without -g, assume GCC. */
1077 using_gcc = b == NULL ? 0 : BLOCK_GCC_COMPILED (b);
1080 /* Are we returning a value using a structure return or a normal
1083 struct_return = using_struct_return (function, funaddr, value_type,
1086 /* Create a call sequence customized for this function
1087 and the number of arguments for it. */
1088 for (i = 0; i < (int) (sizeof (dummy) / sizeof (dummy[0])); i++)
1089 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1091 (unsigned LONGEST)dummy[i]);
1093 #ifdef GDB_TARGET_IS_HPPA
1094 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1095 value_type, using_gcc);
1097 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1098 value_type, using_gcc);
1102 #if CALL_DUMMY_LOCATION == ON_STACK
1103 write_memory (start_sp, (char *)dummy1, sizeof dummy1);
1104 #endif /* On stack. */
1106 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
1107 /* Convex Unix prohibits executing in the stack segment. */
1108 /* Hope there is empty room at the top of the text segment. */
1110 extern CORE_ADDR text_end;
1113 for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
1114 if (read_memory_integer (start_sp, 1) != 0)
1115 error ("text segment full -- no place to put call");
1118 real_pc = text_end - sizeof dummy1;
1119 write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1121 #endif /* Before text_end. */
1123 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
1125 extern CORE_ADDR text_end;
1129 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1131 error ("Cannot write text segment -- call_function failed");
1133 #endif /* After text_end. */
1135 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
1137 #endif /* At entry point. */
1140 sp = old_sp; /* It really is used, for some ifdef's... */
1143 if (nargs < TYPE_NFIELDS (ftype))
1144 error ("too few arguments in function call");
1146 for (i = nargs - 1; i >= 0; i--)
1148 struct type *param_type;
1149 if (TYPE_NFIELDS (ftype) > i)
1150 param_type = TYPE_FIELD_TYPE (ftype, i);
1153 args[i] = value_arg_coerce (args[i], param_type);
1156 #if defined (REG_STRUCT_HAS_ADDR)
1158 /* This is a machine like the sparc, where we may need to pass a pointer
1159 to the structure, not the structure itself. */
1160 for (i = nargs - 1; i >= 0; i--)
1162 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1163 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1164 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1165 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1166 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1167 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1168 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1169 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1170 && TYPE_LENGTH (arg_type) > 8)
1172 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1175 int len = TYPE_LENGTH (arg_type);
1177 int aligned_len = STACK_ALIGN (len);
1179 int aligned_len = len;
1181 #if !(1 INNER_THAN 2)
1182 /* The stack grows up, so the address of the thing we push
1183 is the stack pointer before we push it. */
1188 /* Push the structure. */
1189 write_memory (sp, VALUE_CONTENTS (args[i]), len);
1191 /* The stack grows down, so the address of the thing we push
1192 is the stack pointer after we push it. */
1197 /* The value we're going to pass is the address of the thing
1199 args[i] = value_from_longest (lookup_pointer_type (value_type),
1204 #endif /* REG_STRUCT_HAS_ADDR. */
1206 /* Reserve space for the return structure to be written on the
1207 stack, if necessary */
1211 int len = TYPE_LENGTH (value_type);
1213 len = STACK_ALIGN (len);
1225 /* If stack grows down, we must leave a hole at the top. */
1229 for (i = nargs - 1; i >= 0; i--)
1230 len += TYPE_LENGTH (VALUE_TYPE (args[i]));
1231 #ifdef CALL_DUMMY_STACK_ADJUST
1232 len += CALL_DUMMY_STACK_ADJUST;
1235 sp -= STACK_ALIGN (len) - len;
1237 sp += STACK_ALIGN (len) - len;
1240 #endif /* STACK_ALIGN */
1242 #ifdef PUSH_ARGUMENTS
1243 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1244 #else /* !PUSH_ARGUMENTS */
1245 for (i = nargs - 1; i >= 0; i--)
1246 sp = value_push (sp, args[i]);
1247 #endif /* !PUSH_ARGUMENTS */
1249 #ifdef CALL_DUMMY_STACK_ADJUST
1251 sp -= CALL_DUMMY_STACK_ADJUST;
1253 sp += CALL_DUMMY_STACK_ADJUST;
1255 #endif /* CALL_DUMMY_STACK_ADJUST */
1257 /* Store the address at which the structure is supposed to be
1258 written. Note that this (and the code which reserved the space
1259 above) assumes that gcc was used to compile this function. Since
1260 it doesn't cost us anything but space and if the function is pcc
1261 it will ignore this value, we will make that assumption.
1263 Also note that on some machines (like the sparc) pcc uses a
1264 convention like gcc's. */
1267 STORE_STRUCT_RETURN (struct_addr, sp);
1269 /* Write the stack pointer. This is here because the statements above
1270 might fool with it. On SPARC, this write also stores the register
1271 window into the right place in the new stack frame, which otherwise
1272 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1276 char retbuf[REGISTER_BYTES];
1278 struct symbol *symbol;
1281 symbol = find_pc_function (funaddr);
1284 name = SYMBOL_SOURCE_NAME (symbol);
1288 /* Try the minimal symbols. */
1289 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1293 name = SYMBOL_SOURCE_NAME (msymbol);
1299 sprintf (format, "at %s", local_hex_format ());
1301 /* FIXME-32x64: assumes funaddr fits in a long. */
1302 sprintf (name, format, (unsigned long) funaddr);
1305 /* Execute the stack dummy routine, calling FUNCTION.
1306 When it is done, discard the empty frame
1307 after storing the contents of all regs into retbuf. */
1308 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1310 /* We stopped somewhere besides the call dummy. */
1312 /* If we did the cleanups, we would print a spurious error message
1313 (Unable to restore previously selected frame), would write the
1314 registers from the inf_status (which is wrong), and would do other
1315 wrong things (like set stop_bpstat to the wrong thing). */
1316 discard_cleanups (old_chain);
1317 /* Prevent memory leak. */
1318 bpstat_clear (&inf_status.stop_bpstat);
1320 /* The following error message used to say "The expression
1321 which contained the function call has been discarded." It
1322 is a hard concept to explain in a few words. Ideally, GDB
1323 would be able to resume evaluation of the expression when
1324 the function finally is done executing. Perhaps someday
1325 this will be implemented (it would not be easy). */
1327 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1328 a C++ name with arguments and stuff. */
1330 The program being debugged stopped while in a function called from GDB.\n\
1331 When the function (%s) is done executing, GDB will silently\n\
1332 stop (instead of continuing to evaluate the expression containing\n\
1333 the function call).", name);
1336 do_cleanups (old_chain);
1338 /* Figure out the value returned by the function. */
1339 return value_being_returned (value_type, retbuf, struct_return);
1342 #else /* no CALL_DUMMY. */
1344 call_function_by_hand (function, nargs, args)
1349 error ("Cannot invoke functions on this machine.");
1351 #endif /* no CALL_DUMMY. */
1354 /* Create a value for an array by allocating space in the inferior, copying
1355 the data into that space, and then setting up an array value.
1357 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1358 populated from the values passed in ELEMVEC.
1360 The element type of the array is inherited from the type of the
1361 first element, and all elements must have the same size (though we
1362 don't currently enforce any restriction on their types). */
1365 value_array (lowbound, highbound, elemvec)
1372 unsigned int typelength;
1374 struct type *rangetype;
1375 struct type *arraytype;
1378 /* Validate that the bounds are reasonable and that each of the elements
1379 have the same size. */
1381 nelem = highbound - lowbound + 1;
1384 error ("bad array bounds (%d, %d)", lowbound, highbound);
1386 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1387 for (idx = 1; idx < nelem; idx++)
1389 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1391 error ("array elements must all be the same size");
1395 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1396 lowbound, highbound);
1397 arraytype = create_array_type ((struct type *) NULL,
1398 VALUE_TYPE (elemvec[0]), rangetype);
1400 if (!current_language->c_style_arrays)
1402 val = allocate_value (arraytype);
1403 for (idx = 0; idx < nelem; idx++)
1405 memcpy (VALUE_CONTENTS_RAW (val) + (idx * typelength),
1406 VALUE_CONTENTS (elemvec[idx]),
1412 /* Allocate space to store the array in the inferior, and then initialize
1413 it by copying in each element. FIXME: Is it worth it to create a
1414 local buffer in which to collect each value and then write all the
1415 bytes in one operation? */
1417 addr = allocate_space_in_inferior (nelem * typelength);
1418 for (idx = 0; idx < nelem; idx++)
1420 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1424 /* Create the array type and set up an array value to be evaluated lazily. */
1426 val = value_at_lazy (arraytype, addr);
1430 /* Create a value for a string constant by allocating space in the inferior,
1431 copying the data into that space, and returning the address with type
1432 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1434 Note that string types are like array of char types with a lower bound of
1435 zero and an upper bound of LEN - 1. Also note that the string may contain
1436 embedded null bytes. */
1439 value_string (ptr, len)
1444 int lowbound = current_language->string_lower_bound;
1445 struct type *rangetype = create_range_type ((struct type *) NULL,
1447 lowbound, len + lowbound - 1);
1448 struct type *stringtype
1449 = create_string_type ((struct type *) NULL, rangetype);
1452 if (current_language->c_style_arrays == 0)
1454 val = allocate_value (stringtype);
1455 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1460 /* Allocate space to store the string in the inferior, and then
1461 copy LEN bytes from PTR in gdb to that address in the inferior. */
1463 addr = allocate_space_in_inferior (len);
1464 write_memory (addr, ptr, len);
1466 val = value_at_lazy (stringtype, addr);
1471 value_bitstring (ptr, len)
1476 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1478 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1479 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1480 val = allocate_value (type);
1481 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1485 /* See if we can pass arguments in T2 to a function which takes arguments
1486 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1487 arguments need coercion of some sort, then the coerced values are written
1488 into T2. Return value is 0 if the arguments could be matched, or the
1489 position at which they differ if not.
1491 STATICP is nonzero if the T1 argument list came from a
1492 static member function.
1494 For non-static member functions, we ignore the first argument,
1495 which is the type of the instance variable. This is because we want
1496 to handle calls with objects from derived classes. This is not
1497 entirely correct: we should actually check to make sure that a
1498 requested operation is type secure, shouldn't we? FIXME. */
1501 typecmp (staticp, t1, t2)
1510 if (staticp && t1 == 0)
1514 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1515 if (t1[!staticp] == 0) return 0;
1516 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1518 struct type *tt1, *tt2;
1521 tt1 = check_typedef (t1[i]);
1522 tt2 = check_typedef (VALUE_TYPE(t2[i]));
1523 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1524 /* We should be doing hairy argument matching, as below. */
1525 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1527 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1528 t2[i] = value_coerce_array (t2[i]);
1530 t2[i] = value_addr (t2[i]);
1534 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1535 && ( TYPE_CODE (tt2) == TYPE_CODE_ARRAY
1536 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
1538 tt1 = check_typedef (TYPE_TARGET_TYPE(tt1));
1539 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1541 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1542 /* Array to pointer is a `trivial conversion' according to the ARM. */
1544 /* We should be doing much hairier argument matching (see section 13.2
1545 of the ARM), but as a quick kludge, just check for the same type
1547 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1550 if (!t1[i]) return 0;
1551 return t2[i] ? i+1 : 0;
1554 /* Helper function used by value_struct_elt to recurse through baseclasses.
1555 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1556 and search in it assuming it has (class) type TYPE.
1557 If found, return value, else return NULL.
1559 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1560 look for a baseclass named NAME. */
1563 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1565 register value_ptr arg1;
1567 register struct type *type;
1568 int looking_for_baseclass;
1572 CHECK_TYPEDEF (type);
1574 if (! looking_for_baseclass)
1575 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1577 char *t_field_name = TYPE_FIELD_NAME (type, i);
1579 if (t_field_name && STREQ (t_field_name, name))
1582 if (TYPE_FIELD_STATIC (type, i))
1584 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1585 struct symbol *sym =
1586 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1588 error ("Internal error: could not find physical static variable named %s",
1590 v = value_at (TYPE_FIELD_TYPE (type, i),
1591 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1594 v = value_primitive_field (arg1, offset, i, type);
1596 error("there is no field named %s", name);
1601 && (t_field_name[0] == '\0'
1602 || (TYPE_CODE (type) == TYPE_CODE_UNION
1603 && STREQ (t_field_name, "else"))))
1605 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1606 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1607 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1609 /* Look for a match through the fields of an anonymous union,
1610 or anonymous struct. C++ provides anonymous unions.
1612 In the GNU Chill implementation of variant record types,
1613 each <alternative field> has an (anonymous) union type,
1614 each member of the union represents a <variant alternative>.
1615 Each <variant alternative> is represented as a struct,
1616 with a member for each <variant field>. */
1619 int new_offset = offset;
1621 /* This is pretty gross. In G++, the offset in an anonymous
1622 union is relative to the beginning of the enclosing struct.
1623 In the GNU Chill implementation of variant records,
1624 the bitpos is zero in an anonymous union field, so we
1625 have to add the offset of the union here. */
1626 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1627 || (TYPE_NFIELDS (field_type) > 0
1628 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1629 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1631 v = search_struct_field (name, arg1, new_offset, field_type,
1632 looking_for_baseclass);
1639 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1642 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1643 /* If we are looking for baseclasses, this is what we get when we
1644 hit them. But it could happen that the base part's member name
1645 is not yet filled in. */
1646 int found_baseclass = (looking_for_baseclass
1647 && TYPE_BASECLASS_NAME (type, i) != NULL
1648 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1650 if (BASETYPE_VIA_VIRTUAL (type, i))
1652 int boffset = VALUE_OFFSET (arg1) + offset;
1653 boffset = baseclass_offset (type, i,
1654 VALUE_CONTENTS (arg1) + boffset,
1655 VALUE_ADDRESS (arg1) + boffset);
1657 error ("virtual baseclass botch");
1658 if (found_baseclass)
1660 value_ptr v2 = allocate_value (basetype);
1661 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1662 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1663 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + offset + boffset;
1664 if (VALUE_LAZY (arg1))
1665 VALUE_LAZY (v2) = 1;
1667 memcpy (VALUE_CONTENTS_RAW (v2),
1668 VALUE_CONTENTS_RAW (arg1) + offset + boffset,
1669 TYPE_LENGTH (basetype));
1672 v = search_struct_field (name, arg1, offset + boffset,
1673 TYPE_BASECLASS (type, i),
1674 looking_for_baseclass);
1676 else if (found_baseclass)
1677 v = value_primitive_field (arg1, offset, i, type);
1679 v = search_struct_field (name, arg1,
1680 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1681 basetype, looking_for_baseclass);
1687 /* Helper function used by value_struct_elt to recurse through baseclasses.
1688 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1689 and search in it assuming it has (class) type TYPE.
1690 If found, return value, else if name matched and args not return (value)-1,
1691 else return NULL. */
1694 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1696 register value_ptr *arg1p, *args;
1697 int offset, *static_memfuncp;
1698 register struct type *type;
1702 int name_matched = 0;
1703 char dem_opname[64];
1705 CHECK_TYPEDEF (type);
1706 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1708 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1709 /* FIXME! May need to check for ARM demangling here */
1710 if (strncmp(t_field_name, "__", 2)==0 ||
1711 strncmp(t_field_name, "op", 2)==0 ||
1712 strncmp(t_field_name, "type", 4)==0 )
1714 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1715 t_field_name = dem_opname;
1716 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1717 t_field_name = dem_opname;
1719 if (t_field_name && STREQ (t_field_name, name))
1721 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1722 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1725 if (j > 0 && args == 0)
1726 error ("cannot resolve overloaded method `%s'", name);
1729 if (TYPE_FN_FIELD_STUB (f, j))
1730 check_stub_method (type, i, j);
1731 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1732 TYPE_FN_FIELD_ARGS (f, j), args))
1734 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1735 return value_virtual_fn_field (arg1p, f, j, type, offset);
1736 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1737 *static_memfuncp = 1;
1738 v = value_fn_field (arg1p, f, j, type, offset);
1739 if (v != NULL) return v;
1746 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1750 if (BASETYPE_VIA_VIRTUAL (type, i))
1752 base_offset = VALUE_OFFSET (*arg1p) + offset;
1754 baseclass_offset (type, i,
1755 VALUE_CONTENTS (*arg1p) + base_offset,
1756 VALUE_ADDRESS (*arg1p) + base_offset);
1757 if (base_offset == -1)
1758 error ("virtual baseclass botch");
1762 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1764 v = search_struct_method (name, arg1p, args, base_offset + offset,
1765 static_memfuncp, TYPE_BASECLASS (type, i));
1766 if (v == (value_ptr) -1)
1772 /* FIXME-bothner: Why is this commented out? Why is it here? */
1773 /* *arg1p = arg1_tmp;*/
1777 if (name_matched) return (value_ptr) -1;
1781 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1782 extract the component named NAME from the ultimate target structure/union
1783 and return it as a value with its appropriate type.
1784 ERR is used in the error message if *ARGP's type is wrong.
1786 C++: ARGS is a list of argument types to aid in the selection of
1787 an appropriate method. Also, handle derived types.
1789 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1790 where the truthvalue of whether the function that was resolved was
1791 a static member function or not is stored.
1793 ERR is an error message to be printed in case the field is not found. */
1796 value_struct_elt (argp, args, name, static_memfuncp, err)
1797 register value_ptr *argp, *args;
1799 int *static_memfuncp;
1802 register struct type *t;
1805 COERCE_ARRAY (*argp);
1807 t = check_typedef (VALUE_TYPE (*argp));
1809 /* Follow pointers until we get to a non-pointer. */
1811 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1813 *argp = value_ind (*argp);
1814 /* Don't coerce fn pointer to fn and then back again! */
1815 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1816 COERCE_ARRAY (*argp);
1817 t = check_typedef (VALUE_TYPE (*argp));
1820 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1821 error ("not implemented: member type in value_struct_elt");
1823 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (t) != TYPE_CODE_UNION)
1825 error ("Attempt to extract a component of a value that is not a %s.", err);
1827 /* Assume it's not, unless we see that it is. */
1828 if (static_memfuncp)
1829 *static_memfuncp =0;
1833 /* if there are no arguments ...do this... */
1835 /* Try as a field first, because if we succeed, there
1836 is less work to be done. */
1837 v = search_struct_field (name, *argp, 0, t, 0);
1841 /* C++: If it was not found as a data field, then try to
1842 return it as a pointer to a method. */
1844 if (destructor_name_p (name, t))
1845 error ("Cannot get value of destructor");
1847 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1849 if (v == (value_ptr) -1)
1850 error ("Cannot take address of a method");
1853 if (TYPE_NFN_FIELDS (t))
1854 error ("There is no member or method named %s.", name);
1856 error ("There is no member named %s.", name);
1861 if (destructor_name_p (name, t))
1865 /* destructors are a special case. */
1866 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1867 TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0);
1868 if (!v) error("could not find destructor function named %s.", name);
1873 error ("destructor should not have any argument");
1877 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1879 if (v == (value_ptr) -1)
1881 error("Argument list of %s mismatch with component in the structure.", name);
1885 /* See if user tried to invoke data as function. If so,
1886 hand it back. If it's not callable (i.e., a pointer to function),
1887 gdb should give an error. */
1888 v = search_struct_field (name, *argp, 0, t, 0);
1892 error ("Structure has no component named %s.", name);
1896 /* C++: return 1 is NAME is a legitimate name for the destructor
1897 of type TYPE. If TYPE does not have a destructor, or
1898 if NAME is inappropriate for TYPE, an error is signaled. */
1900 destructor_name_p (name, type)
1902 const struct type *type;
1904 /* destructors are a special case. */
1908 char *dname = type_name_no_tag (type);
1909 char *cp = strchr (dname, '<');
1912 /* Do not compare the template part for template classes. */
1914 len = strlen (dname);
1917 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
1918 error ("name of destructor must equal name of class");
1925 /* Helper function for check_field: Given TYPE, a structure/union,
1926 return 1 if the component named NAME from the ultimate
1927 target structure/union is defined, otherwise, return 0. */
1930 check_field_in (type, name)
1931 register struct type *type;
1936 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1938 char *t_field_name = TYPE_FIELD_NAME (type, i);
1939 if (t_field_name && STREQ (t_field_name, name))
1943 /* C++: If it was not found as a data field, then try to
1944 return it as a pointer to a method. */
1946 /* Destructors are a special case. */
1947 if (destructor_name_p (name, type))
1950 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1952 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1956 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1957 if (check_field_in (TYPE_BASECLASS (type, i), name))
1964 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1965 return 1 if the component named NAME from the ultimate
1966 target structure/union is defined, otherwise, return 0. */
1969 check_field (arg1, name)
1970 register value_ptr arg1;
1973 register struct type *t;
1975 COERCE_ARRAY (arg1);
1977 t = VALUE_TYPE (arg1);
1979 /* Follow pointers until we get to a non-pointer. */
1984 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
1986 t = TYPE_TARGET_TYPE (t);
1989 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1990 error ("not implemented: member type in check_field");
1992 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1993 && TYPE_CODE (t) != TYPE_CODE_UNION)
1994 error ("Internal error: `this' is not an aggregate");
1996 return check_field_in (t, name);
1999 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2000 return the address of this member as a "pointer to member"
2001 type. If INTYPE is non-null, then it will be the type
2002 of the member we are looking for. This will help us resolve
2003 "pointers to member functions". This function is used
2004 to resolve user expressions of the form "DOMAIN::NAME". */
2007 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
2008 struct type *domain, *curtype, *intype;
2012 register struct type *t = curtype;
2016 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2017 && TYPE_CODE (t) != TYPE_CODE_UNION)
2018 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2020 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2022 char *t_field_name = TYPE_FIELD_NAME (t, i);
2024 if (t_field_name && STREQ (t_field_name, name))
2026 if (TYPE_FIELD_STATIC (t, i))
2028 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
2029 struct symbol *sym =
2030 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
2032 error ("Internal error: could not find physical static variable named %s",
2034 return value_at (SYMBOL_TYPE (sym),
2035 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
2037 if (TYPE_FIELD_PACKED (t, i))
2038 error ("pointers to bitfield members not allowed");
2040 return value_from_longest
2041 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2043 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2047 /* C++: If it was not found as a data field, then try to
2048 return it as a pointer to a method. */
2050 /* Destructors are a special case. */
2051 if (destructor_name_p (name, t))
2053 error ("member pointers to destructors not implemented yet");
2056 /* Perform all necessary dereferencing. */
2057 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2058 intype = TYPE_TARGET_TYPE (intype);
2060 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2062 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2063 char dem_opname[64];
2065 if (strncmp(t_field_name, "__", 2)==0 ||
2066 strncmp(t_field_name, "op", 2)==0 ||
2067 strncmp(t_field_name, "type", 4)==0 )
2069 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2070 t_field_name = dem_opname;
2071 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2072 t_field_name = dem_opname;
2074 if (t_field_name && STREQ (t_field_name, name))
2076 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2077 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2079 if (intype == 0 && j > 1)
2080 error ("non-unique member `%s' requires type instantiation", name);
2084 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2087 error ("no member function matches that type instantiation");
2092 if (TYPE_FN_FIELD_STUB (f, j))
2093 check_stub_method (t, i, j);
2094 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2096 return value_from_longest
2097 (lookup_reference_type
2098 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2100 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2104 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2105 0, VAR_NAMESPACE, 0, NULL);
2112 v = read_var_value (s, 0);
2114 VALUE_TYPE (v) = lookup_reference_type
2115 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2123 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2128 if (BASETYPE_VIA_VIRTUAL (t, i))
2131 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2132 v = value_struct_elt_for_reference (domain,
2133 offset + base_offset,
2134 TYPE_BASECLASS (t, i),
2143 /* C++: return the value of the class instance variable, if one exists.
2144 Flag COMPLAIN signals an error if the request is made in an
2145 inappropriate context. */
2148 value_of_this (complain)
2151 struct symbol *func, *sym;
2154 static const char funny_this[] = "this";
2157 if (selected_frame == 0)
2159 error ("no frame selected");
2162 func = get_frame_function (selected_frame);
2166 error ("no `this' in nameless context");
2170 b = SYMBOL_BLOCK_VALUE (func);
2171 i = BLOCK_NSYMS (b);
2174 error ("no args, no `this'");
2177 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2178 symbol instead of the LOC_ARG one (if both exist). */
2179 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
2183 error ("current stack frame not in method");
2188 this = read_var_value (sym, selected_frame);
2189 if (this == 0 && complain)
2190 error ("`this' argument at unknown address");
2194 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2195 long, starting at LOWBOUND. The result has the same lower bound as
2196 the original ARRAY. */
2199 value_slice (array, lowbound, length)
2201 int lowbound, length;
2203 struct type *slice_range_type, *slice_type, *range_type;
2204 LONGEST lowerbound, upperbound, offset;
2206 struct type *array_type;
2207 array_type = check_typedef (VALUE_TYPE (array));
2208 COERCE_VARYING_ARRAY (array, array_type);
2209 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2210 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2211 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2212 error ("cannot take slice of non-array");
2213 range_type = TYPE_INDEX_TYPE (array_type);
2214 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2215 error ("slice from bad array or bitstring");
2216 if (lowbound < lowerbound || length < 0
2217 || lowbound + length - 1 > upperbound
2218 /* Chill allows zero-length strings but not arrays. */
2219 || (current_language->la_language == language_chill
2220 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
2221 error ("slice out of range");
2222 /* FIXME-type-allocation: need a way to free this type when we are
2224 slice_range_type = create_range_type ((struct type*) NULL,
2225 TYPE_TARGET_TYPE (range_type),
2226 lowbound, lowbound + length - 1);
2227 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2230 slice_type = create_set_type ((struct type*) NULL, slice_range_type);
2231 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2232 slice = value_zero (slice_type, not_lval);
2233 for (i = 0; i < length; i++)
2235 int element = value_bit_index (array_type,
2236 VALUE_CONTENTS (array),
2239 error ("internal error accessing bitstring");
2240 else if (element > 0)
2242 int j = i % TARGET_CHAR_BIT;
2243 if (BITS_BIG_ENDIAN)
2244 j = TARGET_CHAR_BIT - 1 - j;
2245 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2248 /* We should set the address, bitssize, and bitspos, so the clice
2249 can be used on the LHS, but that may require extensions to
2250 value_assign. For now, just leave as a non_lval. FIXME. */
2254 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2256 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2257 slice_type = create_array_type ((struct type*) NULL, element_type,
2259 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2260 slice = allocate_value (slice_type);
2261 if (VALUE_LAZY (array))
2262 VALUE_LAZY (slice) = 1;
2264 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
2265 TYPE_LENGTH (slice_type));
2266 if (VALUE_LVAL (array) == lval_internalvar)
2267 VALUE_LVAL (slice) = lval_internalvar_component;
2269 VALUE_LVAL (slice) = VALUE_LVAL (array);
2270 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2271 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
2276 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
2277 value as a fixed-length array. */
2280 varying_to_slice (varray)
2283 struct type *vtype = check_typedef (VALUE_TYPE (varray));
2284 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
2285 VALUE_CONTENTS (varray)
2286 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
2287 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
2290 /* Create a value for a FORTRAN complex number. Currently most of
2291 the time values are coerced to COMPLEX*16 (i.e. a complex number
2292 composed of 2 doubles. This really should be a smarter routine
2293 that figures out precision inteligently as opposed to assuming
2294 doubles. FIXME: fmb */
2297 value_literal_complex (arg1, arg2, type)
2302 register value_ptr val;
2303 struct type *real_type = TYPE_TARGET_TYPE (type);
2305 val = allocate_value (type);
2306 arg1 = value_cast (real_type, arg1);
2307 arg2 = value_cast (real_type, arg2);
2309 memcpy (VALUE_CONTENTS_RAW (val),
2310 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
2311 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
2312 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
2316 /* Cast a value into the appropriate complex data type. */
2319 cast_into_complex (type, val)
2321 register value_ptr val;
2323 struct type *real_type = TYPE_TARGET_TYPE (type);
2324 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
2326 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
2327 value_ptr re_val = allocate_value (val_real_type);
2328 value_ptr im_val = allocate_value (val_real_type);
2330 memcpy (VALUE_CONTENTS_RAW (re_val),
2331 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
2332 memcpy (VALUE_CONTENTS_RAW (im_val),
2333 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
2334 TYPE_LENGTH (val_real_type));
2336 return value_literal_complex (re_val, im_val, type);
2338 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
2339 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
2340 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2342 error ("cannot cast non-number to complex");
2346 _initialize_valops ()
2350 (add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
2351 "Set automatic abandonment of expressions upon failure.",