1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
57 #include "typeprint.h"
60 #include "completer.h"
61 #include "common/vec.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "common/filestuff.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
83 #include <sys/types.h>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
111 static const struct objfile_data *dwarf2_objfile_data_key;
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
133 struct name_component
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
140 /* The symbol's index in the symbol and constant pool tables of a
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
148 struct mapped_index_base
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
166 /* Return whether the name at IDX in the symbol table should be
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
173 /* Build the symbol name component sorted vector, if we haven't
175 void build_name_components ();
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184 /* Prevent deleting/destroying via a base class pointer. */
186 ~mapped_index_base() = default;
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
196 const offset_type name;
197 const offset_type vec;
200 /* Index data format version. */
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
212 bool symbol_name_slot_invalid (offset_type idx) const override
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
218 /* Convenience method to get at the name of the symbol at IDX in the
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
253 /* Attribute name DW_IDX_*. */
256 /* Attribute form DW_FORM_*. */
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
262 std::vector<attr> attr_vec;
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
267 const char *namei_to_name (uint32_t namei) const;
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
275 size_t symbol_name_count () const override
276 { return this->name_count; }
279 /* See dwarf2read.h. */
282 get_dwarf2_per_objfile (struct objfile *objfile)
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
298 /* Default names of the debugging sections. */
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
326 /* List of DWO/DWP sections. */
328 static const struct dwop_section_names
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
359 /* local data types */
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
377 enum dwarf_unit_type unit_type;
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
399 /* The type to which the method is attached, i.e., its parent class. */
402 /* The index of the method in the type's function fieldlists. */
405 /* The index of the method in the fieldlist. */
408 /* The name of the DIE. */
411 /* The DIE associated with this method. */
412 struct die_info *die;
415 /* Internal state when decoding a particular compilation unit. */
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
424 Create the set of symtabs used by this TU, or if this TU is sharing
425 symtabs with another TU and the symtabs have already been created
426 then restore those symtabs in the line header.
427 We don't need the pc/line-number mapping for type units. */
428 void setup_type_unit_groups (struct die_info *die);
430 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
431 buildsym_compunit constructor. */
432 struct compunit_symtab *start_symtab (const char *name,
433 const char *comp_dir,
436 /* Reset the builder. */
437 void reset_builder () { m_builder.reset (); }
439 /* The header of the compilation unit. */
440 struct comp_unit_head header {};
442 /* Base address of this compilation unit. */
443 CORE_ADDR base_address = 0;
445 /* Non-zero if base_address has been set. */
448 /* The language we are debugging. */
449 enum language language = language_unknown;
450 const struct language_defn *language_defn = nullptr;
452 const char *producer = nullptr;
455 /* The symtab builder for this CU. This is only non-NULL when full
456 symbols are being read. */
457 std::unique_ptr<buildsym_compunit> m_builder;
460 /* The generic symbol table building routines have separate lists for
461 file scope symbols and all all other scopes (local scopes). So
462 we need to select the right one to pass to add_symbol_to_list().
463 We do it by keeping a pointer to the correct list in list_in_scope.
465 FIXME: The original dwarf code just treated the file scope as the
466 first local scope, and all other local scopes as nested local
467 scopes, and worked fine. Check to see if we really need to
468 distinguish these in buildsym.c. */
469 struct pending **list_in_scope = nullptr;
471 /* Hash table holding all the loaded partial DIEs
472 with partial_die->offset.SECT_OFF as hash. */
473 htab_t partial_dies = nullptr;
475 /* Storage for things with the same lifetime as this read-in compilation
476 unit, including partial DIEs. */
477 auto_obstack comp_unit_obstack;
479 /* When multiple dwarf2_cu structures are living in memory, this field
480 chains them all together, so that they can be released efficiently.
481 We will probably also want a generation counter so that most-recently-used
482 compilation units are cached... */
483 struct dwarf2_per_cu_data *read_in_chain = nullptr;
485 /* Backlink to our per_cu entry. */
486 struct dwarf2_per_cu_data *per_cu;
488 /* How many compilation units ago was this CU last referenced? */
491 /* A hash table of DIE cu_offset for following references with
492 die_info->offset.sect_off as hash. */
493 htab_t die_hash = nullptr;
495 /* Full DIEs if read in. */
496 struct die_info *dies = nullptr;
498 /* A set of pointers to dwarf2_per_cu_data objects for compilation
499 units referenced by this one. Only set during full symbol processing;
500 partial symbol tables do not have dependencies. */
501 htab_t dependencies = nullptr;
503 /* Header data from the line table, during full symbol processing. */
504 struct line_header *line_header = nullptr;
505 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
506 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
507 this is the DW_TAG_compile_unit die for this CU. We'll hold on
508 to the line header as long as this DIE is being processed. See
509 process_die_scope. */
510 die_info *line_header_die_owner = nullptr;
512 /* A list of methods which need to have physnames computed
513 after all type information has been read. */
514 std::vector<delayed_method_info> method_list;
516 /* To be copied to symtab->call_site_htab. */
517 htab_t call_site_htab = nullptr;
519 /* Non-NULL if this CU came from a DWO file.
520 There is an invariant here that is important to remember:
521 Except for attributes copied from the top level DIE in the "main"
522 (or "stub") file in preparation for reading the DWO file
523 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
524 Either there isn't a DWO file (in which case this is NULL and the point
525 is moot), or there is and either we're not going to read it (in which
526 case this is NULL) or there is and we are reading it (in which case this
528 struct dwo_unit *dwo_unit = nullptr;
530 /* The DW_AT_addr_base attribute if present, zero otherwise
531 (zero is a valid value though).
532 Note this value comes from the Fission stub CU/TU's DIE. */
533 ULONGEST addr_base = 0;
535 /* The DW_AT_ranges_base attribute if present, zero otherwise
536 (zero is a valid value though).
537 Note this value comes from the Fission stub CU/TU's DIE.
538 Also note that the value is zero in the non-DWO case so this value can
539 be used without needing to know whether DWO files are in use or not.
540 N.B. This does not apply to DW_AT_ranges appearing in
541 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
542 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
543 DW_AT_ranges_base *would* have to be applied, and we'd have to care
544 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
545 ULONGEST ranges_base = 0;
547 /* When reading debug info generated by older versions of rustc, we
548 have to rewrite some union types to be struct types with a
549 variant part. This rewriting must be done after the CU is fully
550 read in, because otherwise at the point of rewriting some struct
551 type might not have been fully processed. So, we keep a list of
552 all such types here and process them after expansion. */
553 std::vector<struct type *> rust_unions;
555 /* Mark used when releasing cached dies. */
558 /* This CU references .debug_loc. See the symtab->locations_valid field.
559 This test is imperfect as there may exist optimized debug code not using
560 any location list and still facing inlining issues if handled as
561 unoptimized code. For a future better test see GCC PR other/32998. */
562 bool has_loclist : 1;
564 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
565 if all the producer_is_* fields are valid. This information is cached
566 because profiling CU expansion showed excessive time spent in
567 producer_is_gxx_lt_4_6. */
568 bool checked_producer : 1;
569 bool producer_is_gxx_lt_4_6 : 1;
570 bool producer_is_gcc_lt_4_3 : 1;
571 bool producer_is_icc : 1;
572 bool producer_is_icc_lt_14 : 1;
573 bool producer_is_codewarrior : 1;
575 /* When true, the file that we're processing is known to have
576 debugging info for C++ namespaces. GCC 3.3.x did not produce
577 this information, but later versions do. */
579 bool processing_has_namespace_info : 1;
581 struct partial_die_info *find_partial_die (sect_offset sect_off);
583 /* If this CU was inherited by another CU (via specification,
584 abstract_origin, etc), this is the ancestor CU. */
587 /* Get the buildsym_compunit for this CU. */
588 buildsym_compunit *get_builder ()
590 /* If this CU has a builder associated with it, use that. */
591 if (m_builder != nullptr)
592 return m_builder.get ();
594 /* Otherwise, search ancestors for a valid builder. */
595 if (ancestor != nullptr)
596 return ancestor->get_builder ();
602 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
603 This includes type_unit_group and quick_file_names. */
605 struct stmt_list_hash
607 /* The DWO unit this table is from or NULL if there is none. */
608 struct dwo_unit *dwo_unit;
610 /* Offset in .debug_line or .debug_line.dwo. */
611 sect_offset line_sect_off;
614 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
615 an object of this type. */
617 struct type_unit_group
619 /* dwarf2read.c's main "handle" on a TU symtab.
620 To simplify things we create an artificial CU that "includes" all the
621 type units using this stmt_list so that the rest of the code still has
622 a "per_cu" handle on the symtab.
623 This PER_CU is recognized by having no section. */
624 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
625 struct dwarf2_per_cu_data per_cu;
627 /* The TUs that share this DW_AT_stmt_list entry.
628 This is added to while parsing type units to build partial symtabs,
629 and is deleted afterwards and not used again. */
630 VEC (sig_type_ptr) *tus;
632 /* The compunit symtab.
633 Type units in a group needn't all be defined in the same source file,
634 so we create an essentially anonymous symtab as the compunit symtab. */
635 struct compunit_symtab *compunit_symtab;
637 /* The data used to construct the hash key. */
638 struct stmt_list_hash hash;
640 /* The number of symtabs from the line header.
641 The value here must match line_header.num_file_names. */
642 unsigned int num_symtabs;
644 /* The symbol tables for this TU (obtained from the files listed in
646 WARNING: The order of entries here must match the order of entries
647 in the line header. After the first TU using this type_unit_group, the
648 line header for the subsequent TUs is recreated from this. This is done
649 because we need to use the same symtabs for each TU using the same
650 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
651 there's no guarantee the line header doesn't have duplicate entries. */
652 struct symtab **symtabs;
655 /* These sections are what may appear in a (real or virtual) DWO file. */
659 struct dwarf2_section_info abbrev;
660 struct dwarf2_section_info line;
661 struct dwarf2_section_info loc;
662 struct dwarf2_section_info loclists;
663 struct dwarf2_section_info macinfo;
664 struct dwarf2_section_info macro;
665 struct dwarf2_section_info str;
666 struct dwarf2_section_info str_offsets;
667 /* In the case of a virtual DWO file, these two are unused. */
668 struct dwarf2_section_info info;
669 VEC (dwarf2_section_info_def) *types;
672 /* CUs/TUs in DWP/DWO files. */
676 /* Backlink to the containing struct dwo_file. */
677 struct dwo_file *dwo_file;
679 /* The "id" that distinguishes this CU/TU.
680 .debug_info calls this "dwo_id", .debug_types calls this "signature".
681 Since signatures came first, we stick with it for consistency. */
684 /* The section this CU/TU lives in, in the DWO file. */
685 struct dwarf2_section_info *section;
687 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
688 sect_offset sect_off;
691 /* For types, offset in the type's DIE of the type defined by this TU. */
692 cu_offset type_offset_in_tu;
695 /* include/dwarf2.h defines the DWP section codes.
696 It defines a max value but it doesn't define a min value, which we
697 use for error checking, so provide one. */
699 enum dwp_v2_section_ids
704 /* Data for one DWO file.
706 This includes virtual DWO files (a virtual DWO file is a DWO file as it
707 appears in a DWP file). DWP files don't really have DWO files per se -
708 comdat folding of types "loses" the DWO file they came from, and from
709 a high level view DWP files appear to contain a mass of random types.
710 However, to maintain consistency with the non-DWP case we pretend DWP
711 files contain virtual DWO files, and we assign each TU with one virtual
712 DWO file (generally based on the line and abbrev section offsets -
713 a heuristic that seems to work in practice). */
717 /* The DW_AT_GNU_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name;
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir;
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections;
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
746 /* These sections are what may appear in a DWP file. */
750 /* These are used by both DWP version 1 and 2. */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
755 /* These are only used by DWP version 2 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 there is at most one copy of all these sections, each
759 section being (effectively) comprised of the concatenation of all of the
760 individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info macinfo;
768 struct dwarf2_section_info macro;
769 struct dwarf2_section_info str_offsets;
770 struct dwarf2_section_info types;
773 /* These sections are what may appear in a virtual DWO file in DWP version 1.
774 A virtual DWO file is a DWO file as it appears in a DWP file. */
776 struct virtual_v1_dwo_sections
778 struct dwarf2_section_info abbrev;
779 struct dwarf2_section_info line;
780 struct dwarf2_section_info loc;
781 struct dwarf2_section_info macinfo;
782 struct dwarf2_section_info macro;
783 struct dwarf2_section_info str_offsets;
784 /* Each DWP hash table entry records one CU or one TU.
785 That is recorded here, and copied to dwo_unit.section. */
786 struct dwarf2_section_info info_or_types;
789 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
790 In version 2, the sections of the DWO files are concatenated together
791 and stored in one section of that name. Thus each ELF section contains
792 several "virtual" sections. */
794 struct virtual_v2_dwo_sections
796 bfd_size_type abbrev_offset;
797 bfd_size_type abbrev_size;
799 bfd_size_type line_offset;
800 bfd_size_type line_size;
802 bfd_size_type loc_offset;
803 bfd_size_type loc_size;
805 bfd_size_type macinfo_offset;
806 bfd_size_type macinfo_size;
808 bfd_size_type macro_offset;
809 bfd_size_type macro_size;
811 bfd_size_type str_offsets_offset;
812 bfd_size_type str_offsets_size;
814 /* Each DWP hash table entry records one CU or one TU.
815 That is recorded here, and copied to dwo_unit.section. */
816 bfd_size_type info_or_types_offset;
817 bfd_size_type info_or_types_size;
820 /* Contents of DWP hash tables. */
822 struct dwp_hash_table
824 uint32_t version, nr_columns;
825 uint32_t nr_units, nr_slots;
826 const gdb_byte *hash_table, *unit_table;
831 const gdb_byte *indices;
835 /* This is indexed by column number and gives the id of the section
837 #define MAX_NR_V2_DWO_SECTIONS \
838 (1 /* .debug_info or .debug_types */ \
839 + 1 /* .debug_abbrev */ \
840 + 1 /* .debug_line */ \
841 + 1 /* .debug_loc */ \
842 + 1 /* .debug_str_offsets */ \
843 + 1 /* .debug_macro or .debug_macinfo */)
844 int section_ids[MAX_NR_V2_DWO_SECTIONS];
845 const gdb_byte *offsets;
846 const gdb_byte *sizes;
851 /* Data for one DWP file. */
855 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
857 dbfd (std::move (abfd))
861 /* Name of the file. */
864 /* File format version. */
868 gdb_bfd_ref_ptr dbfd;
870 /* Section info for this file. */
871 struct dwp_sections sections {};
873 /* Table of CUs in the file. */
874 const struct dwp_hash_table *cus = nullptr;
876 /* Table of TUs in the file. */
877 const struct dwp_hash_table *tus = nullptr;
879 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
880 htab_t loaded_cus {};
881 htab_t loaded_tus {};
883 /* Table to map ELF section numbers to their sections.
884 This is only needed for the DWP V1 file format. */
885 unsigned int num_sections = 0;
886 asection **elf_sections = nullptr;
889 /* This represents a '.dwz' file. */
893 dwz_file (gdb_bfd_ref_ptr &&bfd)
894 : dwz_bfd (std::move (bfd))
898 /* A dwz file can only contain a few sections. */
899 struct dwarf2_section_info abbrev {};
900 struct dwarf2_section_info info {};
901 struct dwarf2_section_info str {};
902 struct dwarf2_section_info line {};
903 struct dwarf2_section_info macro {};
904 struct dwarf2_section_info gdb_index {};
905 struct dwarf2_section_info debug_names {};
908 gdb_bfd_ref_ptr dwz_bfd;
910 /* If we loaded the index from an external file, this contains the
911 resources associated to the open file, memory mapping, etc. */
912 std::unique_ptr<index_cache_resource> index_cache_res;
915 /* Struct used to pass misc. parameters to read_die_and_children, et
916 al. which are used for both .debug_info and .debug_types dies.
917 All parameters here are unchanging for the life of the call. This
918 struct exists to abstract away the constant parameters of die reading. */
920 struct die_reader_specs
922 /* The bfd of die_section. */
925 /* The CU of the DIE we are parsing. */
926 struct dwarf2_cu *cu;
928 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
929 struct dwo_file *dwo_file;
931 /* The section the die comes from.
932 This is either .debug_info or .debug_types, or the .dwo variants. */
933 struct dwarf2_section_info *die_section;
935 /* die_section->buffer. */
936 const gdb_byte *buffer;
938 /* The end of the buffer. */
939 const gdb_byte *buffer_end;
941 /* The value of the DW_AT_comp_dir attribute. */
942 const char *comp_dir;
944 /* The abbreviation table to use when reading the DIEs. */
945 struct abbrev_table *abbrev_table;
948 /* Type of function passed to init_cutu_and_read_dies, et.al. */
949 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
950 const gdb_byte *info_ptr,
951 struct die_info *comp_unit_die,
955 /* A 1-based directory index. This is a strong typedef to prevent
956 accidentally using a directory index as a 0-based index into an
958 enum class dir_index : unsigned int {};
960 /* Likewise, a 1-based file name index. */
961 enum class file_name_index : unsigned int {};
965 file_entry () = default;
967 file_entry (const char *name_, dir_index d_index_,
968 unsigned int mod_time_, unsigned int length_)
971 mod_time (mod_time_),
975 /* Return the include directory at D_INDEX stored in LH. Returns
976 NULL if D_INDEX is out of bounds. */
977 const char *include_dir (const line_header *lh) const;
979 /* The file name. Note this is an observing pointer. The memory is
980 owned by debug_line_buffer. */
983 /* The directory index (1-based). */
984 dir_index d_index {};
986 unsigned int mod_time {};
988 unsigned int length {};
990 /* True if referenced by the Line Number Program. */
993 /* The associated symbol table, if any. */
994 struct symtab *symtab {};
997 /* The line number information for a compilation unit (found in the
998 .debug_line section) begins with a "statement program header",
999 which contains the following information. */
1006 /* Add an entry to the include directory table. */
1007 void add_include_dir (const char *include_dir);
1009 /* Add an entry to the file name table. */
1010 void add_file_name (const char *name, dir_index d_index,
1011 unsigned int mod_time, unsigned int length);
1013 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1014 is out of bounds. */
1015 const char *include_dir_at (dir_index index) const
1017 /* Convert directory index number (1-based) to vector index
1019 size_t vec_index = to_underlying (index) - 1;
1021 if (vec_index >= include_dirs.size ())
1023 return include_dirs[vec_index];
1026 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1027 is out of bounds. */
1028 file_entry *file_name_at (file_name_index index)
1030 /* Convert file name index number (1-based) to vector index
1032 size_t vec_index = to_underlying (index) - 1;
1034 if (vec_index >= file_names.size ())
1036 return &file_names[vec_index];
1039 /* Offset of line number information in .debug_line section. */
1040 sect_offset sect_off {};
1042 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1043 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1045 unsigned int total_length {};
1046 unsigned short version {};
1047 unsigned int header_length {};
1048 unsigned char minimum_instruction_length {};
1049 unsigned char maximum_ops_per_instruction {};
1050 unsigned char default_is_stmt {};
1052 unsigned char line_range {};
1053 unsigned char opcode_base {};
1055 /* standard_opcode_lengths[i] is the number of operands for the
1056 standard opcode whose value is i. This means that
1057 standard_opcode_lengths[0] is unused, and the last meaningful
1058 element is standard_opcode_lengths[opcode_base - 1]. */
1059 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1061 /* The include_directories table. Note these are observing
1062 pointers. The memory is owned by debug_line_buffer. */
1063 std::vector<const char *> include_dirs;
1065 /* The file_names table. */
1066 std::vector<file_entry> file_names;
1068 /* The start and end of the statement program following this
1069 header. These point into dwarf2_per_objfile->line_buffer. */
1070 const gdb_byte *statement_program_start {}, *statement_program_end {};
1073 typedef std::unique_ptr<line_header> line_header_up;
1076 file_entry::include_dir (const line_header *lh) const
1078 return lh->include_dir_at (d_index);
1081 /* When we construct a partial symbol table entry we only
1082 need this much information. */
1083 struct partial_die_info : public allocate_on_obstack
1085 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1087 /* Disable assign but still keep copy ctor, which is needed
1088 load_partial_dies. */
1089 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1091 /* Adjust the partial die before generating a symbol for it. This
1092 function may set the is_external flag or change the DIE's
1094 void fixup (struct dwarf2_cu *cu);
1096 /* Read a minimal amount of information into the minimal die
1098 const gdb_byte *read (const struct die_reader_specs *reader,
1099 const struct abbrev_info &abbrev,
1100 const gdb_byte *info_ptr);
1102 /* Offset of this DIE. */
1103 const sect_offset sect_off;
1105 /* DWARF-2 tag for this DIE. */
1106 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1108 /* Assorted flags describing the data found in this DIE. */
1109 const unsigned int has_children : 1;
1111 unsigned int is_external : 1;
1112 unsigned int is_declaration : 1;
1113 unsigned int has_type : 1;
1114 unsigned int has_specification : 1;
1115 unsigned int has_pc_info : 1;
1116 unsigned int may_be_inlined : 1;
1118 /* This DIE has been marked DW_AT_main_subprogram. */
1119 unsigned int main_subprogram : 1;
1121 /* Flag set if the SCOPE field of this structure has been
1123 unsigned int scope_set : 1;
1125 /* Flag set if the DIE has a byte_size attribute. */
1126 unsigned int has_byte_size : 1;
1128 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1129 unsigned int has_const_value : 1;
1131 /* Flag set if any of the DIE's children are template arguments. */
1132 unsigned int has_template_arguments : 1;
1134 /* Flag set if fixup has been called on this die. */
1135 unsigned int fixup_called : 1;
1137 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1138 unsigned int is_dwz : 1;
1140 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1141 unsigned int spec_is_dwz : 1;
1143 /* The name of this DIE. Normally the value of DW_AT_name, but
1144 sometimes a default name for unnamed DIEs. */
1145 const char *name = nullptr;
1147 /* The linkage name, if present. */
1148 const char *linkage_name = nullptr;
1150 /* The scope to prepend to our children. This is generally
1151 allocated on the comp_unit_obstack, so will disappear
1152 when this compilation unit leaves the cache. */
1153 const char *scope = nullptr;
1155 /* Some data associated with the partial DIE. The tag determines
1156 which field is live. */
1159 /* The location description associated with this DIE, if any. */
1160 struct dwarf_block *locdesc;
1161 /* The offset of an import, for DW_TAG_imported_unit. */
1162 sect_offset sect_off;
1165 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1166 CORE_ADDR lowpc = 0;
1167 CORE_ADDR highpc = 0;
1169 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1170 DW_AT_sibling, if any. */
1171 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1172 could return DW_AT_sibling values to its caller load_partial_dies. */
1173 const gdb_byte *sibling = nullptr;
1175 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1176 DW_AT_specification (or DW_AT_abstract_origin or
1177 DW_AT_extension). */
1178 sect_offset spec_offset {};
1180 /* Pointers to this DIE's parent, first child, and next sibling,
1182 struct partial_die_info *die_parent = nullptr;
1183 struct partial_die_info *die_child = nullptr;
1184 struct partial_die_info *die_sibling = nullptr;
1186 friend struct partial_die_info *
1187 dwarf2_cu::find_partial_die (sect_offset sect_off);
1190 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1191 partial_die_info (sect_offset sect_off)
1192 : partial_die_info (sect_off, DW_TAG_padding, 0)
1196 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1198 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1203 has_specification = 0;
1206 main_subprogram = 0;
1209 has_const_value = 0;
1210 has_template_arguments = 0;
1217 /* This data structure holds the information of an abbrev. */
1220 unsigned int number; /* number identifying abbrev */
1221 enum dwarf_tag tag; /* dwarf tag */
1222 unsigned short has_children; /* boolean */
1223 unsigned short num_attrs; /* number of attributes */
1224 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1225 struct abbrev_info *next; /* next in chain */
1230 ENUM_BITFIELD(dwarf_attribute) name : 16;
1231 ENUM_BITFIELD(dwarf_form) form : 16;
1233 /* It is valid only if FORM is DW_FORM_implicit_const. */
1234 LONGEST implicit_const;
1237 /* Size of abbrev_table.abbrev_hash_table. */
1238 #define ABBREV_HASH_SIZE 121
1240 /* Top level data structure to contain an abbreviation table. */
1244 explicit abbrev_table (sect_offset off)
1248 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1249 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1252 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1254 /* Allocate space for a struct abbrev_info object in
1256 struct abbrev_info *alloc_abbrev ();
1258 /* Add an abbreviation to the table. */
1259 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1261 /* Look up an abbrev in the table.
1262 Returns NULL if the abbrev is not found. */
1264 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1267 /* Where the abbrev table came from.
1268 This is used as a sanity check when the table is used. */
1269 const sect_offset sect_off;
1271 /* Storage for the abbrev table. */
1272 auto_obstack abbrev_obstack;
1276 /* Hash table of abbrevs.
1277 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1278 It could be statically allocated, but the previous code didn't so we
1280 struct abbrev_info **m_abbrevs;
1283 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1285 /* Attributes have a name and a value. */
1288 ENUM_BITFIELD(dwarf_attribute) name : 16;
1289 ENUM_BITFIELD(dwarf_form) form : 15;
1291 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1292 field should be in u.str (existing only for DW_STRING) but it is kept
1293 here for better struct attribute alignment. */
1294 unsigned int string_is_canonical : 1;
1299 struct dwarf_block *blk;
1308 /* This data structure holds a complete die structure. */
1311 /* DWARF-2 tag for this DIE. */
1312 ENUM_BITFIELD(dwarf_tag) tag : 16;
1314 /* Number of attributes */
1315 unsigned char num_attrs;
1317 /* True if we're presently building the full type name for the
1318 type derived from this DIE. */
1319 unsigned char building_fullname : 1;
1321 /* True if this die is in process. PR 16581. */
1322 unsigned char in_process : 1;
1325 unsigned int abbrev;
1327 /* Offset in .debug_info or .debug_types section. */
1328 sect_offset sect_off;
1330 /* The dies in a compilation unit form an n-ary tree. PARENT
1331 points to this die's parent; CHILD points to the first child of
1332 this node; and all the children of a given node are chained
1333 together via their SIBLING fields. */
1334 struct die_info *child; /* Its first child, if any. */
1335 struct die_info *sibling; /* Its next sibling, if any. */
1336 struct die_info *parent; /* Its parent, if any. */
1338 /* An array of attributes, with NUM_ATTRS elements. There may be
1339 zero, but it's not common and zero-sized arrays are not
1340 sufficiently portable C. */
1341 struct attribute attrs[1];
1344 /* Get at parts of an attribute structure. */
1346 #define DW_STRING(attr) ((attr)->u.str)
1347 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1348 #define DW_UNSND(attr) ((attr)->u.unsnd)
1349 #define DW_BLOCK(attr) ((attr)->u.blk)
1350 #define DW_SND(attr) ((attr)->u.snd)
1351 #define DW_ADDR(attr) ((attr)->u.addr)
1352 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1354 /* Blocks are a bunch of untyped bytes. */
1359 /* Valid only if SIZE is not zero. */
1360 const gdb_byte *data;
1363 #ifndef ATTR_ALLOC_CHUNK
1364 #define ATTR_ALLOC_CHUNK 4
1367 /* Allocate fields for structs, unions and enums in this size. */
1368 #ifndef DW_FIELD_ALLOC_CHUNK
1369 #define DW_FIELD_ALLOC_CHUNK 4
1372 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1373 but this would require a corresponding change in unpack_field_as_long
1375 static int bits_per_byte = 8;
1377 /* When reading a variant or variant part, we track a bit more
1378 information about the field, and store it in an object of this
1381 struct variant_field
1383 /* If we see a DW_TAG_variant, then this will be the discriminant
1385 ULONGEST discriminant_value;
1386 /* If we see a DW_TAG_variant, then this will be set if this is the
1388 bool default_branch;
1389 /* While reading a DW_TAG_variant_part, this will be set if this
1390 field is the discriminant. */
1391 bool is_discriminant;
1396 int accessibility = 0;
1398 /* Extra information to describe a variant or variant part. */
1399 struct variant_field variant {};
1400 struct field field {};
1405 const char *name = nullptr;
1406 std::vector<struct fn_field> fnfields;
1409 /* The routines that read and process dies for a C struct or C++ class
1410 pass lists of data member fields and lists of member function fields
1411 in an instance of a field_info structure, as defined below. */
1414 /* List of data member and baseclasses fields. */
1415 std::vector<struct nextfield> fields;
1416 std::vector<struct nextfield> baseclasses;
1418 /* Number of fields (including baseclasses). */
1421 /* Set if the accesibility of one of the fields is not public. */
1422 int non_public_fields = 0;
1424 /* Member function fieldlist array, contains name of possibly overloaded
1425 member function, number of overloaded member functions and a pointer
1426 to the head of the member function field chain. */
1427 std::vector<struct fnfieldlist> fnfieldlists;
1429 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1430 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1431 std::vector<struct decl_field> typedef_field_list;
1433 /* Nested types defined by this class and the number of elements in this
1435 std::vector<struct decl_field> nested_types_list;
1438 /* One item on the queue of compilation units to read in full symbols
1440 struct dwarf2_queue_item
1442 struct dwarf2_per_cu_data *per_cu;
1443 enum language pretend_language;
1444 struct dwarf2_queue_item *next;
1447 /* The current queue. */
1448 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1450 /* Loaded secondary compilation units are kept in memory until they
1451 have not been referenced for the processing of this many
1452 compilation units. Set this to zero to disable caching. Cache
1453 sizes of up to at least twenty will improve startup time for
1454 typical inter-CU-reference binaries, at an obvious memory cost. */
1455 static int dwarf_max_cache_age = 5;
1457 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1458 struct cmd_list_element *c, const char *value)
1460 fprintf_filtered (file, _("The upper bound on the age of cached "
1461 "DWARF compilation units is %s.\n"),
1465 /* local function prototypes */
1467 static const char *get_section_name (const struct dwarf2_section_info *);
1469 static const char *get_section_file_name (const struct dwarf2_section_info *);
1471 static void dwarf2_find_base_address (struct die_info *die,
1472 struct dwarf2_cu *cu);
1474 static struct partial_symtab *create_partial_symtab
1475 (struct dwarf2_per_cu_data *per_cu, const char *name);
1477 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1478 const gdb_byte *info_ptr,
1479 struct die_info *type_unit_die,
1480 int has_children, void *data);
1482 static void dwarf2_build_psymtabs_hard
1483 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1485 static void scan_partial_symbols (struct partial_die_info *,
1486 CORE_ADDR *, CORE_ADDR *,
1487 int, struct dwarf2_cu *);
1489 static void add_partial_symbol (struct partial_die_info *,
1490 struct dwarf2_cu *);
1492 static void add_partial_namespace (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int set_addrmap, struct dwarf2_cu *cu);
1496 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1497 CORE_ADDR *highpc, int set_addrmap,
1498 struct dwarf2_cu *cu);
1500 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1501 struct dwarf2_cu *cu);
1503 static void add_partial_subprogram (struct partial_die_info *pdi,
1504 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1505 int need_pc, struct dwarf2_cu *cu);
1507 static void dwarf2_read_symtab (struct partial_symtab *,
1510 static void psymtab_to_symtab_1 (struct partial_symtab *);
1512 static abbrev_table_up abbrev_table_read_table
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1516 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1518 static struct partial_die_info *load_partial_dies
1519 (const struct die_reader_specs *, const gdb_byte *, int);
1521 static struct partial_die_info *find_partial_die (sect_offset, int,
1522 struct dwarf2_cu *);
1524 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1525 struct attribute *, struct attr_abbrev *,
1528 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1530 static int read_1_signed_byte (bfd *, const gdb_byte *);
1532 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1534 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1535 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1537 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1539 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1541 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1544 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1546 static LONGEST read_checked_initial_length_and_offset
1547 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1548 unsigned int *, unsigned int *);
1550 static LONGEST read_offset (bfd *, const gdb_byte *,
1551 const struct comp_unit_head *,
1554 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1556 static sect_offset read_abbrev_offset
1557 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1558 struct dwarf2_section_info *, sect_offset);
1560 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1562 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1564 static const char *read_indirect_string
1565 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1566 const struct comp_unit_head *, unsigned int *);
1568 static const char *read_indirect_line_string
1569 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1570 const struct comp_unit_head *, unsigned int *);
1572 static const char *read_indirect_string_at_offset
1573 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1574 LONGEST str_offset);
1576 static const char *read_indirect_string_from_dwz
1577 (struct objfile *objfile, struct dwz_file *, LONGEST);
1579 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1581 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1585 static const char *read_str_index (const struct die_reader_specs *reader,
1586 ULONGEST str_index);
1588 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1590 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1591 struct dwarf2_cu *);
1593 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1596 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1597 struct dwarf2_cu *cu);
1599 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1600 struct dwarf2_cu *cu);
1602 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1604 static struct die_info *die_specification (struct die_info *die,
1605 struct dwarf2_cu **);
1607 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1608 struct dwarf2_cu *cu);
1610 static void dwarf_decode_lines (struct line_header *, const char *,
1611 struct dwarf2_cu *, struct partial_symtab *,
1612 CORE_ADDR, int decode_mapping);
1614 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1617 static struct symbol *new_symbol (struct die_info *, struct type *,
1618 struct dwarf2_cu *, struct symbol * = NULL);
1620 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1621 struct dwarf2_cu *);
1623 static void dwarf2_const_value_attr (const struct attribute *attr,
1626 struct obstack *obstack,
1627 struct dwarf2_cu *cu, LONGEST *value,
1628 const gdb_byte **bytes,
1629 struct dwarf2_locexpr_baton **baton);
1631 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1633 static int need_gnat_info (struct dwarf2_cu *);
1635 static struct type *die_descriptive_type (struct die_info *,
1636 struct dwarf2_cu *);
1638 static void set_descriptive_type (struct type *, struct die_info *,
1639 struct dwarf2_cu *);
1641 static struct type *die_containing_type (struct die_info *,
1642 struct dwarf2_cu *);
1644 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1645 struct dwarf2_cu *);
1647 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1649 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1651 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1653 static char *typename_concat (struct obstack *obs, const char *prefix,
1654 const char *suffix, int physname,
1655 struct dwarf2_cu *cu);
1657 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1659 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1661 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1663 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1665 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1667 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1669 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1670 struct dwarf2_cu *, struct partial_symtab *);
1672 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1673 values. Keep the items ordered with increasing constraints compliance. */
1676 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1677 PC_BOUNDS_NOT_PRESENT,
1679 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1680 were present but they do not form a valid range of PC addresses. */
1683 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1686 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1690 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1691 CORE_ADDR *, CORE_ADDR *,
1693 struct partial_symtab *);
1695 static void get_scope_pc_bounds (struct die_info *,
1696 CORE_ADDR *, CORE_ADDR *,
1697 struct dwarf2_cu *);
1699 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1700 CORE_ADDR, struct dwarf2_cu *);
1702 static void dwarf2_add_field (struct field_info *, struct die_info *,
1703 struct dwarf2_cu *);
1705 static void dwarf2_attach_fields_to_type (struct field_info *,
1706 struct type *, struct dwarf2_cu *);
1708 static void dwarf2_add_member_fn (struct field_info *,
1709 struct die_info *, struct type *,
1710 struct dwarf2_cu *);
1712 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1714 struct dwarf2_cu *);
1716 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1718 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1720 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1722 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1724 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1726 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1728 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1730 static struct type *read_module_type (struct die_info *die,
1731 struct dwarf2_cu *cu);
1733 static const char *namespace_name (struct die_info *die,
1734 int *is_anonymous, struct dwarf2_cu *);
1736 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1738 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1740 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1741 struct dwarf2_cu *);
1743 static struct die_info *read_die_and_siblings_1
1744 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1747 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1748 const gdb_byte *info_ptr,
1749 const gdb_byte **new_info_ptr,
1750 struct die_info *parent);
1752 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1753 struct die_info **, const gdb_byte *,
1756 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1757 struct die_info **, const gdb_byte *,
1760 static void process_die (struct die_info *, struct dwarf2_cu *);
1762 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1765 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1767 static const char *dwarf2_full_name (const char *name,
1768 struct die_info *die,
1769 struct dwarf2_cu *cu);
1771 static const char *dwarf2_physname (const char *name, struct die_info *die,
1772 struct dwarf2_cu *cu);
1774 static struct die_info *dwarf2_extension (struct die_info *die,
1775 struct dwarf2_cu **);
1777 static const char *dwarf_tag_name (unsigned int);
1779 static const char *dwarf_attr_name (unsigned int);
1781 static const char *dwarf_form_name (unsigned int);
1783 static const char *dwarf_bool_name (unsigned int);
1785 static const char *dwarf_type_encoding_name (unsigned int);
1787 static struct die_info *sibling_die (struct die_info *);
1789 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1791 static void dump_die_for_error (struct die_info *);
1793 static void dump_die_1 (struct ui_file *, int level, int max_level,
1796 /*static*/ void dump_die (struct die_info *, int max_level);
1798 static void store_in_ref_table (struct die_info *,
1799 struct dwarf2_cu *);
1801 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1803 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1805 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1806 const struct attribute *,
1807 struct dwarf2_cu **);
1809 static struct die_info *follow_die_ref (struct die_info *,
1810 const struct attribute *,
1811 struct dwarf2_cu **);
1813 static struct die_info *follow_die_sig (struct die_info *,
1814 const struct attribute *,
1815 struct dwarf2_cu **);
1817 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1818 struct dwarf2_cu *);
1820 static struct type *get_DW_AT_signature_type (struct die_info *,
1821 const struct attribute *,
1822 struct dwarf2_cu *);
1824 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1826 static void read_signatured_type (struct signatured_type *);
1828 static int attr_to_dynamic_prop (const struct attribute *attr,
1829 struct die_info *die, struct dwarf2_cu *cu,
1830 struct dynamic_prop *prop);
1832 /* memory allocation interface */
1834 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1836 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1838 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1840 static int attr_form_is_block (const struct attribute *);
1842 static int attr_form_is_section_offset (const struct attribute *);
1844 static int attr_form_is_constant (const struct attribute *);
1846 static int attr_form_is_ref (const struct attribute *);
1848 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1849 struct dwarf2_loclist_baton *baton,
1850 const struct attribute *attr);
1852 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1854 struct dwarf2_cu *cu,
1857 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1858 const gdb_byte *info_ptr,
1859 struct abbrev_info *abbrev);
1861 static hashval_t partial_die_hash (const void *item);
1863 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1865 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1866 (sect_offset sect_off, unsigned int offset_in_dwz,
1867 struct dwarf2_per_objfile *dwarf2_per_objfile);
1869 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1870 struct die_info *comp_unit_die,
1871 enum language pretend_language);
1873 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1875 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1877 static struct type *set_die_type (struct die_info *, struct type *,
1878 struct dwarf2_cu *);
1880 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1882 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1884 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1887 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1890 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1893 static void dwarf2_add_dependence (struct dwarf2_cu *,
1894 struct dwarf2_per_cu_data *);
1896 static void dwarf2_mark (struct dwarf2_cu *);
1898 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1900 static struct type *get_die_type_at_offset (sect_offset,
1901 struct dwarf2_per_cu_data *);
1903 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1905 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1906 enum language pretend_language);
1908 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1910 /* Class, the destructor of which frees all allocated queue entries. This
1911 will only have work to do if an error was thrown while processing the
1912 dwarf. If no error was thrown then the queue entries should have all
1913 been processed, and freed, as we went along. */
1915 class dwarf2_queue_guard
1918 dwarf2_queue_guard () = default;
1920 /* Free any entries remaining on the queue. There should only be
1921 entries left if we hit an error while processing the dwarf. */
1922 ~dwarf2_queue_guard ()
1924 struct dwarf2_queue_item *item, *last;
1926 item = dwarf2_queue;
1929 /* Anything still marked queued is likely to be in an
1930 inconsistent state, so discard it. */
1931 if (item->per_cu->queued)
1933 if (item->per_cu->cu != NULL)
1934 free_one_cached_comp_unit (item->per_cu);
1935 item->per_cu->queued = 0;
1943 dwarf2_queue = dwarf2_queue_tail = NULL;
1947 /* The return type of find_file_and_directory. Note, the enclosed
1948 string pointers are only valid while this object is valid. */
1950 struct file_and_directory
1952 /* The filename. This is never NULL. */
1955 /* The compilation directory. NULL if not known. If we needed to
1956 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1957 points directly to the DW_AT_comp_dir string attribute owned by
1958 the obstack that owns the DIE. */
1959 const char *comp_dir;
1961 /* If we needed to build a new string for comp_dir, this is what
1962 owns the storage. */
1963 std::string comp_dir_storage;
1966 static file_and_directory find_file_and_directory (struct die_info *die,
1967 struct dwarf2_cu *cu);
1969 static char *file_full_name (int file, struct line_header *lh,
1970 const char *comp_dir);
1972 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1973 enum class rcuh_kind { COMPILE, TYPE };
1975 static const gdb_byte *read_and_check_comp_unit_head
1976 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1977 struct comp_unit_head *header,
1978 struct dwarf2_section_info *section,
1979 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1980 rcuh_kind section_kind);
1982 static void init_cutu_and_read_dies
1983 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1984 int use_existing_cu, int keep, bool skip_partial,
1985 die_reader_func_ftype *die_reader_func, void *data);
1987 static void init_cutu_and_read_dies_simple
1988 (struct dwarf2_per_cu_data *this_cu,
1989 die_reader_func_ftype *die_reader_func, void *data);
1991 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1993 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1995 static struct dwo_unit *lookup_dwo_unit_in_dwp
1996 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1997 struct dwp_file *dwp_file, const char *comp_dir,
1998 ULONGEST signature, int is_debug_types);
2000 static struct dwp_file *get_dwp_file
2001 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2003 static struct dwo_unit *lookup_dwo_comp_unit
2004 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2006 static struct dwo_unit *lookup_dwo_type_unit
2007 (struct signatured_type *, const char *, const char *);
2009 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2011 static void free_dwo_file (struct dwo_file *);
2013 /* A unique_ptr helper to free a dwo_file. */
2015 struct dwo_file_deleter
2017 void operator() (struct dwo_file *df) const
2023 /* A unique pointer to a dwo_file. */
2025 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2027 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2029 static void check_producer (struct dwarf2_cu *cu);
2031 static void free_line_header_voidp (void *arg);
2033 /* Various complaints about symbol reading that don't abort the process. */
2036 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2038 complaint (_("statement list doesn't fit in .debug_line section"));
2042 dwarf2_debug_line_missing_file_complaint (void)
2044 complaint (_(".debug_line section has line data without a file"));
2048 dwarf2_debug_line_missing_end_sequence_complaint (void)
2050 complaint (_(".debug_line section has line "
2051 "program sequence without an end"));
2055 dwarf2_complex_location_expr_complaint (void)
2057 complaint (_("location expression too complex"));
2061 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2064 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2069 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2071 complaint (_("debug info runs off end of %s section"
2073 get_section_name (section),
2074 get_section_file_name (section));
2078 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2080 complaint (_("macro debug info contains a "
2081 "malformed macro definition:\n`%s'"),
2086 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2088 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2092 /* Hash function for line_header_hash. */
2095 line_header_hash (const struct line_header *ofs)
2097 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2100 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2103 line_header_hash_voidp (const void *item)
2105 const struct line_header *ofs = (const struct line_header *) item;
2107 return line_header_hash (ofs);
2110 /* Equality function for line_header_hash. */
2113 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2115 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2116 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2118 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2119 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2124 /* Read the given attribute value as an address, taking the attribute's
2125 form into account. */
2128 attr_value_as_address (struct attribute *attr)
2132 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2133 && attr->form != DW_FORM_GNU_addr_index)
2135 /* Aside from a few clearly defined exceptions, attributes that
2136 contain an address must always be in DW_FORM_addr form.
2137 Unfortunately, some compilers happen to be violating this
2138 requirement by encoding addresses using other forms, such
2139 as DW_FORM_data4 for example. For those broken compilers,
2140 we try to do our best, without any guarantee of success,
2141 to interpret the address correctly. It would also be nice
2142 to generate a complaint, but that would require us to maintain
2143 a list of legitimate cases where a non-address form is allowed,
2144 as well as update callers to pass in at least the CU's DWARF
2145 version. This is more overhead than what we're willing to
2146 expand for a pretty rare case. */
2147 addr = DW_UNSND (attr);
2150 addr = DW_ADDR (attr);
2155 /* See declaration. */
2157 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2158 const dwarf2_debug_sections *names)
2159 : objfile (objfile_)
2162 names = &dwarf2_elf_names;
2164 bfd *obfd = objfile->obfd;
2166 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2167 locate_sections (obfd, sec, *names);
2170 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2172 dwarf2_per_objfile::~dwarf2_per_objfile ()
2174 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2175 free_cached_comp_units ();
2177 if (quick_file_names_table)
2178 htab_delete (quick_file_names_table);
2180 if (line_header_hash)
2181 htab_delete (line_header_hash);
2183 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2184 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2186 for (signatured_type *sig_type : all_type_units)
2187 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2189 VEC_free (dwarf2_section_info_def, types);
2191 if (dwo_files != NULL)
2192 free_dwo_files (dwo_files, objfile);
2194 /* Everything else should be on the objfile obstack. */
2197 /* See declaration. */
2200 dwarf2_per_objfile::free_cached_comp_units ()
2202 dwarf2_per_cu_data *per_cu = read_in_chain;
2203 dwarf2_per_cu_data **last_chain = &read_in_chain;
2204 while (per_cu != NULL)
2206 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2209 *last_chain = next_cu;
2214 /* A helper class that calls free_cached_comp_units on
2217 class free_cached_comp_units
2221 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2222 : m_per_objfile (per_objfile)
2226 ~free_cached_comp_units ()
2228 m_per_objfile->free_cached_comp_units ();
2231 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2235 dwarf2_per_objfile *m_per_objfile;
2238 /* Try to locate the sections we need for DWARF 2 debugging
2239 information and return true if we have enough to do something.
2240 NAMES points to the dwarf2 section names, or is NULL if the standard
2241 ELF names are used. */
2244 dwarf2_has_info (struct objfile *objfile,
2245 const struct dwarf2_debug_sections *names)
2247 if (objfile->flags & OBJF_READNEVER)
2250 struct dwarf2_per_objfile *dwarf2_per_objfile
2251 = get_dwarf2_per_objfile (objfile);
2253 if (dwarf2_per_objfile == NULL)
2255 /* Initialize per-objfile state. */
2257 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2259 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2261 return (!dwarf2_per_objfile->info.is_virtual
2262 && dwarf2_per_objfile->info.s.section != NULL
2263 && !dwarf2_per_objfile->abbrev.is_virtual
2264 && dwarf2_per_objfile->abbrev.s.section != NULL);
2267 /* Return the containing section of virtual section SECTION. */
2269 static struct dwarf2_section_info *
2270 get_containing_section (const struct dwarf2_section_info *section)
2272 gdb_assert (section->is_virtual);
2273 return section->s.containing_section;
2276 /* Return the bfd owner of SECTION. */
2279 get_section_bfd_owner (const struct dwarf2_section_info *section)
2281 if (section->is_virtual)
2283 section = get_containing_section (section);
2284 gdb_assert (!section->is_virtual);
2286 return section->s.section->owner;
2289 /* Return the bfd section of SECTION.
2290 Returns NULL if the section is not present. */
2293 get_section_bfd_section (const struct dwarf2_section_info *section)
2295 if (section->is_virtual)
2297 section = get_containing_section (section);
2298 gdb_assert (!section->is_virtual);
2300 return section->s.section;
2303 /* Return the name of SECTION. */
2306 get_section_name (const struct dwarf2_section_info *section)
2308 asection *sectp = get_section_bfd_section (section);
2310 gdb_assert (sectp != NULL);
2311 return bfd_section_name (get_section_bfd_owner (section), sectp);
2314 /* Return the name of the file SECTION is in. */
2317 get_section_file_name (const struct dwarf2_section_info *section)
2319 bfd *abfd = get_section_bfd_owner (section);
2321 return bfd_get_filename (abfd);
2324 /* Return the id of SECTION.
2325 Returns 0 if SECTION doesn't exist. */
2328 get_section_id (const struct dwarf2_section_info *section)
2330 asection *sectp = get_section_bfd_section (section);
2337 /* Return the flags of SECTION.
2338 SECTION (or containing section if this is a virtual section) must exist. */
2341 get_section_flags (const struct dwarf2_section_info *section)
2343 asection *sectp = get_section_bfd_section (section);
2345 gdb_assert (sectp != NULL);
2346 return bfd_get_section_flags (sectp->owner, sectp);
2349 /* When loading sections, we look either for uncompressed section or for
2350 compressed section names. */
2353 section_is_p (const char *section_name,
2354 const struct dwarf2_section_names *names)
2356 if (names->normal != NULL
2357 && strcmp (section_name, names->normal) == 0)
2359 if (names->compressed != NULL
2360 && strcmp (section_name, names->compressed) == 0)
2365 /* See declaration. */
2368 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2369 const dwarf2_debug_sections &names)
2371 flagword aflag = bfd_get_section_flags (abfd, sectp);
2373 if ((aflag & SEC_HAS_CONTENTS) == 0)
2376 else if (section_is_p (sectp->name, &names.info))
2378 this->info.s.section = sectp;
2379 this->info.size = bfd_get_section_size (sectp);
2381 else if (section_is_p (sectp->name, &names.abbrev))
2383 this->abbrev.s.section = sectp;
2384 this->abbrev.size = bfd_get_section_size (sectp);
2386 else if (section_is_p (sectp->name, &names.line))
2388 this->line.s.section = sectp;
2389 this->line.size = bfd_get_section_size (sectp);
2391 else if (section_is_p (sectp->name, &names.loc))
2393 this->loc.s.section = sectp;
2394 this->loc.size = bfd_get_section_size (sectp);
2396 else if (section_is_p (sectp->name, &names.loclists))
2398 this->loclists.s.section = sectp;
2399 this->loclists.size = bfd_get_section_size (sectp);
2401 else if (section_is_p (sectp->name, &names.macinfo))
2403 this->macinfo.s.section = sectp;
2404 this->macinfo.size = bfd_get_section_size (sectp);
2406 else if (section_is_p (sectp->name, &names.macro))
2408 this->macro.s.section = sectp;
2409 this->macro.size = bfd_get_section_size (sectp);
2411 else if (section_is_p (sectp->name, &names.str))
2413 this->str.s.section = sectp;
2414 this->str.size = bfd_get_section_size (sectp);
2416 else if (section_is_p (sectp->name, &names.line_str))
2418 this->line_str.s.section = sectp;
2419 this->line_str.size = bfd_get_section_size (sectp);
2421 else if (section_is_p (sectp->name, &names.addr))
2423 this->addr.s.section = sectp;
2424 this->addr.size = bfd_get_section_size (sectp);
2426 else if (section_is_p (sectp->name, &names.frame))
2428 this->frame.s.section = sectp;
2429 this->frame.size = bfd_get_section_size (sectp);
2431 else if (section_is_p (sectp->name, &names.eh_frame))
2433 this->eh_frame.s.section = sectp;
2434 this->eh_frame.size = bfd_get_section_size (sectp);
2436 else if (section_is_p (sectp->name, &names.ranges))
2438 this->ranges.s.section = sectp;
2439 this->ranges.size = bfd_get_section_size (sectp);
2441 else if (section_is_p (sectp->name, &names.rnglists))
2443 this->rnglists.s.section = sectp;
2444 this->rnglists.size = bfd_get_section_size (sectp);
2446 else if (section_is_p (sectp->name, &names.types))
2448 struct dwarf2_section_info type_section;
2450 memset (&type_section, 0, sizeof (type_section));
2451 type_section.s.section = sectp;
2452 type_section.size = bfd_get_section_size (sectp);
2454 VEC_safe_push (dwarf2_section_info_def, this->types,
2457 else if (section_is_p (sectp->name, &names.gdb_index))
2459 this->gdb_index.s.section = sectp;
2460 this->gdb_index.size = bfd_get_section_size (sectp);
2462 else if (section_is_p (sectp->name, &names.debug_names))
2464 this->debug_names.s.section = sectp;
2465 this->debug_names.size = bfd_get_section_size (sectp);
2467 else if (section_is_p (sectp->name, &names.debug_aranges))
2469 this->debug_aranges.s.section = sectp;
2470 this->debug_aranges.size = bfd_get_section_size (sectp);
2473 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2474 && bfd_section_vma (abfd, sectp) == 0)
2475 this->has_section_at_zero = true;
2478 /* A helper function that decides whether a section is empty,
2482 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2484 if (section->is_virtual)
2485 return section->size == 0;
2486 return section->s.section == NULL || section->size == 0;
2489 /* See dwarf2read.h. */
2492 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2496 gdb_byte *buf, *retbuf;
2500 info->buffer = NULL;
2503 if (dwarf2_section_empty_p (info))
2506 sectp = get_section_bfd_section (info);
2508 /* If this is a virtual section we need to read in the real one first. */
2509 if (info->is_virtual)
2511 struct dwarf2_section_info *containing_section =
2512 get_containing_section (info);
2514 gdb_assert (sectp != NULL);
2515 if ((sectp->flags & SEC_RELOC) != 0)
2517 error (_("Dwarf Error: DWP format V2 with relocations is not"
2518 " supported in section %s [in module %s]"),
2519 get_section_name (info), get_section_file_name (info));
2521 dwarf2_read_section (objfile, containing_section);
2522 /* Other code should have already caught virtual sections that don't
2524 gdb_assert (info->virtual_offset + info->size
2525 <= containing_section->size);
2526 /* If the real section is empty or there was a problem reading the
2527 section we shouldn't get here. */
2528 gdb_assert (containing_section->buffer != NULL);
2529 info->buffer = containing_section->buffer + info->virtual_offset;
2533 /* If the section has relocations, we must read it ourselves.
2534 Otherwise we attach it to the BFD. */
2535 if ((sectp->flags & SEC_RELOC) == 0)
2537 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2541 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2544 /* When debugging .o files, we may need to apply relocations; see
2545 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2546 We never compress sections in .o files, so we only need to
2547 try this when the section is not compressed. */
2548 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2551 info->buffer = retbuf;
2555 abfd = get_section_bfd_owner (info);
2556 gdb_assert (abfd != NULL);
2558 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2559 || bfd_bread (buf, info->size, abfd) != info->size)
2561 error (_("Dwarf Error: Can't read DWARF data"
2562 " in section %s [in module %s]"),
2563 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2567 /* A helper function that returns the size of a section in a safe way.
2568 If you are positive that the section has been read before using the
2569 size, then it is safe to refer to the dwarf2_section_info object's
2570 "size" field directly. In other cases, you must call this
2571 function, because for compressed sections the size field is not set
2572 correctly until the section has been read. */
2574 static bfd_size_type
2575 dwarf2_section_size (struct objfile *objfile,
2576 struct dwarf2_section_info *info)
2579 dwarf2_read_section (objfile, info);
2583 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2587 dwarf2_get_section_info (struct objfile *objfile,
2588 enum dwarf2_section_enum sect,
2589 asection **sectp, const gdb_byte **bufp,
2590 bfd_size_type *sizep)
2592 struct dwarf2_per_objfile *data
2593 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2594 dwarf2_objfile_data_key);
2595 struct dwarf2_section_info *info;
2597 /* We may see an objfile without any DWARF, in which case we just
2608 case DWARF2_DEBUG_FRAME:
2609 info = &data->frame;
2611 case DWARF2_EH_FRAME:
2612 info = &data->eh_frame;
2615 gdb_assert_not_reached ("unexpected section");
2618 dwarf2_read_section (objfile, info);
2620 *sectp = get_section_bfd_section (info);
2621 *bufp = info->buffer;
2622 *sizep = info->size;
2625 /* A helper function to find the sections for a .dwz file. */
2628 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2630 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2632 /* Note that we only support the standard ELF names, because .dwz
2633 is ELF-only (at the time of writing). */
2634 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2636 dwz_file->abbrev.s.section = sectp;
2637 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2639 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2641 dwz_file->info.s.section = sectp;
2642 dwz_file->info.size = bfd_get_section_size (sectp);
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2646 dwz_file->str.s.section = sectp;
2647 dwz_file->str.size = bfd_get_section_size (sectp);
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2651 dwz_file->line.s.section = sectp;
2652 dwz_file->line.size = bfd_get_section_size (sectp);
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2656 dwz_file->macro.s.section = sectp;
2657 dwz_file->macro.size = bfd_get_section_size (sectp);
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2661 dwz_file->gdb_index.s.section = sectp;
2662 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2666 dwz_file->debug_names.s.section = sectp;
2667 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2671 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2672 there is no .gnu_debugaltlink section in the file. Error if there
2673 is such a section but the file cannot be found. */
2675 static struct dwz_file *
2676 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2678 const char *filename;
2679 bfd_size_type buildid_len_arg;
2683 if (dwarf2_per_objfile->dwz_file != NULL)
2684 return dwarf2_per_objfile->dwz_file.get ();
2686 bfd_set_error (bfd_error_no_error);
2687 gdb::unique_xmalloc_ptr<char> data
2688 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2689 &buildid_len_arg, &buildid));
2692 if (bfd_get_error () == bfd_error_no_error)
2694 error (_("could not read '.gnu_debugaltlink' section: %s"),
2695 bfd_errmsg (bfd_get_error ()));
2698 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2700 buildid_len = (size_t) buildid_len_arg;
2702 filename = data.get ();
2704 std::string abs_storage;
2705 if (!IS_ABSOLUTE_PATH (filename))
2707 gdb::unique_xmalloc_ptr<char> abs
2708 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2710 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2711 filename = abs_storage.c_str ();
2714 /* First try the file name given in the section. If that doesn't
2715 work, try to use the build-id instead. */
2716 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2717 if (dwz_bfd != NULL)
2719 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2720 dwz_bfd.reset (nullptr);
2723 if (dwz_bfd == NULL)
2724 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2726 if (dwz_bfd == NULL)
2727 error (_("could not find '.gnu_debugaltlink' file for %s"),
2728 objfile_name (dwarf2_per_objfile->objfile));
2730 std::unique_ptr<struct dwz_file> result
2731 (new struct dwz_file (std::move (dwz_bfd)));
2733 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2736 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2737 result->dwz_bfd.get ());
2738 dwarf2_per_objfile->dwz_file = std::move (result);
2739 return dwarf2_per_objfile->dwz_file.get ();
2742 /* DWARF quick_symbols_functions support. */
2744 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2745 unique line tables, so we maintain a separate table of all .debug_line
2746 derived entries to support the sharing.
2747 All the quick functions need is the list of file names. We discard the
2748 line_header when we're done and don't need to record it here. */
2749 struct quick_file_names
2751 /* The data used to construct the hash key. */
2752 struct stmt_list_hash hash;
2754 /* The number of entries in file_names, real_names. */
2755 unsigned int num_file_names;
2757 /* The file names from the line table, after being run through
2759 const char **file_names;
2761 /* The file names from the line table after being run through
2762 gdb_realpath. These are computed lazily. */
2763 const char **real_names;
2766 /* When using the index (and thus not using psymtabs), each CU has an
2767 object of this type. This is used to hold information needed by
2768 the various "quick" methods. */
2769 struct dwarf2_per_cu_quick_data
2771 /* The file table. This can be NULL if there was no file table
2772 or it's currently not read in.
2773 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2774 struct quick_file_names *file_names;
2776 /* The corresponding symbol table. This is NULL if symbols for this
2777 CU have not yet been read. */
2778 struct compunit_symtab *compunit_symtab;
2780 /* A temporary mark bit used when iterating over all CUs in
2781 expand_symtabs_matching. */
2782 unsigned int mark : 1;
2784 /* True if we've tried to read the file table and found there isn't one.
2785 There will be no point in trying to read it again next time. */
2786 unsigned int no_file_data : 1;
2789 /* Utility hash function for a stmt_list_hash. */
2792 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2796 if (stmt_list_hash->dwo_unit != NULL)
2797 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2798 v += to_underlying (stmt_list_hash->line_sect_off);
2802 /* Utility equality function for a stmt_list_hash. */
2805 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2806 const struct stmt_list_hash *rhs)
2808 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2810 if (lhs->dwo_unit != NULL
2811 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2814 return lhs->line_sect_off == rhs->line_sect_off;
2817 /* Hash function for a quick_file_names. */
2820 hash_file_name_entry (const void *e)
2822 const struct quick_file_names *file_data
2823 = (const struct quick_file_names *) e;
2825 return hash_stmt_list_entry (&file_data->hash);
2828 /* Equality function for a quick_file_names. */
2831 eq_file_name_entry (const void *a, const void *b)
2833 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2834 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2836 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2839 /* Delete function for a quick_file_names. */
2842 delete_file_name_entry (void *e)
2844 struct quick_file_names *file_data = (struct quick_file_names *) e;
2847 for (i = 0; i < file_data->num_file_names; ++i)
2849 xfree ((void*) file_data->file_names[i]);
2850 if (file_data->real_names)
2851 xfree ((void*) file_data->real_names[i]);
2854 /* The space for the struct itself lives on objfile_obstack,
2855 so we don't free it here. */
2858 /* Create a quick_file_names hash table. */
2861 create_quick_file_names_table (unsigned int nr_initial_entries)
2863 return htab_create_alloc (nr_initial_entries,
2864 hash_file_name_entry, eq_file_name_entry,
2865 delete_file_name_entry, xcalloc, xfree);
2868 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2869 have to be created afterwards. You should call age_cached_comp_units after
2870 processing PER_CU->CU. dw2_setup must have been already called. */
2873 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2875 if (per_cu->is_debug_types)
2876 load_full_type_unit (per_cu);
2878 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2880 if (per_cu->cu == NULL)
2881 return; /* Dummy CU. */
2883 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2886 /* Read in the symbols for PER_CU. */
2889 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2891 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2893 /* Skip type_unit_groups, reading the type units they contain
2894 is handled elsewhere. */
2895 if (IS_TYPE_UNIT_GROUP (per_cu))
2898 /* The destructor of dwarf2_queue_guard frees any entries left on
2899 the queue. After this point we're guaranteed to leave this function
2900 with the dwarf queue empty. */
2901 dwarf2_queue_guard q_guard;
2903 if (dwarf2_per_objfile->using_index
2904 ? per_cu->v.quick->compunit_symtab == NULL
2905 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2907 queue_comp_unit (per_cu, language_minimal);
2908 load_cu (per_cu, skip_partial);
2910 /* If we just loaded a CU from a DWO, and we're working with an index
2911 that may badly handle TUs, load all the TUs in that DWO as well.
2912 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2913 if (!per_cu->is_debug_types
2914 && per_cu->cu != NULL
2915 && per_cu->cu->dwo_unit != NULL
2916 && dwarf2_per_objfile->index_table != NULL
2917 && dwarf2_per_objfile->index_table->version <= 7
2918 /* DWP files aren't supported yet. */
2919 && get_dwp_file (dwarf2_per_objfile) == NULL)
2920 queue_and_load_all_dwo_tus (per_cu);
2923 process_queue (dwarf2_per_objfile);
2925 /* Age the cache, releasing compilation units that have not
2926 been used recently. */
2927 age_cached_comp_units (dwarf2_per_objfile);
2930 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2931 the objfile from which this CU came. Returns the resulting symbol
2934 static struct compunit_symtab *
2935 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2937 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2939 gdb_assert (dwarf2_per_objfile->using_index);
2940 if (!per_cu->v.quick->compunit_symtab)
2942 free_cached_comp_units freer (dwarf2_per_objfile);
2943 scoped_restore decrementer = increment_reading_symtab ();
2944 dw2_do_instantiate_symtab (per_cu, skip_partial);
2945 process_cu_includes (dwarf2_per_objfile);
2948 return per_cu->v.quick->compunit_symtab;
2951 /* See declaration. */
2953 dwarf2_per_cu_data *
2954 dwarf2_per_objfile::get_cutu (int index)
2956 if (index >= this->all_comp_units.size ())
2958 index -= this->all_comp_units.size ();
2959 gdb_assert (index < this->all_type_units.size ());
2960 return &this->all_type_units[index]->per_cu;
2963 return this->all_comp_units[index];
2966 /* See declaration. */
2968 dwarf2_per_cu_data *
2969 dwarf2_per_objfile::get_cu (int index)
2971 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2973 return this->all_comp_units[index];
2976 /* See declaration. */
2979 dwarf2_per_objfile::get_tu (int index)
2981 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2983 return this->all_type_units[index];
2986 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2987 objfile_obstack, and constructed with the specified field
2990 static dwarf2_per_cu_data *
2991 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2992 struct dwarf2_section_info *section,
2994 sect_offset sect_off, ULONGEST length)
2996 struct objfile *objfile = dwarf2_per_objfile->objfile;
2997 dwarf2_per_cu_data *the_cu
2998 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_data);
3000 the_cu->sect_off = sect_off;
3001 the_cu->length = length;
3002 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3003 the_cu->section = section;
3004 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3005 struct dwarf2_per_cu_quick_data);
3006 the_cu->is_dwz = is_dwz;
3010 /* A helper for create_cus_from_index that handles a given list of
3014 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3015 const gdb_byte *cu_list, offset_type n_elements,
3016 struct dwarf2_section_info *section,
3019 for (offset_type i = 0; i < n_elements; i += 2)
3021 gdb_static_assert (sizeof (ULONGEST) >= 8);
3023 sect_offset sect_off
3024 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3025 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3028 dwarf2_per_cu_data *per_cu
3029 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3035 /* Read the CU list from the mapped index, and use it to create all
3036 the CU objects for this objfile. */
3039 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3040 const gdb_byte *cu_list, offset_type cu_list_elements,
3041 const gdb_byte *dwz_list, offset_type dwz_elements)
3043 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3044 dwarf2_per_objfile->all_comp_units.reserve
3045 ((cu_list_elements + dwz_elements) / 2);
3047 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3048 &dwarf2_per_objfile->info, 0);
3050 if (dwz_elements == 0)
3053 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3058 /* Create the signatured type hash table from the index. */
3061 create_signatured_type_table_from_index
3062 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3067 struct objfile *objfile = dwarf2_per_objfile->objfile;
3069 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3070 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3072 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3074 for (offset_type i = 0; i < elements; i += 3)
3076 struct signatured_type *sig_type;
3079 cu_offset type_offset_in_tu;
3081 gdb_static_assert (sizeof (ULONGEST) >= 8);
3082 sect_offset sect_off
3083 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3085 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3087 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3090 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct signatured_type);
3092 sig_type->signature = signature;
3093 sig_type->type_offset_in_tu = type_offset_in_tu;
3094 sig_type->per_cu.is_debug_types = 1;
3095 sig_type->per_cu.section = section;
3096 sig_type->per_cu.sect_off = sect_off;
3097 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3098 sig_type->per_cu.v.quick
3099 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3100 struct dwarf2_per_cu_quick_data);
3102 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3105 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3108 dwarf2_per_objfile->signatured_types = sig_types_hash;
3111 /* Create the signatured type hash table from .debug_names. */
3114 create_signatured_type_table_from_debug_names
3115 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3116 const mapped_debug_names &map,
3117 struct dwarf2_section_info *section,
3118 struct dwarf2_section_info *abbrev_section)
3120 struct objfile *objfile = dwarf2_per_objfile->objfile;
3122 dwarf2_read_section (objfile, section);
3123 dwarf2_read_section (objfile, abbrev_section);
3125 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3126 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3128 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3130 for (uint32_t i = 0; i < map.tu_count; ++i)
3132 struct signatured_type *sig_type;
3135 sect_offset sect_off
3136 = (sect_offset) (extract_unsigned_integer
3137 (map.tu_table_reordered + i * map.offset_size,
3139 map.dwarf5_byte_order));
3141 comp_unit_head cu_header;
3142 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3144 section->buffer + to_underlying (sect_off),
3147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct signatured_type);
3149 sig_type->signature = cu_header.signature;
3150 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3151 sig_type->per_cu.is_debug_types = 1;
3152 sig_type->per_cu.section = section;
3153 sig_type->per_cu.sect_off = sect_off;
3154 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3155 sig_type->per_cu.v.quick
3156 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3157 struct dwarf2_per_cu_quick_data);
3159 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3162 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3165 dwarf2_per_objfile->signatured_types = sig_types_hash;
3168 /* Read the address map data from the mapped index, and use it to
3169 populate the objfile's psymtabs_addrmap. */
3172 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3173 struct mapped_index *index)
3175 struct objfile *objfile = dwarf2_per_objfile->objfile;
3176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3177 const gdb_byte *iter, *end;
3178 struct addrmap *mutable_map;
3181 auto_obstack temp_obstack;
3183 mutable_map = addrmap_create_mutable (&temp_obstack);
3185 iter = index->address_table.data ();
3186 end = iter + index->address_table.size ();
3188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3192 ULONGEST hi, lo, cu_index;
3193 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3195 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3197 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3202 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3203 hex_string (lo), hex_string (hi));
3207 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3209 complaint (_(".gdb_index address table has invalid CU number %u"),
3210 (unsigned) cu_index);
3214 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3215 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3216 addrmap_set_empty (mutable_map, lo, hi - 1,
3217 dwarf2_per_objfile->get_cu (cu_index));
3220 objfile->partial_symtabs->psymtabs_addrmap
3221 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3224 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3225 populate the objfile's psymtabs_addrmap. */
3228 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3229 struct dwarf2_section_info *section)
3231 struct objfile *objfile = dwarf2_per_objfile->objfile;
3232 bfd *abfd = objfile->obfd;
3233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3234 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3235 SECT_OFF_TEXT (objfile));
3237 auto_obstack temp_obstack;
3238 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3240 std::unordered_map<sect_offset,
3241 dwarf2_per_cu_data *,
3242 gdb::hash_enum<sect_offset>>
3243 debug_info_offset_to_per_cu;
3244 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3246 const auto insertpair
3247 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3248 if (!insertpair.second)
3250 warning (_("Section .debug_aranges in %s has duplicate "
3251 "debug_info_offset %s, ignoring .debug_aranges."),
3252 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3257 dwarf2_read_section (objfile, section);
3259 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3261 const gdb_byte *addr = section->buffer;
3263 while (addr < section->buffer + section->size)
3265 const gdb_byte *const entry_addr = addr;
3266 unsigned int bytes_read;
3268 const LONGEST entry_length = read_initial_length (abfd, addr,
3272 const gdb_byte *const entry_end = addr + entry_length;
3273 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3274 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3275 if (addr + entry_length > section->buffer + section->size)
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "length %s exceeds section length %s, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 plongest (bytes_read + entry_length),
3282 pulongest (section->size));
3286 /* The version number. */
3287 const uint16_t version = read_2_bytes (abfd, addr);
3291 warning (_("Section .debug_aranges in %s entry at offset %zu "
3292 "has unsupported version %d, ignoring .debug_aranges."),
3293 objfile_name (objfile), entry_addr - section->buffer,
3298 const uint64_t debug_info_offset
3299 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3300 addr += offset_size;
3301 const auto per_cu_it
3302 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3303 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3305 warning (_("Section .debug_aranges in %s entry at offset %zu "
3306 "debug_info_offset %s does not exists, "
3307 "ignoring .debug_aranges."),
3308 objfile_name (objfile), entry_addr - section->buffer,
3309 pulongest (debug_info_offset));
3312 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3314 const uint8_t address_size = *addr++;
3315 if (address_size < 1 || address_size > 8)
3317 warning (_("Section .debug_aranges in %s entry at offset %zu "
3318 "address_size %u is invalid, ignoring .debug_aranges."),
3319 objfile_name (objfile), entry_addr - section->buffer,
3324 const uint8_t segment_selector_size = *addr++;
3325 if (segment_selector_size != 0)
3327 warning (_("Section .debug_aranges in %s entry at offset %zu "
3328 "segment_selector_size %u is not supported, "
3329 "ignoring .debug_aranges."),
3330 objfile_name (objfile), entry_addr - section->buffer,
3331 segment_selector_size);
3335 /* Must pad to an alignment boundary that is twice the address
3336 size. It is undocumented by the DWARF standard but GCC does
3338 for (size_t padding = ((-(addr - section->buffer))
3339 & (2 * address_size - 1));
3340 padding > 0; padding--)
3343 warning (_("Section .debug_aranges in %s entry at offset %zu "
3344 "padding is not zero, ignoring .debug_aranges."),
3345 objfile_name (objfile), entry_addr - section->buffer);
3351 if (addr + 2 * address_size > entry_end)
3353 warning (_("Section .debug_aranges in %s entry at offset %zu "
3354 "address list is not properly terminated, "
3355 "ignoring .debug_aranges."),
3356 objfile_name (objfile), entry_addr - section->buffer);
3359 ULONGEST start = extract_unsigned_integer (addr, address_size,
3361 addr += address_size;
3362 ULONGEST length = extract_unsigned_integer (addr, address_size,
3364 addr += address_size;
3365 if (start == 0 && length == 0)
3367 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3369 /* Symbol was eliminated due to a COMDAT group. */
3372 ULONGEST end = start + length;
3373 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3375 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3377 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3381 objfile->partial_symtabs->psymtabs_addrmap
3382 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3385 /* Find a slot in the mapped index INDEX for the object named NAME.
3386 If NAME is found, set *VEC_OUT to point to the CU vector in the
3387 constant pool and return true. If NAME cannot be found, return
3391 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3392 offset_type **vec_out)
3395 offset_type slot, step;
3396 int (*cmp) (const char *, const char *);
3398 gdb::unique_xmalloc_ptr<char> without_params;
3399 if (current_language->la_language == language_cplus
3400 || current_language->la_language == language_fortran
3401 || current_language->la_language == language_d)
3403 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3406 if (strchr (name, '(') != NULL)
3408 without_params = cp_remove_params (name);
3410 if (without_params != NULL)
3411 name = without_params.get ();
3415 /* Index version 4 did not support case insensitive searches. But the
3416 indices for case insensitive languages are built in lowercase, therefore
3417 simulate our NAME being searched is also lowercased. */
3418 hash = mapped_index_string_hash ((index->version == 4
3419 && case_sensitivity == case_sensitive_off
3420 ? 5 : index->version),
3423 slot = hash & (index->symbol_table.size () - 1);
3424 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3425 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3431 const auto &bucket = index->symbol_table[slot];
3432 if (bucket.name == 0 && bucket.vec == 0)
3435 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3436 if (!cmp (name, str))
3438 *vec_out = (offset_type *) (index->constant_pool
3439 + MAYBE_SWAP (bucket.vec));
3443 slot = (slot + step) & (index->symbol_table.size () - 1);
3447 /* A helper function that reads the .gdb_index from BUFFER and fills
3448 in MAP. FILENAME is the name of the file containing the data;
3449 it is used for error reporting. DEPRECATED_OK is true if it is
3450 ok to use deprecated sections.
3452 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3453 out parameters that are filled in with information about the CU and
3454 TU lists in the section.
3456 Returns true if all went well, false otherwise. */
3459 read_gdb_index_from_buffer (struct objfile *objfile,
3460 const char *filename,
3462 gdb::array_view<const gdb_byte> buffer,
3463 struct mapped_index *map,
3464 const gdb_byte **cu_list,
3465 offset_type *cu_list_elements,
3466 const gdb_byte **types_list,
3467 offset_type *types_list_elements)
3469 const gdb_byte *addr = &buffer[0];
3471 /* Version check. */
3472 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3473 /* Versions earlier than 3 emitted every copy of a psymbol. This
3474 causes the index to behave very poorly for certain requests. Version 3
3475 contained incomplete addrmap. So, it seems better to just ignore such
3479 static int warning_printed = 0;
3480 if (!warning_printed)
3482 warning (_("Skipping obsolete .gdb_index section in %s."),
3484 warning_printed = 1;
3488 /* Index version 4 uses a different hash function than index version
3491 Versions earlier than 6 did not emit psymbols for inlined
3492 functions. Using these files will cause GDB not to be able to
3493 set breakpoints on inlined functions by name, so we ignore these
3494 indices unless the user has done
3495 "set use-deprecated-index-sections on". */
3496 if (version < 6 && !deprecated_ok)
3498 static int warning_printed = 0;
3499 if (!warning_printed)
3502 Skipping deprecated .gdb_index section in %s.\n\
3503 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3504 to use the section anyway."),
3506 warning_printed = 1;
3510 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3511 of the TU (for symbols coming from TUs),
3512 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3513 Plus gold-generated indices can have duplicate entries for global symbols,
3514 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3515 These are just performance bugs, and we can't distinguish gdb-generated
3516 indices from gold-generated ones, so issue no warning here. */
3518 /* Indexes with higher version than the one supported by GDB may be no
3519 longer backward compatible. */
3523 map->version = version;
3525 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3528 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3529 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3533 *types_list = addr + MAYBE_SWAP (metadata[i]);
3534 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3535 - MAYBE_SWAP (metadata[i]))
3539 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3540 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3542 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3545 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3546 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3548 = gdb::array_view<mapped_index::symbol_table_slot>
3549 ((mapped_index::symbol_table_slot *) symbol_table,
3550 (mapped_index::symbol_table_slot *) symbol_table_end);
3553 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3558 /* Callback types for dwarf2_read_gdb_index. */
3560 typedef gdb::function_view
3561 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3562 get_gdb_index_contents_ftype;
3563 typedef gdb::function_view
3564 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3565 get_gdb_index_contents_dwz_ftype;
3567 /* Read .gdb_index. If everything went ok, initialize the "quick"
3568 elements of all the CUs and return 1. Otherwise, return 0. */
3571 dwarf2_read_gdb_index
3572 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3573 get_gdb_index_contents_ftype get_gdb_index_contents,
3574 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3576 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3577 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3578 struct dwz_file *dwz;
3579 struct objfile *objfile = dwarf2_per_objfile->objfile;
3581 gdb::array_view<const gdb_byte> main_index_contents
3582 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3584 if (main_index_contents.empty ())
3587 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3588 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3589 use_deprecated_index_sections,
3590 main_index_contents, map.get (), &cu_list,
3591 &cu_list_elements, &types_list,
3592 &types_list_elements))
3595 /* Don't use the index if it's empty. */
3596 if (map->symbol_table.empty ())
3599 /* If there is a .dwz file, read it so we can get its CU list as
3601 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3604 struct mapped_index dwz_map;
3605 const gdb_byte *dwz_types_ignore;
3606 offset_type dwz_types_elements_ignore;
3608 gdb::array_view<const gdb_byte> dwz_index_content
3609 = get_gdb_index_contents_dwz (objfile, dwz);
3611 if (dwz_index_content.empty ())
3614 if (!read_gdb_index_from_buffer (objfile,
3615 bfd_get_filename (dwz->dwz_bfd), 1,
3616 dwz_index_content, &dwz_map,
3617 &dwz_list, &dwz_list_elements,
3619 &dwz_types_elements_ignore))
3621 warning (_("could not read '.gdb_index' section from %s; skipping"),
3622 bfd_get_filename (dwz->dwz_bfd));
3627 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3628 dwz_list, dwz_list_elements);
3630 if (types_list_elements)
3632 struct dwarf2_section_info *section;
3634 /* We can only handle a single .debug_types when we have an
3636 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3639 section = VEC_index (dwarf2_section_info_def,
3640 dwarf2_per_objfile->types, 0);
3642 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3643 types_list, types_list_elements);
3646 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3648 dwarf2_per_objfile->index_table = std::move (map);
3649 dwarf2_per_objfile->using_index = 1;
3650 dwarf2_per_objfile->quick_file_names_table =
3651 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3656 /* die_reader_func for dw2_get_file_names. */
3659 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3660 const gdb_byte *info_ptr,
3661 struct die_info *comp_unit_die,
3665 struct dwarf2_cu *cu = reader->cu;
3666 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3667 struct dwarf2_per_objfile *dwarf2_per_objfile
3668 = cu->per_cu->dwarf2_per_objfile;
3669 struct objfile *objfile = dwarf2_per_objfile->objfile;
3670 struct dwarf2_per_cu_data *lh_cu;
3671 struct attribute *attr;
3674 struct quick_file_names *qfn;
3676 gdb_assert (! this_cu->is_debug_types);
3678 /* Our callers never want to match partial units -- instead they
3679 will match the enclosing full CU. */
3680 if (comp_unit_die->tag == DW_TAG_partial_unit)
3682 this_cu->v.quick->no_file_data = 1;
3690 sect_offset line_offset {};
3692 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3695 struct quick_file_names find_entry;
3697 line_offset = (sect_offset) DW_UNSND (attr);
3699 /* We may have already read in this line header (TU line header sharing).
3700 If we have we're done. */
3701 find_entry.hash.dwo_unit = cu->dwo_unit;
3702 find_entry.hash.line_sect_off = line_offset;
3703 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3704 &find_entry, INSERT);
3707 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3711 lh = dwarf_decode_line_header (line_offset, cu);
3715 lh_cu->v.quick->no_file_data = 1;
3719 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3720 qfn->hash.dwo_unit = cu->dwo_unit;
3721 qfn->hash.line_sect_off = line_offset;
3722 gdb_assert (slot != NULL);
3725 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3727 qfn->num_file_names = lh->file_names.size ();
3729 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3730 for (i = 0; i < lh->file_names.size (); ++i)
3731 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3732 qfn->real_names = NULL;
3734 lh_cu->v.quick->file_names = qfn;
3737 /* A helper for the "quick" functions which attempts to read the line
3738 table for THIS_CU. */
3740 static struct quick_file_names *
3741 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3743 /* This should never be called for TUs. */
3744 gdb_assert (! this_cu->is_debug_types);
3745 /* Nor type unit groups. */
3746 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3748 if (this_cu->v.quick->file_names != NULL)
3749 return this_cu->v.quick->file_names;
3750 /* If we know there is no line data, no point in looking again. */
3751 if (this_cu->v.quick->no_file_data)
3754 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3756 if (this_cu->v.quick->no_file_data)
3758 return this_cu->v.quick->file_names;
3761 /* A helper for the "quick" functions which computes and caches the
3762 real path for a given file name from the line table. */
3765 dw2_get_real_path (struct objfile *objfile,
3766 struct quick_file_names *qfn, int index)
3768 if (qfn->real_names == NULL)
3769 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3770 qfn->num_file_names, const char *);
3772 if (qfn->real_names[index] == NULL)
3773 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3775 return qfn->real_names[index];
3778 static struct symtab *
3779 dw2_find_last_source_symtab (struct objfile *objfile)
3781 struct dwarf2_per_objfile *dwarf2_per_objfile
3782 = get_dwarf2_per_objfile (objfile);
3783 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3784 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3789 return compunit_primary_filetab (cust);
3792 /* Traversal function for dw2_forget_cached_source_info. */
3795 dw2_free_cached_file_names (void **slot, void *info)
3797 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3799 if (file_data->real_names)
3803 for (i = 0; i < file_data->num_file_names; ++i)
3805 xfree ((void*) file_data->real_names[i]);
3806 file_data->real_names[i] = NULL;
3814 dw2_forget_cached_source_info (struct objfile *objfile)
3816 struct dwarf2_per_objfile *dwarf2_per_objfile
3817 = get_dwarf2_per_objfile (objfile);
3819 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3820 dw2_free_cached_file_names, NULL);
3823 /* Helper function for dw2_map_symtabs_matching_filename that expands
3824 the symtabs and calls the iterator. */
3827 dw2_map_expand_apply (struct objfile *objfile,
3828 struct dwarf2_per_cu_data *per_cu,
3829 const char *name, const char *real_path,
3830 gdb::function_view<bool (symtab *)> callback)
3832 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3834 /* Don't visit already-expanded CUs. */
3835 if (per_cu->v.quick->compunit_symtab)
3838 /* This may expand more than one symtab, and we want to iterate over
3840 dw2_instantiate_symtab (per_cu, false);
3842 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3843 last_made, callback);
3846 /* Implementation of the map_symtabs_matching_filename method. */
3849 dw2_map_symtabs_matching_filename
3850 (struct objfile *objfile, const char *name, const char *real_path,
3851 gdb::function_view<bool (symtab *)> callback)
3853 const char *name_basename = lbasename (name);
3854 struct dwarf2_per_objfile *dwarf2_per_objfile
3855 = get_dwarf2_per_objfile (objfile);
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3860 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3862 /* We only need to look at symtabs not already expanded. */
3863 if (per_cu->v.quick->compunit_symtab)
3866 quick_file_names *file_data = dw2_get_file_names (per_cu);
3867 if (file_data == NULL)
3870 for (int j = 0; j < file_data->num_file_names; ++j)
3872 const char *this_name = file_data->file_names[j];
3873 const char *this_real_name;
3875 if (compare_filenames_for_search (this_name, name))
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3883 /* Before we invoke realpath, which can get expensive when many
3884 files are involved, do a quick comparison of the basenames. */
3885 if (! basenames_may_differ
3886 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3889 this_real_name = dw2_get_real_path (objfile, file_data, j);
3890 if (compare_filenames_for_search (this_real_name, name))
3892 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3898 if (real_path != NULL)
3900 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3901 gdb_assert (IS_ABSOLUTE_PATH (name));
3902 if (this_real_name != NULL
3903 && FILENAME_CMP (real_path, this_real_name) == 0)
3905 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3917 /* Struct used to manage iterating over all CUs looking for a symbol. */
3919 struct dw2_symtab_iterator
3921 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3922 struct dwarf2_per_objfile *dwarf2_per_objfile;
3923 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3924 int want_specific_block;
3925 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3926 Unused if !WANT_SPECIFIC_BLOCK. */
3928 /* The kind of symbol we're looking for. */
3930 /* The list of CUs from the index entry of the symbol,
3931 or NULL if not found. */
3933 /* The next element in VEC to look at. */
3935 /* The number of elements in VEC, or zero if there is no match. */
3937 /* Have we seen a global version of the symbol?
3938 If so we can ignore all further global instances.
3939 This is to work around gold/15646, inefficient gold-generated
3944 /* Initialize the index symtab iterator ITER.
3945 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3946 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3949 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3950 struct dwarf2_per_objfile *dwarf2_per_objfile,
3951 int want_specific_block,
3956 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3957 iter->want_specific_block = want_specific_block;
3958 iter->block_index = block_index;
3959 iter->domain = domain;
3961 iter->global_seen = 0;
3963 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3965 /* index is NULL if OBJF_READNOW. */
3966 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3967 iter->length = MAYBE_SWAP (*iter->vec);
3975 /* Return the next matching CU or NULL if there are no more. */
3977 static struct dwarf2_per_cu_data *
3978 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3980 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3982 for ( ; iter->next < iter->length; ++iter->next)
3984 offset_type cu_index_and_attrs =
3985 MAYBE_SWAP (iter->vec[iter->next + 1]);
3986 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 int want_static = iter->block_index != GLOBAL_BLOCK;
3988 /* This value is only valid for index versions >= 7. */
3989 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3990 gdb_index_symbol_kind symbol_kind =
3991 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3992 /* Only check the symbol attributes if they're present.
3993 Indices prior to version 7 don't record them,
3994 and indices >= 7 may elide them for certain symbols
3995 (gold does this). */
3997 (dwarf2_per_objfile->index_table->version >= 7
3998 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4000 /* Don't crash on bad data. */
4001 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4002 + dwarf2_per_objfile->all_type_units.size ()))
4004 complaint (_(".gdb_index entry has bad CU index"
4006 objfile_name (dwarf2_per_objfile->objfile));
4010 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4012 /* Skip if already read in. */
4013 if (per_cu->v.quick->compunit_symtab)
4016 /* Check static vs global. */
4019 if (iter->want_specific_block
4020 && want_static != is_static)
4022 /* Work around gold/15646. */
4023 if (!is_static && iter->global_seen)
4026 iter->global_seen = 1;
4029 /* Only check the symbol's kind if it has one. */
4032 switch (iter->domain)
4035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4036 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4037 /* Some types are also in VAR_DOMAIN. */
4038 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4061 static struct compunit_symtab *
4062 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4063 const char *name, domain_enum domain)
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4098 /* Keep looking through other CUs. */
4105 dw2_print_stats (struct objfile *objfile)
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4113 for (int i = 0; i < total; ++i)
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4117 if (!per_cu->v.quick->compunit_symtab)
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4124 /* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4130 dw2_dump (struct objfile *objfile)
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4148 dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4157 /* Note: It doesn't matter what we pass for block_index here. */
4158 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4161 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4162 dw2_instantiate_symtab (per_cu, false);
4167 dw2_expand_all_symtabs (struct objfile *objfile)
4169 struct dwarf2_per_objfile *dwarf2_per_objfile
4170 = get_dwarf2_per_objfile (objfile);
4171 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4172 + dwarf2_per_objfile->all_type_units.size ());
4174 for (int i = 0; i < total_units; ++i)
4176 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4178 /* We don't want to directly expand a partial CU, because if we
4179 read it with the wrong language, then assertion failures can
4180 be triggered later on. See PR symtab/23010. So, tell
4181 dw2_instantiate_symtab to skip partial CUs -- any important
4182 partial CU will be read via DW_TAG_imported_unit anyway. */
4183 dw2_instantiate_symtab (per_cu, true);
4188 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4189 const char *fullname)
4191 struct dwarf2_per_objfile *dwarf2_per_objfile
4192 = get_dwarf2_per_objfile (objfile);
4194 /* We don't need to consider type units here.
4195 This is only called for examining code, e.g. expand_line_sal.
4196 There can be an order of magnitude (or more) more type units
4197 than comp units, and we avoid them if we can. */
4199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4201 /* We only need to look at symtabs not already expanded. */
4202 if (per_cu->v.quick->compunit_symtab)
4205 quick_file_names *file_data = dw2_get_file_names (per_cu);
4206 if (file_data == NULL)
4209 for (int j = 0; j < file_data->num_file_names; ++j)
4211 const char *this_fullname = file_data->file_names[j];
4213 if (filename_cmp (this_fullname, fullname) == 0)
4215 dw2_instantiate_symtab (per_cu, false);
4223 dw2_map_matching_symbols (struct objfile *objfile,
4224 const char * name, domain_enum domain,
4226 int (*callback) (const struct block *,
4227 struct symbol *, void *),
4228 void *data, symbol_name_match_type match,
4229 symbol_compare_ftype *ordered_compare)
4231 /* Currently unimplemented; used for Ada. The function can be called if the
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
4236 /* Symbol name matcher for .gdb_index names.
4238 Symbol names in .gdb_index have a few particularities:
4240 - There's no indication of which is the language of each symbol.
4242 Since each language has its own symbol name matching algorithm,
4243 and we don't know which language is the right one, we must match
4244 each symbol against all languages. This would be a potential
4245 performance problem if it were not mitigated by the
4246 mapped_index::name_components lookup table, which significantly
4247 reduces the number of times we need to call into this matcher,
4248 making it a non-issue.
4250 - Symbol names in the index have no overload (parameter)
4251 information. I.e., in C++, "foo(int)" and "foo(long)" both
4252 appear as "foo" in the index, for example.
4254 This means that the lookup names passed to the symbol name
4255 matcher functions must have no parameter information either
4256 because (e.g.) symbol search name "foo" does not match
4257 lookup-name "foo(int)" [while swapping search name for lookup
4260 class gdb_index_symbol_name_matcher
4263 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4264 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4266 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4267 Returns true if any matcher matches. */
4268 bool matches (const char *symbol_name);
4271 /* A reference to the lookup name we're matching against. */
4272 const lookup_name_info &m_lookup_name;
4274 /* A vector holding all the different symbol name matchers, for all
4276 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4279 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4280 (const lookup_name_info &lookup_name)
4281 : m_lookup_name (lookup_name)
4283 /* Prepare the vector of comparison functions upfront, to avoid
4284 doing the same work for each symbol. Care is taken to avoid
4285 matching with the same matcher more than once if/when multiple
4286 languages use the same matcher function. */
4287 auto &matchers = m_symbol_name_matcher_funcs;
4288 matchers.reserve (nr_languages);
4290 matchers.push_back (default_symbol_name_matcher);
4292 for (int i = 0; i < nr_languages; i++)
4294 const language_defn *lang = language_def ((enum language) i);
4295 symbol_name_matcher_ftype *name_matcher
4296 = get_symbol_name_matcher (lang, m_lookup_name);
4298 /* Don't insert the same comparison routine more than once.
4299 Note that we do this linear walk instead of a seemingly
4300 cheaper sorted insert, or use a std::set or something like
4301 that, because relative order of function addresses is not
4302 stable. This is not a problem in practice because the number
4303 of supported languages is low, and the cost here is tiny
4304 compared to the number of searches we'll do afterwards using
4306 if (name_matcher != default_symbol_name_matcher
4307 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4308 == matchers.end ()))
4309 matchers.push_back (name_matcher);
4314 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4316 for (auto matches_name : m_symbol_name_matcher_funcs)
4317 if (matches_name (symbol_name, m_lookup_name, NULL))
4323 /* Starting from a search name, return the string that finds the upper
4324 bound of all strings that start with SEARCH_NAME in a sorted name
4325 list. Returns the empty string to indicate that the upper bound is
4326 the end of the list. */
4329 make_sort_after_prefix_name (const char *search_name)
4331 /* When looking to complete "func", we find the upper bound of all
4332 symbols that start with "func" by looking for where we'd insert
4333 the closest string that would follow "func" in lexicographical
4334 order. Usually, that's "func"-with-last-character-incremented,
4335 i.e. "fund". Mind non-ASCII characters, though. Usually those
4336 will be UTF-8 multi-byte sequences, but we can't be certain.
4337 Especially mind the 0xff character, which is a valid character in
4338 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4339 rule out compilers allowing it in identifiers. Note that
4340 conveniently, strcmp/strcasecmp are specified to compare
4341 characters interpreted as unsigned char. So what we do is treat
4342 the whole string as a base 256 number composed of a sequence of
4343 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4344 to 0, and carries 1 to the following more-significant position.
4345 If the very first character in SEARCH_NAME ends up incremented
4346 and carries/overflows, then the upper bound is the end of the
4347 list. The string after the empty string is also the empty
4350 Some examples of this operation:
4352 SEARCH_NAME => "+1" RESULT
4356 "\xff" "a" "\xff" => "\xff" "b"
4361 Then, with these symbols for example:
4367 completing "func" looks for symbols between "func" and
4368 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4369 which finds "func" and "func1", but not "fund".
4373 funcÿ (Latin1 'ÿ' [0xff])
4377 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4378 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4382 ÿÿ (Latin1 'ÿ' [0xff])
4385 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4386 the end of the list.
4388 std::string after = search_name;
4389 while (!after.empty () && (unsigned char) after.back () == 0xff)
4391 if (!after.empty ())
4392 after.back () = (unsigned char) after.back () + 1;
4396 /* See declaration. */
4398 std::pair<std::vector<name_component>::const_iterator,
4399 std::vector<name_component>::const_iterator>
4400 mapped_index_base::find_name_components_bounds
4401 (const lookup_name_info &lookup_name_without_params) const
4404 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4407 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4409 /* Comparison function object for lower_bound that matches against a
4410 given symbol name. */
4411 auto lookup_compare_lower = [&] (const name_component &elem,
4414 const char *elem_qualified = this->symbol_name_at (elem.idx);
4415 const char *elem_name = elem_qualified + elem.name_offset;
4416 return name_cmp (elem_name, name) < 0;
4419 /* Comparison function object for upper_bound that matches against a
4420 given symbol name. */
4421 auto lookup_compare_upper = [&] (const char *name,
4422 const name_component &elem)
4424 const char *elem_qualified = this->symbol_name_at (elem.idx);
4425 const char *elem_name = elem_qualified + elem.name_offset;
4426 return name_cmp (name, elem_name) < 0;
4429 auto begin = this->name_components.begin ();
4430 auto end = this->name_components.end ();
4432 /* Find the lower bound. */
4435 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4438 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4441 /* Find the upper bound. */
4444 if (lookup_name_without_params.completion_mode ())
4446 /* In completion mode, we want UPPER to point past all
4447 symbols names that have the same prefix. I.e., with
4448 these symbols, and completing "func":
4450 function << lower bound
4452 other_function << upper bound
4454 We find the upper bound by looking for the insertion
4455 point of "func"-with-last-character-incremented,
4457 std::string after = make_sort_after_prefix_name (cplus);
4460 return std::lower_bound (lower, end, after.c_str (),
4461 lookup_compare_lower);
4464 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4467 return {lower, upper};
4470 /* See declaration. */
4473 mapped_index_base::build_name_components ()
4475 if (!this->name_components.empty ())
4478 this->name_components_casing = case_sensitivity;
4480 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4482 /* The code below only knows how to break apart components of C++
4483 symbol names (and other languages that use '::' as
4484 namespace/module separator). If we add support for wild matching
4485 to some language that uses some other operator (E.g., Ada, Go and
4486 D use '.'), then we'll need to try splitting the symbol name
4487 according to that language too. Note that Ada does support wild
4488 matching, but doesn't currently support .gdb_index. */
4489 auto count = this->symbol_name_count ();
4490 for (offset_type idx = 0; idx < count; idx++)
4492 if (this->symbol_name_slot_invalid (idx))
4495 const char *name = this->symbol_name_at (idx);
4497 /* Add each name component to the name component table. */
4498 unsigned int previous_len = 0;
4499 for (unsigned int current_len = cp_find_first_component (name);
4500 name[current_len] != '\0';
4501 current_len += cp_find_first_component (name + current_len))
4503 gdb_assert (name[current_len] == ':');
4504 this->name_components.push_back ({previous_len, idx});
4505 /* Skip the '::'. */
4507 previous_len = current_len;
4509 this->name_components.push_back ({previous_len, idx});
4512 /* Sort name_components elements by name. */
4513 auto name_comp_compare = [&] (const name_component &left,
4514 const name_component &right)
4516 const char *left_qualified = this->symbol_name_at (left.idx);
4517 const char *right_qualified = this->symbol_name_at (right.idx);
4519 const char *left_name = left_qualified + left.name_offset;
4520 const char *right_name = right_qualified + right.name_offset;
4522 return name_cmp (left_name, right_name) < 0;
4525 std::sort (this->name_components.begin (),
4526 this->name_components.end (),
4530 /* Helper for dw2_expand_symtabs_matching that works with a
4531 mapped_index_base instead of the containing objfile. This is split
4532 to a separate function in order to be able to unit test the
4533 name_components matching using a mock mapped_index_base. For each
4534 symbol name that matches, calls MATCH_CALLBACK, passing it the
4535 symbol's index in the mapped_index_base symbol table. */
4538 dw2_expand_symtabs_matching_symbol
4539 (mapped_index_base &index,
4540 const lookup_name_info &lookup_name_in,
4541 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4542 enum search_domain kind,
4543 gdb::function_view<void (offset_type)> match_callback)
4545 lookup_name_info lookup_name_without_params
4546 = lookup_name_in.make_ignore_params ();
4547 gdb_index_symbol_name_matcher lookup_name_matcher
4548 (lookup_name_without_params);
4550 /* Build the symbol name component sorted vector, if we haven't
4552 index.build_name_components ();
4554 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4556 /* Now for each symbol name in range, check to see if we have a name
4557 match, and if so, call the MATCH_CALLBACK callback. */
4559 /* The same symbol may appear more than once in the range though.
4560 E.g., if we're looking for symbols that complete "w", and we have
4561 a symbol named "w1::w2", we'll find the two name components for
4562 that same symbol in the range. To be sure we only call the
4563 callback once per symbol, we first collect the symbol name
4564 indexes that matched in a temporary vector and ignore
4566 std::vector<offset_type> matches;
4567 matches.reserve (std::distance (bounds.first, bounds.second));
4569 for (; bounds.first != bounds.second; ++bounds.first)
4571 const char *qualified = index.symbol_name_at (bounds.first->idx);
4573 if (!lookup_name_matcher.matches (qualified)
4574 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4577 matches.push_back (bounds.first->idx);
4580 std::sort (matches.begin (), matches.end ());
4582 /* Finally call the callback, once per match. */
4584 for (offset_type idx : matches)
4588 match_callback (idx);
4593 /* Above we use a type wider than idx's for 'prev', since 0 and
4594 (offset_type)-1 are both possible values. */
4595 static_assert (sizeof (prev) > sizeof (offset_type), "");
4600 namespace selftests { namespace dw2_expand_symtabs_matching {
4602 /* A mock .gdb_index/.debug_names-like name index table, enough to
4603 exercise dw2_expand_symtabs_matching_symbol, which works with the
4604 mapped_index_base interface. Builds an index from the symbol list
4605 passed as parameter to the constructor. */
4606 class mock_mapped_index : public mapped_index_base
4609 mock_mapped_index (gdb::array_view<const char *> symbols)
4610 : m_symbol_table (symbols)
4613 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4615 /* Return the number of names in the symbol table. */
4616 size_t symbol_name_count () const override
4618 return m_symbol_table.size ();
4621 /* Get the name of the symbol at IDX in the symbol table. */
4622 const char *symbol_name_at (offset_type idx) const override
4624 return m_symbol_table[idx];
4628 gdb::array_view<const char *> m_symbol_table;
4631 /* Convenience function that converts a NULL pointer to a "<null>"
4632 string, to pass to print routines. */
4635 string_or_null (const char *str)
4637 return str != NULL ? str : "<null>";
4640 /* Check if a lookup_name_info built from
4641 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4642 index. EXPECTED_LIST is the list of expected matches, in expected
4643 matching order. If no match expected, then an empty list is
4644 specified. Returns true on success. On failure prints a warning
4645 indicating the file:line that failed, and returns false. */
4648 check_match (const char *file, int line,
4649 mock_mapped_index &mock_index,
4650 const char *name, symbol_name_match_type match_type,
4651 bool completion_mode,
4652 std::initializer_list<const char *> expected_list)
4654 lookup_name_info lookup_name (name, match_type, completion_mode);
4656 bool matched = true;
4658 auto mismatch = [&] (const char *expected_str,
4661 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4662 "expected=\"%s\", got=\"%s\"\n"),
4664 (match_type == symbol_name_match_type::FULL
4666 name, string_or_null (expected_str), string_or_null (got));
4670 auto expected_it = expected_list.begin ();
4671 auto expected_end = expected_list.end ();
4673 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4675 [&] (offset_type idx)
4677 const char *matched_name = mock_index.symbol_name_at (idx);
4678 const char *expected_str
4679 = expected_it == expected_end ? NULL : *expected_it++;
4681 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4682 mismatch (expected_str, matched_name);
4685 const char *expected_str
4686 = expected_it == expected_end ? NULL : *expected_it++;
4687 if (expected_str != NULL)
4688 mismatch (expected_str, NULL);
4693 /* The symbols added to the mock mapped_index for testing (in
4695 static const char *test_symbols[] = {
4704 "ns2::tmpl<int>::foo2",
4705 "(anonymous namespace)::A::B::C",
4707 /* These are used to check that the increment-last-char in the
4708 matching algorithm for completion doesn't match "t1_fund" when
4709 completing "t1_func". */
4715 /* A UTF-8 name with multi-byte sequences to make sure that
4716 cp-name-parser understands this as a single identifier ("função"
4717 is "function" in PT). */
4720 /* \377 (0xff) is Latin1 'ÿ'. */
4723 /* \377 (0xff) is Latin1 'ÿ'. */
4727 /* A name with all sorts of complications. Starts with "z" to make
4728 it easier for the completion tests below. */
4729 #define Z_SYM_NAME \
4730 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4731 "::tuple<(anonymous namespace)::ui*, " \
4732 "std::default_delete<(anonymous namespace)::ui>, void>"
4737 /* Returns true if the mapped_index_base::find_name_component_bounds
4738 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4739 in completion mode. */
4742 check_find_bounds_finds (mapped_index_base &index,
4743 const char *search_name,
4744 gdb::array_view<const char *> expected_syms)
4746 lookup_name_info lookup_name (search_name,
4747 symbol_name_match_type::FULL, true);
4749 auto bounds = index.find_name_components_bounds (lookup_name);
4751 size_t distance = std::distance (bounds.first, bounds.second);
4752 if (distance != expected_syms.size ())
4755 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4757 auto nc_elem = bounds.first + exp_elem;
4758 const char *qualified = index.symbol_name_at (nc_elem->idx);
4759 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4766 /* Test the lower-level mapped_index::find_name_component_bounds
4770 test_mapped_index_find_name_component_bounds ()
4772 mock_mapped_index mock_index (test_symbols);
4774 mock_index.build_name_components ();
4776 /* Test the lower-level mapped_index::find_name_component_bounds
4777 method in completion mode. */
4779 static const char *expected_syms[] = {
4784 SELF_CHECK (check_find_bounds_finds (mock_index,
4785 "t1_func", expected_syms));
4788 /* Check that the increment-last-char in the name matching algorithm
4789 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4791 static const char *expected_syms1[] = {
4795 SELF_CHECK (check_find_bounds_finds (mock_index,
4796 "\377", expected_syms1));
4798 static const char *expected_syms2[] = {
4801 SELF_CHECK (check_find_bounds_finds (mock_index,
4802 "\377\377", expected_syms2));
4806 /* Test dw2_expand_symtabs_matching_symbol. */
4809 test_dw2_expand_symtabs_matching_symbol ()
4811 mock_mapped_index mock_index (test_symbols);
4813 /* We let all tests run until the end even if some fails, for debug
4815 bool any_mismatch = false;
4817 /* Create the expected symbols list (an initializer_list). Needed
4818 because lists have commas, and we need to pass them to CHECK,
4819 which is a macro. */
4820 #define EXPECT(...) { __VA_ARGS__ }
4822 /* Wrapper for check_match that passes down the current
4823 __FILE__/__LINE__. */
4824 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4825 any_mismatch |= !check_match (__FILE__, __LINE__, \
4827 NAME, MATCH_TYPE, COMPLETION_MODE, \
4830 /* Identity checks. */
4831 for (const char *sym : test_symbols)
4833 /* Should be able to match all existing symbols. */
4834 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4837 /* Should be able to match all existing symbols with
4839 std::string with_params = std::string (sym) + "(int)";
4840 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4843 /* Should be able to match all existing symbols with
4844 parameters and qualifiers. */
4845 with_params = std::string (sym) + " ( int ) const";
4846 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4849 /* This should really find sym, but cp-name-parser.y doesn't
4850 know about lvalue/rvalue qualifiers yet. */
4851 with_params = std::string (sym) + " ( int ) &&";
4852 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4856 /* Check that the name matching algorithm for completion doesn't get
4857 confused with Latin1 'ÿ' / 0xff. */
4859 static const char str[] = "\377";
4860 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4861 EXPECT ("\377", "\377\377123"));
4864 /* Check that the increment-last-char in the matching algorithm for
4865 completion doesn't match "t1_fund" when completing "t1_func". */
4867 static const char str[] = "t1_func";
4868 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4869 EXPECT ("t1_func", "t1_func1"));
4872 /* Check that completion mode works at each prefix of the expected
4875 static const char str[] = "function(int)";
4876 size_t len = strlen (str);
4879 for (size_t i = 1; i < len; i++)
4881 lookup.assign (str, i);
4882 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4883 EXPECT ("function"));
4887 /* While "w" is a prefix of both components, the match function
4888 should still only be called once. */
4890 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4892 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4896 /* Same, with a "complicated" symbol. */
4898 static const char str[] = Z_SYM_NAME;
4899 size_t len = strlen (str);
4902 for (size_t i = 1; i < len; i++)
4904 lookup.assign (str, i);
4905 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4906 EXPECT (Z_SYM_NAME));
4910 /* In FULL mode, an incomplete symbol doesn't match. */
4912 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4916 /* A complete symbol with parameters matches any overload, since the
4917 index has no overload info. */
4919 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4920 EXPECT ("std::zfunction", "std::zfunction2"));
4921 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4922 EXPECT ("std::zfunction", "std::zfunction2"));
4923 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4927 /* Check that whitespace is ignored appropriately. A symbol with a
4928 template argument list. */
4930 static const char expected[] = "ns::foo<int>";
4931 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4933 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4937 /* Check that whitespace is ignored appropriately. A symbol with a
4938 template argument list that includes a pointer. */
4940 static const char expected[] = "ns::foo<char*>";
4941 /* Try both completion and non-completion modes. */
4942 static const bool completion_mode[2] = {false, true};
4943 for (size_t i = 0; i < 2; i++)
4945 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4946 completion_mode[i], EXPECT (expected));
4947 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4948 completion_mode[i], EXPECT (expected));
4950 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4958 /* Check method qualifiers are ignored. */
4959 static const char expected[] = "ns::foo<char*>";
4960 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4961 symbol_name_match_type::FULL, true, EXPECT (expected));
4962 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4963 symbol_name_match_type::FULL, true, EXPECT (expected));
4964 CHECK_MATCH ("foo < char * > ( int ) const",
4965 symbol_name_match_type::WILD, true, EXPECT (expected));
4966 CHECK_MATCH ("foo < char * > ( int ) &&",
4967 symbol_name_match_type::WILD, true, EXPECT (expected));
4970 /* Test lookup names that don't match anything. */
4972 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4975 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4979 /* Some wild matching tests, exercising "(anonymous namespace)",
4980 which should not be confused with a parameter list. */
4982 static const char *syms[] = {
4986 "A :: B :: C ( int )",
4991 for (const char *s : syms)
4993 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4994 EXPECT ("(anonymous namespace)::A::B::C"));
4999 static const char expected[] = "ns2::tmpl<int>::foo2";
5000 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5002 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5006 SELF_CHECK (!any_mismatch);
5015 test_mapped_index_find_name_component_bounds ();
5016 test_dw2_expand_symtabs_matching_symbol ();
5019 }} // namespace selftests::dw2_expand_symtabs_matching
5021 #endif /* GDB_SELF_TEST */
5023 /* If FILE_MATCHER is NULL or if PER_CU has
5024 dwarf2_per_cu_quick_data::MARK set (see
5025 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5026 EXPANSION_NOTIFY on it. */
5029 dw2_expand_symtabs_matching_one
5030 (struct dwarf2_per_cu_data *per_cu,
5031 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5032 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5034 if (file_matcher == NULL || per_cu->v.quick->mark)
5036 bool symtab_was_null
5037 = (per_cu->v.quick->compunit_symtab == NULL);
5039 dw2_instantiate_symtab (per_cu, false);
5041 if (expansion_notify != NULL
5043 && per_cu->v.quick->compunit_symtab != NULL)
5044 expansion_notify (per_cu->v.quick->compunit_symtab);
5048 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5049 matched, to expand corresponding CUs that were marked. IDX is the
5050 index of the symbol name that matched. */
5053 dw2_expand_marked_cus
5054 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5055 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5056 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5059 offset_type *vec, vec_len, vec_idx;
5060 bool global_seen = false;
5061 mapped_index &index = *dwarf2_per_objfile->index_table;
5063 vec = (offset_type *) (index.constant_pool
5064 + MAYBE_SWAP (index.symbol_table[idx].vec));
5065 vec_len = MAYBE_SWAP (vec[0]);
5066 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5068 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5069 /* This value is only valid for index versions >= 7. */
5070 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5071 gdb_index_symbol_kind symbol_kind =
5072 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5073 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5074 /* Only check the symbol attributes if they're present.
5075 Indices prior to version 7 don't record them,
5076 and indices >= 7 may elide them for certain symbols
5077 (gold does this). */
5080 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5082 /* Work around gold/15646. */
5085 if (!is_static && global_seen)
5091 /* Only check the symbol's kind if it has one. */
5096 case VARIABLES_DOMAIN:
5097 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5100 case FUNCTIONS_DOMAIN:
5101 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5105 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5113 /* Don't crash on bad data. */
5114 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5115 + dwarf2_per_objfile->all_type_units.size ()))
5117 complaint (_(".gdb_index entry has bad CU index"
5119 objfile_name (dwarf2_per_objfile->objfile));
5123 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5124 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5129 /* If FILE_MATCHER is non-NULL, set all the
5130 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5131 that match FILE_MATCHER. */
5134 dw_expand_symtabs_matching_file_matcher
5135 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5136 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5138 if (file_matcher == NULL)
5141 objfile *const objfile = dwarf2_per_objfile->objfile;
5143 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5145 NULL, xcalloc, xfree));
5146 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5148 NULL, xcalloc, xfree));
5150 /* The rule is CUs specify all the files, including those used by
5151 any TU, so there's no need to scan TUs here. */
5153 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5157 per_cu->v.quick->mark = 0;
5159 /* We only need to look at symtabs not already expanded. */
5160 if (per_cu->v.quick->compunit_symtab)
5163 quick_file_names *file_data = dw2_get_file_names (per_cu);
5164 if (file_data == NULL)
5167 if (htab_find (visited_not_found.get (), file_data) != NULL)
5169 else if (htab_find (visited_found.get (), file_data) != NULL)
5171 per_cu->v.quick->mark = 1;
5175 for (int j = 0; j < file_data->num_file_names; ++j)
5177 const char *this_real_name;
5179 if (file_matcher (file_data->file_names[j], false))
5181 per_cu->v.quick->mark = 1;
5185 /* Before we invoke realpath, which can get expensive when many
5186 files are involved, do a quick comparison of the basenames. */
5187 if (!basenames_may_differ
5188 && !file_matcher (lbasename (file_data->file_names[j]),
5192 this_real_name = dw2_get_real_path (objfile, file_data, j);
5193 if (file_matcher (this_real_name, false))
5195 per_cu->v.quick->mark = 1;
5200 void **slot = htab_find_slot (per_cu->v.quick->mark
5201 ? visited_found.get ()
5202 : visited_not_found.get (),
5209 dw2_expand_symtabs_matching
5210 (struct objfile *objfile,
5211 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5212 const lookup_name_info &lookup_name,
5213 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5215 enum search_domain kind)
5217 struct dwarf2_per_objfile *dwarf2_per_objfile
5218 = get_dwarf2_per_objfile (objfile);
5220 /* index_table is NULL if OBJF_READNOW. */
5221 if (!dwarf2_per_objfile->index_table)
5224 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5226 mapped_index &index = *dwarf2_per_objfile->index_table;
5228 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5230 kind, [&] (offset_type idx)
5232 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5233 expansion_notify, kind);
5237 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5240 static struct compunit_symtab *
5241 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5246 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5247 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5250 if (cust->includes == NULL)
5253 for (i = 0; cust->includes[i]; ++i)
5255 struct compunit_symtab *s = cust->includes[i];
5257 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5265 static struct compunit_symtab *
5266 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5267 struct bound_minimal_symbol msymbol,
5269 struct obj_section *section,
5272 struct dwarf2_per_cu_data *data;
5273 struct compunit_symtab *result;
5275 if (!objfile->partial_symtabs->psymtabs_addrmap)
5278 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5279 SECT_OFF_TEXT (objfile));
5280 data = (struct dwarf2_per_cu_data *) addrmap_find
5281 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5285 if (warn_if_readin && data->v.quick->compunit_symtab)
5286 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5287 paddress (get_objfile_arch (objfile), pc));
5290 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5293 gdb_assert (result != NULL);
5298 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5299 void *data, int need_fullname)
5301 struct dwarf2_per_objfile *dwarf2_per_objfile
5302 = get_dwarf2_per_objfile (objfile);
5304 if (!dwarf2_per_objfile->filenames_cache)
5306 dwarf2_per_objfile->filenames_cache.emplace ();
5308 htab_up visited (htab_create_alloc (10,
5309 htab_hash_pointer, htab_eq_pointer,
5310 NULL, xcalloc, xfree));
5312 /* The rule is CUs specify all the files, including those used
5313 by any TU, so there's no need to scan TUs here. We can
5314 ignore file names coming from already-expanded CUs. */
5316 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5318 if (per_cu->v.quick->compunit_symtab)
5320 void **slot = htab_find_slot (visited.get (),
5321 per_cu->v.quick->file_names,
5324 *slot = per_cu->v.quick->file_names;
5328 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5330 /* We only need to look at symtabs not already expanded. */
5331 if (per_cu->v.quick->compunit_symtab)
5334 quick_file_names *file_data = dw2_get_file_names (per_cu);
5335 if (file_data == NULL)
5338 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5341 /* Already visited. */
5346 for (int j = 0; j < file_data->num_file_names; ++j)
5348 const char *filename = file_data->file_names[j];
5349 dwarf2_per_objfile->filenames_cache->seen (filename);
5354 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5356 gdb::unique_xmalloc_ptr<char> this_real_name;
5359 this_real_name = gdb_realpath (filename);
5360 (*fun) (filename, this_real_name.get (), data);
5365 dw2_has_symbols (struct objfile *objfile)
5370 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5373 dw2_find_last_source_symtab,
5374 dw2_forget_cached_source_info,
5375 dw2_map_symtabs_matching_filename,
5379 dw2_expand_symtabs_for_function,
5380 dw2_expand_all_symtabs,
5381 dw2_expand_symtabs_with_fullname,
5382 dw2_map_matching_symbols,
5383 dw2_expand_symtabs_matching,
5384 dw2_find_pc_sect_compunit_symtab,
5386 dw2_map_symbol_filenames
5389 /* DWARF-5 debug_names reader. */
5391 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5392 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5394 /* A helper function that reads the .debug_names section in SECTION
5395 and fills in MAP. FILENAME is the name of the file containing the
5396 section; it is used for error reporting.
5398 Returns true if all went well, false otherwise. */
5401 read_debug_names_from_section (struct objfile *objfile,
5402 const char *filename,
5403 struct dwarf2_section_info *section,
5404 mapped_debug_names &map)
5406 if (dwarf2_section_empty_p (section))
5409 /* Older elfutils strip versions could keep the section in the main
5410 executable while splitting it for the separate debug info file. */
5411 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5414 dwarf2_read_section (objfile, section);
5416 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5418 const gdb_byte *addr = section->buffer;
5420 bfd *const abfd = get_section_bfd_owner (section);
5422 unsigned int bytes_read;
5423 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5426 map.dwarf5_is_dwarf64 = bytes_read != 4;
5427 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5428 if (bytes_read + length != section->size)
5430 /* There may be multiple per-CU indices. */
5431 warning (_("Section .debug_names in %s length %s does not match "
5432 "section length %s, ignoring .debug_names."),
5433 filename, plongest (bytes_read + length),
5434 pulongest (section->size));
5438 /* The version number. */
5439 uint16_t version = read_2_bytes (abfd, addr);
5443 warning (_("Section .debug_names in %s has unsupported version %d, "
5444 "ignoring .debug_names."),
5450 uint16_t padding = read_2_bytes (abfd, addr);
5454 warning (_("Section .debug_names in %s has unsupported padding %d, "
5455 "ignoring .debug_names."),
5460 /* comp_unit_count - The number of CUs in the CU list. */
5461 map.cu_count = read_4_bytes (abfd, addr);
5464 /* local_type_unit_count - The number of TUs in the local TU
5466 map.tu_count = read_4_bytes (abfd, addr);
5469 /* foreign_type_unit_count - The number of TUs in the foreign TU
5471 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5473 if (foreign_tu_count != 0)
5475 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5476 "ignoring .debug_names."),
5477 filename, static_cast<unsigned long> (foreign_tu_count));
5481 /* bucket_count - The number of hash buckets in the hash lookup
5483 map.bucket_count = read_4_bytes (abfd, addr);
5486 /* name_count - The number of unique names in the index. */
5487 map.name_count = read_4_bytes (abfd, addr);
5490 /* abbrev_table_size - The size in bytes of the abbreviations
5492 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5495 /* augmentation_string_size - The size in bytes of the augmentation
5496 string. This value is rounded up to a multiple of 4. */
5497 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5499 map.augmentation_is_gdb = ((augmentation_string_size
5500 == sizeof (dwarf5_augmentation))
5501 && memcmp (addr, dwarf5_augmentation,
5502 sizeof (dwarf5_augmentation)) == 0);
5503 augmentation_string_size += (-augmentation_string_size) & 3;
5504 addr += augmentation_string_size;
5507 map.cu_table_reordered = addr;
5508 addr += map.cu_count * map.offset_size;
5510 /* List of Local TUs */
5511 map.tu_table_reordered = addr;
5512 addr += map.tu_count * map.offset_size;
5514 /* Hash Lookup Table */
5515 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5516 addr += map.bucket_count * 4;
5517 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5518 addr += map.name_count * 4;
5521 map.name_table_string_offs_reordered = addr;
5522 addr += map.name_count * map.offset_size;
5523 map.name_table_entry_offs_reordered = addr;
5524 addr += map.name_count * map.offset_size;
5526 const gdb_byte *abbrev_table_start = addr;
5529 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5534 const auto insertpair
5535 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5536 if (!insertpair.second)
5538 warning (_("Section .debug_names in %s has duplicate index %s, "
5539 "ignoring .debug_names."),
5540 filename, pulongest (index_num));
5543 mapped_debug_names::index_val &indexval = insertpair.first->second;
5544 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5549 mapped_debug_names::index_val::attr attr;
5550 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5552 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5554 if (attr.form == DW_FORM_implicit_const)
5556 attr.implicit_const = read_signed_leb128 (abfd, addr,
5560 if (attr.dw_idx == 0 && attr.form == 0)
5562 indexval.attr_vec.push_back (std::move (attr));
5565 if (addr != abbrev_table_start + abbrev_table_size)
5567 warning (_("Section .debug_names in %s has abbreviation_table "
5568 "of size %zu vs. written as %u, ignoring .debug_names."),
5569 filename, addr - abbrev_table_start, abbrev_table_size);
5572 map.entry_pool = addr;
5577 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5581 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5582 const mapped_debug_names &map,
5583 dwarf2_section_info §ion,
5586 sect_offset sect_off_prev;
5587 for (uint32_t i = 0; i <= map.cu_count; ++i)
5589 sect_offset sect_off_next;
5590 if (i < map.cu_count)
5593 = (sect_offset) (extract_unsigned_integer
5594 (map.cu_table_reordered + i * map.offset_size,
5596 map.dwarf5_byte_order));
5599 sect_off_next = (sect_offset) section.size;
5602 const ULONGEST length = sect_off_next - sect_off_prev;
5603 dwarf2_per_cu_data *per_cu
5604 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5605 sect_off_prev, length);
5606 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5608 sect_off_prev = sect_off_next;
5612 /* Read the CU list from the mapped index, and use it to create all
5613 the CU objects for this dwarf2_per_objfile. */
5616 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5617 const mapped_debug_names &map,
5618 const mapped_debug_names &dwz_map)
5620 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5621 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5623 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5624 dwarf2_per_objfile->info,
5625 false /* is_dwz */);
5627 if (dwz_map.cu_count == 0)
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5635 /* Read .debug_names. If everything went ok, initialize the "quick"
5636 elements of all the CUs and return true. Otherwise, return false. */
5639 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5641 std::unique_ptr<mapped_debug_names> map
5642 (new mapped_debug_names (dwarf2_per_objfile));
5643 mapped_debug_names dwz_map (dwarf2_per_objfile);
5644 struct objfile *objfile = dwarf2_per_objfile->objfile;
5646 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5647 &dwarf2_per_objfile->debug_names,
5651 /* Don't use the index if it's empty. */
5652 if (map->name_count == 0)
5655 /* If there is a .dwz file, read it so we can get its CU list as
5657 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5660 if (!read_debug_names_from_section (objfile,
5661 bfd_get_filename (dwz->dwz_bfd),
5662 &dwz->debug_names, dwz_map))
5664 warning (_("could not read '.debug_names' section from %s; skipping"),
5665 bfd_get_filename (dwz->dwz_bfd));
5670 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5672 if (map->tu_count != 0)
5674 /* We can only handle a single .debug_types when we have an
5676 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5679 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5680 dwarf2_per_objfile->types, 0);
5682 create_signatured_type_table_from_debug_names
5683 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5686 create_addrmap_from_aranges (dwarf2_per_objfile,
5687 &dwarf2_per_objfile->debug_aranges);
5689 dwarf2_per_objfile->debug_names_table = std::move (map);
5690 dwarf2_per_objfile->using_index = 1;
5691 dwarf2_per_objfile->quick_file_names_table =
5692 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5697 /* Type used to manage iterating over all CUs looking for a symbol for
5700 class dw2_debug_names_iterator
5703 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5704 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5705 dw2_debug_names_iterator (const mapped_debug_names &map,
5706 bool want_specific_block,
5707 block_enum block_index, domain_enum domain,
5709 : m_map (map), m_want_specific_block (want_specific_block),
5710 m_block_index (block_index), m_domain (domain),
5711 m_addr (find_vec_in_debug_names (map, name))
5714 dw2_debug_names_iterator (const mapped_debug_names &map,
5715 search_domain search, uint32_t namei)
5718 m_addr (find_vec_in_debug_names (map, namei))
5721 /* Return the next matching CU or NULL if there are no more. */
5722 dwarf2_per_cu_data *next ();
5725 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5727 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5730 /* The internalized form of .debug_names. */
5731 const mapped_debug_names &m_map;
5733 /* If true, only look for symbols that match BLOCK_INDEX. */
5734 const bool m_want_specific_block = false;
5736 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5737 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5739 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5741 /* The kind of symbol we're looking for. */
5742 const domain_enum m_domain = UNDEF_DOMAIN;
5743 const search_domain m_search = ALL_DOMAIN;
5745 /* The list of CUs from the index entry of the symbol, or NULL if
5747 const gdb_byte *m_addr;
5751 mapped_debug_names::namei_to_name (uint32_t namei) const
5753 const ULONGEST namei_string_offs
5754 = extract_unsigned_integer ((name_table_string_offs_reordered
5755 + namei * offset_size),
5758 return read_indirect_string_at_offset
5759 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5762 /* Find a slot in .debug_names for the object named NAME. If NAME is
5763 found, return pointer to its pool data. If NAME cannot be found,
5767 dw2_debug_names_iterator::find_vec_in_debug_names
5768 (const mapped_debug_names &map, const char *name)
5770 int (*cmp) (const char *, const char *);
5772 if (current_language->la_language == language_cplus
5773 || current_language->la_language == language_fortran
5774 || current_language->la_language == language_d)
5776 /* NAME is already canonical. Drop any qualifiers as
5777 .debug_names does not contain any. */
5779 if (strchr (name, '(') != NULL)
5781 gdb::unique_xmalloc_ptr<char> without_params
5782 = cp_remove_params (name);
5784 if (without_params != NULL)
5786 name = without_params.get();
5791 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5793 const uint32_t full_hash = dwarf5_djb_hash (name);
5795 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5796 (map.bucket_table_reordered
5797 + (full_hash % map.bucket_count)), 4,
5798 map.dwarf5_byte_order);
5802 if (namei >= map.name_count)
5804 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5806 namei, map.name_count,
5807 objfile_name (map.dwarf2_per_objfile->objfile));
5813 const uint32_t namei_full_hash
5814 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5815 (map.hash_table_reordered + namei), 4,
5816 map.dwarf5_byte_order);
5817 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5820 if (full_hash == namei_full_hash)
5822 const char *const namei_string = map.namei_to_name (namei);
5824 #if 0 /* An expensive sanity check. */
5825 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5827 complaint (_("Wrong .debug_names hash for string at index %u "
5829 namei, objfile_name (dwarf2_per_objfile->objfile));
5834 if (cmp (namei_string, name) == 0)
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5845 if (namei >= map.name_count)
5851 dw2_debug_names_iterator::find_vec_in_debug_names
5852 (const mapped_debug_names &map, uint32_t namei)
5854 if (namei >= map.name_count)
5856 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5858 namei, map.name_count,
5859 objfile_name (map.dwarf2_per_objfile->objfile));
5863 const ULONGEST namei_entry_offs
5864 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5865 + namei * map.offset_size),
5866 map.offset_size, map.dwarf5_byte_order);
5867 return map.entry_pool + namei_entry_offs;
5870 /* See dw2_debug_names_iterator. */
5872 dwarf2_per_cu_data *
5873 dw2_debug_names_iterator::next ()
5878 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5879 struct objfile *objfile = dwarf2_per_objfile->objfile;
5880 bfd *const abfd = objfile->obfd;
5884 unsigned int bytes_read;
5885 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5890 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5891 if (indexval_it == m_map.abbrev_map.cend ())
5893 complaint (_("Wrong .debug_names undefined abbrev code %s "
5895 pulongest (abbrev), objfile_name (objfile));
5898 const mapped_debug_names::index_val &indexval = indexval_it->second;
5899 bool have_is_static = false;
5901 dwarf2_per_cu_data *per_cu = NULL;
5902 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5907 case DW_FORM_implicit_const:
5908 ull = attr.implicit_const;
5910 case DW_FORM_flag_present:
5914 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5915 m_addr += bytes_read;
5918 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5919 dwarf_form_name (attr.form),
5920 objfile_name (objfile));
5923 switch (attr.dw_idx)
5925 case DW_IDX_compile_unit:
5926 /* Don't crash on bad data. */
5927 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5929 complaint (_(".debug_names entry has bad CU index %s"
5932 objfile_name (dwarf2_per_objfile->objfile));
5935 per_cu = dwarf2_per_objfile->get_cutu (ull);
5937 case DW_IDX_type_unit:
5938 /* Don't crash on bad data. */
5939 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5941 complaint (_(".debug_names entry has bad TU index %s"
5944 objfile_name (dwarf2_per_objfile->objfile));
5947 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5949 case DW_IDX_GNU_internal:
5950 if (!m_map.augmentation_is_gdb)
5952 have_is_static = true;
5955 case DW_IDX_GNU_external:
5956 if (!m_map.augmentation_is_gdb)
5958 have_is_static = true;
5964 /* Skip if already read in. */
5965 if (per_cu->v.quick->compunit_symtab)
5968 /* Check static vs global. */
5971 const bool want_static = m_block_index != GLOBAL_BLOCK;
5972 if (m_want_specific_block && want_static != is_static)
5976 /* Match dw2_symtab_iter_next, symbol_kind
5977 and debug_names::psymbol_tag. */
5981 switch (indexval.dwarf_tag)
5983 case DW_TAG_variable:
5984 case DW_TAG_subprogram:
5985 /* Some types are also in VAR_DOMAIN. */
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5994 switch (indexval.dwarf_tag)
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
6004 switch (indexval.dwarf_tag)
6007 case DW_TAG_variable:
6017 /* Match dw2_expand_symtabs_matching, symbol_kind and
6018 debug_names::psymbol_tag. */
6021 case VARIABLES_DOMAIN:
6022 switch (indexval.dwarf_tag)
6024 case DW_TAG_variable:
6030 case FUNCTIONS_DOMAIN:
6031 switch (indexval.dwarf_tag)
6033 case DW_TAG_subprogram:
6040 switch (indexval.dwarf_tag)
6042 case DW_TAG_typedef:
6043 case DW_TAG_structure_type:
6056 static struct compunit_symtab *
6057 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6058 const char *name, domain_enum domain)
6060 const block_enum block_index = static_cast<block_enum> (block_index_int);
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6064 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6067 /* index is NULL if OBJF_READNOW. */
6070 const auto &map = *mapp;
6072 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6073 block_index, domain, name);
6075 struct compunit_symtab *stab_best = NULL;
6076 struct dwarf2_per_cu_data *per_cu;
6077 while ((per_cu = iter.next ()) != NULL)
6079 struct symbol *sym, *with_opaque = NULL;
6080 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6081 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6082 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6084 sym = block_find_symbol (block, name, domain,
6085 block_find_non_opaque_type_preferred,
6088 /* Some caution must be observed with overloaded functions and
6089 methods, since the index will not contain any overload
6090 information (but NAME might contain it). */
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6095 if (with_opaque != NULL
6096 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6099 /* Keep looking through other CUs. */
6105 /* This dumps minimal information about .debug_names. It is called
6106 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6107 uses this to verify that .debug_names has been loaded. */
6110 dw2_debug_names_dump (struct objfile *objfile)
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6115 gdb_assert (dwarf2_per_objfile->using_index);
6116 printf_filtered (".debug_names:");
6117 if (dwarf2_per_objfile->debug_names_table)
6118 printf_filtered (" exists\n");
6120 printf_filtered (" faked for \"readnow\"\n");
6121 printf_filtered ("\n");
6125 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6126 const char *func_name)
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6131 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6132 if (dwarf2_per_objfile->debug_names_table)
6134 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6136 /* Note: It doesn't matter what we pass for block_index here. */
6137 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6138 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6140 struct dwarf2_per_cu_data *per_cu;
6141 while ((per_cu = iter.next ()) != NULL)
6142 dw2_instantiate_symtab (per_cu, false);
6147 dw2_debug_names_expand_symtabs_matching
6148 (struct objfile *objfile,
6149 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6150 const lookup_name_info &lookup_name,
6151 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6152 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6153 enum search_domain kind)
6155 struct dwarf2_per_objfile *dwarf2_per_objfile
6156 = get_dwarf2_per_objfile (objfile);
6158 /* debug_names_table is NULL if OBJF_READNOW. */
6159 if (!dwarf2_per_objfile->debug_names_table)
6162 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6164 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6166 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6168 kind, [&] (offset_type namei)
6170 /* The name was matched, now expand corresponding CUs that were
6172 dw2_debug_names_iterator iter (map, kind, namei);
6174 struct dwarf2_per_cu_data *per_cu;
6175 while ((per_cu = iter.next ()) != NULL)
6176 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6181 const struct quick_symbol_functions dwarf2_debug_names_functions =
6184 dw2_find_last_source_symtab,
6185 dw2_forget_cached_source_info,
6186 dw2_map_symtabs_matching_filename,
6187 dw2_debug_names_lookup_symbol,
6189 dw2_debug_names_dump,
6190 dw2_debug_names_expand_symtabs_for_function,
6191 dw2_expand_all_symtabs,
6192 dw2_expand_symtabs_with_fullname,
6193 dw2_map_matching_symbols,
6194 dw2_debug_names_expand_symtabs_matching,
6195 dw2_find_pc_sect_compunit_symtab,
6197 dw2_map_symbol_filenames
6200 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6201 to either a dwarf2_per_objfile or dwz_file object. */
6203 template <typename T>
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6207 dwarf2_section_info *section = §ion_owner->gdb_index;
6209 if (dwarf2_section_empty_p (section))
6212 /* Older elfutils strip versions could keep the section in the main
6213 executable while splitting it for the separate debug info file. */
6214 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6217 dwarf2_read_section (obj, section);
6219 /* dwarf2_section_info::size is a bfd_size_type, while
6220 gdb::array_view works with size_t. On 32-bit hosts, with
6221 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6222 is 32-bit. So we need an explicit narrowing conversion here.
6223 This is fine, because it's impossible to allocate or mmap an
6224 array/buffer larger than what size_t can represent. */
6225 return gdb::make_array_view (section->buffer, section->size);
6228 /* Lookup the index cache for the contents of the index associated to
6231 static gdb::array_view<const gdb_byte>
6232 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6234 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6235 if (build_id == nullptr)
6238 return global_index_cache.lookup_gdb_index (build_id,
6239 &dwarf2_obj->index_cache_res);
6242 /* Same as the above, but for DWZ. */
6244 static gdb::array_view<const gdb_byte>
6245 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6247 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6248 if (build_id == nullptr)
6251 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6254 /* See symfile.h. */
6257 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6259 struct dwarf2_per_objfile *dwarf2_per_objfile
6260 = get_dwarf2_per_objfile (objfile);
6262 /* If we're about to read full symbols, don't bother with the
6263 indices. In this case we also don't care if some other debug
6264 format is making psymtabs, because they are all about to be
6266 if ((objfile->flags & OBJF_READNOW))
6268 dwarf2_per_objfile->using_index = 1;
6269 create_all_comp_units (dwarf2_per_objfile);
6270 create_all_type_units (dwarf2_per_objfile);
6271 dwarf2_per_objfile->quick_file_names_table
6272 = create_quick_file_names_table
6273 (dwarf2_per_objfile->all_comp_units.size ());
6275 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6276 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6278 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6280 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6281 struct dwarf2_per_cu_quick_data);
6284 /* Return 1 so that gdb sees the "quick" functions. However,
6285 these functions will be no-ops because we will have expanded
6287 *index_kind = dw_index_kind::GDB_INDEX;
6291 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6293 *index_kind = dw_index_kind::DEBUG_NAMES;
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6299 get_gdb_index_contents_from_section<dwz_file>))
6301 *index_kind = dw_index_kind::GDB_INDEX;
6305 /* ... otherwise, try to find the index in the index cache. */
6306 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6307 get_gdb_index_contents_from_cache,
6308 get_gdb_index_contents_from_cache_dwz))
6310 global_index_cache.hit ();
6311 *index_kind = dw_index_kind::GDB_INDEX;
6315 global_index_cache.miss ();
6321 /* Build a partial symbol table. */
6324 dwarf2_build_psymtabs (struct objfile *objfile)
6326 struct dwarf2_per_objfile *dwarf2_per_objfile
6327 = get_dwarf2_per_objfile (objfile);
6329 init_psymbol_list (objfile, 1024);
6333 /* This isn't really ideal: all the data we allocate on the
6334 objfile's obstack is still uselessly kept around. However,
6335 freeing it seems unsafe. */
6336 psymtab_discarder psymtabs (objfile);
6337 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6340 /* (maybe) store an index in the cache. */
6341 global_index_cache.store (dwarf2_per_objfile);
6343 catch (const gdb_exception_error &except)
6345 exception_print (gdb_stderr, except);
6349 /* Return the total length of the CU described by HEADER. */
6352 get_cu_length (const struct comp_unit_head *header)
6354 return header->initial_length_size + header->length;
6357 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6360 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6362 sect_offset bottom = cu_header->sect_off;
6363 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6365 return sect_off >= bottom && sect_off < top;
6368 /* Find the base address of the compilation unit for range lists and
6369 location lists. It will normally be specified by DW_AT_low_pc.
6370 In DWARF-3 draft 4, the base address could be overridden by
6371 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6372 compilation units with discontinuous ranges. */
6375 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6377 struct attribute *attr;
6380 cu->base_address = 0;
6382 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6385 cu->base_address = attr_value_as_address (attr);
6390 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6393 cu->base_address = attr_value_as_address (attr);
6399 /* Read in the comp unit header information from the debug_info at info_ptr.
6400 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6401 NOTE: This leaves members offset, first_die_offset to be filled in
6404 static const gdb_byte *
6405 read_comp_unit_head (struct comp_unit_head *cu_header,
6406 const gdb_byte *info_ptr,
6407 struct dwarf2_section_info *section,
6408 rcuh_kind section_kind)
6411 unsigned int bytes_read;
6412 const char *filename = get_section_file_name (section);
6413 bfd *abfd = get_section_bfd_owner (section);
6415 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6416 cu_header->initial_length_size = bytes_read;
6417 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6418 info_ptr += bytes_read;
6419 cu_header->version = read_2_bytes (abfd, info_ptr);
6420 if (cu_header->version < 2 || cu_header->version > 5)
6421 error (_("Dwarf Error: wrong version in compilation unit header "
6422 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6423 cu_header->version, filename);
6425 if (cu_header->version < 5)
6426 switch (section_kind)
6428 case rcuh_kind::COMPILE:
6429 cu_header->unit_type = DW_UT_compile;
6431 case rcuh_kind::TYPE:
6432 cu_header->unit_type = DW_UT_type;
6435 internal_error (__FILE__, __LINE__,
6436 _("read_comp_unit_head: invalid section_kind"));
6440 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6441 (read_1_byte (abfd, info_ptr));
6443 switch (cu_header->unit_type)
6446 if (section_kind != rcuh_kind::COMPILE)
6447 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6448 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6452 section_kind = rcuh_kind::TYPE;
6455 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6456 "(is %d, should be %d or %d) [in module %s]"),
6457 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6460 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6463 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6466 info_ptr += bytes_read;
6467 if (cu_header->version < 5)
6469 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6472 signed_addr = bfd_get_sign_extend_vma (abfd);
6473 if (signed_addr < 0)
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: dwarf from non elf file"));
6476 cu_header->signed_addr_p = signed_addr;
6478 if (section_kind == rcuh_kind::TYPE)
6480 LONGEST type_offset;
6482 cu_header->signature = read_8_bytes (abfd, info_ptr);
6485 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6486 info_ptr += bytes_read;
6487 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6488 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6489 error (_("Dwarf Error: Too big type_offset in compilation unit "
6490 "header (is %s) [in module %s]"), plongest (type_offset),
6497 /* Helper function that returns the proper abbrev section for
6500 static struct dwarf2_section_info *
6501 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6503 struct dwarf2_section_info *abbrev;
6504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6506 if (this_cu->is_dwz)
6507 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6509 abbrev = &dwarf2_per_objfile->abbrev;
6514 /* Subroutine of read_and_check_comp_unit_head and
6515 read_and_check_type_unit_head to simplify them.
6516 Perform various error checking on the header. */
6519 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct comp_unit_head *header,
6521 struct dwarf2_section_info *section,
6522 struct dwarf2_section_info *abbrev_section)
6524 const char *filename = get_section_file_name (section);
6526 if (to_underlying (header->abbrev_sect_off)
6527 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6528 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6529 "(offset %s + 6) [in module %s]"),
6530 sect_offset_str (header->abbrev_sect_off),
6531 sect_offset_str (header->sect_off),
6534 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6535 avoid potential 32-bit overflow. */
6536 if (((ULONGEST) header->sect_off + get_cu_length (header))
6538 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6539 "(offset %s + 0) [in module %s]"),
6540 header->length, sect_offset_str (header->sect_off),
6544 /* Read in a CU/TU header and perform some basic error checking.
6545 The contents of the header are stored in HEADER.
6546 The result is a pointer to the start of the first DIE. */
6548 static const gdb_byte *
6549 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct comp_unit_head *header,
6551 struct dwarf2_section_info *section,
6552 struct dwarf2_section_info *abbrev_section,
6553 const gdb_byte *info_ptr,
6554 rcuh_kind section_kind)
6556 const gdb_byte *beg_of_comp_unit = info_ptr;
6558 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6560 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6562 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6564 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6570 /* Fetch the abbreviation table offset from a comp or type unit header. */
6573 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6574 struct dwarf2_section_info *section,
6575 sect_offset sect_off)
6577 bfd *abfd = get_section_bfd_owner (section);
6578 const gdb_byte *info_ptr;
6579 unsigned int initial_length_size, offset_size;
6582 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6583 info_ptr = section->buffer + to_underlying (sect_off);
6584 read_initial_length (abfd, info_ptr, &initial_length_size);
6585 offset_size = initial_length_size == 4 ? 4 : 8;
6586 info_ptr += initial_length_size;
6588 version = read_2_bytes (abfd, info_ptr);
6592 /* Skip unit type and address size. */
6596 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6599 /* Allocate a new partial symtab for file named NAME and mark this new
6600 partial symtab as being an include of PST. */
6603 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6604 struct objfile *objfile)
6606 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6608 if (!IS_ABSOLUTE_PATH (subpst->filename))
6610 /* It shares objfile->objfile_obstack. */
6611 subpst->dirname = pst->dirname;
6614 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6615 subpst->dependencies[0] = pst;
6616 subpst->number_of_dependencies = 1;
6618 subpst->read_symtab = pst->read_symtab;
6620 /* No private part is necessary for include psymtabs. This property
6621 can be used to differentiate between such include psymtabs and
6622 the regular ones. */
6623 subpst->read_symtab_private = NULL;
6626 /* Read the Line Number Program data and extract the list of files
6627 included by the source file represented by PST. Build an include
6628 partial symtab for each of these included files. */
6631 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6632 struct die_info *die,
6633 struct partial_symtab *pst)
6636 struct attribute *attr;
6638 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6640 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6642 return; /* No linetable, so no includes. */
6644 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6645 that we pass in the raw text_low here; that is ok because we're
6646 only decoding the line table to make include partial symtabs, and
6647 so the addresses aren't really used. */
6648 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6649 pst->raw_text_low (), 1);
6653 hash_signatured_type (const void *item)
6655 const struct signatured_type *sig_type
6656 = (const struct signatured_type *) item;
6658 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6659 return sig_type->signature;
6663 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6665 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6666 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6668 return lhs->signature == rhs->signature;
6671 /* Allocate a hash table for signatured types. */
6674 allocate_signatured_type_table (struct objfile *objfile)
6676 return htab_create_alloc_ex (41,
6677 hash_signatured_type,
6680 &objfile->objfile_obstack,
6681 hashtab_obstack_allocate,
6682 dummy_obstack_deallocate);
6685 /* A helper function to add a signatured type CU to a table. */
6688 add_signatured_type_cu_to_table (void **slot, void *datum)
6690 struct signatured_type *sigt = (struct signatured_type *) *slot;
6691 std::vector<signatured_type *> *all_type_units
6692 = (std::vector<signatured_type *> *) datum;
6694 all_type_units->push_back (sigt);
6699 /* A helper for create_debug_types_hash_table. Read types from SECTION
6700 and fill them into TYPES_HTAB. It will process only type units,
6701 therefore DW_UT_type. */
6704 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6705 struct dwo_file *dwo_file,
6706 dwarf2_section_info *section, htab_t &types_htab,
6707 rcuh_kind section_kind)
6709 struct objfile *objfile = dwarf2_per_objfile->objfile;
6710 struct dwarf2_section_info *abbrev_section;
6712 const gdb_byte *info_ptr, *end_ptr;
6714 abbrev_section = (dwo_file != NULL
6715 ? &dwo_file->sections.abbrev
6716 : &dwarf2_per_objfile->abbrev);
6718 if (dwarf_read_debug)
6719 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6720 get_section_name (section),
6721 get_section_file_name (abbrev_section));
6723 dwarf2_read_section (objfile, section);
6724 info_ptr = section->buffer;
6726 if (info_ptr == NULL)
6729 /* We can't set abfd until now because the section may be empty or
6730 not present, in which case the bfd is unknown. */
6731 abfd = get_section_bfd_owner (section);
6733 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6734 because we don't need to read any dies: the signature is in the
6737 end_ptr = info_ptr + section->size;
6738 while (info_ptr < end_ptr)
6740 struct signatured_type *sig_type;
6741 struct dwo_unit *dwo_tu;
6743 const gdb_byte *ptr = info_ptr;
6744 struct comp_unit_head header;
6745 unsigned int length;
6747 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6749 /* Initialize it due to a false compiler warning. */
6750 header.signature = -1;
6751 header.type_cu_offset_in_tu = (cu_offset) -1;
6753 /* We need to read the type's signature in order to build the hash
6754 table, but we don't need anything else just yet. */
6756 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6757 abbrev_section, ptr, section_kind);
6759 length = get_cu_length (&header);
6761 /* Skip dummy type units. */
6762 if (ptr >= info_ptr + length
6763 || peek_abbrev_code (abfd, ptr) == 0
6764 || header.unit_type != DW_UT_type)
6770 if (types_htab == NULL)
6773 types_htab = allocate_dwo_unit_table (objfile);
6775 types_htab = allocate_signatured_type_table (objfile);
6781 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6783 dwo_tu->dwo_file = dwo_file;
6784 dwo_tu->signature = header.signature;
6785 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6786 dwo_tu->section = section;
6787 dwo_tu->sect_off = sect_off;
6788 dwo_tu->length = length;
6792 /* N.B.: type_offset is not usable if this type uses a DWO file.
6793 The real type_offset is in the DWO file. */
6795 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6796 struct signatured_type);
6797 sig_type->signature = header.signature;
6798 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6799 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6800 sig_type->per_cu.is_debug_types = 1;
6801 sig_type->per_cu.section = section;
6802 sig_type->per_cu.sect_off = sect_off;
6803 sig_type->per_cu.length = length;
6806 slot = htab_find_slot (types_htab,
6807 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6809 gdb_assert (slot != NULL);
6812 sect_offset dup_sect_off;
6816 const struct dwo_unit *dup_tu
6817 = (const struct dwo_unit *) *slot;
6819 dup_sect_off = dup_tu->sect_off;
6823 const struct signatured_type *dup_tu
6824 = (const struct signatured_type *) *slot;
6826 dup_sect_off = dup_tu->per_cu.sect_off;
6829 complaint (_("debug type entry at offset %s is duplicate to"
6830 " the entry at offset %s, signature %s"),
6831 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6832 hex_string (header.signature));
6834 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6836 if (dwarf_read_debug > 1)
6837 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6838 sect_offset_str (sect_off),
6839 hex_string (header.signature));
6845 /* Create the hash table of all entries in the .debug_types
6846 (or .debug_types.dwo) section(s).
6847 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6848 otherwise it is NULL.
6850 The result is a pointer to the hash table or NULL if there are no types.
6852 Note: This function processes DWO files only, not DWP files. */
6855 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6856 struct dwo_file *dwo_file,
6857 VEC (dwarf2_section_info_def) *types,
6861 struct dwarf2_section_info *section;
6863 if (VEC_empty (dwarf2_section_info_def, types))
6867 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6869 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6870 types_htab, rcuh_kind::TYPE);
6873 /* Create the hash table of all entries in the .debug_types section,
6874 and initialize all_type_units.
6875 The result is zero if there is an error (e.g. missing .debug_types section),
6876 otherwise non-zero. */
6879 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6881 htab_t types_htab = NULL;
6883 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6884 &dwarf2_per_objfile->info, types_htab,
6885 rcuh_kind::COMPILE);
6886 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6887 dwarf2_per_objfile->types, types_htab);
6888 if (types_htab == NULL)
6890 dwarf2_per_objfile->signatured_types = NULL;
6894 dwarf2_per_objfile->signatured_types = types_htab;
6896 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6897 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6899 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6900 &dwarf2_per_objfile->all_type_units);
6905 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6906 If SLOT is non-NULL, it is the entry to use in the hash table.
6907 Otherwise we find one. */
6909 static struct signatured_type *
6910 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6913 struct objfile *objfile = dwarf2_per_objfile->objfile;
6915 if (dwarf2_per_objfile->all_type_units.size ()
6916 == dwarf2_per_objfile->all_type_units.capacity ())
6917 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6919 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6920 struct signatured_type);
6922 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6923 sig_type->signature = sig;
6924 sig_type->per_cu.is_debug_types = 1;
6925 if (dwarf2_per_objfile->using_index)
6927 sig_type->per_cu.v.quick =
6928 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6929 struct dwarf2_per_cu_quick_data);
6934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6937 gdb_assert (*slot == NULL);
6939 /* The rest of sig_type must be filled in by the caller. */
6943 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6944 Fill in SIG_ENTRY with DWO_ENTRY. */
6947 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6948 struct signatured_type *sig_entry,
6949 struct dwo_unit *dwo_entry)
6951 /* Make sure we're not clobbering something we don't expect to. */
6952 gdb_assert (! sig_entry->per_cu.queued);
6953 gdb_assert (sig_entry->per_cu.cu == NULL);
6954 if (dwarf2_per_objfile->using_index)
6956 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6957 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6960 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6961 gdb_assert (sig_entry->signature == dwo_entry->signature);
6962 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6963 gdb_assert (sig_entry->type_unit_group == NULL);
6964 gdb_assert (sig_entry->dwo_unit == NULL);
6966 sig_entry->per_cu.section = dwo_entry->section;
6967 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6968 sig_entry->per_cu.length = dwo_entry->length;
6969 sig_entry->per_cu.reading_dwo_directly = 1;
6970 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6971 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6972 sig_entry->dwo_unit = dwo_entry;
6975 /* Subroutine of lookup_signatured_type.
6976 If we haven't read the TU yet, create the signatured_type data structure
6977 for a TU to be read in directly from a DWO file, bypassing the stub.
6978 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6979 using .gdb_index, then when reading a CU we want to stay in the DWO file
6980 containing that CU. Otherwise we could end up reading several other DWO
6981 files (due to comdat folding) to process the transitive closure of all the
6982 mentioned TUs, and that can be slow. The current DWO file will have every
6983 type signature that it needs.
6984 We only do this for .gdb_index because in the psymtab case we already have
6985 to read all the DWOs to build the type unit groups. */
6987 static struct signatured_type *
6988 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = cu->per_cu->dwarf2_per_objfile;
6992 struct objfile *objfile = dwarf2_per_objfile->objfile;
6993 struct dwo_file *dwo_file;
6994 struct dwo_unit find_dwo_entry, *dwo_entry;
6995 struct signatured_type find_sig_entry, *sig_entry;
6998 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7000 /* If TU skeletons have been removed then we may not have read in any
7002 if (dwarf2_per_objfile->signatured_types == NULL)
7004 dwarf2_per_objfile->signatured_types
7005 = allocate_signatured_type_table (objfile);
7008 /* We only ever need to read in one copy of a signatured type.
7009 Use the global signatured_types array to do our own comdat-folding
7010 of types. If this is the first time we're reading this TU, and
7011 the TU has an entry in .gdb_index, replace the recorded data from
7012 .gdb_index with this TU. */
7014 find_sig_entry.signature = sig;
7015 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7016 &find_sig_entry, INSERT);
7017 sig_entry = (struct signatured_type *) *slot;
7019 /* We can get here with the TU already read, *or* in the process of being
7020 read. Don't reassign the global entry to point to this DWO if that's
7021 the case. Also note that if the TU is already being read, it may not
7022 have come from a DWO, the program may be a mix of Fission-compiled
7023 code and non-Fission-compiled code. */
7025 /* Have we already tried to read this TU?
7026 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7027 needn't exist in the global table yet). */
7028 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7031 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7032 dwo_unit of the TU itself. */
7033 dwo_file = cu->dwo_unit->dwo_file;
7035 /* Ok, this is the first time we're reading this TU. */
7036 if (dwo_file->tus == NULL)
7038 find_dwo_entry.signature = sig;
7039 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7040 if (dwo_entry == NULL)
7043 /* If the global table doesn't have an entry for this TU, add one. */
7044 if (sig_entry == NULL)
7045 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7047 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7048 sig_entry->per_cu.tu_read = 1;
7052 /* Subroutine of lookup_signatured_type.
7053 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7054 then try the DWP file. If the TU stub (skeleton) has been removed then
7055 it won't be in .gdb_index. */
7057 static struct signatured_type *
7058 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7060 struct dwarf2_per_objfile *dwarf2_per_objfile
7061 = cu->per_cu->dwarf2_per_objfile;
7062 struct objfile *objfile = dwarf2_per_objfile->objfile;
7063 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7064 struct dwo_unit *dwo_entry;
7065 struct signatured_type find_sig_entry, *sig_entry;
7068 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7069 gdb_assert (dwp_file != NULL);
7071 /* If TU skeletons have been removed then we may not have read in any
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7075 dwarf2_per_objfile->signatured_types
7076 = allocate_signatured_type_table (objfile);
7079 find_sig_entry.signature = sig;
7080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7081 &find_sig_entry, INSERT);
7082 sig_entry = (struct signatured_type *) *slot;
7084 /* Have we already tried to read this TU?
7085 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7086 needn't exist in the global table yet). */
7087 if (sig_entry != NULL)
7090 if (dwp_file->tus == NULL)
7092 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7093 sig, 1 /* is_debug_types */);
7094 if (dwo_entry == NULL)
7097 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7098 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7103 /* Lookup a signature based type for DW_FORM_ref_sig8.
7104 Returns NULL if signature SIG is not present in the table.
7105 It is up to the caller to complain about this. */
7107 static struct signatured_type *
7108 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
7114 && dwarf2_per_objfile->using_index)
7116 /* We're in a DWO/DWP file, and we're using .gdb_index.
7117 These cases require special processing. */
7118 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7119 return lookup_dwo_signatured_type (cu, sig);
7121 return lookup_dwp_signatured_type (cu, sig);
7125 struct signatured_type find_entry, *entry;
7127 if (dwarf2_per_objfile->signatured_types == NULL)
7129 find_entry.signature = sig;
7130 entry = ((struct signatured_type *)
7131 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7136 /* Low level DIE reading support. */
7138 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7141 init_cu_die_reader (struct die_reader_specs *reader,
7142 struct dwarf2_cu *cu,
7143 struct dwarf2_section_info *section,
7144 struct dwo_file *dwo_file,
7145 struct abbrev_table *abbrev_table)
7147 gdb_assert (section->readin && section->buffer != NULL);
7148 reader->abfd = get_section_bfd_owner (section);
7150 reader->dwo_file = dwo_file;
7151 reader->die_section = section;
7152 reader->buffer = section->buffer;
7153 reader->buffer_end = section->buffer + section->size;
7154 reader->comp_dir = NULL;
7155 reader->abbrev_table = abbrev_table;
7158 /* Subroutine of init_cutu_and_read_dies to simplify it.
7159 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7160 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7163 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7164 from it to the DIE in the DWO. If NULL we are skipping the stub.
7165 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7166 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7167 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7168 STUB_COMP_DIR may be non-NULL.
7169 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7170 are filled in with the info of the DIE from the DWO file.
7171 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7172 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7173 kept around for at least as long as *RESULT_READER.
7175 The result is non-zero if a valid (non-dummy) DIE was found. */
7178 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7179 struct dwo_unit *dwo_unit,
7180 struct die_info *stub_comp_unit_die,
7181 const char *stub_comp_dir,
7182 struct die_reader_specs *result_reader,
7183 const gdb_byte **result_info_ptr,
7184 struct die_info **result_comp_unit_die,
7185 int *result_has_children,
7186 abbrev_table_up *result_dwo_abbrev_table)
7188 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7189 struct objfile *objfile = dwarf2_per_objfile->objfile;
7190 struct dwarf2_cu *cu = this_cu->cu;
7192 const gdb_byte *begin_info_ptr, *info_ptr;
7193 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7194 int i,num_extra_attrs;
7195 struct dwarf2_section_info *dwo_abbrev_section;
7196 struct attribute *attr;
7197 struct die_info *comp_unit_die;
7199 /* At most one of these may be provided. */
7200 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7202 /* These attributes aren't processed until later:
7203 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7204 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7205 referenced later. However, these attributes are found in the stub
7206 which we won't have later. In order to not impose this complication
7207 on the rest of the code, we read them here and copy them to the
7216 if (stub_comp_unit_die != NULL)
7218 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7220 if (! this_cu->is_debug_types)
7221 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7222 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7223 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7224 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7225 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7227 /* There should be a DW_AT_addr_base attribute here (if needed).
7228 We need the value before we can process DW_FORM_GNU_addr_index
7229 or DW_FORM_addrx. */
7231 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7233 cu->addr_base = DW_UNSND (attr);
7235 /* There should be a DW_AT_ranges_base attribute here (if needed).
7236 We need the value before we can process DW_AT_ranges. */
7237 cu->ranges_base = 0;
7238 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7240 cu->ranges_base = DW_UNSND (attr);
7242 else if (stub_comp_dir != NULL)
7244 /* Reconstruct the comp_dir attribute to simplify the code below. */
7245 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7246 comp_dir->name = DW_AT_comp_dir;
7247 comp_dir->form = DW_FORM_string;
7248 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7249 DW_STRING (comp_dir) = stub_comp_dir;
7252 /* Set up for reading the DWO CU/TU. */
7253 cu->dwo_unit = dwo_unit;
7254 dwarf2_section_info *section = dwo_unit->section;
7255 dwarf2_read_section (objfile, section);
7256 abfd = get_section_bfd_owner (section);
7257 begin_info_ptr = info_ptr = (section->buffer
7258 + to_underlying (dwo_unit->sect_off));
7259 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7261 if (this_cu->is_debug_types)
7263 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7265 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7266 &cu->header, section,
7268 info_ptr, rcuh_kind::TYPE);
7269 /* This is not an assert because it can be caused by bad debug info. */
7270 if (sig_type->signature != cu->header.signature)
7272 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7273 " TU at offset %s [in module %s]"),
7274 hex_string (sig_type->signature),
7275 hex_string (cu->header.signature),
7276 sect_offset_str (dwo_unit->sect_off),
7277 bfd_get_filename (abfd));
7279 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7280 /* For DWOs coming from DWP files, we don't know the CU length
7281 nor the type's offset in the TU until now. */
7282 dwo_unit->length = get_cu_length (&cu->header);
7283 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7285 /* Establish the type offset that can be used to lookup the type.
7286 For DWO files, we don't know it until now. */
7287 sig_type->type_offset_in_section
7288 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7292 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7293 &cu->header, section,
7295 info_ptr, rcuh_kind::COMPILE);
7296 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7297 /* For DWOs coming from DWP files, we don't know the CU length
7299 dwo_unit->length = get_cu_length (&cu->header);
7302 *result_dwo_abbrev_table
7303 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7304 cu->header.abbrev_sect_off);
7305 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7306 result_dwo_abbrev_table->get ());
7308 /* Read in the die, but leave space to copy over the attributes
7309 from the stub. This has the benefit of simplifying the rest of
7310 the code - all the work to maintain the illusion of a single
7311 DW_TAG_{compile,type}_unit DIE is done here. */
7312 num_extra_attrs = ((stmt_list != NULL)
7316 + (comp_dir != NULL));
7317 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7318 result_has_children, num_extra_attrs);
7320 /* Copy over the attributes from the stub to the DIE we just read in. */
7321 comp_unit_die = *result_comp_unit_die;
7322 i = comp_unit_die->num_attrs;
7323 if (stmt_list != NULL)
7324 comp_unit_die->attrs[i++] = *stmt_list;
7326 comp_unit_die->attrs[i++] = *low_pc;
7327 if (high_pc != NULL)
7328 comp_unit_die->attrs[i++] = *high_pc;
7330 comp_unit_die->attrs[i++] = *ranges;
7331 if (comp_dir != NULL)
7332 comp_unit_die->attrs[i++] = *comp_dir;
7333 comp_unit_die->num_attrs += num_extra_attrs;
7335 if (dwarf_die_debug)
7337 fprintf_unfiltered (gdb_stdlog,
7338 "Read die from %s@0x%x of %s:\n",
7339 get_section_name (section),
7340 (unsigned) (begin_info_ptr - section->buffer),
7341 bfd_get_filename (abfd));
7342 dump_die (comp_unit_die, dwarf_die_debug);
7345 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7346 TUs by skipping the stub and going directly to the entry in the DWO file.
7347 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7348 to get it via circuitous means. Blech. */
7349 if (comp_dir != NULL)
7350 result_reader->comp_dir = DW_STRING (comp_dir);
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + dwo_unit->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7357 *result_info_ptr = info_ptr;
7361 /* Subroutine of init_cutu_and_read_dies to simplify it.
7362 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7363 Returns NULL if the specified DWO unit cannot be found. */
7365 static struct dwo_unit *
7366 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7367 struct die_info *comp_unit_die)
7369 struct dwarf2_cu *cu = this_cu->cu;
7371 struct dwo_unit *dwo_unit;
7372 const char *comp_dir, *dwo_name;
7374 gdb_assert (cu != NULL);
7376 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7377 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7378 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7380 if (this_cu->is_debug_types)
7382 struct signatured_type *sig_type;
7384 /* Since this_cu is the first member of struct signatured_type,
7385 we can go from a pointer to one to a pointer to the other. */
7386 sig_type = (struct signatured_type *) this_cu;
7387 signature = sig_type->signature;
7388 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7392 struct attribute *attr;
7394 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7396 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7398 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7399 signature = DW_UNSND (attr);
7400 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7407 /* Subroutine of init_cutu_and_read_dies to simplify it.
7408 See it for a description of the parameters.
7409 Read a TU directly from a DWO file, bypassing the stub. */
7412 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7413 int use_existing_cu, int keep,
7414 die_reader_func_ftype *die_reader_func,
7417 std::unique_ptr<dwarf2_cu> new_cu;
7418 struct signatured_type *sig_type;
7419 struct die_reader_specs reader;
7420 const gdb_byte *info_ptr;
7421 struct die_info *comp_unit_die;
7423 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7425 /* Verify we can do the following downcast, and that we have the
7427 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7428 sig_type = (struct signatured_type *) this_cu;
7429 gdb_assert (sig_type->dwo_unit != NULL);
7431 if (use_existing_cu && this_cu->cu != NULL)
7433 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7434 /* There's no need to do the rereading_dwo_cu handling that
7435 init_cutu_and_read_dies does since we don't read the stub. */
7439 /* If !use_existing_cu, this_cu->cu must be NULL. */
7440 gdb_assert (this_cu->cu == NULL);
7441 new_cu.reset (new dwarf2_cu (this_cu));
7444 /* A future optimization, if needed, would be to use an existing
7445 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7446 could share abbrev tables. */
7448 /* The abbreviation table used by READER, this must live at least as long as
7450 abbrev_table_up dwo_abbrev_table;
7452 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7453 NULL /* stub_comp_unit_die */,
7454 sig_type->dwo_unit->dwo_file->comp_dir,
7456 &comp_unit_die, &has_children,
7457 &dwo_abbrev_table) == 0)
7463 /* All the "real" work is done here. */
7464 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7466 /* This duplicates the code in init_cutu_and_read_dies,
7467 but the alternative is making the latter more complex.
7468 This function is only for the special case of using DWO files directly:
7469 no point in overly complicating the general case just to handle this. */
7470 if (new_cu != NULL && keep)
7472 /* Link this CU into read_in_chain. */
7473 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7474 dwarf2_per_objfile->read_in_chain = this_cu;
7475 /* The chain owns it now. */
7480 /* Initialize a CU (or TU) and read its DIEs.
7481 If the CU defers to a DWO file, read the DWO file as well.
7483 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7484 Otherwise the table specified in the comp unit header is read in and used.
7485 This is an optimization for when we already have the abbrev table.
7487 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7488 Otherwise, a new CU is allocated with xmalloc.
7490 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7491 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7493 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7494 linker) then DIE_READER_FUNC will not get called. */
7497 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7498 struct abbrev_table *abbrev_table,
7499 int use_existing_cu, int keep,
7501 die_reader_func_ftype *die_reader_func,
7504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7505 struct objfile *objfile = dwarf2_per_objfile->objfile;
7506 struct dwarf2_section_info *section = this_cu->section;
7507 bfd *abfd = get_section_bfd_owner (section);
7508 struct dwarf2_cu *cu;
7509 const gdb_byte *begin_info_ptr, *info_ptr;
7510 struct die_reader_specs reader;
7511 struct die_info *comp_unit_die;
7513 struct attribute *attr;
7514 struct signatured_type *sig_type = NULL;
7515 struct dwarf2_section_info *abbrev_section;
7516 /* Non-zero if CU currently points to a DWO file and we need to
7517 reread it. When this happens we need to reread the skeleton die
7518 before we can reread the DWO file (this only applies to CUs, not TUs). */
7519 int rereading_dwo_cu = 0;
7521 if (dwarf_die_debug)
7522 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7523 this_cu->is_debug_types ? "type" : "comp",
7524 sect_offset_str (this_cu->sect_off));
7526 if (use_existing_cu)
7529 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7530 file (instead of going through the stub), short-circuit all of this. */
7531 if (this_cu->reading_dwo_directly)
7533 /* Narrow down the scope of possibilities to have to understand. */
7534 gdb_assert (this_cu->is_debug_types);
7535 gdb_assert (abbrev_table == NULL);
7536 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7537 die_reader_func, data);
7541 /* This is cheap if the section is already read in. */
7542 dwarf2_read_section (objfile, section);
7544 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7546 abbrev_section = get_abbrev_section_for_cu (this_cu);
7548 std::unique_ptr<dwarf2_cu> new_cu;
7549 if (use_existing_cu && this_cu->cu != NULL)
7552 /* If this CU is from a DWO file we need to start over, we need to
7553 refetch the attributes from the skeleton CU.
7554 This could be optimized by retrieving those attributes from when we
7555 were here the first time: the previous comp_unit_die was stored in
7556 comp_unit_obstack. But there's no data yet that we need this
7558 if (cu->dwo_unit != NULL)
7559 rereading_dwo_cu = 1;
7563 /* If !use_existing_cu, this_cu->cu must be NULL. */
7564 gdb_assert (this_cu->cu == NULL);
7565 new_cu.reset (new dwarf2_cu (this_cu));
7569 /* Get the header. */
7570 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7572 /* We already have the header, there's no need to read it in again. */
7573 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7577 if (this_cu->is_debug_types)
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section, info_ptr,
7584 /* Since per_cu is the first member of struct signatured_type,
7585 we can go from a pointer to one to a pointer to the other. */
7586 sig_type = (struct signatured_type *) this_cu;
7587 gdb_assert (sig_type->signature == cu->header.signature);
7588 gdb_assert (sig_type->type_offset_in_tu
7589 == cu->header.type_cu_offset_in_tu);
7590 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7592 /* LENGTH has not been set yet for type units if we're
7593 using .gdb_index. */
7594 this_cu->length = get_cu_length (&cu->header);
7596 /* Establish the type offset that can be used to lookup the type. */
7597 sig_type->type_offset_in_section =
7598 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7600 this_cu->dwarf_version = cu->header.version;
7604 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7605 &cu->header, section,
7608 rcuh_kind::COMPILE);
7610 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7611 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7612 this_cu->dwarf_version = cu->header.version;
7616 /* Skip dummy compilation units. */
7617 if (info_ptr >= begin_info_ptr + this_cu->length
7618 || peek_abbrev_code (abfd, info_ptr) == 0)
7621 /* If we don't have them yet, read the abbrevs for this compilation unit.
7622 And if we need to read them now, make sure they're freed when we're
7623 done (own the table through ABBREV_TABLE_HOLDER). */
7624 abbrev_table_up abbrev_table_holder;
7625 if (abbrev_table != NULL)
7626 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7630 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7631 cu->header.abbrev_sect_off);
7632 abbrev_table = abbrev_table_holder.get ();
7635 /* Read the top level CU/TU die. */
7636 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7637 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7639 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7642 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7643 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7644 table from the DWO file and pass the ownership over to us. It will be
7645 referenced from READER, so we must make sure to free it after we're done
7648 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7649 DWO CU, that this test will fail (the attribute will not be present). */
7650 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7651 abbrev_table_up dwo_abbrev_table;
7654 struct dwo_unit *dwo_unit;
7655 struct die_info *dwo_comp_unit_die;
7659 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7660 " has children (offset %s) [in module %s]"),
7661 sect_offset_str (this_cu->sect_off),
7662 bfd_get_filename (abfd));
7664 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7665 if (dwo_unit != NULL)
7667 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7668 comp_unit_die, NULL,
7670 &dwo_comp_unit_die, &has_children,
7671 &dwo_abbrev_table) == 0)
7676 comp_unit_die = dwo_comp_unit_die;
7680 /* Yikes, we couldn't find the rest of the DIE, we only have
7681 the stub. A complaint has already been logged. There's
7682 not much more we can do except pass on the stub DIE to
7683 die_reader_func. We don't want to throw an error on bad
7688 /* All of the above is setup for this call. Yikes. */
7689 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7691 /* Done, clean up. */
7692 if (new_cu != NULL && keep)
7694 /* Link this CU into read_in_chain. */
7695 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7696 dwarf2_per_objfile->read_in_chain = this_cu;
7697 /* The chain owns it now. */
7702 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7703 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7704 to have already done the lookup to find the DWO file).
7706 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7707 THIS_CU->is_debug_types, but nothing else.
7709 We fill in THIS_CU->length.
7711 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7712 linker) then DIE_READER_FUNC will not get called.
7714 THIS_CU->cu is always freed when done.
7715 This is done in order to not leave THIS_CU->cu in a state where we have
7716 to care whether it refers to the "main" CU or the DWO CU. */
7719 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7720 struct dwo_file *dwo_file,
7721 die_reader_func_ftype *die_reader_func,
7724 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7725 struct objfile *objfile = dwarf2_per_objfile->objfile;
7726 struct dwarf2_section_info *section = this_cu->section;
7727 bfd *abfd = get_section_bfd_owner (section);
7728 struct dwarf2_section_info *abbrev_section;
7729 const gdb_byte *begin_info_ptr, *info_ptr;
7730 struct die_reader_specs reader;
7731 struct die_info *comp_unit_die;
7734 if (dwarf_die_debug)
7735 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7736 this_cu->is_debug_types ? "type" : "comp",
7737 sect_offset_str (this_cu->sect_off));
7739 gdb_assert (this_cu->cu == NULL);
7741 abbrev_section = (dwo_file != NULL
7742 ? &dwo_file->sections.abbrev
7743 : get_abbrev_section_for_cu (this_cu));
7745 /* This is cheap if the section is already read in. */
7746 dwarf2_read_section (objfile, section);
7748 struct dwarf2_cu cu (this_cu);
7750 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7751 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7752 &cu.header, section,
7753 abbrev_section, info_ptr,
7754 (this_cu->is_debug_types
7756 : rcuh_kind::COMPILE));
7758 this_cu->length = get_cu_length (&cu.header);
7760 /* Skip dummy compilation units. */
7761 if (info_ptr >= begin_info_ptr + this_cu->length
7762 || peek_abbrev_code (abfd, info_ptr) == 0)
7765 abbrev_table_up abbrev_table
7766 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7767 cu.header.abbrev_sect_off);
7769 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7775 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7776 does not lookup the specified DWO file.
7777 This cannot be used to read DWO files.
7779 THIS_CU->cu is always freed when done.
7780 This is done in order to not leave THIS_CU->cu in a state where we have
7781 to care whether it refers to the "main" CU or the DWO CU.
7782 We can revisit this if the data shows there's a performance issue. */
7785 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7786 die_reader_func_ftype *die_reader_func,
7789 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7792 /* Type Unit Groups.
7794 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7795 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7796 so that all types coming from the same compilation (.o file) are grouped
7797 together. A future step could be to put the types in the same symtab as
7798 the CU the types ultimately came from. */
7801 hash_type_unit_group (const void *item)
7803 const struct type_unit_group *tu_group
7804 = (const struct type_unit_group *) item;
7806 return hash_stmt_list_entry (&tu_group->hash);
7810 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7812 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7813 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7815 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7818 /* Allocate a hash table for type unit groups. */
7821 allocate_type_unit_groups_table (struct objfile *objfile)
7823 return htab_create_alloc_ex (3,
7824 hash_type_unit_group,
7827 &objfile->objfile_obstack,
7828 hashtab_obstack_allocate,
7829 dummy_obstack_deallocate);
7832 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7833 partial symtabs. We combine several TUs per psymtab to not let the size
7834 of any one psymtab grow too big. */
7835 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7836 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7838 /* Helper routine for get_type_unit_group.
7839 Create the type_unit_group object used to hold one or more TUs. */
7841 static struct type_unit_group *
7842 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7844 struct dwarf2_per_objfile *dwarf2_per_objfile
7845 = cu->per_cu->dwarf2_per_objfile;
7846 struct objfile *objfile = dwarf2_per_objfile->objfile;
7847 struct dwarf2_per_cu_data *per_cu;
7848 struct type_unit_group *tu_group;
7850 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7851 struct type_unit_group);
7852 per_cu = &tu_group->per_cu;
7853 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7855 if (dwarf2_per_objfile->using_index)
7857 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7858 struct dwarf2_per_cu_quick_data);
7862 unsigned int line_offset = to_underlying (line_offset_struct);
7863 struct partial_symtab *pst;
7866 /* Give the symtab a useful name for debug purposes. */
7867 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7868 name = string_printf ("<type_units_%d>",
7869 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7871 name = string_printf ("<type_units_at_0x%x>", line_offset);
7873 pst = create_partial_symtab (per_cu, name.c_str ());
7877 tu_group->hash.dwo_unit = cu->dwo_unit;
7878 tu_group->hash.line_sect_off = line_offset_struct;
7883 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7884 STMT_LIST is a DW_AT_stmt_list attribute. */
7886 static struct type_unit_group *
7887 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7889 struct dwarf2_per_objfile *dwarf2_per_objfile
7890 = cu->per_cu->dwarf2_per_objfile;
7891 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7892 struct type_unit_group *tu_group;
7894 unsigned int line_offset;
7895 struct type_unit_group type_unit_group_for_lookup;
7897 if (dwarf2_per_objfile->type_unit_groups == NULL)
7899 dwarf2_per_objfile->type_unit_groups =
7900 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7903 /* Do we need to create a new group, or can we use an existing one? */
7907 line_offset = DW_UNSND (stmt_list);
7908 ++tu_stats->nr_symtab_sharers;
7912 /* Ugh, no stmt_list. Rare, but we have to handle it.
7913 We can do various things here like create one group per TU or
7914 spread them over multiple groups to split up the expansion work.
7915 To avoid worst case scenarios (too many groups or too large groups)
7916 we, umm, group them in bunches. */
7917 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7918 | (tu_stats->nr_stmt_less_type_units
7919 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7920 ++tu_stats->nr_stmt_less_type_units;
7923 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7924 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7925 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7926 &type_unit_group_for_lookup, INSERT);
7929 tu_group = (struct type_unit_group *) *slot;
7930 gdb_assert (tu_group != NULL);
7934 sect_offset line_offset_struct = (sect_offset) line_offset;
7935 tu_group = create_type_unit_group (cu, line_offset_struct);
7937 ++tu_stats->nr_symtabs;
7943 /* Partial symbol tables. */
7945 /* Create a psymtab named NAME and assign it to PER_CU.
7947 The caller must fill in the following details:
7948 dirname, textlow, texthigh. */
7950 static struct partial_symtab *
7951 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7953 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7954 struct partial_symtab *pst;
7956 pst = start_psymtab_common (objfile, name, 0);
7958 pst->psymtabs_addrmap_supported = 1;
7960 /* This is the glue that links PST into GDB's symbol API. */
7961 pst->read_symtab_private = per_cu;
7962 pst->read_symtab = dwarf2_read_symtab;
7963 per_cu->v.psymtab = pst;
7968 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7971 struct process_psymtab_comp_unit_data
7973 /* True if we are reading a DW_TAG_partial_unit. */
7975 int want_partial_unit;
7977 /* The "pretend" language that is used if the CU doesn't declare a
7980 enum language pretend_language;
7983 /* die_reader_func for process_psymtab_comp_unit. */
7986 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7987 const gdb_byte *info_ptr,
7988 struct die_info *comp_unit_die,
7992 struct dwarf2_cu *cu = reader->cu;
7993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7995 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7997 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7998 struct partial_symtab *pst;
7999 enum pc_bounds_kind cu_bounds_kind;
8000 const char *filename;
8001 struct process_psymtab_comp_unit_data *info
8002 = (struct process_psymtab_comp_unit_data *) data;
8004 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8007 gdb_assert (! per_cu->is_debug_types);
8009 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8011 /* Allocate a new partial symbol table structure. */
8012 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8013 if (filename == NULL)
8016 pst = create_partial_symtab (per_cu, filename);
8018 /* This must be done before calling dwarf2_build_include_psymtabs. */
8019 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8023 dwarf2_find_base_address (comp_unit_die, cu);
8025 /* Possibly set the default values of LOWPC and HIGHPC from
8027 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8028 &best_highpc, cu, pst);
8029 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8035 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8037 /* Store the contiguous range if it is not empty; it can be
8038 empty for CUs with no code. */
8039 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8043 /* Check if comp unit has_children.
8044 If so, read the rest of the partial symbols from this comp unit.
8045 If not, there's no more debug_info for this comp unit. */
8048 struct partial_die_info *first_die;
8049 CORE_ADDR lowpc, highpc;
8051 lowpc = ((CORE_ADDR) -1);
8052 highpc = ((CORE_ADDR) 0);
8054 first_die = load_partial_dies (reader, info_ptr, 1);
8056 scan_partial_symbols (first_die, &lowpc, &highpc,
8057 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8059 /* If we didn't find a lowpc, set it to highpc to avoid
8060 complaints from `maint check'. */
8061 if (lowpc == ((CORE_ADDR) -1))
8064 /* If the compilation unit didn't have an explicit address range,
8065 then use the information extracted from its child dies. */
8066 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8069 best_highpc = highpc;
8072 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8073 best_lowpc + baseaddr)
8075 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8076 best_highpc + baseaddr)
8079 end_psymtab_common (objfile, pst);
8081 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8084 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8085 struct dwarf2_per_cu_data *iter;
8087 /* Fill in 'dependencies' here; we fill in 'users' in a
8089 pst->number_of_dependencies = len;
8091 = objfile->partial_symtabs->allocate_dependencies (len);
8093 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8096 pst->dependencies[i] = iter->v.psymtab;
8098 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8101 /* Get the list of files included in the current compilation unit,
8102 and build a psymtab for each of them. */
8103 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8105 if (dwarf_read_debug)
8106 fprintf_unfiltered (gdb_stdlog,
8107 "Psymtab for %s unit @%s: %s - %s"
8108 ", %d global, %d static syms\n",
8109 per_cu->is_debug_types ? "type" : "comp",
8110 sect_offset_str (per_cu->sect_off),
8111 paddress (gdbarch, pst->text_low (objfile)),
8112 paddress (gdbarch, pst->text_high (objfile)),
8113 pst->n_global_syms, pst->n_static_syms);
8116 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8117 Process compilation unit THIS_CU for a psymtab. */
8120 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8121 int want_partial_unit,
8122 enum language pretend_language)
8124 /* If this compilation unit was already read in, free the
8125 cached copy in order to read it in again. This is
8126 necessary because we skipped some symbols when we first
8127 read in the compilation unit (see load_partial_dies).
8128 This problem could be avoided, but the benefit is unclear. */
8129 if (this_cu->cu != NULL)
8130 free_one_cached_comp_unit (this_cu);
8132 if (this_cu->is_debug_types)
8133 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8134 build_type_psymtabs_reader, NULL);
8137 process_psymtab_comp_unit_data info;
8138 info.want_partial_unit = want_partial_unit;
8139 info.pretend_language = pretend_language;
8140 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8141 process_psymtab_comp_unit_reader, &info);
8144 /* Age out any secondary CUs. */
8145 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8148 /* Reader function for build_type_psymtabs. */
8151 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8152 const gdb_byte *info_ptr,
8153 struct die_info *type_unit_die,
8157 struct dwarf2_per_objfile *dwarf2_per_objfile
8158 = reader->cu->per_cu->dwarf2_per_objfile;
8159 struct objfile *objfile = dwarf2_per_objfile->objfile;
8160 struct dwarf2_cu *cu = reader->cu;
8161 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8162 struct signatured_type *sig_type;
8163 struct type_unit_group *tu_group;
8164 struct attribute *attr;
8165 struct partial_die_info *first_die;
8166 CORE_ADDR lowpc, highpc;
8167 struct partial_symtab *pst;
8169 gdb_assert (data == NULL);
8170 gdb_assert (per_cu->is_debug_types);
8171 sig_type = (struct signatured_type *) per_cu;
8176 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8177 tu_group = get_type_unit_group (cu, attr);
8179 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8181 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8182 pst = create_partial_symtab (per_cu, "");
8185 first_die = load_partial_dies (reader, info_ptr, 1);
8187 lowpc = (CORE_ADDR) -1;
8188 highpc = (CORE_ADDR) 0;
8189 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8191 end_psymtab_common (objfile, pst);
8194 /* Struct used to sort TUs by their abbreviation table offset. */
8196 struct tu_abbrev_offset
8198 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8199 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8202 signatured_type *sig_type;
8203 sect_offset abbrev_offset;
8206 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8209 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8210 const struct tu_abbrev_offset &b)
8212 return a.abbrev_offset < b.abbrev_offset;
8215 /* Efficiently read all the type units.
8216 This does the bulk of the work for build_type_psymtabs.
8218 The efficiency is because we sort TUs by the abbrev table they use and
8219 only read each abbrev table once. In one program there are 200K TUs
8220 sharing 8K abbrev tables.
8222 The main purpose of this function is to support building the
8223 dwarf2_per_objfile->type_unit_groups table.
8224 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8225 can collapse the search space by grouping them by stmt_list.
8226 The savings can be significant, in the same program from above the 200K TUs
8227 share 8K stmt_list tables.
8229 FUNC is expected to call get_type_unit_group, which will create the
8230 struct type_unit_group if necessary and add it to
8231 dwarf2_per_objfile->type_unit_groups. */
8234 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8237 abbrev_table_up abbrev_table;
8238 sect_offset abbrev_offset;
8240 /* It's up to the caller to not call us multiple times. */
8241 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8243 if (dwarf2_per_objfile->all_type_units.empty ())
8246 /* TUs typically share abbrev tables, and there can be way more TUs than
8247 abbrev tables. Sort by abbrev table to reduce the number of times we
8248 read each abbrev table in.
8249 Alternatives are to punt or to maintain a cache of abbrev tables.
8250 This is simpler and efficient enough for now.
8252 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8253 symtab to use). Typically TUs with the same abbrev offset have the same
8254 stmt_list value too so in practice this should work well.
8256 The basic algorithm here is:
8258 sort TUs by abbrev table
8259 for each TU with same abbrev table:
8260 read abbrev table if first user
8261 read TU top level DIE
8262 [IWBN if DWO skeletons had DW_AT_stmt_list]
8265 if (dwarf_read_debug)
8266 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8268 /* Sort in a separate table to maintain the order of all_type_units
8269 for .gdb_index: TU indices directly index all_type_units. */
8270 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8271 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8273 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8274 sorted_by_abbrev.emplace_back
8275 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8276 sig_type->per_cu.section,
8277 sig_type->per_cu.sect_off));
8279 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8280 sort_tu_by_abbrev_offset);
8282 abbrev_offset = (sect_offset) ~(unsigned) 0;
8284 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8286 /* Switch to the next abbrev table if necessary. */
8287 if (abbrev_table == NULL
8288 || tu.abbrev_offset != abbrev_offset)
8290 abbrev_offset = tu.abbrev_offset;
8292 abbrev_table_read_table (dwarf2_per_objfile,
8293 &dwarf2_per_objfile->abbrev,
8295 ++tu_stats->nr_uniq_abbrev_tables;
8298 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8299 0, 0, false, build_type_psymtabs_reader, NULL);
8303 /* Print collected type unit statistics. */
8306 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8308 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8310 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8311 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8312 dwarf2_per_objfile->all_type_units.size ());
8313 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8314 tu_stats->nr_uniq_abbrev_tables);
8315 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8316 tu_stats->nr_symtabs);
8317 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8318 tu_stats->nr_symtab_sharers);
8319 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8320 tu_stats->nr_stmt_less_type_units);
8321 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8322 tu_stats->nr_all_type_units_reallocs);
8325 /* Traversal function for build_type_psymtabs. */
8328 build_type_psymtab_dependencies (void **slot, void *info)
8330 struct dwarf2_per_objfile *dwarf2_per_objfile
8331 = (struct dwarf2_per_objfile *) info;
8332 struct objfile *objfile = dwarf2_per_objfile->objfile;
8333 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8334 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8335 struct partial_symtab *pst = per_cu->v.psymtab;
8336 int len = VEC_length (sig_type_ptr, tu_group->tus);
8337 struct signatured_type *iter;
8340 gdb_assert (len > 0);
8341 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8343 pst->number_of_dependencies = len;
8344 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8346 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8349 gdb_assert (iter->per_cu.is_debug_types);
8350 pst->dependencies[i] = iter->per_cu.v.psymtab;
8351 iter->type_unit_group = tu_group;
8354 VEC_free (sig_type_ptr, tu_group->tus);
8359 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8360 Build partial symbol tables for the .debug_types comp-units. */
8363 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8365 if (! create_all_type_units (dwarf2_per_objfile))
8368 build_type_psymtabs_1 (dwarf2_per_objfile);
8371 /* Traversal function for process_skeletonless_type_unit.
8372 Read a TU in a DWO file and build partial symbols for it. */
8375 process_skeletonless_type_unit (void **slot, void *info)
8377 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8378 struct dwarf2_per_objfile *dwarf2_per_objfile
8379 = (struct dwarf2_per_objfile *) info;
8380 struct signatured_type find_entry, *entry;
8382 /* If this TU doesn't exist in the global table, add it and read it in. */
8384 if (dwarf2_per_objfile->signatured_types == NULL)
8386 dwarf2_per_objfile->signatured_types
8387 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8390 find_entry.signature = dwo_unit->signature;
8391 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8393 /* If we've already seen this type there's nothing to do. What's happening
8394 is we're doing our own version of comdat-folding here. */
8398 /* This does the job that create_all_type_units would have done for
8400 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8404 /* This does the job that build_type_psymtabs_1 would have done. */
8405 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8406 build_type_psymtabs_reader, NULL);
8411 /* Traversal function for process_skeletonless_type_units. */
8414 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8416 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8418 if (dwo_file->tus != NULL)
8420 htab_traverse_noresize (dwo_file->tus,
8421 process_skeletonless_type_unit, info);
8427 /* Scan all TUs of DWO files, verifying we've processed them.
8428 This is needed in case a TU was emitted without its skeleton.
8429 Note: This can't be done until we know what all the DWO files are. */
8432 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8434 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8435 if (get_dwp_file (dwarf2_per_objfile) == NULL
8436 && dwarf2_per_objfile->dwo_files != NULL)
8438 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8439 process_dwo_file_for_skeletonless_type_units,
8440 dwarf2_per_objfile);
8444 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8447 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8449 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8451 struct partial_symtab *pst = per_cu->v.psymtab;
8456 for (int j = 0; j < pst->number_of_dependencies; ++j)
8458 /* Set the 'user' field only if it is not already set. */
8459 if (pst->dependencies[j]->user == NULL)
8460 pst->dependencies[j]->user = pst;
8465 /* Build the partial symbol table by doing a quick pass through the
8466 .debug_info and .debug_abbrev sections. */
8469 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8471 struct objfile *objfile = dwarf2_per_objfile->objfile;
8473 if (dwarf_read_debug)
8475 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8476 objfile_name (objfile));
8479 dwarf2_per_objfile->reading_partial_symbols = 1;
8481 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8483 /* Any cached compilation units will be linked by the per-objfile
8484 read_in_chain. Make sure to free them when we're done. */
8485 free_cached_comp_units freer (dwarf2_per_objfile);
8487 build_type_psymtabs (dwarf2_per_objfile);
8489 create_all_comp_units (dwarf2_per_objfile);
8491 /* Create a temporary address map on a temporary obstack. We later
8492 copy this to the final obstack. */
8493 auto_obstack temp_obstack;
8495 scoped_restore save_psymtabs_addrmap
8496 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8497 addrmap_create_mutable (&temp_obstack));
8499 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8502 /* This has to wait until we read the CUs, we need the list of DWOs. */
8503 process_skeletonless_type_units (dwarf2_per_objfile);
8505 /* Now that all TUs have been processed we can fill in the dependencies. */
8506 if (dwarf2_per_objfile->type_unit_groups != NULL)
8508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8509 build_type_psymtab_dependencies, dwarf2_per_objfile);
8512 if (dwarf_read_debug)
8513 print_tu_stats (dwarf2_per_objfile);
8515 set_partial_user (dwarf2_per_objfile);
8517 objfile->partial_symtabs->psymtabs_addrmap
8518 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8519 objfile->partial_symtabs->obstack ());
8520 /* At this point we want to keep the address map. */
8521 save_psymtabs_addrmap.release ();
8523 if (dwarf_read_debug)
8524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8525 objfile_name (objfile));
8528 /* die_reader_func for load_partial_comp_unit. */
8531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8532 const gdb_byte *info_ptr,
8533 struct die_info *comp_unit_die,
8537 struct dwarf2_cu *cu = reader->cu;
8539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8541 /* Check if comp unit has_children.
8542 If so, read the rest of the partial symbols from this comp unit.
8543 If not, there's no more debug_info for this comp unit. */
8545 load_partial_dies (reader, info_ptr, 0);
8548 /* Load the partial DIEs for a secondary CU into memory.
8549 This is also used when rereading a primary CU with load_all_dies. */
8552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8554 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8555 load_partial_comp_unit_reader, NULL);
8559 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8560 struct dwarf2_section_info *section,
8561 struct dwarf2_section_info *abbrev_section,
8562 unsigned int is_dwz)
8564 const gdb_byte *info_ptr;
8565 struct objfile *objfile = dwarf2_per_objfile->objfile;
8567 if (dwarf_read_debug)
8568 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8569 get_section_name (section),
8570 get_section_file_name (section));
8572 dwarf2_read_section (objfile, section);
8574 info_ptr = section->buffer;
8576 while (info_ptr < section->buffer + section->size)
8578 struct dwarf2_per_cu_data *this_cu;
8580 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8582 comp_unit_head cu_header;
8583 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8584 abbrev_section, info_ptr,
8585 rcuh_kind::COMPILE);
8587 /* Save the compilation unit for later lookup. */
8588 if (cu_header.unit_type != DW_UT_type)
8590 this_cu = XOBNEW (&objfile->objfile_obstack,
8591 struct dwarf2_per_cu_data);
8592 memset (this_cu, 0, sizeof (*this_cu));
8596 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8597 struct signatured_type);
8598 memset (sig_type, 0, sizeof (*sig_type));
8599 sig_type->signature = cu_header.signature;
8600 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8601 this_cu = &sig_type->per_cu;
8603 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8604 this_cu->sect_off = sect_off;
8605 this_cu->length = cu_header.length + cu_header.initial_length_size;
8606 this_cu->is_dwz = is_dwz;
8607 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8608 this_cu->section = section;
8610 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8612 info_ptr = info_ptr + this_cu->length;
8616 /* Create a list of all compilation units in OBJFILE.
8617 This is only done for -readnow and building partial symtabs. */
8620 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8622 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8623 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8624 &dwarf2_per_objfile->abbrev, 0);
8626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8632 /* Process all loaded DIEs for compilation unit CU, starting at
8633 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8634 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8635 DW_AT_ranges). See the comments of add_partial_subprogram on how
8636 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8639 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8640 CORE_ADDR *highpc, int set_addrmap,
8641 struct dwarf2_cu *cu)
8643 struct partial_die_info *pdi;
8645 /* Now, march along the PDI's, descending into ones which have
8646 interesting children but skipping the children of the other ones,
8647 until we reach the end of the compilation unit. */
8655 /* Anonymous namespaces or modules have no name but have interesting
8656 children, so we need to look at them. Ditto for anonymous
8659 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8660 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8661 || pdi->tag == DW_TAG_imported_unit
8662 || pdi->tag == DW_TAG_inlined_subroutine)
8666 case DW_TAG_subprogram:
8667 case DW_TAG_inlined_subroutine:
8668 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8670 case DW_TAG_constant:
8671 case DW_TAG_variable:
8672 case DW_TAG_typedef:
8673 case DW_TAG_union_type:
8674 if (!pdi->is_declaration)
8676 add_partial_symbol (pdi, cu);
8679 case DW_TAG_class_type:
8680 case DW_TAG_interface_type:
8681 case DW_TAG_structure_type:
8682 if (!pdi->is_declaration)
8684 add_partial_symbol (pdi, cu);
8686 if ((cu->language == language_rust
8687 || cu->language == language_cplus) && pdi->has_children)
8688 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8691 case DW_TAG_enumeration_type:
8692 if (!pdi->is_declaration)
8693 add_partial_enumeration (pdi, cu);
8695 case DW_TAG_base_type:
8696 case DW_TAG_subrange_type:
8697 /* File scope base type definitions are added to the partial
8699 add_partial_symbol (pdi, cu);
8701 case DW_TAG_namespace:
8702 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8705 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8707 case DW_TAG_imported_unit:
8709 struct dwarf2_per_cu_data *per_cu;
8711 /* For now we don't handle imported units in type units. */
8712 if (cu->per_cu->is_debug_types)
8714 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8715 " supported in type units [in module %s]"),
8716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8719 per_cu = dwarf2_find_containing_comp_unit
8720 (pdi->d.sect_off, pdi->is_dwz,
8721 cu->per_cu->dwarf2_per_objfile);
8723 /* Go read the partial unit, if needed. */
8724 if (per_cu->v.psymtab == NULL)
8725 process_psymtab_comp_unit (per_cu, 1, cu->language);
8727 VEC_safe_push (dwarf2_per_cu_ptr,
8728 cu->per_cu->imported_symtabs, per_cu);
8731 case DW_TAG_imported_declaration:
8732 add_partial_symbol (pdi, cu);
8739 /* If the die has a sibling, skip to the sibling. */
8741 pdi = pdi->die_sibling;
8745 /* Functions used to compute the fully scoped name of a partial DIE.
8747 Normally, this is simple. For C++, the parent DIE's fully scoped
8748 name is concatenated with "::" and the partial DIE's name.
8749 Enumerators are an exception; they use the scope of their parent
8750 enumeration type, i.e. the name of the enumeration type is not
8751 prepended to the enumerator.
8753 There are two complexities. One is DW_AT_specification; in this
8754 case "parent" means the parent of the target of the specification,
8755 instead of the direct parent of the DIE. The other is compilers
8756 which do not emit DW_TAG_namespace; in this case we try to guess
8757 the fully qualified name of structure types from their members'
8758 linkage names. This must be done using the DIE's children rather
8759 than the children of any DW_AT_specification target. We only need
8760 to do this for structures at the top level, i.e. if the target of
8761 any DW_AT_specification (if any; otherwise the DIE itself) does not
8764 /* Compute the scope prefix associated with PDI's parent, in
8765 compilation unit CU. The result will be allocated on CU's
8766 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8767 field. NULL is returned if no prefix is necessary. */
8769 partial_die_parent_scope (struct partial_die_info *pdi,
8770 struct dwarf2_cu *cu)
8772 const char *grandparent_scope;
8773 struct partial_die_info *parent, *real_pdi;
8775 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8776 then this means the parent of the specification DIE. */
8779 while (real_pdi->has_specification)
8780 real_pdi = find_partial_die (real_pdi->spec_offset,
8781 real_pdi->spec_is_dwz, cu);
8783 parent = real_pdi->die_parent;
8787 if (parent->scope_set)
8788 return parent->scope;
8792 grandparent_scope = partial_die_parent_scope (parent, cu);
8794 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8795 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8796 Work around this problem here. */
8797 if (cu->language == language_cplus
8798 && parent->tag == DW_TAG_namespace
8799 && strcmp (parent->name, "::") == 0
8800 && grandparent_scope == NULL)
8802 parent->scope = NULL;
8803 parent->scope_set = 1;
8807 if (pdi->tag == DW_TAG_enumerator)
8808 /* Enumerators should not get the name of the enumeration as a prefix. */
8809 parent->scope = grandparent_scope;
8810 else if (parent->tag == DW_TAG_namespace
8811 || parent->tag == DW_TAG_module
8812 || parent->tag == DW_TAG_structure_type
8813 || parent->tag == DW_TAG_class_type
8814 || parent->tag == DW_TAG_interface_type
8815 || parent->tag == DW_TAG_union_type
8816 || parent->tag == DW_TAG_enumeration_type)
8818 if (grandparent_scope == NULL)
8819 parent->scope = parent->name;
8821 parent->scope = typename_concat (&cu->comp_unit_obstack,
8823 parent->name, 0, cu);
8827 /* FIXME drow/2004-04-01: What should we be doing with
8828 function-local names? For partial symbols, we should probably be
8830 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8831 parent->tag, sect_offset_str (pdi->sect_off));
8832 parent->scope = grandparent_scope;
8835 parent->scope_set = 1;
8836 return parent->scope;
8839 /* Return the fully scoped name associated with PDI, from compilation unit
8840 CU. The result will be allocated with malloc. */
8843 partial_die_full_name (struct partial_die_info *pdi,
8844 struct dwarf2_cu *cu)
8846 const char *parent_scope;
8848 /* If this is a template instantiation, we can not work out the
8849 template arguments from partial DIEs. So, unfortunately, we have
8850 to go through the full DIEs. At least any work we do building
8851 types here will be reused if full symbols are loaded later. */
8852 if (pdi->has_template_arguments)
8856 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8858 struct die_info *die;
8859 struct attribute attr;
8860 struct dwarf2_cu *ref_cu = cu;
8862 /* DW_FORM_ref_addr is using section offset. */
8863 attr.name = (enum dwarf_attribute) 0;
8864 attr.form = DW_FORM_ref_addr;
8865 attr.u.unsnd = to_underlying (pdi->sect_off);
8866 die = follow_die_ref (NULL, &attr, &ref_cu);
8868 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8872 parent_scope = partial_die_parent_scope (pdi, cu);
8873 if (parent_scope == NULL)
8876 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8880 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8882 struct dwarf2_per_objfile *dwarf2_per_objfile
8883 = cu->per_cu->dwarf2_per_objfile;
8884 struct objfile *objfile = dwarf2_per_objfile->objfile;
8885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8887 const char *actual_name = NULL;
8889 char *built_actual_name;
8891 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8893 built_actual_name = partial_die_full_name (pdi, cu);
8894 if (built_actual_name != NULL)
8895 actual_name = built_actual_name;
8897 if (actual_name == NULL)
8898 actual_name = pdi->name;
8902 case DW_TAG_inlined_subroutine:
8903 case DW_TAG_subprogram:
8904 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8906 if (pdi->is_external || cu->language == language_ada)
8908 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8909 of the global scope. But in Ada, we want to be able to access
8910 nested procedures globally. So all Ada subprograms are stored
8911 in the global scope. */
8912 add_psymbol_to_list (actual_name, strlen (actual_name),
8913 built_actual_name != NULL,
8914 VAR_DOMAIN, LOC_BLOCK,
8915 SECT_OFF_TEXT (objfile),
8916 psymbol_placement::GLOBAL,
8918 cu->language, objfile);
8922 add_psymbol_to_list (actual_name, strlen (actual_name),
8923 built_actual_name != NULL,
8924 VAR_DOMAIN, LOC_BLOCK,
8925 SECT_OFF_TEXT (objfile),
8926 psymbol_placement::STATIC,
8927 addr, cu->language, objfile);
8930 if (pdi->main_subprogram && actual_name != NULL)
8931 set_objfile_main_name (objfile, actual_name, cu->language);
8933 case DW_TAG_constant:
8934 add_psymbol_to_list (actual_name, strlen (actual_name),
8935 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8936 -1, (pdi->is_external
8937 ? psymbol_placement::GLOBAL
8938 : psymbol_placement::STATIC),
8939 0, cu->language, objfile);
8941 case DW_TAG_variable:
8943 addr = decode_locdesc (pdi->d.locdesc, cu);
8947 && !dwarf2_per_objfile->has_section_at_zero)
8949 /* A global or static variable may also have been stripped
8950 out by the linker if unused, in which case its address
8951 will be nullified; do not add such variables into partial
8952 symbol table then. */
8954 else if (pdi->is_external)
8957 Don't enter into the minimal symbol tables as there is
8958 a minimal symbol table entry from the ELF symbols already.
8959 Enter into partial symbol table if it has a location
8960 descriptor or a type.
8961 If the location descriptor is missing, new_symbol will create
8962 a LOC_UNRESOLVED symbol, the address of the variable will then
8963 be determined from the minimal symbol table whenever the variable
8965 The address for the partial symbol table entry is not
8966 used by GDB, but it comes in handy for debugging partial symbol
8969 if (pdi->d.locdesc || pdi->has_type)
8970 add_psymbol_to_list (actual_name, strlen (actual_name),
8971 built_actual_name != NULL,
8972 VAR_DOMAIN, LOC_STATIC,
8973 SECT_OFF_TEXT (objfile),
8974 psymbol_placement::GLOBAL,
8975 addr, cu->language, objfile);
8979 int has_loc = pdi->d.locdesc != NULL;
8981 /* Static Variable. Skip symbols whose value we cannot know (those
8982 without location descriptors or constant values). */
8983 if (!has_loc && !pdi->has_const_value)
8985 xfree (built_actual_name);
8989 add_psymbol_to_list (actual_name, strlen (actual_name),
8990 built_actual_name != NULL,
8991 VAR_DOMAIN, LOC_STATIC,
8992 SECT_OFF_TEXT (objfile),
8993 psymbol_placement::STATIC,
8995 cu->language, objfile);
8998 case DW_TAG_typedef:
8999 case DW_TAG_base_type:
9000 case DW_TAG_subrange_type:
9001 add_psymbol_to_list (actual_name, strlen (actual_name),
9002 built_actual_name != NULL,
9003 VAR_DOMAIN, LOC_TYPEDEF, -1,
9004 psymbol_placement::STATIC,
9005 0, cu->language, objfile);
9007 case DW_TAG_imported_declaration:
9008 case DW_TAG_namespace:
9009 add_psymbol_to_list (actual_name, strlen (actual_name),
9010 built_actual_name != NULL,
9011 VAR_DOMAIN, LOC_TYPEDEF, -1,
9012 psymbol_placement::GLOBAL,
9013 0, cu->language, objfile);
9016 add_psymbol_to_list (actual_name, strlen (actual_name),
9017 built_actual_name != NULL,
9018 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9019 psymbol_placement::GLOBAL,
9020 0, cu->language, objfile);
9022 case DW_TAG_class_type:
9023 case DW_TAG_interface_type:
9024 case DW_TAG_structure_type:
9025 case DW_TAG_union_type:
9026 case DW_TAG_enumeration_type:
9027 /* Skip external references. The DWARF standard says in the section
9028 about "Structure, Union, and Class Type Entries": "An incomplete
9029 structure, union or class type is represented by a structure,
9030 union or class entry that does not have a byte size attribute
9031 and that has a DW_AT_declaration attribute." */
9032 if (!pdi->has_byte_size && pdi->is_declaration)
9034 xfree (built_actual_name);
9038 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9039 static vs. global. */
9040 add_psymbol_to_list (actual_name, strlen (actual_name),
9041 built_actual_name != NULL,
9042 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9043 cu->language == language_cplus
9044 ? psymbol_placement::GLOBAL
9045 : psymbol_placement::STATIC,
9046 0, cu->language, objfile);
9049 case DW_TAG_enumerator:
9050 add_psymbol_to_list (actual_name, strlen (actual_name),
9051 built_actual_name != NULL,
9052 VAR_DOMAIN, LOC_CONST, -1,
9053 cu->language == language_cplus
9054 ? psymbol_placement::GLOBAL
9055 : psymbol_placement::STATIC,
9056 0, cu->language, objfile);
9062 xfree (built_actual_name);
9065 /* Read a partial die corresponding to a namespace; also, add a symbol
9066 corresponding to that namespace to the symbol table. NAMESPACE is
9067 the name of the enclosing namespace. */
9070 add_partial_namespace (struct partial_die_info *pdi,
9071 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9072 int set_addrmap, struct dwarf2_cu *cu)
9074 /* Add a symbol for the namespace. */
9076 add_partial_symbol (pdi, cu);
9078 /* Now scan partial symbols in that namespace. */
9080 if (pdi->has_children)
9081 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9084 /* Read a partial die corresponding to a Fortran module. */
9087 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9088 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9090 /* Add a symbol for the namespace. */
9092 add_partial_symbol (pdi, cu);
9094 /* Now scan partial symbols in that module. */
9096 if (pdi->has_children)
9097 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9100 /* Read a partial die corresponding to a subprogram or an inlined
9101 subprogram and create a partial symbol for that subprogram.
9102 When the CU language allows it, this routine also defines a partial
9103 symbol for each nested subprogram that this subprogram contains.
9104 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9105 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9107 PDI may also be a lexical block, in which case we simply search
9108 recursively for subprograms defined inside that lexical block.
9109 Again, this is only performed when the CU language allows this
9110 type of definitions. */
9113 add_partial_subprogram (struct partial_die_info *pdi,
9114 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9115 int set_addrmap, struct dwarf2_cu *cu)
9117 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9119 if (pdi->has_pc_info)
9121 if (pdi->lowpc < *lowpc)
9122 *lowpc = pdi->lowpc;
9123 if (pdi->highpc > *highpc)
9124 *highpc = pdi->highpc;
9127 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9130 CORE_ADDR this_highpc;
9131 CORE_ADDR this_lowpc;
9133 baseaddr = ANOFFSET (objfile->section_offsets,
9134 SECT_OFF_TEXT (objfile));
9136 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9137 pdi->lowpc + baseaddr)
9140 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9141 pdi->highpc + baseaddr)
9143 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9144 this_lowpc, this_highpc - 1,
9145 cu->per_cu->v.psymtab);
9149 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9151 if (!pdi->is_declaration)
9152 /* Ignore subprogram DIEs that do not have a name, they are
9153 illegal. Do not emit a complaint at this point, we will
9154 do so when we convert this psymtab into a symtab. */
9156 add_partial_symbol (pdi, cu);
9160 if (! pdi->has_children)
9163 if (cu->language == language_ada)
9165 pdi = pdi->die_child;
9169 if (pdi->tag == DW_TAG_subprogram
9170 || pdi->tag == DW_TAG_inlined_subroutine
9171 || pdi->tag == DW_TAG_lexical_block)
9172 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9173 pdi = pdi->die_sibling;
9178 /* Read a partial die corresponding to an enumeration type. */
9181 add_partial_enumeration (struct partial_die_info *enum_pdi,
9182 struct dwarf2_cu *cu)
9184 struct partial_die_info *pdi;
9186 if (enum_pdi->name != NULL)
9187 add_partial_symbol (enum_pdi, cu);
9189 pdi = enum_pdi->die_child;
9192 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9193 complaint (_("malformed enumerator DIE ignored"));
9195 add_partial_symbol (pdi, cu);
9196 pdi = pdi->die_sibling;
9200 /* Return the initial uleb128 in the die at INFO_PTR. */
9203 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9205 unsigned int bytes_read;
9207 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9210 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9211 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9213 Return the corresponding abbrev, or NULL if the number is zero (indicating
9214 an empty DIE). In either case *BYTES_READ will be set to the length of
9215 the initial number. */
9217 static struct abbrev_info *
9218 peek_die_abbrev (const die_reader_specs &reader,
9219 const gdb_byte *info_ptr, unsigned int *bytes_read)
9221 dwarf2_cu *cu = reader.cu;
9222 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9223 unsigned int abbrev_number
9224 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9226 if (abbrev_number == 0)
9229 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9232 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9233 " at offset %s [in module %s]"),
9234 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9235 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9241 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9242 Returns a pointer to the end of a series of DIEs, terminated by an empty
9243 DIE. Any children of the skipped DIEs will also be skipped. */
9245 static const gdb_byte *
9246 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9250 unsigned int bytes_read;
9251 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9254 return info_ptr + bytes_read;
9256 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9260 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9261 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9262 abbrev corresponding to that skipped uleb128 should be passed in
9263 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9266 static const gdb_byte *
9267 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9268 struct abbrev_info *abbrev)
9270 unsigned int bytes_read;
9271 struct attribute attr;
9272 bfd *abfd = reader->abfd;
9273 struct dwarf2_cu *cu = reader->cu;
9274 const gdb_byte *buffer = reader->buffer;
9275 const gdb_byte *buffer_end = reader->buffer_end;
9276 unsigned int form, i;
9278 for (i = 0; i < abbrev->num_attrs; i++)
9280 /* The only abbrev we care about is DW_AT_sibling. */
9281 if (abbrev->attrs[i].name == DW_AT_sibling)
9283 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9284 if (attr.form == DW_FORM_ref_addr)
9285 complaint (_("ignoring absolute DW_AT_sibling"));
9288 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9289 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9291 if (sibling_ptr < info_ptr)
9292 complaint (_("DW_AT_sibling points backwards"));
9293 else if (sibling_ptr > reader->buffer_end)
9294 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9300 /* If it isn't DW_AT_sibling, skip this attribute. */
9301 form = abbrev->attrs[i].form;
9305 case DW_FORM_ref_addr:
9306 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9307 and later it is offset sized. */
9308 if (cu->header.version == 2)
9309 info_ptr += cu->header.addr_size;
9311 info_ptr += cu->header.offset_size;
9313 case DW_FORM_GNU_ref_alt:
9314 info_ptr += cu->header.offset_size;
9317 info_ptr += cu->header.addr_size;
9324 case DW_FORM_flag_present:
9325 case DW_FORM_implicit_const:
9337 case DW_FORM_ref_sig8:
9340 case DW_FORM_data16:
9343 case DW_FORM_string:
9344 read_direct_string (abfd, info_ptr, &bytes_read);
9345 info_ptr += bytes_read;
9347 case DW_FORM_sec_offset:
9349 case DW_FORM_GNU_strp_alt:
9350 info_ptr += cu->header.offset_size;
9352 case DW_FORM_exprloc:
9354 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9355 info_ptr += bytes_read;
9357 case DW_FORM_block1:
9358 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9360 case DW_FORM_block2:
9361 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9363 case DW_FORM_block4:
9364 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9370 case DW_FORM_ref_udata:
9371 case DW_FORM_GNU_addr_index:
9372 case DW_FORM_GNU_str_index:
9373 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9375 case DW_FORM_indirect:
9376 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9377 info_ptr += bytes_read;
9378 /* We need to continue parsing from here, so just go back to
9380 goto skip_attribute;
9383 error (_("Dwarf Error: Cannot handle %s "
9384 "in DWARF reader [in module %s]"),
9385 dwarf_form_name (form),
9386 bfd_get_filename (abfd));
9390 if (abbrev->has_children)
9391 return skip_children (reader, info_ptr);
9396 /* Locate ORIG_PDI's sibling.
9397 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9399 static const gdb_byte *
9400 locate_pdi_sibling (const struct die_reader_specs *reader,
9401 struct partial_die_info *orig_pdi,
9402 const gdb_byte *info_ptr)
9404 /* Do we know the sibling already? */
9406 if (orig_pdi->sibling)
9407 return orig_pdi->sibling;
9409 /* Are there any children to deal with? */
9411 if (!orig_pdi->has_children)
9414 /* Skip the children the long way. */
9416 return skip_children (reader, info_ptr);
9419 /* Expand this partial symbol table into a full symbol table. SELF is
9423 dwarf2_read_symtab (struct partial_symtab *self,
9424 struct objfile *objfile)
9426 struct dwarf2_per_objfile *dwarf2_per_objfile
9427 = get_dwarf2_per_objfile (objfile);
9431 warning (_("bug: psymtab for %s is already read in."),
9438 printf_filtered (_("Reading in symbols for %s..."),
9440 gdb_flush (gdb_stdout);
9443 /* If this psymtab is constructed from a debug-only objfile, the
9444 has_section_at_zero flag will not necessarily be correct. We
9445 can get the correct value for this flag by looking at the data
9446 associated with the (presumably stripped) associated objfile. */
9447 if (objfile->separate_debug_objfile_backlink)
9449 struct dwarf2_per_objfile *dpo_backlink
9450 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9452 dwarf2_per_objfile->has_section_at_zero
9453 = dpo_backlink->has_section_at_zero;
9456 dwarf2_per_objfile->reading_partial_symbols = 0;
9458 psymtab_to_symtab_1 (self);
9460 /* Finish up the debug error message. */
9462 printf_filtered (_("done.\n"));
9465 process_cu_includes (dwarf2_per_objfile);
9468 /* Reading in full CUs. */
9470 /* Add PER_CU to the queue. */
9473 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9474 enum language pretend_language)
9476 struct dwarf2_queue_item *item;
9479 item = XNEW (struct dwarf2_queue_item);
9480 item->per_cu = per_cu;
9481 item->pretend_language = pretend_language;
9484 if (dwarf2_queue == NULL)
9485 dwarf2_queue = item;
9487 dwarf2_queue_tail->next = item;
9489 dwarf2_queue_tail = item;
9492 /* If PER_CU is not yet queued, add it to the queue.
9493 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9495 The result is non-zero if PER_CU was queued, otherwise the result is zero
9496 meaning either PER_CU is already queued or it is already loaded.
9498 N.B. There is an invariant here that if a CU is queued then it is loaded.
9499 The caller is required to load PER_CU if we return non-zero. */
9502 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9503 struct dwarf2_per_cu_data *per_cu,
9504 enum language pretend_language)
9506 /* We may arrive here during partial symbol reading, if we need full
9507 DIEs to process an unusual case (e.g. template arguments). Do
9508 not queue PER_CU, just tell our caller to load its DIEs. */
9509 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9511 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9516 /* Mark the dependence relation so that we don't flush PER_CU
9518 if (dependent_cu != NULL)
9519 dwarf2_add_dependence (dependent_cu, per_cu);
9521 /* If it's already on the queue, we have nothing to do. */
9525 /* If the compilation unit is already loaded, just mark it as
9527 if (per_cu->cu != NULL)
9529 per_cu->cu->last_used = 0;
9533 /* Add it to the queue. */
9534 queue_comp_unit (per_cu, pretend_language);
9539 /* Process the queue. */
9542 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9544 struct dwarf2_queue_item *item, *next_item;
9546 if (dwarf_read_debug)
9548 fprintf_unfiltered (gdb_stdlog,
9549 "Expanding one or more symtabs of objfile %s ...\n",
9550 objfile_name (dwarf2_per_objfile->objfile));
9553 /* The queue starts out with one item, but following a DIE reference
9554 may load a new CU, adding it to the end of the queue. */
9555 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9557 if ((dwarf2_per_objfile->using_index
9558 ? !item->per_cu->v.quick->compunit_symtab
9559 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9560 /* Skip dummy CUs. */
9561 && item->per_cu->cu != NULL)
9563 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9564 unsigned int debug_print_threshold;
9567 if (per_cu->is_debug_types)
9569 struct signatured_type *sig_type =
9570 (struct signatured_type *) per_cu;
9572 sprintf (buf, "TU %s at offset %s",
9573 hex_string (sig_type->signature),
9574 sect_offset_str (per_cu->sect_off));
9575 /* There can be 100s of TUs.
9576 Only print them in verbose mode. */
9577 debug_print_threshold = 2;
9581 sprintf (buf, "CU at offset %s",
9582 sect_offset_str (per_cu->sect_off));
9583 debug_print_threshold = 1;
9586 if (dwarf_read_debug >= debug_print_threshold)
9587 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9589 if (per_cu->is_debug_types)
9590 process_full_type_unit (per_cu, item->pretend_language);
9592 process_full_comp_unit (per_cu, item->pretend_language);
9594 if (dwarf_read_debug >= debug_print_threshold)
9595 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9598 item->per_cu->queued = 0;
9599 next_item = item->next;
9603 dwarf2_queue_tail = NULL;
9605 if (dwarf_read_debug)
9607 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9608 objfile_name (dwarf2_per_objfile->objfile));
9612 /* Read in full symbols for PST, and anything it depends on. */
9615 psymtab_to_symtab_1 (struct partial_symtab *pst)
9617 struct dwarf2_per_cu_data *per_cu;
9623 for (i = 0; i < pst->number_of_dependencies; i++)
9624 if (!pst->dependencies[i]->readin
9625 && pst->dependencies[i]->user == NULL)
9627 /* Inform about additional files that need to be read in. */
9630 /* FIXME: i18n: Need to make this a single string. */
9631 fputs_filtered (" ", gdb_stdout);
9633 fputs_filtered ("and ", gdb_stdout);
9635 printf_filtered ("%s...", pst->dependencies[i]->filename);
9636 wrap_here (""); /* Flush output. */
9637 gdb_flush (gdb_stdout);
9639 psymtab_to_symtab_1 (pst->dependencies[i]);
9642 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9646 /* It's an include file, no symbols to read for it.
9647 Everything is in the parent symtab. */
9652 dw2_do_instantiate_symtab (per_cu, false);
9655 /* Trivial hash function for die_info: the hash value of a DIE
9656 is its offset in .debug_info for this objfile. */
9659 die_hash (const void *item)
9661 const struct die_info *die = (const struct die_info *) item;
9663 return to_underlying (die->sect_off);
9666 /* Trivial comparison function for die_info structures: two DIEs
9667 are equal if they have the same offset. */
9670 die_eq (const void *item_lhs, const void *item_rhs)
9672 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9673 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9675 return die_lhs->sect_off == die_rhs->sect_off;
9678 /* die_reader_func for load_full_comp_unit.
9679 This is identical to read_signatured_type_reader,
9680 but is kept separate for now. */
9683 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9684 const gdb_byte *info_ptr,
9685 struct die_info *comp_unit_die,
9689 struct dwarf2_cu *cu = reader->cu;
9690 enum language *language_ptr = (enum language *) data;
9692 gdb_assert (cu->die_hash == NULL);
9694 htab_create_alloc_ex (cu->header.length / 12,
9698 &cu->comp_unit_obstack,
9699 hashtab_obstack_allocate,
9700 dummy_obstack_deallocate);
9703 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9704 &info_ptr, comp_unit_die);
9705 cu->dies = comp_unit_die;
9706 /* comp_unit_die is not stored in die_hash, no need. */
9708 /* We try not to read any attributes in this function, because not
9709 all CUs needed for references have been loaded yet, and symbol
9710 table processing isn't initialized. But we have to set the CU language,
9711 or we won't be able to build types correctly.
9712 Similarly, if we do not read the producer, we can not apply
9713 producer-specific interpretation. */
9714 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9717 /* Load the DIEs associated with PER_CU into memory. */
9720 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9722 enum language pretend_language)
9724 gdb_assert (! this_cu->is_debug_types);
9726 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9727 load_full_comp_unit_reader, &pretend_language);
9730 /* Add a DIE to the delayed physname list. */
9733 add_to_method_list (struct type *type, int fnfield_index, int index,
9734 const char *name, struct die_info *die,
9735 struct dwarf2_cu *cu)
9737 struct delayed_method_info mi;
9739 mi.fnfield_index = fnfield_index;
9743 cu->method_list.push_back (mi);
9746 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9747 "const" / "volatile". If so, decrements LEN by the length of the
9748 modifier and return true. Otherwise return false. */
9752 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9754 size_t mod_len = sizeof (mod) - 1;
9755 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9763 /* Compute the physnames of any methods on the CU's method list.
9765 The computation of method physnames is delayed in order to avoid the
9766 (bad) condition that one of the method's formal parameters is of an as yet
9770 compute_delayed_physnames (struct dwarf2_cu *cu)
9772 /* Only C++ delays computing physnames. */
9773 if (cu->method_list.empty ())
9775 gdb_assert (cu->language == language_cplus);
9777 for (const delayed_method_info &mi : cu->method_list)
9779 const char *physname;
9780 struct fn_fieldlist *fn_flp
9781 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9782 physname = dwarf2_physname (mi.name, mi.die, cu);
9783 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9784 = physname ? physname : "";
9786 /* Since there's no tag to indicate whether a method is a
9787 const/volatile overload, extract that information out of the
9789 if (physname != NULL)
9791 size_t len = strlen (physname);
9795 if (physname[len] == ')') /* shortcut */
9797 else if (check_modifier (physname, len, " const"))
9798 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9799 else if (check_modifier (physname, len, " volatile"))
9800 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9807 /* The list is no longer needed. */
9808 cu->method_list.clear ();
9811 /* Go objects should be embedded in a DW_TAG_module DIE,
9812 and it's not clear if/how imported objects will appear.
9813 To keep Go support simple until that's worked out,
9814 go back through what we've read and create something usable.
9815 We could do this while processing each DIE, and feels kinda cleaner,
9816 but that way is more invasive.
9817 This is to, for example, allow the user to type "p var" or "b main"
9818 without having to specify the package name, and allow lookups
9819 of module.object to work in contexts that use the expression
9823 fixup_go_packaging (struct dwarf2_cu *cu)
9825 char *package_name = NULL;
9826 struct pending *list;
9829 for (list = *cu->get_builder ()->get_global_symbols ();
9833 for (i = 0; i < list->nsyms; ++i)
9835 struct symbol *sym = list->symbol[i];
9837 if (SYMBOL_LANGUAGE (sym) == language_go
9838 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9840 char *this_package_name = go_symbol_package_name (sym);
9842 if (this_package_name == NULL)
9844 if (package_name == NULL)
9845 package_name = this_package_name;
9848 struct objfile *objfile
9849 = cu->per_cu->dwarf2_per_objfile->objfile;
9850 if (strcmp (package_name, this_package_name) != 0)
9851 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9852 (symbol_symtab (sym) != NULL
9853 ? symtab_to_filename_for_display
9854 (symbol_symtab (sym))
9855 : objfile_name (objfile)),
9856 this_package_name, package_name);
9857 xfree (this_package_name);
9863 if (package_name != NULL)
9865 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9866 const char *saved_package_name
9867 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9869 strlen (package_name));
9870 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9871 saved_package_name);
9874 sym = allocate_symbol (objfile);
9875 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9876 SYMBOL_SET_NAMES (sym, saved_package_name,
9877 strlen (saved_package_name), 0, objfile);
9878 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9879 e.g., "main" finds the "main" module and not C's main(). */
9880 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9881 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9882 SYMBOL_TYPE (sym) = type;
9884 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9886 xfree (package_name);
9890 /* Allocate a fully-qualified name consisting of the two parts on the
9894 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9896 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9899 /* A helper that allocates a struct discriminant_info to attach to a
9902 static struct discriminant_info *
9903 alloc_discriminant_info (struct type *type, int discriminant_index,
9906 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9907 gdb_assert (discriminant_index == -1
9908 || (discriminant_index >= 0
9909 && discriminant_index < TYPE_NFIELDS (type)));
9910 gdb_assert (default_index == -1
9911 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9913 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9915 struct discriminant_info *disc
9916 = ((struct discriminant_info *)
9918 offsetof (struct discriminant_info, discriminants)
9919 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9920 disc->default_index = default_index;
9921 disc->discriminant_index = discriminant_index;
9923 struct dynamic_prop prop;
9924 prop.kind = PROP_UNDEFINED;
9925 prop.data.baton = disc;
9927 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9932 /* Some versions of rustc emitted enums in an unusual way.
9934 Ordinary enums were emitted as unions. The first element of each
9935 structure in the union was named "RUST$ENUM$DISR". This element
9936 held the discriminant.
9938 These versions of Rust also implemented the "non-zero"
9939 optimization. When the enum had two values, and one is empty and
9940 the other holds a pointer that cannot be zero, the pointer is used
9941 as the discriminant, with a zero value meaning the empty variant.
9942 Here, the union's first member is of the form
9943 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9944 where the fieldnos are the indices of the fields that should be
9945 traversed in order to find the field (which may be several fields deep)
9946 and the variantname is the name of the variant of the case when the
9949 This function recognizes whether TYPE is of one of these forms,
9950 and, if so, smashes it to be a variant type. */
9953 quirk_rust_enum (struct type *type, struct objfile *objfile)
9955 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9957 /* We don't need to deal with empty enums. */
9958 if (TYPE_NFIELDS (type) == 0)
9961 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9962 if (TYPE_NFIELDS (type) == 1
9963 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9965 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9967 /* Decode the field name to find the offset of the
9969 ULONGEST bit_offset = 0;
9970 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9971 while (name[0] >= '0' && name[0] <= '9')
9974 unsigned long index = strtoul (name, &tail, 10);
9977 || index >= TYPE_NFIELDS (field_type)
9978 || (TYPE_FIELD_LOC_KIND (field_type, index)
9979 != FIELD_LOC_KIND_BITPOS))
9981 complaint (_("Could not parse Rust enum encoding string \"%s\""
9983 TYPE_FIELD_NAME (type, 0),
9984 objfile_name (objfile));
9989 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9990 field_type = TYPE_FIELD_TYPE (field_type, index);
9993 /* Make a union to hold the variants. */
9994 struct type *union_type = alloc_type (objfile);
9995 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9996 TYPE_NFIELDS (union_type) = 3;
9997 TYPE_FIELDS (union_type)
9998 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9999 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10000 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10002 /* Put the discriminant must at index 0. */
10003 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10004 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10005 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10006 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10008 /* The order of fields doesn't really matter, so put the real
10009 field at index 1 and the data-less field at index 2. */
10010 struct discriminant_info *disc
10011 = alloc_discriminant_info (union_type, 0, 1);
10012 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10013 TYPE_FIELD_NAME (union_type, 1)
10014 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10015 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10016 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10017 TYPE_FIELD_NAME (union_type, 1));
10019 const char *dataless_name
10020 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10022 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10024 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10025 /* NAME points into the original discriminant name, which
10026 already has the correct lifetime. */
10027 TYPE_FIELD_NAME (union_type, 2) = name;
10028 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10029 disc->discriminants[2] = 0;
10031 /* Smash this type to be a structure type. We have to do this
10032 because the type has already been recorded. */
10033 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10034 TYPE_NFIELDS (type) = 1;
10036 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10038 /* Install the variant part. */
10039 TYPE_FIELD_TYPE (type, 0) = union_type;
10040 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10041 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10043 else if (TYPE_NFIELDS (type) == 1)
10045 /* We assume that a union with a single field is a univariant
10047 /* Smash this type to be a structure type. We have to do this
10048 because the type has already been recorded. */
10049 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10051 /* Make a union to hold the variants. */
10052 struct type *union_type = alloc_type (objfile);
10053 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10054 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10055 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10056 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10057 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10059 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10060 const char *variant_name
10061 = rust_last_path_segment (TYPE_NAME (field_type));
10062 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10063 TYPE_NAME (field_type)
10064 = rust_fully_qualify (&objfile->objfile_obstack,
10065 TYPE_NAME (type), variant_name);
10067 /* Install the union in the outer struct type. */
10068 TYPE_NFIELDS (type) = 1;
10070 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10071 TYPE_FIELD_TYPE (type, 0) = union_type;
10072 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10073 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10075 alloc_discriminant_info (union_type, -1, 0);
10079 struct type *disr_type = nullptr;
10080 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10082 disr_type = TYPE_FIELD_TYPE (type, i);
10084 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10086 /* All fields of a true enum will be structs. */
10089 else if (TYPE_NFIELDS (disr_type) == 0)
10091 /* Could be data-less variant, so keep going. */
10092 disr_type = nullptr;
10094 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10095 "RUST$ENUM$DISR") != 0)
10097 /* Not a Rust enum. */
10107 /* If we got here without a discriminant, then it's probably
10109 if (disr_type == nullptr)
10112 /* Smash this type to be a structure type. We have to do this
10113 because the type has already been recorded. */
10114 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10116 /* Make a union to hold the variants. */
10117 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10118 struct type *union_type = alloc_type (objfile);
10119 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10120 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10121 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10122 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10123 TYPE_FIELDS (union_type)
10124 = (struct field *) TYPE_ZALLOC (union_type,
10125 (TYPE_NFIELDS (union_type)
10126 * sizeof (struct field)));
10128 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10129 TYPE_NFIELDS (type) * sizeof (struct field));
10131 /* Install the discriminant at index 0 in the union. */
10132 TYPE_FIELD (union_type, 0) = *disr_field;
10133 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10134 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10136 /* Install the union in the outer struct type. */
10137 TYPE_FIELD_TYPE (type, 0) = union_type;
10138 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10139 TYPE_NFIELDS (type) = 1;
10141 /* Set the size and offset of the union type. */
10142 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10144 /* We need a way to find the correct discriminant given a
10145 variant name. For convenience we build a map here. */
10146 struct type *enum_type = FIELD_TYPE (*disr_field);
10147 std::unordered_map<std::string, ULONGEST> discriminant_map;
10148 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10150 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10153 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10154 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10158 int n_fields = TYPE_NFIELDS (union_type);
10159 struct discriminant_info *disc
10160 = alloc_discriminant_info (union_type, 0, -1);
10161 /* Skip the discriminant here. */
10162 for (int i = 1; i < n_fields; ++i)
10164 /* Find the final word in the name of this variant's type.
10165 That name can be used to look up the correct
10167 const char *variant_name
10168 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10171 auto iter = discriminant_map.find (variant_name);
10172 if (iter != discriminant_map.end ())
10173 disc->discriminants[i] = iter->second;
10175 /* Remove the discriminant field, if it exists. */
10176 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10177 if (TYPE_NFIELDS (sub_type) > 0)
10179 --TYPE_NFIELDS (sub_type);
10180 ++TYPE_FIELDS (sub_type);
10182 TYPE_FIELD_NAME (union_type, i) = variant_name;
10183 TYPE_NAME (sub_type)
10184 = rust_fully_qualify (&objfile->objfile_obstack,
10185 TYPE_NAME (type), variant_name);
10190 /* Rewrite some Rust unions to be structures with variants parts. */
10193 rust_union_quirks (struct dwarf2_cu *cu)
10195 gdb_assert (cu->language == language_rust);
10196 for (type *type_ : cu->rust_unions)
10197 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10198 /* We don't need this any more. */
10199 cu->rust_unions.clear ();
10202 /* Return the symtab for PER_CU. This works properly regardless of
10203 whether we're using the index or psymtabs. */
10205 static struct compunit_symtab *
10206 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10208 return (per_cu->dwarf2_per_objfile->using_index
10209 ? per_cu->v.quick->compunit_symtab
10210 : per_cu->v.psymtab->compunit_symtab);
10213 /* A helper function for computing the list of all symbol tables
10214 included by PER_CU. */
10217 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10218 htab_t all_children, htab_t all_type_symtabs,
10219 struct dwarf2_per_cu_data *per_cu,
10220 struct compunit_symtab *immediate_parent)
10224 struct compunit_symtab *cust;
10225 struct dwarf2_per_cu_data *iter;
10227 slot = htab_find_slot (all_children, per_cu, INSERT);
10230 /* This inclusion and its children have been processed. */
10235 /* Only add a CU if it has a symbol table. */
10236 cust = get_compunit_symtab (per_cu);
10239 /* If this is a type unit only add its symbol table if we haven't
10240 seen it yet (type unit per_cu's can share symtabs). */
10241 if (per_cu->is_debug_types)
10243 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10247 result->push_back (cust);
10248 if (cust->user == NULL)
10249 cust->user = immediate_parent;
10254 result->push_back (cust);
10255 if (cust->user == NULL)
10256 cust->user = immediate_parent;
10261 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10264 recursively_compute_inclusions (result, all_children,
10265 all_type_symtabs, iter, cust);
10269 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10273 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10275 gdb_assert (! per_cu->is_debug_types);
10277 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10280 struct dwarf2_per_cu_data *per_cu_iter;
10281 std::vector<compunit_symtab *> result_symtabs;
10282 htab_t all_children, all_type_symtabs;
10283 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10285 /* If we don't have a symtab, we can just skip this case. */
10289 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10290 NULL, xcalloc, xfree);
10291 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10292 NULL, xcalloc, xfree);
10295 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10299 recursively_compute_inclusions (&result_symtabs, all_children,
10300 all_type_symtabs, per_cu_iter,
10304 /* Now we have a transitive closure of all the included symtabs. */
10305 len = result_symtabs.size ();
10307 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10308 struct compunit_symtab *, len + 1);
10309 memcpy (cust->includes, result_symtabs.data (),
10310 len * sizeof (compunit_symtab *));
10311 cust->includes[len] = NULL;
10313 htab_delete (all_children);
10314 htab_delete (all_type_symtabs);
10318 /* Compute the 'includes' field for the symtabs of all the CUs we just
10322 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10324 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10326 if (! iter->is_debug_types)
10327 compute_compunit_symtab_includes (iter);
10330 dwarf2_per_objfile->just_read_cus.clear ();
10333 /* Generate full symbol information for PER_CU, whose DIEs have
10334 already been loaded into memory. */
10337 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10338 enum language pretend_language)
10340 struct dwarf2_cu *cu = per_cu->cu;
10341 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10342 struct objfile *objfile = dwarf2_per_objfile->objfile;
10343 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10344 CORE_ADDR lowpc, highpc;
10345 struct compunit_symtab *cust;
10346 CORE_ADDR baseaddr;
10347 struct block *static_block;
10350 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10352 /* Clear the list here in case something was left over. */
10353 cu->method_list.clear ();
10355 cu->language = pretend_language;
10356 cu->language_defn = language_def (cu->language);
10358 /* Do line number decoding in read_file_scope () */
10359 process_die (cu->dies, cu);
10361 /* For now fudge the Go package. */
10362 if (cu->language == language_go)
10363 fixup_go_packaging (cu);
10365 /* Now that we have processed all the DIEs in the CU, all the types
10366 should be complete, and it should now be safe to compute all of the
10368 compute_delayed_physnames (cu);
10370 if (cu->language == language_rust)
10371 rust_union_quirks (cu);
10373 /* Some compilers don't define a DW_AT_high_pc attribute for the
10374 compilation unit. If the DW_AT_high_pc is missing, synthesize
10375 it, by scanning the DIE's below the compilation unit. */
10376 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10378 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10379 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10381 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10382 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10383 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10384 addrmap to help ensure it has an accurate map of pc values belonging to
10386 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10388 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10389 SECT_OFF_TEXT (objfile),
10394 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10396 /* Set symtab language to language from DW_AT_language. If the
10397 compilation is from a C file generated by language preprocessors, do
10398 not set the language if it was already deduced by start_subfile. */
10399 if (!(cu->language == language_c
10400 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10401 COMPUNIT_FILETABS (cust)->language = cu->language;
10403 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10404 produce DW_AT_location with location lists but it can be possibly
10405 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10406 there were bugs in prologue debug info, fixed later in GCC-4.5
10407 by "unwind info for epilogues" patch (which is not directly related).
10409 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10410 needed, it would be wrong due to missing DW_AT_producer there.
10412 Still one can confuse GDB by using non-standard GCC compilation
10413 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10415 if (cu->has_loclist && gcc_4_minor >= 5)
10416 cust->locations_valid = 1;
10418 if (gcc_4_minor >= 5)
10419 cust->epilogue_unwind_valid = 1;
10421 cust->call_site_htab = cu->call_site_htab;
10424 if (dwarf2_per_objfile->using_index)
10425 per_cu->v.quick->compunit_symtab = cust;
10428 struct partial_symtab *pst = per_cu->v.psymtab;
10429 pst->compunit_symtab = cust;
10433 /* Push it for inclusion processing later. */
10434 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10436 /* Not needed any more. */
10437 cu->reset_builder ();
10440 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10441 already been loaded into memory. */
10444 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10445 enum language pretend_language)
10447 struct dwarf2_cu *cu = per_cu->cu;
10448 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10449 struct objfile *objfile = dwarf2_per_objfile->objfile;
10450 struct compunit_symtab *cust;
10451 struct signatured_type *sig_type;
10453 gdb_assert (per_cu->is_debug_types);
10454 sig_type = (struct signatured_type *) per_cu;
10456 /* Clear the list here in case something was left over. */
10457 cu->method_list.clear ();
10459 cu->language = pretend_language;
10460 cu->language_defn = language_def (cu->language);
10462 /* The symbol tables are set up in read_type_unit_scope. */
10463 process_die (cu->dies, cu);
10465 /* For now fudge the Go package. */
10466 if (cu->language == language_go)
10467 fixup_go_packaging (cu);
10469 /* Now that we have processed all the DIEs in the CU, all the types
10470 should be complete, and it should now be safe to compute all of the
10472 compute_delayed_physnames (cu);
10474 if (cu->language == language_rust)
10475 rust_union_quirks (cu);
10477 /* TUs share symbol tables.
10478 If this is the first TU to use this symtab, complete the construction
10479 of it with end_expandable_symtab. Otherwise, complete the addition of
10480 this TU's symbols to the existing symtab. */
10481 if (sig_type->type_unit_group->compunit_symtab == NULL)
10483 buildsym_compunit *builder = cu->get_builder ();
10484 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10485 sig_type->type_unit_group->compunit_symtab = cust;
10489 /* Set symtab language to language from DW_AT_language. If the
10490 compilation is from a C file generated by language preprocessors,
10491 do not set the language if it was already deduced by
10493 if (!(cu->language == language_c
10494 && COMPUNIT_FILETABS (cust)->language != language_c))
10495 COMPUNIT_FILETABS (cust)->language = cu->language;
10500 cu->get_builder ()->augment_type_symtab ();
10501 cust = sig_type->type_unit_group->compunit_symtab;
10504 if (dwarf2_per_objfile->using_index)
10505 per_cu->v.quick->compunit_symtab = cust;
10508 struct partial_symtab *pst = per_cu->v.psymtab;
10509 pst->compunit_symtab = cust;
10513 /* Not needed any more. */
10514 cu->reset_builder ();
10517 /* Process an imported unit DIE. */
10520 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10522 struct attribute *attr;
10524 /* For now we don't handle imported units in type units. */
10525 if (cu->per_cu->is_debug_types)
10527 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10528 " supported in type units [in module %s]"),
10529 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10532 attr = dwarf2_attr (die, DW_AT_import, cu);
10535 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10536 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10537 dwarf2_per_cu_data *per_cu
10538 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10539 cu->per_cu->dwarf2_per_objfile);
10541 /* If necessary, add it to the queue and load its DIEs. */
10542 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10543 load_full_comp_unit (per_cu, false, cu->language);
10545 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10550 /* RAII object that represents a process_die scope: i.e.,
10551 starts/finishes processing a DIE. */
10552 class process_die_scope
10555 process_die_scope (die_info *die, dwarf2_cu *cu)
10556 : m_die (die), m_cu (cu)
10558 /* We should only be processing DIEs not already in process. */
10559 gdb_assert (!m_die->in_process);
10560 m_die->in_process = true;
10563 ~process_die_scope ()
10565 m_die->in_process = false;
10567 /* If we're done processing the DIE for the CU that owns the line
10568 header, we don't need the line header anymore. */
10569 if (m_cu->line_header_die_owner == m_die)
10571 delete m_cu->line_header;
10572 m_cu->line_header = NULL;
10573 m_cu->line_header_die_owner = NULL;
10582 /* Process a die and its children. */
10585 process_die (struct die_info *die, struct dwarf2_cu *cu)
10587 process_die_scope scope (die, cu);
10591 case DW_TAG_padding:
10593 case DW_TAG_compile_unit:
10594 case DW_TAG_partial_unit:
10595 read_file_scope (die, cu);
10597 case DW_TAG_type_unit:
10598 read_type_unit_scope (die, cu);
10600 case DW_TAG_subprogram:
10601 case DW_TAG_inlined_subroutine:
10602 read_func_scope (die, cu);
10604 case DW_TAG_lexical_block:
10605 case DW_TAG_try_block:
10606 case DW_TAG_catch_block:
10607 read_lexical_block_scope (die, cu);
10609 case DW_TAG_call_site:
10610 case DW_TAG_GNU_call_site:
10611 read_call_site_scope (die, cu);
10613 case DW_TAG_class_type:
10614 case DW_TAG_interface_type:
10615 case DW_TAG_structure_type:
10616 case DW_TAG_union_type:
10617 process_structure_scope (die, cu);
10619 case DW_TAG_enumeration_type:
10620 process_enumeration_scope (die, cu);
10623 /* These dies have a type, but processing them does not create
10624 a symbol or recurse to process the children. Therefore we can
10625 read them on-demand through read_type_die. */
10626 case DW_TAG_subroutine_type:
10627 case DW_TAG_set_type:
10628 case DW_TAG_array_type:
10629 case DW_TAG_pointer_type:
10630 case DW_TAG_ptr_to_member_type:
10631 case DW_TAG_reference_type:
10632 case DW_TAG_rvalue_reference_type:
10633 case DW_TAG_string_type:
10636 case DW_TAG_base_type:
10637 case DW_TAG_subrange_type:
10638 case DW_TAG_typedef:
10639 /* Add a typedef symbol for the type definition, if it has a
10641 new_symbol (die, read_type_die (die, cu), cu);
10643 case DW_TAG_common_block:
10644 read_common_block (die, cu);
10646 case DW_TAG_common_inclusion:
10648 case DW_TAG_namespace:
10649 cu->processing_has_namespace_info = true;
10650 read_namespace (die, cu);
10652 case DW_TAG_module:
10653 cu->processing_has_namespace_info = true;
10654 read_module (die, cu);
10656 case DW_TAG_imported_declaration:
10657 cu->processing_has_namespace_info = true;
10658 if (read_namespace_alias (die, cu))
10660 /* The declaration is not a global namespace alias. */
10661 /* Fall through. */
10662 case DW_TAG_imported_module:
10663 cu->processing_has_namespace_info = true;
10664 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10665 || cu->language != language_fortran))
10666 complaint (_("Tag '%s' has unexpected children"),
10667 dwarf_tag_name (die->tag));
10668 read_import_statement (die, cu);
10671 case DW_TAG_imported_unit:
10672 process_imported_unit_die (die, cu);
10675 case DW_TAG_variable:
10676 read_variable (die, cu);
10680 new_symbol (die, NULL, cu);
10685 /* DWARF name computation. */
10687 /* A helper function for dwarf2_compute_name which determines whether DIE
10688 needs to have the name of the scope prepended to the name listed in the
10692 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10694 struct attribute *attr;
10698 case DW_TAG_namespace:
10699 case DW_TAG_typedef:
10700 case DW_TAG_class_type:
10701 case DW_TAG_interface_type:
10702 case DW_TAG_structure_type:
10703 case DW_TAG_union_type:
10704 case DW_TAG_enumeration_type:
10705 case DW_TAG_enumerator:
10706 case DW_TAG_subprogram:
10707 case DW_TAG_inlined_subroutine:
10708 case DW_TAG_member:
10709 case DW_TAG_imported_declaration:
10712 case DW_TAG_variable:
10713 case DW_TAG_constant:
10714 /* We only need to prefix "globally" visible variables. These include
10715 any variable marked with DW_AT_external or any variable that
10716 lives in a namespace. [Variables in anonymous namespaces
10717 require prefixing, but they are not DW_AT_external.] */
10719 if (dwarf2_attr (die, DW_AT_specification, cu))
10721 struct dwarf2_cu *spec_cu = cu;
10723 return die_needs_namespace (die_specification (die, &spec_cu),
10727 attr = dwarf2_attr (die, DW_AT_external, cu);
10728 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10729 && die->parent->tag != DW_TAG_module)
10731 /* A variable in a lexical block of some kind does not need a
10732 namespace, even though in C++ such variables may be external
10733 and have a mangled name. */
10734 if (die->parent->tag == DW_TAG_lexical_block
10735 || die->parent->tag == DW_TAG_try_block
10736 || die->parent->tag == DW_TAG_catch_block
10737 || die->parent->tag == DW_TAG_subprogram)
10746 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10747 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10748 defined for the given DIE. */
10750 static struct attribute *
10751 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10753 struct attribute *attr;
10755 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10757 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10762 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10763 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10764 defined for the given DIE. */
10766 static const char *
10767 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10769 const char *linkage_name;
10771 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10772 if (linkage_name == NULL)
10773 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10775 return linkage_name;
10778 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10779 compute the physname for the object, which include a method's:
10780 - formal parameters (C++),
10781 - receiver type (Go),
10783 The term "physname" is a bit confusing.
10784 For C++, for example, it is the demangled name.
10785 For Go, for example, it's the mangled name.
10787 For Ada, return the DIE's linkage name rather than the fully qualified
10788 name. PHYSNAME is ignored..
10790 The result is allocated on the objfile_obstack and canonicalized. */
10792 static const char *
10793 dwarf2_compute_name (const char *name,
10794 struct die_info *die, struct dwarf2_cu *cu,
10797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10800 name = dwarf2_name (die, cu);
10802 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10803 but otherwise compute it by typename_concat inside GDB.
10804 FIXME: Actually this is not really true, or at least not always true.
10805 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10806 Fortran names because there is no mangling standard. So new_symbol
10807 will set the demangled name to the result of dwarf2_full_name, and it is
10808 the demangled name that GDB uses if it exists. */
10809 if (cu->language == language_ada
10810 || (cu->language == language_fortran && physname))
10812 /* For Ada unit, we prefer the linkage name over the name, as
10813 the former contains the exported name, which the user expects
10814 to be able to reference. Ideally, we want the user to be able
10815 to reference this entity using either natural or linkage name,
10816 but we haven't started looking at this enhancement yet. */
10817 const char *linkage_name = dw2_linkage_name (die, cu);
10819 if (linkage_name != NULL)
10820 return linkage_name;
10823 /* These are the only languages we know how to qualify names in. */
10825 && (cu->language == language_cplus
10826 || cu->language == language_fortran || cu->language == language_d
10827 || cu->language == language_rust))
10829 if (die_needs_namespace (die, cu))
10831 const char *prefix;
10832 const char *canonical_name = NULL;
10836 prefix = determine_prefix (die, cu);
10837 if (*prefix != '\0')
10839 char *prefixed_name = typename_concat (NULL, prefix, name,
10842 buf.puts (prefixed_name);
10843 xfree (prefixed_name);
10848 /* Template parameters may be specified in the DIE's DW_AT_name, or
10849 as children with DW_TAG_template_type_param or
10850 DW_TAG_value_type_param. If the latter, add them to the name
10851 here. If the name already has template parameters, then
10852 skip this step; some versions of GCC emit both, and
10853 it is more efficient to use the pre-computed name.
10855 Something to keep in mind about this process: it is very
10856 unlikely, or in some cases downright impossible, to produce
10857 something that will match the mangled name of a function.
10858 If the definition of the function has the same debug info,
10859 we should be able to match up with it anyway. But fallbacks
10860 using the minimal symbol, for instance to find a method
10861 implemented in a stripped copy of libstdc++, will not work.
10862 If we do not have debug info for the definition, we will have to
10863 match them up some other way.
10865 When we do name matching there is a related problem with function
10866 templates; two instantiated function templates are allowed to
10867 differ only by their return types, which we do not add here. */
10869 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10871 struct attribute *attr;
10872 struct die_info *child;
10875 die->building_fullname = 1;
10877 for (child = die->child; child != NULL; child = child->sibling)
10881 const gdb_byte *bytes;
10882 struct dwarf2_locexpr_baton *baton;
10885 if (child->tag != DW_TAG_template_type_param
10886 && child->tag != DW_TAG_template_value_param)
10897 attr = dwarf2_attr (child, DW_AT_type, cu);
10900 complaint (_("template parameter missing DW_AT_type"));
10901 buf.puts ("UNKNOWN_TYPE");
10904 type = die_type (child, cu);
10906 if (child->tag == DW_TAG_template_type_param)
10908 c_print_type (type, "", &buf, -1, 0, cu->language,
10909 &type_print_raw_options);
10913 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10916 complaint (_("template parameter missing "
10917 "DW_AT_const_value"));
10918 buf.puts ("UNKNOWN_VALUE");
10922 dwarf2_const_value_attr (attr, type, name,
10923 &cu->comp_unit_obstack, cu,
10924 &value, &bytes, &baton);
10926 if (TYPE_NOSIGN (type))
10927 /* GDB prints characters as NUMBER 'CHAR'. If that's
10928 changed, this can use value_print instead. */
10929 c_printchar (value, type, &buf);
10932 struct value_print_options opts;
10935 v = dwarf2_evaluate_loc_desc (type, NULL,
10939 else if (bytes != NULL)
10941 v = allocate_value (type);
10942 memcpy (value_contents_writeable (v), bytes,
10943 TYPE_LENGTH (type));
10946 v = value_from_longest (type, value);
10948 /* Specify decimal so that we do not depend on
10950 get_formatted_print_options (&opts, 'd');
10952 value_print (v, &buf, &opts);
10957 die->building_fullname = 0;
10961 /* Close the argument list, with a space if necessary
10962 (nested templates). */
10963 if (!buf.empty () && buf.string ().back () == '>')
10970 /* For C++ methods, append formal parameter type
10971 information, if PHYSNAME. */
10973 if (physname && die->tag == DW_TAG_subprogram
10974 && cu->language == language_cplus)
10976 struct type *type = read_type_die (die, cu);
10978 c_type_print_args (type, &buf, 1, cu->language,
10979 &type_print_raw_options);
10981 if (cu->language == language_cplus)
10983 /* Assume that an artificial first parameter is
10984 "this", but do not crash if it is not. RealView
10985 marks unnamed (and thus unused) parameters as
10986 artificial; there is no way to differentiate
10988 if (TYPE_NFIELDS (type) > 0
10989 && TYPE_FIELD_ARTIFICIAL (type, 0)
10990 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10991 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10993 buf.puts (" const");
10997 const std::string &intermediate_name = buf.string ();
10999 if (cu->language == language_cplus)
11001 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11002 &objfile->per_bfd->storage_obstack);
11004 /* If we only computed INTERMEDIATE_NAME, or if
11005 INTERMEDIATE_NAME is already canonical, then we need to
11006 copy it to the appropriate obstack. */
11007 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11008 name = ((const char *)
11009 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11010 intermediate_name.c_str (),
11011 intermediate_name.length ()));
11013 name = canonical_name;
11020 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11021 If scope qualifiers are appropriate they will be added. The result
11022 will be allocated on the storage_obstack, or NULL if the DIE does
11023 not have a name. NAME may either be from a previous call to
11024 dwarf2_name or NULL.
11026 The output string will be canonicalized (if C++). */
11028 static const char *
11029 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11031 return dwarf2_compute_name (name, die, cu, 0);
11034 /* Construct a physname for the given DIE in CU. NAME may either be
11035 from a previous call to dwarf2_name or NULL. The result will be
11036 allocated on the objfile_objstack or NULL if the DIE does not have a
11039 The output string will be canonicalized (if C++). */
11041 static const char *
11042 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11045 const char *retval, *mangled = NULL, *canon = NULL;
11048 /* In this case dwarf2_compute_name is just a shortcut not building anything
11050 if (!die_needs_namespace (die, cu))
11051 return dwarf2_compute_name (name, die, cu, 1);
11053 mangled = dw2_linkage_name (die, cu);
11055 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11056 See https://github.com/rust-lang/rust/issues/32925. */
11057 if (cu->language == language_rust && mangled != NULL
11058 && strchr (mangled, '{') != NULL)
11061 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11063 gdb::unique_xmalloc_ptr<char> demangled;
11064 if (mangled != NULL)
11067 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11069 /* Do nothing (do not demangle the symbol name). */
11071 else if (cu->language == language_go)
11073 /* This is a lie, but we already lie to the caller new_symbol.
11074 new_symbol assumes we return the mangled name.
11075 This just undoes that lie until things are cleaned up. */
11079 /* Use DMGL_RET_DROP for C++ template functions to suppress
11080 their return type. It is easier for GDB users to search
11081 for such functions as `name(params)' than `long name(params)'.
11082 In such case the minimal symbol names do not match the full
11083 symbol names but for template functions there is never a need
11084 to look up their definition from their declaration so
11085 the only disadvantage remains the minimal symbol variant
11086 `long name(params)' does not have the proper inferior type. */
11087 demangled.reset (gdb_demangle (mangled,
11088 (DMGL_PARAMS | DMGL_ANSI
11089 | DMGL_RET_DROP)));
11092 canon = demangled.get ();
11100 if (canon == NULL || check_physname)
11102 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11104 if (canon != NULL && strcmp (physname, canon) != 0)
11106 /* It may not mean a bug in GDB. The compiler could also
11107 compute DW_AT_linkage_name incorrectly. But in such case
11108 GDB would need to be bug-to-bug compatible. */
11110 complaint (_("Computed physname <%s> does not match demangled <%s> "
11111 "(from linkage <%s>) - DIE at %s [in module %s]"),
11112 physname, canon, mangled, sect_offset_str (die->sect_off),
11113 objfile_name (objfile));
11115 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11116 is available here - over computed PHYSNAME. It is safer
11117 against both buggy GDB and buggy compilers. */
11131 retval = ((const char *)
11132 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11133 retval, strlen (retval)));
11138 /* Inspect DIE in CU for a namespace alias. If one exists, record
11139 a new symbol for it.
11141 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11144 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11146 struct attribute *attr;
11148 /* If the die does not have a name, this is not a namespace
11150 attr = dwarf2_attr (die, DW_AT_name, cu);
11154 struct die_info *d = die;
11155 struct dwarf2_cu *imported_cu = cu;
11157 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11158 keep inspecting DIEs until we hit the underlying import. */
11159 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11160 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11162 attr = dwarf2_attr (d, DW_AT_import, cu);
11166 d = follow_die_ref (d, attr, &imported_cu);
11167 if (d->tag != DW_TAG_imported_declaration)
11171 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11173 complaint (_("DIE at %s has too many recursively imported "
11174 "declarations"), sect_offset_str (d->sect_off));
11181 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11183 type = get_die_type_at_offset (sect_off, cu->per_cu);
11184 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11186 /* This declaration is a global namespace alias. Add
11187 a symbol for it whose type is the aliased namespace. */
11188 new_symbol (die, type, cu);
11197 /* Return the using directives repository (global or local?) to use in the
11198 current context for CU.
11200 For Ada, imported declarations can materialize renamings, which *may* be
11201 global. However it is impossible (for now?) in DWARF to distinguish
11202 "external" imported declarations and "static" ones. As all imported
11203 declarations seem to be static in all other languages, make them all CU-wide
11204 global only in Ada. */
11206 static struct using_direct **
11207 using_directives (struct dwarf2_cu *cu)
11209 if (cu->language == language_ada
11210 && cu->get_builder ()->outermost_context_p ())
11211 return cu->get_builder ()->get_global_using_directives ();
11213 return cu->get_builder ()->get_local_using_directives ();
11216 /* Read the import statement specified by the given die and record it. */
11219 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11221 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11222 struct attribute *import_attr;
11223 struct die_info *imported_die, *child_die;
11224 struct dwarf2_cu *imported_cu;
11225 const char *imported_name;
11226 const char *imported_name_prefix;
11227 const char *canonical_name;
11228 const char *import_alias;
11229 const char *imported_declaration = NULL;
11230 const char *import_prefix;
11231 std::vector<const char *> excludes;
11233 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11234 if (import_attr == NULL)
11236 complaint (_("Tag '%s' has no DW_AT_import"),
11237 dwarf_tag_name (die->tag));
11242 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11243 imported_name = dwarf2_name (imported_die, imported_cu);
11244 if (imported_name == NULL)
11246 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11248 The import in the following code:
11262 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11263 <52> DW_AT_decl_file : 1
11264 <53> DW_AT_decl_line : 6
11265 <54> DW_AT_import : <0x75>
11266 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11267 <59> DW_AT_name : B
11268 <5b> DW_AT_decl_file : 1
11269 <5c> DW_AT_decl_line : 2
11270 <5d> DW_AT_type : <0x6e>
11272 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11273 <76> DW_AT_byte_size : 4
11274 <77> DW_AT_encoding : 5 (signed)
11276 imports the wrong die ( 0x75 instead of 0x58 ).
11277 This case will be ignored until the gcc bug is fixed. */
11281 /* Figure out the local name after import. */
11282 import_alias = dwarf2_name (die, cu);
11284 /* Figure out where the statement is being imported to. */
11285 import_prefix = determine_prefix (die, cu);
11287 /* Figure out what the scope of the imported die is and prepend it
11288 to the name of the imported die. */
11289 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11291 if (imported_die->tag != DW_TAG_namespace
11292 && imported_die->tag != DW_TAG_module)
11294 imported_declaration = imported_name;
11295 canonical_name = imported_name_prefix;
11297 else if (strlen (imported_name_prefix) > 0)
11298 canonical_name = obconcat (&objfile->objfile_obstack,
11299 imported_name_prefix,
11300 (cu->language == language_d ? "." : "::"),
11301 imported_name, (char *) NULL);
11303 canonical_name = imported_name;
11305 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11306 for (child_die = die->child; child_die && child_die->tag;
11307 child_die = sibling_die (child_die))
11309 /* DWARF-4: A Fortran use statement with a “rename list” may be
11310 represented by an imported module entry with an import attribute
11311 referring to the module and owned entries corresponding to those
11312 entities that are renamed as part of being imported. */
11314 if (child_die->tag != DW_TAG_imported_declaration)
11316 complaint (_("child DW_TAG_imported_declaration expected "
11317 "- DIE at %s [in module %s]"),
11318 sect_offset_str (child_die->sect_off),
11319 objfile_name (objfile));
11323 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11324 if (import_attr == NULL)
11326 complaint (_("Tag '%s' has no DW_AT_import"),
11327 dwarf_tag_name (child_die->tag));
11332 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11334 imported_name = dwarf2_name (imported_die, imported_cu);
11335 if (imported_name == NULL)
11337 complaint (_("child DW_TAG_imported_declaration has unknown "
11338 "imported name - DIE at %s [in module %s]"),
11339 sect_offset_str (child_die->sect_off),
11340 objfile_name (objfile));
11344 excludes.push_back (imported_name);
11346 process_die (child_die, cu);
11349 add_using_directive (using_directives (cu),
11353 imported_declaration,
11356 &objfile->objfile_obstack);
11359 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11360 types, but gives them a size of zero. Starting with version 14,
11361 ICC is compatible with GCC. */
11364 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11366 if (!cu->checked_producer)
11367 check_producer (cu);
11369 return cu->producer_is_icc_lt_14;
11372 /* ICC generates a DW_AT_type for C void functions. This was observed on
11373 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11374 which says that void functions should not have a DW_AT_type. */
11377 producer_is_icc (struct dwarf2_cu *cu)
11379 if (!cu->checked_producer)
11380 check_producer (cu);
11382 return cu->producer_is_icc;
11385 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11386 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11387 this, it was first present in GCC release 4.3.0. */
11390 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11392 if (!cu->checked_producer)
11393 check_producer (cu);
11395 return cu->producer_is_gcc_lt_4_3;
11398 static file_and_directory
11399 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11401 file_and_directory res;
11403 /* Find the filename. Do not use dwarf2_name here, since the filename
11404 is not a source language identifier. */
11405 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11406 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11408 if (res.comp_dir == NULL
11409 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11410 && IS_ABSOLUTE_PATH (res.name))
11412 res.comp_dir_storage = ldirname (res.name);
11413 if (!res.comp_dir_storage.empty ())
11414 res.comp_dir = res.comp_dir_storage.c_str ();
11416 if (res.comp_dir != NULL)
11418 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11419 directory, get rid of it. */
11420 const char *cp = strchr (res.comp_dir, ':');
11422 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11423 res.comp_dir = cp + 1;
11426 if (res.name == NULL)
11427 res.name = "<unknown>";
11432 /* Handle DW_AT_stmt_list for a compilation unit.
11433 DIE is the DW_TAG_compile_unit die for CU.
11434 COMP_DIR is the compilation directory. LOWPC is passed to
11435 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11438 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11439 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11441 struct dwarf2_per_objfile *dwarf2_per_objfile
11442 = cu->per_cu->dwarf2_per_objfile;
11443 struct objfile *objfile = dwarf2_per_objfile->objfile;
11444 struct attribute *attr;
11445 struct line_header line_header_local;
11446 hashval_t line_header_local_hash;
11448 int decode_mapping;
11450 gdb_assert (! cu->per_cu->is_debug_types);
11452 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11456 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11458 /* The line header hash table is only created if needed (it exists to
11459 prevent redundant reading of the line table for partial_units).
11460 If we're given a partial_unit, we'll need it. If we're given a
11461 compile_unit, then use the line header hash table if it's already
11462 created, but don't create one just yet. */
11464 if (dwarf2_per_objfile->line_header_hash == NULL
11465 && die->tag == DW_TAG_partial_unit)
11467 dwarf2_per_objfile->line_header_hash
11468 = htab_create_alloc_ex (127, line_header_hash_voidp,
11469 line_header_eq_voidp,
11470 free_line_header_voidp,
11471 &objfile->objfile_obstack,
11472 hashtab_obstack_allocate,
11473 dummy_obstack_deallocate);
11476 line_header_local.sect_off = line_offset;
11477 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11478 line_header_local_hash = line_header_hash (&line_header_local);
11479 if (dwarf2_per_objfile->line_header_hash != NULL)
11481 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11482 &line_header_local,
11483 line_header_local_hash, NO_INSERT);
11485 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11486 is not present in *SLOT (since if there is something in *SLOT then
11487 it will be for a partial_unit). */
11488 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11490 gdb_assert (*slot != NULL);
11491 cu->line_header = (struct line_header *) *slot;
11496 /* dwarf_decode_line_header does not yet provide sufficient information.
11497 We always have to call also dwarf_decode_lines for it. */
11498 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11502 cu->line_header = lh.release ();
11503 cu->line_header_die_owner = die;
11505 if (dwarf2_per_objfile->line_header_hash == NULL)
11509 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11510 &line_header_local,
11511 line_header_local_hash, INSERT);
11512 gdb_assert (slot != NULL);
11514 if (slot != NULL && *slot == NULL)
11516 /* This newly decoded line number information unit will be owned
11517 by line_header_hash hash table. */
11518 *slot = cu->line_header;
11519 cu->line_header_die_owner = NULL;
11523 /* We cannot free any current entry in (*slot) as that struct line_header
11524 may be already used by multiple CUs. Create only temporary decoded
11525 line_header for this CU - it may happen at most once for each line
11526 number information unit. And if we're not using line_header_hash
11527 then this is what we want as well. */
11528 gdb_assert (die->tag != DW_TAG_partial_unit);
11530 decode_mapping = (die->tag != DW_TAG_partial_unit);
11531 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11536 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11539 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11541 struct dwarf2_per_objfile *dwarf2_per_objfile
11542 = cu->per_cu->dwarf2_per_objfile;
11543 struct objfile *objfile = dwarf2_per_objfile->objfile;
11544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11545 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11546 CORE_ADDR highpc = ((CORE_ADDR) 0);
11547 struct attribute *attr;
11548 struct die_info *child_die;
11549 CORE_ADDR baseaddr;
11551 prepare_one_comp_unit (cu, die, cu->language);
11552 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11554 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11556 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11557 from finish_block. */
11558 if (lowpc == ((CORE_ADDR) -1))
11560 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11562 file_and_directory fnd = find_file_and_directory (die, cu);
11564 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11565 standardised yet. As a workaround for the language detection we fall
11566 back to the DW_AT_producer string. */
11567 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11568 cu->language = language_opencl;
11570 /* Similar hack for Go. */
11571 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11572 set_cu_language (DW_LANG_Go, cu);
11574 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11576 /* Decode line number information if present. We do this before
11577 processing child DIEs, so that the line header table is available
11578 for DW_AT_decl_file. */
11579 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11581 /* Process all dies in compilation unit. */
11582 if (die->child != NULL)
11584 child_die = die->child;
11585 while (child_die && child_die->tag)
11587 process_die (child_die, cu);
11588 child_die = sibling_die (child_die);
11592 /* Decode macro information, if present. Dwarf 2 macro information
11593 refers to information in the line number info statement program
11594 header, so we can only read it if we've read the header
11596 attr = dwarf2_attr (die, DW_AT_macros, cu);
11598 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11599 if (attr && cu->line_header)
11601 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11602 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11604 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11608 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11609 if (attr && cu->line_header)
11611 unsigned int macro_offset = DW_UNSND (attr);
11613 dwarf_decode_macros (cu, macro_offset, 0);
11619 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11621 struct type_unit_group *tu_group;
11623 struct attribute *attr;
11625 struct signatured_type *sig_type;
11627 gdb_assert (per_cu->is_debug_types);
11628 sig_type = (struct signatured_type *) per_cu;
11630 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11632 /* If we're using .gdb_index (includes -readnow) then
11633 per_cu->type_unit_group may not have been set up yet. */
11634 if (sig_type->type_unit_group == NULL)
11635 sig_type->type_unit_group = get_type_unit_group (this, attr);
11636 tu_group = sig_type->type_unit_group;
11638 /* If we've already processed this stmt_list there's no real need to
11639 do it again, we could fake it and just recreate the part we need
11640 (file name,index -> symtab mapping). If data shows this optimization
11641 is useful we can do it then. */
11642 first_time = tu_group->compunit_symtab == NULL;
11644 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11649 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11650 lh = dwarf_decode_line_header (line_offset, this);
11655 start_symtab ("", NULL, 0);
11658 gdb_assert (tu_group->symtabs == NULL);
11659 gdb_assert (m_builder == nullptr);
11660 struct compunit_symtab *cust = tu_group->compunit_symtab;
11661 m_builder.reset (new struct buildsym_compunit
11662 (COMPUNIT_OBJFILE (cust), "",
11663 COMPUNIT_DIRNAME (cust),
11664 compunit_language (cust),
11670 line_header = lh.release ();
11671 line_header_die_owner = die;
11675 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11677 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11678 still initializing it, and our caller (a few levels up)
11679 process_full_type_unit still needs to know if this is the first
11682 tu_group->num_symtabs = line_header->file_names.size ();
11683 tu_group->symtabs = XNEWVEC (struct symtab *,
11684 line_header->file_names.size ());
11686 for (i = 0; i < line_header->file_names.size (); ++i)
11688 file_entry &fe = line_header->file_names[i];
11690 dwarf2_start_subfile (this, fe.name,
11691 fe.include_dir (line_header));
11692 buildsym_compunit *b = get_builder ();
11693 if (b->get_current_subfile ()->symtab == NULL)
11695 /* NOTE: start_subfile will recognize when it's been
11696 passed a file it has already seen. So we can't
11697 assume there's a simple mapping from
11698 cu->line_header->file_names to subfiles, plus
11699 cu->line_header->file_names may contain dups. */
11700 b->get_current_subfile ()->symtab
11701 = allocate_symtab (cust, b->get_current_subfile ()->name);
11704 fe.symtab = b->get_current_subfile ()->symtab;
11705 tu_group->symtabs[i] = fe.symtab;
11710 gdb_assert (m_builder == nullptr);
11711 struct compunit_symtab *cust = tu_group->compunit_symtab;
11712 m_builder.reset (new struct buildsym_compunit
11713 (COMPUNIT_OBJFILE (cust), "",
11714 COMPUNIT_DIRNAME (cust),
11715 compunit_language (cust),
11718 for (i = 0; i < line_header->file_names.size (); ++i)
11720 file_entry &fe = line_header->file_names[i];
11722 fe.symtab = tu_group->symtabs[i];
11726 /* The main symtab is allocated last. Type units don't have DW_AT_name
11727 so they don't have a "real" (so to speak) symtab anyway.
11728 There is later code that will assign the main symtab to all symbols
11729 that don't have one. We need to handle the case of a symbol with a
11730 missing symtab (DW_AT_decl_file) anyway. */
11733 /* Process DW_TAG_type_unit.
11734 For TUs we want to skip the first top level sibling if it's not the
11735 actual type being defined by this TU. In this case the first top
11736 level sibling is there to provide context only. */
11739 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11741 struct die_info *child_die;
11743 prepare_one_comp_unit (cu, die, language_minimal);
11745 /* Initialize (or reinitialize) the machinery for building symtabs.
11746 We do this before processing child DIEs, so that the line header table
11747 is available for DW_AT_decl_file. */
11748 cu->setup_type_unit_groups (die);
11750 if (die->child != NULL)
11752 child_die = die->child;
11753 while (child_die && child_die->tag)
11755 process_die (child_die, cu);
11756 child_die = sibling_die (child_die);
11763 http://gcc.gnu.org/wiki/DebugFission
11764 http://gcc.gnu.org/wiki/DebugFissionDWP
11766 To simplify handling of both DWO files ("object" files with the DWARF info)
11767 and DWP files (a file with the DWOs packaged up into one file), we treat
11768 DWP files as having a collection of virtual DWO files. */
11771 hash_dwo_file (const void *item)
11773 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11776 hash = htab_hash_string (dwo_file->dwo_name);
11777 if (dwo_file->comp_dir != NULL)
11778 hash += htab_hash_string (dwo_file->comp_dir);
11783 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11785 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11786 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11788 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11790 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11791 return lhs->comp_dir == rhs->comp_dir;
11792 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11795 /* Allocate a hash table for DWO files. */
11798 allocate_dwo_file_hash_table (struct objfile *objfile)
11800 return htab_create_alloc_ex (41,
11804 &objfile->objfile_obstack,
11805 hashtab_obstack_allocate,
11806 dummy_obstack_deallocate);
11809 /* Lookup DWO file DWO_NAME. */
11812 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11813 const char *dwo_name,
11814 const char *comp_dir)
11816 struct dwo_file find_entry;
11819 if (dwarf2_per_objfile->dwo_files == NULL)
11820 dwarf2_per_objfile->dwo_files
11821 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11823 memset (&find_entry, 0, sizeof (find_entry));
11824 find_entry.dwo_name = dwo_name;
11825 find_entry.comp_dir = comp_dir;
11826 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11832 hash_dwo_unit (const void *item)
11834 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11836 /* This drops the top 32 bits of the id, but is ok for a hash. */
11837 return dwo_unit->signature;
11841 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11843 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11844 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11846 /* The signature is assumed to be unique within the DWO file.
11847 So while object file CU dwo_id's always have the value zero,
11848 that's OK, assuming each object file DWO file has only one CU,
11849 and that's the rule for now. */
11850 return lhs->signature == rhs->signature;
11853 /* Allocate a hash table for DWO CUs,TUs.
11854 There is one of these tables for each of CUs,TUs for each DWO file. */
11857 allocate_dwo_unit_table (struct objfile *objfile)
11859 /* Start out with a pretty small number.
11860 Generally DWO files contain only one CU and maybe some TUs. */
11861 return htab_create_alloc_ex (3,
11865 &objfile->objfile_obstack,
11866 hashtab_obstack_allocate,
11867 dummy_obstack_deallocate);
11870 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11872 struct create_dwo_cu_data
11874 struct dwo_file *dwo_file;
11875 struct dwo_unit dwo_unit;
11878 /* die_reader_func for create_dwo_cu. */
11881 create_dwo_cu_reader (const struct die_reader_specs *reader,
11882 const gdb_byte *info_ptr,
11883 struct die_info *comp_unit_die,
11887 struct dwarf2_cu *cu = reader->cu;
11888 sect_offset sect_off = cu->per_cu->sect_off;
11889 struct dwarf2_section_info *section = cu->per_cu->section;
11890 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11891 struct dwo_file *dwo_file = data->dwo_file;
11892 struct dwo_unit *dwo_unit = &data->dwo_unit;
11893 struct attribute *attr;
11895 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11898 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11899 " its dwo_id [in module %s]"),
11900 sect_offset_str (sect_off), dwo_file->dwo_name);
11904 dwo_unit->dwo_file = dwo_file;
11905 dwo_unit->signature = DW_UNSND (attr);
11906 dwo_unit->section = section;
11907 dwo_unit->sect_off = sect_off;
11908 dwo_unit->length = cu->per_cu->length;
11910 if (dwarf_read_debug)
11911 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11912 sect_offset_str (sect_off),
11913 hex_string (dwo_unit->signature));
11916 /* Create the dwo_units for the CUs in a DWO_FILE.
11917 Note: This function processes DWO files only, not DWP files. */
11920 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11921 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11924 struct objfile *objfile = dwarf2_per_objfile->objfile;
11925 const gdb_byte *info_ptr, *end_ptr;
11927 dwarf2_read_section (objfile, §ion);
11928 info_ptr = section.buffer;
11930 if (info_ptr == NULL)
11933 if (dwarf_read_debug)
11935 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11936 get_section_name (§ion),
11937 get_section_file_name (§ion));
11940 end_ptr = info_ptr + section.size;
11941 while (info_ptr < end_ptr)
11943 struct dwarf2_per_cu_data per_cu;
11944 struct create_dwo_cu_data create_dwo_cu_data;
11945 struct dwo_unit *dwo_unit;
11947 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11949 memset (&create_dwo_cu_data.dwo_unit, 0,
11950 sizeof (create_dwo_cu_data.dwo_unit));
11951 memset (&per_cu, 0, sizeof (per_cu));
11952 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11953 per_cu.is_debug_types = 0;
11954 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11955 per_cu.section = §ion;
11956 create_dwo_cu_data.dwo_file = &dwo_file;
11958 init_cutu_and_read_dies_no_follow (
11959 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11960 info_ptr += per_cu.length;
11962 // If the unit could not be parsed, skip it.
11963 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11966 if (cus_htab == NULL)
11967 cus_htab = allocate_dwo_unit_table (objfile);
11969 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11970 *dwo_unit = create_dwo_cu_data.dwo_unit;
11971 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11972 gdb_assert (slot != NULL);
11975 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11976 sect_offset dup_sect_off = dup_cu->sect_off;
11978 complaint (_("debug cu entry at offset %s is duplicate to"
11979 " the entry at offset %s, signature %s"),
11980 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11981 hex_string (dwo_unit->signature));
11983 *slot = (void *)dwo_unit;
11987 /* DWP file .debug_{cu,tu}_index section format:
11988 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11992 Both index sections have the same format, and serve to map a 64-bit
11993 signature to a set of section numbers. Each section begins with a header,
11994 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11995 indexes, and a pool of 32-bit section numbers. The index sections will be
11996 aligned at 8-byte boundaries in the file.
11998 The index section header consists of:
12000 V, 32 bit version number
12002 N, 32 bit number of compilation units or type units in the index
12003 M, 32 bit number of slots in the hash table
12005 Numbers are recorded using the byte order of the application binary.
12007 The hash table begins at offset 16 in the section, and consists of an array
12008 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12009 order of the application binary). Unused slots in the hash table are 0.
12010 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12012 The parallel table begins immediately after the hash table
12013 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12014 array of 32-bit indexes (using the byte order of the application binary),
12015 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12016 table contains a 32-bit index into the pool of section numbers. For unused
12017 hash table slots, the corresponding entry in the parallel table will be 0.
12019 The pool of section numbers begins immediately following the hash table
12020 (at offset 16 + 12 * M from the beginning of the section). The pool of
12021 section numbers consists of an array of 32-bit words (using the byte order
12022 of the application binary). Each item in the array is indexed starting
12023 from 0. The hash table entry provides the index of the first section
12024 number in the set. Additional section numbers in the set follow, and the
12025 set is terminated by a 0 entry (section number 0 is not used in ELF).
12027 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12028 section must be the first entry in the set, and the .debug_abbrev.dwo must
12029 be the second entry. Other members of the set may follow in any order.
12035 DWP Version 2 combines all the .debug_info, etc. sections into one,
12036 and the entries in the index tables are now offsets into these sections.
12037 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12040 Index Section Contents:
12042 Hash Table of Signatures dwp_hash_table.hash_table
12043 Parallel Table of Indices dwp_hash_table.unit_table
12044 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12045 Table of Section Sizes dwp_hash_table.v2.sizes
12047 The index section header consists of:
12049 V, 32 bit version number
12050 L, 32 bit number of columns in the table of section offsets
12051 N, 32 bit number of compilation units or type units in the index
12052 M, 32 bit number of slots in the hash table
12054 Numbers are recorded using the byte order of the application binary.
12056 The hash table has the same format as version 1.
12057 The parallel table of indices has the same format as version 1,
12058 except that the entries are origin-1 indices into the table of sections
12059 offsets and the table of section sizes.
12061 The table of offsets begins immediately following the parallel table
12062 (at offset 16 + 12 * M from the beginning of the section). The table is
12063 a two-dimensional array of 32-bit words (using the byte order of the
12064 application binary), with L columns and N+1 rows, in row-major order.
12065 Each row in the array is indexed starting from 0. The first row provides
12066 a key to the remaining rows: each column in this row provides an identifier
12067 for a debug section, and the offsets in the same column of subsequent rows
12068 refer to that section. The section identifiers are:
12070 DW_SECT_INFO 1 .debug_info.dwo
12071 DW_SECT_TYPES 2 .debug_types.dwo
12072 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12073 DW_SECT_LINE 4 .debug_line.dwo
12074 DW_SECT_LOC 5 .debug_loc.dwo
12075 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12076 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12077 DW_SECT_MACRO 8 .debug_macro.dwo
12079 The offsets provided by the CU and TU index sections are the base offsets
12080 for the contributions made by each CU or TU to the corresponding section
12081 in the package file. Each CU and TU header contains an abbrev_offset
12082 field, used to find the abbreviations table for that CU or TU within the
12083 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12084 be interpreted as relative to the base offset given in the index section.
12085 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12086 should be interpreted as relative to the base offset for .debug_line.dwo,
12087 and offsets into other debug sections obtained from DWARF attributes should
12088 also be interpreted as relative to the corresponding base offset.
12090 The table of sizes begins immediately following the table of offsets.
12091 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12092 with L columns and N rows, in row-major order. Each row in the array is
12093 indexed starting from 1 (row 0 is shared by the two tables).
12097 Hash table lookup is handled the same in version 1 and 2:
12099 We assume that N and M will not exceed 2^32 - 1.
12100 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12102 Given a 64-bit compilation unit signature or a type signature S, an entry
12103 in the hash table is located as follows:
12105 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12106 the low-order k bits all set to 1.
12108 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12110 3) If the hash table entry at index H matches the signature, use that
12111 entry. If the hash table entry at index H is unused (all zeroes),
12112 terminate the search: the signature is not present in the table.
12114 4) Let H = (H + H') modulo M. Repeat at Step 3.
12116 Because M > N and H' and M are relatively prime, the search is guaranteed
12117 to stop at an unused slot or find the match. */
12119 /* Create a hash table to map DWO IDs to their CU/TU entry in
12120 .debug_{info,types}.dwo in DWP_FILE.
12121 Returns NULL if there isn't one.
12122 Note: This function processes DWP files only, not DWO files. */
12124 static struct dwp_hash_table *
12125 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12126 struct dwp_file *dwp_file, int is_debug_types)
12128 struct objfile *objfile = dwarf2_per_objfile->objfile;
12129 bfd *dbfd = dwp_file->dbfd.get ();
12130 const gdb_byte *index_ptr, *index_end;
12131 struct dwarf2_section_info *index;
12132 uint32_t version, nr_columns, nr_units, nr_slots;
12133 struct dwp_hash_table *htab;
12135 if (is_debug_types)
12136 index = &dwp_file->sections.tu_index;
12138 index = &dwp_file->sections.cu_index;
12140 if (dwarf2_section_empty_p (index))
12142 dwarf2_read_section (objfile, index);
12144 index_ptr = index->buffer;
12145 index_end = index_ptr + index->size;
12147 version = read_4_bytes (dbfd, index_ptr);
12150 nr_columns = read_4_bytes (dbfd, index_ptr);
12154 nr_units = read_4_bytes (dbfd, index_ptr);
12156 nr_slots = read_4_bytes (dbfd, index_ptr);
12159 if (version != 1 && version != 2)
12161 error (_("Dwarf Error: unsupported DWP file version (%s)"
12162 " [in module %s]"),
12163 pulongest (version), dwp_file->name);
12165 if (nr_slots != (nr_slots & -nr_slots))
12167 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12168 " is not power of 2 [in module %s]"),
12169 pulongest (nr_slots), dwp_file->name);
12172 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12173 htab->version = version;
12174 htab->nr_columns = nr_columns;
12175 htab->nr_units = nr_units;
12176 htab->nr_slots = nr_slots;
12177 htab->hash_table = index_ptr;
12178 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12180 /* Exit early if the table is empty. */
12181 if (nr_slots == 0 || nr_units == 0
12182 || (version == 2 && nr_columns == 0))
12184 /* All must be zero. */
12185 if (nr_slots != 0 || nr_units != 0
12186 || (version == 2 && nr_columns != 0))
12188 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12189 " all zero [in modules %s]"),
12197 htab->section_pool.v1.indices =
12198 htab->unit_table + sizeof (uint32_t) * nr_slots;
12199 /* It's harder to decide whether the section is too small in v1.
12200 V1 is deprecated anyway so we punt. */
12204 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12205 int *ids = htab->section_pool.v2.section_ids;
12206 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12207 /* Reverse map for error checking. */
12208 int ids_seen[DW_SECT_MAX + 1];
12211 if (nr_columns < 2)
12213 error (_("Dwarf Error: bad DWP hash table, too few columns"
12214 " in section table [in module %s]"),
12217 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12219 error (_("Dwarf Error: bad DWP hash table, too many columns"
12220 " in section table [in module %s]"),
12223 memset (ids, 255, sizeof_ids);
12224 memset (ids_seen, 255, sizeof (ids_seen));
12225 for (i = 0; i < nr_columns; ++i)
12227 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12229 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12231 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12232 " in section table [in module %s]"),
12233 id, dwp_file->name);
12235 if (ids_seen[id] != -1)
12237 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12238 " id %d in section table [in module %s]"),
12239 id, dwp_file->name);
12244 /* Must have exactly one info or types section. */
12245 if (((ids_seen[DW_SECT_INFO] != -1)
12246 + (ids_seen[DW_SECT_TYPES] != -1))
12249 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12250 " DWO info/types section [in module %s]"),
12253 /* Must have an abbrev section. */
12254 if (ids_seen[DW_SECT_ABBREV] == -1)
12256 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12257 " section [in module %s]"),
12260 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12261 htab->section_pool.v2.sizes =
12262 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12263 * nr_units * nr_columns);
12264 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12265 * nr_units * nr_columns))
12268 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12269 " [in module %s]"),
12277 /* Update SECTIONS with the data from SECTP.
12279 This function is like the other "locate" section routines that are
12280 passed to bfd_map_over_sections, but in this context the sections to
12281 read comes from the DWP V1 hash table, not the full ELF section table.
12283 The result is non-zero for success, or zero if an error was found. */
12286 locate_v1_virtual_dwo_sections (asection *sectp,
12287 struct virtual_v1_dwo_sections *sections)
12289 const struct dwop_section_names *names = &dwop_section_names;
12291 if (section_is_p (sectp->name, &names->abbrev_dwo))
12293 /* There can be only one. */
12294 if (sections->abbrev.s.section != NULL)
12296 sections->abbrev.s.section = sectp;
12297 sections->abbrev.size = bfd_get_section_size (sectp);
12299 else if (section_is_p (sectp->name, &names->info_dwo)
12300 || section_is_p (sectp->name, &names->types_dwo))
12302 /* There can be only one. */
12303 if (sections->info_or_types.s.section != NULL)
12305 sections->info_or_types.s.section = sectp;
12306 sections->info_or_types.size = bfd_get_section_size (sectp);
12308 else if (section_is_p (sectp->name, &names->line_dwo))
12310 /* There can be only one. */
12311 if (sections->line.s.section != NULL)
12313 sections->line.s.section = sectp;
12314 sections->line.size = bfd_get_section_size (sectp);
12316 else if (section_is_p (sectp->name, &names->loc_dwo))
12318 /* There can be only one. */
12319 if (sections->loc.s.section != NULL)
12321 sections->loc.s.section = sectp;
12322 sections->loc.size = bfd_get_section_size (sectp);
12324 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12326 /* There can be only one. */
12327 if (sections->macinfo.s.section != NULL)
12329 sections->macinfo.s.section = sectp;
12330 sections->macinfo.size = bfd_get_section_size (sectp);
12332 else if (section_is_p (sectp->name, &names->macro_dwo))
12334 /* There can be only one. */
12335 if (sections->macro.s.section != NULL)
12337 sections->macro.s.section = sectp;
12338 sections->macro.size = bfd_get_section_size (sectp);
12340 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12342 /* There can be only one. */
12343 if (sections->str_offsets.s.section != NULL)
12345 sections->str_offsets.s.section = sectp;
12346 sections->str_offsets.size = bfd_get_section_size (sectp);
12350 /* No other kind of section is valid. */
12357 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12358 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12359 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12360 This is for DWP version 1 files. */
12362 static struct dwo_unit *
12363 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12364 struct dwp_file *dwp_file,
12365 uint32_t unit_index,
12366 const char *comp_dir,
12367 ULONGEST signature, int is_debug_types)
12369 struct objfile *objfile = dwarf2_per_objfile->objfile;
12370 const struct dwp_hash_table *dwp_htab =
12371 is_debug_types ? dwp_file->tus : dwp_file->cus;
12372 bfd *dbfd = dwp_file->dbfd.get ();
12373 const char *kind = is_debug_types ? "TU" : "CU";
12374 struct dwo_file *dwo_file;
12375 struct dwo_unit *dwo_unit;
12376 struct virtual_v1_dwo_sections sections;
12377 void **dwo_file_slot;
12380 gdb_assert (dwp_file->version == 1);
12382 if (dwarf_read_debug)
12384 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12386 pulongest (unit_index), hex_string (signature),
12390 /* Fetch the sections of this DWO unit.
12391 Put a limit on the number of sections we look for so that bad data
12392 doesn't cause us to loop forever. */
12394 #define MAX_NR_V1_DWO_SECTIONS \
12395 (1 /* .debug_info or .debug_types */ \
12396 + 1 /* .debug_abbrev */ \
12397 + 1 /* .debug_line */ \
12398 + 1 /* .debug_loc */ \
12399 + 1 /* .debug_str_offsets */ \
12400 + 1 /* .debug_macro or .debug_macinfo */ \
12401 + 1 /* trailing zero */)
12403 memset (§ions, 0, sizeof (sections));
12405 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12408 uint32_t section_nr =
12409 read_4_bytes (dbfd,
12410 dwp_htab->section_pool.v1.indices
12411 + (unit_index + i) * sizeof (uint32_t));
12413 if (section_nr == 0)
12415 if (section_nr >= dwp_file->num_sections)
12417 error (_("Dwarf Error: bad DWP hash table, section number too large"
12418 " [in module %s]"),
12422 sectp = dwp_file->elf_sections[section_nr];
12423 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12425 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12426 " [in module %s]"),
12432 || dwarf2_section_empty_p (§ions.info_or_types)
12433 || dwarf2_section_empty_p (§ions.abbrev))
12435 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12436 " [in module %s]"),
12439 if (i == MAX_NR_V1_DWO_SECTIONS)
12441 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12442 " [in module %s]"),
12446 /* It's easier for the rest of the code if we fake a struct dwo_file and
12447 have dwo_unit "live" in that. At least for now.
12449 The DWP file can be made up of a random collection of CUs and TUs.
12450 However, for each CU + set of TUs that came from the same original DWO
12451 file, we can combine them back into a virtual DWO file to save space
12452 (fewer struct dwo_file objects to allocate). Remember that for really
12453 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12455 std::string virtual_dwo_name =
12456 string_printf ("virtual-dwo/%d-%d-%d-%d",
12457 get_section_id (§ions.abbrev),
12458 get_section_id (§ions.line),
12459 get_section_id (§ions.loc),
12460 get_section_id (§ions.str_offsets));
12461 /* Can we use an existing virtual DWO file? */
12462 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12463 virtual_dwo_name.c_str (),
12465 /* Create one if necessary. */
12466 if (*dwo_file_slot == NULL)
12468 if (dwarf_read_debug)
12470 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12471 virtual_dwo_name.c_str ());
12473 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12475 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12476 virtual_dwo_name.c_str (),
12477 virtual_dwo_name.size ());
12478 dwo_file->comp_dir = comp_dir;
12479 dwo_file->sections.abbrev = sections.abbrev;
12480 dwo_file->sections.line = sections.line;
12481 dwo_file->sections.loc = sections.loc;
12482 dwo_file->sections.macinfo = sections.macinfo;
12483 dwo_file->sections.macro = sections.macro;
12484 dwo_file->sections.str_offsets = sections.str_offsets;
12485 /* The "str" section is global to the entire DWP file. */
12486 dwo_file->sections.str = dwp_file->sections.str;
12487 /* The info or types section is assigned below to dwo_unit,
12488 there's no need to record it in dwo_file.
12489 Also, we can't simply record type sections in dwo_file because
12490 we record a pointer into the vector in dwo_unit. As we collect more
12491 types we'll grow the vector and eventually have to reallocate space
12492 for it, invalidating all copies of pointers into the previous
12494 *dwo_file_slot = dwo_file;
12498 if (dwarf_read_debug)
12500 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12501 virtual_dwo_name.c_str ());
12503 dwo_file = (struct dwo_file *) *dwo_file_slot;
12506 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12507 dwo_unit->dwo_file = dwo_file;
12508 dwo_unit->signature = signature;
12509 dwo_unit->section =
12510 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12511 *dwo_unit->section = sections.info_or_types;
12512 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12517 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12518 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12519 piece within that section used by a TU/CU, return a virtual section
12520 of just that piece. */
12522 static struct dwarf2_section_info
12523 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12524 struct dwarf2_section_info *section,
12525 bfd_size_type offset, bfd_size_type size)
12527 struct dwarf2_section_info result;
12530 gdb_assert (section != NULL);
12531 gdb_assert (!section->is_virtual);
12533 memset (&result, 0, sizeof (result));
12534 result.s.containing_section = section;
12535 result.is_virtual = 1;
12540 sectp = get_section_bfd_section (section);
12542 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12543 bounds of the real section. This is a pretty-rare event, so just
12544 flag an error (easier) instead of a warning and trying to cope. */
12546 || offset + size > bfd_get_section_size (sectp))
12548 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12549 " in section %s [in module %s]"),
12550 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12551 objfile_name (dwarf2_per_objfile->objfile));
12554 result.virtual_offset = offset;
12555 result.size = size;
12559 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12560 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12561 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12562 This is for DWP version 2 files. */
12564 static struct dwo_unit *
12565 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12566 struct dwp_file *dwp_file,
12567 uint32_t unit_index,
12568 const char *comp_dir,
12569 ULONGEST signature, int is_debug_types)
12571 struct objfile *objfile = dwarf2_per_objfile->objfile;
12572 const struct dwp_hash_table *dwp_htab =
12573 is_debug_types ? dwp_file->tus : dwp_file->cus;
12574 bfd *dbfd = dwp_file->dbfd.get ();
12575 const char *kind = is_debug_types ? "TU" : "CU";
12576 struct dwo_file *dwo_file;
12577 struct dwo_unit *dwo_unit;
12578 struct virtual_v2_dwo_sections sections;
12579 void **dwo_file_slot;
12582 gdb_assert (dwp_file->version == 2);
12584 if (dwarf_read_debug)
12586 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12588 pulongest (unit_index), hex_string (signature),
12592 /* Fetch the section offsets of this DWO unit. */
12594 memset (§ions, 0, sizeof (sections));
12596 for (i = 0; i < dwp_htab->nr_columns; ++i)
12598 uint32_t offset = read_4_bytes (dbfd,
12599 dwp_htab->section_pool.v2.offsets
12600 + (((unit_index - 1) * dwp_htab->nr_columns
12602 * sizeof (uint32_t)));
12603 uint32_t size = read_4_bytes (dbfd,
12604 dwp_htab->section_pool.v2.sizes
12605 + (((unit_index - 1) * dwp_htab->nr_columns
12607 * sizeof (uint32_t)));
12609 switch (dwp_htab->section_pool.v2.section_ids[i])
12612 case DW_SECT_TYPES:
12613 sections.info_or_types_offset = offset;
12614 sections.info_or_types_size = size;
12616 case DW_SECT_ABBREV:
12617 sections.abbrev_offset = offset;
12618 sections.abbrev_size = size;
12621 sections.line_offset = offset;
12622 sections.line_size = size;
12625 sections.loc_offset = offset;
12626 sections.loc_size = size;
12628 case DW_SECT_STR_OFFSETS:
12629 sections.str_offsets_offset = offset;
12630 sections.str_offsets_size = size;
12632 case DW_SECT_MACINFO:
12633 sections.macinfo_offset = offset;
12634 sections.macinfo_size = size;
12636 case DW_SECT_MACRO:
12637 sections.macro_offset = offset;
12638 sections.macro_size = size;
12643 /* It's easier for the rest of the code if we fake a struct dwo_file and
12644 have dwo_unit "live" in that. At least for now.
12646 The DWP file can be made up of a random collection of CUs and TUs.
12647 However, for each CU + set of TUs that came from the same original DWO
12648 file, we can combine them back into a virtual DWO file to save space
12649 (fewer struct dwo_file objects to allocate). Remember that for really
12650 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12652 std::string virtual_dwo_name =
12653 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12654 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12655 (long) (sections.line_size ? sections.line_offset : 0),
12656 (long) (sections.loc_size ? sections.loc_offset : 0),
12657 (long) (sections.str_offsets_size
12658 ? sections.str_offsets_offset : 0));
12659 /* Can we use an existing virtual DWO file? */
12660 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12661 virtual_dwo_name.c_str (),
12663 /* Create one if necessary. */
12664 if (*dwo_file_slot == NULL)
12666 if (dwarf_read_debug)
12668 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12669 virtual_dwo_name.c_str ());
12671 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12673 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12674 virtual_dwo_name.c_str (),
12675 virtual_dwo_name.size ());
12676 dwo_file->comp_dir = comp_dir;
12677 dwo_file->sections.abbrev =
12678 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12679 sections.abbrev_offset, sections.abbrev_size);
12680 dwo_file->sections.line =
12681 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12682 sections.line_offset, sections.line_size);
12683 dwo_file->sections.loc =
12684 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12685 sections.loc_offset, sections.loc_size);
12686 dwo_file->sections.macinfo =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12688 sections.macinfo_offset, sections.macinfo_size);
12689 dwo_file->sections.macro =
12690 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12691 sections.macro_offset, sections.macro_size);
12692 dwo_file->sections.str_offsets =
12693 create_dwp_v2_section (dwarf2_per_objfile,
12694 &dwp_file->sections.str_offsets,
12695 sections.str_offsets_offset,
12696 sections.str_offsets_size);
12697 /* The "str" section is global to the entire DWP file. */
12698 dwo_file->sections.str = dwp_file->sections.str;
12699 /* The info or types section is assigned below to dwo_unit,
12700 there's no need to record it in dwo_file.
12701 Also, we can't simply record type sections in dwo_file because
12702 we record a pointer into the vector in dwo_unit. As we collect more
12703 types we'll grow the vector and eventually have to reallocate space
12704 for it, invalidating all copies of pointers into the previous
12706 *dwo_file_slot = dwo_file;
12710 if (dwarf_read_debug)
12712 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12713 virtual_dwo_name.c_str ());
12715 dwo_file = (struct dwo_file *) *dwo_file_slot;
12718 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12719 dwo_unit->dwo_file = dwo_file;
12720 dwo_unit->signature = signature;
12721 dwo_unit->section =
12722 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12723 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12725 ? &dwp_file->sections.types
12726 : &dwp_file->sections.info,
12727 sections.info_or_types_offset,
12728 sections.info_or_types_size);
12729 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12734 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12735 Returns NULL if the signature isn't found. */
12737 static struct dwo_unit *
12738 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12739 struct dwp_file *dwp_file, const char *comp_dir,
12740 ULONGEST signature, int is_debug_types)
12742 const struct dwp_hash_table *dwp_htab =
12743 is_debug_types ? dwp_file->tus : dwp_file->cus;
12744 bfd *dbfd = dwp_file->dbfd.get ();
12745 uint32_t mask = dwp_htab->nr_slots - 1;
12746 uint32_t hash = signature & mask;
12747 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12750 struct dwo_unit find_dwo_cu;
12752 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12753 find_dwo_cu.signature = signature;
12754 slot = htab_find_slot (is_debug_types
12755 ? dwp_file->loaded_tus
12756 : dwp_file->loaded_cus,
12757 &find_dwo_cu, INSERT);
12760 return (struct dwo_unit *) *slot;
12762 /* Use a for loop so that we don't loop forever on bad debug info. */
12763 for (i = 0; i < dwp_htab->nr_slots; ++i)
12765 ULONGEST signature_in_table;
12767 signature_in_table =
12768 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12769 if (signature_in_table == signature)
12771 uint32_t unit_index =
12772 read_4_bytes (dbfd,
12773 dwp_htab->unit_table + hash * sizeof (uint32_t));
12775 if (dwp_file->version == 1)
12777 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
12779 comp_dir, signature,
12784 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12785 dwp_file, unit_index,
12786 comp_dir, signature,
12789 return (struct dwo_unit *) *slot;
12791 if (signature_in_table == 0)
12793 hash = (hash + hash2) & mask;
12796 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12797 " [in module %s]"),
12801 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12802 Open the file specified by FILE_NAME and hand it off to BFD for
12803 preliminary analysis. Return a newly initialized bfd *, which
12804 includes a canonicalized copy of FILE_NAME.
12805 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12806 SEARCH_CWD is true if the current directory is to be searched.
12807 It will be searched before debug-file-directory.
12808 If successful, the file is added to the bfd include table of the
12809 objfile's bfd (see gdb_bfd_record_inclusion).
12810 If unable to find/open the file, return NULL.
12811 NOTE: This function is derived from symfile_bfd_open. */
12813 static gdb_bfd_ref_ptr
12814 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12815 const char *file_name, int is_dwp, int search_cwd)
12818 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12819 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12820 to debug_file_directory. */
12821 const char *search_path;
12822 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12824 gdb::unique_xmalloc_ptr<char> search_path_holder;
12827 if (*debug_file_directory != '\0')
12829 search_path_holder.reset (concat (".", dirname_separator_string,
12830 debug_file_directory,
12832 search_path = search_path_holder.get ();
12838 search_path = debug_file_directory;
12840 openp_flags flags = OPF_RETURN_REALPATH;
12842 flags |= OPF_SEARCH_IN_PATH;
12844 gdb::unique_xmalloc_ptr<char> absolute_name;
12845 desc = openp (search_path, flags, file_name,
12846 O_RDONLY | O_BINARY, &absolute_name);
12850 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12852 if (sym_bfd == NULL)
12854 bfd_set_cacheable (sym_bfd.get (), 1);
12856 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12859 /* Success. Record the bfd as having been included by the objfile's bfd.
12860 This is important because things like demangled_names_hash lives in the
12861 objfile's per_bfd space and may have references to things like symbol
12862 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12863 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12868 /* Try to open DWO file FILE_NAME.
12869 COMP_DIR is the DW_AT_comp_dir attribute.
12870 The result is the bfd handle of the file.
12871 If there is a problem finding or opening the file, return NULL.
12872 Upon success, the canonicalized path of the file is stored in the bfd,
12873 same as symfile_bfd_open. */
12875 static gdb_bfd_ref_ptr
12876 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12877 const char *file_name, const char *comp_dir)
12879 if (IS_ABSOLUTE_PATH (file_name))
12880 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12881 0 /*is_dwp*/, 0 /*search_cwd*/);
12883 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12885 if (comp_dir != NULL)
12887 char *path_to_try = concat (comp_dir, SLASH_STRING,
12888 file_name, (char *) NULL);
12890 /* NOTE: If comp_dir is a relative path, this will also try the
12891 search path, which seems useful. */
12892 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12895 1 /*search_cwd*/));
12896 xfree (path_to_try);
12901 /* That didn't work, try debug-file-directory, which, despite its name,
12902 is a list of paths. */
12904 if (*debug_file_directory == '\0')
12907 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12908 0 /*is_dwp*/, 1 /*search_cwd*/);
12911 /* This function is mapped across the sections and remembers the offset and
12912 size of each of the DWO debugging sections we are interested in. */
12915 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12917 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12918 const struct dwop_section_names *names = &dwop_section_names;
12920 if (section_is_p (sectp->name, &names->abbrev_dwo))
12922 dwo_sections->abbrev.s.section = sectp;
12923 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12925 else if (section_is_p (sectp->name, &names->info_dwo))
12927 dwo_sections->info.s.section = sectp;
12928 dwo_sections->info.size = bfd_get_section_size (sectp);
12930 else if (section_is_p (sectp->name, &names->line_dwo))
12932 dwo_sections->line.s.section = sectp;
12933 dwo_sections->line.size = bfd_get_section_size (sectp);
12935 else if (section_is_p (sectp->name, &names->loc_dwo))
12937 dwo_sections->loc.s.section = sectp;
12938 dwo_sections->loc.size = bfd_get_section_size (sectp);
12940 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12942 dwo_sections->macinfo.s.section = sectp;
12943 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12945 else if (section_is_p (sectp->name, &names->macro_dwo))
12947 dwo_sections->macro.s.section = sectp;
12948 dwo_sections->macro.size = bfd_get_section_size (sectp);
12950 else if (section_is_p (sectp->name, &names->str_dwo))
12952 dwo_sections->str.s.section = sectp;
12953 dwo_sections->str.size = bfd_get_section_size (sectp);
12955 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12957 dwo_sections->str_offsets.s.section = sectp;
12958 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12960 else if (section_is_p (sectp->name, &names->types_dwo))
12962 struct dwarf2_section_info type_section;
12964 memset (&type_section, 0, sizeof (type_section));
12965 type_section.s.section = sectp;
12966 type_section.size = bfd_get_section_size (sectp);
12967 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12972 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12973 by PER_CU. This is for the non-DWP case.
12974 The result is NULL if DWO_NAME can't be found. */
12976 static struct dwo_file *
12977 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12978 const char *dwo_name, const char *comp_dir)
12980 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12981 struct objfile *objfile = dwarf2_per_objfile->objfile;
12983 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12986 if (dwarf_read_debug)
12987 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12991 /* We use a unique pointer here, despite the obstack allocation,
12992 because a dwo_file needs some cleanup if it is abandoned. */
12993 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12995 dwo_file->dwo_name = dwo_name;
12996 dwo_file->comp_dir = comp_dir;
12997 dwo_file->dbfd = dbfd.release ();
12999 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13000 &dwo_file->sections);
13002 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13005 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13006 dwo_file->sections.types, dwo_file->tus);
13008 if (dwarf_read_debug)
13009 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13011 return dwo_file.release ();
13014 /* This function is mapped across the sections and remembers the offset and
13015 size of each of the DWP debugging sections common to version 1 and 2 that
13016 we are interested in. */
13019 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13020 void *dwp_file_ptr)
13022 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13023 const struct dwop_section_names *names = &dwop_section_names;
13024 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13026 /* Record the ELF section number for later lookup: this is what the
13027 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13028 gdb_assert (elf_section_nr < dwp_file->num_sections);
13029 dwp_file->elf_sections[elf_section_nr] = sectp;
13031 /* Look for specific sections that we need. */
13032 if (section_is_p (sectp->name, &names->str_dwo))
13034 dwp_file->sections.str.s.section = sectp;
13035 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13037 else if (section_is_p (sectp->name, &names->cu_index))
13039 dwp_file->sections.cu_index.s.section = sectp;
13040 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13042 else if (section_is_p (sectp->name, &names->tu_index))
13044 dwp_file->sections.tu_index.s.section = sectp;
13045 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13049 /* This function is mapped across the sections and remembers the offset and
13050 size of each of the DWP version 2 debugging sections that we are interested
13051 in. This is split into a separate function because we don't know if we
13052 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13055 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13057 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13058 const struct dwop_section_names *names = &dwop_section_names;
13059 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13061 /* Record the ELF section number for later lookup: this is what the
13062 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13063 gdb_assert (elf_section_nr < dwp_file->num_sections);
13064 dwp_file->elf_sections[elf_section_nr] = sectp;
13066 /* Look for specific sections that we need. */
13067 if (section_is_p (sectp->name, &names->abbrev_dwo))
13069 dwp_file->sections.abbrev.s.section = sectp;
13070 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13072 else if (section_is_p (sectp->name, &names->info_dwo))
13074 dwp_file->sections.info.s.section = sectp;
13075 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13077 else if (section_is_p (sectp->name, &names->line_dwo))
13079 dwp_file->sections.line.s.section = sectp;
13080 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13082 else if (section_is_p (sectp->name, &names->loc_dwo))
13084 dwp_file->sections.loc.s.section = sectp;
13085 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13087 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13089 dwp_file->sections.macinfo.s.section = sectp;
13090 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13092 else if (section_is_p (sectp->name, &names->macro_dwo))
13094 dwp_file->sections.macro.s.section = sectp;
13095 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13097 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13099 dwp_file->sections.str_offsets.s.section = sectp;
13100 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13102 else if (section_is_p (sectp->name, &names->types_dwo))
13104 dwp_file->sections.types.s.section = sectp;
13105 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13109 /* Hash function for dwp_file loaded CUs/TUs. */
13112 hash_dwp_loaded_cutus (const void *item)
13114 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13116 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13117 return dwo_unit->signature;
13120 /* Equality function for dwp_file loaded CUs/TUs. */
13123 eq_dwp_loaded_cutus (const void *a, const void *b)
13125 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13126 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13128 return dua->signature == dub->signature;
13131 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13134 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13136 return htab_create_alloc_ex (3,
13137 hash_dwp_loaded_cutus,
13138 eq_dwp_loaded_cutus,
13140 &objfile->objfile_obstack,
13141 hashtab_obstack_allocate,
13142 dummy_obstack_deallocate);
13145 /* Try to open DWP file FILE_NAME.
13146 The result is the bfd handle of the file.
13147 If there is a problem finding or opening the file, return NULL.
13148 Upon success, the canonicalized path of the file is stored in the bfd,
13149 same as symfile_bfd_open. */
13151 static gdb_bfd_ref_ptr
13152 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13153 const char *file_name)
13155 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13157 1 /*search_cwd*/));
13161 /* Work around upstream bug 15652.
13162 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13163 [Whether that's a "bug" is debatable, but it is getting in our way.]
13164 We have no real idea where the dwp file is, because gdb's realpath-ing
13165 of the executable's path may have discarded the needed info.
13166 [IWBN if the dwp file name was recorded in the executable, akin to
13167 .gnu_debuglink, but that doesn't exist yet.]
13168 Strip the directory from FILE_NAME and search again. */
13169 if (*debug_file_directory != '\0')
13171 /* Don't implicitly search the current directory here.
13172 If the user wants to search "." to handle this case,
13173 it must be added to debug-file-directory. */
13174 return try_open_dwop_file (dwarf2_per_objfile,
13175 lbasename (file_name), 1 /*is_dwp*/,
13182 /* Initialize the use of the DWP file for the current objfile.
13183 By convention the name of the DWP file is ${objfile}.dwp.
13184 The result is NULL if it can't be found. */
13186 static std::unique_ptr<struct dwp_file>
13187 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13189 struct objfile *objfile = dwarf2_per_objfile->objfile;
13191 /* Try to find first .dwp for the binary file before any symbolic links
13194 /* If the objfile is a debug file, find the name of the real binary
13195 file and get the name of dwp file from there. */
13196 std::string dwp_name;
13197 if (objfile->separate_debug_objfile_backlink != NULL)
13199 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13200 const char *backlink_basename = lbasename (backlink->original_name);
13202 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13205 dwp_name = objfile->original_name;
13207 dwp_name += ".dwp";
13209 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13211 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13213 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13214 dwp_name = objfile_name (objfile);
13215 dwp_name += ".dwp";
13216 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13221 if (dwarf_read_debug)
13222 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13223 return std::unique_ptr<dwp_file> ();
13226 const char *name = bfd_get_filename (dbfd.get ());
13227 std::unique_ptr<struct dwp_file> dwp_file
13228 (new struct dwp_file (name, std::move (dbfd)));
13230 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13231 dwp_file->elf_sections =
13232 OBSTACK_CALLOC (&objfile->objfile_obstack,
13233 dwp_file->num_sections, asection *);
13235 bfd_map_over_sections (dwp_file->dbfd.get (),
13236 dwarf2_locate_common_dwp_sections,
13239 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13242 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13245 /* The DWP file version is stored in the hash table. Oh well. */
13246 if (dwp_file->cus && dwp_file->tus
13247 && dwp_file->cus->version != dwp_file->tus->version)
13249 /* Technically speaking, we should try to limp along, but this is
13250 pretty bizarre. We use pulongest here because that's the established
13251 portability solution (e.g, we cannot use %u for uint32_t). */
13252 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13253 " TU version %s [in DWP file %s]"),
13254 pulongest (dwp_file->cus->version),
13255 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13259 dwp_file->version = dwp_file->cus->version;
13260 else if (dwp_file->tus)
13261 dwp_file->version = dwp_file->tus->version;
13263 dwp_file->version = 2;
13265 if (dwp_file->version == 2)
13266 bfd_map_over_sections (dwp_file->dbfd.get (),
13267 dwarf2_locate_v2_dwp_sections,
13270 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13271 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13273 if (dwarf_read_debug)
13275 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13276 fprintf_unfiltered (gdb_stdlog,
13277 " %s CUs, %s TUs\n",
13278 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13279 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13285 /* Wrapper around open_and_init_dwp_file, only open it once. */
13287 static struct dwp_file *
13288 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13290 if (! dwarf2_per_objfile->dwp_checked)
13292 dwarf2_per_objfile->dwp_file
13293 = open_and_init_dwp_file (dwarf2_per_objfile);
13294 dwarf2_per_objfile->dwp_checked = 1;
13296 return dwarf2_per_objfile->dwp_file.get ();
13299 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13300 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13301 or in the DWP file for the objfile, referenced by THIS_UNIT.
13302 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13303 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13305 This is called, for example, when wanting to read a variable with a
13306 complex location. Therefore we don't want to do file i/o for every call.
13307 Therefore we don't want to look for a DWO file on every call.
13308 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13309 then we check if we've already seen DWO_NAME, and only THEN do we check
13312 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13313 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13315 static struct dwo_unit *
13316 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13317 const char *dwo_name, const char *comp_dir,
13318 ULONGEST signature, int is_debug_types)
13320 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13321 struct objfile *objfile = dwarf2_per_objfile->objfile;
13322 const char *kind = is_debug_types ? "TU" : "CU";
13323 void **dwo_file_slot;
13324 struct dwo_file *dwo_file;
13325 struct dwp_file *dwp_file;
13327 /* First see if there's a DWP file.
13328 If we have a DWP file but didn't find the DWO inside it, don't
13329 look for the original DWO file. It makes gdb behave differently
13330 depending on whether one is debugging in the build tree. */
13332 dwp_file = get_dwp_file (dwarf2_per_objfile);
13333 if (dwp_file != NULL)
13335 const struct dwp_hash_table *dwp_htab =
13336 is_debug_types ? dwp_file->tus : dwp_file->cus;
13338 if (dwp_htab != NULL)
13340 struct dwo_unit *dwo_cutu =
13341 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13342 signature, is_debug_types);
13344 if (dwo_cutu != NULL)
13346 if (dwarf_read_debug)
13348 fprintf_unfiltered (gdb_stdlog,
13349 "Virtual DWO %s %s found: @%s\n",
13350 kind, hex_string (signature),
13351 host_address_to_string (dwo_cutu));
13359 /* No DWP file, look for the DWO file. */
13361 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13362 dwo_name, comp_dir);
13363 if (*dwo_file_slot == NULL)
13365 /* Read in the file and build a table of the CUs/TUs it contains. */
13366 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13368 /* NOTE: This will be NULL if unable to open the file. */
13369 dwo_file = (struct dwo_file *) *dwo_file_slot;
13371 if (dwo_file != NULL)
13373 struct dwo_unit *dwo_cutu = NULL;
13375 if (is_debug_types && dwo_file->tus)
13377 struct dwo_unit find_dwo_cutu;
13379 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13380 find_dwo_cutu.signature = signature;
13382 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13384 else if (!is_debug_types && dwo_file->cus)
13386 struct dwo_unit find_dwo_cutu;
13388 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13389 find_dwo_cutu.signature = signature;
13390 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13394 if (dwo_cutu != NULL)
13396 if (dwarf_read_debug)
13398 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13399 kind, dwo_name, hex_string (signature),
13400 host_address_to_string (dwo_cutu));
13407 /* We didn't find it. This could mean a dwo_id mismatch, or
13408 someone deleted the DWO/DWP file, or the search path isn't set up
13409 correctly to find the file. */
13411 if (dwarf_read_debug)
13413 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13414 kind, dwo_name, hex_string (signature));
13417 /* This is a warning and not a complaint because it can be caused by
13418 pilot error (e.g., user accidentally deleting the DWO). */
13420 /* Print the name of the DWP file if we looked there, helps the user
13421 better diagnose the problem. */
13422 std::string dwp_text;
13424 if (dwp_file != NULL)
13425 dwp_text = string_printf (" [in DWP file %s]",
13426 lbasename (dwp_file->name));
13428 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13429 " [in module %s]"),
13430 kind, dwo_name, hex_string (signature),
13432 this_unit->is_debug_types ? "TU" : "CU",
13433 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13438 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13439 See lookup_dwo_cutu_unit for details. */
13441 static struct dwo_unit *
13442 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13443 const char *dwo_name, const char *comp_dir,
13444 ULONGEST signature)
13446 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13449 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13450 See lookup_dwo_cutu_unit for details. */
13452 static struct dwo_unit *
13453 lookup_dwo_type_unit (struct signatured_type *this_tu,
13454 const char *dwo_name, const char *comp_dir)
13456 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13459 /* Traversal function for queue_and_load_all_dwo_tus. */
13462 queue_and_load_dwo_tu (void **slot, void *info)
13464 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13465 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13466 ULONGEST signature = dwo_unit->signature;
13467 struct signatured_type *sig_type =
13468 lookup_dwo_signatured_type (per_cu->cu, signature);
13470 if (sig_type != NULL)
13472 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13474 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13475 a real dependency of PER_CU on SIG_TYPE. That is detected later
13476 while processing PER_CU. */
13477 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13478 load_full_type_unit (sig_cu);
13479 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13485 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13486 The DWO may have the only definition of the type, though it may not be
13487 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13488 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13491 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13493 struct dwo_unit *dwo_unit;
13494 struct dwo_file *dwo_file;
13496 gdb_assert (!per_cu->is_debug_types);
13497 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13498 gdb_assert (per_cu->cu != NULL);
13500 dwo_unit = per_cu->cu->dwo_unit;
13501 gdb_assert (dwo_unit != NULL);
13503 dwo_file = dwo_unit->dwo_file;
13504 if (dwo_file->tus != NULL)
13505 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13508 /* Free all resources associated with DWO_FILE.
13509 Close the DWO file and munmap the sections. */
13512 free_dwo_file (struct dwo_file *dwo_file)
13514 /* Note: dbfd is NULL for virtual DWO files. */
13515 gdb_bfd_unref (dwo_file->dbfd);
13517 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13520 /* Traversal function for free_dwo_files. */
13523 free_dwo_file_from_slot (void **slot, void *info)
13525 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13527 free_dwo_file (dwo_file);
13532 /* Free all resources associated with DWO_FILES. */
13535 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13537 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13540 /* Read in various DIEs. */
13542 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13543 Inherit only the children of the DW_AT_abstract_origin DIE not being
13544 already referenced by DW_AT_abstract_origin from the children of the
13548 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13550 struct die_info *child_die;
13551 sect_offset *offsetp;
13552 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13553 struct die_info *origin_die;
13554 /* Iterator of the ORIGIN_DIE children. */
13555 struct die_info *origin_child_die;
13556 struct attribute *attr;
13557 struct dwarf2_cu *origin_cu;
13558 struct pending **origin_previous_list_in_scope;
13560 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13564 /* Note that following die references may follow to a die in a
13568 origin_die = follow_die_ref (die, attr, &origin_cu);
13570 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13572 origin_previous_list_in_scope = origin_cu->list_in_scope;
13573 origin_cu->list_in_scope = cu->list_in_scope;
13575 if (die->tag != origin_die->tag
13576 && !(die->tag == DW_TAG_inlined_subroutine
13577 && origin_die->tag == DW_TAG_subprogram))
13578 complaint (_("DIE %s and its abstract origin %s have different tags"),
13579 sect_offset_str (die->sect_off),
13580 sect_offset_str (origin_die->sect_off));
13582 std::vector<sect_offset> offsets;
13584 for (child_die = die->child;
13585 child_die && child_die->tag;
13586 child_die = sibling_die (child_die))
13588 struct die_info *child_origin_die;
13589 struct dwarf2_cu *child_origin_cu;
13591 /* We are trying to process concrete instance entries:
13592 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13593 it's not relevant to our analysis here. i.e. detecting DIEs that are
13594 present in the abstract instance but not referenced in the concrete
13596 if (child_die->tag == DW_TAG_call_site
13597 || child_die->tag == DW_TAG_GNU_call_site)
13600 /* For each CHILD_DIE, find the corresponding child of
13601 ORIGIN_DIE. If there is more than one layer of
13602 DW_AT_abstract_origin, follow them all; there shouldn't be,
13603 but GCC versions at least through 4.4 generate this (GCC PR
13605 child_origin_die = child_die;
13606 child_origin_cu = cu;
13609 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13613 child_origin_die = follow_die_ref (child_origin_die, attr,
13617 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13618 counterpart may exist. */
13619 if (child_origin_die != child_die)
13621 if (child_die->tag != child_origin_die->tag
13622 && !(child_die->tag == DW_TAG_inlined_subroutine
13623 && child_origin_die->tag == DW_TAG_subprogram))
13624 complaint (_("Child DIE %s and its abstract origin %s have "
13626 sect_offset_str (child_die->sect_off),
13627 sect_offset_str (child_origin_die->sect_off));
13628 if (child_origin_die->parent != origin_die)
13629 complaint (_("Child DIE %s and its abstract origin %s have "
13630 "different parents"),
13631 sect_offset_str (child_die->sect_off),
13632 sect_offset_str (child_origin_die->sect_off));
13634 offsets.push_back (child_origin_die->sect_off);
13637 std::sort (offsets.begin (), offsets.end ());
13638 sect_offset *offsets_end = offsets.data () + offsets.size ();
13639 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13640 if (offsetp[-1] == *offsetp)
13641 complaint (_("Multiple children of DIE %s refer "
13642 "to DIE %s as their abstract origin"),
13643 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13645 offsetp = offsets.data ();
13646 origin_child_die = origin_die->child;
13647 while (origin_child_die && origin_child_die->tag)
13649 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13650 while (offsetp < offsets_end
13651 && *offsetp < origin_child_die->sect_off)
13653 if (offsetp >= offsets_end
13654 || *offsetp > origin_child_die->sect_off)
13656 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13657 Check whether we're already processing ORIGIN_CHILD_DIE.
13658 This can happen with mutually referenced abstract_origins.
13660 if (!origin_child_die->in_process)
13661 process_die (origin_child_die, origin_cu);
13663 origin_child_die = sibling_die (origin_child_die);
13665 origin_cu->list_in_scope = origin_previous_list_in_scope;
13669 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13671 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13672 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13673 struct context_stack *newobj;
13676 struct die_info *child_die;
13677 struct attribute *attr, *call_line, *call_file;
13679 CORE_ADDR baseaddr;
13680 struct block *block;
13681 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13682 std::vector<struct symbol *> template_args;
13683 struct template_symbol *templ_func = NULL;
13687 /* If we do not have call site information, we can't show the
13688 caller of this inlined function. That's too confusing, so
13689 only use the scope for local variables. */
13690 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13691 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13692 if (call_line == NULL || call_file == NULL)
13694 read_lexical_block_scope (die, cu);
13699 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13701 name = dwarf2_name (die, cu);
13703 /* Ignore functions with missing or empty names. These are actually
13704 illegal according to the DWARF standard. */
13707 complaint (_("missing name for subprogram DIE at %s"),
13708 sect_offset_str (die->sect_off));
13712 /* Ignore functions with missing or invalid low and high pc attributes. */
13713 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13714 <= PC_BOUNDS_INVALID)
13716 attr = dwarf2_attr (die, DW_AT_external, cu);
13717 if (!attr || !DW_UNSND (attr))
13718 complaint (_("cannot get low and high bounds "
13719 "for subprogram DIE at %s"),
13720 sect_offset_str (die->sect_off));
13724 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13725 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13727 /* If we have any template arguments, then we must allocate a
13728 different sort of symbol. */
13729 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13731 if (child_die->tag == DW_TAG_template_type_param
13732 || child_die->tag == DW_TAG_template_value_param)
13734 templ_func = allocate_template_symbol (objfile);
13735 templ_func->subclass = SYMBOL_TEMPLATE;
13740 newobj = cu->get_builder ()->push_context (0, lowpc);
13741 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13742 (struct symbol *) templ_func);
13744 /* If there is a location expression for DW_AT_frame_base, record
13746 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13748 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13750 /* If there is a location for the static link, record it. */
13751 newobj->static_link = NULL;
13752 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13755 newobj->static_link
13756 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13757 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13760 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13762 if (die->child != NULL)
13764 child_die = die->child;
13765 while (child_die && child_die->tag)
13767 if (child_die->tag == DW_TAG_template_type_param
13768 || child_die->tag == DW_TAG_template_value_param)
13770 struct symbol *arg = new_symbol (child_die, NULL, cu);
13773 template_args.push_back (arg);
13776 process_die (child_die, cu);
13777 child_die = sibling_die (child_die);
13781 inherit_abstract_dies (die, cu);
13783 /* If we have a DW_AT_specification, we might need to import using
13784 directives from the context of the specification DIE. See the
13785 comment in determine_prefix. */
13786 if (cu->language == language_cplus
13787 && dwarf2_attr (die, DW_AT_specification, cu))
13789 struct dwarf2_cu *spec_cu = cu;
13790 struct die_info *spec_die = die_specification (die, &spec_cu);
13794 child_die = spec_die->child;
13795 while (child_die && child_die->tag)
13797 if (child_die->tag == DW_TAG_imported_module)
13798 process_die (child_die, spec_cu);
13799 child_die = sibling_die (child_die);
13802 /* In some cases, GCC generates specification DIEs that
13803 themselves contain DW_AT_specification attributes. */
13804 spec_die = die_specification (spec_die, &spec_cu);
13808 struct context_stack cstk = cu->get_builder ()->pop_context ();
13809 /* Make a block for the local symbols within. */
13810 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13811 cstk.static_link, lowpc, highpc);
13813 /* For C++, set the block's scope. */
13814 if ((cu->language == language_cplus
13815 || cu->language == language_fortran
13816 || cu->language == language_d
13817 || cu->language == language_rust)
13818 && cu->processing_has_namespace_info)
13819 block_set_scope (block, determine_prefix (die, cu),
13820 &objfile->objfile_obstack);
13822 /* If we have address ranges, record them. */
13823 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13825 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13827 /* Attach template arguments to function. */
13828 if (!template_args.empty ())
13830 gdb_assert (templ_func != NULL);
13832 templ_func->n_template_arguments = template_args.size ();
13833 templ_func->template_arguments
13834 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13835 templ_func->n_template_arguments);
13836 memcpy (templ_func->template_arguments,
13837 template_args.data (),
13838 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13840 /* Make sure that the symtab is set on the new symbols. Even
13841 though they don't appear in this symtab directly, other parts
13842 of gdb assume that symbols do, and this is reasonably
13844 for (symbol *sym : template_args)
13845 symbol_set_symtab (sym, symbol_symtab (templ_func));
13848 /* In C++, we can have functions nested inside functions (e.g., when
13849 a function declares a class that has methods). This means that
13850 when we finish processing a function scope, we may need to go
13851 back to building a containing block's symbol lists. */
13852 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13853 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13855 /* If we've finished processing a top-level function, subsequent
13856 symbols go in the file symbol list. */
13857 if (cu->get_builder ()->outermost_context_p ())
13858 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13861 /* Process all the DIES contained within a lexical block scope. Start
13862 a new scope, process the dies, and then close the scope. */
13865 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13867 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13869 CORE_ADDR lowpc, highpc;
13870 struct die_info *child_die;
13871 CORE_ADDR baseaddr;
13873 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13875 /* Ignore blocks with missing or invalid low and high pc attributes. */
13876 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13877 as multiple lexical blocks? Handling children in a sane way would
13878 be nasty. Might be easier to properly extend generic blocks to
13879 describe ranges. */
13880 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13882 case PC_BOUNDS_NOT_PRESENT:
13883 /* DW_TAG_lexical_block has no attributes, process its children as if
13884 there was no wrapping by that DW_TAG_lexical_block.
13885 GCC does no longer produces such DWARF since GCC r224161. */
13886 for (child_die = die->child;
13887 child_die != NULL && child_die->tag;
13888 child_die = sibling_die (child_die))
13889 process_die (child_die, cu);
13891 case PC_BOUNDS_INVALID:
13894 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13895 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13897 cu->get_builder ()->push_context (0, lowpc);
13898 if (die->child != NULL)
13900 child_die = die->child;
13901 while (child_die && child_die->tag)
13903 process_die (child_die, cu);
13904 child_die = sibling_die (child_die);
13907 inherit_abstract_dies (die, cu);
13908 struct context_stack cstk = cu->get_builder ()->pop_context ();
13910 if (*cu->get_builder ()->get_local_symbols () != NULL
13911 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13913 struct block *block
13914 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13915 cstk.start_addr, highpc);
13917 /* Note that recording ranges after traversing children, as we
13918 do here, means that recording a parent's ranges entails
13919 walking across all its children's ranges as they appear in
13920 the address map, which is quadratic behavior.
13922 It would be nicer to record the parent's ranges before
13923 traversing its children, simply overriding whatever you find
13924 there. But since we don't even decide whether to create a
13925 block until after we've traversed its children, that's hard
13927 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13929 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13930 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13933 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13936 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13938 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13940 CORE_ADDR pc, baseaddr;
13941 struct attribute *attr;
13942 struct call_site *call_site, call_site_local;
13945 struct die_info *child_die;
13947 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13949 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13952 /* This was a pre-DWARF-5 GNU extension alias
13953 for DW_AT_call_return_pc. */
13954 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13958 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13959 "DIE %s [in module %s]"),
13960 sect_offset_str (die->sect_off), objfile_name (objfile));
13963 pc = attr_value_as_address (attr) + baseaddr;
13964 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13966 if (cu->call_site_htab == NULL)
13967 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13968 NULL, &objfile->objfile_obstack,
13969 hashtab_obstack_allocate, NULL);
13970 call_site_local.pc = pc;
13971 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13974 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13975 "DIE %s [in module %s]"),
13976 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13977 objfile_name (objfile));
13981 /* Count parameters at the caller. */
13984 for (child_die = die->child; child_die && child_die->tag;
13985 child_die = sibling_die (child_die))
13987 if (child_die->tag != DW_TAG_call_site_parameter
13988 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13990 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13991 "DW_TAG_call_site child DIE %s [in module %s]"),
13992 child_die->tag, sect_offset_str (child_die->sect_off),
13993 objfile_name (objfile));
14001 = ((struct call_site *)
14002 obstack_alloc (&objfile->objfile_obstack,
14003 sizeof (*call_site)
14004 + (sizeof (*call_site->parameter) * (nparams - 1))));
14006 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14007 call_site->pc = pc;
14009 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14010 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14012 struct die_info *func_die;
14014 /* Skip also over DW_TAG_inlined_subroutine. */
14015 for (func_die = die->parent;
14016 func_die && func_die->tag != DW_TAG_subprogram
14017 && func_die->tag != DW_TAG_subroutine_type;
14018 func_die = func_die->parent);
14020 /* DW_AT_call_all_calls is a superset
14021 of DW_AT_call_all_tail_calls. */
14023 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14024 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14025 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14026 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14028 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14029 not complete. But keep CALL_SITE for look ups via call_site_htab,
14030 both the initial caller containing the real return address PC and
14031 the final callee containing the current PC of a chain of tail
14032 calls do not need to have the tail call list complete. But any
14033 function candidate for a virtual tail call frame searched via
14034 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14035 determined unambiguously. */
14039 struct type *func_type = NULL;
14042 func_type = get_die_type (func_die, cu);
14043 if (func_type != NULL)
14045 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14047 /* Enlist this call site to the function. */
14048 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14049 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14052 complaint (_("Cannot find function owning DW_TAG_call_site "
14053 "DIE %s [in module %s]"),
14054 sect_offset_str (die->sect_off), objfile_name (objfile));
14058 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14060 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14062 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14065 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14066 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14068 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14069 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14070 /* Keep NULL DWARF_BLOCK. */;
14071 else if (attr_form_is_block (attr))
14073 struct dwarf2_locexpr_baton *dlbaton;
14075 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14076 dlbaton->data = DW_BLOCK (attr)->data;
14077 dlbaton->size = DW_BLOCK (attr)->size;
14078 dlbaton->per_cu = cu->per_cu;
14080 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14082 else if (attr_form_is_ref (attr))
14084 struct dwarf2_cu *target_cu = cu;
14085 struct die_info *target_die;
14087 target_die = follow_die_ref (die, attr, &target_cu);
14088 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14089 if (die_is_declaration (target_die, target_cu))
14091 const char *target_physname;
14093 /* Prefer the mangled name; otherwise compute the demangled one. */
14094 target_physname = dw2_linkage_name (target_die, target_cu);
14095 if (target_physname == NULL)
14096 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14097 if (target_physname == NULL)
14098 complaint (_("DW_AT_call_target target DIE has invalid "
14099 "physname, for referencing DIE %s [in module %s]"),
14100 sect_offset_str (die->sect_off), objfile_name (objfile));
14102 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14108 /* DW_AT_entry_pc should be preferred. */
14109 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14110 <= PC_BOUNDS_INVALID)
14111 complaint (_("DW_AT_call_target target DIE has invalid "
14112 "low pc, for referencing DIE %s [in module %s]"),
14113 sect_offset_str (die->sect_off), objfile_name (objfile));
14116 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14117 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14122 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14123 "block nor reference, for DIE %s [in module %s]"),
14124 sect_offset_str (die->sect_off), objfile_name (objfile));
14126 call_site->per_cu = cu->per_cu;
14128 for (child_die = die->child;
14129 child_die && child_die->tag;
14130 child_die = sibling_die (child_die))
14132 struct call_site_parameter *parameter;
14133 struct attribute *loc, *origin;
14135 if (child_die->tag != DW_TAG_call_site_parameter
14136 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14138 /* Already printed the complaint above. */
14142 gdb_assert (call_site->parameter_count < nparams);
14143 parameter = &call_site->parameter[call_site->parameter_count];
14145 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14146 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14147 register is contained in DW_AT_call_value. */
14149 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14150 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14151 if (origin == NULL)
14153 /* This was a pre-DWARF-5 GNU extension alias
14154 for DW_AT_call_parameter. */
14155 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14157 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14159 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14161 sect_offset sect_off
14162 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14163 if (!offset_in_cu_p (&cu->header, sect_off))
14165 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14166 binding can be done only inside one CU. Such referenced DIE
14167 therefore cannot be even moved to DW_TAG_partial_unit. */
14168 complaint (_("DW_AT_call_parameter offset is not in CU for "
14169 "DW_TAG_call_site child DIE %s [in module %s]"),
14170 sect_offset_str (child_die->sect_off),
14171 objfile_name (objfile));
14174 parameter->u.param_cu_off
14175 = (cu_offset) (sect_off - cu->header.sect_off);
14177 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14179 complaint (_("No DW_FORM_block* DW_AT_location for "
14180 "DW_TAG_call_site child DIE %s [in module %s]"),
14181 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14186 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14187 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14188 if (parameter->u.dwarf_reg != -1)
14189 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14190 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14191 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14192 ¶meter->u.fb_offset))
14193 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14196 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14197 "for DW_FORM_block* DW_AT_location is supported for "
14198 "DW_TAG_call_site child DIE %s "
14200 sect_offset_str (child_die->sect_off),
14201 objfile_name (objfile));
14206 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14208 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14209 if (!attr_form_is_block (attr))
14211 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14212 "DW_TAG_call_site child DIE %s [in module %s]"),
14213 sect_offset_str (child_die->sect_off),
14214 objfile_name (objfile));
14217 parameter->value = DW_BLOCK (attr)->data;
14218 parameter->value_size = DW_BLOCK (attr)->size;
14220 /* Parameters are not pre-cleared by memset above. */
14221 parameter->data_value = NULL;
14222 parameter->data_value_size = 0;
14223 call_site->parameter_count++;
14225 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14227 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14230 if (!attr_form_is_block (attr))
14231 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14232 "DW_TAG_call_site child DIE %s [in module %s]"),
14233 sect_offset_str (child_die->sect_off),
14234 objfile_name (objfile));
14237 parameter->data_value = DW_BLOCK (attr)->data;
14238 parameter->data_value_size = DW_BLOCK (attr)->size;
14244 /* Helper function for read_variable. If DIE represents a virtual
14245 table, then return the type of the concrete object that is
14246 associated with the virtual table. Otherwise, return NULL. */
14248 static struct type *
14249 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14251 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14255 /* Find the type DIE. */
14256 struct die_info *type_die = NULL;
14257 struct dwarf2_cu *type_cu = cu;
14259 if (attr_form_is_ref (attr))
14260 type_die = follow_die_ref (die, attr, &type_cu);
14261 if (type_die == NULL)
14264 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14266 return die_containing_type (type_die, type_cu);
14269 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14272 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14274 struct rust_vtable_symbol *storage = NULL;
14276 if (cu->language == language_rust)
14278 struct type *containing_type = rust_containing_type (die, cu);
14280 if (containing_type != NULL)
14282 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14284 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14285 struct rust_vtable_symbol);
14286 initialize_objfile_symbol (storage);
14287 storage->concrete_type = containing_type;
14288 storage->subclass = SYMBOL_RUST_VTABLE;
14292 struct symbol *res = new_symbol (die, NULL, cu, storage);
14293 struct attribute *abstract_origin
14294 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14295 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14296 if (res == NULL && loc && abstract_origin)
14298 /* We have a variable without a name, but with a location and an abstract
14299 origin. This may be a concrete instance of an abstract variable
14300 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14302 struct dwarf2_cu *origin_cu = cu;
14303 struct die_info *origin_die
14304 = follow_die_ref (die, abstract_origin, &origin_cu);
14305 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14306 dpo->abstract_to_concrete[origin_die].push_back (die);
14310 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14311 reading .debug_rnglists.
14312 Callback's type should be:
14313 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14314 Return true if the attributes are present and valid, otherwise,
14317 template <typename Callback>
14319 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14320 Callback &&callback)
14322 struct dwarf2_per_objfile *dwarf2_per_objfile
14323 = cu->per_cu->dwarf2_per_objfile;
14324 struct objfile *objfile = dwarf2_per_objfile->objfile;
14325 bfd *obfd = objfile->obfd;
14326 /* Base address selection entry. */
14329 const gdb_byte *buffer;
14330 CORE_ADDR baseaddr;
14331 bool overflow = false;
14333 found_base = cu->base_known;
14334 base = cu->base_address;
14336 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14337 if (offset >= dwarf2_per_objfile->rnglists.size)
14339 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14343 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14345 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14349 /* Initialize it due to a false compiler warning. */
14350 CORE_ADDR range_beginning = 0, range_end = 0;
14351 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14352 + dwarf2_per_objfile->rnglists.size);
14353 unsigned int bytes_read;
14355 if (buffer == buf_end)
14360 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14363 case DW_RLE_end_of_list:
14365 case DW_RLE_base_address:
14366 if (buffer + cu->header.addr_size > buf_end)
14371 base = read_address (obfd, buffer, cu, &bytes_read);
14373 buffer += bytes_read;
14375 case DW_RLE_start_length:
14376 if (buffer + cu->header.addr_size > buf_end)
14381 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14382 buffer += bytes_read;
14383 range_end = (range_beginning
14384 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14385 buffer += bytes_read;
14386 if (buffer > buf_end)
14392 case DW_RLE_offset_pair:
14393 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14394 buffer += bytes_read;
14395 if (buffer > buf_end)
14400 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14401 buffer += bytes_read;
14402 if (buffer > buf_end)
14408 case DW_RLE_start_end:
14409 if (buffer + 2 * cu->header.addr_size > buf_end)
14414 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14415 buffer += bytes_read;
14416 range_end = read_address (obfd, buffer, cu, &bytes_read);
14417 buffer += bytes_read;
14420 complaint (_("Invalid .debug_rnglists data (no base address)"));
14423 if (rlet == DW_RLE_end_of_list || overflow)
14425 if (rlet == DW_RLE_base_address)
14430 /* We have no valid base address for the ranges
14432 complaint (_("Invalid .debug_rnglists data (no base address)"));
14436 if (range_beginning > range_end)
14438 /* Inverted range entries are invalid. */
14439 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14443 /* Empty range entries have no effect. */
14444 if (range_beginning == range_end)
14447 range_beginning += base;
14450 /* A not-uncommon case of bad debug info.
14451 Don't pollute the addrmap with bad data. */
14452 if (range_beginning + baseaddr == 0
14453 && !dwarf2_per_objfile->has_section_at_zero)
14455 complaint (_(".debug_rnglists entry has start address of zero"
14456 " [in module %s]"), objfile_name (objfile));
14460 callback (range_beginning, range_end);
14465 complaint (_("Offset %d is not terminated "
14466 "for DW_AT_ranges attribute"),
14474 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14475 Callback's type should be:
14476 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14477 Return 1 if the attributes are present and valid, otherwise, return 0. */
14479 template <typename Callback>
14481 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14482 Callback &&callback)
14484 struct dwarf2_per_objfile *dwarf2_per_objfile
14485 = cu->per_cu->dwarf2_per_objfile;
14486 struct objfile *objfile = dwarf2_per_objfile->objfile;
14487 struct comp_unit_head *cu_header = &cu->header;
14488 bfd *obfd = objfile->obfd;
14489 unsigned int addr_size = cu_header->addr_size;
14490 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14491 /* Base address selection entry. */
14494 unsigned int dummy;
14495 const gdb_byte *buffer;
14496 CORE_ADDR baseaddr;
14498 if (cu_header->version >= 5)
14499 return dwarf2_rnglists_process (offset, cu, callback);
14501 found_base = cu->base_known;
14502 base = cu->base_address;
14504 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14505 if (offset >= dwarf2_per_objfile->ranges.size)
14507 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14511 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14513 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14517 CORE_ADDR range_beginning, range_end;
14519 range_beginning = read_address (obfd, buffer, cu, &dummy);
14520 buffer += addr_size;
14521 range_end = read_address (obfd, buffer, cu, &dummy);
14522 buffer += addr_size;
14523 offset += 2 * addr_size;
14525 /* An end of list marker is a pair of zero addresses. */
14526 if (range_beginning == 0 && range_end == 0)
14527 /* Found the end of list entry. */
14530 /* Each base address selection entry is a pair of 2 values.
14531 The first is the largest possible address, the second is
14532 the base address. Check for a base address here. */
14533 if ((range_beginning & mask) == mask)
14535 /* If we found the largest possible address, then we already
14536 have the base address in range_end. */
14544 /* We have no valid base address for the ranges
14546 complaint (_("Invalid .debug_ranges data (no base address)"));
14550 if (range_beginning > range_end)
14552 /* Inverted range entries are invalid. */
14553 complaint (_("Invalid .debug_ranges data (inverted range)"));
14557 /* Empty range entries have no effect. */
14558 if (range_beginning == range_end)
14561 range_beginning += base;
14564 /* A not-uncommon case of bad debug info.
14565 Don't pollute the addrmap with bad data. */
14566 if (range_beginning + baseaddr == 0
14567 && !dwarf2_per_objfile->has_section_at_zero)
14569 complaint (_(".debug_ranges entry has start address of zero"
14570 " [in module %s]"), objfile_name (objfile));
14574 callback (range_beginning, range_end);
14580 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14581 Return 1 if the attributes are present and valid, otherwise, return 0.
14582 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14585 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14586 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14587 struct partial_symtab *ranges_pst)
14589 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14590 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14591 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14592 SECT_OFF_TEXT (objfile));
14595 CORE_ADDR high = 0;
14598 retval = dwarf2_ranges_process (offset, cu,
14599 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14601 if (ranges_pst != NULL)
14606 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14607 range_beginning + baseaddr)
14609 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14610 range_end + baseaddr)
14612 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14613 lowpc, highpc - 1, ranges_pst);
14616 /* FIXME: This is recording everything as a low-high
14617 segment of consecutive addresses. We should have a
14618 data structure for discontiguous block ranges
14622 low = range_beginning;
14628 if (range_beginning < low)
14629 low = range_beginning;
14630 if (range_end > high)
14638 /* If the first entry is an end-of-list marker, the range
14639 describes an empty scope, i.e. no instructions. */
14645 *high_return = high;
14649 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14650 definition for the return value. *LOWPC and *HIGHPC are set iff
14651 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14653 static enum pc_bounds_kind
14654 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14655 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14656 struct partial_symtab *pst)
14658 struct dwarf2_per_objfile *dwarf2_per_objfile
14659 = cu->per_cu->dwarf2_per_objfile;
14660 struct attribute *attr;
14661 struct attribute *attr_high;
14663 CORE_ADDR high = 0;
14664 enum pc_bounds_kind ret;
14666 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14669 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14672 low = attr_value_as_address (attr);
14673 high = attr_value_as_address (attr_high);
14674 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14678 /* Found high w/o low attribute. */
14679 return PC_BOUNDS_INVALID;
14681 /* Found consecutive range of addresses. */
14682 ret = PC_BOUNDS_HIGH_LOW;
14686 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14689 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14690 We take advantage of the fact that DW_AT_ranges does not appear
14691 in DW_TAG_compile_unit of DWO files. */
14692 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14693 unsigned int ranges_offset = (DW_UNSND (attr)
14694 + (need_ranges_base
14698 /* Value of the DW_AT_ranges attribute is the offset in the
14699 .debug_ranges section. */
14700 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14701 return PC_BOUNDS_INVALID;
14702 /* Found discontinuous range of addresses. */
14703 ret = PC_BOUNDS_RANGES;
14706 return PC_BOUNDS_NOT_PRESENT;
14709 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14711 return PC_BOUNDS_INVALID;
14713 /* When using the GNU linker, .gnu.linkonce. sections are used to
14714 eliminate duplicate copies of functions and vtables and such.
14715 The linker will arbitrarily choose one and discard the others.
14716 The AT_*_pc values for such functions refer to local labels in
14717 these sections. If the section from that file was discarded, the
14718 labels are not in the output, so the relocs get a value of 0.
14719 If this is a discarded function, mark the pc bounds as invalid,
14720 so that GDB will ignore it. */
14721 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14722 return PC_BOUNDS_INVALID;
14730 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14731 its low and high PC addresses. Do nothing if these addresses could not
14732 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14733 and HIGHPC to the high address if greater than HIGHPC. */
14736 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14737 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14738 struct dwarf2_cu *cu)
14740 CORE_ADDR low, high;
14741 struct die_info *child = die->child;
14743 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14745 *lowpc = std::min (*lowpc, low);
14746 *highpc = std::max (*highpc, high);
14749 /* If the language does not allow nested subprograms (either inside
14750 subprograms or lexical blocks), we're done. */
14751 if (cu->language != language_ada)
14754 /* Check all the children of the given DIE. If it contains nested
14755 subprograms, then check their pc bounds. Likewise, we need to
14756 check lexical blocks as well, as they may also contain subprogram
14758 while (child && child->tag)
14760 if (child->tag == DW_TAG_subprogram
14761 || child->tag == DW_TAG_lexical_block)
14762 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14763 child = sibling_die (child);
14767 /* Get the low and high pc's represented by the scope DIE, and store
14768 them in *LOWPC and *HIGHPC. If the correct values can't be
14769 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14772 get_scope_pc_bounds (struct die_info *die,
14773 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14774 struct dwarf2_cu *cu)
14776 CORE_ADDR best_low = (CORE_ADDR) -1;
14777 CORE_ADDR best_high = (CORE_ADDR) 0;
14778 CORE_ADDR current_low, current_high;
14780 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14781 >= PC_BOUNDS_RANGES)
14783 best_low = current_low;
14784 best_high = current_high;
14788 struct die_info *child = die->child;
14790 while (child && child->tag)
14792 switch (child->tag) {
14793 case DW_TAG_subprogram:
14794 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14796 case DW_TAG_namespace:
14797 case DW_TAG_module:
14798 /* FIXME: carlton/2004-01-16: Should we do this for
14799 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14800 that current GCC's always emit the DIEs corresponding
14801 to definitions of methods of classes as children of a
14802 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14803 the DIEs giving the declarations, which could be
14804 anywhere). But I don't see any reason why the
14805 standards says that they have to be there. */
14806 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14808 if (current_low != ((CORE_ADDR) -1))
14810 best_low = std::min (best_low, current_low);
14811 best_high = std::max (best_high, current_high);
14819 child = sibling_die (child);
14824 *highpc = best_high;
14827 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14831 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14832 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14834 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14835 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14836 struct attribute *attr;
14837 struct attribute *attr_high;
14839 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14842 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14845 CORE_ADDR low = attr_value_as_address (attr);
14846 CORE_ADDR high = attr_value_as_address (attr_high);
14848 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14851 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14852 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14853 cu->get_builder ()->record_block_range (block, low, high - 1);
14857 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14860 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14861 We take advantage of the fact that DW_AT_ranges does not appear
14862 in DW_TAG_compile_unit of DWO files. */
14863 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14865 /* The value of the DW_AT_ranges attribute is the offset of the
14866 address range list in the .debug_ranges section. */
14867 unsigned long offset = (DW_UNSND (attr)
14868 + (need_ranges_base ? cu->ranges_base : 0));
14870 std::vector<blockrange> blockvec;
14871 dwarf2_ranges_process (offset, cu,
14872 [&] (CORE_ADDR start, CORE_ADDR end)
14876 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14877 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14878 cu->get_builder ()->record_block_range (block, start, end - 1);
14879 blockvec.emplace_back (start, end);
14882 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14886 /* Check whether the producer field indicates either of GCC < 4.6, or the
14887 Intel C/C++ compiler, and cache the result in CU. */
14890 check_producer (struct dwarf2_cu *cu)
14894 if (cu->producer == NULL)
14896 /* For unknown compilers expect their behavior is DWARF version
14899 GCC started to support .debug_types sections by -gdwarf-4 since
14900 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14901 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14902 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14903 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14905 else if (producer_is_gcc (cu->producer, &major, &minor))
14907 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14908 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14910 else if (producer_is_icc (cu->producer, &major, &minor))
14912 cu->producer_is_icc = true;
14913 cu->producer_is_icc_lt_14 = major < 14;
14915 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14916 cu->producer_is_codewarrior = true;
14919 /* For other non-GCC compilers, expect their behavior is DWARF version
14923 cu->checked_producer = true;
14926 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14927 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14928 during 4.6.0 experimental. */
14931 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14933 if (!cu->checked_producer)
14934 check_producer (cu);
14936 return cu->producer_is_gxx_lt_4_6;
14940 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14941 with incorrect is_stmt attributes. */
14944 producer_is_codewarrior (struct dwarf2_cu *cu)
14946 if (!cu->checked_producer)
14947 check_producer (cu);
14949 return cu->producer_is_codewarrior;
14952 /* Return the default accessibility type if it is not overriden by
14953 DW_AT_accessibility. */
14955 static enum dwarf_access_attribute
14956 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14958 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14960 /* The default DWARF 2 accessibility for members is public, the default
14961 accessibility for inheritance is private. */
14963 if (die->tag != DW_TAG_inheritance)
14964 return DW_ACCESS_public;
14966 return DW_ACCESS_private;
14970 /* DWARF 3+ defines the default accessibility a different way. The same
14971 rules apply now for DW_TAG_inheritance as for the members and it only
14972 depends on the container kind. */
14974 if (die->parent->tag == DW_TAG_class_type)
14975 return DW_ACCESS_private;
14977 return DW_ACCESS_public;
14981 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14982 offset. If the attribute was not found return 0, otherwise return
14983 1. If it was found but could not properly be handled, set *OFFSET
14987 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14990 struct attribute *attr;
14992 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14997 /* Note that we do not check for a section offset first here.
14998 This is because DW_AT_data_member_location is new in DWARF 4,
14999 so if we see it, we can assume that a constant form is really
15000 a constant and not a section offset. */
15001 if (attr_form_is_constant (attr))
15002 *offset = dwarf2_get_attr_constant_value (attr, 0);
15003 else if (attr_form_is_section_offset (attr))
15004 dwarf2_complex_location_expr_complaint ();
15005 else if (attr_form_is_block (attr))
15006 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15008 dwarf2_complex_location_expr_complaint ();
15016 /* Add an aggregate field to the field list. */
15019 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15020 struct dwarf2_cu *cu)
15022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15024 struct nextfield *new_field;
15025 struct attribute *attr;
15027 const char *fieldname = "";
15029 if (die->tag == DW_TAG_inheritance)
15031 fip->baseclasses.emplace_back ();
15032 new_field = &fip->baseclasses.back ();
15036 fip->fields.emplace_back ();
15037 new_field = &fip->fields.back ();
15042 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15044 new_field->accessibility = DW_UNSND (attr);
15046 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15047 if (new_field->accessibility != DW_ACCESS_public)
15048 fip->non_public_fields = 1;
15050 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15052 new_field->virtuality = DW_UNSND (attr);
15054 new_field->virtuality = DW_VIRTUALITY_none;
15056 fp = &new_field->field;
15058 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15062 /* Data member other than a C++ static data member. */
15064 /* Get type of field. */
15065 fp->type = die_type (die, cu);
15067 SET_FIELD_BITPOS (*fp, 0);
15069 /* Get bit size of field (zero if none). */
15070 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15073 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15077 FIELD_BITSIZE (*fp) = 0;
15080 /* Get bit offset of field. */
15081 if (handle_data_member_location (die, cu, &offset))
15082 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15083 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15086 if (gdbarch_bits_big_endian (gdbarch))
15088 /* For big endian bits, the DW_AT_bit_offset gives the
15089 additional bit offset from the MSB of the containing
15090 anonymous object to the MSB of the field. We don't
15091 have to do anything special since we don't need to
15092 know the size of the anonymous object. */
15093 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15097 /* For little endian bits, compute the bit offset to the
15098 MSB of the anonymous object, subtract off the number of
15099 bits from the MSB of the field to the MSB of the
15100 object, and then subtract off the number of bits of
15101 the field itself. The result is the bit offset of
15102 the LSB of the field. */
15103 int anonymous_size;
15104 int bit_offset = DW_UNSND (attr);
15106 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15109 /* The size of the anonymous object containing
15110 the bit field is explicit, so use the
15111 indicated size (in bytes). */
15112 anonymous_size = DW_UNSND (attr);
15116 /* The size of the anonymous object containing
15117 the bit field must be inferred from the type
15118 attribute of the data member containing the
15120 anonymous_size = TYPE_LENGTH (fp->type);
15122 SET_FIELD_BITPOS (*fp,
15123 (FIELD_BITPOS (*fp)
15124 + anonymous_size * bits_per_byte
15125 - bit_offset - FIELD_BITSIZE (*fp)));
15128 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15130 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15131 + dwarf2_get_attr_constant_value (attr, 0)));
15133 /* Get name of field. */
15134 fieldname = dwarf2_name (die, cu);
15135 if (fieldname == NULL)
15138 /* The name is already allocated along with this objfile, so we don't
15139 need to duplicate it for the type. */
15140 fp->name = fieldname;
15142 /* Change accessibility for artificial fields (e.g. virtual table
15143 pointer or virtual base class pointer) to private. */
15144 if (dwarf2_attr (die, DW_AT_artificial, cu))
15146 FIELD_ARTIFICIAL (*fp) = 1;
15147 new_field->accessibility = DW_ACCESS_private;
15148 fip->non_public_fields = 1;
15151 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15153 /* C++ static member. */
15155 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15156 is a declaration, but all versions of G++ as of this writing
15157 (so through at least 3.2.1) incorrectly generate
15158 DW_TAG_variable tags. */
15160 const char *physname;
15162 /* Get name of field. */
15163 fieldname = dwarf2_name (die, cu);
15164 if (fieldname == NULL)
15167 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15169 /* Only create a symbol if this is an external value.
15170 new_symbol checks this and puts the value in the global symbol
15171 table, which we want. If it is not external, new_symbol
15172 will try to put the value in cu->list_in_scope which is wrong. */
15173 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15175 /* A static const member, not much different than an enum as far as
15176 we're concerned, except that we can support more types. */
15177 new_symbol (die, NULL, cu);
15180 /* Get physical name. */
15181 physname = dwarf2_physname (fieldname, die, cu);
15183 /* The name is already allocated along with this objfile, so we don't
15184 need to duplicate it for the type. */
15185 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15186 FIELD_TYPE (*fp) = die_type (die, cu);
15187 FIELD_NAME (*fp) = fieldname;
15189 else if (die->tag == DW_TAG_inheritance)
15193 /* C++ base class field. */
15194 if (handle_data_member_location (die, cu, &offset))
15195 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15196 FIELD_BITSIZE (*fp) = 0;
15197 FIELD_TYPE (*fp) = die_type (die, cu);
15198 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15200 else if (die->tag == DW_TAG_variant_part)
15202 /* process_structure_scope will treat this DIE as a union. */
15203 process_structure_scope (die, cu);
15205 /* The variant part is relative to the start of the enclosing
15207 SET_FIELD_BITPOS (*fp, 0);
15208 fp->type = get_die_type (die, cu);
15209 fp->artificial = 1;
15210 fp->name = "<<variant>>";
15212 /* Normally a DW_TAG_variant_part won't have a size, but our
15213 representation requires one, so set it to the maximum of the
15215 if (TYPE_LENGTH (fp->type) == 0)
15218 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15219 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15220 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15221 TYPE_LENGTH (fp->type) = max;
15225 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15228 /* Can the type given by DIE define another type? */
15231 type_can_define_types (const struct die_info *die)
15235 case DW_TAG_typedef:
15236 case DW_TAG_class_type:
15237 case DW_TAG_structure_type:
15238 case DW_TAG_union_type:
15239 case DW_TAG_enumeration_type:
15247 /* Add a type definition defined in the scope of the FIP's class. */
15250 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15251 struct dwarf2_cu *cu)
15253 struct decl_field fp;
15254 memset (&fp, 0, sizeof (fp));
15256 gdb_assert (type_can_define_types (die));
15258 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15259 fp.name = dwarf2_name (die, cu);
15260 fp.type = read_type_die (die, cu);
15262 /* Save accessibility. */
15263 enum dwarf_access_attribute accessibility;
15264 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15266 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15268 accessibility = dwarf2_default_access_attribute (die, cu);
15269 switch (accessibility)
15271 case DW_ACCESS_public:
15272 /* The assumed value if neither private nor protected. */
15274 case DW_ACCESS_private:
15277 case DW_ACCESS_protected:
15278 fp.is_protected = 1;
15281 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15284 if (die->tag == DW_TAG_typedef)
15285 fip->typedef_field_list.push_back (fp);
15287 fip->nested_types_list.push_back (fp);
15290 /* Create the vector of fields, and attach it to the type. */
15293 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15294 struct dwarf2_cu *cu)
15296 int nfields = fip->nfields;
15298 /* Record the field count, allocate space for the array of fields,
15299 and create blank accessibility bitfields if necessary. */
15300 TYPE_NFIELDS (type) = nfields;
15301 TYPE_FIELDS (type) = (struct field *)
15302 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15304 if (fip->non_public_fields && cu->language != language_ada)
15306 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15308 TYPE_FIELD_PRIVATE_BITS (type) =
15309 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15310 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15312 TYPE_FIELD_PROTECTED_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15316 TYPE_FIELD_IGNORE_BITS (type) =
15317 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15318 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15321 /* If the type has baseclasses, allocate and clear a bit vector for
15322 TYPE_FIELD_VIRTUAL_BITS. */
15323 if (!fip->baseclasses.empty () && cu->language != language_ada)
15325 int num_bytes = B_BYTES (fip->baseclasses.size ());
15326 unsigned char *pointer;
15328 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15329 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15330 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15331 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15332 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15335 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15337 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15339 for (int index = 0; index < nfields; ++index)
15341 struct nextfield &field = fip->fields[index];
15343 if (field.variant.is_discriminant)
15344 di->discriminant_index = index;
15345 else if (field.variant.default_branch)
15346 di->default_index = index;
15348 di->discriminants[index] = field.variant.discriminant_value;
15352 /* Copy the saved-up fields into the field vector. */
15353 for (int i = 0; i < nfields; ++i)
15355 struct nextfield &field
15356 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15357 : fip->fields[i - fip->baseclasses.size ()]);
15359 TYPE_FIELD (type, i) = field.field;
15360 switch (field.accessibility)
15362 case DW_ACCESS_private:
15363 if (cu->language != language_ada)
15364 SET_TYPE_FIELD_PRIVATE (type, i);
15367 case DW_ACCESS_protected:
15368 if (cu->language != language_ada)
15369 SET_TYPE_FIELD_PROTECTED (type, i);
15372 case DW_ACCESS_public:
15376 /* Unknown accessibility. Complain and treat it as public. */
15378 complaint (_("unsupported accessibility %d"),
15379 field.accessibility);
15383 if (i < fip->baseclasses.size ())
15385 switch (field.virtuality)
15387 case DW_VIRTUALITY_virtual:
15388 case DW_VIRTUALITY_pure_virtual:
15389 if (cu->language == language_ada)
15390 error (_("unexpected virtuality in component of Ada type"));
15391 SET_TYPE_FIELD_VIRTUAL (type, i);
15398 /* Return true if this member function is a constructor, false
15402 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15404 const char *fieldname;
15405 const char *type_name;
15408 if (die->parent == NULL)
15411 if (die->parent->tag != DW_TAG_structure_type
15412 && die->parent->tag != DW_TAG_union_type
15413 && die->parent->tag != DW_TAG_class_type)
15416 fieldname = dwarf2_name (die, cu);
15417 type_name = dwarf2_name (die->parent, cu);
15418 if (fieldname == NULL || type_name == NULL)
15421 len = strlen (fieldname);
15422 return (strncmp (fieldname, type_name, len) == 0
15423 && (type_name[len] == '\0' || type_name[len] == '<'));
15426 /* Add a member function to the proper fieldlist. */
15429 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15430 struct type *type, struct dwarf2_cu *cu)
15432 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15433 struct attribute *attr;
15435 struct fnfieldlist *flp = nullptr;
15436 struct fn_field *fnp;
15437 const char *fieldname;
15438 struct type *this_type;
15439 enum dwarf_access_attribute accessibility;
15441 if (cu->language == language_ada)
15442 error (_("unexpected member function in Ada type"));
15444 /* Get name of member function. */
15445 fieldname = dwarf2_name (die, cu);
15446 if (fieldname == NULL)
15449 /* Look up member function name in fieldlist. */
15450 for (i = 0; i < fip->fnfieldlists.size (); i++)
15452 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15454 flp = &fip->fnfieldlists[i];
15459 /* Create a new fnfieldlist if necessary. */
15460 if (flp == nullptr)
15462 fip->fnfieldlists.emplace_back ();
15463 flp = &fip->fnfieldlists.back ();
15464 flp->name = fieldname;
15465 i = fip->fnfieldlists.size () - 1;
15468 /* Create a new member function field and add it to the vector of
15470 flp->fnfields.emplace_back ();
15471 fnp = &flp->fnfields.back ();
15473 /* Delay processing of the physname until later. */
15474 if (cu->language == language_cplus)
15475 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15479 const char *physname = dwarf2_physname (fieldname, die, cu);
15480 fnp->physname = physname ? physname : "";
15483 fnp->type = alloc_type (objfile);
15484 this_type = read_type_die (die, cu);
15485 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15487 int nparams = TYPE_NFIELDS (this_type);
15489 /* TYPE is the domain of this method, and THIS_TYPE is the type
15490 of the method itself (TYPE_CODE_METHOD). */
15491 smash_to_method_type (fnp->type, type,
15492 TYPE_TARGET_TYPE (this_type),
15493 TYPE_FIELDS (this_type),
15494 TYPE_NFIELDS (this_type),
15495 TYPE_VARARGS (this_type));
15497 /* Handle static member functions.
15498 Dwarf2 has no clean way to discern C++ static and non-static
15499 member functions. G++ helps GDB by marking the first
15500 parameter for non-static member functions (which is the this
15501 pointer) as artificial. We obtain this information from
15502 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15503 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15504 fnp->voffset = VOFFSET_STATIC;
15507 complaint (_("member function type missing for '%s'"),
15508 dwarf2_full_name (fieldname, die, cu));
15510 /* Get fcontext from DW_AT_containing_type if present. */
15511 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15512 fnp->fcontext = die_containing_type (die, cu);
15514 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15515 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15517 /* Get accessibility. */
15518 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15520 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15522 accessibility = dwarf2_default_access_attribute (die, cu);
15523 switch (accessibility)
15525 case DW_ACCESS_private:
15526 fnp->is_private = 1;
15528 case DW_ACCESS_protected:
15529 fnp->is_protected = 1;
15533 /* Check for artificial methods. */
15534 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15535 if (attr && DW_UNSND (attr) != 0)
15536 fnp->is_artificial = 1;
15538 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15540 /* Get index in virtual function table if it is a virtual member
15541 function. For older versions of GCC, this is an offset in the
15542 appropriate virtual table, as specified by DW_AT_containing_type.
15543 For everyone else, it is an expression to be evaluated relative
15544 to the object address. */
15546 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15549 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15551 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15553 /* Old-style GCC. */
15554 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15556 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15557 || (DW_BLOCK (attr)->size > 1
15558 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15559 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15561 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15562 if ((fnp->voffset % cu->header.addr_size) != 0)
15563 dwarf2_complex_location_expr_complaint ();
15565 fnp->voffset /= cu->header.addr_size;
15569 dwarf2_complex_location_expr_complaint ();
15571 if (!fnp->fcontext)
15573 /* If there is no `this' field and no DW_AT_containing_type,
15574 we cannot actually find a base class context for the
15576 if (TYPE_NFIELDS (this_type) == 0
15577 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15579 complaint (_("cannot determine context for virtual member "
15580 "function \"%s\" (offset %s)"),
15581 fieldname, sect_offset_str (die->sect_off));
15586 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15590 else if (attr_form_is_section_offset (attr))
15592 dwarf2_complex_location_expr_complaint ();
15596 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15602 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15603 if (attr && DW_UNSND (attr))
15605 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15606 complaint (_("Member function \"%s\" (offset %s) is virtual "
15607 "but the vtable offset is not specified"),
15608 fieldname, sect_offset_str (die->sect_off));
15609 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15610 TYPE_CPLUS_DYNAMIC (type) = 1;
15615 /* Create the vector of member function fields, and attach it to the type. */
15618 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15619 struct dwarf2_cu *cu)
15621 if (cu->language == language_ada)
15622 error (_("unexpected member functions in Ada type"));
15624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15625 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15627 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15629 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15631 struct fnfieldlist &nf = fip->fnfieldlists[i];
15632 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15634 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15635 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15636 fn_flp->fn_fields = (struct fn_field *)
15637 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15639 for (int k = 0; k < nf.fnfields.size (); ++k)
15640 fn_flp->fn_fields[k] = nf.fnfields[k];
15643 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15646 /* Returns non-zero if NAME is the name of a vtable member in CU's
15647 language, zero otherwise. */
15649 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15651 static const char vptr[] = "_vptr";
15653 /* Look for the C++ form of the vtable. */
15654 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15660 /* GCC outputs unnamed structures that are really pointers to member
15661 functions, with the ABI-specified layout. If TYPE describes
15662 such a structure, smash it into a member function type.
15664 GCC shouldn't do this; it should just output pointer to member DIEs.
15665 This is GCC PR debug/28767. */
15668 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15670 struct type *pfn_type, *self_type, *new_type;
15672 /* Check for a structure with no name and two children. */
15673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15676 /* Check for __pfn and __delta members. */
15677 if (TYPE_FIELD_NAME (type, 0) == NULL
15678 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15679 || TYPE_FIELD_NAME (type, 1) == NULL
15680 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15683 /* Find the type of the method. */
15684 pfn_type = TYPE_FIELD_TYPE (type, 0);
15685 if (pfn_type == NULL
15686 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15687 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15690 /* Look for the "this" argument. */
15691 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15692 if (TYPE_NFIELDS (pfn_type) == 0
15693 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15694 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15697 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15698 new_type = alloc_type (objfile);
15699 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15700 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15701 TYPE_VARARGS (pfn_type));
15702 smash_to_methodptr_type (type, new_type);
15705 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15706 appropriate error checking and issuing complaints if there is a
15710 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15712 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15714 if (attr == nullptr)
15717 if (!attr_form_is_constant (attr))
15719 complaint (_("DW_AT_alignment must have constant form"
15720 " - DIE at %s [in module %s]"),
15721 sect_offset_str (die->sect_off),
15722 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15727 if (attr->form == DW_FORM_sdata)
15729 LONGEST val = DW_SND (attr);
15732 complaint (_("DW_AT_alignment value must not be negative"
15733 " - DIE at %s [in module %s]"),
15734 sect_offset_str (die->sect_off),
15735 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15741 align = DW_UNSND (attr);
15745 complaint (_("DW_AT_alignment value must not be zero"
15746 " - DIE at %s [in module %s]"),
15747 sect_offset_str (die->sect_off),
15748 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15751 if ((align & (align - 1)) != 0)
15753 complaint (_("DW_AT_alignment value must be a power of 2"
15754 " - DIE at %s [in module %s]"),
15755 sect_offset_str (die->sect_off),
15756 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15763 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15764 the alignment for TYPE. */
15767 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15770 if (!set_type_align (type, get_alignment (cu, die)))
15771 complaint (_("DW_AT_alignment value too large"
15772 " - DIE at %s [in module %s]"),
15773 sect_offset_str (die->sect_off),
15774 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15777 /* Called when we find the DIE that starts a structure or union scope
15778 (definition) to create a type for the structure or union. Fill in
15779 the type's name and general properties; the members will not be
15780 processed until process_structure_scope. A symbol table entry for
15781 the type will also not be done until process_structure_scope (assuming
15782 the type has a name).
15784 NOTE: we need to call these functions regardless of whether or not the
15785 DIE has a DW_AT_name attribute, since it might be an anonymous
15786 structure or union. This gets the type entered into our set of
15787 user defined types. */
15789 static struct type *
15790 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15794 struct attribute *attr;
15797 /* If the definition of this type lives in .debug_types, read that type.
15798 Don't follow DW_AT_specification though, that will take us back up
15799 the chain and we want to go down. */
15800 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15803 type = get_DW_AT_signature_type (die, attr, cu);
15805 /* The type's CU may not be the same as CU.
15806 Ensure TYPE is recorded with CU in die_type_hash. */
15807 return set_die_type (die, type, cu);
15810 type = alloc_type (objfile);
15811 INIT_CPLUS_SPECIFIC (type);
15813 name = dwarf2_name (die, cu);
15816 if (cu->language == language_cplus
15817 || cu->language == language_d
15818 || cu->language == language_rust)
15820 const char *full_name = dwarf2_full_name (name, die, cu);
15822 /* dwarf2_full_name might have already finished building the DIE's
15823 type. If so, there is no need to continue. */
15824 if (get_die_type (die, cu) != NULL)
15825 return get_die_type (die, cu);
15827 TYPE_NAME (type) = full_name;
15831 /* The name is already allocated along with this objfile, so
15832 we don't need to duplicate it for the type. */
15833 TYPE_NAME (type) = name;
15837 if (die->tag == DW_TAG_structure_type)
15839 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15841 else if (die->tag == DW_TAG_union_type)
15843 TYPE_CODE (type) = TYPE_CODE_UNION;
15845 else if (die->tag == DW_TAG_variant_part)
15847 TYPE_CODE (type) = TYPE_CODE_UNION;
15848 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15852 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15855 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15856 TYPE_DECLARED_CLASS (type) = 1;
15858 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15861 if (attr_form_is_constant (attr))
15862 TYPE_LENGTH (type) = DW_UNSND (attr);
15865 /* For the moment, dynamic type sizes are not supported
15866 by GDB's struct type. The actual size is determined
15867 on-demand when resolving the type of a given object,
15868 so set the type's length to zero for now. Otherwise,
15869 we record an expression as the length, and that expression
15870 could lead to a very large value, which could eventually
15871 lead to us trying to allocate that much memory when creating
15872 a value of that type. */
15873 TYPE_LENGTH (type) = 0;
15878 TYPE_LENGTH (type) = 0;
15881 maybe_set_alignment (cu, die, type);
15883 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15885 /* ICC<14 does not output the required DW_AT_declaration on
15886 incomplete types, but gives them a size of zero. */
15887 TYPE_STUB (type) = 1;
15890 TYPE_STUB_SUPPORTED (type) = 1;
15892 if (die_is_declaration (die, cu))
15893 TYPE_STUB (type) = 1;
15894 else if (attr == NULL && die->child == NULL
15895 && producer_is_realview (cu->producer))
15896 /* RealView does not output the required DW_AT_declaration
15897 on incomplete types. */
15898 TYPE_STUB (type) = 1;
15900 /* We need to add the type field to the die immediately so we don't
15901 infinitely recurse when dealing with pointers to the structure
15902 type within the structure itself. */
15903 set_die_type (die, type, cu);
15905 /* set_die_type should be already done. */
15906 set_descriptive_type (type, die, cu);
15911 /* A helper for process_structure_scope that handles a single member
15915 handle_struct_member_die (struct die_info *child_die, struct type *type,
15916 struct field_info *fi,
15917 std::vector<struct symbol *> *template_args,
15918 struct dwarf2_cu *cu)
15920 if (child_die->tag == DW_TAG_member
15921 || child_die->tag == DW_TAG_variable
15922 || child_die->tag == DW_TAG_variant_part)
15924 /* NOTE: carlton/2002-11-05: A C++ static data member
15925 should be a DW_TAG_member that is a declaration, but
15926 all versions of G++ as of this writing (so through at
15927 least 3.2.1) incorrectly generate DW_TAG_variable
15928 tags for them instead. */
15929 dwarf2_add_field (fi, child_die, cu);
15931 else if (child_die->tag == DW_TAG_subprogram)
15933 /* Rust doesn't have member functions in the C++ sense.
15934 However, it does emit ordinary functions as children
15935 of a struct DIE. */
15936 if (cu->language == language_rust)
15937 read_func_scope (child_die, cu);
15940 /* C++ member function. */
15941 dwarf2_add_member_fn (fi, child_die, type, cu);
15944 else if (child_die->tag == DW_TAG_inheritance)
15946 /* C++ base class field. */
15947 dwarf2_add_field (fi, child_die, cu);
15949 else if (type_can_define_types (child_die))
15950 dwarf2_add_type_defn (fi, child_die, cu);
15951 else if (child_die->tag == DW_TAG_template_type_param
15952 || child_die->tag == DW_TAG_template_value_param)
15954 struct symbol *arg = new_symbol (child_die, NULL, cu);
15957 template_args->push_back (arg);
15959 else if (child_die->tag == DW_TAG_variant)
15961 /* In a variant we want to get the discriminant and also add a
15962 field for our sole member child. */
15963 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15965 for (die_info *variant_child = child_die->child;
15966 variant_child != NULL;
15967 variant_child = sibling_die (variant_child))
15969 if (variant_child->tag == DW_TAG_member)
15971 handle_struct_member_die (variant_child, type, fi,
15972 template_args, cu);
15973 /* Only handle the one. */
15978 /* We don't handle this but we might as well report it if we see
15980 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15981 complaint (_("DW_AT_discr_list is not supported yet"
15982 " - DIE at %s [in module %s]"),
15983 sect_offset_str (child_die->sect_off),
15984 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15986 /* The first field was just added, so we can stash the
15987 discriminant there. */
15988 gdb_assert (!fi->fields.empty ());
15990 fi->fields.back ().variant.default_branch = true;
15992 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15996 /* Finish creating a structure or union type, including filling in
15997 its members and creating a symbol for it. */
16000 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16002 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16003 struct die_info *child_die;
16006 type = get_die_type (die, cu);
16008 type = read_structure_type (die, cu);
16010 /* When reading a DW_TAG_variant_part, we need to notice when we
16011 read the discriminant member, so we can record it later in the
16012 discriminant_info. */
16013 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16014 sect_offset discr_offset;
16015 bool has_template_parameters = false;
16017 if (is_variant_part)
16019 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16022 /* Maybe it's a univariant form, an extension we support.
16023 In this case arrange not to check the offset. */
16024 is_variant_part = false;
16026 else if (attr_form_is_ref (discr))
16028 struct dwarf2_cu *target_cu = cu;
16029 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16031 discr_offset = target_die->sect_off;
16035 complaint (_("DW_AT_discr does not have DIE reference form"
16036 " - DIE at %s [in module %s]"),
16037 sect_offset_str (die->sect_off),
16038 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16039 is_variant_part = false;
16043 if (die->child != NULL && ! die_is_declaration (die, cu))
16045 struct field_info fi;
16046 std::vector<struct symbol *> template_args;
16048 child_die = die->child;
16050 while (child_die && child_die->tag)
16052 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16054 if (is_variant_part && discr_offset == child_die->sect_off)
16055 fi.fields.back ().variant.is_discriminant = true;
16057 child_die = sibling_die (child_die);
16060 /* Attach template arguments to type. */
16061 if (!template_args.empty ())
16063 has_template_parameters = true;
16064 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16065 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16066 TYPE_TEMPLATE_ARGUMENTS (type)
16067 = XOBNEWVEC (&objfile->objfile_obstack,
16069 TYPE_N_TEMPLATE_ARGUMENTS (type));
16070 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16071 template_args.data (),
16072 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16073 * sizeof (struct symbol *)));
16076 /* Attach fields and member functions to the type. */
16078 dwarf2_attach_fields_to_type (&fi, type, cu);
16079 if (!fi.fnfieldlists.empty ())
16081 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16083 /* Get the type which refers to the base class (possibly this
16084 class itself) which contains the vtable pointer for the current
16085 class from the DW_AT_containing_type attribute. This use of
16086 DW_AT_containing_type is a GNU extension. */
16088 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16090 struct type *t = die_containing_type (die, cu);
16092 set_type_vptr_basetype (type, t);
16097 /* Our own class provides vtbl ptr. */
16098 for (i = TYPE_NFIELDS (t) - 1;
16099 i >= TYPE_N_BASECLASSES (t);
16102 const char *fieldname = TYPE_FIELD_NAME (t, i);
16104 if (is_vtable_name (fieldname, cu))
16106 set_type_vptr_fieldno (type, i);
16111 /* Complain if virtual function table field not found. */
16112 if (i < TYPE_N_BASECLASSES (t))
16113 complaint (_("virtual function table pointer "
16114 "not found when defining class '%s'"),
16115 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16119 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16122 else if (cu->producer
16123 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16125 /* The IBM XLC compiler does not provide direct indication
16126 of the containing type, but the vtable pointer is
16127 always named __vfp. */
16131 for (i = TYPE_NFIELDS (type) - 1;
16132 i >= TYPE_N_BASECLASSES (type);
16135 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16137 set_type_vptr_fieldno (type, i);
16138 set_type_vptr_basetype (type, type);
16145 /* Copy fi.typedef_field_list linked list elements content into the
16146 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16147 if (!fi.typedef_field_list.empty ())
16149 int count = fi.typedef_field_list.size ();
16151 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16152 TYPE_TYPEDEF_FIELD_ARRAY (type)
16153 = ((struct decl_field *)
16155 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16156 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16158 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16159 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16162 /* Copy fi.nested_types_list linked list elements content into the
16163 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16164 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16166 int count = fi.nested_types_list.size ();
16168 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16169 TYPE_NESTED_TYPES_ARRAY (type)
16170 = ((struct decl_field *)
16171 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16172 TYPE_NESTED_TYPES_COUNT (type) = count;
16174 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16175 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16179 quirk_gcc_member_function_pointer (type, objfile);
16180 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16181 cu->rust_unions.push_back (type);
16183 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16184 snapshots) has been known to create a die giving a declaration
16185 for a class that has, as a child, a die giving a definition for a
16186 nested class. So we have to process our children even if the
16187 current die is a declaration. Normally, of course, a declaration
16188 won't have any children at all. */
16190 child_die = die->child;
16192 while (child_die != NULL && child_die->tag)
16194 if (child_die->tag == DW_TAG_member
16195 || child_die->tag == DW_TAG_variable
16196 || child_die->tag == DW_TAG_inheritance
16197 || child_die->tag == DW_TAG_template_value_param
16198 || child_die->tag == DW_TAG_template_type_param)
16203 process_die (child_die, cu);
16205 child_die = sibling_die (child_die);
16208 /* Do not consider external references. According to the DWARF standard,
16209 these DIEs are identified by the fact that they have no byte_size
16210 attribute, and a declaration attribute. */
16211 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16212 || !die_is_declaration (die, cu))
16214 struct symbol *sym = new_symbol (die, type, cu);
16216 if (has_template_parameters)
16218 struct symtab *symtab;
16219 if (sym != nullptr)
16220 symtab = symbol_symtab (sym);
16221 else if (cu->line_header != nullptr)
16223 /* Any related symtab will do. */
16225 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16230 complaint (_("could not find suitable "
16231 "symtab for template parameter"
16232 " - DIE at %s [in module %s]"),
16233 sect_offset_str (die->sect_off),
16234 objfile_name (objfile));
16237 if (symtab != nullptr)
16239 /* Make sure that the symtab is set on the new symbols.
16240 Even though they don't appear in this symtab directly,
16241 other parts of gdb assume that symbols do, and this is
16242 reasonably true. */
16243 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16244 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16250 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16251 update TYPE using some information only available in DIE's children. */
16254 update_enumeration_type_from_children (struct die_info *die,
16256 struct dwarf2_cu *cu)
16258 struct die_info *child_die;
16259 int unsigned_enum = 1;
16263 auto_obstack obstack;
16265 for (child_die = die->child;
16266 child_die != NULL && child_die->tag;
16267 child_die = sibling_die (child_die))
16269 struct attribute *attr;
16271 const gdb_byte *bytes;
16272 struct dwarf2_locexpr_baton *baton;
16275 if (child_die->tag != DW_TAG_enumerator)
16278 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16282 name = dwarf2_name (child_die, cu);
16284 name = "<anonymous enumerator>";
16286 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16287 &value, &bytes, &baton);
16293 else if ((mask & value) != 0)
16298 /* If we already know that the enum type is neither unsigned, nor
16299 a flag type, no need to look at the rest of the enumerates. */
16300 if (!unsigned_enum && !flag_enum)
16305 TYPE_UNSIGNED (type) = 1;
16307 TYPE_FLAG_ENUM (type) = 1;
16310 /* Given a DW_AT_enumeration_type die, set its type. We do not
16311 complete the type's fields yet, or create any symbols. */
16313 static struct type *
16314 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16316 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16318 struct attribute *attr;
16321 /* If the definition of this type lives in .debug_types, read that type.
16322 Don't follow DW_AT_specification though, that will take us back up
16323 the chain and we want to go down. */
16324 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16327 type = get_DW_AT_signature_type (die, attr, cu);
16329 /* The type's CU may not be the same as CU.
16330 Ensure TYPE is recorded with CU in die_type_hash. */
16331 return set_die_type (die, type, cu);
16334 type = alloc_type (objfile);
16336 TYPE_CODE (type) = TYPE_CODE_ENUM;
16337 name = dwarf2_full_name (NULL, die, cu);
16339 TYPE_NAME (type) = name;
16341 attr = dwarf2_attr (die, DW_AT_type, cu);
16344 struct type *underlying_type = die_type (die, cu);
16346 TYPE_TARGET_TYPE (type) = underlying_type;
16349 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16352 TYPE_LENGTH (type) = DW_UNSND (attr);
16356 TYPE_LENGTH (type) = 0;
16359 maybe_set_alignment (cu, die, type);
16361 /* The enumeration DIE can be incomplete. In Ada, any type can be
16362 declared as private in the package spec, and then defined only
16363 inside the package body. Such types are known as Taft Amendment
16364 Types. When another package uses such a type, an incomplete DIE
16365 may be generated by the compiler. */
16366 if (die_is_declaration (die, cu))
16367 TYPE_STUB (type) = 1;
16369 /* Finish the creation of this type by using the enum's children.
16370 We must call this even when the underlying type has been provided
16371 so that we can determine if we're looking at a "flag" enum. */
16372 update_enumeration_type_from_children (die, type, cu);
16374 /* If this type has an underlying type that is not a stub, then we
16375 may use its attributes. We always use the "unsigned" attribute
16376 in this situation, because ordinarily we guess whether the type
16377 is unsigned -- but the guess can be wrong and the underlying type
16378 can tell us the reality. However, we defer to a local size
16379 attribute if one exists, because this lets the compiler override
16380 the underlying type if needed. */
16381 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16383 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16384 if (TYPE_LENGTH (type) == 0)
16385 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16386 if (TYPE_RAW_ALIGN (type) == 0
16387 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16388 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16391 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16393 return set_die_type (die, type, cu);
16396 /* Given a pointer to a die which begins an enumeration, process all
16397 the dies that define the members of the enumeration, and create the
16398 symbol for the enumeration type.
16400 NOTE: We reverse the order of the element list. */
16403 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16405 struct type *this_type;
16407 this_type = get_die_type (die, cu);
16408 if (this_type == NULL)
16409 this_type = read_enumeration_type (die, cu);
16411 if (die->child != NULL)
16413 struct die_info *child_die;
16414 struct symbol *sym;
16415 struct field *fields = NULL;
16416 int num_fields = 0;
16419 child_die = die->child;
16420 while (child_die && child_die->tag)
16422 if (child_die->tag != DW_TAG_enumerator)
16424 process_die (child_die, cu);
16428 name = dwarf2_name (child_die, cu);
16431 sym = new_symbol (child_die, this_type, cu);
16433 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16435 fields = (struct field *)
16437 (num_fields + DW_FIELD_ALLOC_CHUNK)
16438 * sizeof (struct field));
16441 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16442 FIELD_TYPE (fields[num_fields]) = NULL;
16443 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16444 FIELD_BITSIZE (fields[num_fields]) = 0;
16450 child_die = sibling_die (child_die);
16455 TYPE_NFIELDS (this_type) = num_fields;
16456 TYPE_FIELDS (this_type) = (struct field *)
16457 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16458 memcpy (TYPE_FIELDS (this_type), fields,
16459 sizeof (struct field) * num_fields);
16464 /* If we are reading an enum from a .debug_types unit, and the enum
16465 is a declaration, and the enum is not the signatured type in the
16466 unit, then we do not want to add a symbol for it. Adding a
16467 symbol would in some cases obscure the true definition of the
16468 enum, giving users an incomplete type when the definition is
16469 actually available. Note that we do not want to do this for all
16470 enums which are just declarations, because C++0x allows forward
16471 enum declarations. */
16472 if (cu->per_cu->is_debug_types
16473 && die_is_declaration (die, cu))
16475 struct signatured_type *sig_type;
16477 sig_type = (struct signatured_type *) cu->per_cu;
16478 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16479 if (sig_type->type_offset_in_section != die->sect_off)
16483 new_symbol (die, this_type, cu);
16486 /* Extract all information from a DW_TAG_array_type DIE and put it in
16487 the DIE's type field. For now, this only handles one dimensional
16490 static struct type *
16491 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16493 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16494 struct die_info *child_die;
16496 struct type *element_type, *range_type, *index_type;
16497 struct attribute *attr;
16499 struct dynamic_prop *byte_stride_prop = NULL;
16500 unsigned int bit_stride = 0;
16502 element_type = die_type (die, cu);
16504 /* The die_type call above may have already set the type for this DIE. */
16505 type = get_die_type (die, cu);
16509 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16515 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16516 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16519 complaint (_("unable to read array DW_AT_byte_stride "
16520 " - DIE at %s [in module %s]"),
16521 sect_offset_str (die->sect_off),
16522 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16523 /* Ignore this attribute. We will likely not be able to print
16524 arrays of this type correctly, but there is little we can do
16525 to help if we cannot read the attribute's value. */
16526 byte_stride_prop = NULL;
16530 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16532 bit_stride = DW_UNSND (attr);
16534 /* Irix 6.2 native cc creates array types without children for
16535 arrays with unspecified length. */
16536 if (die->child == NULL)
16538 index_type = objfile_type (objfile)->builtin_int;
16539 range_type = create_static_range_type (NULL, index_type, 0, -1);
16540 type = create_array_type_with_stride (NULL, element_type, range_type,
16541 byte_stride_prop, bit_stride);
16542 return set_die_type (die, type, cu);
16545 std::vector<struct type *> range_types;
16546 child_die = die->child;
16547 while (child_die && child_die->tag)
16549 if (child_die->tag == DW_TAG_subrange_type)
16551 struct type *child_type = read_type_die (child_die, cu);
16553 if (child_type != NULL)
16555 /* The range type was succesfully read. Save it for the
16556 array type creation. */
16557 range_types.push_back (child_type);
16560 child_die = sibling_die (child_die);
16563 /* Dwarf2 dimensions are output from left to right, create the
16564 necessary array types in backwards order. */
16566 type = element_type;
16568 if (read_array_order (die, cu) == DW_ORD_col_major)
16572 while (i < range_types.size ())
16573 type = create_array_type_with_stride (NULL, type, range_types[i++],
16574 byte_stride_prop, bit_stride);
16578 size_t ndim = range_types.size ();
16580 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16581 byte_stride_prop, bit_stride);
16584 /* Understand Dwarf2 support for vector types (like they occur on
16585 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16586 array type. This is not part of the Dwarf2/3 standard yet, but a
16587 custom vendor extension. The main difference between a regular
16588 array and the vector variant is that vectors are passed by value
16590 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16592 make_vector_type (type);
16594 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16595 implementation may choose to implement triple vectors using this
16597 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16600 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16601 TYPE_LENGTH (type) = DW_UNSND (attr);
16603 complaint (_("DW_AT_byte_size for array type smaller "
16604 "than the total size of elements"));
16607 name = dwarf2_name (die, cu);
16609 TYPE_NAME (type) = name;
16611 maybe_set_alignment (cu, die, type);
16613 /* Install the type in the die. */
16614 set_die_type (die, type, cu);
16616 /* set_die_type should be already done. */
16617 set_descriptive_type (type, die, cu);
16622 static enum dwarf_array_dim_ordering
16623 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16625 struct attribute *attr;
16627 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16630 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16632 /* GNU F77 is a special case, as at 08/2004 array type info is the
16633 opposite order to the dwarf2 specification, but data is still
16634 laid out as per normal fortran.
16636 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16637 version checking. */
16639 if (cu->language == language_fortran
16640 && cu->producer && strstr (cu->producer, "GNU F77"))
16642 return DW_ORD_row_major;
16645 switch (cu->language_defn->la_array_ordering)
16647 case array_column_major:
16648 return DW_ORD_col_major;
16649 case array_row_major:
16651 return DW_ORD_row_major;
16655 /* Extract all information from a DW_TAG_set_type DIE and put it in
16656 the DIE's type field. */
16658 static struct type *
16659 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16661 struct type *domain_type, *set_type;
16662 struct attribute *attr;
16664 domain_type = die_type (die, cu);
16666 /* The die_type call above may have already set the type for this DIE. */
16667 set_type = get_die_type (die, cu);
16671 set_type = create_set_type (NULL, domain_type);
16673 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16675 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16677 maybe_set_alignment (cu, die, set_type);
16679 return set_die_type (die, set_type, cu);
16682 /* A helper for read_common_block that creates a locexpr baton.
16683 SYM is the symbol which we are marking as computed.
16684 COMMON_DIE is the DIE for the common block.
16685 COMMON_LOC is the location expression attribute for the common
16687 MEMBER_LOC is the location expression attribute for the particular
16688 member of the common block that we are processing.
16689 CU is the CU from which the above come. */
16692 mark_common_block_symbol_computed (struct symbol *sym,
16693 struct die_info *common_die,
16694 struct attribute *common_loc,
16695 struct attribute *member_loc,
16696 struct dwarf2_cu *cu)
16698 struct dwarf2_per_objfile *dwarf2_per_objfile
16699 = cu->per_cu->dwarf2_per_objfile;
16700 struct objfile *objfile = dwarf2_per_objfile->objfile;
16701 struct dwarf2_locexpr_baton *baton;
16703 unsigned int cu_off;
16704 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16705 LONGEST offset = 0;
16707 gdb_assert (common_loc && member_loc);
16708 gdb_assert (attr_form_is_block (common_loc));
16709 gdb_assert (attr_form_is_block (member_loc)
16710 || attr_form_is_constant (member_loc));
16712 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16713 baton->per_cu = cu->per_cu;
16714 gdb_assert (baton->per_cu);
16716 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16718 if (attr_form_is_constant (member_loc))
16720 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16721 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16724 baton->size += DW_BLOCK (member_loc)->size;
16726 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16729 *ptr++ = DW_OP_call4;
16730 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16731 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16734 if (attr_form_is_constant (member_loc))
16736 *ptr++ = DW_OP_addr;
16737 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16738 ptr += cu->header.addr_size;
16742 /* We have to copy the data here, because DW_OP_call4 will only
16743 use a DW_AT_location attribute. */
16744 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16745 ptr += DW_BLOCK (member_loc)->size;
16748 *ptr++ = DW_OP_plus;
16749 gdb_assert (ptr - baton->data == baton->size);
16751 SYMBOL_LOCATION_BATON (sym) = baton;
16752 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16755 /* Create appropriate locally-scoped variables for all the
16756 DW_TAG_common_block entries. Also create a struct common_block
16757 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16758 is used to sepate the common blocks name namespace from regular
16762 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16764 struct attribute *attr;
16766 attr = dwarf2_attr (die, DW_AT_location, cu);
16769 /* Support the .debug_loc offsets. */
16770 if (attr_form_is_block (attr))
16774 else if (attr_form_is_section_offset (attr))
16776 dwarf2_complex_location_expr_complaint ();
16781 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16782 "common block member");
16787 if (die->child != NULL)
16789 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16790 struct die_info *child_die;
16791 size_t n_entries = 0, size;
16792 struct common_block *common_block;
16793 struct symbol *sym;
16795 for (child_die = die->child;
16796 child_die && child_die->tag;
16797 child_die = sibling_die (child_die))
16800 size = (sizeof (struct common_block)
16801 + (n_entries - 1) * sizeof (struct symbol *));
16803 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16805 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16806 common_block->n_entries = 0;
16808 for (child_die = die->child;
16809 child_die && child_die->tag;
16810 child_die = sibling_die (child_die))
16812 /* Create the symbol in the DW_TAG_common_block block in the current
16814 sym = new_symbol (child_die, NULL, cu);
16817 struct attribute *member_loc;
16819 common_block->contents[common_block->n_entries++] = sym;
16821 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16825 /* GDB has handled this for a long time, but it is
16826 not specified by DWARF. It seems to have been
16827 emitted by gfortran at least as recently as:
16828 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16829 complaint (_("Variable in common block has "
16830 "DW_AT_data_member_location "
16831 "- DIE at %s [in module %s]"),
16832 sect_offset_str (child_die->sect_off),
16833 objfile_name (objfile));
16835 if (attr_form_is_section_offset (member_loc))
16836 dwarf2_complex_location_expr_complaint ();
16837 else if (attr_form_is_constant (member_loc)
16838 || attr_form_is_block (member_loc))
16841 mark_common_block_symbol_computed (sym, die, attr,
16845 dwarf2_complex_location_expr_complaint ();
16850 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16851 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16855 /* Create a type for a C++ namespace. */
16857 static struct type *
16858 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16861 const char *previous_prefix, *name;
16865 /* For extensions, reuse the type of the original namespace. */
16866 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16868 struct die_info *ext_die;
16869 struct dwarf2_cu *ext_cu = cu;
16871 ext_die = dwarf2_extension (die, &ext_cu);
16872 type = read_type_die (ext_die, ext_cu);
16874 /* EXT_CU may not be the same as CU.
16875 Ensure TYPE is recorded with CU in die_type_hash. */
16876 return set_die_type (die, type, cu);
16879 name = namespace_name (die, &is_anonymous, cu);
16881 /* Now build the name of the current namespace. */
16883 previous_prefix = determine_prefix (die, cu);
16884 if (previous_prefix[0] != '\0')
16885 name = typename_concat (&objfile->objfile_obstack,
16886 previous_prefix, name, 0, cu);
16888 /* Create the type. */
16889 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16891 return set_die_type (die, type, cu);
16894 /* Read a namespace scope. */
16897 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16899 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16902 /* Add a symbol associated to this if we haven't seen the namespace
16903 before. Also, add a using directive if it's an anonymous
16906 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16910 type = read_type_die (die, cu);
16911 new_symbol (die, type, cu);
16913 namespace_name (die, &is_anonymous, cu);
16916 const char *previous_prefix = determine_prefix (die, cu);
16918 std::vector<const char *> excludes;
16919 add_using_directive (using_directives (cu),
16920 previous_prefix, TYPE_NAME (type), NULL,
16921 NULL, excludes, 0, &objfile->objfile_obstack);
16925 if (die->child != NULL)
16927 struct die_info *child_die = die->child;
16929 while (child_die && child_die->tag)
16931 process_die (child_die, cu);
16932 child_die = sibling_die (child_die);
16937 /* Read a Fortran module as type. This DIE can be only a declaration used for
16938 imported module. Still we need that type as local Fortran "use ... only"
16939 declaration imports depend on the created type in determine_prefix. */
16941 static struct type *
16942 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16944 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16945 const char *module_name;
16948 module_name = dwarf2_name (die, cu);
16950 complaint (_("DW_TAG_module has no name, offset %s"),
16951 sect_offset_str (die->sect_off));
16952 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16954 return set_die_type (die, type, cu);
16957 /* Read a Fortran module. */
16960 read_module (struct die_info *die, struct dwarf2_cu *cu)
16962 struct die_info *child_die = die->child;
16965 type = read_type_die (die, cu);
16966 new_symbol (die, type, cu);
16968 while (child_die && child_die->tag)
16970 process_die (child_die, cu);
16971 child_die = sibling_die (child_die);
16975 /* Return the name of the namespace represented by DIE. Set
16976 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16979 static const char *
16980 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16982 struct die_info *current_die;
16983 const char *name = NULL;
16985 /* Loop through the extensions until we find a name. */
16987 for (current_die = die;
16988 current_die != NULL;
16989 current_die = dwarf2_extension (die, &cu))
16991 /* We don't use dwarf2_name here so that we can detect the absence
16992 of a name -> anonymous namespace. */
16993 name = dwarf2_string_attr (die, DW_AT_name, cu);
16999 /* Is it an anonymous namespace? */
17001 *is_anonymous = (name == NULL);
17003 name = CP_ANONYMOUS_NAMESPACE_STR;
17008 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17009 the user defined type vector. */
17011 static struct type *
17012 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17014 struct gdbarch *gdbarch
17015 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17016 struct comp_unit_head *cu_header = &cu->header;
17018 struct attribute *attr_byte_size;
17019 struct attribute *attr_address_class;
17020 int byte_size, addr_class;
17021 struct type *target_type;
17023 target_type = die_type (die, cu);
17025 /* The die_type call above may have already set the type for this DIE. */
17026 type = get_die_type (die, cu);
17030 type = lookup_pointer_type (target_type);
17032 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17033 if (attr_byte_size)
17034 byte_size = DW_UNSND (attr_byte_size);
17036 byte_size = cu_header->addr_size;
17038 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17039 if (attr_address_class)
17040 addr_class = DW_UNSND (attr_address_class);
17042 addr_class = DW_ADDR_none;
17044 ULONGEST alignment = get_alignment (cu, die);
17046 /* If the pointer size, alignment, or address class is different
17047 than the default, create a type variant marked as such and set
17048 the length accordingly. */
17049 if (TYPE_LENGTH (type) != byte_size
17050 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17051 && alignment != TYPE_RAW_ALIGN (type))
17052 || addr_class != DW_ADDR_none)
17054 if (gdbarch_address_class_type_flags_p (gdbarch))
17058 type_flags = gdbarch_address_class_type_flags
17059 (gdbarch, byte_size, addr_class);
17060 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17062 type = make_type_with_address_space (type, type_flags);
17064 else if (TYPE_LENGTH (type) != byte_size)
17066 complaint (_("invalid pointer size %d"), byte_size);
17068 else if (TYPE_RAW_ALIGN (type) != alignment)
17070 complaint (_("Invalid DW_AT_alignment"
17071 " - DIE at %s [in module %s]"),
17072 sect_offset_str (die->sect_off),
17073 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17077 /* Should we also complain about unhandled address classes? */
17081 TYPE_LENGTH (type) = byte_size;
17082 set_type_align (type, alignment);
17083 return set_die_type (die, type, cu);
17086 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17087 the user defined type vector. */
17089 static struct type *
17090 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17093 struct type *to_type;
17094 struct type *domain;
17096 to_type = die_type (die, cu);
17097 domain = die_containing_type (die, cu);
17099 /* The calls above may have already set the type for this DIE. */
17100 type = get_die_type (die, cu);
17104 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17105 type = lookup_methodptr_type (to_type);
17106 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17108 struct type *new_type
17109 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17111 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17112 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17113 TYPE_VARARGS (to_type));
17114 type = lookup_methodptr_type (new_type);
17117 type = lookup_memberptr_type (to_type, domain);
17119 return set_die_type (die, type, cu);
17122 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17123 the user defined type vector. */
17125 static struct type *
17126 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17127 enum type_code refcode)
17129 struct comp_unit_head *cu_header = &cu->header;
17130 struct type *type, *target_type;
17131 struct attribute *attr;
17133 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17135 target_type = die_type (die, cu);
17137 /* The die_type call above may have already set the type for this DIE. */
17138 type = get_die_type (die, cu);
17142 type = lookup_reference_type (target_type, refcode);
17143 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17146 TYPE_LENGTH (type) = DW_UNSND (attr);
17150 TYPE_LENGTH (type) = cu_header->addr_size;
17152 maybe_set_alignment (cu, die, type);
17153 return set_die_type (die, type, cu);
17156 /* Add the given cv-qualifiers to the element type of the array. GCC
17157 outputs DWARF type qualifiers that apply to an array, not the
17158 element type. But GDB relies on the array element type to carry
17159 the cv-qualifiers. This mimics section 6.7.3 of the C99
17162 static struct type *
17163 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17164 struct type *base_type, int cnst, int voltl)
17166 struct type *el_type, *inner_array;
17168 base_type = copy_type (base_type);
17169 inner_array = base_type;
17171 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17173 TYPE_TARGET_TYPE (inner_array) =
17174 copy_type (TYPE_TARGET_TYPE (inner_array));
17175 inner_array = TYPE_TARGET_TYPE (inner_array);
17178 el_type = TYPE_TARGET_TYPE (inner_array);
17179 cnst |= TYPE_CONST (el_type);
17180 voltl |= TYPE_VOLATILE (el_type);
17181 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17183 return set_die_type (die, base_type, cu);
17186 static struct type *
17187 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17189 struct type *base_type, *cv_type;
17191 base_type = die_type (die, cu);
17193 /* The die_type call above may have already set the type for this DIE. */
17194 cv_type = get_die_type (die, cu);
17198 /* In case the const qualifier is applied to an array type, the element type
17199 is so qualified, not the array type (section 6.7.3 of C99). */
17200 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17201 return add_array_cv_type (die, cu, base_type, 1, 0);
17203 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17204 return set_die_type (die, cv_type, cu);
17207 static struct type *
17208 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17210 struct type *base_type, *cv_type;
17212 base_type = die_type (die, cu);
17214 /* The die_type call above may have already set the type for this DIE. */
17215 cv_type = get_die_type (die, cu);
17219 /* In case the volatile qualifier is applied to an array type, the
17220 element type is so qualified, not the array type (section 6.7.3
17222 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17223 return add_array_cv_type (die, cu, base_type, 0, 1);
17225 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17226 return set_die_type (die, cv_type, cu);
17229 /* Handle DW_TAG_restrict_type. */
17231 static struct type *
17232 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17234 struct type *base_type, *cv_type;
17236 base_type = die_type (die, cu);
17238 /* The die_type call above may have already set the type for this DIE. */
17239 cv_type = get_die_type (die, cu);
17243 cv_type = make_restrict_type (base_type);
17244 return set_die_type (die, cv_type, cu);
17247 /* Handle DW_TAG_atomic_type. */
17249 static struct type *
17250 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17252 struct type *base_type, *cv_type;
17254 base_type = die_type (die, cu);
17256 /* The die_type call above may have already set the type for this DIE. */
17257 cv_type = get_die_type (die, cu);
17261 cv_type = make_atomic_type (base_type);
17262 return set_die_type (die, cv_type, cu);
17265 /* Extract all information from a DW_TAG_string_type DIE and add to
17266 the user defined type vector. It isn't really a user defined type,
17267 but it behaves like one, with other DIE's using an AT_user_def_type
17268 attribute to reference it. */
17270 static struct type *
17271 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17273 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17274 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17275 struct type *type, *range_type, *index_type, *char_type;
17276 struct attribute *attr;
17277 unsigned int length;
17279 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17282 length = DW_UNSND (attr);
17286 /* Check for the DW_AT_byte_size attribute. */
17287 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17290 length = DW_UNSND (attr);
17298 index_type = objfile_type (objfile)->builtin_int;
17299 range_type = create_static_range_type (NULL, index_type, 1, length);
17300 char_type = language_string_char_type (cu->language_defn, gdbarch);
17301 type = create_string_type (NULL, char_type, range_type);
17303 return set_die_type (die, type, cu);
17306 /* Assuming that DIE corresponds to a function, returns nonzero
17307 if the function is prototyped. */
17310 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17312 struct attribute *attr;
17314 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17315 if (attr && (DW_UNSND (attr) != 0))
17318 /* The DWARF standard implies that the DW_AT_prototyped attribute
17319 is only meaninful for C, but the concept also extends to other
17320 languages that allow unprototyped functions (Eg: Objective C).
17321 For all other languages, assume that functions are always
17323 if (cu->language != language_c
17324 && cu->language != language_objc
17325 && cu->language != language_opencl)
17328 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17329 prototyped and unprototyped functions; default to prototyped,
17330 since that is more common in modern code (and RealView warns
17331 about unprototyped functions). */
17332 if (producer_is_realview (cu->producer))
17338 /* Handle DIES due to C code like:
17342 int (*funcp)(int a, long l);
17346 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17348 static struct type *
17349 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17351 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17352 struct type *type; /* Type that this function returns. */
17353 struct type *ftype; /* Function that returns above type. */
17354 struct attribute *attr;
17356 type = die_type (die, cu);
17358 /* The die_type call above may have already set the type for this DIE. */
17359 ftype = get_die_type (die, cu);
17363 ftype = lookup_function_type (type);
17365 if (prototyped_function_p (die, cu))
17366 TYPE_PROTOTYPED (ftype) = 1;
17368 /* Store the calling convention in the type if it's available in
17369 the subroutine die. Otherwise set the calling convention to
17370 the default value DW_CC_normal. */
17371 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17373 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17374 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17375 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17377 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17379 /* Record whether the function returns normally to its caller or not
17380 if the DWARF producer set that information. */
17381 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17382 if (attr && (DW_UNSND (attr) != 0))
17383 TYPE_NO_RETURN (ftype) = 1;
17385 /* We need to add the subroutine type to the die immediately so
17386 we don't infinitely recurse when dealing with parameters
17387 declared as the same subroutine type. */
17388 set_die_type (die, ftype, cu);
17390 if (die->child != NULL)
17392 struct type *void_type = objfile_type (objfile)->builtin_void;
17393 struct die_info *child_die;
17394 int nparams, iparams;
17396 /* Count the number of parameters.
17397 FIXME: GDB currently ignores vararg functions, but knows about
17398 vararg member functions. */
17400 child_die = die->child;
17401 while (child_die && child_die->tag)
17403 if (child_die->tag == DW_TAG_formal_parameter)
17405 else if (child_die->tag == DW_TAG_unspecified_parameters)
17406 TYPE_VARARGS (ftype) = 1;
17407 child_die = sibling_die (child_die);
17410 /* Allocate storage for parameters and fill them in. */
17411 TYPE_NFIELDS (ftype) = nparams;
17412 TYPE_FIELDS (ftype) = (struct field *)
17413 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17415 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17416 even if we error out during the parameters reading below. */
17417 for (iparams = 0; iparams < nparams; iparams++)
17418 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17421 child_die = die->child;
17422 while (child_die && child_die->tag)
17424 if (child_die->tag == DW_TAG_formal_parameter)
17426 struct type *arg_type;
17428 /* DWARF version 2 has no clean way to discern C++
17429 static and non-static member functions. G++ helps
17430 GDB by marking the first parameter for non-static
17431 member functions (which is the this pointer) as
17432 artificial. We pass this information to
17433 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17435 DWARF version 3 added DW_AT_object_pointer, which GCC
17436 4.5 does not yet generate. */
17437 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17439 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17441 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17442 arg_type = die_type (child_die, cu);
17444 /* RealView does not mark THIS as const, which the testsuite
17445 expects. GCC marks THIS as const in method definitions,
17446 but not in the class specifications (GCC PR 43053). */
17447 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17448 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17451 struct dwarf2_cu *arg_cu = cu;
17452 const char *name = dwarf2_name (child_die, cu);
17454 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17457 /* If the compiler emits this, use it. */
17458 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17461 else if (name && strcmp (name, "this") == 0)
17462 /* Function definitions will have the argument names. */
17464 else if (name == NULL && iparams == 0)
17465 /* Declarations may not have the names, so like
17466 elsewhere in GDB, assume an artificial first
17467 argument is "this". */
17471 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17475 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17478 child_die = sibling_die (child_die);
17485 static struct type *
17486 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17488 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17489 const char *name = NULL;
17490 struct type *this_type, *target_type;
17492 name = dwarf2_full_name (NULL, die, cu);
17493 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17494 TYPE_TARGET_STUB (this_type) = 1;
17495 set_die_type (die, this_type, cu);
17496 target_type = die_type (die, cu);
17497 if (target_type != this_type)
17498 TYPE_TARGET_TYPE (this_type) = target_type;
17501 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17502 spec and cause infinite loops in GDB. */
17503 complaint (_("Self-referential DW_TAG_typedef "
17504 "- DIE at %s [in module %s]"),
17505 sect_offset_str (die->sect_off), objfile_name (objfile));
17506 TYPE_TARGET_TYPE (this_type) = NULL;
17511 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17512 (which may be different from NAME) to the architecture back-end to allow
17513 it to guess the correct format if necessary. */
17515 static struct type *
17516 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17517 const char *name_hint)
17519 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17520 const struct floatformat **format;
17523 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17525 type = init_float_type (objfile, bits, name, format);
17527 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17532 /* Allocate an integer type of size BITS and name NAME. */
17534 static struct type *
17535 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17536 int bits, int unsigned_p, const char *name)
17540 /* Versions of Intel's C Compiler generate an integer type called "void"
17541 instead of using DW_TAG_unspecified_type. This has been seen on
17542 at least versions 14, 17, and 18. */
17543 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17544 && strcmp (name, "void") == 0)
17545 type = objfile_type (objfile)->builtin_void;
17547 type = init_integer_type (objfile, bits, unsigned_p, name);
17552 /* Initialise and return a floating point type of size BITS suitable for
17553 use as a component of a complex number. The NAME_HINT is passed through
17554 when initialising the floating point type and is the name of the complex
17557 As DWARF doesn't currently provide an explicit name for the components
17558 of a complex number, but it can be helpful to have these components
17559 named, we try to select a suitable name based on the size of the
17561 static struct type *
17562 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17563 struct objfile *objfile,
17564 int bits, const char *name_hint)
17566 gdbarch *gdbarch = get_objfile_arch (objfile);
17567 struct type *tt = nullptr;
17569 /* Try to find a suitable floating point builtin type of size BITS.
17570 We're going to use the name of this type as the name for the complex
17571 target type that we are about to create. */
17572 switch (cu->language)
17574 case language_fortran:
17578 tt = builtin_f_type (gdbarch)->builtin_real;
17581 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17583 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17585 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17593 tt = builtin_type (gdbarch)->builtin_float;
17596 tt = builtin_type (gdbarch)->builtin_double;
17598 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17600 tt = builtin_type (gdbarch)->builtin_long_double;
17606 /* If the type we found doesn't match the size we were looking for, then
17607 pretend we didn't find a type at all, the complex target type we
17608 create will then be nameless. */
17609 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17612 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17613 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17616 /* Find a representation of a given base type and install
17617 it in the TYPE field of the die. */
17619 static struct type *
17620 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17622 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17624 struct attribute *attr;
17625 int encoding = 0, bits = 0;
17628 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17631 encoding = DW_UNSND (attr);
17633 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17636 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17638 name = dwarf2_name (die, cu);
17641 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17646 case DW_ATE_address:
17647 /* Turn DW_ATE_address into a void * pointer. */
17648 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17649 type = init_pointer_type (objfile, bits, name, type);
17651 case DW_ATE_boolean:
17652 type = init_boolean_type (objfile, bits, 1, name);
17654 case DW_ATE_complex_float:
17655 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17656 type = init_complex_type (objfile, name, type);
17658 case DW_ATE_decimal_float:
17659 type = init_decfloat_type (objfile, bits, name);
17662 type = dwarf2_init_float_type (objfile, bits, name, name);
17664 case DW_ATE_signed:
17665 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17667 case DW_ATE_unsigned:
17668 if (cu->language == language_fortran
17670 && startswith (name, "character("))
17671 type = init_character_type (objfile, bits, 1, name);
17673 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17675 case DW_ATE_signed_char:
17676 if (cu->language == language_ada || cu->language == language_m2
17677 || cu->language == language_pascal
17678 || cu->language == language_fortran)
17679 type = init_character_type (objfile, bits, 0, name);
17681 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17683 case DW_ATE_unsigned_char:
17684 if (cu->language == language_ada || cu->language == language_m2
17685 || cu->language == language_pascal
17686 || cu->language == language_fortran
17687 || cu->language == language_rust)
17688 type = init_character_type (objfile, bits, 1, name);
17690 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17694 gdbarch *arch = get_objfile_arch (objfile);
17697 type = builtin_type (arch)->builtin_char16;
17698 else if (bits == 32)
17699 type = builtin_type (arch)->builtin_char32;
17702 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17704 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17706 return set_die_type (die, type, cu);
17711 complaint (_("unsupported DW_AT_encoding: '%s'"),
17712 dwarf_type_encoding_name (encoding));
17713 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17717 if (name && strcmp (name, "char") == 0)
17718 TYPE_NOSIGN (type) = 1;
17720 maybe_set_alignment (cu, die, type);
17722 return set_die_type (die, type, cu);
17725 /* Parse dwarf attribute if it's a block, reference or constant and put the
17726 resulting value of the attribute into struct bound_prop.
17727 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17730 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17731 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17733 struct dwarf2_property_baton *baton;
17734 struct obstack *obstack
17735 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17737 if (attr == NULL || prop == NULL)
17740 if (attr_form_is_block (attr))
17742 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17743 baton->referenced_type = NULL;
17744 baton->locexpr.per_cu = cu->per_cu;
17745 baton->locexpr.size = DW_BLOCK (attr)->size;
17746 baton->locexpr.data = DW_BLOCK (attr)->data;
17747 prop->data.baton = baton;
17748 prop->kind = PROP_LOCEXPR;
17749 gdb_assert (prop->data.baton != NULL);
17751 else if (attr_form_is_ref (attr))
17753 struct dwarf2_cu *target_cu = cu;
17754 struct die_info *target_die;
17755 struct attribute *target_attr;
17757 target_die = follow_die_ref (die, attr, &target_cu);
17758 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17759 if (target_attr == NULL)
17760 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17762 if (target_attr == NULL)
17765 switch (target_attr->name)
17767 case DW_AT_location:
17768 if (attr_form_is_section_offset (target_attr))
17770 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17771 baton->referenced_type = die_type (target_die, target_cu);
17772 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17773 prop->data.baton = baton;
17774 prop->kind = PROP_LOCLIST;
17775 gdb_assert (prop->data.baton != NULL);
17777 else if (attr_form_is_block (target_attr))
17779 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17780 baton->referenced_type = die_type (target_die, target_cu);
17781 baton->locexpr.per_cu = cu->per_cu;
17782 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17783 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17784 prop->data.baton = baton;
17785 prop->kind = PROP_LOCEXPR;
17786 gdb_assert (prop->data.baton != NULL);
17790 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17791 "dynamic property");
17795 case DW_AT_data_member_location:
17799 if (!handle_data_member_location (target_die, target_cu,
17803 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17804 baton->referenced_type = read_type_die (target_die->parent,
17806 baton->offset_info.offset = offset;
17807 baton->offset_info.type = die_type (target_die, target_cu);
17808 prop->data.baton = baton;
17809 prop->kind = PROP_ADDR_OFFSET;
17814 else if (attr_form_is_constant (attr))
17816 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17817 prop->kind = PROP_CONST;
17821 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17822 dwarf2_name (die, cu));
17829 /* Read the given DW_AT_subrange DIE. */
17831 static struct type *
17832 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17834 struct type *base_type, *orig_base_type;
17835 struct type *range_type;
17836 struct attribute *attr;
17837 struct dynamic_prop low, high;
17838 int low_default_is_valid;
17839 int high_bound_is_count = 0;
17841 ULONGEST negative_mask;
17843 orig_base_type = die_type (die, cu);
17844 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17845 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17846 creating the range type, but we use the result of check_typedef
17847 when examining properties of the type. */
17848 base_type = check_typedef (orig_base_type);
17850 /* The die_type call above may have already set the type for this DIE. */
17851 range_type = get_die_type (die, cu);
17855 low.kind = PROP_CONST;
17856 high.kind = PROP_CONST;
17857 high.data.const_val = 0;
17859 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17860 omitting DW_AT_lower_bound. */
17861 switch (cu->language)
17864 case language_cplus:
17865 low.data.const_val = 0;
17866 low_default_is_valid = 1;
17868 case language_fortran:
17869 low.data.const_val = 1;
17870 low_default_is_valid = 1;
17873 case language_objc:
17874 case language_rust:
17875 low.data.const_val = 0;
17876 low_default_is_valid = (cu->header.version >= 4);
17880 case language_pascal:
17881 low.data.const_val = 1;
17882 low_default_is_valid = (cu->header.version >= 4);
17885 low.data.const_val = 0;
17886 low_default_is_valid = 0;
17890 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17892 attr_to_dynamic_prop (attr, die, cu, &low);
17893 else if (!low_default_is_valid)
17894 complaint (_("Missing DW_AT_lower_bound "
17895 "- DIE at %s [in module %s]"),
17896 sect_offset_str (die->sect_off),
17897 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17899 struct attribute *attr_ub, *attr_count;
17900 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17901 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17903 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17904 if (attr_to_dynamic_prop (attr, die, cu, &high))
17906 /* If bounds are constant do the final calculation here. */
17907 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17908 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17910 high_bound_is_count = 1;
17914 if (attr_ub != NULL)
17915 complaint (_("Unresolved DW_AT_upper_bound "
17916 "- DIE at %s [in module %s]"),
17917 sect_offset_str (die->sect_off),
17918 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17919 if (attr_count != NULL)
17920 complaint (_("Unresolved DW_AT_count "
17921 "- DIE at %s [in module %s]"),
17922 sect_offset_str (die->sect_off),
17923 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17928 /* Dwarf-2 specifications explicitly allows to create subrange types
17929 without specifying a base type.
17930 In that case, the base type must be set to the type of
17931 the lower bound, upper bound or count, in that order, if any of these
17932 three attributes references an object that has a type.
17933 If no base type is found, the Dwarf-2 specifications say that
17934 a signed integer type of size equal to the size of an address should
17936 For the following C code: `extern char gdb_int [];'
17937 GCC produces an empty range DIE.
17938 FIXME: muller/2010-05-28: Possible references to object for low bound,
17939 high bound or count are not yet handled by this code. */
17940 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17944 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17945 struct type *int_type = objfile_type (objfile)->builtin_int;
17947 /* Test "int", "long int", and "long long int" objfile types,
17948 and select the first one having a size above or equal to the
17949 architecture address size. */
17950 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17951 base_type = int_type;
17954 int_type = objfile_type (objfile)->builtin_long;
17955 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17956 base_type = int_type;
17959 int_type = objfile_type (objfile)->builtin_long_long;
17960 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17961 base_type = int_type;
17966 /* Normally, the DWARF producers are expected to use a signed
17967 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17968 But this is unfortunately not always the case, as witnessed
17969 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17970 is used instead. To work around that ambiguity, we treat
17971 the bounds as signed, and thus sign-extend their values, when
17972 the base type is signed. */
17974 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17975 if (low.kind == PROP_CONST
17976 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17977 low.data.const_val |= negative_mask;
17978 if (high.kind == PROP_CONST
17979 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17980 high.data.const_val |= negative_mask;
17982 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17984 if (high_bound_is_count)
17985 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17987 /* Ada expects an empty array on no boundary attributes. */
17988 if (attr == NULL && cu->language != language_ada)
17989 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17991 name = dwarf2_name (die, cu);
17993 TYPE_NAME (range_type) = name;
17995 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17997 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17999 maybe_set_alignment (cu, die, range_type);
18001 set_die_type (die, range_type, cu);
18003 /* set_die_type should be already done. */
18004 set_descriptive_type (range_type, die, cu);
18009 static struct type *
18010 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18014 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18016 TYPE_NAME (type) = dwarf2_name (die, cu);
18018 /* In Ada, an unspecified type is typically used when the description
18019 of the type is defered to a different unit. When encountering
18020 such a type, we treat it as a stub, and try to resolve it later on,
18022 if (cu->language == language_ada)
18023 TYPE_STUB (type) = 1;
18025 return set_die_type (die, type, cu);
18028 /* Read a single die and all its descendents. Set the die's sibling
18029 field to NULL; set other fields in the die correctly, and set all
18030 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18031 location of the info_ptr after reading all of those dies. PARENT
18032 is the parent of the die in question. */
18034 static struct die_info *
18035 read_die_and_children (const struct die_reader_specs *reader,
18036 const gdb_byte *info_ptr,
18037 const gdb_byte **new_info_ptr,
18038 struct die_info *parent)
18040 struct die_info *die;
18041 const gdb_byte *cur_ptr;
18044 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18047 *new_info_ptr = cur_ptr;
18050 store_in_ref_table (die, reader->cu);
18053 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18057 *new_info_ptr = cur_ptr;
18060 die->sibling = NULL;
18061 die->parent = parent;
18065 /* Read a die, all of its descendents, and all of its siblings; set
18066 all of the fields of all of the dies correctly. Arguments are as
18067 in read_die_and_children. */
18069 static struct die_info *
18070 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18071 const gdb_byte *info_ptr,
18072 const gdb_byte **new_info_ptr,
18073 struct die_info *parent)
18075 struct die_info *first_die, *last_sibling;
18076 const gdb_byte *cur_ptr;
18078 cur_ptr = info_ptr;
18079 first_die = last_sibling = NULL;
18083 struct die_info *die
18084 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18088 *new_info_ptr = cur_ptr;
18095 last_sibling->sibling = die;
18097 last_sibling = die;
18101 /* Read a die, all of its descendents, and all of its siblings; set
18102 all of the fields of all of the dies correctly. Arguments are as
18103 in read_die_and_children.
18104 This the main entry point for reading a DIE and all its children. */
18106 static struct die_info *
18107 read_die_and_siblings (const struct die_reader_specs *reader,
18108 const gdb_byte *info_ptr,
18109 const gdb_byte **new_info_ptr,
18110 struct die_info *parent)
18112 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18113 new_info_ptr, parent);
18115 if (dwarf_die_debug)
18117 fprintf_unfiltered (gdb_stdlog,
18118 "Read die from %s@0x%x of %s:\n",
18119 get_section_name (reader->die_section),
18120 (unsigned) (info_ptr - reader->die_section->buffer),
18121 bfd_get_filename (reader->abfd));
18122 dump_die (die, dwarf_die_debug);
18128 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18130 The caller is responsible for filling in the extra attributes
18131 and updating (*DIEP)->num_attrs.
18132 Set DIEP to point to a newly allocated die with its information,
18133 except for its child, sibling, and parent fields.
18134 Set HAS_CHILDREN to tell whether the die has children or not. */
18136 static const gdb_byte *
18137 read_full_die_1 (const struct die_reader_specs *reader,
18138 struct die_info **diep, const gdb_byte *info_ptr,
18139 int *has_children, int num_extra_attrs)
18141 unsigned int abbrev_number, bytes_read, i;
18142 struct abbrev_info *abbrev;
18143 struct die_info *die;
18144 struct dwarf2_cu *cu = reader->cu;
18145 bfd *abfd = reader->abfd;
18147 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18148 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18149 info_ptr += bytes_read;
18150 if (!abbrev_number)
18157 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18159 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18161 bfd_get_filename (abfd));
18163 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18164 die->sect_off = sect_off;
18165 die->tag = abbrev->tag;
18166 die->abbrev = abbrev_number;
18168 /* Make the result usable.
18169 The caller needs to update num_attrs after adding the extra
18171 die->num_attrs = abbrev->num_attrs;
18173 for (i = 0; i < abbrev->num_attrs; ++i)
18174 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18178 *has_children = abbrev->has_children;
18182 /* Read a die and all its attributes.
18183 Set DIEP to point to a newly allocated die with its information,
18184 except for its child, sibling, and parent fields.
18185 Set HAS_CHILDREN to tell whether the die has children or not. */
18187 static const gdb_byte *
18188 read_full_die (const struct die_reader_specs *reader,
18189 struct die_info **diep, const gdb_byte *info_ptr,
18192 const gdb_byte *result;
18194 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18196 if (dwarf_die_debug)
18198 fprintf_unfiltered (gdb_stdlog,
18199 "Read die from %s@0x%x of %s:\n",
18200 get_section_name (reader->die_section),
18201 (unsigned) (info_ptr - reader->die_section->buffer),
18202 bfd_get_filename (reader->abfd));
18203 dump_die (*diep, dwarf_die_debug);
18209 /* Abbreviation tables.
18211 In DWARF version 2, the description of the debugging information is
18212 stored in a separate .debug_abbrev section. Before we read any
18213 dies from a section we read in all abbreviations and install them
18214 in a hash table. */
18216 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18218 struct abbrev_info *
18219 abbrev_table::alloc_abbrev ()
18221 struct abbrev_info *abbrev;
18223 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18224 memset (abbrev, 0, sizeof (struct abbrev_info));
18229 /* Add an abbreviation to the table. */
18232 abbrev_table::add_abbrev (unsigned int abbrev_number,
18233 struct abbrev_info *abbrev)
18235 unsigned int hash_number;
18237 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18238 abbrev->next = m_abbrevs[hash_number];
18239 m_abbrevs[hash_number] = abbrev;
18242 /* Look up an abbrev in the table.
18243 Returns NULL if the abbrev is not found. */
18245 struct abbrev_info *
18246 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18248 unsigned int hash_number;
18249 struct abbrev_info *abbrev;
18251 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18252 abbrev = m_abbrevs[hash_number];
18256 if (abbrev->number == abbrev_number)
18258 abbrev = abbrev->next;
18263 /* Read in an abbrev table. */
18265 static abbrev_table_up
18266 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18267 struct dwarf2_section_info *section,
18268 sect_offset sect_off)
18270 struct objfile *objfile = dwarf2_per_objfile->objfile;
18271 bfd *abfd = get_section_bfd_owner (section);
18272 const gdb_byte *abbrev_ptr;
18273 struct abbrev_info *cur_abbrev;
18274 unsigned int abbrev_number, bytes_read, abbrev_name;
18275 unsigned int abbrev_form;
18276 struct attr_abbrev *cur_attrs;
18277 unsigned int allocated_attrs;
18279 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18281 dwarf2_read_section (objfile, section);
18282 abbrev_ptr = section->buffer + to_underlying (sect_off);
18283 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18284 abbrev_ptr += bytes_read;
18286 allocated_attrs = ATTR_ALLOC_CHUNK;
18287 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18289 /* Loop until we reach an abbrev number of 0. */
18290 while (abbrev_number)
18292 cur_abbrev = abbrev_table->alloc_abbrev ();
18294 /* read in abbrev header */
18295 cur_abbrev->number = abbrev_number;
18297 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18298 abbrev_ptr += bytes_read;
18299 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18302 /* now read in declarations */
18305 LONGEST implicit_const;
18307 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18308 abbrev_ptr += bytes_read;
18309 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18310 abbrev_ptr += bytes_read;
18311 if (abbrev_form == DW_FORM_implicit_const)
18313 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18315 abbrev_ptr += bytes_read;
18319 /* Initialize it due to a false compiler warning. */
18320 implicit_const = -1;
18323 if (abbrev_name == 0)
18326 if (cur_abbrev->num_attrs == allocated_attrs)
18328 allocated_attrs += ATTR_ALLOC_CHUNK;
18330 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18333 cur_attrs[cur_abbrev->num_attrs].name
18334 = (enum dwarf_attribute) abbrev_name;
18335 cur_attrs[cur_abbrev->num_attrs].form
18336 = (enum dwarf_form) abbrev_form;
18337 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18338 ++cur_abbrev->num_attrs;
18341 cur_abbrev->attrs =
18342 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18343 cur_abbrev->num_attrs);
18344 memcpy (cur_abbrev->attrs, cur_attrs,
18345 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18347 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18349 /* Get next abbreviation.
18350 Under Irix6 the abbreviations for a compilation unit are not
18351 always properly terminated with an abbrev number of 0.
18352 Exit loop if we encounter an abbreviation which we have
18353 already read (which means we are about to read the abbreviations
18354 for the next compile unit) or if the end of the abbreviation
18355 table is reached. */
18356 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18358 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18359 abbrev_ptr += bytes_read;
18360 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18365 return abbrev_table;
18368 /* Returns nonzero if TAG represents a type that we might generate a partial
18372 is_type_tag_for_partial (int tag)
18377 /* Some types that would be reasonable to generate partial symbols for,
18378 that we don't at present. */
18379 case DW_TAG_array_type:
18380 case DW_TAG_file_type:
18381 case DW_TAG_ptr_to_member_type:
18382 case DW_TAG_set_type:
18383 case DW_TAG_string_type:
18384 case DW_TAG_subroutine_type:
18386 case DW_TAG_base_type:
18387 case DW_TAG_class_type:
18388 case DW_TAG_interface_type:
18389 case DW_TAG_enumeration_type:
18390 case DW_TAG_structure_type:
18391 case DW_TAG_subrange_type:
18392 case DW_TAG_typedef:
18393 case DW_TAG_union_type:
18400 /* Load all DIEs that are interesting for partial symbols into memory. */
18402 static struct partial_die_info *
18403 load_partial_dies (const struct die_reader_specs *reader,
18404 const gdb_byte *info_ptr, int building_psymtab)
18406 struct dwarf2_cu *cu = reader->cu;
18407 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18408 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18409 unsigned int bytes_read;
18410 unsigned int load_all = 0;
18411 int nesting_level = 1;
18416 gdb_assert (cu->per_cu != NULL);
18417 if (cu->per_cu->load_all_dies)
18421 = htab_create_alloc_ex (cu->header.length / 12,
18425 &cu->comp_unit_obstack,
18426 hashtab_obstack_allocate,
18427 dummy_obstack_deallocate);
18431 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18433 /* A NULL abbrev means the end of a series of children. */
18434 if (abbrev == NULL)
18436 if (--nesting_level == 0)
18439 info_ptr += bytes_read;
18440 last_die = parent_die;
18441 parent_die = parent_die->die_parent;
18445 /* Check for template arguments. We never save these; if
18446 they're seen, we just mark the parent, and go on our way. */
18447 if (parent_die != NULL
18448 && cu->language == language_cplus
18449 && (abbrev->tag == DW_TAG_template_type_param
18450 || abbrev->tag == DW_TAG_template_value_param))
18452 parent_die->has_template_arguments = 1;
18456 /* We don't need a partial DIE for the template argument. */
18457 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18462 /* We only recurse into c++ subprograms looking for template arguments.
18463 Skip their other children. */
18465 && cu->language == language_cplus
18466 && parent_die != NULL
18467 && parent_die->tag == DW_TAG_subprogram)
18469 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18473 /* Check whether this DIE is interesting enough to save. Normally
18474 we would not be interested in members here, but there may be
18475 later variables referencing them via DW_AT_specification (for
18476 static members). */
18478 && !is_type_tag_for_partial (abbrev->tag)
18479 && abbrev->tag != DW_TAG_constant
18480 && abbrev->tag != DW_TAG_enumerator
18481 && abbrev->tag != DW_TAG_subprogram
18482 && abbrev->tag != DW_TAG_inlined_subroutine
18483 && abbrev->tag != DW_TAG_lexical_block
18484 && abbrev->tag != DW_TAG_variable
18485 && abbrev->tag != DW_TAG_namespace
18486 && abbrev->tag != DW_TAG_module
18487 && abbrev->tag != DW_TAG_member
18488 && abbrev->tag != DW_TAG_imported_unit
18489 && abbrev->tag != DW_TAG_imported_declaration)
18491 /* Otherwise we skip to the next sibling, if any. */
18492 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18496 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18499 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18501 /* This two-pass algorithm for processing partial symbols has a
18502 high cost in cache pressure. Thus, handle some simple cases
18503 here which cover the majority of C partial symbols. DIEs
18504 which neither have specification tags in them, nor could have
18505 specification tags elsewhere pointing at them, can simply be
18506 processed and discarded.
18508 This segment is also optional; scan_partial_symbols and
18509 add_partial_symbol will handle these DIEs if we chain
18510 them in normally. When compilers which do not emit large
18511 quantities of duplicate debug information are more common,
18512 this code can probably be removed. */
18514 /* Any complete simple types at the top level (pretty much all
18515 of them, for a language without namespaces), can be processed
18517 if (parent_die == NULL
18518 && pdi.has_specification == 0
18519 && pdi.is_declaration == 0
18520 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18521 || pdi.tag == DW_TAG_base_type
18522 || pdi.tag == DW_TAG_subrange_type))
18524 if (building_psymtab && pdi.name != NULL)
18525 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18526 VAR_DOMAIN, LOC_TYPEDEF, -1,
18527 psymbol_placement::STATIC,
18528 0, cu->language, objfile);
18529 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18533 /* The exception for DW_TAG_typedef with has_children above is
18534 a workaround of GCC PR debug/47510. In the case of this complaint
18535 type_name_or_error will error on such types later.
18537 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18538 it could not find the child DIEs referenced later, this is checked
18539 above. In correct DWARF DW_TAG_typedef should have no children. */
18541 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18542 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18543 "- DIE at %s [in module %s]"),
18544 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18546 /* If we're at the second level, and we're an enumerator, and
18547 our parent has no specification (meaning possibly lives in a
18548 namespace elsewhere), then we can add the partial symbol now
18549 instead of queueing it. */
18550 if (pdi.tag == DW_TAG_enumerator
18551 && parent_die != NULL
18552 && parent_die->die_parent == NULL
18553 && parent_die->tag == DW_TAG_enumeration_type
18554 && parent_die->has_specification == 0)
18556 if (pdi.name == NULL)
18557 complaint (_("malformed enumerator DIE ignored"));
18558 else if (building_psymtab)
18559 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18560 VAR_DOMAIN, LOC_CONST, -1,
18561 cu->language == language_cplus
18562 ? psymbol_placement::GLOBAL
18563 : psymbol_placement::STATIC,
18564 0, cu->language, objfile);
18566 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18570 struct partial_die_info *part_die
18571 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18573 /* We'll save this DIE so link it in. */
18574 part_die->die_parent = parent_die;
18575 part_die->die_sibling = NULL;
18576 part_die->die_child = NULL;
18578 if (last_die && last_die == parent_die)
18579 last_die->die_child = part_die;
18581 last_die->die_sibling = part_die;
18583 last_die = part_die;
18585 if (first_die == NULL)
18586 first_die = part_die;
18588 /* Maybe add the DIE to the hash table. Not all DIEs that we
18589 find interesting need to be in the hash table, because we
18590 also have the parent/sibling/child chains; only those that we
18591 might refer to by offset later during partial symbol reading.
18593 For now this means things that might have be the target of a
18594 DW_AT_specification, DW_AT_abstract_origin, or
18595 DW_AT_extension. DW_AT_extension will refer only to
18596 namespaces; DW_AT_abstract_origin refers to functions (and
18597 many things under the function DIE, but we do not recurse
18598 into function DIEs during partial symbol reading) and
18599 possibly variables as well; DW_AT_specification refers to
18600 declarations. Declarations ought to have the DW_AT_declaration
18601 flag. It happens that GCC forgets to put it in sometimes, but
18602 only for functions, not for types.
18604 Adding more things than necessary to the hash table is harmless
18605 except for the performance cost. Adding too few will result in
18606 wasted time in find_partial_die, when we reread the compilation
18607 unit with load_all_dies set. */
18610 || abbrev->tag == DW_TAG_constant
18611 || abbrev->tag == DW_TAG_subprogram
18612 || abbrev->tag == DW_TAG_variable
18613 || abbrev->tag == DW_TAG_namespace
18614 || part_die->is_declaration)
18618 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18619 to_underlying (part_die->sect_off),
18624 /* For some DIEs we want to follow their children (if any). For C
18625 we have no reason to follow the children of structures; for other
18626 languages we have to, so that we can get at method physnames
18627 to infer fully qualified class names, for DW_AT_specification,
18628 and for C++ template arguments. For C++, we also look one level
18629 inside functions to find template arguments (if the name of the
18630 function does not already contain the template arguments).
18632 For Ada, we need to scan the children of subprograms and lexical
18633 blocks as well because Ada allows the definition of nested
18634 entities that could be interesting for the debugger, such as
18635 nested subprograms for instance. */
18636 if (last_die->has_children
18638 || last_die->tag == DW_TAG_namespace
18639 || last_die->tag == DW_TAG_module
18640 || last_die->tag == DW_TAG_enumeration_type
18641 || (cu->language == language_cplus
18642 && last_die->tag == DW_TAG_subprogram
18643 && (last_die->name == NULL
18644 || strchr (last_die->name, '<') == NULL))
18645 || (cu->language != language_c
18646 && (last_die->tag == DW_TAG_class_type
18647 || last_die->tag == DW_TAG_interface_type
18648 || last_die->tag == DW_TAG_structure_type
18649 || last_die->tag == DW_TAG_union_type))
18650 || (cu->language == language_ada
18651 && (last_die->tag == DW_TAG_subprogram
18652 || last_die->tag == DW_TAG_lexical_block))))
18655 parent_die = last_die;
18659 /* Otherwise we skip to the next sibling, if any. */
18660 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18662 /* Back to the top, do it again. */
18666 partial_die_info::partial_die_info (sect_offset sect_off_,
18667 struct abbrev_info *abbrev)
18668 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18672 /* Read a minimal amount of information into the minimal die structure.
18673 INFO_PTR should point just after the initial uleb128 of a DIE. */
18676 partial_die_info::read (const struct die_reader_specs *reader,
18677 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18679 struct dwarf2_cu *cu = reader->cu;
18680 struct dwarf2_per_objfile *dwarf2_per_objfile
18681 = cu->per_cu->dwarf2_per_objfile;
18683 int has_low_pc_attr = 0;
18684 int has_high_pc_attr = 0;
18685 int high_pc_relative = 0;
18687 for (i = 0; i < abbrev.num_attrs; ++i)
18689 struct attribute attr;
18691 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18693 /* Store the data if it is of an attribute we want to keep in a
18694 partial symbol table. */
18700 case DW_TAG_compile_unit:
18701 case DW_TAG_partial_unit:
18702 case DW_TAG_type_unit:
18703 /* Compilation units have a DW_AT_name that is a filename, not
18704 a source language identifier. */
18705 case DW_TAG_enumeration_type:
18706 case DW_TAG_enumerator:
18707 /* These tags always have simple identifiers already; no need
18708 to canonicalize them. */
18709 name = DW_STRING (&attr);
18713 struct objfile *objfile = dwarf2_per_objfile->objfile;
18716 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18717 &objfile->per_bfd->storage_obstack);
18722 case DW_AT_linkage_name:
18723 case DW_AT_MIPS_linkage_name:
18724 /* Note that both forms of linkage name might appear. We
18725 assume they will be the same, and we only store the last
18727 if (cu->language == language_ada)
18728 name = DW_STRING (&attr);
18729 linkage_name = DW_STRING (&attr);
18732 has_low_pc_attr = 1;
18733 lowpc = attr_value_as_address (&attr);
18735 case DW_AT_high_pc:
18736 has_high_pc_attr = 1;
18737 highpc = attr_value_as_address (&attr);
18738 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18739 high_pc_relative = 1;
18741 case DW_AT_location:
18742 /* Support the .debug_loc offsets. */
18743 if (attr_form_is_block (&attr))
18745 d.locdesc = DW_BLOCK (&attr);
18747 else if (attr_form_is_section_offset (&attr))
18749 dwarf2_complex_location_expr_complaint ();
18753 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18754 "partial symbol information");
18757 case DW_AT_external:
18758 is_external = DW_UNSND (&attr);
18760 case DW_AT_declaration:
18761 is_declaration = DW_UNSND (&attr);
18766 case DW_AT_abstract_origin:
18767 case DW_AT_specification:
18768 case DW_AT_extension:
18769 has_specification = 1;
18770 spec_offset = dwarf2_get_ref_die_offset (&attr);
18771 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18772 || cu->per_cu->is_dwz);
18774 case DW_AT_sibling:
18775 /* Ignore absolute siblings, they might point outside of
18776 the current compile unit. */
18777 if (attr.form == DW_FORM_ref_addr)
18778 complaint (_("ignoring absolute DW_AT_sibling"));
18781 const gdb_byte *buffer = reader->buffer;
18782 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18783 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18785 if (sibling_ptr < info_ptr)
18786 complaint (_("DW_AT_sibling points backwards"));
18787 else if (sibling_ptr > reader->buffer_end)
18788 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18790 sibling = sibling_ptr;
18793 case DW_AT_byte_size:
18796 case DW_AT_const_value:
18797 has_const_value = 1;
18799 case DW_AT_calling_convention:
18800 /* DWARF doesn't provide a way to identify a program's source-level
18801 entry point. DW_AT_calling_convention attributes are only meant
18802 to describe functions' calling conventions.
18804 However, because it's a necessary piece of information in
18805 Fortran, and before DWARF 4 DW_CC_program was the only
18806 piece of debugging information whose definition refers to
18807 a 'main program' at all, several compilers marked Fortran
18808 main programs with DW_CC_program --- even when those
18809 functions use the standard calling conventions.
18811 Although DWARF now specifies a way to provide this
18812 information, we support this practice for backward
18814 if (DW_UNSND (&attr) == DW_CC_program
18815 && cu->language == language_fortran)
18816 main_subprogram = 1;
18819 if (DW_UNSND (&attr) == DW_INL_inlined
18820 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18821 may_be_inlined = 1;
18825 if (tag == DW_TAG_imported_unit)
18827 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18828 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18829 || cu->per_cu->is_dwz);
18833 case DW_AT_main_subprogram:
18834 main_subprogram = DW_UNSND (&attr);
18839 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18840 but that requires a full DIE, so instead we just
18842 int need_ranges_base = tag != DW_TAG_compile_unit;
18843 unsigned int ranges_offset = (DW_UNSND (&attr)
18844 + (need_ranges_base
18848 /* Value of the DW_AT_ranges attribute is the offset in the
18849 .debug_ranges section. */
18850 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18861 if (high_pc_relative)
18864 if (has_low_pc_attr && has_high_pc_attr)
18866 /* When using the GNU linker, .gnu.linkonce. sections are used to
18867 eliminate duplicate copies of functions and vtables and such.
18868 The linker will arbitrarily choose one and discard the others.
18869 The AT_*_pc values for such functions refer to local labels in
18870 these sections. If the section from that file was discarded, the
18871 labels are not in the output, so the relocs get a value of 0.
18872 If this is a discarded function, mark the pc bounds as invalid,
18873 so that GDB will ignore it. */
18874 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18876 struct objfile *objfile = dwarf2_per_objfile->objfile;
18877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18879 complaint (_("DW_AT_low_pc %s is zero "
18880 "for DIE at %s [in module %s]"),
18881 paddress (gdbarch, lowpc),
18882 sect_offset_str (sect_off),
18883 objfile_name (objfile));
18885 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18886 else if (lowpc >= highpc)
18888 struct objfile *objfile = dwarf2_per_objfile->objfile;
18889 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18891 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18892 "for DIE at %s [in module %s]"),
18893 paddress (gdbarch, lowpc),
18894 paddress (gdbarch, highpc),
18895 sect_offset_str (sect_off),
18896 objfile_name (objfile));
18905 /* Find a cached partial DIE at OFFSET in CU. */
18907 struct partial_die_info *
18908 dwarf2_cu::find_partial_die (sect_offset sect_off)
18910 struct partial_die_info *lookup_die = NULL;
18911 struct partial_die_info part_die (sect_off);
18913 lookup_die = ((struct partial_die_info *)
18914 htab_find_with_hash (partial_dies, &part_die,
18915 to_underlying (sect_off)));
18920 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18921 except in the case of .debug_types DIEs which do not reference
18922 outside their CU (they do however referencing other types via
18923 DW_FORM_ref_sig8). */
18925 static struct partial_die_info *
18926 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18928 struct dwarf2_per_objfile *dwarf2_per_objfile
18929 = cu->per_cu->dwarf2_per_objfile;
18930 struct objfile *objfile = dwarf2_per_objfile->objfile;
18931 struct dwarf2_per_cu_data *per_cu = NULL;
18932 struct partial_die_info *pd = NULL;
18934 if (offset_in_dwz == cu->per_cu->is_dwz
18935 && offset_in_cu_p (&cu->header, sect_off))
18937 pd = cu->find_partial_die (sect_off);
18940 /* We missed recording what we needed.
18941 Load all dies and try again. */
18942 per_cu = cu->per_cu;
18946 /* TUs don't reference other CUs/TUs (except via type signatures). */
18947 if (cu->per_cu->is_debug_types)
18949 error (_("Dwarf Error: Type Unit at offset %s contains"
18950 " external reference to offset %s [in module %s].\n"),
18951 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18952 bfd_get_filename (objfile->obfd));
18954 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18955 dwarf2_per_objfile);
18957 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18958 load_partial_comp_unit (per_cu);
18960 per_cu->cu->last_used = 0;
18961 pd = per_cu->cu->find_partial_die (sect_off);
18964 /* If we didn't find it, and not all dies have been loaded,
18965 load them all and try again. */
18967 if (pd == NULL && per_cu->load_all_dies == 0)
18969 per_cu->load_all_dies = 1;
18971 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18972 THIS_CU->cu may already be in use. So we can't just free it and
18973 replace its DIEs with the ones we read in. Instead, we leave those
18974 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18975 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18977 load_partial_comp_unit (per_cu);
18979 pd = per_cu->cu->find_partial_die (sect_off);
18983 internal_error (__FILE__, __LINE__,
18984 _("could not find partial DIE %s "
18985 "in cache [from module %s]\n"),
18986 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18990 /* See if we can figure out if the class lives in a namespace. We do
18991 this by looking for a member function; its demangled name will
18992 contain namespace info, if there is any. */
18995 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18996 struct dwarf2_cu *cu)
18998 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18999 what template types look like, because the demangler
19000 frequently doesn't give the same name as the debug info. We
19001 could fix this by only using the demangled name to get the
19002 prefix (but see comment in read_structure_type). */
19004 struct partial_die_info *real_pdi;
19005 struct partial_die_info *child_pdi;
19007 /* If this DIE (this DIE's specification, if any) has a parent, then
19008 we should not do this. We'll prepend the parent's fully qualified
19009 name when we create the partial symbol. */
19011 real_pdi = struct_pdi;
19012 while (real_pdi->has_specification)
19013 real_pdi = find_partial_die (real_pdi->spec_offset,
19014 real_pdi->spec_is_dwz, cu);
19016 if (real_pdi->die_parent != NULL)
19019 for (child_pdi = struct_pdi->die_child;
19021 child_pdi = child_pdi->die_sibling)
19023 if (child_pdi->tag == DW_TAG_subprogram
19024 && child_pdi->linkage_name != NULL)
19026 char *actual_class_name
19027 = language_class_name_from_physname (cu->language_defn,
19028 child_pdi->linkage_name);
19029 if (actual_class_name != NULL)
19031 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19034 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19036 strlen (actual_class_name)));
19037 xfree (actual_class_name);
19045 partial_die_info::fixup (struct dwarf2_cu *cu)
19047 /* Once we've fixed up a die, there's no point in doing so again.
19048 This also avoids a memory leak if we were to call
19049 guess_partial_die_structure_name multiple times. */
19053 /* If we found a reference attribute and the DIE has no name, try
19054 to find a name in the referred to DIE. */
19056 if (name == NULL && has_specification)
19058 struct partial_die_info *spec_die;
19060 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19062 spec_die->fixup (cu);
19064 if (spec_die->name)
19066 name = spec_die->name;
19068 /* Copy DW_AT_external attribute if it is set. */
19069 if (spec_die->is_external)
19070 is_external = spec_die->is_external;
19074 /* Set default names for some unnamed DIEs. */
19076 if (name == NULL && tag == DW_TAG_namespace)
19077 name = CP_ANONYMOUS_NAMESPACE_STR;
19079 /* If there is no parent die to provide a namespace, and there are
19080 children, see if we can determine the namespace from their linkage
19082 if (cu->language == language_cplus
19083 && !VEC_empty (dwarf2_section_info_def,
19084 cu->per_cu->dwarf2_per_objfile->types)
19085 && die_parent == NULL
19087 && (tag == DW_TAG_class_type
19088 || tag == DW_TAG_structure_type
19089 || tag == DW_TAG_union_type))
19090 guess_partial_die_structure_name (this, cu);
19092 /* GCC might emit a nameless struct or union that has a linkage
19093 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19095 && (tag == DW_TAG_class_type
19096 || tag == DW_TAG_interface_type
19097 || tag == DW_TAG_structure_type
19098 || tag == DW_TAG_union_type)
19099 && linkage_name != NULL)
19103 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19108 /* Strip any leading namespaces/classes, keep only the base name.
19109 DW_AT_name for named DIEs does not contain the prefixes. */
19110 base = strrchr (demangled, ':');
19111 if (base && base > demangled && base[-1] == ':')
19116 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19119 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19120 base, strlen (base)));
19128 /* Read an attribute value described by an attribute form. */
19130 static const gdb_byte *
19131 read_attribute_value (const struct die_reader_specs *reader,
19132 struct attribute *attr, unsigned form,
19133 LONGEST implicit_const, const gdb_byte *info_ptr)
19135 struct dwarf2_cu *cu = reader->cu;
19136 struct dwarf2_per_objfile *dwarf2_per_objfile
19137 = cu->per_cu->dwarf2_per_objfile;
19138 struct objfile *objfile = dwarf2_per_objfile->objfile;
19139 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19140 bfd *abfd = reader->abfd;
19141 struct comp_unit_head *cu_header = &cu->header;
19142 unsigned int bytes_read;
19143 struct dwarf_block *blk;
19145 attr->form = (enum dwarf_form) form;
19148 case DW_FORM_ref_addr:
19149 if (cu->header.version == 2)
19150 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19152 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19153 &cu->header, &bytes_read);
19154 info_ptr += bytes_read;
19156 case DW_FORM_GNU_ref_alt:
19157 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19158 info_ptr += bytes_read;
19161 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19162 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19163 info_ptr += bytes_read;
19165 case DW_FORM_block2:
19166 blk = dwarf_alloc_block (cu);
19167 blk->size = read_2_bytes (abfd, info_ptr);
19169 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19170 info_ptr += blk->size;
19171 DW_BLOCK (attr) = blk;
19173 case DW_FORM_block4:
19174 blk = dwarf_alloc_block (cu);
19175 blk->size = read_4_bytes (abfd, info_ptr);
19177 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19178 info_ptr += blk->size;
19179 DW_BLOCK (attr) = blk;
19181 case DW_FORM_data2:
19182 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19185 case DW_FORM_data4:
19186 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19189 case DW_FORM_data8:
19190 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19193 case DW_FORM_data16:
19194 blk = dwarf_alloc_block (cu);
19196 blk->data = read_n_bytes (abfd, info_ptr, 16);
19198 DW_BLOCK (attr) = blk;
19200 case DW_FORM_sec_offset:
19201 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19202 info_ptr += bytes_read;
19204 case DW_FORM_string:
19205 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19206 DW_STRING_IS_CANONICAL (attr) = 0;
19207 info_ptr += bytes_read;
19210 if (!cu->per_cu->is_dwz)
19212 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19213 abfd, info_ptr, cu_header,
19215 DW_STRING_IS_CANONICAL (attr) = 0;
19216 info_ptr += bytes_read;
19220 case DW_FORM_line_strp:
19221 if (!cu->per_cu->is_dwz)
19223 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19225 cu_header, &bytes_read);
19226 DW_STRING_IS_CANONICAL (attr) = 0;
19227 info_ptr += bytes_read;
19231 case DW_FORM_GNU_strp_alt:
19233 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19234 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19237 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19239 DW_STRING_IS_CANONICAL (attr) = 0;
19240 info_ptr += bytes_read;
19243 case DW_FORM_exprloc:
19244 case DW_FORM_block:
19245 blk = dwarf_alloc_block (cu);
19246 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19247 info_ptr += bytes_read;
19248 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19249 info_ptr += blk->size;
19250 DW_BLOCK (attr) = blk;
19252 case DW_FORM_block1:
19253 blk = dwarf_alloc_block (cu);
19254 blk->size = read_1_byte (abfd, info_ptr);
19256 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19257 info_ptr += blk->size;
19258 DW_BLOCK (attr) = blk;
19260 case DW_FORM_data1:
19261 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19265 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19268 case DW_FORM_flag_present:
19269 DW_UNSND (attr) = 1;
19271 case DW_FORM_sdata:
19272 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19273 info_ptr += bytes_read;
19275 case DW_FORM_udata:
19276 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19277 info_ptr += bytes_read;
19280 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19281 + read_1_byte (abfd, info_ptr));
19285 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19286 + read_2_bytes (abfd, info_ptr));
19290 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19291 + read_4_bytes (abfd, info_ptr));
19295 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19296 + read_8_bytes (abfd, info_ptr));
19299 case DW_FORM_ref_sig8:
19300 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19303 case DW_FORM_ref_udata:
19304 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19305 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19306 info_ptr += bytes_read;
19308 case DW_FORM_indirect:
19309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19310 info_ptr += bytes_read;
19311 if (form == DW_FORM_implicit_const)
19313 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19314 info_ptr += bytes_read;
19316 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19319 case DW_FORM_implicit_const:
19320 DW_SND (attr) = implicit_const;
19322 case DW_FORM_addrx:
19323 case DW_FORM_GNU_addr_index:
19324 if (reader->dwo_file == NULL)
19326 /* For now flag a hard error.
19327 Later we can turn this into a complaint. */
19328 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19329 dwarf_form_name (form),
19330 bfd_get_filename (abfd));
19332 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19333 info_ptr += bytes_read;
19336 case DW_FORM_strx1:
19337 case DW_FORM_strx2:
19338 case DW_FORM_strx3:
19339 case DW_FORM_strx4:
19340 case DW_FORM_GNU_str_index:
19341 if (reader->dwo_file == NULL)
19343 /* For now flag a hard error.
19344 Later we can turn this into a complaint if warranted. */
19345 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19346 dwarf_form_name (form),
19347 bfd_get_filename (abfd));
19350 ULONGEST str_index;
19351 if (form == DW_FORM_strx1)
19353 str_index = read_1_byte (abfd, info_ptr);
19356 else if (form == DW_FORM_strx2)
19358 str_index = read_2_bytes (abfd, info_ptr);
19361 else if (form == DW_FORM_strx3)
19363 str_index = read_3_bytes (abfd, info_ptr);
19366 else if (form == DW_FORM_strx4)
19368 str_index = read_4_bytes (abfd, info_ptr);
19373 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19374 info_ptr += bytes_read;
19376 DW_STRING (attr) = read_str_index (reader, str_index);
19377 DW_STRING_IS_CANONICAL (attr) = 0;
19381 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19382 dwarf_form_name (form),
19383 bfd_get_filename (abfd));
19387 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19388 attr->form = DW_FORM_GNU_ref_alt;
19390 /* We have seen instances where the compiler tried to emit a byte
19391 size attribute of -1 which ended up being encoded as an unsigned
19392 0xffffffff. Although 0xffffffff is technically a valid size value,
19393 an object of this size seems pretty unlikely so we can relatively
19394 safely treat these cases as if the size attribute was invalid and
19395 treat them as zero by default. */
19396 if (attr->name == DW_AT_byte_size
19397 && form == DW_FORM_data4
19398 && DW_UNSND (attr) >= 0xffffffff)
19401 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19402 hex_string (DW_UNSND (attr)));
19403 DW_UNSND (attr) = 0;
19409 /* Read an attribute described by an abbreviated attribute. */
19411 static const gdb_byte *
19412 read_attribute (const struct die_reader_specs *reader,
19413 struct attribute *attr, struct attr_abbrev *abbrev,
19414 const gdb_byte *info_ptr)
19416 attr->name = abbrev->name;
19417 return read_attribute_value (reader, attr, abbrev->form,
19418 abbrev->implicit_const, info_ptr);
19421 /* Read dwarf information from a buffer. */
19423 static unsigned int
19424 read_1_byte (bfd *abfd, const gdb_byte *buf)
19426 return bfd_get_8 (abfd, buf);
19430 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19432 return bfd_get_signed_8 (abfd, buf);
19435 static unsigned int
19436 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19438 return bfd_get_16 (abfd, buf);
19442 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19444 return bfd_get_signed_16 (abfd, buf);
19447 static unsigned int
19448 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19450 unsigned int result = 0;
19451 for (int i = 0; i < 3; ++i)
19453 unsigned char byte = bfd_get_8 (abfd, buf);
19455 result |= ((unsigned int) byte << (i * 8));
19460 static unsigned int
19461 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19463 return bfd_get_32 (abfd, buf);
19467 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19469 return bfd_get_signed_32 (abfd, buf);
19473 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19475 return bfd_get_64 (abfd, buf);
19479 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19480 unsigned int *bytes_read)
19482 struct comp_unit_head *cu_header = &cu->header;
19483 CORE_ADDR retval = 0;
19485 if (cu_header->signed_addr_p)
19487 switch (cu_header->addr_size)
19490 retval = bfd_get_signed_16 (abfd, buf);
19493 retval = bfd_get_signed_32 (abfd, buf);
19496 retval = bfd_get_signed_64 (abfd, buf);
19499 internal_error (__FILE__, __LINE__,
19500 _("read_address: bad switch, signed [in module %s]"),
19501 bfd_get_filename (abfd));
19506 switch (cu_header->addr_size)
19509 retval = bfd_get_16 (abfd, buf);
19512 retval = bfd_get_32 (abfd, buf);
19515 retval = bfd_get_64 (abfd, buf);
19518 internal_error (__FILE__, __LINE__,
19519 _("read_address: bad switch, "
19520 "unsigned [in module %s]"),
19521 bfd_get_filename (abfd));
19525 *bytes_read = cu_header->addr_size;
19529 /* Read the initial length from a section. The (draft) DWARF 3
19530 specification allows the initial length to take up either 4 bytes
19531 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19532 bytes describe the length and all offsets will be 8 bytes in length
19535 An older, non-standard 64-bit format is also handled by this
19536 function. The older format in question stores the initial length
19537 as an 8-byte quantity without an escape value. Lengths greater
19538 than 2^32 aren't very common which means that the initial 4 bytes
19539 is almost always zero. Since a length value of zero doesn't make
19540 sense for the 32-bit format, this initial zero can be considered to
19541 be an escape value which indicates the presence of the older 64-bit
19542 format. As written, the code can't detect (old format) lengths
19543 greater than 4GB. If it becomes necessary to handle lengths
19544 somewhat larger than 4GB, we could allow other small values (such
19545 as the non-sensical values of 1, 2, and 3) to also be used as
19546 escape values indicating the presence of the old format.
19548 The value returned via bytes_read should be used to increment the
19549 relevant pointer after calling read_initial_length().
19551 [ Note: read_initial_length() and read_offset() are based on the
19552 document entitled "DWARF Debugging Information Format", revision
19553 3, draft 8, dated November 19, 2001. This document was obtained
19556 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19558 This document is only a draft and is subject to change. (So beware.)
19560 Details regarding the older, non-standard 64-bit format were
19561 determined empirically by examining 64-bit ELF files produced by
19562 the SGI toolchain on an IRIX 6.5 machine.
19564 - Kevin, July 16, 2002
19568 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19570 LONGEST length = bfd_get_32 (abfd, buf);
19572 if (length == 0xffffffff)
19574 length = bfd_get_64 (abfd, buf + 4);
19577 else if (length == 0)
19579 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19580 length = bfd_get_64 (abfd, buf);
19591 /* Cover function for read_initial_length.
19592 Returns the length of the object at BUF, and stores the size of the
19593 initial length in *BYTES_READ and stores the size that offsets will be in
19595 If the initial length size is not equivalent to that specified in
19596 CU_HEADER then issue a complaint.
19597 This is useful when reading non-comp-unit headers. */
19600 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19601 const struct comp_unit_head *cu_header,
19602 unsigned int *bytes_read,
19603 unsigned int *offset_size)
19605 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19607 gdb_assert (cu_header->initial_length_size == 4
19608 || cu_header->initial_length_size == 8
19609 || cu_header->initial_length_size == 12);
19611 if (cu_header->initial_length_size != *bytes_read)
19612 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19614 *offset_size = (*bytes_read == 4) ? 4 : 8;
19618 /* Read an offset from the data stream. The size of the offset is
19619 given by cu_header->offset_size. */
19622 read_offset (bfd *abfd, const gdb_byte *buf,
19623 const struct comp_unit_head *cu_header,
19624 unsigned int *bytes_read)
19626 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19628 *bytes_read = cu_header->offset_size;
19632 /* Read an offset from the data stream. */
19635 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19637 LONGEST retval = 0;
19639 switch (offset_size)
19642 retval = bfd_get_32 (abfd, buf);
19645 retval = bfd_get_64 (abfd, buf);
19648 internal_error (__FILE__, __LINE__,
19649 _("read_offset_1: bad switch [in module %s]"),
19650 bfd_get_filename (abfd));
19656 static const gdb_byte *
19657 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19659 /* If the size of a host char is 8 bits, we can return a pointer
19660 to the buffer, otherwise we have to copy the data to a buffer
19661 allocated on the temporary obstack. */
19662 gdb_assert (HOST_CHAR_BIT == 8);
19666 static const char *
19667 read_direct_string (bfd *abfd, const gdb_byte *buf,
19668 unsigned int *bytes_read_ptr)
19670 /* If the size of a host char is 8 bits, we can return a pointer
19671 to the string, otherwise we have to copy the string to a buffer
19672 allocated on the temporary obstack. */
19673 gdb_assert (HOST_CHAR_BIT == 8);
19676 *bytes_read_ptr = 1;
19679 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19680 return (const char *) buf;
19683 /* Return pointer to string at section SECT offset STR_OFFSET with error
19684 reporting strings FORM_NAME and SECT_NAME. */
19686 static const char *
19687 read_indirect_string_at_offset_from (struct objfile *objfile,
19688 bfd *abfd, LONGEST str_offset,
19689 struct dwarf2_section_info *sect,
19690 const char *form_name,
19691 const char *sect_name)
19693 dwarf2_read_section (objfile, sect);
19694 if (sect->buffer == NULL)
19695 error (_("%s used without %s section [in module %s]"),
19696 form_name, sect_name, bfd_get_filename (abfd));
19697 if (str_offset >= sect->size)
19698 error (_("%s pointing outside of %s section [in module %s]"),
19699 form_name, sect_name, bfd_get_filename (abfd));
19700 gdb_assert (HOST_CHAR_BIT == 8);
19701 if (sect->buffer[str_offset] == '\0')
19703 return (const char *) (sect->buffer + str_offset);
19706 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19708 static const char *
19709 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19710 bfd *abfd, LONGEST str_offset)
19712 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19714 &dwarf2_per_objfile->str,
19715 "DW_FORM_strp", ".debug_str");
19718 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19720 static const char *
19721 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19722 bfd *abfd, LONGEST str_offset)
19724 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19726 &dwarf2_per_objfile->line_str,
19727 "DW_FORM_line_strp",
19728 ".debug_line_str");
19731 /* Read a string at offset STR_OFFSET in the .debug_str section from
19732 the .dwz file DWZ. Throw an error if the offset is too large. If
19733 the string consists of a single NUL byte, return NULL; otherwise
19734 return a pointer to the string. */
19736 static const char *
19737 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19738 LONGEST str_offset)
19740 dwarf2_read_section (objfile, &dwz->str);
19742 if (dwz->str.buffer == NULL)
19743 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19744 "section [in module %s]"),
19745 bfd_get_filename (dwz->dwz_bfd));
19746 if (str_offset >= dwz->str.size)
19747 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19748 ".debug_str section [in module %s]"),
19749 bfd_get_filename (dwz->dwz_bfd));
19750 gdb_assert (HOST_CHAR_BIT == 8);
19751 if (dwz->str.buffer[str_offset] == '\0')
19753 return (const char *) (dwz->str.buffer + str_offset);
19756 /* Return pointer to string at .debug_str offset as read from BUF.
19757 BUF is assumed to be in a compilation unit described by CU_HEADER.
19758 Return *BYTES_READ_PTR count of bytes read from BUF. */
19760 static const char *
19761 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19762 const gdb_byte *buf,
19763 const struct comp_unit_head *cu_header,
19764 unsigned int *bytes_read_ptr)
19766 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19768 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19771 /* Return pointer to string at .debug_line_str offset as read from BUF.
19772 BUF is assumed to be in a compilation unit described by CU_HEADER.
19773 Return *BYTES_READ_PTR count of bytes read from BUF. */
19775 static const char *
19776 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19777 bfd *abfd, const gdb_byte *buf,
19778 const struct comp_unit_head *cu_header,
19779 unsigned int *bytes_read_ptr)
19781 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19783 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19788 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19789 unsigned int *bytes_read_ptr)
19792 unsigned int num_read;
19794 unsigned char byte;
19801 byte = bfd_get_8 (abfd, buf);
19804 result |= ((ULONGEST) (byte & 127) << shift);
19805 if ((byte & 128) == 0)
19811 *bytes_read_ptr = num_read;
19816 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19817 unsigned int *bytes_read_ptr)
19820 int shift, num_read;
19821 unsigned char byte;
19828 byte = bfd_get_8 (abfd, buf);
19831 result |= ((ULONGEST) (byte & 127) << shift);
19833 if ((byte & 128) == 0)
19838 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19839 result |= -(((ULONGEST) 1) << shift);
19840 *bytes_read_ptr = num_read;
19844 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19845 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19846 ADDR_SIZE is the size of addresses from the CU header. */
19849 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19850 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19852 struct objfile *objfile = dwarf2_per_objfile->objfile;
19853 bfd *abfd = objfile->obfd;
19854 const gdb_byte *info_ptr;
19856 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19857 if (dwarf2_per_objfile->addr.buffer == NULL)
19858 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19859 objfile_name (objfile));
19860 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19861 error (_("DW_FORM_addr_index pointing outside of "
19862 ".debug_addr section [in module %s]"),
19863 objfile_name (objfile));
19864 info_ptr = (dwarf2_per_objfile->addr.buffer
19865 + addr_base + addr_index * addr_size);
19866 if (addr_size == 4)
19867 return bfd_get_32 (abfd, info_ptr);
19869 return bfd_get_64 (abfd, info_ptr);
19872 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19875 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19877 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19878 cu->addr_base, cu->header.addr_size);
19881 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19884 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19885 unsigned int *bytes_read)
19887 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19888 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19890 return read_addr_index (cu, addr_index);
19893 /* Data structure to pass results from dwarf2_read_addr_index_reader
19894 back to dwarf2_read_addr_index. */
19896 struct dwarf2_read_addr_index_data
19898 ULONGEST addr_base;
19902 /* die_reader_func for dwarf2_read_addr_index. */
19905 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19906 const gdb_byte *info_ptr,
19907 struct die_info *comp_unit_die,
19911 struct dwarf2_cu *cu = reader->cu;
19912 struct dwarf2_read_addr_index_data *aidata =
19913 (struct dwarf2_read_addr_index_data *) data;
19915 aidata->addr_base = cu->addr_base;
19916 aidata->addr_size = cu->header.addr_size;
19919 /* Given an index in .debug_addr, fetch the value.
19920 NOTE: This can be called during dwarf expression evaluation,
19921 long after the debug information has been read, and thus per_cu->cu
19922 may no longer exist. */
19925 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19926 unsigned int addr_index)
19928 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19929 struct dwarf2_cu *cu = per_cu->cu;
19930 ULONGEST addr_base;
19933 /* We need addr_base and addr_size.
19934 If we don't have PER_CU->cu, we have to get it.
19935 Nasty, but the alternative is storing the needed info in PER_CU,
19936 which at this point doesn't seem justified: it's not clear how frequently
19937 it would get used and it would increase the size of every PER_CU.
19938 Entry points like dwarf2_per_cu_addr_size do a similar thing
19939 so we're not in uncharted territory here.
19940 Alas we need to be a bit more complicated as addr_base is contained
19943 We don't need to read the entire CU(/TU).
19944 We just need the header and top level die.
19946 IWBN to use the aging mechanism to let us lazily later discard the CU.
19947 For now we skip this optimization. */
19951 addr_base = cu->addr_base;
19952 addr_size = cu->header.addr_size;
19956 struct dwarf2_read_addr_index_data aidata;
19958 /* Note: We can't use init_cutu_and_read_dies_simple here,
19959 we need addr_base. */
19960 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19961 dwarf2_read_addr_index_reader, &aidata);
19962 addr_base = aidata.addr_base;
19963 addr_size = aidata.addr_size;
19966 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19970 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19971 This is only used by the Fission support. */
19973 static const char *
19974 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19976 struct dwarf2_cu *cu = reader->cu;
19977 struct dwarf2_per_objfile *dwarf2_per_objfile
19978 = cu->per_cu->dwarf2_per_objfile;
19979 struct objfile *objfile = dwarf2_per_objfile->objfile;
19980 const char *objf_name = objfile_name (objfile);
19981 bfd *abfd = objfile->obfd;
19982 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19983 struct dwarf2_section_info *str_offsets_section =
19984 &reader->dwo_file->sections.str_offsets;
19985 const gdb_byte *info_ptr;
19986 ULONGEST str_offset;
19987 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19989 dwarf2_read_section (objfile, str_section);
19990 dwarf2_read_section (objfile, str_offsets_section);
19991 if (str_section->buffer == NULL)
19992 error (_("%s used without .debug_str.dwo section"
19993 " in CU at offset %s [in module %s]"),
19994 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19995 if (str_offsets_section->buffer == NULL)
19996 error (_("%s used without .debug_str_offsets.dwo section"
19997 " in CU at offset %s [in module %s]"),
19998 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19999 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20000 error (_("%s pointing outside of .debug_str_offsets.dwo"
20001 " section in CU at offset %s [in module %s]"),
20002 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20003 info_ptr = (str_offsets_section->buffer
20004 + str_index * cu->header.offset_size);
20005 if (cu->header.offset_size == 4)
20006 str_offset = bfd_get_32 (abfd, info_ptr);
20008 str_offset = bfd_get_64 (abfd, info_ptr);
20009 if (str_offset >= str_section->size)
20010 error (_("Offset from %s pointing outside of"
20011 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20012 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20013 return (const char *) (str_section->buffer + str_offset);
20016 /* Return the length of an LEB128 number in BUF. */
20019 leb128_size (const gdb_byte *buf)
20021 const gdb_byte *begin = buf;
20027 if ((byte & 128) == 0)
20028 return buf - begin;
20033 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20042 cu->language = language_c;
20045 case DW_LANG_C_plus_plus:
20046 case DW_LANG_C_plus_plus_11:
20047 case DW_LANG_C_plus_plus_14:
20048 cu->language = language_cplus;
20051 cu->language = language_d;
20053 case DW_LANG_Fortran77:
20054 case DW_LANG_Fortran90:
20055 case DW_LANG_Fortran95:
20056 case DW_LANG_Fortran03:
20057 case DW_LANG_Fortran08:
20058 cu->language = language_fortran;
20061 cu->language = language_go;
20063 case DW_LANG_Mips_Assembler:
20064 cu->language = language_asm;
20066 case DW_LANG_Ada83:
20067 case DW_LANG_Ada95:
20068 cu->language = language_ada;
20070 case DW_LANG_Modula2:
20071 cu->language = language_m2;
20073 case DW_LANG_Pascal83:
20074 cu->language = language_pascal;
20077 cu->language = language_objc;
20080 case DW_LANG_Rust_old:
20081 cu->language = language_rust;
20083 case DW_LANG_Cobol74:
20084 case DW_LANG_Cobol85:
20086 cu->language = language_minimal;
20089 cu->language_defn = language_def (cu->language);
20092 /* Return the named attribute or NULL if not there. */
20094 static struct attribute *
20095 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20100 struct attribute *spec = NULL;
20102 for (i = 0; i < die->num_attrs; ++i)
20104 if (die->attrs[i].name == name)
20105 return &die->attrs[i];
20106 if (die->attrs[i].name == DW_AT_specification
20107 || die->attrs[i].name == DW_AT_abstract_origin)
20108 spec = &die->attrs[i];
20114 die = follow_die_ref (die, spec, &cu);
20120 /* Return the named attribute or NULL if not there,
20121 but do not follow DW_AT_specification, etc.
20122 This is for use in contexts where we're reading .debug_types dies.
20123 Following DW_AT_specification, DW_AT_abstract_origin will take us
20124 back up the chain, and we want to go down. */
20126 static struct attribute *
20127 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20131 for (i = 0; i < die->num_attrs; ++i)
20132 if (die->attrs[i].name == name)
20133 return &die->attrs[i];
20138 /* Return the string associated with a string-typed attribute, or NULL if it
20139 is either not found or is of an incorrect type. */
20141 static const char *
20142 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20144 struct attribute *attr;
20145 const char *str = NULL;
20147 attr = dwarf2_attr (die, name, cu);
20151 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20152 || attr->form == DW_FORM_string
20153 || attr->form == DW_FORM_strx
20154 || attr->form == DW_FORM_GNU_str_index
20155 || attr->form == DW_FORM_GNU_strp_alt)
20156 str = DW_STRING (attr);
20158 complaint (_("string type expected for attribute %s for "
20159 "DIE at %s in module %s"),
20160 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20161 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20167 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20168 and holds a non-zero value. This function should only be used for
20169 DW_FORM_flag or DW_FORM_flag_present attributes. */
20172 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20174 struct attribute *attr = dwarf2_attr (die, name, cu);
20176 return (attr && DW_UNSND (attr));
20180 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20182 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20183 which value is non-zero. However, we have to be careful with
20184 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20185 (via dwarf2_flag_true_p) follows this attribute. So we may
20186 end up accidently finding a declaration attribute that belongs
20187 to a different DIE referenced by the specification attribute,
20188 even though the given DIE does not have a declaration attribute. */
20189 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20190 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20193 /* Return the die giving the specification for DIE, if there is
20194 one. *SPEC_CU is the CU containing DIE on input, and the CU
20195 containing the return value on output. If there is no
20196 specification, but there is an abstract origin, that is
20199 static struct die_info *
20200 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20202 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20205 if (spec_attr == NULL)
20206 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20208 if (spec_attr == NULL)
20211 return follow_die_ref (die, spec_attr, spec_cu);
20214 /* Stub for free_line_header to match void * callback types. */
20217 free_line_header_voidp (void *arg)
20219 struct line_header *lh = (struct line_header *) arg;
20225 line_header::add_include_dir (const char *include_dir)
20227 if (dwarf_line_debug >= 2)
20228 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20229 include_dirs.size () + 1, include_dir);
20231 include_dirs.push_back (include_dir);
20235 line_header::add_file_name (const char *name,
20237 unsigned int mod_time,
20238 unsigned int length)
20240 if (dwarf_line_debug >= 2)
20241 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20242 (unsigned) file_names.size () + 1, name);
20244 file_names.emplace_back (name, d_index, mod_time, length);
20247 /* A convenience function to find the proper .debug_line section for a CU. */
20249 static struct dwarf2_section_info *
20250 get_debug_line_section (struct dwarf2_cu *cu)
20252 struct dwarf2_section_info *section;
20253 struct dwarf2_per_objfile *dwarf2_per_objfile
20254 = cu->per_cu->dwarf2_per_objfile;
20256 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20258 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20259 section = &cu->dwo_unit->dwo_file->sections.line;
20260 else if (cu->per_cu->is_dwz)
20262 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20264 section = &dwz->line;
20267 section = &dwarf2_per_objfile->line;
20272 /* Read directory or file name entry format, starting with byte of
20273 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20274 entries count and the entries themselves in the described entry
20278 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20279 bfd *abfd, const gdb_byte **bufp,
20280 struct line_header *lh,
20281 const struct comp_unit_head *cu_header,
20282 void (*callback) (struct line_header *lh,
20285 unsigned int mod_time,
20286 unsigned int length))
20288 gdb_byte format_count, formati;
20289 ULONGEST data_count, datai;
20290 const gdb_byte *buf = *bufp;
20291 const gdb_byte *format_header_data;
20292 unsigned int bytes_read;
20294 format_count = read_1_byte (abfd, buf);
20296 format_header_data = buf;
20297 for (formati = 0; formati < format_count; formati++)
20299 read_unsigned_leb128 (abfd, buf, &bytes_read);
20301 read_unsigned_leb128 (abfd, buf, &bytes_read);
20305 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20307 for (datai = 0; datai < data_count; datai++)
20309 const gdb_byte *format = format_header_data;
20310 struct file_entry fe;
20312 for (formati = 0; formati < format_count; formati++)
20314 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20315 format += bytes_read;
20317 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20318 format += bytes_read;
20320 gdb::optional<const char *> string;
20321 gdb::optional<unsigned int> uint;
20325 case DW_FORM_string:
20326 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20330 case DW_FORM_line_strp:
20331 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20338 case DW_FORM_data1:
20339 uint.emplace (read_1_byte (abfd, buf));
20343 case DW_FORM_data2:
20344 uint.emplace (read_2_bytes (abfd, buf));
20348 case DW_FORM_data4:
20349 uint.emplace (read_4_bytes (abfd, buf));
20353 case DW_FORM_data8:
20354 uint.emplace (read_8_bytes (abfd, buf));
20358 case DW_FORM_udata:
20359 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20363 case DW_FORM_block:
20364 /* It is valid only for DW_LNCT_timestamp which is ignored by
20369 switch (content_type)
20372 if (string.has_value ())
20375 case DW_LNCT_directory_index:
20376 if (uint.has_value ())
20377 fe.d_index = (dir_index) *uint;
20379 case DW_LNCT_timestamp:
20380 if (uint.has_value ())
20381 fe.mod_time = *uint;
20384 if (uint.has_value ())
20390 complaint (_("Unknown format content type %s"),
20391 pulongest (content_type));
20395 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20401 /* Read the statement program header starting at OFFSET in
20402 .debug_line, or .debug_line.dwo. Return a pointer
20403 to a struct line_header, allocated using xmalloc.
20404 Returns NULL if there is a problem reading the header, e.g., if it
20405 has a version we don't understand.
20407 NOTE: the strings in the include directory and file name tables of
20408 the returned object point into the dwarf line section buffer,
20409 and must not be freed. */
20411 static line_header_up
20412 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20414 const gdb_byte *line_ptr;
20415 unsigned int bytes_read, offset_size;
20417 const char *cur_dir, *cur_file;
20418 struct dwarf2_section_info *section;
20420 struct dwarf2_per_objfile *dwarf2_per_objfile
20421 = cu->per_cu->dwarf2_per_objfile;
20423 section = get_debug_line_section (cu);
20424 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20425 if (section->buffer == NULL)
20427 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20428 complaint (_("missing .debug_line.dwo section"));
20430 complaint (_("missing .debug_line section"));
20434 /* We can't do this until we know the section is non-empty.
20435 Only then do we know we have such a section. */
20436 abfd = get_section_bfd_owner (section);
20438 /* Make sure that at least there's room for the total_length field.
20439 That could be 12 bytes long, but we're just going to fudge that. */
20440 if (to_underlying (sect_off) + 4 >= section->size)
20442 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20446 line_header_up lh (new line_header ());
20448 lh->sect_off = sect_off;
20449 lh->offset_in_dwz = cu->per_cu->is_dwz;
20451 line_ptr = section->buffer + to_underlying (sect_off);
20453 /* Read in the header. */
20455 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20456 &bytes_read, &offset_size);
20457 line_ptr += bytes_read;
20458 if (line_ptr + lh->total_length > (section->buffer + section->size))
20460 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20463 lh->statement_program_end = line_ptr + lh->total_length;
20464 lh->version = read_2_bytes (abfd, line_ptr);
20466 if (lh->version > 5)
20468 /* This is a version we don't understand. The format could have
20469 changed in ways we don't handle properly so just punt. */
20470 complaint (_("unsupported version in .debug_line section"));
20473 if (lh->version >= 5)
20475 gdb_byte segment_selector_size;
20477 /* Skip address size. */
20478 read_1_byte (abfd, line_ptr);
20481 segment_selector_size = read_1_byte (abfd, line_ptr);
20483 if (segment_selector_size != 0)
20485 complaint (_("unsupported segment selector size %u "
20486 "in .debug_line section"),
20487 segment_selector_size);
20491 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20492 line_ptr += offset_size;
20493 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20495 if (lh->version >= 4)
20497 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20501 lh->maximum_ops_per_instruction = 1;
20503 if (lh->maximum_ops_per_instruction == 0)
20505 lh->maximum_ops_per_instruction = 1;
20506 complaint (_("invalid maximum_ops_per_instruction "
20507 "in `.debug_line' section"));
20510 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20512 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20514 lh->line_range = read_1_byte (abfd, line_ptr);
20516 lh->opcode_base = read_1_byte (abfd, line_ptr);
20518 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20520 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20521 for (i = 1; i < lh->opcode_base; ++i)
20523 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20527 if (lh->version >= 5)
20529 /* Read directory table. */
20530 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20532 [] (struct line_header *header, const char *name,
20533 dir_index d_index, unsigned int mod_time,
20534 unsigned int length)
20536 header->add_include_dir (name);
20539 /* Read file name table. */
20540 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20542 [] (struct line_header *header, const char *name,
20543 dir_index d_index, unsigned int mod_time,
20544 unsigned int length)
20546 header->add_file_name (name, d_index, mod_time, length);
20551 /* Read directory table. */
20552 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20554 line_ptr += bytes_read;
20555 lh->add_include_dir (cur_dir);
20557 line_ptr += bytes_read;
20559 /* Read file name table. */
20560 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20562 unsigned int mod_time, length;
20565 line_ptr += bytes_read;
20566 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20567 line_ptr += bytes_read;
20568 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20569 line_ptr += bytes_read;
20570 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20571 line_ptr += bytes_read;
20573 lh->add_file_name (cur_file, d_index, mod_time, length);
20575 line_ptr += bytes_read;
20577 lh->statement_program_start = line_ptr;
20579 if (line_ptr > (section->buffer + section->size))
20580 complaint (_("line number info header doesn't "
20581 "fit in `.debug_line' section"));
20586 /* Subroutine of dwarf_decode_lines to simplify it.
20587 Return the file name of the psymtab for included file FILE_INDEX
20588 in line header LH of PST.
20589 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20590 If space for the result is malloc'd, *NAME_HOLDER will be set.
20591 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20593 static const char *
20594 psymtab_include_file_name (const struct line_header *lh, int file_index,
20595 const struct partial_symtab *pst,
20596 const char *comp_dir,
20597 gdb::unique_xmalloc_ptr<char> *name_holder)
20599 const file_entry &fe = lh->file_names[file_index];
20600 const char *include_name = fe.name;
20601 const char *include_name_to_compare = include_name;
20602 const char *pst_filename;
20605 const char *dir_name = fe.include_dir (lh);
20607 gdb::unique_xmalloc_ptr<char> hold_compare;
20608 if (!IS_ABSOLUTE_PATH (include_name)
20609 && (dir_name != NULL || comp_dir != NULL))
20611 /* Avoid creating a duplicate psymtab for PST.
20612 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20613 Before we do the comparison, however, we need to account
20614 for DIR_NAME and COMP_DIR.
20615 First prepend dir_name (if non-NULL). If we still don't
20616 have an absolute path prepend comp_dir (if non-NULL).
20617 However, the directory we record in the include-file's
20618 psymtab does not contain COMP_DIR (to match the
20619 corresponding symtab(s)).
20624 bash$ gcc -g ./hello.c
20625 include_name = "hello.c"
20627 DW_AT_comp_dir = comp_dir = "/tmp"
20628 DW_AT_name = "./hello.c"
20632 if (dir_name != NULL)
20634 name_holder->reset (concat (dir_name, SLASH_STRING,
20635 include_name, (char *) NULL));
20636 include_name = name_holder->get ();
20637 include_name_to_compare = include_name;
20639 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20641 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20642 include_name, (char *) NULL));
20643 include_name_to_compare = hold_compare.get ();
20647 pst_filename = pst->filename;
20648 gdb::unique_xmalloc_ptr<char> copied_name;
20649 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20651 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20652 pst_filename, (char *) NULL));
20653 pst_filename = copied_name.get ();
20656 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20660 return include_name;
20663 /* State machine to track the state of the line number program. */
20665 class lnp_state_machine
20668 /* Initialize a machine state for the start of a line number
20670 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20671 bool record_lines_p);
20673 file_entry *current_file ()
20675 /* lh->file_names is 0-based, but the file name numbers in the
20676 statement program are 1-based. */
20677 return m_line_header->file_name_at (m_file);
20680 /* Record the line in the state machine. END_SEQUENCE is true if
20681 we're processing the end of a sequence. */
20682 void record_line (bool end_sequence);
20684 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20685 nop-out rest of the lines in this sequence. */
20686 void check_line_address (struct dwarf2_cu *cu,
20687 const gdb_byte *line_ptr,
20688 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20690 void handle_set_discriminator (unsigned int discriminator)
20692 m_discriminator = discriminator;
20693 m_line_has_non_zero_discriminator |= discriminator != 0;
20696 /* Handle DW_LNE_set_address. */
20697 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20700 address += baseaddr;
20701 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20704 /* Handle DW_LNS_advance_pc. */
20705 void handle_advance_pc (CORE_ADDR adjust);
20707 /* Handle a special opcode. */
20708 void handle_special_opcode (unsigned char op_code);
20710 /* Handle DW_LNS_advance_line. */
20711 void handle_advance_line (int line_delta)
20713 advance_line (line_delta);
20716 /* Handle DW_LNS_set_file. */
20717 void handle_set_file (file_name_index file);
20719 /* Handle DW_LNS_negate_stmt. */
20720 void handle_negate_stmt ()
20722 m_is_stmt = !m_is_stmt;
20725 /* Handle DW_LNS_const_add_pc. */
20726 void handle_const_add_pc ();
20728 /* Handle DW_LNS_fixed_advance_pc. */
20729 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20731 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20735 /* Handle DW_LNS_copy. */
20736 void handle_copy ()
20738 record_line (false);
20739 m_discriminator = 0;
20742 /* Handle DW_LNE_end_sequence. */
20743 void handle_end_sequence ()
20745 m_currently_recording_lines = true;
20749 /* Advance the line by LINE_DELTA. */
20750 void advance_line (int line_delta)
20752 m_line += line_delta;
20754 if (line_delta != 0)
20755 m_line_has_non_zero_discriminator = m_discriminator != 0;
20758 struct dwarf2_cu *m_cu;
20760 gdbarch *m_gdbarch;
20762 /* True if we're recording lines.
20763 Otherwise we're building partial symtabs and are just interested in
20764 finding include files mentioned by the line number program. */
20765 bool m_record_lines_p;
20767 /* The line number header. */
20768 line_header *m_line_header;
20770 /* These are part of the standard DWARF line number state machine,
20771 and initialized according to the DWARF spec. */
20773 unsigned char m_op_index = 0;
20774 /* The line table index (1-based) of the current file. */
20775 file_name_index m_file = (file_name_index) 1;
20776 unsigned int m_line = 1;
20778 /* These are initialized in the constructor. */
20780 CORE_ADDR m_address;
20782 unsigned int m_discriminator;
20784 /* Additional bits of state we need to track. */
20786 /* The last file that we called dwarf2_start_subfile for.
20787 This is only used for TLLs. */
20788 unsigned int m_last_file = 0;
20789 /* The last file a line number was recorded for. */
20790 struct subfile *m_last_subfile = NULL;
20792 /* When true, record the lines we decode. */
20793 bool m_currently_recording_lines = false;
20795 /* The last line number that was recorded, used to coalesce
20796 consecutive entries for the same line. This can happen, for
20797 example, when discriminators are present. PR 17276. */
20798 unsigned int m_last_line = 0;
20799 bool m_line_has_non_zero_discriminator = false;
20803 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20805 CORE_ADDR addr_adj = (((m_op_index + adjust)
20806 / m_line_header->maximum_ops_per_instruction)
20807 * m_line_header->minimum_instruction_length);
20808 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20809 m_op_index = ((m_op_index + adjust)
20810 % m_line_header->maximum_ops_per_instruction);
20814 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20816 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20817 CORE_ADDR addr_adj = (((m_op_index
20818 + (adj_opcode / m_line_header->line_range))
20819 / m_line_header->maximum_ops_per_instruction)
20820 * m_line_header->minimum_instruction_length);
20821 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20822 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20823 % m_line_header->maximum_ops_per_instruction);
20825 int line_delta = (m_line_header->line_base
20826 + (adj_opcode % m_line_header->line_range));
20827 advance_line (line_delta);
20828 record_line (false);
20829 m_discriminator = 0;
20833 lnp_state_machine::handle_set_file (file_name_index file)
20837 const file_entry *fe = current_file ();
20839 dwarf2_debug_line_missing_file_complaint ();
20840 else if (m_record_lines_p)
20842 const char *dir = fe->include_dir (m_line_header);
20844 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20845 m_line_has_non_zero_discriminator = m_discriminator != 0;
20846 dwarf2_start_subfile (m_cu, fe->name, dir);
20851 lnp_state_machine::handle_const_add_pc ()
20854 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20857 = (((m_op_index + adjust)
20858 / m_line_header->maximum_ops_per_instruction)
20859 * m_line_header->minimum_instruction_length);
20861 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20862 m_op_index = ((m_op_index + adjust)
20863 % m_line_header->maximum_ops_per_instruction);
20866 /* Return non-zero if we should add LINE to the line number table.
20867 LINE is the line to add, LAST_LINE is the last line that was added,
20868 LAST_SUBFILE is the subfile for LAST_LINE.
20869 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20870 had a non-zero discriminator.
20872 We have to be careful in the presence of discriminators.
20873 E.g., for this line:
20875 for (i = 0; i < 100000; i++);
20877 clang can emit four line number entries for that one line,
20878 each with a different discriminator.
20879 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20881 However, we want gdb to coalesce all four entries into one.
20882 Otherwise the user could stepi into the middle of the line and
20883 gdb would get confused about whether the pc really was in the
20884 middle of the line.
20886 Things are further complicated by the fact that two consecutive
20887 line number entries for the same line is a heuristic used by gcc
20888 to denote the end of the prologue. So we can't just discard duplicate
20889 entries, we have to be selective about it. The heuristic we use is
20890 that we only collapse consecutive entries for the same line if at least
20891 one of those entries has a non-zero discriminator. PR 17276.
20893 Note: Addresses in the line number state machine can never go backwards
20894 within one sequence, thus this coalescing is ok. */
20897 dwarf_record_line_p (struct dwarf2_cu *cu,
20898 unsigned int line, unsigned int last_line,
20899 int line_has_non_zero_discriminator,
20900 struct subfile *last_subfile)
20902 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20904 if (line != last_line)
20906 /* Same line for the same file that we've seen already.
20907 As a last check, for pr 17276, only record the line if the line
20908 has never had a non-zero discriminator. */
20909 if (!line_has_non_zero_discriminator)
20914 /* Use the CU's builder to record line number LINE beginning at
20915 address ADDRESS in the line table of subfile SUBFILE. */
20918 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20919 unsigned int line, CORE_ADDR address,
20920 struct dwarf2_cu *cu)
20922 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20924 if (dwarf_line_debug)
20926 fprintf_unfiltered (gdb_stdlog,
20927 "Recording line %u, file %s, address %s\n",
20928 line, lbasename (subfile->name),
20929 paddress (gdbarch, address));
20933 cu->get_builder ()->record_line (subfile, line, addr);
20936 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20937 Mark the end of a set of line number records.
20938 The arguments are the same as for dwarf_record_line_1.
20939 If SUBFILE is NULL the request is ignored. */
20942 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20943 CORE_ADDR address, struct dwarf2_cu *cu)
20945 if (subfile == NULL)
20948 if (dwarf_line_debug)
20950 fprintf_unfiltered (gdb_stdlog,
20951 "Finishing current line, file %s, address %s\n",
20952 lbasename (subfile->name),
20953 paddress (gdbarch, address));
20956 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20960 lnp_state_machine::record_line (bool end_sequence)
20962 if (dwarf_line_debug)
20964 fprintf_unfiltered (gdb_stdlog,
20965 "Processing actual line %u: file %u,"
20966 " address %s, is_stmt %u, discrim %u\n",
20967 m_line, to_underlying (m_file),
20968 paddress (m_gdbarch, m_address),
20969 m_is_stmt, m_discriminator);
20972 file_entry *fe = current_file ();
20975 dwarf2_debug_line_missing_file_complaint ();
20976 /* For now we ignore lines not starting on an instruction boundary.
20977 But not when processing end_sequence for compatibility with the
20978 previous version of the code. */
20979 else if (m_op_index == 0 || end_sequence)
20981 fe->included_p = 1;
20982 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20984 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20987 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20988 m_currently_recording_lines ? m_cu : nullptr);
20993 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20994 m_line_has_non_zero_discriminator,
20997 buildsym_compunit *builder = m_cu->get_builder ();
20998 dwarf_record_line_1 (m_gdbarch,
20999 builder->get_current_subfile (),
21001 m_currently_recording_lines ? m_cu : nullptr);
21003 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21004 m_last_line = m_line;
21010 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21011 line_header *lh, bool record_lines_p)
21015 m_record_lines_p = record_lines_p;
21016 m_line_header = lh;
21018 m_currently_recording_lines = true;
21020 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21021 was a line entry for it so that the backend has a chance to adjust it
21022 and also record it in case it needs it. This is currently used by MIPS
21023 code, cf. `mips_adjust_dwarf2_line'. */
21024 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21025 m_is_stmt = lh->default_is_stmt;
21026 m_discriminator = 0;
21030 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21031 const gdb_byte *line_ptr,
21032 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21034 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21035 the pc range of the CU. However, we restrict the test to only ADDRESS
21036 values of zero to preserve GDB's previous behaviour which is to handle
21037 the specific case of a function being GC'd by the linker. */
21039 if (address == 0 && address < unrelocated_lowpc)
21041 /* This line table is for a function which has been
21042 GCd by the linker. Ignore it. PR gdb/12528 */
21044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21045 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21047 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21048 line_offset, objfile_name (objfile));
21049 m_currently_recording_lines = false;
21050 /* Note: m_currently_recording_lines is left as false until we see
21051 DW_LNE_end_sequence. */
21055 /* Subroutine of dwarf_decode_lines to simplify it.
21056 Process the line number information in LH.
21057 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21058 program in order to set included_p for every referenced header. */
21061 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21062 const int decode_for_pst_p, CORE_ADDR lowpc)
21064 const gdb_byte *line_ptr, *extended_end;
21065 const gdb_byte *line_end;
21066 unsigned int bytes_read, extended_len;
21067 unsigned char op_code, extended_op;
21068 CORE_ADDR baseaddr;
21069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21070 bfd *abfd = objfile->obfd;
21071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21072 /* True if we're recording line info (as opposed to building partial
21073 symtabs and just interested in finding include files mentioned by
21074 the line number program). */
21075 bool record_lines_p = !decode_for_pst_p;
21077 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21079 line_ptr = lh->statement_program_start;
21080 line_end = lh->statement_program_end;
21082 /* Read the statement sequences until there's nothing left. */
21083 while (line_ptr < line_end)
21085 /* The DWARF line number program state machine. Reset the state
21086 machine at the start of each sequence. */
21087 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21088 bool end_sequence = false;
21090 if (record_lines_p)
21092 /* Start a subfile for the current file of the state
21094 const file_entry *fe = state_machine.current_file ();
21097 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21100 /* Decode the table. */
21101 while (line_ptr < line_end && !end_sequence)
21103 op_code = read_1_byte (abfd, line_ptr);
21106 if (op_code >= lh->opcode_base)
21108 /* Special opcode. */
21109 state_machine.handle_special_opcode (op_code);
21111 else switch (op_code)
21113 case DW_LNS_extended_op:
21114 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21116 line_ptr += bytes_read;
21117 extended_end = line_ptr + extended_len;
21118 extended_op = read_1_byte (abfd, line_ptr);
21120 switch (extended_op)
21122 case DW_LNE_end_sequence:
21123 state_machine.handle_end_sequence ();
21124 end_sequence = true;
21126 case DW_LNE_set_address:
21129 = read_address (abfd, line_ptr, cu, &bytes_read);
21130 line_ptr += bytes_read;
21132 state_machine.check_line_address (cu, line_ptr,
21133 lowpc - baseaddr, address);
21134 state_machine.handle_set_address (baseaddr, address);
21137 case DW_LNE_define_file:
21139 const char *cur_file;
21140 unsigned int mod_time, length;
21143 cur_file = read_direct_string (abfd, line_ptr,
21145 line_ptr += bytes_read;
21146 dindex = (dir_index)
21147 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21148 line_ptr += bytes_read;
21150 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21151 line_ptr += bytes_read;
21153 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21154 line_ptr += bytes_read;
21155 lh->add_file_name (cur_file, dindex, mod_time, length);
21158 case DW_LNE_set_discriminator:
21160 /* The discriminator is not interesting to the
21161 debugger; just ignore it. We still need to
21162 check its value though:
21163 if there are consecutive entries for the same
21164 (non-prologue) line we want to coalesce them.
21167 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21168 line_ptr += bytes_read;
21170 state_machine.handle_set_discriminator (discr);
21174 complaint (_("mangled .debug_line section"));
21177 /* Make sure that we parsed the extended op correctly. If e.g.
21178 we expected a different address size than the producer used,
21179 we may have read the wrong number of bytes. */
21180 if (line_ptr != extended_end)
21182 complaint (_("mangled .debug_line section"));
21187 state_machine.handle_copy ();
21189 case DW_LNS_advance_pc:
21192 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21193 line_ptr += bytes_read;
21195 state_machine.handle_advance_pc (adjust);
21198 case DW_LNS_advance_line:
21201 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21202 line_ptr += bytes_read;
21204 state_machine.handle_advance_line (line_delta);
21207 case DW_LNS_set_file:
21209 file_name_index file
21210 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21212 line_ptr += bytes_read;
21214 state_machine.handle_set_file (file);
21217 case DW_LNS_set_column:
21218 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21219 line_ptr += bytes_read;
21221 case DW_LNS_negate_stmt:
21222 state_machine.handle_negate_stmt ();
21224 case DW_LNS_set_basic_block:
21226 /* Add to the address register of the state machine the
21227 address increment value corresponding to special opcode
21228 255. I.e., this value is scaled by the minimum
21229 instruction length since special opcode 255 would have
21230 scaled the increment. */
21231 case DW_LNS_const_add_pc:
21232 state_machine.handle_const_add_pc ();
21234 case DW_LNS_fixed_advance_pc:
21236 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21239 state_machine.handle_fixed_advance_pc (addr_adj);
21244 /* Unknown standard opcode, ignore it. */
21247 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21249 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21250 line_ptr += bytes_read;
21257 dwarf2_debug_line_missing_end_sequence_complaint ();
21259 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21260 in which case we still finish recording the last line). */
21261 state_machine.record_line (true);
21265 /* Decode the Line Number Program (LNP) for the given line_header
21266 structure and CU. The actual information extracted and the type
21267 of structures created from the LNP depends on the value of PST.
21269 1. If PST is NULL, then this procedure uses the data from the program
21270 to create all necessary symbol tables, and their linetables.
21272 2. If PST is not NULL, this procedure reads the program to determine
21273 the list of files included by the unit represented by PST, and
21274 builds all the associated partial symbol tables.
21276 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21277 It is used for relative paths in the line table.
21278 NOTE: When processing partial symtabs (pst != NULL),
21279 comp_dir == pst->dirname.
21281 NOTE: It is important that psymtabs have the same file name (via strcmp)
21282 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21283 symtab we don't use it in the name of the psymtabs we create.
21284 E.g. expand_line_sal requires this when finding psymtabs to expand.
21285 A good testcase for this is mb-inline.exp.
21287 LOWPC is the lowest address in CU (or 0 if not known).
21289 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21290 for its PC<->lines mapping information. Otherwise only the filename
21291 table is read in. */
21294 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21295 struct dwarf2_cu *cu, struct partial_symtab *pst,
21296 CORE_ADDR lowpc, int decode_mapping)
21298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21299 const int decode_for_pst_p = (pst != NULL);
21301 if (decode_mapping)
21302 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21304 if (decode_for_pst_p)
21308 /* Now that we're done scanning the Line Header Program, we can
21309 create the psymtab of each included file. */
21310 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21311 if (lh->file_names[file_index].included_p == 1)
21313 gdb::unique_xmalloc_ptr<char> name_holder;
21314 const char *include_name =
21315 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21317 if (include_name != NULL)
21318 dwarf2_create_include_psymtab (include_name, pst, objfile);
21323 /* Make sure a symtab is created for every file, even files
21324 which contain only variables (i.e. no code with associated
21326 buildsym_compunit *builder = cu->get_builder ();
21327 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21330 for (i = 0; i < lh->file_names.size (); i++)
21332 file_entry &fe = lh->file_names[i];
21334 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21336 if (builder->get_current_subfile ()->symtab == NULL)
21338 builder->get_current_subfile ()->symtab
21339 = allocate_symtab (cust,
21340 builder->get_current_subfile ()->name);
21342 fe.symtab = builder->get_current_subfile ()->symtab;
21347 /* Start a subfile for DWARF. FILENAME is the name of the file and
21348 DIRNAME the name of the source directory which contains FILENAME
21349 or NULL if not known.
21350 This routine tries to keep line numbers from identical absolute and
21351 relative file names in a common subfile.
21353 Using the `list' example from the GDB testsuite, which resides in
21354 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21355 of /srcdir/list0.c yields the following debugging information for list0.c:
21357 DW_AT_name: /srcdir/list0.c
21358 DW_AT_comp_dir: /compdir
21359 files.files[0].name: list0.h
21360 files.files[0].dir: /srcdir
21361 files.files[1].name: list0.c
21362 files.files[1].dir: /srcdir
21364 The line number information for list0.c has to end up in a single
21365 subfile, so that `break /srcdir/list0.c:1' works as expected.
21366 start_subfile will ensure that this happens provided that we pass the
21367 concatenation of files.files[1].dir and files.files[1].name as the
21371 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21372 const char *dirname)
21376 /* In order not to lose the line information directory,
21377 we concatenate it to the filename when it makes sense.
21378 Note that the Dwarf3 standard says (speaking of filenames in line
21379 information): ``The directory index is ignored for file names
21380 that represent full path names''. Thus ignoring dirname in the
21381 `else' branch below isn't an issue. */
21383 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21385 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21389 cu->get_builder ()->start_subfile (filename);
21395 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21396 buildsym_compunit constructor. */
21398 struct compunit_symtab *
21399 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21402 gdb_assert (m_builder == nullptr);
21404 m_builder.reset (new struct buildsym_compunit
21405 (per_cu->dwarf2_per_objfile->objfile,
21406 name, comp_dir, language, low_pc));
21408 list_in_scope = get_builder ()->get_file_symbols ();
21410 get_builder ()->record_debugformat ("DWARF 2");
21411 get_builder ()->record_producer (producer);
21413 processing_has_namespace_info = false;
21415 return get_builder ()->get_compunit_symtab ();
21419 var_decode_location (struct attribute *attr, struct symbol *sym,
21420 struct dwarf2_cu *cu)
21422 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21423 struct comp_unit_head *cu_header = &cu->header;
21425 /* NOTE drow/2003-01-30: There used to be a comment and some special
21426 code here to turn a symbol with DW_AT_external and a
21427 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21428 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21429 with some versions of binutils) where shared libraries could have
21430 relocations against symbols in their debug information - the
21431 minimal symbol would have the right address, but the debug info
21432 would not. It's no longer necessary, because we will explicitly
21433 apply relocations when we read in the debug information now. */
21435 /* A DW_AT_location attribute with no contents indicates that a
21436 variable has been optimized away. */
21437 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21439 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21443 /* Handle one degenerate form of location expression specially, to
21444 preserve GDB's previous behavior when section offsets are
21445 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21446 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21448 if (attr_form_is_block (attr)
21449 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21450 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21451 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21452 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21453 && (DW_BLOCK (attr)->size
21454 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21456 unsigned int dummy;
21458 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21459 SYMBOL_VALUE_ADDRESS (sym) =
21460 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21462 SYMBOL_VALUE_ADDRESS (sym) =
21463 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21464 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21465 fixup_symbol_section (sym, objfile);
21466 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21467 SYMBOL_SECTION (sym));
21471 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21472 expression evaluator, and use LOC_COMPUTED only when necessary
21473 (i.e. when the value of a register or memory location is
21474 referenced, or a thread-local block, etc.). Then again, it might
21475 not be worthwhile. I'm assuming that it isn't unless performance
21476 or memory numbers show me otherwise. */
21478 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21480 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21481 cu->has_loclist = true;
21484 /* Given a pointer to a DWARF information entry, figure out if we need
21485 to make a symbol table entry for it, and if so, create a new entry
21486 and return a pointer to it.
21487 If TYPE is NULL, determine symbol type from the die, otherwise
21488 used the passed type.
21489 If SPACE is not NULL, use it to hold the new symbol. If it is
21490 NULL, allocate a new symbol on the objfile's obstack. */
21492 static struct symbol *
21493 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21494 struct symbol *space)
21496 struct dwarf2_per_objfile *dwarf2_per_objfile
21497 = cu->per_cu->dwarf2_per_objfile;
21498 struct objfile *objfile = dwarf2_per_objfile->objfile;
21499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21500 struct symbol *sym = NULL;
21502 struct attribute *attr = NULL;
21503 struct attribute *attr2 = NULL;
21504 CORE_ADDR baseaddr;
21505 struct pending **list_to_add = NULL;
21507 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21509 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21511 name = dwarf2_name (die, cu);
21514 const char *linkagename;
21515 int suppress_add = 0;
21520 sym = allocate_symbol (objfile);
21521 OBJSTAT (objfile, n_syms++);
21523 /* Cache this symbol's name and the name's demangled form (if any). */
21524 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21525 linkagename = dwarf2_physname (name, die, cu);
21526 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21528 /* Fortran does not have mangling standard and the mangling does differ
21529 between gfortran, iFort etc. */
21530 if (cu->language == language_fortran
21531 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21532 symbol_set_demangled_name (&(sym->ginfo),
21533 dwarf2_full_name (name, die, cu),
21536 /* Default assumptions.
21537 Use the passed type or decode it from the die. */
21538 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21539 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21541 SYMBOL_TYPE (sym) = type;
21543 SYMBOL_TYPE (sym) = die_type (die, cu);
21544 attr = dwarf2_attr (die,
21545 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21549 SYMBOL_LINE (sym) = DW_UNSND (attr);
21552 attr = dwarf2_attr (die,
21553 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21557 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21558 struct file_entry *fe;
21560 if (cu->line_header != NULL)
21561 fe = cu->line_header->file_name_at (file_index);
21566 complaint (_("file index out of range"));
21568 symbol_set_symtab (sym, fe->symtab);
21574 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21579 addr = attr_value_as_address (attr);
21580 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21581 SYMBOL_VALUE_ADDRESS (sym) = addr;
21583 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21584 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21585 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21586 add_symbol_to_list (sym, cu->list_in_scope);
21588 case DW_TAG_subprogram:
21589 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21591 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21592 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21593 if ((attr2 && (DW_UNSND (attr2) != 0))
21594 || cu->language == language_ada)
21596 /* Subprograms marked external are stored as a global symbol.
21597 Ada subprograms, whether marked external or not, are always
21598 stored as a global symbol, because we want to be able to
21599 access them globally. For instance, we want to be able
21600 to break on a nested subprogram without having to
21601 specify the context. */
21602 list_to_add = cu->get_builder ()->get_global_symbols ();
21606 list_to_add = cu->list_in_scope;
21609 case DW_TAG_inlined_subroutine:
21610 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21612 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21613 SYMBOL_INLINED (sym) = 1;
21614 list_to_add = cu->list_in_scope;
21616 case DW_TAG_template_value_param:
21618 /* Fall through. */
21619 case DW_TAG_constant:
21620 case DW_TAG_variable:
21621 case DW_TAG_member:
21622 /* Compilation with minimal debug info may result in
21623 variables with missing type entries. Change the
21624 misleading `void' type to something sensible. */
21625 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21626 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21628 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21629 /* In the case of DW_TAG_member, we should only be called for
21630 static const members. */
21631 if (die->tag == DW_TAG_member)
21633 /* dwarf2_add_field uses die_is_declaration,
21634 so we do the same. */
21635 gdb_assert (die_is_declaration (die, cu));
21640 dwarf2_const_value (attr, sym, cu);
21641 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21644 if (attr2 && (DW_UNSND (attr2) != 0))
21645 list_to_add = cu->get_builder ()->get_global_symbols ();
21647 list_to_add = cu->list_in_scope;
21651 attr = dwarf2_attr (die, DW_AT_location, cu);
21654 var_decode_location (attr, sym, cu);
21655 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21657 /* Fortran explicitly imports any global symbols to the local
21658 scope by DW_TAG_common_block. */
21659 if (cu->language == language_fortran && die->parent
21660 && die->parent->tag == DW_TAG_common_block)
21663 if (SYMBOL_CLASS (sym) == LOC_STATIC
21664 && SYMBOL_VALUE_ADDRESS (sym) == 0
21665 && !dwarf2_per_objfile->has_section_at_zero)
21667 /* When a static variable is eliminated by the linker,
21668 the corresponding debug information is not stripped
21669 out, but the variable address is set to null;
21670 do not add such variables into symbol table. */
21672 else if (attr2 && (DW_UNSND (attr2) != 0))
21674 /* Workaround gfortran PR debug/40040 - it uses
21675 DW_AT_location for variables in -fPIC libraries which may
21676 get overriden by other libraries/executable and get
21677 a different address. Resolve it by the minimal symbol
21678 which may come from inferior's executable using copy
21679 relocation. Make this workaround only for gfortran as for
21680 other compilers GDB cannot guess the minimal symbol
21681 Fortran mangling kind. */
21682 if (cu->language == language_fortran && die->parent
21683 && die->parent->tag == DW_TAG_module
21685 && startswith (cu->producer, "GNU Fortran"))
21686 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21688 /* A variable with DW_AT_external is never static,
21689 but it may be block-scoped. */
21691 = ((cu->list_in_scope
21692 == cu->get_builder ()->get_file_symbols ())
21693 ? cu->get_builder ()->get_global_symbols ()
21694 : cu->list_in_scope);
21697 list_to_add = cu->list_in_scope;
21701 /* We do not know the address of this symbol.
21702 If it is an external symbol and we have type information
21703 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21704 The address of the variable will then be determined from
21705 the minimal symbol table whenever the variable is
21707 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21709 /* Fortran explicitly imports any global symbols to the local
21710 scope by DW_TAG_common_block. */
21711 if (cu->language == language_fortran && die->parent
21712 && die->parent->tag == DW_TAG_common_block)
21714 /* SYMBOL_CLASS doesn't matter here because
21715 read_common_block is going to reset it. */
21717 list_to_add = cu->list_in_scope;
21719 else if (attr2 && (DW_UNSND (attr2) != 0)
21720 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21722 /* A variable with DW_AT_external is never static, but it
21723 may be block-scoped. */
21725 = ((cu->list_in_scope
21726 == cu->get_builder ()->get_file_symbols ())
21727 ? cu->get_builder ()->get_global_symbols ()
21728 : cu->list_in_scope);
21730 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21732 else if (!die_is_declaration (die, cu))
21734 /* Use the default LOC_OPTIMIZED_OUT class. */
21735 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21737 list_to_add = cu->list_in_scope;
21741 case DW_TAG_formal_parameter:
21743 /* If we are inside a function, mark this as an argument. If
21744 not, we might be looking at an argument to an inlined function
21745 when we do not have enough information to show inlined frames;
21746 pretend it's a local variable in that case so that the user can
21748 struct context_stack *curr
21749 = cu->get_builder ()->get_current_context_stack ();
21750 if (curr != nullptr && curr->name != nullptr)
21751 SYMBOL_IS_ARGUMENT (sym) = 1;
21752 attr = dwarf2_attr (die, DW_AT_location, cu);
21755 var_decode_location (attr, sym, cu);
21757 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21760 dwarf2_const_value (attr, sym, cu);
21763 list_to_add = cu->list_in_scope;
21766 case DW_TAG_unspecified_parameters:
21767 /* From varargs functions; gdb doesn't seem to have any
21768 interest in this information, so just ignore it for now.
21771 case DW_TAG_template_type_param:
21773 /* Fall through. */
21774 case DW_TAG_class_type:
21775 case DW_TAG_interface_type:
21776 case DW_TAG_structure_type:
21777 case DW_TAG_union_type:
21778 case DW_TAG_set_type:
21779 case DW_TAG_enumeration_type:
21780 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21781 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21784 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21785 really ever be static objects: otherwise, if you try
21786 to, say, break of a class's method and you're in a file
21787 which doesn't mention that class, it won't work unless
21788 the check for all static symbols in lookup_symbol_aux
21789 saves you. See the OtherFileClass tests in
21790 gdb.c++/namespace.exp. */
21794 buildsym_compunit *builder = cu->get_builder ();
21796 = (cu->list_in_scope == builder->get_file_symbols ()
21797 && cu->language == language_cplus
21798 ? builder->get_global_symbols ()
21799 : cu->list_in_scope);
21801 /* The semantics of C++ state that "struct foo {
21802 ... }" also defines a typedef for "foo". */
21803 if (cu->language == language_cplus
21804 || cu->language == language_ada
21805 || cu->language == language_d
21806 || cu->language == language_rust)
21808 /* The symbol's name is already allocated along
21809 with this objfile, so we don't need to
21810 duplicate it for the type. */
21811 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21812 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21817 case DW_TAG_typedef:
21818 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21819 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21820 list_to_add = cu->list_in_scope;
21822 case DW_TAG_base_type:
21823 case DW_TAG_subrange_type:
21824 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21825 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21826 list_to_add = cu->list_in_scope;
21828 case DW_TAG_enumerator:
21829 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21832 dwarf2_const_value (attr, sym, cu);
21835 /* NOTE: carlton/2003-11-10: See comment above in the
21836 DW_TAG_class_type, etc. block. */
21839 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21840 && cu->language == language_cplus
21841 ? cu->get_builder ()->get_global_symbols ()
21842 : cu->list_in_scope);
21845 case DW_TAG_imported_declaration:
21846 case DW_TAG_namespace:
21847 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21848 list_to_add = cu->get_builder ()->get_global_symbols ();
21850 case DW_TAG_module:
21851 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21852 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21853 list_to_add = cu->get_builder ()->get_global_symbols ();
21855 case DW_TAG_common_block:
21856 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21857 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21858 add_symbol_to_list (sym, cu->list_in_scope);
21861 /* Not a tag we recognize. Hopefully we aren't processing
21862 trash data, but since we must specifically ignore things
21863 we don't recognize, there is nothing else we should do at
21865 complaint (_("unsupported tag: '%s'"),
21866 dwarf_tag_name (die->tag));
21872 sym->hash_next = objfile->template_symbols;
21873 objfile->template_symbols = sym;
21874 list_to_add = NULL;
21877 if (list_to_add != NULL)
21878 add_symbol_to_list (sym, list_to_add);
21880 /* For the benefit of old versions of GCC, check for anonymous
21881 namespaces based on the demangled name. */
21882 if (!cu->processing_has_namespace_info
21883 && cu->language == language_cplus)
21884 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21889 /* Given an attr with a DW_FORM_dataN value in host byte order,
21890 zero-extend it as appropriate for the symbol's type. The DWARF
21891 standard (v4) is not entirely clear about the meaning of using
21892 DW_FORM_dataN for a constant with a signed type, where the type is
21893 wider than the data. The conclusion of a discussion on the DWARF
21894 list was that this is unspecified. We choose to always zero-extend
21895 because that is the interpretation long in use by GCC. */
21898 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21899 struct dwarf2_cu *cu, LONGEST *value, int bits)
21901 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21902 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21903 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21904 LONGEST l = DW_UNSND (attr);
21906 if (bits < sizeof (*value) * 8)
21908 l &= ((LONGEST) 1 << bits) - 1;
21911 else if (bits == sizeof (*value) * 8)
21915 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21916 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21923 /* Read a constant value from an attribute. Either set *VALUE, or if
21924 the value does not fit in *VALUE, set *BYTES - either already
21925 allocated on the objfile obstack, or newly allocated on OBSTACK,
21926 or, set *BATON, if we translated the constant to a location
21930 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21931 const char *name, struct obstack *obstack,
21932 struct dwarf2_cu *cu,
21933 LONGEST *value, const gdb_byte **bytes,
21934 struct dwarf2_locexpr_baton **baton)
21936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21937 struct comp_unit_head *cu_header = &cu->header;
21938 struct dwarf_block *blk;
21939 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21940 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21946 switch (attr->form)
21949 case DW_FORM_addrx:
21950 case DW_FORM_GNU_addr_index:
21954 if (TYPE_LENGTH (type) != cu_header->addr_size)
21955 dwarf2_const_value_length_mismatch_complaint (name,
21956 cu_header->addr_size,
21957 TYPE_LENGTH (type));
21958 /* Symbols of this form are reasonably rare, so we just
21959 piggyback on the existing location code rather than writing
21960 a new implementation of symbol_computed_ops. */
21961 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21962 (*baton)->per_cu = cu->per_cu;
21963 gdb_assert ((*baton)->per_cu);
21965 (*baton)->size = 2 + cu_header->addr_size;
21966 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21967 (*baton)->data = data;
21969 data[0] = DW_OP_addr;
21970 store_unsigned_integer (&data[1], cu_header->addr_size,
21971 byte_order, DW_ADDR (attr));
21972 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21975 case DW_FORM_string:
21978 case DW_FORM_GNU_str_index:
21979 case DW_FORM_GNU_strp_alt:
21980 /* DW_STRING is already allocated on the objfile obstack, point
21982 *bytes = (const gdb_byte *) DW_STRING (attr);
21984 case DW_FORM_block1:
21985 case DW_FORM_block2:
21986 case DW_FORM_block4:
21987 case DW_FORM_block:
21988 case DW_FORM_exprloc:
21989 case DW_FORM_data16:
21990 blk = DW_BLOCK (attr);
21991 if (TYPE_LENGTH (type) != blk->size)
21992 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21993 TYPE_LENGTH (type));
21994 *bytes = blk->data;
21997 /* The DW_AT_const_value attributes are supposed to carry the
21998 symbol's value "represented as it would be on the target
21999 architecture." By the time we get here, it's already been
22000 converted to host endianness, so we just need to sign- or
22001 zero-extend it as appropriate. */
22002 case DW_FORM_data1:
22003 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22005 case DW_FORM_data2:
22006 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22008 case DW_FORM_data4:
22009 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22011 case DW_FORM_data8:
22012 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22015 case DW_FORM_sdata:
22016 case DW_FORM_implicit_const:
22017 *value = DW_SND (attr);
22020 case DW_FORM_udata:
22021 *value = DW_UNSND (attr);
22025 complaint (_("unsupported const value attribute form: '%s'"),
22026 dwarf_form_name (attr->form));
22033 /* Copy constant value from an attribute to a symbol. */
22036 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22037 struct dwarf2_cu *cu)
22039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22041 const gdb_byte *bytes;
22042 struct dwarf2_locexpr_baton *baton;
22044 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22045 SYMBOL_PRINT_NAME (sym),
22046 &objfile->objfile_obstack, cu,
22047 &value, &bytes, &baton);
22051 SYMBOL_LOCATION_BATON (sym) = baton;
22052 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22054 else if (bytes != NULL)
22056 SYMBOL_VALUE_BYTES (sym) = bytes;
22057 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22061 SYMBOL_VALUE (sym) = value;
22062 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22066 /* Return the type of the die in question using its DW_AT_type attribute. */
22068 static struct type *
22069 die_type (struct die_info *die, struct dwarf2_cu *cu)
22071 struct attribute *type_attr;
22073 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22076 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22077 /* A missing DW_AT_type represents a void type. */
22078 return objfile_type (objfile)->builtin_void;
22081 return lookup_die_type (die, type_attr, cu);
22084 /* True iff CU's producer generates GNAT Ada auxiliary information
22085 that allows to find parallel types through that information instead
22086 of having to do expensive parallel lookups by type name. */
22089 need_gnat_info (struct dwarf2_cu *cu)
22091 /* Assume that the Ada compiler was GNAT, which always produces
22092 the auxiliary information. */
22093 return (cu->language == language_ada);
22096 /* Return the auxiliary type of the die in question using its
22097 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22098 attribute is not present. */
22100 static struct type *
22101 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22103 struct attribute *type_attr;
22105 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22109 return lookup_die_type (die, type_attr, cu);
22112 /* If DIE has a descriptive_type attribute, then set the TYPE's
22113 descriptive type accordingly. */
22116 set_descriptive_type (struct type *type, struct die_info *die,
22117 struct dwarf2_cu *cu)
22119 struct type *descriptive_type = die_descriptive_type (die, cu);
22121 if (descriptive_type)
22123 ALLOCATE_GNAT_AUX_TYPE (type);
22124 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22128 /* Return the containing type of the die in question using its
22129 DW_AT_containing_type attribute. */
22131 static struct type *
22132 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22134 struct attribute *type_attr;
22135 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22137 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22139 error (_("Dwarf Error: Problem turning containing type into gdb type "
22140 "[in module %s]"), objfile_name (objfile));
22142 return lookup_die_type (die, type_attr, cu);
22145 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22147 static struct type *
22148 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22150 struct dwarf2_per_objfile *dwarf2_per_objfile
22151 = cu->per_cu->dwarf2_per_objfile;
22152 struct objfile *objfile = dwarf2_per_objfile->objfile;
22155 std::string message
22156 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22157 objfile_name (objfile),
22158 sect_offset_str (cu->header.sect_off),
22159 sect_offset_str (die->sect_off));
22160 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22161 message.c_str (), message.length ());
22163 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22166 /* Look up the type of DIE in CU using its type attribute ATTR.
22167 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22168 DW_AT_containing_type.
22169 If there is no type substitute an error marker. */
22171 static struct type *
22172 lookup_die_type (struct die_info *die, const struct attribute *attr,
22173 struct dwarf2_cu *cu)
22175 struct dwarf2_per_objfile *dwarf2_per_objfile
22176 = cu->per_cu->dwarf2_per_objfile;
22177 struct objfile *objfile = dwarf2_per_objfile->objfile;
22178 struct type *this_type;
22180 gdb_assert (attr->name == DW_AT_type
22181 || attr->name == DW_AT_GNAT_descriptive_type
22182 || attr->name == DW_AT_containing_type);
22184 /* First see if we have it cached. */
22186 if (attr->form == DW_FORM_GNU_ref_alt)
22188 struct dwarf2_per_cu_data *per_cu;
22189 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22191 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22192 dwarf2_per_objfile);
22193 this_type = get_die_type_at_offset (sect_off, per_cu);
22195 else if (attr_form_is_ref (attr))
22197 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22199 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22201 else if (attr->form == DW_FORM_ref_sig8)
22203 ULONGEST signature = DW_SIGNATURE (attr);
22205 return get_signatured_type (die, signature, cu);
22209 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22210 " at %s [in module %s]"),
22211 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22212 objfile_name (objfile));
22213 return build_error_marker_type (cu, die);
22216 /* If not cached we need to read it in. */
22218 if (this_type == NULL)
22220 struct die_info *type_die = NULL;
22221 struct dwarf2_cu *type_cu = cu;
22223 if (attr_form_is_ref (attr))
22224 type_die = follow_die_ref (die, attr, &type_cu);
22225 if (type_die == NULL)
22226 return build_error_marker_type (cu, die);
22227 /* If we find the type now, it's probably because the type came
22228 from an inter-CU reference and the type's CU got expanded before
22230 this_type = read_type_die (type_die, type_cu);
22233 /* If we still don't have a type use an error marker. */
22235 if (this_type == NULL)
22236 return build_error_marker_type (cu, die);
22241 /* Return the type in DIE, CU.
22242 Returns NULL for invalid types.
22244 This first does a lookup in die_type_hash,
22245 and only reads the die in if necessary.
22247 NOTE: This can be called when reading in partial or full symbols. */
22249 static struct type *
22250 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22252 struct type *this_type;
22254 this_type = get_die_type (die, cu);
22258 return read_type_die_1 (die, cu);
22261 /* Read the type in DIE, CU.
22262 Returns NULL for invalid types. */
22264 static struct type *
22265 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22267 struct type *this_type = NULL;
22271 case DW_TAG_class_type:
22272 case DW_TAG_interface_type:
22273 case DW_TAG_structure_type:
22274 case DW_TAG_union_type:
22275 this_type = read_structure_type (die, cu);
22277 case DW_TAG_enumeration_type:
22278 this_type = read_enumeration_type (die, cu);
22280 case DW_TAG_subprogram:
22281 case DW_TAG_subroutine_type:
22282 case DW_TAG_inlined_subroutine:
22283 this_type = read_subroutine_type (die, cu);
22285 case DW_TAG_array_type:
22286 this_type = read_array_type (die, cu);
22288 case DW_TAG_set_type:
22289 this_type = read_set_type (die, cu);
22291 case DW_TAG_pointer_type:
22292 this_type = read_tag_pointer_type (die, cu);
22294 case DW_TAG_ptr_to_member_type:
22295 this_type = read_tag_ptr_to_member_type (die, cu);
22297 case DW_TAG_reference_type:
22298 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22300 case DW_TAG_rvalue_reference_type:
22301 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22303 case DW_TAG_const_type:
22304 this_type = read_tag_const_type (die, cu);
22306 case DW_TAG_volatile_type:
22307 this_type = read_tag_volatile_type (die, cu);
22309 case DW_TAG_restrict_type:
22310 this_type = read_tag_restrict_type (die, cu);
22312 case DW_TAG_string_type:
22313 this_type = read_tag_string_type (die, cu);
22315 case DW_TAG_typedef:
22316 this_type = read_typedef (die, cu);
22318 case DW_TAG_subrange_type:
22319 this_type = read_subrange_type (die, cu);
22321 case DW_TAG_base_type:
22322 this_type = read_base_type (die, cu);
22324 case DW_TAG_unspecified_type:
22325 this_type = read_unspecified_type (die, cu);
22327 case DW_TAG_namespace:
22328 this_type = read_namespace_type (die, cu);
22330 case DW_TAG_module:
22331 this_type = read_module_type (die, cu);
22333 case DW_TAG_atomic_type:
22334 this_type = read_tag_atomic_type (die, cu);
22337 complaint (_("unexpected tag in read_type_die: '%s'"),
22338 dwarf_tag_name (die->tag));
22345 /* See if we can figure out if the class lives in a namespace. We do
22346 this by looking for a member function; its demangled name will
22347 contain namespace info, if there is any.
22348 Return the computed name or NULL.
22349 Space for the result is allocated on the objfile's obstack.
22350 This is the full-die version of guess_partial_die_structure_name.
22351 In this case we know DIE has no useful parent. */
22354 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22356 struct die_info *spec_die;
22357 struct dwarf2_cu *spec_cu;
22358 struct die_info *child;
22359 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22362 spec_die = die_specification (die, &spec_cu);
22363 if (spec_die != NULL)
22369 for (child = die->child;
22371 child = child->sibling)
22373 if (child->tag == DW_TAG_subprogram)
22375 const char *linkage_name = dw2_linkage_name (child, cu);
22377 if (linkage_name != NULL)
22380 = language_class_name_from_physname (cu->language_defn,
22384 if (actual_name != NULL)
22386 const char *die_name = dwarf2_name (die, cu);
22388 if (die_name != NULL
22389 && strcmp (die_name, actual_name) != 0)
22391 /* Strip off the class name from the full name.
22392 We want the prefix. */
22393 int die_name_len = strlen (die_name);
22394 int actual_name_len = strlen (actual_name);
22396 /* Test for '::' as a sanity check. */
22397 if (actual_name_len > die_name_len + 2
22398 && actual_name[actual_name_len
22399 - die_name_len - 1] == ':')
22400 name = (char *) obstack_copy0 (
22401 &objfile->per_bfd->storage_obstack,
22402 actual_name, actual_name_len - die_name_len - 2);
22405 xfree (actual_name);
22414 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22415 prefix part in such case. See
22416 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22418 static const char *
22419 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22421 struct attribute *attr;
22424 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22425 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22428 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22431 attr = dw2_linkage_name_attr (die, cu);
22432 if (attr == NULL || DW_STRING (attr) == NULL)
22435 /* dwarf2_name had to be already called. */
22436 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22438 /* Strip the base name, keep any leading namespaces/classes. */
22439 base = strrchr (DW_STRING (attr), ':');
22440 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22443 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22444 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22446 &base[-1] - DW_STRING (attr));
22449 /* Return the name of the namespace/class that DIE is defined within,
22450 or "" if we can't tell. The caller should not xfree the result.
22452 For example, if we're within the method foo() in the following
22462 then determine_prefix on foo's die will return "N::C". */
22464 static const char *
22465 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22467 struct dwarf2_per_objfile *dwarf2_per_objfile
22468 = cu->per_cu->dwarf2_per_objfile;
22469 struct die_info *parent, *spec_die;
22470 struct dwarf2_cu *spec_cu;
22471 struct type *parent_type;
22472 const char *retval;
22474 if (cu->language != language_cplus
22475 && cu->language != language_fortran && cu->language != language_d
22476 && cu->language != language_rust)
22479 retval = anonymous_struct_prefix (die, cu);
22483 /* We have to be careful in the presence of DW_AT_specification.
22484 For example, with GCC 3.4, given the code
22488 // Definition of N::foo.
22492 then we'll have a tree of DIEs like this:
22494 1: DW_TAG_compile_unit
22495 2: DW_TAG_namespace // N
22496 3: DW_TAG_subprogram // declaration of N::foo
22497 4: DW_TAG_subprogram // definition of N::foo
22498 DW_AT_specification // refers to die #3
22500 Thus, when processing die #4, we have to pretend that we're in
22501 the context of its DW_AT_specification, namely the contex of die
22504 spec_die = die_specification (die, &spec_cu);
22505 if (spec_die == NULL)
22506 parent = die->parent;
22509 parent = spec_die->parent;
22513 if (parent == NULL)
22515 else if (parent->building_fullname)
22518 const char *parent_name;
22520 /* It has been seen on RealView 2.2 built binaries,
22521 DW_TAG_template_type_param types actually _defined_ as
22522 children of the parent class:
22525 template class <class Enum> Class{};
22526 Class<enum E> class_e;
22528 1: DW_TAG_class_type (Class)
22529 2: DW_TAG_enumeration_type (E)
22530 3: DW_TAG_enumerator (enum1:0)
22531 3: DW_TAG_enumerator (enum2:1)
22533 2: DW_TAG_template_type_param
22534 DW_AT_type DW_FORM_ref_udata (E)
22536 Besides being broken debug info, it can put GDB into an
22537 infinite loop. Consider:
22539 When we're building the full name for Class<E>, we'll start
22540 at Class, and go look over its template type parameters,
22541 finding E. We'll then try to build the full name of E, and
22542 reach here. We're now trying to build the full name of E,
22543 and look over the parent DIE for containing scope. In the
22544 broken case, if we followed the parent DIE of E, we'd again
22545 find Class, and once again go look at its template type
22546 arguments, etc., etc. Simply don't consider such parent die
22547 as source-level parent of this die (it can't be, the language
22548 doesn't allow it), and break the loop here. */
22549 name = dwarf2_name (die, cu);
22550 parent_name = dwarf2_name (parent, cu);
22551 complaint (_("template param type '%s' defined within parent '%s'"),
22552 name ? name : "<unknown>",
22553 parent_name ? parent_name : "<unknown>");
22557 switch (parent->tag)
22559 case DW_TAG_namespace:
22560 parent_type = read_type_die (parent, cu);
22561 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22562 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22563 Work around this problem here. */
22564 if (cu->language == language_cplus
22565 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22567 /* We give a name to even anonymous namespaces. */
22568 return TYPE_NAME (parent_type);
22569 case DW_TAG_class_type:
22570 case DW_TAG_interface_type:
22571 case DW_TAG_structure_type:
22572 case DW_TAG_union_type:
22573 case DW_TAG_module:
22574 parent_type = read_type_die (parent, cu);
22575 if (TYPE_NAME (parent_type) != NULL)
22576 return TYPE_NAME (parent_type);
22578 /* An anonymous structure is only allowed non-static data
22579 members; no typedefs, no member functions, et cetera.
22580 So it does not need a prefix. */
22582 case DW_TAG_compile_unit:
22583 case DW_TAG_partial_unit:
22584 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22585 if (cu->language == language_cplus
22586 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22587 && die->child != NULL
22588 && (die->tag == DW_TAG_class_type
22589 || die->tag == DW_TAG_structure_type
22590 || die->tag == DW_TAG_union_type))
22592 char *name = guess_full_die_structure_name (die, cu);
22597 case DW_TAG_enumeration_type:
22598 parent_type = read_type_die (parent, cu);
22599 if (TYPE_DECLARED_CLASS (parent_type))
22601 if (TYPE_NAME (parent_type) != NULL)
22602 return TYPE_NAME (parent_type);
22605 /* Fall through. */
22607 return determine_prefix (parent, cu);
22611 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22612 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22613 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22614 an obconcat, otherwise allocate storage for the result. The CU argument is
22615 used to determine the language and hence, the appropriate separator. */
22617 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22620 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22621 int physname, struct dwarf2_cu *cu)
22623 const char *lead = "";
22626 if (suffix == NULL || suffix[0] == '\0'
22627 || prefix == NULL || prefix[0] == '\0')
22629 else if (cu->language == language_d)
22631 /* For D, the 'main' function could be defined in any module, but it
22632 should never be prefixed. */
22633 if (strcmp (suffix, "D main") == 0)
22641 else if (cu->language == language_fortran && physname)
22643 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22644 DW_AT_MIPS_linkage_name is preferred and used instead. */
22652 if (prefix == NULL)
22654 if (suffix == NULL)
22661 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22663 strcpy (retval, lead);
22664 strcat (retval, prefix);
22665 strcat (retval, sep);
22666 strcat (retval, suffix);
22671 /* We have an obstack. */
22672 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22676 /* Return sibling of die, NULL if no sibling. */
22678 static struct die_info *
22679 sibling_die (struct die_info *die)
22681 return die->sibling;
22684 /* Get name of a die, return NULL if not found. */
22686 static const char *
22687 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22688 struct obstack *obstack)
22690 if (name && cu->language == language_cplus)
22692 std::string canon_name = cp_canonicalize_string (name);
22694 if (!canon_name.empty ())
22696 if (canon_name != name)
22697 name = (const char *) obstack_copy0 (obstack,
22698 canon_name.c_str (),
22699 canon_name.length ());
22706 /* Get name of a die, return NULL if not found.
22707 Anonymous namespaces are converted to their magic string. */
22709 static const char *
22710 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22712 struct attribute *attr;
22713 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22715 attr = dwarf2_attr (die, DW_AT_name, cu);
22716 if ((!attr || !DW_STRING (attr))
22717 && die->tag != DW_TAG_namespace
22718 && die->tag != DW_TAG_class_type
22719 && die->tag != DW_TAG_interface_type
22720 && die->tag != DW_TAG_structure_type
22721 && die->tag != DW_TAG_union_type)
22726 case DW_TAG_compile_unit:
22727 case DW_TAG_partial_unit:
22728 /* Compilation units have a DW_AT_name that is a filename, not
22729 a source language identifier. */
22730 case DW_TAG_enumeration_type:
22731 case DW_TAG_enumerator:
22732 /* These tags always have simple identifiers already; no need
22733 to canonicalize them. */
22734 return DW_STRING (attr);
22736 case DW_TAG_namespace:
22737 if (attr != NULL && DW_STRING (attr) != NULL)
22738 return DW_STRING (attr);
22739 return CP_ANONYMOUS_NAMESPACE_STR;
22741 case DW_TAG_class_type:
22742 case DW_TAG_interface_type:
22743 case DW_TAG_structure_type:
22744 case DW_TAG_union_type:
22745 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22746 structures or unions. These were of the form "._%d" in GCC 4.1,
22747 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22748 and GCC 4.4. We work around this problem by ignoring these. */
22749 if (attr && DW_STRING (attr)
22750 && (startswith (DW_STRING (attr), "._")
22751 || startswith (DW_STRING (attr), "<anonymous")))
22754 /* GCC might emit a nameless typedef that has a linkage name. See
22755 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22756 if (!attr || DW_STRING (attr) == NULL)
22758 char *demangled = NULL;
22760 attr = dw2_linkage_name_attr (die, cu);
22761 if (attr == NULL || DW_STRING (attr) == NULL)
22764 /* Avoid demangling DW_STRING (attr) the second time on a second
22765 call for the same DIE. */
22766 if (!DW_STRING_IS_CANONICAL (attr))
22767 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22773 /* FIXME: we already did this for the partial symbol... */
22776 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22777 demangled, strlen (demangled)));
22778 DW_STRING_IS_CANONICAL (attr) = 1;
22781 /* Strip any leading namespaces/classes, keep only the base name.
22782 DW_AT_name for named DIEs does not contain the prefixes. */
22783 base = strrchr (DW_STRING (attr), ':');
22784 if (base && base > DW_STRING (attr) && base[-1] == ':')
22787 return DW_STRING (attr);
22796 if (!DW_STRING_IS_CANONICAL (attr))
22799 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22800 &objfile->per_bfd->storage_obstack);
22801 DW_STRING_IS_CANONICAL (attr) = 1;
22803 return DW_STRING (attr);
22806 /* Return the die that this die in an extension of, or NULL if there
22807 is none. *EXT_CU is the CU containing DIE on input, and the CU
22808 containing the return value on output. */
22810 static struct die_info *
22811 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22813 struct attribute *attr;
22815 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22819 return follow_die_ref (die, attr, ext_cu);
22822 /* Convert a DIE tag into its string name. */
22824 static const char *
22825 dwarf_tag_name (unsigned tag)
22827 const char *name = get_DW_TAG_name (tag);
22830 return "DW_TAG_<unknown>";
22835 /* Convert a DWARF attribute code into its string name. */
22837 static const char *
22838 dwarf_attr_name (unsigned attr)
22842 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22843 if (attr == DW_AT_MIPS_fde)
22844 return "DW_AT_MIPS_fde";
22846 if (attr == DW_AT_HP_block_index)
22847 return "DW_AT_HP_block_index";
22850 name = get_DW_AT_name (attr);
22853 return "DW_AT_<unknown>";
22858 /* Convert a DWARF value form code into its string name. */
22860 static const char *
22861 dwarf_form_name (unsigned form)
22863 const char *name = get_DW_FORM_name (form);
22866 return "DW_FORM_<unknown>";
22871 static const char *
22872 dwarf_bool_name (unsigned mybool)
22880 /* Convert a DWARF type code into its string name. */
22882 static const char *
22883 dwarf_type_encoding_name (unsigned enc)
22885 const char *name = get_DW_ATE_name (enc);
22888 return "DW_ATE_<unknown>";
22894 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22898 print_spaces (indent, f);
22899 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22900 dwarf_tag_name (die->tag), die->abbrev,
22901 sect_offset_str (die->sect_off));
22903 if (die->parent != NULL)
22905 print_spaces (indent, f);
22906 fprintf_unfiltered (f, " parent at offset: %s\n",
22907 sect_offset_str (die->parent->sect_off));
22910 print_spaces (indent, f);
22911 fprintf_unfiltered (f, " has children: %s\n",
22912 dwarf_bool_name (die->child != NULL));
22914 print_spaces (indent, f);
22915 fprintf_unfiltered (f, " attributes:\n");
22917 for (i = 0; i < die->num_attrs; ++i)
22919 print_spaces (indent, f);
22920 fprintf_unfiltered (f, " %s (%s) ",
22921 dwarf_attr_name (die->attrs[i].name),
22922 dwarf_form_name (die->attrs[i].form));
22924 switch (die->attrs[i].form)
22927 case DW_FORM_addrx:
22928 case DW_FORM_GNU_addr_index:
22929 fprintf_unfiltered (f, "address: ");
22930 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22932 case DW_FORM_block2:
22933 case DW_FORM_block4:
22934 case DW_FORM_block:
22935 case DW_FORM_block1:
22936 fprintf_unfiltered (f, "block: size %s",
22937 pulongest (DW_BLOCK (&die->attrs[i])->size));
22939 case DW_FORM_exprloc:
22940 fprintf_unfiltered (f, "expression: size %s",
22941 pulongest (DW_BLOCK (&die->attrs[i])->size));
22943 case DW_FORM_data16:
22944 fprintf_unfiltered (f, "constant of 16 bytes");
22946 case DW_FORM_ref_addr:
22947 fprintf_unfiltered (f, "ref address: ");
22948 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22950 case DW_FORM_GNU_ref_alt:
22951 fprintf_unfiltered (f, "alt ref address: ");
22952 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22958 case DW_FORM_ref_udata:
22959 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22960 (long) (DW_UNSND (&die->attrs[i])));
22962 case DW_FORM_data1:
22963 case DW_FORM_data2:
22964 case DW_FORM_data4:
22965 case DW_FORM_data8:
22966 case DW_FORM_udata:
22967 case DW_FORM_sdata:
22968 fprintf_unfiltered (f, "constant: %s",
22969 pulongest (DW_UNSND (&die->attrs[i])));
22971 case DW_FORM_sec_offset:
22972 fprintf_unfiltered (f, "section offset: %s",
22973 pulongest (DW_UNSND (&die->attrs[i])));
22975 case DW_FORM_ref_sig8:
22976 fprintf_unfiltered (f, "signature: %s",
22977 hex_string (DW_SIGNATURE (&die->attrs[i])));
22979 case DW_FORM_string:
22981 case DW_FORM_line_strp:
22983 case DW_FORM_GNU_str_index:
22984 case DW_FORM_GNU_strp_alt:
22985 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22986 DW_STRING (&die->attrs[i])
22987 ? DW_STRING (&die->attrs[i]) : "",
22988 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22991 if (DW_UNSND (&die->attrs[i]))
22992 fprintf_unfiltered (f, "flag: TRUE");
22994 fprintf_unfiltered (f, "flag: FALSE");
22996 case DW_FORM_flag_present:
22997 fprintf_unfiltered (f, "flag: TRUE");
22999 case DW_FORM_indirect:
23000 /* The reader will have reduced the indirect form to
23001 the "base form" so this form should not occur. */
23002 fprintf_unfiltered (f,
23003 "unexpected attribute form: DW_FORM_indirect");
23005 case DW_FORM_implicit_const:
23006 fprintf_unfiltered (f, "constant: %s",
23007 plongest (DW_SND (&die->attrs[i])));
23010 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23011 die->attrs[i].form);
23014 fprintf_unfiltered (f, "\n");
23019 dump_die_for_error (struct die_info *die)
23021 dump_die_shallow (gdb_stderr, 0, die);
23025 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23027 int indent = level * 4;
23029 gdb_assert (die != NULL);
23031 if (level >= max_level)
23034 dump_die_shallow (f, indent, die);
23036 if (die->child != NULL)
23038 print_spaces (indent, f);
23039 fprintf_unfiltered (f, " Children:");
23040 if (level + 1 < max_level)
23042 fprintf_unfiltered (f, "\n");
23043 dump_die_1 (f, level + 1, max_level, die->child);
23047 fprintf_unfiltered (f,
23048 " [not printed, max nesting level reached]\n");
23052 if (die->sibling != NULL && level > 0)
23054 dump_die_1 (f, level, max_level, die->sibling);
23058 /* This is called from the pdie macro in gdbinit.in.
23059 It's not static so gcc will keep a copy callable from gdb. */
23062 dump_die (struct die_info *die, int max_level)
23064 dump_die_1 (gdb_stdlog, 0, max_level, die);
23068 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23072 slot = htab_find_slot_with_hash (cu->die_hash, die,
23073 to_underlying (die->sect_off),
23079 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23083 dwarf2_get_ref_die_offset (const struct attribute *attr)
23085 if (attr_form_is_ref (attr))
23086 return (sect_offset) DW_UNSND (attr);
23088 complaint (_("unsupported die ref attribute form: '%s'"),
23089 dwarf_form_name (attr->form));
23093 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23094 * the value held by the attribute is not constant. */
23097 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23099 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23100 return DW_SND (attr);
23101 else if (attr->form == DW_FORM_udata
23102 || attr->form == DW_FORM_data1
23103 || attr->form == DW_FORM_data2
23104 || attr->form == DW_FORM_data4
23105 || attr->form == DW_FORM_data8)
23106 return DW_UNSND (attr);
23109 /* For DW_FORM_data16 see attr_form_is_constant. */
23110 complaint (_("Attribute value is not a constant (%s)"),
23111 dwarf_form_name (attr->form));
23112 return default_value;
23116 /* Follow reference or signature attribute ATTR of SRC_DIE.
23117 On entry *REF_CU is the CU of SRC_DIE.
23118 On exit *REF_CU is the CU of the result. */
23120 static struct die_info *
23121 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23122 struct dwarf2_cu **ref_cu)
23124 struct die_info *die;
23126 if (attr_form_is_ref (attr))
23127 die = follow_die_ref (src_die, attr, ref_cu);
23128 else if (attr->form == DW_FORM_ref_sig8)
23129 die = follow_die_sig (src_die, attr, ref_cu);
23132 dump_die_for_error (src_die);
23133 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23134 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23140 /* Follow reference OFFSET.
23141 On entry *REF_CU is the CU of the source die referencing OFFSET.
23142 On exit *REF_CU is the CU of the result.
23143 Returns NULL if OFFSET is invalid. */
23145 static struct die_info *
23146 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23147 struct dwarf2_cu **ref_cu)
23149 struct die_info temp_die;
23150 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23151 struct dwarf2_per_objfile *dwarf2_per_objfile
23152 = cu->per_cu->dwarf2_per_objfile;
23154 gdb_assert (cu->per_cu != NULL);
23158 if (cu->per_cu->is_debug_types)
23160 /* .debug_types CUs cannot reference anything outside their CU.
23161 If they need to, they have to reference a signatured type via
23162 DW_FORM_ref_sig8. */
23163 if (!offset_in_cu_p (&cu->header, sect_off))
23166 else if (offset_in_dwz != cu->per_cu->is_dwz
23167 || !offset_in_cu_p (&cu->header, sect_off))
23169 struct dwarf2_per_cu_data *per_cu;
23171 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23172 dwarf2_per_objfile);
23174 /* If necessary, add it to the queue and load its DIEs. */
23175 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23176 load_full_comp_unit (per_cu, false, cu->language);
23178 target_cu = per_cu->cu;
23180 else if (cu->dies == NULL)
23182 /* We're loading full DIEs during partial symbol reading. */
23183 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23184 load_full_comp_unit (cu->per_cu, false, language_minimal);
23187 *ref_cu = target_cu;
23188 temp_die.sect_off = sect_off;
23190 if (target_cu != cu)
23191 target_cu->ancestor = cu;
23193 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23195 to_underlying (sect_off));
23198 /* Follow reference attribute ATTR of SRC_DIE.
23199 On entry *REF_CU is the CU of SRC_DIE.
23200 On exit *REF_CU is the CU of the result. */
23202 static struct die_info *
23203 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23204 struct dwarf2_cu **ref_cu)
23206 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23207 struct dwarf2_cu *cu = *ref_cu;
23208 struct die_info *die;
23210 die = follow_die_offset (sect_off,
23211 (attr->form == DW_FORM_GNU_ref_alt
23212 || cu->per_cu->is_dwz),
23215 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23216 "at %s [in module %s]"),
23217 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23218 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23223 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23224 Returned value is intended for DW_OP_call*. Returned
23225 dwarf2_locexpr_baton->data has lifetime of
23226 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23228 struct dwarf2_locexpr_baton
23229 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23230 struct dwarf2_per_cu_data *per_cu,
23231 CORE_ADDR (*get_frame_pc) (void *baton),
23232 void *baton, bool resolve_abstract_p)
23234 struct dwarf2_cu *cu;
23235 struct die_info *die;
23236 struct attribute *attr;
23237 struct dwarf2_locexpr_baton retval;
23238 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23239 struct objfile *objfile = dwarf2_per_objfile->objfile;
23241 if (per_cu->cu == NULL)
23242 load_cu (per_cu, false);
23246 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23247 Instead just throw an error, not much else we can do. */
23248 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23249 sect_offset_str (sect_off), objfile_name (objfile));
23252 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23254 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23255 sect_offset_str (sect_off), objfile_name (objfile));
23257 attr = dwarf2_attr (die, DW_AT_location, cu);
23258 if (!attr && resolve_abstract_p
23259 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23260 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23262 CORE_ADDR pc = (*get_frame_pc) (baton);
23264 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23267 || cand->parent->tag != DW_TAG_subprogram)
23270 CORE_ADDR pc_low, pc_high;
23271 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23272 if (pc_low == ((CORE_ADDR) -1)
23273 || !(pc_low <= pc && pc < pc_high))
23277 attr = dwarf2_attr (die, DW_AT_location, cu);
23284 /* DWARF: "If there is no such attribute, then there is no effect.".
23285 DATA is ignored if SIZE is 0. */
23287 retval.data = NULL;
23290 else if (attr_form_is_section_offset (attr))
23292 struct dwarf2_loclist_baton loclist_baton;
23293 CORE_ADDR pc = (*get_frame_pc) (baton);
23296 fill_in_loclist_baton (cu, &loclist_baton, attr);
23298 retval.data = dwarf2_find_location_expression (&loclist_baton,
23300 retval.size = size;
23304 if (!attr_form_is_block (attr))
23305 error (_("Dwarf Error: DIE at %s referenced in module %s "
23306 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23307 sect_offset_str (sect_off), objfile_name (objfile));
23309 retval.data = DW_BLOCK (attr)->data;
23310 retval.size = DW_BLOCK (attr)->size;
23312 retval.per_cu = cu->per_cu;
23314 age_cached_comp_units (dwarf2_per_objfile);
23319 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23322 struct dwarf2_locexpr_baton
23323 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23324 struct dwarf2_per_cu_data *per_cu,
23325 CORE_ADDR (*get_frame_pc) (void *baton),
23328 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23330 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23333 /* Write a constant of a given type as target-ordered bytes into
23336 static const gdb_byte *
23337 write_constant_as_bytes (struct obstack *obstack,
23338 enum bfd_endian byte_order,
23345 *len = TYPE_LENGTH (type);
23346 result = (gdb_byte *) obstack_alloc (obstack, *len);
23347 store_unsigned_integer (result, *len, byte_order, value);
23352 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23353 pointer to the constant bytes and set LEN to the length of the
23354 data. If memory is needed, allocate it on OBSTACK. If the DIE
23355 does not have a DW_AT_const_value, return NULL. */
23358 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23359 struct dwarf2_per_cu_data *per_cu,
23360 struct obstack *obstack,
23363 struct dwarf2_cu *cu;
23364 struct die_info *die;
23365 struct attribute *attr;
23366 const gdb_byte *result = NULL;
23369 enum bfd_endian byte_order;
23370 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23372 if (per_cu->cu == NULL)
23373 load_cu (per_cu, false);
23377 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23378 Instead just throw an error, not much else we can do. */
23379 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23380 sect_offset_str (sect_off), objfile_name (objfile));
23383 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23385 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23386 sect_offset_str (sect_off), objfile_name (objfile));
23388 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23392 byte_order = (bfd_big_endian (objfile->obfd)
23393 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23395 switch (attr->form)
23398 case DW_FORM_addrx:
23399 case DW_FORM_GNU_addr_index:
23403 *len = cu->header.addr_size;
23404 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23405 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23409 case DW_FORM_string:
23412 case DW_FORM_GNU_str_index:
23413 case DW_FORM_GNU_strp_alt:
23414 /* DW_STRING is already allocated on the objfile obstack, point
23416 result = (const gdb_byte *) DW_STRING (attr);
23417 *len = strlen (DW_STRING (attr));
23419 case DW_FORM_block1:
23420 case DW_FORM_block2:
23421 case DW_FORM_block4:
23422 case DW_FORM_block:
23423 case DW_FORM_exprloc:
23424 case DW_FORM_data16:
23425 result = DW_BLOCK (attr)->data;
23426 *len = DW_BLOCK (attr)->size;
23429 /* The DW_AT_const_value attributes are supposed to carry the
23430 symbol's value "represented as it would be on the target
23431 architecture." By the time we get here, it's already been
23432 converted to host endianness, so we just need to sign- or
23433 zero-extend it as appropriate. */
23434 case DW_FORM_data1:
23435 type = die_type (die, cu);
23436 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23437 if (result == NULL)
23438 result = write_constant_as_bytes (obstack, byte_order,
23441 case DW_FORM_data2:
23442 type = die_type (die, cu);
23443 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23444 if (result == NULL)
23445 result = write_constant_as_bytes (obstack, byte_order,
23448 case DW_FORM_data4:
23449 type = die_type (die, cu);
23450 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23451 if (result == NULL)
23452 result = write_constant_as_bytes (obstack, byte_order,
23455 case DW_FORM_data8:
23456 type = die_type (die, cu);
23457 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23458 if (result == NULL)
23459 result = write_constant_as_bytes (obstack, byte_order,
23463 case DW_FORM_sdata:
23464 case DW_FORM_implicit_const:
23465 type = die_type (die, cu);
23466 result = write_constant_as_bytes (obstack, byte_order,
23467 type, DW_SND (attr), len);
23470 case DW_FORM_udata:
23471 type = die_type (die, cu);
23472 result = write_constant_as_bytes (obstack, byte_order,
23473 type, DW_UNSND (attr), len);
23477 complaint (_("unsupported const value attribute form: '%s'"),
23478 dwarf_form_name (attr->form));
23485 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23486 valid type for this die is found. */
23489 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23490 struct dwarf2_per_cu_data *per_cu)
23492 struct dwarf2_cu *cu;
23493 struct die_info *die;
23495 if (per_cu->cu == NULL)
23496 load_cu (per_cu, false);
23501 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23505 return die_type (die, cu);
23508 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23512 dwarf2_get_die_type (cu_offset die_offset,
23513 struct dwarf2_per_cu_data *per_cu)
23515 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23516 return get_die_type_at_offset (die_offset_sect, per_cu);
23519 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23520 On entry *REF_CU is the CU of SRC_DIE.
23521 On exit *REF_CU is the CU of the result.
23522 Returns NULL if the referenced DIE isn't found. */
23524 static struct die_info *
23525 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23526 struct dwarf2_cu **ref_cu)
23528 struct die_info temp_die;
23529 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23530 struct die_info *die;
23532 /* While it might be nice to assert sig_type->type == NULL here,
23533 we can get here for DW_AT_imported_declaration where we need
23534 the DIE not the type. */
23536 /* If necessary, add it to the queue and load its DIEs. */
23538 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23539 read_signatured_type (sig_type);
23541 sig_cu = sig_type->per_cu.cu;
23542 gdb_assert (sig_cu != NULL);
23543 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23544 temp_die.sect_off = sig_type->type_offset_in_section;
23545 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23546 to_underlying (temp_die.sect_off));
23549 struct dwarf2_per_objfile *dwarf2_per_objfile
23550 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23552 /* For .gdb_index version 7 keep track of included TUs.
23553 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23554 if (dwarf2_per_objfile->index_table != NULL
23555 && dwarf2_per_objfile->index_table->version <= 7)
23557 VEC_safe_push (dwarf2_per_cu_ptr,
23558 (*ref_cu)->per_cu->imported_symtabs,
23564 sig_cu->ancestor = cu;
23572 /* Follow signatured type referenced by ATTR in SRC_DIE.
23573 On entry *REF_CU is the CU of SRC_DIE.
23574 On exit *REF_CU is the CU of the result.
23575 The result is the DIE of the type.
23576 If the referenced type cannot be found an error is thrown. */
23578 static struct die_info *
23579 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23580 struct dwarf2_cu **ref_cu)
23582 ULONGEST signature = DW_SIGNATURE (attr);
23583 struct signatured_type *sig_type;
23584 struct die_info *die;
23586 gdb_assert (attr->form == DW_FORM_ref_sig8);
23588 sig_type = lookup_signatured_type (*ref_cu, signature);
23589 /* sig_type will be NULL if the signatured type is missing from
23591 if (sig_type == NULL)
23593 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23594 " from DIE at %s [in module %s]"),
23595 hex_string (signature), sect_offset_str (src_die->sect_off),
23596 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23599 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23602 dump_die_for_error (src_die);
23603 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23604 " from DIE at %s [in module %s]"),
23605 hex_string (signature), sect_offset_str (src_die->sect_off),
23606 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23612 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23613 reading in and processing the type unit if necessary. */
23615 static struct type *
23616 get_signatured_type (struct die_info *die, ULONGEST signature,
23617 struct dwarf2_cu *cu)
23619 struct dwarf2_per_objfile *dwarf2_per_objfile
23620 = cu->per_cu->dwarf2_per_objfile;
23621 struct signatured_type *sig_type;
23622 struct dwarf2_cu *type_cu;
23623 struct die_info *type_die;
23626 sig_type = lookup_signatured_type (cu, signature);
23627 /* sig_type will be NULL if the signatured type is missing from
23629 if (sig_type == NULL)
23631 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23632 " from DIE at %s [in module %s]"),
23633 hex_string (signature), sect_offset_str (die->sect_off),
23634 objfile_name (dwarf2_per_objfile->objfile));
23635 return build_error_marker_type (cu, die);
23638 /* If we already know the type we're done. */
23639 if (sig_type->type != NULL)
23640 return sig_type->type;
23643 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23644 if (type_die != NULL)
23646 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23647 is created. This is important, for example, because for c++ classes
23648 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23649 type = read_type_die (type_die, type_cu);
23652 complaint (_("Dwarf Error: Cannot build signatured type %s"
23653 " referenced from DIE at %s [in module %s]"),
23654 hex_string (signature), sect_offset_str (die->sect_off),
23655 objfile_name (dwarf2_per_objfile->objfile));
23656 type = build_error_marker_type (cu, die);
23661 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23662 " from DIE at %s [in module %s]"),
23663 hex_string (signature), sect_offset_str (die->sect_off),
23664 objfile_name (dwarf2_per_objfile->objfile));
23665 type = build_error_marker_type (cu, die);
23667 sig_type->type = type;
23672 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23673 reading in and processing the type unit if necessary. */
23675 static struct type *
23676 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23677 struct dwarf2_cu *cu) /* ARI: editCase function */
23679 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23680 if (attr_form_is_ref (attr))
23682 struct dwarf2_cu *type_cu = cu;
23683 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23685 return read_type_die (type_die, type_cu);
23687 else if (attr->form == DW_FORM_ref_sig8)
23689 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23693 struct dwarf2_per_objfile *dwarf2_per_objfile
23694 = cu->per_cu->dwarf2_per_objfile;
23696 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23697 " at %s [in module %s]"),
23698 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23699 objfile_name (dwarf2_per_objfile->objfile));
23700 return build_error_marker_type (cu, die);
23704 /* Load the DIEs associated with type unit PER_CU into memory. */
23707 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23709 struct signatured_type *sig_type;
23711 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23712 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23714 /* We have the per_cu, but we need the signatured_type.
23715 Fortunately this is an easy translation. */
23716 gdb_assert (per_cu->is_debug_types);
23717 sig_type = (struct signatured_type *) per_cu;
23719 gdb_assert (per_cu->cu == NULL);
23721 read_signatured_type (sig_type);
23723 gdb_assert (per_cu->cu != NULL);
23726 /* die_reader_func for read_signatured_type.
23727 This is identical to load_full_comp_unit_reader,
23728 but is kept separate for now. */
23731 read_signatured_type_reader (const struct die_reader_specs *reader,
23732 const gdb_byte *info_ptr,
23733 struct die_info *comp_unit_die,
23737 struct dwarf2_cu *cu = reader->cu;
23739 gdb_assert (cu->die_hash == NULL);
23741 htab_create_alloc_ex (cu->header.length / 12,
23745 &cu->comp_unit_obstack,
23746 hashtab_obstack_allocate,
23747 dummy_obstack_deallocate);
23750 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23751 &info_ptr, comp_unit_die);
23752 cu->dies = comp_unit_die;
23753 /* comp_unit_die is not stored in die_hash, no need. */
23755 /* We try not to read any attributes in this function, because not
23756 all CUs needed for references have been loaded yet, and symbol
23757 table processing isn't initialized. But we have to set the CU language,
23758 or we won't be able to build types correctly.
23759 Similarly, if we do not read the producer, we can not apply
23760 producer-specific interpretation. */
23761 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23764 /* Read in a signatured type and build its CU and DIEs.
23765 If the type is a stub for the real type in a DWO file,
23766 read in the real type from the DWO file as well. */
23769 read_signatured_type (struct signatured_type *sig_type)
23771 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23773 gdb_assert (per_cu->is_debug_types);
23774 gdb_assert (per_cu->cu == NULL);
23776 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23777 read_signatured_type_reader, NULL);
23778 sig_type->per_cu.tu_read = 1;
23781 /* Decode simple location descriptions.
23782 Given a pointer to a dwarf block that defines a location, compute
23783 the location and return the value.
23785 NOTE drow/2003-11-18: This function is called in two situations
23786 now: for the address of static or global variables (partial symbols
23787 only) and for offsets into structures which are expected to be
23788 (more or less) constant. The partial symbol case should go away,
23789 and only the constant case should remain. That will let this
23790 function complain more accurately. A few special modes are allowed
23791 without complaint for global variables (for instance, global
23792 register values and thread-local values).
23794 A location description containing no operations indicates that the
23795 object is optimized out. The return value is 0 for that case.
23796 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23797 callers will only want a very basic result and this can become a
23800 Note that stack[0] is unused except as a default error return. */
23803 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23807 size_t size = blk->size;
23808 const gdb_byte *data = blk->data;
23809 CORE_ADDR stack[64];
23811 unsigned int bytes_read, unsnd;
23817 stack[++stacki] = 0;
23856 stack[++stacki] = op - DW_OP_lit0;
23891 stack[++stacki] = op - DW_OP_reg0;
23893 dwarf2_complex_location_expr_complaint ();
23897 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23899 stack[++stacki] = unsnd;
23901 dwarf2_complex_location_expr_complaint ();
23905 stack[++stacki] = read_address (objfile->obfd, &data[i],
23910 case DW_OP_const1u:
23911 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23915 case DW_OP_const1s:
23916 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23920 case DW_OP_const2u:
23921 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23925 case DW_OP_const2s:
23926 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23930 case DW_OP_const4u:
23931 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23935 case DW_OP_const4s:
23936 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23940 case DW_OP_const8u:
23941 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23946 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23952 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23957 stack[stacki + 1] = stack[stacki];
23962 stack[stacki - 1] += stack[stacki];
23966 case DW_OP_plus_uconst:
23967 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23973 stack[stacki - 1] -= stack[stacki];
23978 /* If we're not the last op, then we definitely can't encode
23979 this using GDB's address_class enum. This is valid for partial
23980 global symbols, although the variable's address will be bogus
23983 dwarf2_complex_location_expr_complaint ();
23986 case DW_OP_GNU_push_tls_address:
23987 case DW_OP_form_tls_address:
23988 /* The top of the stack has the offset from the beginning
23989 of the thread control block at which the variable is located. */
23990 /* Nothing should follow this operator, so the top of stack would
23992 /* This is valid for partial global symbols, but the variable's
23993 address will be bogus in the psymtab. Make it always at least
23994 non-zero to not look as a variable garbage collected by linker
23995 which have DW_OP_addr 0. */
23997 dwarf2_complex_location_expr_complaint ();
24001 case DW_OP_GNU_uninit:
24005 case DW_OP_GNU_addr_index:
24006 case DW_OP_GNU_const_index:
24007 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24014 const char *name = get_DW_OP_name (op);
24017 complaint (_("unsupported stack op: '%s'"),
24020 complaint (_("unsupported stack op: '%02x'"),
24024 return (stack[stacki]);
24027 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24028 outside of the allocated space. Also enforce minimum>0. */
24029 if (stacki >= ARRAY_SIZE (stack) - 1)
24031 complaint (_("location description stack overflow"));
24037 complaint (_("location description stack underflow"));
24041 return (stack[stacki]);
24044 /* memory allocation interface */
24046 static struct dwarf_block *
24047 dwarf_alloc_block (struct dwarf2_cu *cu)
24049 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24052 static struct die_info *
24053 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24055 struct die_info *die;
24056 size_t size = sizeof (struct die_info);
24059 size += (num_attrs - 1) * sizeof (struct attribute);
24061 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24062 memset (die, 0, sizeof (struct die_info));
24067 /* Macro support. */
24069 /* Return file name relative to the compilation directory of file number I in
24070 *LH's file name table. The result is allocated using xmalloc; the caller is
24071 responsible for freeing it. */
24074 file_file_name (int file, struct line_header *lh)
24076 /* Is the file number a valid index into the line header's file name
24077 table? Remember that file numbers start with one, not zero. */
24078 if (1 <= file && file <= lh->file_names.size ())
24080 const file_entry &fe = lh->file_names[file - 1];
24082 if (!IS_ABSOLUTE_PATH (fe.name))
24084 const char *dir = fe.include_dir (lh);
24086 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24088 return xstrdup (fe.name);
24092 /* The compiler produced a bogus file number. We can at least
24093 record the macro definitions made in the file, even if we
24094 won't be able to find the file by name. */
24095 char fake_name[80];
24097 xsnprintf (fake_name, sizeof (fake_name),
24098 "<bad macro file number %d>", file);
24100 complaint (_("bad file number in macro information (%d)"),
24103 return xstrdup (fake_name);
24107 /* Return the full name of file number I in *LH's file name table.
24108 Use COMP_DIR as the name of the current directory of the
24109 compilation. The result is allocated using xmalloc; the caller is
24110 responsible for freeing it. */
24112 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24114 /* Is the file number a valid index into the line header's file name
24115 table? Remember that file numbers start with one, not zero. */
24116 if (1 <= file && file <= lh->file_names.size ())
24118 char *relative = file_file_name (file, lh);
24120 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24122 return reconcat (relative, comp_dir, SLASH_STRING,
24123 relative, (char *) NULL);
24126 return file_file_name (file, lh);
24130 static struct macro_source_file *
24131 macro_start_file (struct dwarf2_cu *cu,
24132 int file, int line,
24133 struct macro_source_file *current_file,
24134 struct line_header *lh)
24136 /* File name relative to the compilation directory of this source file. */
24137 char *file_name = file_file_name (file, lh);
24139 if (! current_file)
24141 /* Note: We don't create a macro table for this compilation unit
24142 at all until we actually get a filename. */
24143 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24145 /* If we have no current file, then this must be the start_file
24146 directive for the compilation unit's main source file. */
24147 current_file = macro_set_main (macro_table, file_name);
24148 macro_define_special (macro_table);
24151 current_file = macro_include (current_file, line, file_name);
24155 return current_file;
24158 static const char *
24159 consume_improper_spaces (const char *p, const char *body)
24163 complaint (_("macro definition contains spaces "
24164 "in formal argument list:\n`%s'"),
24176 parse_macro_definition (struct macro_source_file *file, int line,
24181 /* The body string takes one of two forms. For object-like macro
24182 definitions, it should be:
24184 <macro name> " " <definition>
24186 For function-like macro definitions, it should be:
24188 <macro name> "() " <definition>
24190 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24192 Spaces may appear only where explicitly indicated, and in the
24195 The Dwarf 2 spec says that an object-like macro's name is always
24196 followed by a space, but versions of GCC around March 2002 omit
24197 the space when the macro's definition is the empty string.
24199 The Dwarf 2 spec says that there should be no spaces between the
24200 formal arguments in a function-like macro's formal argument list,
24201 but versions of GCC around March 2002 include spaces after the
24205 /* Find the extent of the macro name. The macro name is terminated
24206 by either a space or null character (for an object-like macro) or
24207 an opening paren (for a function-like macro). */
24208 for (p = body; *p; p++)
24209 if (*p == ' ' || *p == '(')
24212 if (*p == ' ' || *p == '\0')
24214 /* It's an object-like macro. */
24215 int name_len = p - body;
24216 char *name = savestring (body, name_len);
24217 const char *replacement;
24220 replacement = body + name_len + 1;
24223 dwarf2_macro_malformed_definition_complaint (body);
24224 replacement = body + name_len;
24227 macro_define_object (file, line, name, replacement);
24231 else if (*p == '(')
24233 /* It's a function-like macro. */
24234 char *name = savestring (body, p - body);
24237 char **argv = XNEWVEC (char *, argv_size);
24241 p = consume_improper_spaces (p, body);
24243 /* Parse the formal argument list. */
24244 while (*p && *p != ')')
24246 /* Find the extent of the current argument name. */
24247 const char *arg_start = p;
24249 while (*p && *p != ',' && *p != ')' && *p != ' ')
24252 if (! *p || p == arg_start)
24253 dwarf2_macro_malformed_definition_complaint (body);
24256 /* Make sure argv has room for the new argument. */
24257 if (argc >= argv_size)
24260 argv = XRESIZEVEC (char *, argv, argv_size);
24263 argv[argc++] = savestring (arg_start, p - arg_start);
24266 p = consume_improper_spaces (p, body);
24268 /* Consume the comma, if present. */
24273 p = consume_improper_spaces (p, body);
24282 /* Perfectly formed definition, no complaints. */
24283 macro_define_function (file, line, name,
24284 argc, (const char **) argv,
24286 else if (*p == '\0')
24288 /* Complain, but do define it. */
24289 dwarf2_macro_malformed_definition_complaint (body);
24290 macro_define_function (file, line, name,
24291 argc, (const char **) argv,
24295 /* Just complain. */
24296 dwarf2_macro_malformed_definition_complaint (body);
24299 /* Just complain. */
24300 dwarf2_macro_malformed_definition_complaint (body);
24306 for (i = 0; i < argc; i++)
24312 dwarf2_macro_malformed_definition_complaint (body);
24315 /* Skip some bytes from BYTES according to the form given in FORM.
24316 Returns the new pointer. */
24318 static const gdb_byte *
24319 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24320 enum dwarf_form form,
24321 unsigned int offset_size,
24322 struct dwarf2_section_info *section)
24324 unsigned int bytes_read;
24328 case DW_FORM_data1:
24333 case DW_FORM_data2:
24337 case DW_FORM_data4:
24341 case DW_FORM_data8:
24345 case DW_FORM_data16:
24349 case DW_FORM_string:
24350 read_direct_string (abfd, bytes, &bytes_read);
24351 bytes += bytes_read;
24354 case DW_FORM_sec_offset:
24356 case DW_FORM_GNU_strp_alt:
24357 bytes += offset_size;
24360 case DW_FORM_block:
24361 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24362 bytes += bytes_read;
24365 case DW_FORM_block1:
24366 bytes += 1 + read_1_byte (abfd, bytes);
24368 case DW_FORM_block2:
24369 bytes += 2 + read_2_bytes (abfd, bytes);
24371 case DW_FORM_block4:
24372 bytes += 4 + read_4_bytes (abfd, bytes);
24375 case DW_FORM_addrx:
24376 case DW_FORM_sdata:
24378 case DW_FORM_udata:
24379 case DW_FORM_GNU_addr_index:
24380 case DW_FORM_GNU_str_index:
24381 bytes = gdb_skip_leb128 (bytes, buffer_end);
24384 dwarf2_section_buffer_overflow_complaint (section);
24389 case DW_FORM_implicit_const:
24394 complaint (_("invalid form 0x%x in `%s'"),
24395 form, get_section_name (section));
24403 /* A helper for dwarf_decode_macros that handles skipping an unknown
24404 opcode. Returns an updated pointer to the macro data buffer; or,
24405 on error, issues a complaint and returns NULL. */
24407 static const gdb_byte *
24408 skip_unknown_opcode (unsigned int opcode,
24409 const gdb_byte **opcode_definitions,
24410 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24412 unsigned int offset_size,
24413 struct dwarf2_section_info *section)
24415 unsigned int bytes_read, i;
24417 const gdb_byte *defn;
24419 if (opcode_definitions[opcode] == NULL)
24421 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24426 defn = opcode_definitions[opcode];
24427 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24428 defn += bytes_read;
24430 for (i = 0; i < arg; ++i)
24432 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24433 (enum dwarf_form) defn[i], offset_size,
24435 if (mac_ptr == NULL)
24437 /* skip_form_bytes already issued the complaint. */
24445 /* A helper function which parses the header of a macro section.
24446 If the macro section is the extended (for now called "GNU") type,
24447 then this updates *OFFSET_SIZE. Returns a pointer to just after
24448 the header, or issues a complaint and returns NULL on error. */
24450 static const gdb_byte *
24451 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24453 const gdb_byte *mac_ptr,
24454 unsigned int *offset_size,
24455 int section_is_gnu)
24457 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24459 if (section_is_gnu)
24461 unsigned int version, flags;
24463 version = read_2_bytes (abfd, mac_ptr);
24464 if (version != 4 && version != 5)
24466 complaint (_("unrecognized version `%d' in .debug_macro section"),
24472 flags = read_1_byte (abfd, mac_ptr);
24474 *offset_size = (flags & 1) ? 8 : 4;
24476 if ((flags & 2) != 0)
24477 /* We don't need the line table offset. */
24478 mac_ptr += *offset_size;
24480 /* Vendor opcode descriptions. */
24481 if ((flags & 4) != 0)
24483 unsigned int i, count;
24485 count = read_1_byte (abfd, mac_ptr);
24487 for (i = 0; i < count; ++i)
24489 unsigned int opcode, bytes_read;
24492 opcode = read_1_byte (abfd, mac_ptr);
24494 opcode_definitions[opcode] = mac_ptr;
24495 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24496 mac_ptr += bytes_read;
24505 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24506 including DW_MACRO_import. */
24509 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24511 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24512 struct macro_source_file *current_file,
24513 struct line_header *lh,
24514 struct dwarf2_section_info *section,
24515 int section_is_gnu, int section_is_dwz,
24516 unsigned int offset_size,
24517 htab_t include_hash)
24519 struct dwarf2_per_objfile *dwarf2_per_objfile
24520 = cu->per_cu->dwarf2_per_objfile;
24521 struct objfile *objfile = dwarf2_per_objfile->objfile;
24522 enum dwarf_macro_record_type macinfo_type;
24523 int at_commandline;
24524 const gdb_byte *opcode_definitions[256];
24526 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24527 &offset_size, section_is_gnu);
24528 if (mac_ptr == NULL)
24530 /* We already issued a complaint. */
24534 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24535 GDB is still reading the definitions from command line. First
24536 DW_MACINFO_start_file will need to be ignored as it was already executed
24537 to create CURRENT_FILE for the main source holding also the command line
24538 definitions. On first met DW_MACINFO_start_file this flag is reset to
24539 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24541 at_commandline = 1;
24545 /* Do we at least have room for a macinfo type byte? */
24546 if (mac_ptr >= mac_end)
24548 dwarf2_section_buffer_overflow_complaint (section);
24552 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24555 /* Note that we rely on the fact that the corresponding GNU and
24556 DWARF constants are the same. */
24558 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24559 switch (macinfo_type)
24561 /* A zero macinfo type indicates the end of the macro
24566 case DW_MACRO_define:
24567 case DW_MACRO_undef:
24568 case DW_MACRO_define_strp:
24569 case DW_MACRO_undef_strp:
24570 case DW_MACRO_define_sup:
24571 case DW_MACRO_undef_sup:
24573 unsigned int bytes_read;
24578 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24579 mac_ptr += bytes_read;
24581 if (macinfo_type == DW_MACRO_define
24582 || macinfo_type == DW_MACRO_undef)
24584 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24585 mac_ptr += bytes_read;
24589 LONGEST str_offset;
24591 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24592 mac_ptr += offset_size;
24594 if (macinfo_type == DW_MACRO_define_sup
24595 || macinfo_type == DW_MACRO_undef_sup
24598 struct dwz_file *dwz
24599 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24601 body = read_indirect_string_from_dwz (objfile,
24605 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24609 is_define = (macinfo_type == DW_MACRO_define
24610 || macinfo_type == DW_MACRO_define_strp
24611 || macinfo_type == DW_MACRO_define_sup);
24612 if (! current_file)
24614 /* DWARF violation as no main source is present. */
24615 complaint (_("debug info with no main source gives macro %s "
24617 is_define ? _("definition") : _("undefinition"),
24621 if ((line == 0 && !at_commandline)
24622 || (line != 0 && at_commandline))
24623 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24624 at_commandline ? _("command-line") : _("in-file"),
24625 is_define ? _("definition") : _("undefinition"),
24626 line == 0 ? _("zero") : _("non-zero"), line, body);
24629 parse_macro_definition (current_file, line, body);
24632 gdb_assert (macinfo_type == DW_MACRO_undef
24633 || macinfo_type == DW_MACRO_undef_strp
24634 || macinfo_type == DW_MACRO_undef_sup);
24635 macro_undef (current_file, line, body);
24640 case DW_MACRO_start_file:
24642 unsigned int bytes_read;
24645 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24646 mac_ptr += bytes_read;
24647 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24648 mac_ptr += bytes_read;
24650 if ((line == 0 && !at_commandline)
24651 || (line != 0 && at_commandline))
24652 complaint (_("debug info gives source %d included "
24653 "from %s at %s line %d"),
24654 file, at_commandline ? _("command-line") : _("file"),
24655 line == 0 ? _("zero") : _("non-zero"), line);
24657 if (at_commandline)
24659 /* This DW_MACRO_start_file was executed in the
24661 at_commandline = 0;
24664 current_file = macro_start_file (cu, file, line, current_file,
24669 case DW_MACRO_end_file:
24670 if (! current_file)
24671 complaint (_("macro debug info has an unmatched "
24672 "`close_file' directive"));
24675 current_file = current_file->included_by;
24676 if (! current_file)
24678 enum dwarf_macro_record_type next_type;
24680 /* GCC circa March 2002 doesn't produce the zero
24681 type byte marking the end of the compilation
24682 unit. Complain if it's not there, but exit no
24685 /* Do we at least have room for a macinfo type byte? */
24686 if (mac_ptr >= mac_end)
24688 dwarf2_section_buffer_overflow_complaint (section);
24692 /* We don't increment mac_ptr here, so this is just
24695 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24697 if (next_type != 0)
24698 complaint (_("no terminating 0-type entry for "
24699 "macros in `.debug_macinfo' section"));
24706 case DW_MACRO_import:
24707 case DW_MACRO_import_sup:
24711 bfd *include_bfd = abfd;
24712 struct dwarf2_section_info *include_section = section;
24713 const gdb_byte *include_mac_end = mac_end;
24714 int is_dwz = section_is_dwz;
24715 const gdb_byte *new_mac_ptr;
24717 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24718 mac_ptr += offset_size;
24720 if (macinfo_type == DW_MACRO_import_sup)
24722 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24724 dwarf2_read_section (objfile, &dwz->macro);
24726 include_section = &dwz->macro;
24727 include_bfd = get_section_bfd_owner (include_section);
24728 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24732 new_mac_ptr = include_section->buffer + offset;
24733 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24737 /* This has actually happened; see
24738 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24739 complaint (_("recursive DW_MACRO_import in "
24740 ".debug_macro section"));
24744 *slot = (void *) new_mac_ptr;
24746 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24747 include_mac_end, current_file, lh,
24748 section, section_is_gnu, is_dwz,
24749 offset_size, include_hash);
24751 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24756 case DW_MACINFO_vendor_ext:
24757 if (!section_is_gnu)
24759 unsigned int bytes_read;
24761 /* This reads the constant, but since we don't recognize
24762 any vendor extensions, we ignore it. */
24763 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24764 mac_ptr += bytes_read;
24765 read_direct_string (abfd, mac_ptr, &bytes_read);
24766 mac_ptr += bytes_read;
24768 /* We don't recognize any vendor extensions. */
24774 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24775 mac_ptr, mac_end, abfd, offset_size,
24777 if (mac_ptr == NULL)
24782 } while (macinfo_type != 0);
24786 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24787 int section_is_gnu)
24789 struct dwarf2_per_objfile *dwarf2_per_objfile
24790 = cu->per_cu->dwarf2_per_objfile;
24791 struct objfile *objfile = dwarf2_per_objfile->objfile;
24792 struct line_header *lh = cu->line_header;
24794 const gdb_byte *mac_ptr, *mac_end;
24795 struct macro_source_file *current_file = 0;
24796 enum dwarf_macro_record_type macinfo_type;
24797 unsigned int offset_size = cu->header.offset_size;
24798 const gdb_byte *opcode_definitions[256];
24800 struct dwarf2_section_info *section;
24801 const char *section_name;
24803 if (cu->dwo_unit != NULL)
24805 if (section_is_gnu)
24807 section = &cu->dwo_unit->dwo_file->sections.macro;
24808 section_name = ".debug_macro.dwo";
24812 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24813 section_name = ".debug_macinfo.dwo";
24818 if (section_is_gnu)
24820 section = &dwarf2_per_objfile->macro;
24821 section_name = ".debug_macro";
24825 section = &dwarf2_per_objfile->macinfo;
24826 section_name = ".debug_macinfo";
24830 dwarf2_read_section (objfile, section);
24831 if (section->buffer == NULL)
24833 complaint (_("missing %s section"), section_name);
24836 abfd = get_section_bfd_owner (section);
24838 /* First pass: Find the name of the base filename.
24839 This filename is needed in order to process all macros whose definition
24840 (or undefinition) comes from the command line. These macros are defined
24841 before the first DW_MACINFO_start_file entry, and yet still need to be
24842 associated to the base file.
24844 To determine the base file name, we scan the macro definitions until we
24845 reach the first DW_MACINFO_start_file entry. We then initialize
24846 CURRENT_FILE accordingly so that any macro definition found before the
24847 first DW_MACINFO_start_file can still be associated to the base file. */
24849 mac_ptr = section->buffer + offset;
24850 mac_end = section->buffer + section->size;
24852 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24853 &offset_size, section_is_gnu);
24854 if (mac_ptr == NULL)
24856 /* We already issued a complaint. */
24862 /* Do we at least have room for a macinfo type byte? */
24863 if (mac_ptr >= mac_end)
24865 /* Complaint is printed during the second pass as GDB will probably
24866 stop the first pass earlier upon finding
24867 DW_MACINFO_start_file. */
24871 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24874 /* Note that we rely on the fact that the corresponding GNU and
24875 DWARF constants are the same. */
24877 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24878 switch (macinfo_type)
24880 /* A zero macinfo type indicates the end of the macro
24885 case DW_MACRO_define:
24886 case DW_MACRO_undef:
24887 /* Only skip the data by MAC_PTR. */
24889 unsigned int bytes_read;
24891 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24892 mac_ptr += bytes_read;
24893 read_direct_string (abfd, mac_ptr, &bytes_read);
24894 mac_ptr += bytes_read;
24898 case DW_MACRO_start_file:
24900 unsigned int bytes_read;
24903 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24904 mac_ptr += bytes_read;
24905 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24906 mac_ptr += bytes_read;
24908 current_file = macro_start_file (cu, file, line, current_file, lh);
24912 case DW_MACRO_end_file:
24913 /* No data to skip by MAC_PTR. */
24916 case DW_MACRO_define_strp:
24917 case DW_MACRO_undef_strp:
24918 case DW_MACRO_define_sup:
24919 case DW_MACRO_undef_sup:
24921 unsigned int bytes_read;
24923 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24924 mac_ptr += bytes_read;
24925 mac_ptr += offset_size;
24929 case DW_MACRO_import:
24930 case DW_MACRO_import_sup:
24931 /* Note that, according to the spec, a transparent include
24932 chain cannot call DW_MACRO_start_file. So, we can just
24933 skip this opcode. */
24934 mac_ptr += offset_size;
24937 case DW_MACINFO_vendor_ext:
24938 /* Only skip the data by MAC_PTR. */
24939 if (!section_is_gnu)
24941 unsigned int bytes_read;
24943 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24944 mac_ptr += bytes_read;
24945 read_direct_string (abfd, mac_ptr, &bytes_read);
24946 mac_ptr += bytes_read;
24951 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24952 mac_ptr, mac_end, abfd, offset_size,
24954 if (mac_ptr == NULL)
24959 } while (macinfo_type != 0 && current_file == NULL);
24961 /* Second pass: Process all entries.
24963 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24964 command-line macro definitions/undefinitions. This flag is unset when we
24965 reach the first DW_MACINFO_start_file entry. */
24967 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24969 NULL, xcalloc, xfree));
24970 mac_ptr = section->buffer + offset;
24971 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24972 *slot = (void *) mac_ptr;
24973 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24974 current_file, lh, section,
24975 section_is_gnu, 0, offset_size,
24976 include_hash.get ());
24979 /* Check if the attribute's form is a DW_FORM_block*
24980 if so return true else false. */
24983 attr_form_is_block (const struct attribute *attr)
24985 return (attr == NULL ? 0 :
24986 attr->form == DW_FORM_block1
24987 || attr->form == DW_FORM_block2
24988 || attr->form == DW_FORM_block4
24989 || attr->form == DW_FORM_block
24990 || attr->form == DW_FORM_exprloc);
24993 /* Return non-zero if ATTR's value is a section offset --- classes
24994 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24995 You may use DW_UNSND (attr) to retrieve such offsets.
24997 Section 7.5.4, "Attribute Encodings", explains that no attribute
24998 may have a value that belongs to more than one of these classes; it
24999 would be ambiguous if we did, because we use the same forms for all
25003 attr_form_is_section_offset (const struct attribute *attr)
25005 return (attr->form == DW_FORM_data4
25006 || attr->form == DW_FORM_data8
25007 || attr->form == DW_FORM_sec_offset);
25010 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25011 zero otherwise. When this function returns true, you can apply
25012 dwarf2_get_attr_constant_value to it.
25014 However, note that for some attributes you must check
25015 attr_form_is_section_offset before using this test. DW_FORM_data4
25016 and DW_FORM_data8 are members of both the constant class, and of
25017 the classes that contain offsets into other debug sections
25018 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25019 that, if an attribute's can be either a constant or one of the
25020 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25021 taken as section offsets, not constants.
25023 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25024 cannot handle that. */
25027 attr_form_is_constant (const struct attribute *attr)
25029 switch (attr->form)
25031 case DW_FORM_sdata:
25032 case DW_FORM_udata:
25033 case DW_FORM_data1:
25034 case DW_FORM_data2:
25035 case DW_FORM_data4:
25036 case DW_FORM_data8:
25037 case DW_FORM_implicit_const:
25045 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25046 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25049 attr_form_is_ref (const struct attribute *attr)
25051 switch (attr->form)
25053 case DW_FORM_ref_addr:
25058 case DW_FORM_ref_udata:
25059 case DW_FORM_GNU_ref_alt:
25066 /* Return the .debug_loc section to use for CU.
25067 For DWO files use .debug_loc.dwo. */
25069 static struct dwarf2_section_info *
25070 cu_debug_loc_section (struct dwarf2_cu *cu)
25072 struct dwarf2_per_objfile *dwarf2_per_objfile
25073 = cu->per_cu->dwarf2_per_objfile;
25077 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25079 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
25081 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25082 : &dwarf2_per_objfile->loc);
25085 /* A helper function that fills in a dwarf2_loclist_baton. */
25088 fill_in_loclist_baton (struct dwarf2_cu *cu,
25089 struct dwarf2_loclist_baton *baton,
25090 const struct attribute *attr)
25092 struct dwarf2_per_objfile *dwarf2_per_objfile
25093 = cu->per_cu->dwarf2_per_objfile;
25094 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25096 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25098 baton->per_cu = cu->per_cu;
25099 gdb_assert (baton->per_cu);
25100 /* We don't know how long the location list is, but make sure we
25101 don't run off the edge of the section. */
25102 baton->size = section->size - DW_UNSND (attr);
25103 baton->data = section->buffer + DW_UNSND (attr);
25104 baton->base_address = cu->base_address;
25105 baton->from_dwo = cu->dwo_unit != NULL;
25109 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25110 struct dwarf2_cu *cu, int is_block)
25112 struct dwarf2_per_objfile *dwarf2_per_objfile
25113 = cu->per_cu->dwarf2_per_objfile;
25114 struct objfile *objfile = dwarf2_per_objfile->objfile;
25115 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25117 if (attr_form_is_section_offset (attr)
25118 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25119 the section. If so, fall through to the complaint in the
25121 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25123 struct dwarf2_loclist_baton *baton;
25125 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25127 fill_in_loclist_baton (cu, baton, attr);
25129 if (cu->base_known == 0)
25130 complaint (_("Location list used without "
25131 "specifying the CU base address."));
25133 SYMBOL_ACLASS_INDEX (sym) = (is_block
25134 ? dwarf2_loclist_block_index
25135 : dwarf2_loclist_index);
25136 SYMBOL_LOCATION_BATON (sym) = baton;
25140 struct dwarf2_locexpr_baton *baton;
25142 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25143 baton->per_cu = cu->per_cu;
25144 gdb_assert (baton->per_cu);
25146 if (attr_form_is_block (attr))
25148 /* Note that we're just copying the block's data pointer
25149 here, not the actual data. We're still pointing into the
25150 info_buffer for SYM's objfile; right now we never release
25151 that buffer, but when we do clean up properly this may
25153 baton->size = DW_BLOCK (attr)->size;
25154 baton->data = DW_BLOCK (attr)->data;
25158 dwarf2_invalid_attrib_class_complaint ("location description",
25159 SYMBOL_NATURAL_NAME (sym));
25163 SYMBOL_ACLASS_INDEX (sym) = (is_block
25164 ? dwarf2_locexpr_block_index
25165 : dwarf2_locexpr_index);
25166 SYMBOL_LOCATION_BATON (sym) = baton;
25170 /* Return the OBJFILE associated with the compilation unit CU. If CU
25171 came from a separate debuginfo file, then the master objfile is
25175 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25177 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25179 /* Return the master objfile, so that we can report and look up the
25180 correct file containing this variable. */
25181 if (objfile->separate_debug_objfile_backlink)
25182 objfile = objfile->separate_debug_objfile_backlink;
25187 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25188 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25189 CU_HEADERP first. */
25191 static const struct comp_unit_head *
25192 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25193 struct dwarf2_per_cu_data *per_cu)
25195 const gdb_byte *info_ptr;
25198 return &per_cu->cu->header;
25200 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25202 memset (cu_headerp, 0, sizeof (*cu_headerp));
25203 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25204 rcuh_kind::COMPILE);
25209 /* Return the address size given in the compilation unit header for CU. */
25212 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25214 struct comp_unit_head cu_header_local;
25215 const struct comp_unit_head *cu_headerp;
25217 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25219 return cu_headerp->addr_size;
25222 /* Return the offset size given in the compilation unit header for CU. */
25225 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25227 struct comp_unit_head cu_header_local;
25228 const struct comp_unit_head *cu_headerp;
25230 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25232 return cu_headerp->offset_size;
25235 /* See its dwarf2loc.h declaration. */
25238 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25240 struct comp_unit_head cu_header_local;
25241 const struct comp_unit_head *cu_headerp;
25243 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25245 if (cu_headerp->version == 2)
25246 return cu_headerp->addr_size;
25248 return cu_headerp->offset_size;
25251 /* Return the text offset of the CU. The returned offset comes from
25252 this CU's objfile. If this objfile came from a separate debuginfo
25253 file, then the offset may be different from the corresponding
25254 offset in the parent objfile. */
25257 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25259 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25261 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25264 /* Return DWARF version number of PER_CU. */
25267 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25269 return per_cu->dwarf_version;
25272 /* Locate the .debug_info compilation unit from CU's objfile which contains
25273 the DIE at OFFSET. Raises an error on failure. */
25275 static struct dwarf2_per_cu_data *
25276 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25277 unsigned int offset_in_dwz,
25278 struct dwarf2_per_objfile *dwarf2_per_objfile)
25280 struct dwarf2_per_cu_data *this_cu;
25284 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25287 struct dwarf2_per_cu_data *mid_cu;
25288 int mid = low + (high - low) / 2;
25290 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25291 if (mid_cu->is_dwz > offset_in_dwz
25292 || (mid_cu->is_dwz == offset_in_dwz
25293 && mid_cu->sect_off + mid_cu->length >= sect_off))
25298 gdb_assert (low == high);
25299 this_cu = dwarf2_per_objfile->all_comp_units[low];
25300 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25302 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25303 error (_("Dwarf Error: could not find partial DIE containing "
25304 "offset %s [in module %s]"),
25305 sect_offset_str (sect_off),
25306 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25308 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25310 return dwarf2_per_objfile->all_comp_units[low-1];
25314 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25315 && sect_off >= this_cu->sect_off + this_cu->length)
25316 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25317 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25322 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25324 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25325 : per_cu (per_cu_),
25327 has_loclist (false),
25328 checked_producer (false),
25329 producer_is_gxx_lt_4_6 (false),
25330 producer_is_gcc_lt_4_3 (false),
25331 producer_is_icc (false),
25332 producer_is_icc_lt_14 (false),
25333 producer_is_codewarrior (false),
25334 processing_has_namespace_info (false)
25339 /* Destroy a dwarf2_cu. */
25341 dwarf2_cu::~dwarf2_cu ()
25346 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25349 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25350 enum language pretend_language)
25352 struct attribute *attr;
25354 /* Set the language we're debugging. */
25355 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25357 set_cu_language (DW_UNSND (attr), cu);
25360 cu->language = pretend_language;
25361 cu->language_defn = language_def (cu->language);
25364 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25367 /* Increase the age counter on each cached compilation unit, and free
25368 any that are too old. */
25371 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25373 struct dwarf2_per_cu_data *per_cu, **last_chain;
25375 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25376 per_cu = dwarf2_per_objfile->read_in_chain;
25377 while (per_cu != NULL)
25379 per_cu->cu->last_used ++;
25380 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25381 dwarf2_mark (per_cu->cu);
25382 per_cu = per_cu->cu->read_in_chain;
25385 per_cu = dwarf2_per_objfile->read_in_chain;
25386 last_chain = &dwarf2_per_objfile->read_in_chain;
25387 while (per_cu != NULL)
25389 struct dwarf2_per_cu_data *next_cu;
25391 next_cu = per_cu->cu->read_in_chain;
25393 if (!per_cu->cu->mark)
25396 *last_chain = next_cu;
25399 last_chain = &per_cu->cu->read_in_chain;
25405 /* Remove a single compilation unit from the cache. */
25408 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25410 struct dwarf2_per_cu_data *per_cu, **last_chain;
25411 struct dwarf2_per_objfile *dwarf2_per_objfile
25412 = target_per_cu->dwarf2_per_objfile;
25414 per_cu = dwarf2_per_objfile->read_in_chain;
25415 last_chain = &dwarf2_per_objfile->read_in_chain;
25416 while (per_cu != NULL)
25418 struct dwarf2_per_cu_data *next_cu;
25420 next_cu = per_cu->cu->read_in_chain;
25422 if (per_cu == target_per_cu)
25426 *last_chain = next_cu;
25430 last_chain = &per_cu->cu->read_in_chain;
25436 /* Cleanup function for the dwarf2_per_objfile data. */
25439 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25441 struct dwarf2_per_objfile *dwarf2_per_objfile
25442 = static_cast<struct dwarf2_per_objfile *> (datum);
25444 delete dwarf2_per_objfile;
25447 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25448 We store these in a hash table separate from the DIEs, and preserve them
25449 when the DIEs are flushed out of cache.
25451 The CU "per_cu" pointer is needed because offset alone is not enough to
25452 uniquely identify the type. A file may have multiple .debug_types sections,
25453 or the type may come from a DWO file. Furthermore, while it's more logical
25454 to use per_cu->section+offset, with Fission the section with the data is in
25455 the DWO file but we don't know that section at the point we need it.
25456 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25457 because we can enter the lookup routine, get_die_type_at_offset, from
25458 outside this file, and thus won't necessarily have PER_CU->cu.
25459 Fortunately, PER_CU is stable for the life of the objfile. */
25461 struct dwarf2_per_cu_offset_and_type
25463 const struct dwarf2_per_cu_data *per_cu;
25464 sect_offset sect_off;
25468 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25471 per_cu_offset_and_type_hash (const void *item)
25473 const struct dwarf2_per_cu_offset_and_type *ofs
25474 = (const struct dwarf2_per_cu_offset_and_type *) item;
25476 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25479 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25482 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25484 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25485 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25486 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25487 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25489 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25490 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25493 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25494 table if necessary. For convenience, return TYPE.
25496 The DIEs reading must have careful ordering to:
25497 * Not cause infite loops trying to read in DIEs as a prerequisite for
25498 reading current DIE.
25499 * Not trying to dereference contents of still incompletely read in types
25500 while reading in other DIEs.
25501 * Enable referencing still incompletely read in types just by a pointer to
25502 the type without accessing its fields.
25504 Therefore caller should follow these rules:
25505 * Try to fetch any prerequisite types we may need to build this DIE type
25506 before building the type and calling set_die_type.
25507 * After building type call set_die_type for current DIE as soon as
25508 possible before fetching more types to complete the current type.
25509 * Make the type as complete as possible before fetching more types. */
25511 static struct type *
25512 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25514 struct dwarf2_per_objfile *dwarf2_per_objfile
25515 = cu->per_cu->dwarf2_per_objfile;
25516 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25517 struct objfile *objfile = dwarf2_per_objfile->objfile;
25518 struct attribute *attr;
25519 struct dynamic_prop prop;
25521 /* For Ada types, make sure that the gnat-specific data is always
25522 initialized (if not already set). There are a few types where
25523 we should not be doing so, because the type-specific area is
25524 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25525 where the type-specific area is used to store the floatformat).
25526 But this is not a problem, because the gnat-specific information
25527 is actually not needed for these types. */
25528 if (need_gnat_info (cu)
25529 && TYPE_CODE (type) != TYPE_CODE_FUNC
25530 && TYPE_CODE (type) != TYPE_CODE_FLT
25531 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25532 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25533 && TYPE_CODE (type) != TYPE_CODE_METHOD
25534 && !HAVE_GNAT_AUX_INFO (type))
25535 INIT_GNAT_SPECIFIC (type);
25537 /* Read DW_AT_allocated and set in type. */
25538 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25539 if (attr_form_is_block (attr))
25541 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25542 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25544 else if (attr != NULL)
25546 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25547 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25548 sect_offset_str (die->sect_off));
25551 /* Read DW_AT_associated and set in type. */
25552 attr = dwarf2_attr (die, DW_AT_associated, cu);
25553 if (attr_form_is_block (attr))
25555 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25556 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25558 else if (attr != NULL)
25560 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25561 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25562 sect_offset_str (die->sect_off));
25565 /* Read DW_AT_data_location and set in type. */
25566 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25567 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25568 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25570 if (dwarf2_per_objfile->die_type_hash == NULL)
25572 dwarf2_per_objfile->die_type_hash =
25573 htab_create_alloc_ex (127,
25574 per_cu_offset_and_type_hash,
25575 per_cu_offset_and_type_eq,
25577 &objfile->objfile_obstack,
25578 hashtab_obstack_allocate,
25579 dummy_obstack_deallocate);
25582 ofs.per_cu = cu->per_cu;
25583 ofs.sect_off = die->sect_off;
25585 slot = (struct dwarf2_per_cu_offset_and_type **)
25586 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25588 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25589 sect_offset_str (die->sect_off));
25590 *slot = XOBNEW (&objfile->objfile_obstack,
25591 struct dwarf2_per_cu_offset_and_type);
25596 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25597 or return NULL if the die does not have a saved type. */
25599 static struct type *
25600 get_die_type_at_offset (sect_offset sect_off,
25601 struct dwarf2_per_cu_data *per_cu)
25603 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25604 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25606 if (dwarf2_per_objfile->die_type_hash == NULL)
25609 ofs.per_cu = per_cu;
25610 ofs.sect_off = sect_off;
25611 slot = ((struct dwarf2_per_cu_offset_and_type *)
25612 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25619 /* Look up the type for DIE in CU in die_type_hash,
25620 or return NULL if DIE does not have a saved type. */
25622 static struct type *
25623 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25625 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25628 /* Add a dependence relationship from CU to REF_PER_CU. */
25631 dwarf2_add_dependence (struct dwarf2_cu *cu,
25632 struct dwarf2_per_cu_data *ref_per_cu)
25636 if (cu->dependencies == NULL)
25638 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25639 NULL, &cu->comp_unit_obstack,
25640 hashtab_obstack_allocate,
25641 dummy_obstack_deallocate);
25643 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25645 *slot = ref_per_cu;
25648 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25649 Set the mark field in every compilation unit in the
25650 cache that we must keep because we are keeping CU. */
25653 dwarf2_mark_helper (void **slot, void *data)
25655 struct dwarf2_per_cu_data *per_cu;
25657 per_cu = (struct dwarf2_per_cu_data *) *slot;
25659 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25660 reading of the chain. As such dependencies remain valid it is not much
25661 useful to track and undo them during QUIT cleanups. */
25662 if (per_cu->cu == NULL)
25665 if (per_cu->cu->mark)
25667 per_cu->cu->mark = true;
25669 if (per_cu->cu->dependencies != NULL)
25670 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25675 /* Set the mark field in CU and in every other compilation unit in the
25676 cache that we must keep because we are keeping CU. */
25679 dwarf2_mark (struct dwarf2_cu *cu)
25684 if (cu->dependencies != NULL)
25685 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25689 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25693 per_cu->cu->mark = false;
25694 per_cu = per_cu->cu->read_in_chain;
25698 /* Trivial hash function for partial_die_info: the hash value of a DIE
25699 is its offset in .debug_info for this objfile. */
25702 partial_die_hash (const void *item)
25704 const struct partial_die_info *part_die
25705 = (const struct partial_die_info *) item;
25707 return to_underlying (part_die->sect_off);
25710 /* Trivial comparison function for partial_die_info structures: two DIEs
25711 are equal if they have the same offset. */
25714 partial_die_eq (const void *item_lhs, const void *item_rhs)
25716 const struct partial_die_info *part_die_lhs
25717 = (const struct partial_die_info *) item_lhs;
25718 const struct partial_die_info *part_die_rhs
25719 = (const struct partial_die_info *) item_rhs;
25721 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25724 struct cmd_list_element *set_dwarf_cmdlist;
25725 struct cmd_list_element *show_dwarf_cmdlist;
25728 set_dwarf_cmd (const char *args, int from_tty)
25730 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25735 show_dwarf_cmd (const char *args, int from_tty)
25737 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25740 int dwarf_always_disassemble;
25743 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25744 struct cmd_list_element *c, const char *value)
25746 fprintf_filtered (file,
25747 _("Whether to always disassemble "
25748 "DWARF expressions is %s.\n"),
25753 show_check_physname (struct ui_file *file, int from_tty,
25754 struct cmd_list_element *c, const char *value)
25756 fprintf_filtered (file,
25757 _("Whether to check \"physname\" is %s.\n"),
25762 _initialize_dwarf2_read (void)
25764 dwarf2_objfile_data_key
25765 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25767 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25768 Set DWARF specific variables.\n\
25769 Configure DWARF variables such as the cache size"),
25770 &set_dwarf_cmdlist, "maintenance set dwarf ",
25771 0/*allow-unknown*/, &maintenance_set_cmdlist);
25773 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25774 Show DWARF specific variables\n\
25775 Show DWARF variables such as the cache size"),
25776 &show_dwarf_cmdlist, "maintenance show dwarf ",
25777 0/*allow-unknown*/, &maintenance_show_cmdlist);
25779 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25780 &dwarf_max_cache_age, _("\
25781 Set the upper bound on the age of cached DWARF compilation units."), _("\
25782 Show the upper bound on the age of cached DWARF compilation units."), _("\
25783 A higher limit means that cached compilation units will be stored\n\
25784 in memory longer, and more total memory will be used. Zero disables\n\
25785 caching, which can slow down startup."),
25787 show_dwarf_max_cache_age,
25788 &set_dwarf_cmdlist,
25789 &show_dwarf_cmdlist);
25791 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25792 &dwarf_always_disassemble, _("\
25793 Set whether `info address' always disassembles DWARF expressions."), _("\
25794 Show whether `info address' always disassembles DWARF expressions."), _("\
25795 When enabled, DWARF expressions are always printed in an assembly-like\n\
25796 syntax. When disabled, expressions will be printed in a more\n\
25797 conversational style, when possible."),
25799 show_dwarf_always_disassemble,
25800 &set_dwarf_cmdlist,
25801 &show_dwarf_cmdlist);
25803 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25804 Set debugging of the DWARF reader."), _("\
25805 Show debugging of the DWARF reader."), _("\
25806 When enabled (non-zero), debugging messages are printed during DWARF\n\
25807 reading and symtab expansion. A value of 1 (one) provides basic\n\
25808 information. A value greater than 1 provides more verbose information."),
25811 &setdebuglist, &showdebuglist);
25813 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25814 Set debugging of the DWARF DIE reader."), _("\
25815 Show debugging of the DWARF DIE reader."), _("\
25816 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25817 The value is the maximum depth to print."),
25820 &setdebuglist, &showdebuglist);
25822 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25823 Set debugging of the dwarf line reader."), _("\
25824 Show debugging of the dwarf line reader."), _("\
25825 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25826 A value of 1 (one) provides basic information.\n\
25827 A value greater than 1 provides more verbose information."),
25830 &setdebuglist, &showdebuglist);
25832 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25833 Set cross-checking of \"physname\" code against demangler."), _("\
25834 Show cross-checking of \"physname\" code against demangler."), _("\
25835 When enabled, GDB's internal \"physname\" code is checked against\n\
25837 NULL, show_check_physname,
25838 &setdebuglist, &showdebuglist);
25840 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25841 no_class, &use_deprecated_index_sections, _("\
25842 Set whether to use deprecated gdb_index sections."), _("\
25843 Show whether to use deprecated gdb_index sections."), _("\
25844 When enabled, deprecated .gdb_index sections are used anyway.\n\
25845 Normally they are ignored either because of a missing feature or\n\
25846 performance issue.\n\
25847 Warning: This option must be enabled before gdb reads the file."),
25850 &setlist, &showlist);
25852 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25853 &dwarf2_locexpr_funcs);
25854 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25855 &dwarf2_loclist_funcs);
25857 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25858 &dwarf2_block_frame_base_locexpr_funcs);
25859 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25860 &dwarf2_block_frame_base_loclist_funcs);
25863 selftests::register_test ("dw2_expand_symtabs_matching",
25864 selftests::dw2_expand_symtabs_matching::run_test);