1 /* Common target dependent code for GDB on ARM systems.
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 #include <ctype.h> /* XXX for isupper () */
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
35 #include "arch-utils.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
41 #include "dwarf2-frame.h"
43 #include "prologue-value.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
48 #include "gdb/sim-arm.h"
51 #include "coff/internal.h"
54 #include "gdb_assert.h"
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
69 #define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
72 /* The list of available "set arm ..." and "show arm ..." commands. */
73 static struct cmd_list_element *setarmcmdlist = NULL;
74 static struct cmd_list_element *showarmcmdlist = NULL;
76 /* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78 static const char *fp_model_strings[] =
88 /* A variable that can be configured by the user. */
89 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90 static const char *current_fp_model = "auto";
92 /* The ABI to use. Keep this in sync with arm_abi_kind. */
93 static const char *arm_abi_strings[] =
101 /* A variable that can be configured by the user. */
102 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103 static const char *arm_abi_string = "auto";
105 /* Number of different reg name sets (options). */
106 static int num_disassembly_options;
108 /* The standard register names, and all the valid aliases for them. */
113 } arm_register_aliases[] = {
114 /* Basic register numbers. */
131 /* Synonyms (argument and variable registers). */
144 /* Other platform-specific names for r9. */
152 /* Names used by GCC (not listed in the ARM EABI). */
155 /* A special name from the older ATPCS. */
159 static const char *const arm_register_names[] =
160 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
166 "fps", "cpsr" }; /* 24 25 */
168 /* Valid register name styles. */
169 static const char **valid_disassembly_styles;
171 /* Disassembly style to use. Default to "std" register names. */
172 static const char *disassembly_style;
174 /* This is used to keep the bfd arch_info in sync with the disassembly
176 static void set_disassembly_style_sfunc(char *, int,
177 struct cmd_list_element *);
178 static void set_disassembly_style (void);
180 static void convert_from_extended (const struct floatformat *, const void *,
182 static void convert_to_extended (const struct floatformat *, void *,
185 struct arm_prologue_cache
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
200 /* The register used to hold the frame pointer for this frame. */
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
207 /* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209 #define IS_THUMB_ADDR(addr) ((addr) & 1)
210 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
213 /* Set to true if the 32-bit mode is in use. */
217 /* Determine if the program counter specified in MEMADDR is in a Thumb
221 arm_pc_is_thumb (CORE_ADDR memaddr)
223 struct minimal_symbol *sym;
225 /* If bit 0 of the address is set, assume this is a Thumb address. */
226 if (IS_THUMB_ADDR (memaddr))
229 /* Thumb functions have a "special" bit set in minimal symbols. */
230 sym = lookup_minimal_symbol_by_pc (memaddr);
233 return (MSYMBOL_IS_SPECIAL (sym));
241 /* Remove useless bits from addresses in a running program. */
243 arm_addr_bits_remove (CORE_ADDR val)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
248 return (val & 0x03fffffc);
251 /* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
254 arm_smash_text_address (CORE_ADDR val)
259 /* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
264 thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
270 struct pv_area *stack;
271 struct cleanup *back_to;
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
287 while (start < limit)
291 insn = read_memory_unsigned_integer (start, 2);
293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
352 if (pv_area_store_would_trash (stack, addr))
355 pv_area_store (stack, addr, 4, regs[regno]);
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
371 do_cleanups (back_to);
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
407 do_cleanups (back_to);
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
414 The APCS (ARM Procedure Call Standard) defines the following
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
427 arm_skip_prologue (CORE_ADDR pc)
431 CORE_ADDR func_addr, func_end = 0;
433 struct symtab_and_line sal;
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (deprecated_pc_in_call_dummy (pc))
439 /* See what the symbol table says. */
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
456 /* Can't find the prologue end in the symbol table, try it the hard way
457 by disassembling the instructions. */
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
469 inst = read_memory_unsigned_integer (skip_pc, 4);
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
520 /* Un-recognized instruction; stop scanning. */
524 return skip_pc; /* End of prologue */
528 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
537 old SP -> 24 stack parameters
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
543 12 bytes. The frame register is R7.
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
550 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
555 /* Which register has been copied to register n? */
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = prev_pc;
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
575 /* We're in the boondocks: we have no idea where the start of the
579 prologue_end = min (prologue_end, prev_pc);
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
585 /* This function decodes an ARM function prologue to determine:
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
590 This information is stored in the "extra" fields of the frame_info.
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
596 stmfd sp!, {fp, ip, lr, pc}
600 Which would create this stack frame (offsets relative to FP):
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
606 SP -> -28 Local variables
608 The frame size would thus be 32 bytes, and the frame offset would be
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
616 A variable argument function call will look like:
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
623 Which would create this stack frame (offsets relative to FP):
624 IP -> 20 (caller's stack)
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
633 SP -> -28 Local variables
635 The frame size would thus be 48 bytes, and the frame offset would be
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
643 Also, note, the original version of the ARM toolchain claimed that there
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
653 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
655 int regno, sp_offset, fp_offset, ip_offset;
656 CORE_ADDR prologue_start, prologue_end, current_pc;
657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
659 /* Assume there is no frame until proven otherwise. */
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
664 /* Check for Thumb prologue. */
665 if (arm_pc_is_thumb (prev_pc))
667 thumb_scan_prologue (prev_pc, cache);
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
681 prologue_end = prev_pc;
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
707 if (prologue_end > prologue_start + 64)
709 prologue_end = prologue_start + 64; /* See above. */
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
720 LONGEST return_value;
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
727 prologue_start = gdbarch_addr_bits_remove
728 (current_gdbarch, return_value) - 8;
729 prologue_end = prologue_start + 64; /* See above. */
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
736 /* Now search the prologue looking for instructions that set up the
737 frame pointer, adjust the stack pointer, and save registers.
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
742 a frame, which will confuse stack traceback, as well as "finish"
743 and other operations that rely on a knowledge of the stack
746 In the APCS, the prologue should start with "mov ip, sp" so
747 if we don't see this as the first insn, we will stop.
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
757 sp_offset = fp_offset = ip_offset = 0;
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
765 if (insn == 0xe1a0c00d) /* mov ip, sp */
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
792 else if ((insn & 0xffff0000) == 0xe92d0000)
793 /* stmfd sp!, {..., fp, ip, lr, pc}
795 stmfd sp!, {a1, a2, a3, a4} */
797 int mask = insn & 0xffff;
799 /* Calculate offsets of saved registers. */
800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
801 if (mask & (1 << regno))
804 cache->saved_regs[regno].addr = sp_offset;
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
811 /* No need to add this to saved_regs -- it's just an arg reg. */
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
818 /* No need to add this to saved_regs -- it's just an arg reg. */
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 fp_offset = -imm + ip_offset;
827 cache->framereg = ARM_FP_REGNUM;
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
836 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
837 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
840 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
841 cache->saved_regs[regno].addr = sp_offset;
843 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
844 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
847 unsigned int fp_start_reg, fp_bound_reg;
849 if ((insn & 0x800) == 0x800) /* N0 is set */
851 if ((insn & 0x40000) == 0x40000) /* N1 is set */
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
864 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
865 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
866 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
869 cache->saved_regs[fp_start_reg++].addr = sp_offset;
872 else if ((insn & 0xf0000000) != 0xe0000000)
873 break; /* Condition not true, exit early */
874 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
875 break; /* Don't scan past a block load */
877 /* The optimizer might shove anything into the prologue,
878 so we just skip what we don't recognize. */
882 /* The frame size is just the negative of the offset (from the
883 original SP) of the last thing thing we pushed on the stack.
884 The frame offset is [new FP] - [new SP]. */
885 cache->framesize = -sp_offset;
886 if (cache->framereg == ARM_FP_REGNUM)
887 cache->frameoffset = fp_offset - sp_offset;
889 cache->frameoffset = 0;
892 static struct arm_prologue_cache *
893 arm_make_prologue_cache (struct frame_info *next_frame)
896 struct arm_prologue_cache *cache;
897 CORE_ADDR unwound_fp;
899 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
900 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
902 arm_scan_prologue (next_frame, cache);
904 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
908 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
910 /* Calculate actual addresses of saved registers using offsets
911 determined by arm_scan_prologue. */
912 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
913 if (trad_frame_addr_p (cache->saved_regs, reg))
914 cache->saved_regs[reg].addr += cache->prev_sp;
919 /* Our frame ID for a normal frame is the current function's starting PC
920 and the caller's SP when we were called. */
923 arm_prologue_this_id (struct frame_info *next_frame,
925 struct frame_id *this_id)
927 struct arm_prologue_cache *cache;
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
935 func = frame_func_unwind (next_frame, NORMAL_FRAME);
937 /* This is meant to halt the backtrace at "_start". Make sure we
938 don't halt it at a generic dummy frame. */
939 if (func <= LOWEST_PC)
942 /* If we've hit a wall, stop. */
943 if (cache->prev_sp == 0)
946 id = frame_id_build (cache->prev_sp, func);
951 arm_prologue_prev_register (struct frame_info *next_frame,
955 enum lval_type *lvalp,
960 struct arm_prologue_cache *cache;
962 if (*this_cache == NULL)
963 *this_cache = arm_make_prologue_cache (next_frame);
966 /* If we are asked to unwind the PC, then we need to return the LR
967 instead. The saved value of PC points into this frame's
968 prologue, not the next frame's resume location. */
969 if (prev_regnum == ARM_PC_REGNUM)
970 prev_regnum = ARM_LR_REGNUM;
972 /* SP is generally not saved to the stack, but this frame is
973 identified by NEXT_FRAME's stack pointer at the time of the call.
974 The value was already reconstructed into PREV_SP. */
975 if (prev_regnum == ARM_SP_REGNUM)
979 store_unsigned_integer (valuep, 4, cache->prev_sp);
983 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
984 optimized, lvalp, addrp, realnump, valuep);
987 struct frame_unwind arm_prologue_unwind = {
989 arm_prologue_this_id,
990 arm_prologue_prev_register
993 static const struct frame_unwind *
994 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
996 return &arm_prologue_unwind;
999 static struct arm_prologue_cache *
1000 arm_make_stub_cache (struct frame_info *next_frame)
1003 struct arm_prologue_cache *cache;
1004 CORE_ADDR unwound_fp;
1006 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1007 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1009 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1014 /* Our frame ID for a stub frame is the current SP and LR. */
1017 arm_stub_this_id (struct frame_info *next_frame,
1019 struct frame_id *this_id)
1021 struct arm_prologue_cache *cache;
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_stub_cache (next_frame);
1025 cache = *this_cache;
1027 *this_id = frame_id_build (cache->prev_sp,
1028 frame_pc_unwind (next_frame));
1031 struct frame_unwind arm_stub_unwind = {
1034 arm_prologue_prev_register
1037 static const struct frame_unwind *
1038 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1040 CORE_ADDR addr_in_block;
1043 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1044 if (in_plt_section (addr_in_block, NULL)
1045 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1046 return &arm_stub_unwind;
1052 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1054 struct arm_prologue_cache *cache;
1056 if (*this_cache == NULL)
1057 *this_cache = arm_make_prologue_cache (next_frame);
1058 cache = *this_cache;
1060 return cache->prev_sp + cache->frameoffset - cache->framesize;
1063 struct frame_base arm_normal_base = {
1064 &arm_prologue_unwind,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base,
1067 arm_normal_frame_base
1070 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1071 dummy frame. The frame ID's base needs to match the TOS value
1072 saved by save_dummy_frame_tos() and returned from
1073 arm_push_dummy_call, and the PC needs to match the dummy frame's
1076 static struct frame_id
1077 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1079 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1080 frame_pc_unwind (next_frame));
1083 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1084 be used to construct the previous frame's ID, after looking up the
1085 containing function). */
1088 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1091 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1092 return arm_addr_bits_remove (pc);
1096 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1098 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1101 /* When arguments must be pushed onto the stack, they go on in reverse
1102 order. The code below implements a FILO (stack) to do this. */
1107 struct stack_item *prev;
1111 static struct stack_item *
1112 push_stack_item (struct stack_item *prev, void *contents, int len)
1114 struct stack_item *si;
1115 si = xmalloc (sizeof (struct stack_item));
1116 si->data = xmalloc (len);
1119 memcpy (si->data, contents, len);
1123 static struct stack_item *
1124 pop_stack_item (struct stack_item *si)
1126 struct stack_item *dead = si;
1134 /* Return the alignment (in bytes) of the given type. */
1137 arm_type_align (struct type *t)
1143 t = check_typedef (t);
1144 switch (TYPE_CODE (t))
1147 /* Should never happen. */
1148 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1152 case TYPE_CODE_ENUM:
1156 case TYPE_CODE_RANGE:
1157 case TYPE_CODE_BITSTRING:
1159 case TYPE_CODE_CHAR:
1160 case TYPE_CODE_BOOL:
1161 return TYPE_LENGTH (t);
1163 case TYPE_CODE_ARRAY:
1164 case TYPE_CODE_COMPLEX:
1165 /* TODO: What about vector types? */
1166 return arm_type_align (TYPE_TARGET_TYPE (t));
1168 case TYPE_CODE_STRUCT:
1169 case TYPE_CODE_UNION:
1171 for (n = 0; n < TYPE_NFIELDS (t); n++)
1173 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1181 /* We currently only support passing parameters in integer registers. This
1182 conforms with GCC's default model. Several other variants exist and
1183 we should probably support some of them based on the selected ABI. */
1186 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1187 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1188 struct value **args, CORE_ADDR sp, int struct_return,
1189 CORE_ADDR struct_addr)
1194 struct stack_item *si = NULL;
1196 /* Set the return address. For the ARM, the return breakpoint is
1197 always at BP_ADDR. */
1198 /* XXX Fix for Thumb. */
1199 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1201 /* Walk through the list of args and determine how large a temporary
1202 stack is required. Need to take care here as structs may be
1203 passed on the stack, and we have to to push them. */
1206 argreg = ARM_A1_REGNUM;
1209 /* The struct_return pointer occupies the first parameter
1210 passing register. */
1214 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1215 gdbarch_register_name (current_gdbarch, argreg),
1216 paddr (struct_addr));
1217 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1221 for (argnum = 0; argnum < nargs; argnum++)
1224 struct type *arg_type;
1225 struct type *target_type;
1226 enum type_code typecode;
1230 arg_type = check_typedef (value_type (args[argnum]));
1231 len = TYPE_LENGTH (arg_type);
1232 target_type = TYPE_TARGET_TYPE (arg_type);
1233 typecode = TYPE_CODE (arg_type);
1234 val = value_contents_writeable (args[argnum]);
1236 align = arm_type_align (arg_type);
1237 /* Round alignment up to a whole number of words. */
1238 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1239 /* Different ABIs have different maximum alignments. */
1240 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1242 /* The APCS ABI only requires word alignment. */
1243 align = INT_REGISTER_SIZE;
1247 /* The AAPCS requires at most doubleword alignment. */
1248 if (align > INT_REGISTER_SIZE * 2)
1249 align = INT_REGISTER_SIZE * 2;
1252 /* Push stack padding for dowubleword alignment. */
1253 if (nstack & (align - 1))
1255 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1256 nstack += INT_REGISTER_SIZE;
1259 /* Doubleword aligned quantities must go in even register pairs. */
1260 if (argreg <= ARM_LAST_ARG_REGNUM
1261 && align > INT_REGISTER_SIZE
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
1273 if (arm_pc_is_thumb (regval))
1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1285 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1289 /* The argument is being passed in a general purpose
1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1293 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1295 gdbarch_register_name
1296 (current_gdbarch, argreg),
1297 phex (regval, DEPRECATED_REGISTER_SIZE));
1298 regcache_cooked_write_unsigned (regcache, argreg, regval);
1303 /* Push the arguments onto the stack. */
1305 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1307 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1308 nstack += DEPRECATED_REGISTER_SIZE;
1315 /* If we have an odd number of words to push, then decrement the stack
1316 by one word now, so first stack argument will be dword aligned. */
1323 write_memory (sp, si->data, si->len);
1324 si = pop_stack_item (si);
1327 /* Finally, update teh SP register. */
1328 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1334 /* Always align the frame to an 8-byte boundary. This is required on
1335 some platforms and harmless on the rest. */
1338 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1340 /* Align the stack to eight bytes. */
1341 return sp & ~ (CORE_ADDR) 7;
1345 print_fpu_flags (int flags)
1347 if (flags & (1 << 0))
1348 fputs ("IVO ", stdout);
1349 if (flags & (1 << 1))
1350 fputs ("DVZ ", stdout);
1351 if (flags & (1 << 2))
1352 fputs ("OFL ", stdout);
1353 if (flags & (1 << 3))
1354 fputs ("UFL ", stdout);
1355 if (flags & (1 << 4))
1356 fputs ("INX ", stdout);
1360 /* Print interesting information about the floating point processor
1361 (if present) or emulator. */
1363 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1364 struct frame_info *frame, const char *args)
1366 unsigned long status = read_register (ARM_FPS_REGNUM);
1369 type = (status >> 24) & 127;
1370 if (status & (1 << 31))
1371 printf (_("Hardware FPU type %d\n"), type);
1373 printf (_("Software FPU type %d\n"), type);
1374 /* i18n: [floating point unit] mask */
1375 fputs (_("mask: "), stdout);
1376 print_fpu_flags (status >> 16);
1377 /* i18n: [floating point unit] flags */
1378 fputs (_("flags: "), stdout);
1379 print_fpu_flags (status);
1382 /* Return the GDB type object for the "standard" data type of data in
1385 static struct type *
1386 arm_register_type (struct gdbarch *gdbarch, int regnum)
1388 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1389 return builtin_type_arm_ext;
1390 else if (regnum == ARM_SP_REGNUM)
1391 return builtin_type_void_data_ptr;
1392 else if (regnum == ARM_PC_REGNUM)
1393 return builtin_type_void_func_ptr;
1394 else if (regnum >= ARRAY_SIZE (arm_register_names))
1395 /* These registers are only supported on targets which supply
1396 an XML description. */
1397 return builtin_type_int0;
1399 return builtin_type_uint32;
1402 /* Map a DWARF register REGNUM onto the appropriate GDB register
1406 arm_dwarf_reg_to_regnum (int reg)
1408 /* Core integer regs. */
1409 if (reg >= 0 && reg <= 15)
1412 /* Legacy FPA encoding. These were once used in a way which
1413 overlapped with VFP register numbering, so their use is
1414 discouraged, but GDB doesn't support the ARM toolchain
1415 which used them for VFP. */
1416 if (reg >= 16 && reg <= 23)
1417 return ARM_F0_REGNUM + reg - 16;
1419 /* New assignments for the FPA registers. */
1420 if (reg >= 96 && reg <= 103)
1421 return ARM_F0_REGNUM + reg - 96;
1423 /* WMMX register assignments. */
1424 if (reg >= 104 && reg <= 111)
1425 return ARM_WCGR0_REGNUM + reg - 104;
1427 if (reg >= 112 && reg <= 127)
1428 return ARM_WR0_REGNUM + reg - 112;
1430 if (reg >= 192 && reg <= 199)
1431 return ARM_WC0_REGNUM + reg - 192;
1436 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1438 arm_register_sim_regno (int regnum)
1441 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
1443 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1444 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1446 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1447 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1449 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1450 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1452 if (reg < NUM_GREGS)
1453 return SIM_ARM_R0_REGNUM + reg;
1456 if (reg < NUM_FREGS)
1457 return SIM_ARM_FP0_REGNUM + reg;
1460 if (reg < NUM_SREGS)
1461 return SIM_ARM_FPS_REGNUM + reg;
1464 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1467 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1468 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1469 It is thought that this is is the floating-point register format on
1470 little-endian systems. */
1473 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1477 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1478 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1480 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1482 floatformat_from_doublest (fmt, &d, dbl);
1486 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1489 floatformat_to_doublest (fmt, ptr, &d);
1490 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1491 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1493 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1498 condition_true (unsigned long cond, unsigned long status_reg)
1500 if (cond == INST_AL || cond == INST_NV)
1506 return ((status_reg & FLAG_Z) != 0);
1508 return ((status_reg & FLAG_Z) == 0);
1510 return ((status_reg & FLAG_C) != 0);
1512 return ((status_reg & FLAG_C) == 0);
1514 return ((status_reg & FLAG_N) != 0);
1516 return ((status_reg & FLAG_N) == 0);
1518 return ((status_reg & FLAG_V) != 0);
1520 return ((status_reg & FLAG_V) == 0);
1522 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1524 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1526 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1528 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1530 return (((status_reg & FLAG_Z) == 0) &&
1531 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1533 return (((status_reg & FLAG_Z) != 0) ||
1534 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1539 /* Support routines for single stepping. Calculate the next PC value. */
1540 #define submask(x) ((1L << ((x) + 1)) - 1)
1541 #define bit(obj,st) (((obj) >> (st)) & 1)
1542 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1543 #define sbits(obj,st,fn) \
1544 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1545 #define BranchDest(addr,instr) \
1546 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1549 static unsigned long
1550 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1551 unsigned long status_reg)
1553 unsigned long res, shift;
1554 int rm = bits (inst, 0, 3);
1555 unsigned long shifttype = bits (inst, 5, 6);
1559 int rs = bits (inst, 8, 11);
1560 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1563 shift = bits (inst, 7, 11);
1566 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1567 + (bit (inst, 4) ? 12 : 8))
1568 : read_register (rm));
1573 res = shift >= 32 ? 0 : res << shift;
1577 res = shift >= 32 ? 0 : res >> shift;
1583 res = ((res & 0x80000000L)
1584 ? ~((~res) >> shift) : res >> shift);
1587 case 3: /* ROR/RRX */
1590 res = (res >> 1) | (carry ? 0x80000000L : 0);
1592 res = (res >> shift) | (res << (32 - shift));
1596 return res & 0xffffffff;
1599 /* Return number of 1-bits in VAL. */
1602 bitcount (unsigned long val)
1605 for (nbits = 0; val != 0; nbits++)
1606 val &= val - 1; /* delete rightmost 1-bit in val */
1611 thumb_get_next_pc (CORE_ADDR pc)
1613 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1614 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1615 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1616 unsigned long offset;
1618 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1622 /* Fetch the saved PC from the stack. It's stored above
1623 all of the other registers. */
1624 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1625 sp = read_register (ARM_SP_REGNUM);
1626 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1627 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1629 error (_("Infinite loop detected"));
1631 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1633 unsigned long status = read_register (ARM_PS_REGNUM);
1634 unsigned long cond = bits (inst1, 8, 11);
1635 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1636 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1638 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1640 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1642 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1644 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1645 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1646 nextpc = pc_val + offset;
1647 /* For BLX make sure to clear the low bits. */
1648 if (bits (inst2, 11, 12) == 1)
1649 nextpc = nextpc & 0xfffffffc;
1651 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1653 if (bits (inst1, 3, 6) == 0x0f)
1656 nextpc = read_register (bits (inst1, 3, 6));
1658 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1660 error (_("Infinite loop detected"));
1667 arm_get_next_pc (CORE_ADDR pc)
1669 unsigned long pc_val;
1670 unsigned long this_instr;
1671 unsigned long status;
1674 if (arm_pc_is_thumb (pc))
1675 return thumb_get_next_pc (pc);
1677 pc_val = (unsigned long) pc;
1678 this_instr = read_memory_unsigned_integer (pc, 4);
1679 status = read_register (ARM_PS_REGNUM);
1680 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1682 if (condition_true (bits (this_instr, 28, 31), status))
1684 switch (bits (this_instr, 24, 27))
1687 case 0x1: /* data processing */
1691 unsigned long operand1, operand2, result = 0;
1695 if (bits (this_instr, 12, 15) != 15)
1698 if (bits (this_instr, 22, 25) == 0
1699 && bits (this_instr, 4, 7) == 9) /* multiply */
1700 error (_("Invalid update to pc in instruction"));
1702 /* BX <reg>, BLX <reg> */
1703 if (bits (this_instr, 4, 27) == 0x12fff1
1704 || bits (this_instr, 4, 27) == 0x12fff3)
1706 rn = bits (this_instr, 0, 3);
1707 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1708 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1709 (current_gdbarch, result);
1712 error (_("Infinite loop detected"));
1717 /* Multiply into PC */
1718 c = (status & FLAG_C) ? 1 : 0;
1719 rn = bits (this_instr, 16, 19);
1720 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1722 if (bit (this_instr, 25))
1724 unsigned long immval = bits (this_instr, 0, 7);
1725 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1726 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1729 else /* operand 2 is a shifted register */
1730 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1732 switch (bits (this_instr, 21, 24))
1735 result = operand1 & operand2;
1739 result = operand1 ^ operand2;
1743 result = operand1 - operand2;
1747 result = operand2 - operand1;
1751 result = operand1 + operand2;
1755 result = operand1 + operand2 + c;
1759 result = operand1 - operand2 + c;
1763 result = operand2 - operand1 + c;
1769 case 0xb: /* tst, teq, cmp, cmn */
1770 result = (unsigned long) nextpc;
1774 result = operand1 | operand2;
1778 /* Always step into a function. */
1783 result = operand1 & ~operand2;
1790 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1791 (current_gdbarch, result);
1794 error (_("Infinite loop detected"));
1799 case 0x5: /* data transfer */
1802 if (bit (this_instr, 20))
1805 if (bits (this_instr, 12, 15) == 15)
1811 if (bit (this_instr, 22))
1812 error (_("Invalid update to pc in instruction"));
1814 /* byte write to PC */
1815 rn = bits (this_instr, 16, 19);
1816 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1817 if (bit (this_instr, 24))
1820 int c = (status & FLAG_C) ? 1 : 0;
1821 unsigned long offset =
1822 (bit (this_instr, 25)
1823 ? shifted_reg_val (this_instr, c, pc_val, status)
1824 : bits (this_instr, 0, 11));
1826 if (bit (this_instr, 23))
1831 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1834 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1837 error (_("Infinite loop detected"));
1843 case 0x9: /* block transfer */
1844 if (bit (this_instr, 20))
1847 if (bit (this_instr, 15))
1852 if (bit (this_instr, 23))
1855 unsigned long reglist = bits (this_instr, 0, 14);
1856 offset = bitcount (reglist) * 4;
1857 if (bit (this_instr, 24)) /* pre */
1860 else if (bit (this_instr, 24))
1864 unsigned long rn_val =
1865 read_register (bits (this_instr, 16, 19));
1867 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1871 nextpc = gdbarch_addr_bits_remove
1872 (current_gdbarch, nextpc);
1874 error (_("Infinite loop detected"));
1879 case 0xb: /* branch & link */
1880 case 0xa: /* branch */
1882 nextpc = BranchDest (pc, this_instr);
1885 if (bits (this_instr, 28, 31) == INST_NV)
1886 nextpc |= bit (this_instr, 24) << 1;
1888 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1890 error (_("Infinite loop detected"));
1896 case 0xe: /* coproc ops */
1901 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1909 /* single_step() is called just before we want to resume the inferior,
1910 if we want to single-step it but there is no hardware or kernel
1911 single-step support. We find the target of the coming instruction
1912 and breakpoint it. */
1915 arm_software_single_step (struct regcache *regcache)
1917 /* NOTE: This may insert the wrong breakpoint instruction when
1918 single-stepping over a mode-changing instruction, if the
1919 CPSR heuristics are used. */
1921 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1922 insert_single_step_breakpoint (next_pc);
1927 #include "bfd-in2.h"
1928 #include "libcoff.h"
1931 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1933 if (arm_pc_is_thumb (memaddr))
1935 static asymbol *asym;
1936 static combined_entry_type ce;
1937 static struct coff_symbol_struct csym;
1938 static struct bfd fake_bfd;
1939 static bfd_target fake_target;
1941 if (csym.native == NULL)
1943 /* Create a fake symbol vector containing a Thumb symbol.
1944 This is solely so that the code in print_insn_little_arm()
1945 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1946 the presence of a Thumb symbol and switch to decoding
1947 Thumb instructions. */
1949 fake_target.flavour = bfd_target_coff_flavour;
1950 fake_bfd.xvec = &fake_target;
1951 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1953 csym.symbol.the_bfd = &fake_bfd;
1954 csym.symbol.name = "fake";
1955 asym = (asymbol *) & csym;
1958 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1959 info->symbols = &asym;
1962 info->symbols = NULL;
1964 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1965 return print_insn_big_arm (memaddr, info);
1967 return print_insn_little_arm (memaddr, info);
1970 /* The following define instruction sequences that will cause ARM
1971 cpu's to take an undefined instruction trap. These are used to
1972 signal a breakpoint to GDB.
1974 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1975 modes. A different instruction is required for each mode. The ARM
1976 cpu's can also be big or little endian. Thus four different
1977 instructions are needed to support all cases.
1979 Note: ARMv4 defines several new instructions that will take the
1980 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1981 not in fact add the new instructions. The new undefined
1982 instructions in ARMv4 are all instructions that had no defined
1983 behaviour in earlier chips. There is no guarantee that they will
1984 raise an exception, but may be treated as NOP's. In practice, it
1985 may only safe to rely on instructions matching:
1987 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1988 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1989 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1991 Even this may only true if the condition predicate is true. The
1992 following use a condition predicate of ALWAYS so it is always TRUE.
1994 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1995 and NetBSD all use a software interrupt rather than an undefined
1996 instruction to force a trap. This can be handled by by the
1997 abi-specific code during establishment of the gdbarch vector. */
1999 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2000 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2001 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2002 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2004 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2005 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2006 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2007 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2009 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2010 the program counter value to determine whether a 16-bit or 32-bit
2011 breakpoint should be used. It returns a pointer to a string of
2012 bytes that encode a breakpoint instruction, stores the length of
2013 the string to *lenptr, and adjusts the program counter (if
2014 necessary) to point to the actual memory location where the
2015 breakpoint should be inserted. */
2017 static const unsigned char *
2018 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2020 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2022 if (arm_pc_is_thumb (*pcptr))
2024 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2025 *lenptr = tdep->thumb_breakpoint_size;
2026 return tdep->thumb_breakpoint;
2030 *lenptr = tdep->arm_breakpoint_size;
2031 return tdep->arm_breakpoint;
2035 /* Extract from an array REGBUF containing the (raw) register state a
2036 function return value of type TYPE, and copy that, in virtual
2037 format, into VALBUF. */
2040 arm_extract_return_value (struct type *type, struct regcache *regs,
2043 if (TYPE_CODE_FLT == TYPE_CODE (type))
2045 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2049 /* The value is in register F0 in internal format. We need to
2050 extract the raw value and then convert it to the desired
2052 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2054 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2055 convert_from_extended (floatformat_from_type (type), tmpbuf,
2060 case ARM_FLOAT_SOFT_FPA:
2061 case ARM_FLOAT_SOFT_VFP:
2062 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2063 if (TYPE_LENGTH (type) > 4)
2064 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2065 valbuf + INT_REGISTER_SIZE);
2070 (__FILE__, __LINE__,
2071 _("arm_extract_return_value: Floating point model not supported"));
2075 else if (TYPE_CODE (type) == TYPE_CODE_INT
2076 || TYPE_CODE (type) == TYPE_CODE_CHAR
2077 || TYPE_CODE (type) == TYPE_CODE_BOOL
2078 || TYPE_CODE (type) == TYPE_CODE_PTR
2079 || TYPE_CODE (type) == TYPE_CODE_REF
2080 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2082 /* If the the type is a plain integer, then the access is
2083 straight-forward. Otherwise we have to play around a bit more. */
2084 int len = TYPE_LENGTH (type);
2085 int regno = ARM_A1_REGNUM;
2090 /* By using store_unsigned_integer we avoid having to do
2091 anything special for small big-endian values. */
2092 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2093 store_unsigned_integer (valbuf,
2094 (len > INT_REGISTER_SIZE
2095 ? INT_REGISTER_SIZE : len),
2097 len -= INT_REGISTER_SIZE;
2098 valbuf += INT_REGISTER_SIZE;
2103 /* For a structure or union the behaviour is as if the value had
2104 been stored to word-aligned memory and then loaded into
2105 registers with 32-bit load instruction(s). */
2106 int len = TYPE_LENGTH (type);
2107 int regno = ARM_A1_REGNUM;
2108 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2112 regcache_cooked_read (regs, regno++, tmpbuf);
2113 memcpy (valbuf, tmpbuf,
2114 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2115 len -= INT_REGISTER_SIZE;
2116 valbuf += INT_REGISTER_SIZE;
2122 /* Will a function return an aggregate type in memory or in a
2123 register? Return 0 if an aggregate type can be returned in a
2124 register, 1 if it must be returned in memory. */
2127 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2130 enum type_code code;
2132 CHECK_TYPEDEF (type);
2134 /* In the ARM ABI, "integer" like aggregate types are returned in
2135 registers. For an aggregate type to be integer like, its size
2136 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2137 offset of each addressable subfield must be zero. Note that bit
2138 fields are not addressable, and all addressable subfields of
2139 unions always start at offset zero.
2141 This function is based on the behaviour of GCC 2.95.1.
2142 See: gcc/arm.c: arm_return_in_memory() for details.
2144 Note: All versions of GCC before GCC 2.95.2 do not set up the
2145 parameters correctly for a function returning the following
2146 structure: struct { float f;}; This should be returned in memory,
2147 not a register. Richard Earnshaw sent me a patch, but I do not
2148 know of any way to detect if a function like the above has been
2149 compiled with the correct calling convention. */
2151 /* All aggregate types that won't fit in a register must be returned
2153 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2158 /* The AAPCS says all aggregates not larger than a word are returned
2160 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2163 /* The only aggregate types that can be returned in a register are
2164 structs and unions. Arrays must be returned in memory. */
2165 code = TYPE_CODE (type);
2166 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2171 /* Assume all other aggregate types can be returned in a register.
2172 Run a check for structures, unions and arrays. */
2175 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2178 /* Need to check if this struct/union is "integer" like. For
2179 this to be true, its size must be less than or equal to
2180 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2181 subfield must be zero. Note that bit fields are not
2182 addressable, and unions always start at offset zero. If any
2183 of the subfields is a floating point type, the struct/union
2184 cannot be an integer type. */
2186 /* For each field in the object, check:
2187 1) Is it FP? --> yes, nRc = 1;
2188 2) Is it addressable (bitpos != 0) and
2189 not packed (bitsize == 0)?
2193 for (i = 0; i < TYPE_NFIELDS (type); i++)
2195 enum type_code field_type_code;
2196 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2198 /* Is it a floating point type field? */
2199 if (field_type_code == TYPE_CODE_FLT)
2205 /* If bitpos != 0, then we have to care about it. */
2206 if (TYPE_FIELD_BITPOS (type, i) != 0)
2208 /* Bitfields are not addressable. If the field bitsize is
2209 zero, then the field is not packed. Hence it cannot be
2210 a bitfield or any other packed type. */
2211 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2223 /* Write into appropriate registers a function return value of type
2224 TYPE, given in virtual format. */
2227 arm_store_return_value (struct type *type, struct regcache *regs,
2228 const gdb_byte *valbuf)
2230 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2232 char buf[MAX_REGISTER_SIZE];
2234 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2238 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2239 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2242 case ARM_FLOAT_SOFT_FPA:
2243 case ARM_FLOAT_SOFT_VFP:
2244 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2245 if (TYPE_LENGTH (type) > 4)
2246 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2247 valbuf + INT_REGISTER_SIZE);
2252 (__FILE__, __LINE__,
2253 _("arm_store_return_value: Floating point model not supported"));
2257 else if (TYPE_CODE (type) == TYPE_CODE_INT
2258 || TYPE_CODE (type) == TYPE_CODE_CHAR
2259 || TYPE_CODE (type) == TYPE_CODE_BOOL
2260 || TYPE_CODE (type) == TYPE_CODE_PTR
2261 || TYPE_CODE (type) == TYPE_CODE_REF
2262 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2264 if (TYPE_LENGTH (type) <= 4)
2266 /* Values of one word or less are zero/sign-extended and
2268 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2269 LONGEST val = unpack_long (type, valbuf);
2271 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2272 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2276 /* Integral values greater than one word are stored in consecutive
2277 registers starting with r0. This will always be a multiple of
2278 the regiser size. */
2279 int len = TYPE_LENGTH (type);
2280 int regno = ARM_A1_REGNUM;
2284 regcache_cooked_write (regs, regno++, valbuf);
2285 len -= INT_REGISTER_SIZE;
2286 valbuf += INT_REGISTER_SIZE;
2292 /* For a structure or union the behaviour is as if the value had
2293 been stored to word-aligned memory and then loaded into
2294 registers with 32-bit load instruction(s). */
2295 int len = TYPE_LENGTH (type);
2296 int regno = ARM_A1_REGNUM;
2297 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2301 memcpy (tmpbuf, valbuf,
2302 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2303 regcache_cooked_write (regs, regno++, tmpbuf);
2304 len -= INT_REGISTER_SIZE;
2305 valbuf += INT_REGISTER_SIZE;
2311 /* Handle function return values. */
2313 static enum return_value_convention
2314 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2315 struct regcache *regcache, gdb_byte *readbuf,
2316 const gdb_byte *writebuf)
2318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2320 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2321 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2322 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2324 if (tdep->struct_return == pcc_struct_return
2325 || arm_return_in_memory (gdbarch, valtype))
2326 return RETURN_VALUE_STRUCT_CONVENTION;
2330 arm_store_return_value (valtype, regcache, writebuf);
2333 arm_extract_return_value (valtype, regcache, readbuf);
2335 return RETURN_VALUE_REGISTER_CONVENTION;
2340 arm_get_longjmp_target (CORE_ADDR *pc)
2343 char buf[INT_REGISTER_SIZE];
2344 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2346 jb_addr = read_register (ARM_A1_REGNUM);
2348 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2352 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2356 /* Return non-zero if the PC is inside a thumb call thunk. */
2359 arm_in_call_stub (CORE_ADDR pc, char *name)
2361 CORE_ADDR start_addr;
2363 /* Find the starting address of the function containing the PC. If
2364 the caller didn't give us a name, look it up at the same time. */
2365 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2369 return strncmp (name, "_call_via_r", 11) == 0;
2372 /* If PC is in a Thumb call or return stub, return the address of the
2373 target PC, which is in a register. The thunk functions are called
2374 _called_via_xx, where x is the register name. The possible names
2375 are r0-r9, sl, fp, ip, sp, and lr. */
2378 arm_skip_stub (CORE_ADDR pc)
2381 CORE_ADDR start_addr;
2383 /* Find the starting address and name of the function containing the PC. */
2384 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2387 /* Call thunks always start with "_call_via_". */
2388 if (strncmp (name, "_call_via_", 10) == 0)
2390 /* Use the name suffix to determine which register contains the
2392 static char *table[15] =
2393 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2394 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2398 for (regno = 0; regno <= 14; regno++)
2399 if (strcmp (&name[10], table[regno]) == 0)
2400 return read_register (regno);
2403 return 0; /* not a stub */
2407 set_arm_command (char *args, int from_tty)
2409 printf_unfiltered (_("\
2410 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2411 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2415 show_arm_command (char *args, int from_tty)
2417 cmd_show_list (showarmcmdlist, from_tty, "");
2421 arm_update_current_architecture (void)
2423 struct gdbarch_info info;
2425 /* If the current architecture is not ARM, we have nothing to do. */
2426 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2429 /* Update the architecture. */
2430 gdbarch_info_init (&info);
2432 if (!gdbarch_update_p (info))
2433 internal_error (__FILE__, __LINE__, "could not update architecture");
2437 set_fp_model_sfunc (char *args, int from_tty,
2438 struct cmd_list_element *c)
2440 enum arm_float_model fp_model;
2442 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2443 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2445 arm_fp_model = fp_model;
2449 if (fp_model == ARM_FLOAT_LAST)
2450 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2453 arm_update_current_architecture ();
2457 show_fp_model (struct ui_file *file, int from_tty,
2458 struct cmd_list_element *c, const char *value)
2460 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2462 if (arm_fp_model == ARM_FLOAT_AUTO
2463 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2464 fprintf_filtered (file, _("\
2465 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2466 fp_model_strings[tdep->fp_model]);
2468 fprintf_filtered (file, _("\
2469 The current ARM floating point model is \"%s\".\n"),
2470 fp_model_strings[arm_fp_model]);
2474 arm_set_abi (char *args, int from_tty,
2475 struct cmd_list_element *c)
2477 enum arm_abi_kind arm_abi;
2479 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2480 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2482 arm_abi_global = arm_abi;
2486 if (arm_abi == ARM_ABI_LAST)
2487 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2490 arm_update_current_architecture ();
2494 arm_show_abi (struct ui_file *file, int from_tty,
2495 struct cmd_list_element *c, const char *value)
2497 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2499 if (arm_abi_global == ARM_ABI_AUTO
2500 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2501 fprintf_filtered (file, _("\
2502 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2503 arm_abi_strings[tdep->arm_abi]);
2505 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2509 /* If the user changes the register disassembly style used for info
2510 register and other commands, we have to also switch the style used
2511 in opcodes for disassembly output. This function is run in the "set
2512 arm disassembly" command, and does that. */
2515 set_disassembly_style_sfunc (char *args, int from_tty,
2516 struct cmd_list_element *c)
2518 set_disassembly_style ();
2521 /* Return the ARM register name corresponding to register I. */
2523 arm_register_name (int i)
2525 if (i >= ARRAY_SIZE (arm_register_names))
2526 /* These registers are only supported on targets which supply
2527 an XML description. */
2530 return arm_register_names[i];
2534 set_disassembly_style (void)
2538 /* Find the style that the user wants. */
2539 for (current = 0; current < num_disassembly_options; current++)
2540 if (disassembly_style == valid_disassembly_styles[current])
2542 gdb_assert (current < num_disassembly_options);
2544 /* Synchronize the disassembler. */
2545 set_arm_regname_option (current);
2548 /* Test whether the coff symbol specific value corresponds to a Thumb
2552 coff_sym_is_thumb (int val)
2554 return (val == C_THUMBEXT ||
2555 val == C_THUMBSTAT ||
2556 val == C_THUMBEXTFUNC ||
2557 val == C_THUMBSTATFUNC ||
2558 val == C_THUMBLABEL);
2561 /* arm_coff_make_msymbol_special()
2562 arm_elf_make_msymbol_special()
2564 These functions test whether the COFF or ELF symbol corresponds to
2565 an address in thumb code, and set a "special" bit in a minimal
2566 symbol to indicate that it does. */
2569 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2571 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2573 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2575 MSYMBOL_SET_SPECIAL (msym);
2579 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2581 if (coff_sym_is_thumb (val))
2582 MSYMBOL_SET_SPECIAL (msym);
2586 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2588 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2590 /* If necessary, set the T bit. */
2593 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2594 if (arm_pc_is_thumb (pc))
2595 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2597 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2601 static struct value *
2602 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2604 const int *reg_p = baton;
2605 return value_of_register (*reg_p, frame);
2608 static enum gdb_osabi
2609 arm_elf_osabi_sniffer (bfd *abfd)
2611 unsigned int elfosabi;
2612 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2614 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2616 if (elfosabi == ELFOSABI_ARM)
2617 /* GNU tools use this value. Check note sections in this case,
2619 bfd_map_over_sections (abfd,
2620 generic_elf_osabi_sniff_abi_tag_sections,
2623 /* Anything else will be handled by the generic ELF sniffer. */
2628 /* Initialize the current architecture based on INFO. If possible,
2629 re-use an architecture from ARCHES, which is a list of
2630 architectures already created during this debugging session.
2632 Called e.g. at program startup, when reading a core file, and when
2633 reading a binary file. */
2635 static struct gdbarch *
2636 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2638 struct gdbarch_tdep *tdep;
2639 struct gdbarch *gdbarch;
2640 struct gdbarch_list *best_arch;
2641 enum arm_abi_kind arm_abi = arm_abi_global;
2642 enum arm_float_model fp_model = arm_fp_model;
2643 struct tdesc_arch_data *tdesc_data = NULL;
2645 int have_fpa_registers = 1;
2647 /* Check any target description for validity. */
2648 if (tdesc_has_registers (info.target_desc))
2650 /* For most registers we require GDB's default names; but also allow
2651 the numeric names for sp / lr / pc, as a convenience. */
2652 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2653 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2654 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2656 const struct tdesc_feature *feature;
2659 feature = tdesc_find_feature (info.target_desc,
2660 "org.gnu.gdb.arm.core");
2661 if (feature == NULL)
2664 tdesc_data = tdesc_data_alloc ();
2667 for (i = 0; i < ARM_SP_REGNUM; i++)
2668 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2669 arm_register_names[i]);
2670 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2673 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2676 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2679 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2680 ARM_PS_REGNUM, "cpsr");
2684 tdesc_data_cleanup (tdesc_data);
2688 feature = tdesc_find_feature (info.target_desc,
2689 "org.gnu.gdb.arm.fpa");
2690 if (feature != NULL)
2693 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2694 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2695 arm_register_names[i]);
2698 tdesc_data_cleanup (tdesc_data);
2703 have_fpa_registers = 0;
2705 feature = tdesc_find_feature (info.target_desc,
2706 "org.gnu.gdb.xscale.iwmmxt");
2707 if (feature != NULL)
2709 static const char *const iwmmxt_names[] = {
2710 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2711 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2712 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2713 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2717 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2719 &= tdesc_numbered_register (feature, tdesc_data, i,
2720 iwmmxt_names[i - ARM_WR0_REGNUM]);
2722 /* Check for the control registers, but do not fail if they
2724 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2725 tdesc_numbered_register (feature, tdesc_data, i,
2726 iwmmxt_names[i - ARM_WR0_REGNUM]);
2728 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2730 &= tdesc_numbered_register (feature, tdesc_data, i,
2731 iwmmxt_names[i - ARM_WR0_REGNUM]);
2735 tdesc_data_cleanup (tdesc_data);
2741 /* If we have an object to base this architecture on, try to determine
2744 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2746 int ei_osabi, e_flags;
2748 switch (bfd_get_flavour (info.abfd))
2750 case bfd_target_aout_flavour:
2751 /* Assume it's an old APCS-style ABI. */
2752 arm_abi = ARM_ABI_APCS;
2755 case bfd_target_coff_flavour:
2756 /* Assume it's an old APCS-style ABI. */
2758 arm_abi = ARM_ABI_APCS;
2761 case bfd_target_elf_flavour:
2762 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2763 e_flags = elf_elfheader (info.abfd)->e_flags;
2765 if (ei_osabi == ELFOSABI_ARM)
2767 /* GNU tools used to use this value, but do not for EABI
2768 objects. There's nowhere to tag an EABI version
2769 anyway, so assume APCS. */
2770 arm_abi = ARM_ABI_APCS;
2772 else if (ei_osabi == ELFOSABI_NONE)
2774 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2778 case EF_ARM_EABI_UNKNOWN:
2779 /* Assume GNU tools. */
2780 arm_abi = ARM_ABI_APCS;
2783 case EF_ARM_EABI_VER4:
2784 case EF_ARM_EABI_VER5:
2785 arm_abi = ARM_ABI_AAPCS;
2786 /* EABI binaries default to VFP float ordering. */
2787 if (fp_model == ARM_FLOAT_AUTO)
2788 fp_model = ARM_FLOAT_SOFT_VFP;
2792 /* Leave it as "auto". */
2793 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2798 if (fp_model == ARM_FLOAT_AUTO)
2800 int e_flags = elf_elfheader (info.abfd)->e_flags;
2802 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2805 /* Leave it as "auto". Strictly speaking this case
2806 means FPA, but almost nobody uses that now, and
2807 many toolchains fail to set the appropriate bits
2808 for the floating-point model they use. */
2810 case EF_ARM_SOFT_FLOAT:
2811 fp_model = ARM_FLOAT_SOFT_FPA;
2813 case EF_ARM_VFP_FLOAT:
2814 fp_model = ARM_FLOAT_VFP;
2816 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2817 fp_model = ARM_FLOAT_SOFT_VFP;
2824 /* Leave it as "auto". */
2829 /* Now that we have inferred any architecture settings that we
2830 can, try to inherit from the last ARM ABI. */
2833 if (arm_abi == ARM_ABI_AUTO)
2834 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2836 if (fp_model == ARM_FLOAT_AUTO)
2837 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2841 /* There was no prior ARM architecture; fill in default values. */
2843 if (arm_abi == ARM_ABI_AUTO)
2844 arm_abi = ARM_ABI_APCS;
2846 /* We used to default to FPA for generic ARM, but almost nobody
2847 uses that now, and we now provide a way for the user to force
2848 the model. So default to the most useful variant. */
2849 if (fp_model == ARM_FLOAT_AUTO)
2850 fp_model = ARM_FLOAT_SOFT_FPA;
2853 /* If there is already a candidate, use it. */
2854 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2856 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2858 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2861 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2864 /* Found a match. */
2868 if (best_arch != NULL)
2870 if (tdesc_data != NULL)
2871 tdesc_data_cleanup (tdesc_data);
2872 return best_arch->gdbarch;
2875 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2876 gdbarch = gdbarch_alloc (&info, tdep);
2878 /* Record additional information about the architecture we are defining.
2879 These are gdbarch discriminators, like the OSABI. */
2880 tdep->arm_abi = arm_abi;
2881 tdep->fp_model = fp_model;
2882 tdep->have_fpa_registers = have_fpa_registers;
2885 switch (info.byte_order)
2887 case BFD_ENDIAN_BIG:
2888 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2889 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2890 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2891 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2895 case BFD_ENDIAN_LITTLE:
2896 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2897 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2898 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2899 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2904 internal_error (__FILE__, __LINE__,
2905 _("arm_gdbarch_init: bad byte order for float format"));
2908 /* On ARM targets char defaults to unsigned. */
2909 set_gdbarch_char_signed (gdbarch, 0);
2911 /* This should be low enough for everything. */
2912 tdep->lowest_pc = 0x20;
2913 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2915 /* The default, for both APCS and AAPCS, is to return small
2916 structures in registers. */
2917 tdep->struct_return = reg_struct_return;
2919 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2920 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2922 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2924 /* Frame handling. */
2925 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2926 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2927 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2929 frame_base_set_default (gdbarch, &arm_normal_base);
2931 /* Address manipulation. */
2932 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2933 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2935 /* Advance PC across function entry code. */
2936 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2938 /* Skip trampolines. */
2939 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2941 /* The stack grows downward. */
2942 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2944 /* Breakpoint manipulation. */
2945 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2947 /* Information about registers, etc. */
2948 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2949 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2950 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2951 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2952 set_gdbarch_register_type (gdbarch, arm_register_type);
2954 /* This "info float" is FPA-specific. Use the generic version if we
2956 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2957 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2959 /* Internal <-> external register number maps. */
2960 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2961 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2962 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2964 /* Integer registers are 4 bytes. */
2965 set_gdbarch_deprecated_register_size (gdbarch, 4);
2966 set_gdbarch_register_name (gdbarch, arm_register_name);
2968 /* Returning results. */
2969 set_gdbarch_return_value (gdbarch, arm_return_value);
2972 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2974 /* Minsymbol frobbing. */
2975 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2976 set_gdbarch_coff_make_msymbol_special (gdbarch,
2977 arm_coff_make_msymbol_special);
2979 /* Virtual tables. */
2980 set_gdbarch_vbit_in_delta (gdbarch, 1);
2982 /* Hook in the ABI-specific overrides, if they have been registered. */
2983 gdbarch_init_osabi (info, gdbarch);
2985 /* Add some default predicates. */
2986 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2987 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2988 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2990 /* Now we have tuned the configuration, set a few final things,
2991 based on what the OS ABI has told us. */
2993 if (tdep->jb_pc >= 0)
2994 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2996 /* Floating point sizes and format. */
2997 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2998 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
3000 set_gdbarch_double_format
3001 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3002 set_gdbarch_long_double_format
3003 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3007 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3008 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3012 tdesc_use_registers (gdbarch, tdesc_data);
3014 /* Add standard register aliases. We add aliases even for those
3015 nanes which are used by the current architecture - it's simpler,
3016 and does no harm, since nothing ever lists user registers. */
3017 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3018 user_reg_add (gdbarch, arm_register_aliases[i].name,
3019 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3025 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3027 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3032 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3033 (unsigned long) tdep->lowest_pc);
3036 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3039 _initialize_arm_tdep (void)
3041 struct ui_file *stb;
3043 struct cmd_list_element *new_set, *new_show;
3044 const char *setname;
3045 const char *setdesc;
3046 const char *const *regnames;
3048 static char *helptext;
3049 char regdesc[1024], *rdptr = regdesc;
3050 size_t rest = sizeof (regdesc);
3052 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3054 /* Register an ELF OS ABI sniffer for ARM binaries. */
3055 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3056 bfd_target_elf_flavour,
3057 arm_elf_osabi_sniffer);
3059 /* Get the number of possible sets of register names defined in opcodes. */
3060 num_disassembly_options = get_arm_regname_num_options ();
3062 /* Add root prefix command for all "set arm"/"show arm" commands. */
3063 add_prefix_cmd ("arm", no_class, set_arm_command,
3064 _("Various ARM-specific commands."),
3065 &setarmcmdlist, "set arm ", 0, &setlist);
3067 add_prefix_cmd ("arm", no_class, show_arm_command,
3068 _("Various ARM-specific commands."),
3069 &showarmcmdlist, "show arm ", 0, &showlist);
3071 /* Sync the opcode insn printer with our register viewer. */
3072 parse_arm_disassembler_option ("reg-names-std");
3074 /* Initialize the array that will be passed to
3075 add_setshow_enum_cmd(). */
3076 valid_disassembly_styles
3077 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3078 for (i = 0; i < num_disassembly_options; i++)
3080 numregs = get_arm_regnames (i, &setname, &setdesc, ®names);
3081 valid_disassembly_styles[i] = setname;
3082 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3085 /* When we find the default names, tell the disassembler to use
3087 if (!strcmp (setname, "std"))
3089 disassembly_style = setname;
3090 set_arm_regname_option (i);
3093 /* Mark the end of valid options. */
3094 valid_disassembly_styles[num_disassembly_options] = NULL;
3096 /* Create the help text. */
3097 stb = mem_fileopen ();
3098 fprintf_unfiltered (stb, "%s%s%s",
3099 _("The valid values are:\n"),
3101 _("The default is \"std\"."));
3102 helptext = ui_file_xstrdup (stb, &length);
3103 ui_file_delete (stb);
3105 add_setshow_enum_cmd("disassembler", no_class,
3106 valid_disassembly_styles, &disassembly_style,
3107 _("Set the disassembly style."),
3108 _("Show the disassembly style."),
3110 set_disassembly_style_sfunc,
3111 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3112 &setarmcmdlist, &showarmcmdlist);
3114 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3115 _("Set usage of ARM 32-bit mode."),
3116 _("Show usage of ARM 32-bit mode."),
3117 _("When off, a 26-bit PC will be used."),
3119 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3120 &setarmcmdlist, &showarmcmdlist);
3122 /* Add a command to allow the user to force the FPU model. */
3123 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model,
3124 _("Set the floating point type."),
3125 _("Show the floating point type."),
3126 _("auto - Determine the FP typefrom the OS-ABI.\n\
3127 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3128 fpa - FPA co-processor (GCC compiled).\n\
3129 softvfp - Software FP with pure-endian doubles.\n\
3130 vfp - VFP co-processor."),
3131 set_fp_model_sfunc, show_fp_model,
3132 &setarmcmdlist, &showarmcmdlist);
3134 /* Add a command to allow the user to force the ABI. */
3135 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3138 NULL, arm_set_abi, arm_show_abi,
3139 &setarmcmdlist, &showarmcmdlist);
3141 /* Debugging flag. */
3142 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3143 _("Set ARM debugging."),
3144 _("Show ARM debugging."),
3145 _("When on, arm-specific debugging is enabled."),
3147 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3148 &setdebuglist, &showdebuglist);