1 /* Target-dependent code for the HP PA-RISC architecture.
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
7 Contributed by the Center for Software Science at the
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "completer.h"
31 #include "gdb_assert.h"
32 #include "gdb_stdint.h"
33 #include "arch-utils.h"
34 /* For argument passing to the inferior */
37 #include "trad-frame.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
45 #include "hppa-tdep.h"
47 static int hppa_debug = 0;
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
61 /* Get at various relevent fields of an instruction word. */
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
71 /* Routines to extract various sized constants out of hppa
74 /* This assumes that no garbage lies outside of the lower bits of
78 hppa_sign_extend (unsigned val, unsigned bits)
80 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
83 /* For many immediate values the sign bit is the low bit! */
86 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
88 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
91 /* Extract the bits at positions between FROM and TO, using HP's numbering
95 hppa_get_field (unsigned word, int from, int to)
97 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
100 /* extract the immediate field from a ld{bhw}s instruction */
103 hppa_extract_5_load (unsigned word)
105 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
108 /* extract the immediate field from a break instruction */
111 hppa_extract_5r_store (unsigned word)
113 return (word & MASK_5);
116 /* extract the immediate field from a {sr}sm instruction */
119 hppa_extract_5R_store (unsigned word)
121 return (word >> 16 & MASK_5);
124 /* extract a 14 bit immediate field */
127 hppa_extract_14 (unsigned word)
129 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
132 /* extract a 21 bit constant */
135 hppa_extract_21 (unsigned word)
141 val = hppa_get_field (word, 20, 20);
143 val |= hppa_get_field (word, 9, 19);
145 val |= hppa_get_field (word, 5, 6);
147 val |= hppa_get_field (word, 0, 4);
149 val |= hppa_get_field (word, 7, 8);
150 return hppa_sign_extend (val, 21) << 11;
153 /* extract a 17 bit constant from branch instructions, returning the
154 19 bit signed value. */
157 hppa_extract_17 (unsigned word)
159 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
160 hppa_get_field (word, 29, 29) << 10 |
161 hppa_get_field (word, 11, 15) << 11 |
162 (word & 0x1) << 16, 17) << 2;
166 hppa_symbol_address(const char *sym)
168 struct minimal_symbol *minsym;
170 minsym = lookup_minimal_symbol (sym, NULL, NULL);
172 return SYMBOL_VALUE_ADDRESS (minsym);
174 return (CORE_ADDR)-1;
177 struct hppa_objfile_private *
178 hppa_init_objfile_priv_data (struct objfile *objfile)
180 struct hppa_objfile_private *priv;
182 priv = (struct hppa_objfile_private *)
183 obstack_alloc (&objfile->objfile_obstack,
184 sizeof (struct hppa_objfile_private));
185 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
186 memset (priv, 0, sizeof (*priv));
192 /* Compare the start address for two unwind entries returning 1 if
193 the first address is larger than the second, -1 if the second is
194 larger than the first, and zero if they are equal. */
197 compare_unwind_entries (const void *arg1, const void *arg2)
199 const struct unwind_table_entry *a = arg1;
200 const struct unwind_table_entry *b = arg2;
202 if (a->region_start > b->region_start)
204 else if (a->region_start < b->region_start)
211 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
213 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
216 bfd_vma value = section->vma - section->filepos;
217 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
219 if (value < *low_text_segment_address)
220 *low_text_segment_address = value;
225 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
226 asection *section, unsigned int entries, unsigned int size,
227 CORE_ADDR text_offset)
229 /* We will read the unwind entries into temporary memory, then
230 fill in the actual unwind table. */
236 char *buf = alloca (size);
237 CORE_ADDR low_text_segment_address;
239 /* For ELF targets, then unwinds are supposed to
240 be segment relative offsets instead of absolute addresses.
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
245 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
247 low_text_segment_address = -1;
249 bfd_map_over_sections (objfile->obfd,
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
253 text_offset = low_text_segment_address;
255 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
257 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
262 /* Now internalize the information being careful to handle host/target
264 for (i = 0; i < entries; i++)
266 table[i].region_start = bfd_get_32 (objfile->obfd,
268 table[i].region_start += text_offset;
270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 table[i].region_end += text_offset;
273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
279 table[i].reserved = (tmp >> 26) & 0x1;
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
289 table[i].sr4export = (tmp >> 9) & 0x1;
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
293 table[i].reserved1 = (tmp >> 5) & 0x1;
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
297 table[i].save_r19 = (tmp >> 1) & 0x1;
298 table[i].Cleanup_defined = tmp & 0x1;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
306 table[i].Total_frame_size = tmp & 0x7ffffff;
308 /* Stub unwinds are handled elsewhere. */
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
315 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
322 read_unwind_info (struct objfile *objfile)
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
348 for (unwind_sec = objfile->obfd->sections;
350 unwind_sec = unwind_sec->next)
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
358 total_entries += unwind_entries;
362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
363 use stub unwinds at the current time. */
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
373 stub_unwind_size = 0;
377 /* Compute total number of unwind entries and their total size. */
378 total_entries += stub_entries;
379 total_size = total_entries * sizeof (struct unwind_table_entry);
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
383 obstack_alloc (&objfile->objfile_obstack, total_size);
384 ui->last = total_entries - 1;
386 /* Now read in each unwind section and internalize the standard unwind
389 for (unwind_sec = objfile->obfd->sections;
391 unwind_sec = unwind_sec->next)
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
405 /* Now read in and internalize the stub unwind entries. */
406 if (stub_unwind_size > 0)
409 char *buf = alloca (stub_unwind_size);
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
425 ui->table[index].region_start += text_offset;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
430 ui->table[index].region_end
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
442 /* Keep a pointer to the unwind information. */
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
446 obj_private = hppa_init_objfile_priv_data (objfile);
448 obj_private->unwind_info = ui;
451 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
456 struct unwind_table_entry *
457 find_unwind_entry (CORE_ADDR pc)
459 int first, middle, last;
460 struct objfile *objfile;
461 struct hppa_objfile_private *priv;
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
475 ALL_OBJFILES (objfile)
477 struct hppa_unwind_info *ui;
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
485 read_unwind_info (objfile);
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
488 error (_("Internal error reading unwind information."));
489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
492 /* First, check the cache */
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
499 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
500 paddr_nz ((uintptr_t) ui->cache));
504 /* Not in the cache, do a binary search */
509 while (first <= last)
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
515 ui->cache = &ui->table[middle];
517 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
518 paddr_nz ((uintptr_t) ui->cache));
519 return &ui->table[middle];
522 if (pc < ui->table[middle].region_start)
527 } /* ALL_OBJFILES() */
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535 /* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
541 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
543 unsigned long status;
548 status = read_memory_nobpt (pc, buf, 4);
552 inst = extract_unsigned_integer (buf, 4);
554 /* The most common way to perform a stack adjustment ldo X(sp),sp
555 We are destroying a stack frame if the offset is negative. */
556 if ((inst & 0xffffc000) == 0x37de0000
557 && hppa_extract_14 (inst) < 0)
560 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
561 if (((inst & 0x0fc010e0) == 0x0fc010e0
562 || (inst & 0x0fc010e0) == 0x0fc010e0)
563 && hppa_extract_14 (inst) < 0)
566 /* bv %r0(%rp) or bv,n %r0(%rp) */
567 if (inst == 0xe840c000 || inst == 0xe840c002)
573 static const unsigned char *
574 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
576 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
577 (*len) = sizeof (breakpoint);
581 /* Return the name of a register. */
584 hppa32_register_name (struct gdbarch *gdbarch, int i)
586 static char *names[] = {
587 "flags", "r1", "rp", "r3",
588 "r4", "r5", "r6", "r7",
589 "r8", "r9", "r10", "r11",
590 "r12", "r13", "r14", "r15",
591 "r16", "r17", "r18", "r19",
592 "r20", "r21", "r22", "r23",
593 "r24", "r25", "r26", "dp",
594 "ret0", "ret1", "sp", "r31",
595 "sar", "pcoqh", "pcsqh", "pcoqt",
596 "pcsqt", "eiem", "iir", "isr",
597 "ior", "ipsw", "goto", "sr4",
598 "sr0", "sr1", "sr2", "sr3",
599 "sr5", "sr6", "sr7", "cr0",
600 "cr8", "cr9", "ccr", "cr12",
601 "cr13", "cr24", "cr25", "cr26",
602 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
603 "fpsr", "fpe1", "fpe2", "fpe3",
604 "fpe4", "fpe5", "fpe6", "fpe7",
605 "fr4", "fr4R", "fr5", "fr5R",
606 "fr6", "fr6R", "fr7", "fr7R",
607 "fr8", "fr8R", "fr9", "fr9R",
608 "fr10", "fr10R", "fr11", "fr11R",
609 "fr12", "fr12R", "fr13", "fr13R",
610 "fr14", "fr14R", "fr15", "fr15R",
611 "fr16", "fr16R", "fr17", "fr17R",
612 "fr18", "fr18R", "fr19", "fr19R",
613 "fr20", "fr20R", "fr21", "fr21R",
614 "fr22", "fr22R", "fr23", "fr23R",
615 "fr24", "fr24R", "fr25", "fr25R",
616 "fr26", "fr26R", "fr27", "fr27R",
617 "fr28", "fr28R", "fr29", "fr29R",
618 "fr30", "fr30R", "fr31", "fr31R"
620 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
627 hppa64_register_name (struct gdbarch *gdbarch, int i)
629 static char *names[] = {
630 "flags", "r1", "rp", "r3",
631 "r4", "r5", "r6", "r7",
632 "r8", "r9", "r10", "r11",
633 "r12", "r13", "r14", "r15",
634 "r16", "r17", "r18", "r19",
635 "r20", "r21", "r22", "r23",
636 "r24", "r25", "r26", "dp",
637 "ret0", "ret1", "sp", "r31",
638 "sar", "pcoqh", "pcsqh", "pcoqt",
639 "pcsqt", "eiem", "iir", "isr",
640 "ior", "ipsw", "goto", "sr4",
641 "sr0", "sr1", "sr2", "sr3",
642 "sr5", "sr6", "sr7", "cr0",
643 "cr8", "cr9", "ccr", "cr12",
644 "cr13", "cr24", "cr25", "cr26",
645 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
646 "fpsr", "fpe1", "fpe2", "fpe3",
647 "fr4", "fr5", "fr6", "fr7",
648 "fr8", "fr9", "fr10", "fr11",
649 "fr12", "fr13", "fr14", "fr15",
650 "fr16", "fr17", "fr18", "fr19",
651 "fr20", "fr21", "fr22", "fr23",
652 "fr24", "fr25", "fr26", "fr27",
653 "fr28", "fr29", "fr30", "fr31"
655 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
662 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
664 /* r0-r31 and sar map one-to-one. */
668 /* fr4-fr31 are mapped from 72 in steps of 2. */
669 if (reg >= 72 || reg < 72 + 28 * 2)
670 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
672 error ("Invalid DWARF register num %d.", reg);
676 /* This function pushes a stack frame with arguments as part of the
677 inferior function calling mechanism.
679 This is the version of the function for the 32-bit PA machines, in
680 which later arguments appear at lower addresses. (The stack always
681 grows towards higher addresses.)
683 We simply allocate the appropriate amount of stack space and put
684 arguments into their proper slots. */
687 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
688 struct regcache *regcache, CORE_ADDR bp_addr,
689 int nargs, struct value **args, CORE_ADDR sp,
690 int struct_return, CORE_ADDR struct_addr)
692 /* Stack base address at which any pass-by-reference parameters are
694 CORE_ADDR struct_end = 0;
695 /* Stack base address at which the first parameter is stored. */
696 CORE_ADDR param_end = 0;
698 /* The inner most end of the stack after all the parameters have
700 CORE_ADDR new_sp = 0;
702 /* Two passes. First pass computes the location of everything,
703 second pass writes the bytes out. */
706 /* Global pointer (r19) of the function we are trying to call. */
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
711 for (write_pass = 0; write_pass < 2; write_pass++)
713 CORE_ADDR struct_ptr = 0;
714 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
715 struct_ptr is adjusted for each argument below, so the first
716 argument will end up at sp-36. */
717 CORE_ADDR param_ptr = 32;
719 int small_struct = 0;
721 for (i = 0; i < nargs; i++)
723 struct value *arg = args[i];
724 struct type *type = check_typedef (value_type (arg));
725 /* The corresponding parameter that is pushed onto the
726 stack, and [possibly] passed in a register. */
729 memset (param_val, 0, sizeof param_val);
730 if (TYPE_LENGTH (type) > 8)
732 /* Large parameter, pass by reference. Store the value
733 in "struct" area and then pass its address. */
735 struct_ptr += align_up (TYPE_LENGTH (type), 8);
737 write_memory (struct_end - struct_ptr, value_contents (arg),
739 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
741 else if (TYPE_CODE (type) == TYPE_CODE_INT
742 || TYPE_CODE (type) == TYPE_CODE_ENUM)
744 /* Integer value store, right aligned. "unpack_long"
745 takes care of any sign-extension problems. */
746 param_len = align_up (TYPE_LENGTH (type), 4);
747 store_unsigned_integer (param_val, param_len,
749 value_contents (arg)));
751 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
753 /* Floating point value store, right aligned. */
754 param_len = align_up (TYPE_LENGTH (type), 4);
755 memcpy (param_val, value_contents (arg), param_len);
759 param_len = align_up (TYPE_LENGTH (type), 4);
761 /* Small struct value are stored right-aligned. */
762 memcpy (param_val + param_len - TYPE_LENGTH (type),
763 value_contents (arg), TYPE_LENGTH (type));
765 /* Structures of size 5, 6 and 7 bytes are special in that
766 the higher-ordered word is stored in the lower-ordered
767 argument, and even though it is a 8-byte quantity the
768 registers need not be 8-byte aligned. */
769 if (param_len > 4 && param_len < 8)
773 param_ptr += param_len;
774 if (param_len == 8 && !small_struct)
775 param_ptr = align_up (param_ptr, 8);
777 /* First 4 non-FP arguments are passed in gr26-gr23.
778 First 4 32-bit FP arguments are passed in fr4L-fr7L.
779 First 2 64-bit FP arguments are passed in fr5 and fr7.
781 The rest go on the stack, starting at sp-36, towards lower
782 addresses. 8-byte arguments must be aligned to a 8-byte
786 write_memory (param_end - param_ptr, param_val, param_len);
788 /* There are some cases when we don't know the type
789 expected by the callee (e.g. for variadic functions), so
790 pass the parameters in both general and fp regs. */
793 int grreg = 26 - (param_ptr - 36) / 4;
794 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
795 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
797 regcache_cooked_write (regcache, grreg, param_val);
798 regcache_cooked_write (regcache, fpLreg, param_val);
802 regcache_cooked_write (regcache, grreg + 1,
805 regcache_cooked_write (regcache, fpreg, param_val);
806 regcache_cooked_write (regcache, fpreg + 1,
813 /* Update the various stack pointers. */
816 struct_end = sp + align_up (struct_ptr, 64);
817 /* PARAM_PTR already accounts for all the arguments passed
818 by the user. However, the ABI mandates minimum stack
819 space allocations for outgoing arguments. The ABI also
820 mandates minimum stack alignments which we must
822 param_end = struct_end + align_up (param_ptr, 64);
826 /* If a structure has to be returned, set up register 28 to hold its
829 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
831 gp = tdep->find_global_pointer (function);
834 regcache_cooked_write_unsigned (regcache, 19, gp);
836 /* Set the return address. */
837 if (!gdbarch_push_dummy_code_p (gdbarch))
838 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
840 /* Update the Stack Pointer. */
841 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
846 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
847 Runtime Architecture for PA-RISC 2.0", which is distributed as part
848 as of the HP-UX Software Transition Kit (STK). This implementation
849 is based on version 3.3, dated October 6, 1997. */
851 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
854 hppa64_integral_or_pointer_p (const struct type *type)
856 switch (TYPE_CODE (type))
862 case TYPE_CODE_RANGE:
864 int len = TYPE_LENGTH (type);
865 return (len == 1 || len == 2 || len == 4 || len == 8);
869 return (TYPE_LENGTH (type) == 8);
877 /* Check whether TYPE is a "Floating Scalar Type". */
880 hppa64_floating_p (const struct type *type)
882 switch (TYPE_CODE (type))
886 int len = TYPE_LENGTH (type);
887 return (len == 4 || len == 8 || len == 16);
896 /* If CODE points to a function entry address, try to look up the corresponding
897 function descriptor and return its address instead. If CODE is not a
898 function entry address, then just return it unchanged. */
900 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
902 struct obj_section *sec, *opd;
904 sec = find_pc_section (code);
909 /* If CODE is in a data section, assume it's already a fptr. */
910 if (!(sec->the_bfd_section->flags & SEC_CODE))
913 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
915 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
919 if (opd < sec->objfile->sections_end)
923 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
928 if (target_read_memory (addr, tmp, sizeof (tmp)))
930 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
941 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
942 struct regcache *regcache, CORE_ADDR bp_addr,
943 int nargs, struct value **args, CORE_ADDR sp,
944 int struct_return, CORE_ADDR struct_addr)
946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
950 /* "The outgoing parameter area [...] must be aligned at a 16-byte
952 sp = align_up (sp, 16);
954 for (i = 0; i < nargs; i++)
956 struct value *arg = args[i];
957 struct type *type = value_type (arg);
958 int len = TYPE_LENGTH (type);
959 const bfd_byte *valbuf;
963 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
964 offset = align_up (offset, 8);
966 if (hppa64_integral_or_pointer_p (type))
968 /* "Integral scalar parameters smaller than 64 bits are
969 padded on the left (i.e., the value is in the
970 least-significant bits of the 64-bit storage unit, and
971 the high-order bits are undefined)." Therefore we can
972 safely sign-extend them. */
975 arg = value_cast (builtin_type_int64, arg);
979 else if (hppa64_floating_p (type))
983 /* "Quad-precision (128-bit) floating-point scalar
984 parameters are aligned on a 16-byte boundary." */
985 offset = align_up (offset, 16);
987 /* "Double-extended- and quad-precision floating-point
988 parameters within the first 64 bytes of the parameter
989 list are always passed in general registers." */
995 /* "Single-precision (32-bit) floating-point scalar
996 parameters are padded on the left with 32 bits of
997 garbage (i.e., the floating-point value is in the
998 least-significant 32 bits of a 64-bit storage
1003 /* "Single- and double-precision floating-point
1004 parameters in this area are passed according to the
1005 available formal parameter information in a function
1006 prototype. [...] If no prototype is in scope,
1007 floating-point parameters must be passed both in the
1008 corresponding general registers and in the
1009 corresponding floating-point registers." */
1010 regnum = HPPA64_FP4_REGNUM + offset / 8;
1012 if (regnum < HPPA64_FP4_REGNUM + 8)
1014 /* "Single-precision floating-point parameters, when
1015 passed in floating-point registers, are passed in
1016 the right halves of the floating point registers;
1017 the left halves are unused." */
1018 regcache_cooked_write_part (regcache, regnum, offset % 8,
1019 len, value_contents (arg));
1027 /* "Aggregates larger than 8 bytes are aligned on a
1028 16-byte boundary, possibly leaving an unused argument
1029 slot, which is filled with garbage. If necessary,
1030 they are padded on the right (with garbage), to a
1031 multiple of 8 bytes." */
1032 offset = align_up (offset, 16);
1036 /* If we are passing a function pointer, make sure we pass a function
1037 descriptor instead of the function entry address. */
1038 if (TYPE_CODE (type) == TYPE_CODE_PTR
1039 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1041 ULONGEST codeptr, fptr;
1043 codeptr = unpack_long (type, value_contents (arg));
1044 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1045 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1050 valbuf = value_contents (arg);
1053 /* Always store the argument in memory. */
1054 write_memory (sp + offset, valbuf, len);
1056 regnum = HPPA_ARG0_REGNUM - offset / 8;
1057 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1059 regcache_cooked_write_part (regcache, regnum,
1060 offset % 8, min (len, 8), valbuf);
1061 offset += min (len, 8);
1062 valbuf += min (len, 8);
1063 len -= min (len, 8);
1070 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1071 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1073 /* Allocate the outgoing parameter area. Make sure the outgoing
1074 parameter area is multiple of 16 bytes in length. */
1075 sp += max (align_up (offset, 16), 64);
1077 /* Allocate 32-bytes of scratch space. The documentation doesn't
1078 mention this, but it seems to be needed. */
1081 /* Allocate the frame marker area. */
1084 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1087 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1089 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1090 gp = tdep->find_global_pointer (function);
1092 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1094 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1095 if (!gdbarch_push_dummy_code_p (gdbarch))
1096 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1098 /* Set up GR30 to hold the stack pointer (sp). */
1099 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1105 /* Handle 32/64-bit struct return conventions. */
1107 static enum return_value_convention
1108 hppa32_return_value (struct gdbarch *gdbarch,
1109 struct type *type, struct regcache *regcache,
1110 gdb_byte *readbuf, const gdb_byte *writebuf)
1112 if (TYPE_LENGTH (type) <= 2 * 4)
1114 /* The value always lives in the right hand end of the register
1115 (or register pair)? */
1117 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1118 int part = TYPE_LENGTH (type) % 4;
1119 /* The left hand register contains only part of the value,
1120 transfer that first so that the rest can be xfered as entire
1121 4-byte registers. */
1124 if (readbuf != NULL)
1125 regcache_cooked_read_part (regcache, reg, 4 - part,
1127 if (writebuf != NULL)
1128 regcache_cooked_write_part (regcache, reg, 4 - part,
1132 /* Now transfer the remaining register values. */
1133 for (b = part; b < TYPE_LENGTH (type); b += 4)
1135 if (readbuf != NULL)
1136 regcache_cooked_read (regcache, reg, readbuf + b);
1137 if (writebuf != NULL)
1138 regcache_cooked_write (regcache, reg, writebuf + b);
1141 return RETURN_VALUE_REGISTER_CONVENTION;
1144 return RETURN_VALUE_STRUCT_CONVENTION;
1147 static enum return_value_convention
1148 hppa64_return_value (struct gdbarch *gdbarch,
1149 struct type *type, struct regcache *regcache,
1150 gdb_byte *readbuf, const gdb_byte *writebuf)
1152 int len = TYPE_LENGTH (type);
1157 /* All return values larget than 128 bits must be aggregate
1159 gdb_assert (!hppa64_integral_or_pointer_p (type));
1160 gdb_assert (!hppa64_floating_p (type));
1162 /* "Aggregate return values larger than 128 bits are returned in
1163 a buffer allocated by the caller. The address of the buffer
1164 must be passed in GR 28." */
1165 return RETURN_VALUE_STRUCT_CONVENTION;
1168 if (hppa64_integral_or_pointer_p (type))
1170 /* "Integral return values are returned in GR 28. Values
1171 smaller than 64 bits are padded on the left (with garbage)." */
1172 regnum = HPPA_RET0_REGNUM;
1175 else if (hppa64_floating_p (type))
1179 /* "Double-extended- and quad-precision floating-point
1180 values are returned in GRs 28 and 29. The sign,
1181 exponent, and most-significant bits of the mantissa are
1182 returned in GR 28; the least-significant bits of the
1183 mantissa are passed in GR 29. For double-extended
1184 precision values, GR 29 is padded on the right with 48
1185 bits of garbage." */
1186 regnum = HPPA_RET0_REGNUM;
1191 /* "Single-precision and double-precision floating-point
1192 return values are returned in FR 4R (single precision) or
1193 FR 4 (double-precision)." */
1194 regnum = HPPA64_FP4_REGNUM;
1200 /* "Aggregate return values up to 64 bits in size are returned
1201 in GR 28. Aggregates smaller than 64 bits are left aligned
1202 in the register; the pad bits on the right are undefined."
1204 "Aggregate return values between 65 and 128 bits are returned
1205 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1206 the remaining bits are placed, left aligned, in GR 29. The
1207 pad bits on the right of GR 29 (if any) are undefined." */
1208 regnum = HPPA_RET0_REGNUM;
1216 regcache_cooked_read_part (regcache, regnum, offset,
1217 min (len, 8), readbuf);
1218 readbuf += min (len, 8);
1219 len -= min (len, 8);
1228 regcache_cooked_write_part (regcache, regnum, offset,
1229 min (len, 8), writebuf);
1230 writebuf += min (len, 8);
1231 len -= min (len, 8);
1236 return RETURN_VALUE_REGISTER_CONVENTION;
1241 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1242 struct target_ops *targ)
1246 CORE_ADDR plabel = addr & ~3;
1247 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1254 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1256 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1258 return align_up (addr, 64);
1261 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1264 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1266 /* Just always 16-byte align. */
1267 return align_up (addr, 16);
1271 hppa_read_pc (struct regcache *regcache)
1276 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1277 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1279 /* If the current instruction is nullified, then we are effectively
1280 still executing the previous instruction. Pretend we are still
1281 there. This is needed when single stepping; if the nullified
1282 instruction is on a different line, we don't want GDB to think
1283 we've stepped onto that line. */
1284 if (ipsw & 0x00200000)
1291 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1293 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1294 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1297 /* return the alignment of a type in bytes. Structures have the maximum
1298 alignment required by their fields. */
1301 hppa_alignof (struct type *type)
1303 int max_align, align, i;
1304 CHECK_TYPEDEF (type);
1305 switch (TYPE_CODE (type))
1310 return TYPE_LENGTH (type);
1311 case TYPE_CODE_ARRAY:
1312 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1313 case TYPE_CODE_STRUCT:
1314 case TYPE_CODE_UNION:
1316 for (i = 0; i < TYPE_NFIELDS (type); i++)
1318 /* Bit fields have no real alignment. */
1319 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1320 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1322 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1323 max_align = max (max_align, align);
1332 /* For the given instruction (INST), return any adjustment it makes
1333 to the stack pointer or zero for no adjustment.
1335 This only handles instructions commonly found in prologues. */
1338 prologue_inst_adjust_sp (unsigned long inst)
1340 /* This must persist across calls. */
1341 static int save_high21;
1343 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1344 if ((inst & 0xffffc000) == 0x37de0000)
1345 return hppa_extract_14 (inst);
1348 if ((inst & 0xffe00000) == 0x6fc00000)
1349 return hppa_extract_14 (inst);
1351 /* std,ma X,D(sp) */
1352 if ((inst & 0xffe00008) == 0x73c00008)
1353 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1355 /* addil high21,%r30; ldo low11,(%r1),%r30)
1356 save high bits in save_high21 for later use. */
1357 if ((inst & 0xffe00000) == 0x2bc00000)
1359 save_high21 = hppa_extract_21 (inst);
1363 if ((inst & 0xffff0000) == 0x343e0000)
1364 return save_high21 + hppa_extract_14 (inst);
1366 /* fstws as used by the HP compilers. */
1367 if ((inst & 0xffffffe0) == 0x2fd01220)
1368 return hppa_extract_5_load (inst);
1370 /* No adjustment. */
1374 /* Return nonzero if INST is a branch of some kind, else return zero. */
1377 is_branch (unsigned long inst)
1406 /* Return the register number for a GR which is saved by INST or
1407 zero it INST does not save a GR. */
1410 inst_saves_gr (unsigned long inst)
1412 /* Does it look like a stw? */
1413 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1414 || (inst >> 26) == 0x1f
1415 || ((inst >> 26) == 0x1f
1416 && ((inst >> 6) == 0xa)))
1417 return hppa_extract_5R_store (inst);
1419 /* Does it look like a std? */
1420 if ((inst >> 26) == 0x1c
1421 || ((inst >> 26) == 0x03
1422 && ((inst >> 6) & 0xf) == 0xb))
1423 return hppa_extract_5R_store (inst);
1425 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1426 if ((inst >> 26) == 0x1b)
1427 return hppa_extract_5R_store (inst);
1429 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1431 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1432 || ((inst >> 26) == 0x3
1433 && (((inst >> 6) & 0xf) == 0x8
1434 || (inst >> 6) & 0xf) == 0x9))
1435 return hppa_extract_5R_store (inst);
1440 /* Return the register number for a FR which is saved by INST or
1441 zero it INST does not save a FR.
1443 Note we only care about full 64bit register stores (that's the only
1444 kind of stores the prologue will use).
1446 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1449 inst_saves_fr (unsigned long inst)
1451 /* is this an FSTD ? */
1452 if ((inst & 0xfc00dfc0) == 0x2c001200)
1453 return hppa_extract_5r_store (inst);
1454 if ((inst & 0xfc000002) == 0x70000002)
1455 return hppa_extract_5R_store (inst);
1456 /* is this an FSTW ? */
1457 if ((inst & 0xfc00df80) == 0x24001200)
1458 return hppa_extract_5r_store (inst);
1459 if ((inst & 0xfc000002) == 0x7c000000)
1460 return hppa_extract_5R_store (inst);
1464 /* Advance PC across any function entry prologue instructions
1465 to reach some "real" code.
1467 Use information in the unwind table to determine what exactly should
1468 be in the prologue. */
1472 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1473 int stop_before_branch)
1476 CORE_ADDR orig_pc = pc;
1477 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1478 unsigned long args_stored, status, i, restart_gr, restart_fr;
1479 struct unwind_table_entry *u;
1480 int final_iteration;
1486 u = find_unwind_entry (pc);
1490 /* If we are not at the beginning of a function, then return now. */
1491 if ((pc & ~0x3) != u->region_start)
1494 /* This is how much of a frame adjustment we need to account for. */
1495 stack_remaining = u->Total_frame_size << 3;
1497 /* Magic register saves we want to know about. */
1498 save_rp = u->Save_RP;
1499 save_sp = u->Save_SP;
1501 /* An indication that args may be stored into the stack. Unfortunately
1502 the HPUX compilers tend to set this in cases where no args were
1506 /* Turn the Entry_GR field into a bitmask. */
1508 for (i = 3; i < u->Entry_GR + 3; i++)
1510 /* Frame pointer gets saved into a special location. */
1511 if (u->Save_SP && i == HPPA_FP_REGNUM)
1514 save_gr |= (1 << i);
1516 save_gr &= ~restart_gr;
1518 /* Turn the Entry_FR field into a bitmask too. */
1520 for (i = 12; i < u->Entry_FR + 12; i++)
1521 save_fr |= (1 << i);
1522 save_fr &= ~restart_fr;
1524 final_iteration = 0;
1526 /* Loop until we find everything of interest or hit a branch.
1528 For unoptimized GCC code and for any HP CC code this will never ever
1529 examine any user instructions.
1531 For optimzied GCC code we're faced with problems. GCC will schedule
1532 its prologue and make prologue instructions available for delay slot
1533 filling. The end result is user code gets mixed in with the prologue
1534 and a prologue instruction may be in the delay slot of the first branch
1537 Some unexpected things are expected with debugging optimized code, so
1538 we allow this routine to walk past user instructions in optimized
1540 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1543 unsigned int reg_num;
1544 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1545 unsigned long old_save_rp, old_save_sp, next_inst;
1547 /* Save copies of all the triggers so we can compare them later
1549 old_save_gr = save_gr;
1550 old_save_fr = save_fr;
1551 old_save_rp = save_rp;
1552 old_save_sp = save_sp;
1553 old_stack_remaining = stack_remaining;
1555 status = read_memory_nobpt (pc, buf, 4);
1556 inst = extract_unsigned_integer (buf, 4);
1562 /* Note the interesting effects of this instruction. */
1563 stack_remaining -= prologue_inst_adjust_sp (inst);
1565 /* There are limited ways to store the return pointer into the
1567 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1570 /* These are the only ways we save SP into the stack. At this time
1571 the HP compilers never bother to save SP into the stack. */
1572 if ((inst & 0xffffc000) == 0x6fc10000
1573 || (inst & 0xffffc00c) == 0x73c10008)
1576 /* Are we loading some register with an offset from the argument
1578 if ((inst & 0xffe00000) == 0x37a00000
1579 || (inst & 0xffffffe0) == 0x081d0240)
1585 /* Account for general and floating-point register saves. */
1586 reg_num = inst_saves_gr (inst);
1587 save_gr &= ~(1 << reg_num);
1589 /* Ugh. Also account for argument stores into the stack.
1590 Unfortunately args_stored only tells us that some arguments
1591 where stored into the stack. Not how many or what kind!
1593 This is a kludge as on the HP compiler sets this bit and it
1594 never does prologue scheduling. So once we see one, skip past
1595 all of them. We have similar code for the fp arg stores below.
1597 FIXME. Can still die if we have a mix of GR and FR argument
1599 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1602 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1606 status = read_memory_nobpt (pc, buf, 4);
1607 inst = extract_unsigned_integer (buf, 4);
1610 reg_num = inst_saves_gr (inst);
1616 reg_num = inst_saves_fr (inst);
1617 save_fr &= ~(1 << reg_num);
1619 status = read_memory_nobpt (pc + 4, buf, 4);
1620 next_inst = extract_unsigned_integer (buf, 4);
1626 /* We've got to be read to handle the ldo before the fp register
1628 if ((inst & 0xfc000000) == 0x34000000
1629 && inst_saves_fr (next_inst) >= 4
1630 && inst_saves_fr (next_inst)
1631 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1633 /* So we drop into the code below in a reasonable state. */
1634 reg_num = inst_saves_fr (next_inst);
1638 /* Ugh. Also account for argument stores into the stack.
1639 This is a kludge as on the HP compiler sets this bit and it
1640 never does prologue scheduling. So once we see one, skip past
1643 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1647 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1650 status = read_memory_nobpt (pc, buf, 4);
1651 inst = extract_unsigned_integer (buf, 4);
1654 if ((inst & 0xfc000000) != 0x34000000)
1656 status = read_memory_nobpt (pc + 4, buf, 4);
1657 next_inst = extract_unsigned_integer (buf, 4);
1660 reg_num = inst_saves_fr (next_inst);
1666 /* Quit if we hit any kind of branch. This can happen if a prologue
1667 instruction is in the delay slot of the first call/branch. */
1668 if (is_branch (inst) && stop_before_branch)
1671 /* What a crock. The HP compilers set args_stored even if no
1672 arguments were stored into the stack (boo hiss). This could
1673 cause this code to then skip a bunch of user insns (up to the
1676 To combat this we try to identify when args_stored was bogusly
1677 set and clear it. We only do this when args_stored is nonzero,
1678 all other resources are accounted for, and nothing changed on
1681 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1682 && old_save_gr == save_gr && old_save_fr == save_fr
1683 && old_save_rp == save_rp && old_save_sp == save_sp
1684 && old_stack_remaining == stack_remaining)
1690 /* !stop_before_branch, so also look at the insn in the delay slot
1692 if (final_iteration)
1694 if (is_branch (inst))
1695 final_iteration = 1;
1698 /* We've got a tenative location for the end of the prologue. However
1699 because of limitations in the unwind descriptor mechanism we may
1700 have went too far into user code looking for the save of a register
1701 that does not exist. So, if there registers we expected to be saved
1702 but never were, mask them out and restart.
1704 This should only happen in optimized code, and should be very rare. */
1705 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1708 restart_gr = save_gr;
1709 restart_fr = save_fr;
1717 /* Return the address of the PC after the last prologue instruction if
1718 we can determine it from the debug symbols. Else return zero. */
1721 after_prologue (CORE_ADDR pc)
1723 struct symtab_and_line sal;
1724 CORE_ADDR func_addr, func_end;
1727 /* If we can not find the symbol in the partial symbol table, then
1728 there is no hope we can determine the function's start address
1730 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1733 /* Get the line associated with FUNC_ADDR. */
1734 sal = find_pc_line (func_addr, 0);
1736 /* There are only two cases to consider. First, the end of the source line
1737 is within the function bounds. In that case we return the end of the
1738 source line. Second is the end of the source line extends beyond the
1739 bounds of the current function. We need to use the slow code to
1740 examine instructions in that case.
1742 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1743 the wrong thing to do. In fact, it should be entirely possible for this
1744 function to always return zero since the slow instruction scanning code
1745 is supposed to *always* work. If it does not, then it is a bug. */
1746 if (sal.end < func_end)
1752 /* To skip prologues, I use this predicate. Returns either PC itself
1753 if the code at PC does not look like a function prologue; otherwise
1754 returns an address that (if we're lucky) follows the prologue.
1756 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1757 It doesn't necessarily skips all the insns in the prologue. In fact
1758 we might not want to skip all the insns because a prologue insn may
1759 appear in the delay slot of the first branch, and we don't want to
1760 skip over the branch in that case. */
1763 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1767 CORE_ADDR post_prologue_pc;
1770 /* See if we can determine the end of the prologue via the symbol table.
1771 If so, then return either PC, or the PC after the prologue, whichever
1774 post_prologue_pc = after_prologue (pc);
1776 /* If after_prologue returned a useful address, then use it. Else
1777 fall back on the instruction skipping code.
1779 Some folks have claimed this causes problems because the breakpoint
1780 may be the first instruction of the prologue. If that happens, then
1781 the instruction skipping code has a bug that needs to be fixed. */
1782 if (post_prologue_pc != 0)
1783 return max (pc, post_prologue_pc);
1785 return (skip_prologue_hard_way (gdbarch, pc, 1));
1788 /* Return an unwind entry that falls within the frame's code block. */
1789 static struct unwind_table_entry *
1790 hppa_find_unwind_entry_in_block (struct frame_info *f)
1792 CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
1794 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1795 result of frame_unwind_address_in_block implies a problem.
1796 The bits should have been removed earlier, before the return
1797 value of frame_pc_unwind. That might be happening already;
1798 if it isn't, it should be fixed. Then this call can be
1800 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1801 return find_unwind_entry (pc);
1804 struct hppa_frame_cache
1807 struct trad_frame_saved_reg *saved_regs;
1810 static struct hppa_frame_cache *
1811 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1813 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1814 struct hppa_frame_cache *cache;
1819 struct unwind_table_entry *u;
1820 CORE_ADDR prologue_end;
1825 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1826 frame_relative_level(next_frame));
1828 if ((*this_cache) != NULL)
1831 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1832 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1833 return (*this_cache);
1835 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1836 (*this_cache) = cache;
1837 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1840 u = hppa_find_unwind_entry_in_block (next_frame);
1844 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1845 return (*this_cache);
1848 /* Turn the Entry_GR field into a bitmask. */
1850 for (i = 3; i < u->Entry_GR + 3; i++)
1852 /* Frame pointer gets saved into a special location. */
1853 if (u->Save_SP && i == HPPA_FP_REGNUM)
1856 saved_gr_mask |= (1 << i);
1859 /* Turn the Entry_FR field into a bitmask too. */
1861 for (i = 12; i < u->Entry_FR + 12; i++)
1862 saved_fr_mask |= (1 << i);
1864 /* Loop until we find everything of interest or hit a branch.
1866 For unoptimized GCC code and for any HP CC code this will never ever
1867 examine any user instructions.
1869 For optimized GCC code we're faced with problems. GCC will schedule
1870 its prologue and make prologue instructions available for delay slot
1871 filling. The end result is user code gets mixed in with the prologue
1872 and a prologue instruction may be in the delay slot of the first branch
1875 Some unexpected things are expected with debugging optimized code, so
1876 we allow this routine to walk past user instructions in optimized
1879 int final_iteration = 0;
1880 CORE_ADDR pc, start_pc, end_pc;
1881 int looking_for_sp = u->Save_SP;
1882 int looking_for_rp = u->Save_RP;
1885 /* We have to use skip_prologue_hard_way instead of just
1886 skip_prologue_using_sal, in case we stepped into a function without
1887 symbol information. hppa_skip_prologue also bounds the returned
1888 pc by the passed in pc, so it will not return a pc in the next
1891 We used to call hppa_skip_prologue to find the end of the prologue,
1892 but if some non-prologue instructions get scheduled into the prologue,
1893 and the program is compiled with debug information, the "easy" way
1894 in hppa_skip_prologue will return a prologue end that is too early
1895 for us to notice any potential frame adjustments. */
1897 /* We used to use frame_func_unwind () to locate the beginning of the
1898 function to pass to skip_prologue (). However, when objects are
1899 compiled without debug symbols, frame_func_unwind can return the wrong
1900 function (or 0). We can do better than that by using unwind records.
1901 This only works if the Region_description of the unwind record
1902 indicates that it includes the entry point of the function.
1903 HP compilers sometimes generate unwind records for regions that
1904 do not include the entry or exit point of a function. GNU tools
1907 if ((u->Region_description & 0x2) == 0)
1908 start_pc = u->region_start;
1910 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1912 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1913 end_pc = frame_pc_unwind (next_frame);
1915 if (prologue_end != 0 && end_pc > prologue_end)
1916 end_pc = prologue_end;
1921 ((saved_gr_mask || saved_fr_mask
1922 || looking_for_sp || looking_for_rp
1923 || frame_size < (u->Total_frame_size << 3))
1931 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1934 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1935 return (*this_cache);
1938 inst = extract_unsigned_integer (buf4, sizeof buf4);
1940 /* Note the interesting effects of this instruction. */
1941 frame_size += prologue_inst_adjust_sp (inst);
1943 /* There are limited ways to store the return pointer into the
1945 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1948 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1950 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1953 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1955 else if (inst == 0x0fc212c1
1956 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1959 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1962 /* Check to see if we saved SP into the stack. This also
1963 happens to indicate the location of the saved frame
1965 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1966 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1969 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1971 else if (inst == 0x08030241) /* copy %r3, %r1 */
1976 /* Account for general and floating-point register saves. */
1977 reg = inst_saves_gr (inst);
1978 if (reg >= 3 && reg <= 18
1979 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1981 saved_gr_mask &= ~(1 << reg);
1982 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1983 /* stwm with a positive displacement is a _post_
1985 cache->saved_regs[reg].addr = 0;
1986 else if ((inst & 0xfc00000c) == 0x70000008)
1987 /* A std has explicit post_modify forms. */
1988 cache->saved_regs[reg].addr = 0;
1993 if ((inst >> 26) == 0x1c)
1994 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1995 else if ((inst >> 26) == 0x03)
1996 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1998 offset = hppa_extract_14 (inst);
2000 /* Handle code with and without frame pointers. */
2002 cache->saved_regs[reg].addr = offset;
2004 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2008 /* GCC handles callee saved FP regs a little differently.
2010 It emits an instruction to put the value of the start of
2011 the FP store area into %r1. It then uses fstds,ma with a
2012 basereg of %r1 for the stores.
2014 HP CC emits them at the current stack pointer modifying the
2015 stack pointer as it stores each register. */
2017 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2018 if ((inst & 0xffffc000) == 0x34610000
2019 || (inst & 0xffffc000) == 0x37c10000)
2020 fp_loc = hppa_extract_14 (inst);
2022 reg = inst_saves_fr (inst);
2023 if (reg >= 12 && reg <= 21)
2025 /* Note +4 braindamage below is necessary because the FP
2026 status registers are internally 8 registers rather than
2027 the expected 4 registers. */
2028 saved_fr_mask &= ~(1 << reg);
2031 /* 1st HP CC FP register store. After this
2032 instruction we've set enough state that the GCC and
2033 HPCC code are both handled in the same manner. */
2034 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2039 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2044 /* Quit if we hit any kind of branch the previous iteration. */
2045 if (final_iteration)
2047 /* We want to look precisely one instruction beyond the branch
2048 if we have not found everything yet. */
2049 if (is_branch (inst))
2050 final_iteration = 1;
2055 /* The frame base always represents the value of %sp at entry to
2056 the current function (and is thus equivalent to the "saved"
2058 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2062 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2063 "prologue_end=0x%s) ",
2065 paddr_nz (frame_pc_unwind (next_frame)),
2066 paddr_nz (prologue_end));
2068 /* Check to see if a frame pointer is available, and use it for
2069 frame unwinding if it is.
2071 There are some situations where we need to rely on the frame
2072 pointer to do stack unwinding. For example, if a function calls
2073 alloca (), the stack pointer can get adjusted inside the body of
2074 the function. In this case, the ABI requires that the compiler
2075 maintain a frame pointer for the function.
2077 The unwind record has a flag (alloca_frame) that indicates that
2078 a function has a variable frame; unfortunately, gcc/binutils
2079 does not set this flag. Instead, whenever a frame pointer is used
2080 and saved on the stack, the Save_SP flag is set. We use this to
2081 decide whether to use the frame pointer for unwinding.
2083 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2084 instead of Save_SP. */
2086 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
2088 if (u->alloca_frame)
2089 fp -= u->Total_frame_size << 3;
2091 if (frame_pc_unwind (next_frame) >= prologue_end
2092 && (u->Save_SP || u->alloca_frame) && fp != 0)
2097 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2098 paddr_nz (cache->base));
2101 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2103 /* Both we're expecting the SP to be saved and the SP has been
2104 saved. The entry SP value is saved at this frame's SP
2106 cache->base = read_memory_integer
2107 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2110 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2111 paddr_nz (cache->base));
2115 /* The prologue has been slowly allocating stack space. Adjust
2117 cache->base = this_sp - frame_size;
2119 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2120 paddr_nz (cache->base));
2123 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2126 /* The PC is found in the "return register", "Millicode" uses "r31"
2127 as the return register while normal code uses "rp". */
2130 if (trad_frame_addr_p (cache->saved_regs, 31))
2132 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2134 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2138 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2139 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2141 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2146 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2148 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2149 cache->saved_regs[HPPA_RP_REGNUM];
2151 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2155 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2156 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2158 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2162 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2163 frame. However, there is a one-insn window where we haven't saved it
2164 yet, but we've already clobbered it. Detect this case and fix it up.
2166 The prologue sequence for frame-pointer functions is:
2167 0: stw %rp, -20(%sp)
2170 c: stw,ma %r1, XX(%sp)
2172 So if we are at offset c, the r3 value that we want is not yet saved
2173 on the stack, but it's been overwritten. The prologue analyzer will
2174 set fp_in_r1 when it sees the copy insn so we know to get the value
2176 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2179 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2180 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2184 /* Convert all the offsets into addresses. */
2186 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2188 if (trad_frame_addr_p (cache->saved_regs, reg))
2189 cache->saved_regs[reg].addr += cache->base;
2194 struct gdbarch_tdep *tdep;
2196 tdep = gdbarch_tdep (gdbarch);
2198 if (tdep->unwind_adjust_stub)
2200 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2205 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2206 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2207 return (*this_cache);
2211 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2212 struct frame_id *this_id)
2214 struct hppa_frame_cache *info;
2215 CORE_ADDR pc = frame_pc_unwind (next_frame);
2216 struct unwind_table_entry *u;
2218 info = hppa_frame_cache (next_frame, this_cache);
2219 u = hppa_find_unwind_entry_in_block (next_frame);
2221 (*this_id) = frame_id_build (info->base, u->region_start);
2225 hppa_frame_prev_register (struct frame_info *next_frame,
2227 int regnum, int *optimizedp,
2228 enum lval_type *lvalp, CORE_ADDR *addrp,
2229 int *realnump, gdb_byte *valuep)
2231 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2232 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2233 optimizedp, lvalp, addrp, realnump, valuep);
2236 static const struct frame_unwind hppa_frame_unwind =
2240 hppa_frame_prev_register
2243 static const struct frame_unwind *
2244 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2246 if (hppa_find_unwind_entry_in_block (next_frame))
2247 return &hppa_frame_unwind;
2252 /* This is a generic fallback frame unwinder that kicks in if we fail all
2253 the other ones. Normally we would expect the stub and regular unwinder
2254 to work, but in some cases we might hit a function that just doesn't
2255 have any unwind information available. In this case we try to do
2256 unwinding solely based on code reading. This is obviously going to be
2257 slow, so only use this as a last resort. Currently this will only
2258 identify the stack and pc for the frame. */
2260 static struct hppa_frame_cache *
2261 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2263 struct hppa_frame_cache *cache;
2264 unsigned int frame_size = 0;
2269 fprintf_unfiltered (gdb_stdlog,
2270 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2271 frame_relative_level (next_frame));
2273 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2274 (*this_cache) = cache;
2275 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2277 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2280 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2283 for (pc = start_pc; pc < cur_pc; pc += 4)
2287 insn = read_memory_unsigned_integer (pc, 4);
2288 frame_size += prologue_inst_adjust_sp (insn);
2290 /* There are limited ways to store the return pointer into the
2292 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2294 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2297 else if (insn == 0x0fc212c1
2298 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2300 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2307 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2308 frame_size, found_rp);
2310 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2311 cache->base -= frame_size;
2312 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2314 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2316 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2317 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2318 cache->saved_regs[HPPA_RP_REGNUM];
2323 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2324 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2331 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2332 struct frame_id *this_id)
2334 struct hppa_frame_cache *info =
2335 hppa_fallback_frame_cache (next_frame, this_cache);
2336 (*this_id) = frame_id_build (info->base,
2337 frame_func_unwind (next_frame, NORMAL_FRAME));
2341 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2343 int regnum, int *optimizedp,
2344 enum lval_type *lvalp, CORE_ADDR *addrp,
2345 int *realnump, gdb_byte *valuep)
2347 struct hppa_frame_cache *info =
2348 hppa_fallback_frame_cache (next_frame, this_cache);
2349 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2350 optimizedp, lvalp, addrp, realnump, valuep);
2353 static const struct frame_unwind hppa_fallback_frame_unwind =
2356 hppa_fallback_frame_this_id,
2357 hppa_fallback_frame_prev_register
2360 static const struct frame_unwind *
2361 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2363 return &hppa_fallback_frame_unwind;
2366 /* Stub frames, used for all kinds of call stubs. */
2367 struct hppa_stub_unwind_cache
2370 struct trad_frame_saved_reg *saved_regs;
2373 static struct hppa_stub_unwind_cache *
2374 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2377 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2378 struct hppa_stub_unwind_cache *info;
2379 struct unwind_table_entry *u;
2384 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2386 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2388 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2390 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2392 /* HPUX uses export stubs in function calls; the export stub clobbers
2393 the return value of the caller, and, later restores it from the
2395 u = find_unwind_entry (frame_pc_unwind (next_frame));
2397 if (u && u->stub_unwind.stub_type == EXPORT)
2399 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2405 /* By default we assume that stubs do not change the rp. */
2406 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2412 hppa_stub_frame_this_id (struct frame_info *next_frame,
2413 void **this_prologue_cache,
2414 struct frame_id *this_id)
2416 struct hppa_stub_unwind_cache *info
2417 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2420 *this_id = frame_id_build (info->base,
2421 frame_func_unwind (next_frame, NORMAL_FRAME));
2423 *this_id = null_frame_id;
2427 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2428 void **this_prologue_cache,
2429 int regnum, int *optimizedp,
2430 enum lval_type *lvalp, CORE_ADDR *addrp,
2431 int *realnump, gdb_byte *valuep)
2433 struct hppa_stub_unwind_cache *info
2434 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2437 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2438 optimizedp, lvalp, addrp, realnump,
2441 error (_("Requesting registers from null frame."));
2444 static const struct frame_unwind hppa_stub_frame_unwind = {
2446 hppa_stub_frame_this_id,
2447 hppa_stub_frame_prev_register
2450 static const struct frame_unwind *
2451 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2453 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2454 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2458 || (tdep->in_solib_call_trampoline != NULL
2459 && tdep->in_solib_call_trampoline (pc, NULL))
2460 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2461 return &hppa_stub_frame_unwind;
2465 static struct frame_id
2466 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2468 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2470 frame_pc_unwind (next_frame));
2474 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2479 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2480 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2482 /* If the current instruction is nullified, then we are effectively
2483 still executing the previous instruction. Pretend we are still
2484 there. This is needed when single stepping; if the nullified
2485 instruction is on a different line, we don't want GDB to think
2486 we've stepped onto that line. */
2487 if (ipsw & 0x00200000)
2493 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2494 Return NULL if no such symbol was found. */
2496 struct minimal_symbol *
2497 hppa_lookup_stub_minimal_symbol (const char *name,
2498 enum unwind_stub_types stub_type)
2500 struct objfile *objfile;
2501 struct minimal_symbol *msym;
2503 ALL_MSYMBOLS (objfile, msym)
2505 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2507 struct unwind_table_entry *u;
2509 u = find_unwind_entry (SYMBOL_VALUE (msym));
2510 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2519 unwind_command (char *exp, int from_tty)
2522 struct unwind_table_entry *u;
2524 /* If we have an expression, evaluate it and use it as the address. */
2526 if (exp != 0 && *exp != 0)
2527 address = parse_and_eval_address (exp);
2531 u = find_unwind_entry (address);
2535 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2539 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2541 printf_unfiltered ("\tregion_start = ");
2542 print_address (u->region_start, gdb_stdout);
2543 gdb_flush (gdb_stdout);
2545 printf_unfiltered ("\n\tregion_end = ");
2546 print_address (u->region_end, gdb_stdout);
2547 gdb_flush (gdb_stdout);
2549 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2551 printf_unfiltered ("\n\tflags =");
2552 pif (Cannot_unwind);
2554 pif (Millicode_save_sr0);
2557 pif (Variable_Frame);
2558 pif (Separate_Package_Body);
2559 pif (Frame_Extension_Millicode);
2560 pif (Stack_Overflow_Check);
2561 pif (Two_Instruction_SP_Increment);
2564 pif (cxx_try_catch);
2565 pif (sched_entry_seq);
2568 pif (Save_MRP_in_frame);
2570 pif (Cleanup_defined);
2571 pif (MPE_XL_interrupt_marker);
2572 pif (HP_UX_interrupt_marker);
2576 putchar_unfiltered ('\n');
2578 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2580 pin (Region_description);
2583 pin (Total_frame_size);
2585 if (u->stub_unwind.stub_type)
2587 printf_unfiltered ("\tstub type = ");
2588 switch (u->stub_unwind.stub_type)
2591 printf_unfiltered ("long branch\n");
2593 case PARAMETER_RELOCATION:
2594 printf_unfiltered ("parameter relocation\n");
2597 printf_unfiltered ("export\n");
2600 printf_unfiltered ("import\n");
2603 printf_unfiltered ("import shlib\n");
2606 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2611 /* Return the GDB type object for the "standard" data type of data in
2614 static struct type *
2615 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2617 if (regnum < HPPA_FP4_REGNUM)
2618 return builtin_type_uint32;
2620 return builtin_type_ieee_single;
2623 static struct type *
2624 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2626 if (regnum < HPPA64_FP4_REGNUM)
2627 return builtin_type_uint64;
2629 return builtin_type_ieee_double;
2632 /* Return non-zero if REGNUM is not a register available to the user
2633 through ptrace/ttrace. */
2636 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2639 || regnum == HPPA_PCSQ_HEAD_REGNUM
2640 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2641 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2645 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2647 /* cr26 and cr27 are readable (but not writable) from userspace. */
2648 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2651 return hppa32_cannot_store_register (gdbarch, regnum);
2655 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2658 || regnum == HPPA_PCSQ_HEAD_REGNUM
2659 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2660 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2664 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2666 /* cr26 and cr27 are readable (but not writable) from userspace. */
2667 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2670 return hppa64_cannot_store_register (gdbarch, regnum);
2674 hppa_smash_text_address (CORE_ADDR addr)
2676 /* The low two bits of the PC on the PA contain the privilege level.
2677 Some genius implementing a (non-GCC) compiler apparently decided
2678 this means that "addresses" in a text section therefore include a
2679 privilege level, and thus symbol tables should contain these bits.
2680 This seems like a bonehead thing to do--anyway, it seems to work
2681 for our purposes to just ignore those bits. */
2683 return (addr &= ~0x3);
2686 /* Get the ARGIth function argument for the current function. */
2689 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2692 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2696 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2697 int regnum, gdb_byte *buf)
2701 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2702 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2704 store_unsigned_integer (buf, sizeof tmp, tmp);
2708 hppa_find_global_pointer (struct value *function)
2714 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2715 struct trad_frame_saved_reg saved_regs[],
2716 int regnum, int *optimizedp,
2717 enum lval_type *lvalp, CORE_ADDR *addrp,
2718 int *realnump, gdb_byte *valuep)
2720 struct gdbarch *arch = get_frame_arch (next_frame);
2722 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2726 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2729 trad_frame_get_prev_register (next_frame, saved_regs,
2730 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2731 lvalp, addrp, realnump, valuep);
2733 pc = extract_unsigned_integer (valuep, size);
2734 store_unsigned_integer (valuep, size, pc + 4);
2737 /* It's a computed value. */
2745 /* Make sure the "flags" register is zero in all unwound frames.
2746 The "flags" registers is a HP-UX specific wart, and only the code
2747 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2748 with it here. This shouldn't affect other systems since those
2749 should provide zero for the "flags" register anyway. */
2750 if (regnum == HPPA_FLAGS_REGNUM)
2753 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2755 /* It's a computed value. */
2763 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2764 optimizedp, lvalp, addrp, realnump, valuep);
2768 /* An instruction to match. */
2771 unsigned int data; /* See if it matches this.... */
2772 unsigned int mask; /* ... with this mask. */
2775 /* See bfd/elf32-hppa.c */
2776 static struct insn_pattern hppa_long_branch_stub[] = {
2777 /* ldil LR'xxx,%r1 */
2778 { 0x20200000, 0xffe00000 },
2779 /* be,n RR'xxx(%sr4,%r1) */
2780 { 0xe0202002, 0xffe02002 },
2784 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2786 { 0xe8200000, 0xffe00000 },
2787 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2788 { 0x28200000, 0xffe00000 },
2789 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2790 { 0xe0202002, 0xffe02002 },
2794 static struct insn_pattern hppa_import_stub[] = {
2795 /* addil LR'xxx, %dp */
2796 { 0x2b600000, 0xffe00000 },
2797 /* ldw RR'xxx(%r1), %r21 */
2798 { 0x48350000, 0xffffb000 },
2800 { 0xeaa0c000, 0xffffffff },
2801 /* ldw RR'xxx+4(%r1), %r19 */
2802 { 0x48330000, 0xffffb000 },
2806 static struct insn_pattern hppa_import_pic_stub[] = {
2807 /* addil LR'xxx,%r19 */
2808 { 0x2a600000, 0xffe00000 },
2809 /* ldw RR'xxx(%r1),%r21 */
2810 { 0x48350000, 0xffffb000 },
2812 { 0xeaa0c000, 0xffffffff },
2813 /* ldw RR'xxx+4(%r1),%r19 */
2814 { 0x48330000, 0xffffb000 },
2818 static struct insn_pattern hppa_plt_stub[] = {
2819 /* b,l 1b, %r20 - 1b is 3 insns before here */
2820 { 0xea9f1fdd, 0xffffffff },
2821 /* depi 0,31,2,%r20 */
2822 { 0xd6801c1e, 0xffffffff },
2826 static struct insn_pattern hppa_sigtramp[] = {
2827 /* ldi 0, %r25 or ldi 1, %r25 */
2828 { 0x34190000, 0xfffffffd },
2829 /* ldi __NR_rt_sigreturn, %r20 */
2830 { 0x3414015a, 0xffffffff },
2831 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2832 { 0xe4008200, 0xffffffff },
2834 { 0x08000240, 0xffffffff },
2838 /* Maximum number of instructions on the patterns above. */
2839 #define HPPA_MAX_INSN_PATTERN_LEN 4
2841 /* Return non-zero if the instructions at PC match the series
2842 described in PATTERN, or zero otherwise. PATTERN is an array of
2843 'struct insn_pattern' objects, terminated by an entry whose mask is
2846 When the match is successful, fill INSN[i] with what PATTERN[i]
2850 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2856 for (i = 0; pattern[i].mask; i++)
2858 gdb_byte buf[HPPA_INSN_SIZE];
2860 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2861 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2862 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2871 /* This relaxed version of the insstruction matcher allows us to match
2872 from somewhere inside the pattern, by looking backwards in the
2873 instruction scheme. */
2876 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2879 int offset, len = 0;
2881 while (pattern[len].mask)
2884 for (offset = 0; offset < len; offset++)
2885 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2892 hppa_in_dyncall (CORE_ADDR pc)
2894 struct unwind_table_entry *u;
2896 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2900 return (pc >= u->region_start && pc <= u->region_end);
2904 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2906 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2907 struct unwind_table_entry *u;
2909 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2912 /* The GNU toolchain produces linker stubs without unwind
2913 information. Since the pattern matching for linker stubs can be
2914 quite slow, so bail out if we do have an unwind entry. */
2916 u = find_unwind_entry (pc);
2920 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2921 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2922 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2923 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2926 /* This code skips several kind of "trampolines" used on PA-RISC
2927 systems: $$dyncall, import stubs and PLT stubs. */
2930 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2932 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2935 /* $$dyncall handles both PLABELs and direct addresses. */
2936 if (hppa_in_dyncall (pc))
2938 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2940 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2942 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2947 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2948 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2950 /* Extract the target address from the addil/ldw sequence. */
2951 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2954 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2956 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2961 if (in_plt_section (pc, NULL))
2963 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2965 /* If the PLT slot has not yet been resolved, the target will be
2967 if (in_plt_section (pc, NULL))
2969 /* Sanity check: are we pointing to the PLT stub? */
2970 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2972 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2976 /* This should point to the fixup routine. */
2977 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2985 /* Here is a table of C type sizes on hppa with various compiles
2986 and options. I measured this on PA 9000/800 with HP-UX 11.11
2987 and these compilers:
2989 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2990 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2991 /opt/aCC/bin/aCC B3910B A.03.45
2992 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2994 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2995 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2996 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2997 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2998 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2999 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3000 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3001 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3005 compiler and options
3006 char, short, int, long, long long
3007 float, double, long double
3010 So all these compilers use either ILP32 or LP64 model.
3011 TODO: gcc has more options so it needs more investigation.
3013 For floating point types, see:
3015 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3016 HP-UX floating-point guide, hpux 11.00
3018 -- chastain 2003-12-18 */
3020 static struct gdbarch *
3021 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3023 struct gdbarch_tdep *tdep;
3024 struct gdbarch *gdbarch;
3026 /* Try to determine the ABI of the object we are loading. */
3027 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3029 /* If it's a SOM file, assume it's HP/UX SOM. */
3030 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3031 info.osabi = GDB_OSABI_HPUX_SOM;
3034 /* find a candidate among the list of pre-declared architectures. */
3035 arches = gdbarch_list_lookup_by_info (arches, &info);
3037 return (arches->gdbarch);
3039 /* If none found, then allocate and initialize one. */
3040 tdep = XZALLOC (struct gdbarch_tdep);
3041 gdbarch = gdbarch_alloc (&info, tdep);
3043 /* Determine from the bfd_arch_info structure if we are dealing with
3044 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3045 then default to a 32bit machine. */
3046 if (info.bfd_arch_info != NULL)
3047 tdep->bytes_per_address =
3048 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3050 tdep->bytes_per_address = 4;
3052 tdep->find_global_pointer = hppa_find_global_pointer;
3054 /* Some parts of the gdbarch vector depend on whether we are running
3055 on a 32 bits or 64 bits target. */
3056 switch (tdep->bytes_per_address)
3059 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3060 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3061 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3062 set_gdbarch_cannot_store_register (gdbarch,
3063 hppa32_cannot_store_register);
3064 set_gdbarch_cannot_fetch_register (gdbarch,
3065 hppa32_cannot_fetch_register);
3068 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3069 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3070 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3071 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3072 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3073 set_gdbarch_cannot_store_register (gdbarch,
3074 hppa64_cannot_store_register);
3075 set_gdbarch_cannot_fetch_register (gdbarch,
3076 hppa64_cannot_fetch_register);
3079 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3080 tdep->bytes_per_address);
3083 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3084 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3086 /* The following gdbarch vector elements are the same in both ILP32
3087 and LP64, but might show differences some day. */
3088 set_gdbarch_long_long_bit (gdbarch, 64);
3089 set_gdbarch_long_double_bit (gdbarch, 128);
3090 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3092 /* The following gdbarch vector elements do not depend on the address
3093 size, or in any other gdbarch element previously set. */
3094 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3095 set_gdbarch_in_function_epilogue_p (gdbarch,
3096 hppa_in_function_epilogue_p);
3097 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3098 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3099 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3100 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3101 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3102 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3103 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3104 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3106 /* Helper for function argument information. */
3107 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3109 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3111 /* When a hardware watchpoint triggers, we'll move the inferior past
3112 it by removing all eventpoints; stepping past the instruction
3113 that caused the trigger; reinserting eventpoints; and checking
3114 whether any watched location changed. */
3115 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3117 /* Inferior function call methods. */
3118 switch (tdep->bytes_per_address)
3121 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3122 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3123 set_gdbarch_convert_from_func_ptr_addr
3124 (gdbarch, hppa32_convert_from_func_ptr_addr);
3127 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3128 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3131 internal_error (__FILE__, __LINE__, _("bad switch"));
3134 /* Struct return methods. */
3135 switch (tdep->bytes_per_address)
3138 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3141 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3144 internal_error (__FILE__, __LINE__, _("bad switch"));
3147 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3148 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3150 /* Frame unwind methods. */
3151 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3152 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3154 /* Hook in ABI-specific overrides, if they have been registered. */
3155 gdbarch_init_osabi (info, gdbarch);
3157 /* Hook in the default unwinders. */
3158 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
3159 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
3160 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
3166 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3170 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3171 tdep->bytes_per_address);
3172 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3176 _initialize_hppa_tdep (void)
3178 struct cmd_list_element *c;
3180 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3182 hppa_objfile_priv_data = register_objfile_data ();
3184 add_cmd ("unwind", class_maintenance, unwind_command,
3185 _("Print unwind table entry at given address."),
3186 &maintenanceprintlist);
3188 /* Debug this files internals. */
3189 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3190 Set whether hppa target specific debugging information should be displayed."),
3192 Show whether hppa target specific debugging information is displayed."), _("\
3193 This flag controls whether hppa target specific debugging information is\n\
3194 displayed. This information is particularly useful for debugging frame\n\
3195 unwinding problems."),
3197 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3198 &setdebuglist, &showdebuglist);